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Summary

Numerical simulation of unsteady flow in hydraulic
turbomachines

Turbines and pumps dealing with incompressible flow are examples of hydraulic
turbomachines. In most cases the flow is highly turbulent and time-dependent, caused
by the rotation of the impeller in a stationary casing. The geometry, with doubly
curved surfaces, adds even more to the complexity. It all leads to a flow which is
difficult to model. Yet, to optimize turbomachines it is necessary to analyze the flow
in detail. Flow simulations using Computational Fluid Dynamics (CFD) can be a
very helpful tool. The software solves the discretized partial differential equations
for mass and momentum conservation on a grid that covers the flow domain. Two
basic discretization schemes can be distinguished: collocated and staggered. When a
collocated scheme is used, the solution suffers from odd-even decoupling. In practice
this is suppressed with artificial measures which either decrease the accuracy of the
simulation or increase the calculation time for an unsteady incompressible flow. Using
a staggered scheme, accurate discretization is more difficult, but odd-even decoupling
is avoided.

In this thesis a CFD code is developed which is based on a staggered, block-
structured grid scheme. It is suited for the calculation of time-dependent fluid motion
in turbomachines. The CFD code, named DEFT, is originally developed by the group
of Wesseling at Delft University of Technology. The first extension in the current work
was an interpolation procedure implemented to handle non-matching grids for more
flexibility in grid generation. Furthermore, a sliding interface to connect the rotating
grid in the impeller and the stationary grid was developed. Coriolis and centrifugal
forces for calculations in the rotating frame of reference, were implemented in two
ways: using a conservative formulation and using source terms. An adaptation of the
pressure equation proved necessary to reduce calculation time for computations in-
volving a sliding interface. Although the conceptual ideas behind these extensions are
applicable in 3D, they have been implemented in 2D and verified with the simulation
of a number of relatively simple flows.

DeFT was validated with the simulation of the flow through a cascade of blades
which is a model of an axial-flow pump. The blade surface pressure and the total
force on the blade are calculated. There is good agreement between values calculated
with DeFT, Fluent, values from experiments, and other CFD calculations obtained



8 Summary

from literature.
The flow through a centrifugal pump with a vaned diffusor is simulated using the

staggered discretization in DeFT and the collocated discretization in Fluent. The
calculated time-averaged pressure and velocity along the pitch of a rotor channel
show good correspondence. The agreement with results from experiments and other
CFD calculations obtained from literature is more qualitative. The calculation time
needed by DeFT and Fluent is approximately equal, despite the use of a large number
of blocks in DeFT and its lack of a convergence enhancing multi-grid method which
is used by Fluent.



Chapter 1

Introduction

A turbomachine is used to transfer energy from a rotor to a fluid or vice versa. In the
special case of a hydraulic turbomachine the working fluid is incompressible. Many
machines can be classified as hydraulic turbomachines. Examples are cooling fans in
engines, turbines in hydraulic power plants and pumps for tap water supply. Other
machines with a rotor working on an incompressible fluid are for example stirrers in
the food processing industry, rotary flow meters in the oil industry and rotating par-
ticle collectors for filtering applications. The demands on the performance of these
machines can be very high. For a large turbine, for example, a slight increase in
efficiency yields much energy. Therefore it makes sense to improve its efficiency as
much as possible. The flow in turbomachines plays a central role in its performance.
The flow is very complex, because it is highly turbulent and the geometry is compli-
cated and partly rotating. It has to be analyzed in detail in order to make design
optimizations. Numerical flow simulation is often used to achieve this. Many models
based on approximate physical laws can be used to simulate flows with a computer.

Most turbomachinery manufacturers use commercially available flow simulation
software, like STAR-CD, CFX and FLUENT. In all cases the numerical models are
based on so-called collocated-grid schemes, which are suited for compressible flows
and steady incompressible flows. In the case of hydraulic turbomachines the flow is
incompressible and unsteady. This means that the numerical models in commercially
available software codes are in principle unsuited for this application. There are a few
work-arounds for this problem which are incorporated into commercial codes. The
drawback, however, is that such methods are less accurate and less convenient for
unsteady incompressible flows.

The best method for calculating unsteady, incompressible flows is based on a so-
called staggered-grid scheme. The aim of this research is to develop a code with such
a scheme and to apply it to flows in centrifugal pumps. The performance of the code
is compared with that of a commercial code.

The first section of this chapter is about the centrifugal pump. Section 2 treats
the possible numerical methods for flow simulation. The next section explains the
odd-even decoupling problem on a collocated grid. In section 4 the staggered grid is
introduced. Finally, in section 5, the aim of this research and the outline of the rest
of the thesis is given.
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1.1 Centrifugal pumps

In Fig. 1.1 a schematic drawing of a centrifugal pump is shown. The fluid enters the

Ω

rotor eye

←− hubshroud −→

←− rotor blade seal↘

volute

tongue −→

discharge nozzle

casing

shaft

seal↙

Figure 1.1. Schematic drawing of a centrifugal pump.

pump in axial direction into the eye of the rotor. It is subsequently accelerated into
a circular motion by the rotor blades and guided through the volute to the discharge
nozzle where the fluid leaves the pump. The inlet of the pump and the volute are part
of the pump casing. The rotor is mounted on the shaft which is driven at angular
velocity Ω by an engine. Seals are fitted on the rotor and casing to restrict fluid
under high pressure from leaking back to the rotor inlet or out of the pump casing.
The rotor blades are always curved backwards, see Fig. 1.1. They may be of single
or double curvature. The blades are fitted to the hub of the rotor. The rotor may
be equipped with a shroud, or constructed as an open impeller. Starting from the
tongue of the volute, the through-flow area gradually increases towards the discharge
nozzle to account for the increasing amount of fluid. The ideal shape of the volute
depends on the flow rate at which the pump operates.

A pump increases the total pressure of a fluid by transferring mechanical power
from the rotating shaft to the fluid. The velocity of the shaft is applied to the fluid
through the rotor blades. This ensures the increase of angular momentum of the fluid
in two ways: the angular velocity of the fluid is increased and the fluid is transported
to a larger radius. Both of these principles lead to an increase in total pressure. The
kinetic energy of the fluid is partly converted into static pressure. This occurs mainly
in the discharge nozzle, but also in the volute. The added total pressure is used to
overcome flow resistance, for example friction in pipes for tap water supply or the
gravitational force in case of a polder pumping station.

Important quantities concerning the process of energy transfer in a pump are the
flow rate Q, the increase of total pressure ∆pt and the shaft power Psh. Using these,
the hydraulic efficiency of the pump ηh is defined as

ηh =
Q∆pt

Psh
. (1.1)

The added total pressure of the pump is

∆pt = (p2 +
1
2
ρv2

2 + ρgz2)− (p1 +
1
2
ρv2

1 + ρgz1), (1.2)



1.1 Centrifugal pumps 11

where ρ is the fluid density, g is the gravitational acceleration, p the static pressure, v
the velocity and z the height. The subscripts denote positions 1 and 2, at the entrance
and discharge of the pump respectively. The efficiency is a measure for the losses that
occur during the energy transfer. Losses are due to mechanical friction in the bearings
and seals of the pump or due to dissipation in the fluid. These viscous losses can be
split in disc friction, leakage flow losses and hydraulic losses. Disc friction results
from the shear forces between the external surface of the rotor and the ambient fluid.
These losses depend on shaft speed, but hardly on flow rate. The leakage flow is the
reverse flow through the seals between the rotor and the casing. All other viscous
losses in the pump are gathered in hydraulic losses. The head H is often used to
express the increase in total pressure by the pump

H =
∆pt

gρ
. (1.3)

The performance of a pump is presented in the form of characteristic curves. These
curves give the dependence of head, efficiency and shaft power on flow rate for a
specific pump, shaft speed and fluid properties. An example of these curves is shown
in Fig. 1.2. The flow rate for which the efficiency attains its maximum value is called

BEP

H

η

Psh

Q

Ω = constant

Figure 1.2. Schematic drawing of the characteristic curves of a centrifugal pump. Head,
efficiency and shaft power as functions of flow rate, for constant shaft speed.

the Best Efficiency Point (BEP). The influence of the fluid properties, shaft speed
and the geometry of a pump on the characteristic curves is very complicated. The
flow inside the pump plays a central role in this relation.

Although pumps are already used and improved for a long time, there is still a
desire to further optimize their design. The efficiency of a pump operating in its BEP
can be quite high, but improving it even further can save much energy. Sometimes
pumps need to operate for a range of flow rates instead of at one flow rate. Here it is
important to design a pump with a good efficiency for this range of conditions instead
of an excellent efficiency for only one flow rate.

Another important condition for a good design is avoiding cavitation. When the
pressure in a pump is lower than the vapor pressure, vapor bubbles arise. These
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bubbles collapse again when they migrate to positions where the pressure is above
the vapor pressure. If this happens close to the pump blades or casing, severe erosion
can occur. This process, called cavitation, also decreases the efficiency of the pump.

The design of new pumps is based on a combination of empirical knowledge of
comparable pumps, experimental results and Computational Fluid Dynamics (CFD)
simulations. Empirical knowledge of other pumps can only be used when the new
design is close to an old design. The advantage of this method is that it is inexpensive
and fast to use. Experimental results are generally very expensive and time consuming
and sometimes very difficult to obtain, but they can be very accurate. CFD results are
also expensive and time consuming to obtain, but far less than experimental results,
while the accuracy can be very good. Besides that, is it relatively easy to change
the design and calculate the results. However, the most important advantage of CFD
results is the fact that they are very detailed. The flow quantities like pressure and
velocity are known in the whole calculation domain and for all times calculated. This
is necessary to understand the complex flow in pumps and to be able to improve
their design. The role of CFD in the design process is increasing over time. The
development of computationally inexpensive and accurate numerical methods and the
continuous growth of computer resources in terms of speed and storage take account
for this.

1.2 Numerical methods

The flow in pumps can be considered incompressible as long as the velocity of the
fluid is small compared to the speed of sound in the fluid. The equations that govern
incompressible, adiabatic fluid motion are partial differential equations that describe
the conservation of mass (continuity) and momentum (Navier-Stokes). These equa-
tions are discretized on the grid that represents the geometry of the flow-domain
inside the pump. This results in a large number of coupled algebraic equations. Sub-
sequently, the boundary conditions are applied to the equations. For example, the
flow rate through the pump is imposed by prescribing the velocity at the inlet of the
domain. The motion of the rotor is prescribed by a constant angular velocity at the
rotor blades. Solving the matrix equations yields the pressure and velocity in the do-
main for all time steps. From this, the delivered head of the pump and the torque on
the rotor can be calculated. The pressure distribution also reveals where cavitation
inception occurs.

Solving the governing equations yields the main problem in CFD, which is that
very small scales influence larger scales. The importance of this effect is reflected by
the Reynolds number

Re =
ρLU

µ
, (1.4)

where L is a characteristic length of the flow domain, U is a characteristic velocity
of the flow and µ is the fluid dynamic viscosity. For larger Re, smaller scales appear
in the flow. When a Direct Numerical Simulation (DNS) is performed, all scales are
solved. This results in a very fine grid and consequently a large number of coupled
equations. Up to this moment DNS is only possible for flows in simple geometries
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at Re-numbers typically below 104. For many pumps the flow is characterized by
Re > 105. Computers are by far not powerful enough to solve such flows using DNS.
That is why several modified flow equations are applied instead. These take less time
and memory to solve, but are less accurate as well.

Using the Reynolds Averaged Navier-Stokes (RANS) equations it is feasible to
calculate the flow through a pump. Here the influence of the turbulent fluctuations
on the main flow is modeled by a turbulence model. Such a model is based on ap-
proximations. In the Euler equations, the Navier-Stokes equations are approximated
by omitting the viscous terms, which can be small in the main flow, but are not small
in boundary layers. Flows in pumps are also solved using potential flow theory, which
assumes an inviscid and irrotational flow field. Combinations of these methods are
possible as well. Sometimes the viscous forces are only solved in the boundary layers,
while in the rest of the domain only the inviscid equations are solved. General intro-
ductions in computational methods for fluid dynamics can be found in [23], [13], and
[19].

One of the other choices that have to be made, is between a transient, a stationary
or one of the quasi-stationary simulation options available in CFD software. A sta-
tionary simulation can be sufficiently accurate when the acceleration term is small.
In pumps this is the case when operating close to the design point (BEP). However,
further away from the BEP, time-dependent effects due to rotor-stator interaction,
rotor-tongue interaction, stall and cavitation increase. Non-uniform inflow conditions
will also result in a time-dependent flow. Under these conditions a transient simula-
tion is necessary in order to accurately model the flow.

There are also several options for discretization schemes, turbulence models and
matrix solvers. All of these choices influence the accuracy of the solution, the cal-
culation time and the robustness of the calculation process. Because in CFD many
approximations are used, each having its own advantages in certain cases, research
into these methods is still ongoing. One of the fundamental issues concerning dis-
cretization schemes is the manner in which variables are stored in discrete nodal
points; collocated or staggered. In the remainder of this chapter both methods are
described.

1.3 Collocated grid

In most finite volume based CFD software, the discretization of the partial differential
equations is on a collocated grid, where the dependent variables are all positioned in
the same nodes, e.g. in the cell centers (Fig. 1.3). When the gradient of, for example,
the pressure is discretized, the pressure is interpolated from the cell centers to the
edge of the control volume. If a central discretization scheme is used on a uniform
grid, the gradient is written as

∂p

∂x

∣∣∣
i
=

(
pi+1 + pi

2
− pi + pi−1

2

)
1

∆x
=
pi+1 − pi−1

2∆x
, (1.5)

where the subscript i refers to the cell number in the x-direction and ∆x is the size of
the cell in the x-direction. As a result, the value of the pressure in the point where it
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Figure 1.3. Collocated grid, with cartesian velocity in x-direction ux, cartesian velocity in
y-direction uy and pressure p.

is discretized drops out. Therefore, the gradient in odd-numbered nodes only uses in-
formation from even-numbered nodes, and vise versa. This odd-even decoupling does
not have to be a problem if it is suppressed by other terms of the partial differential
equations that do have an odd-even coupling. However, when these are weak or not
present at all, an unphysical checkerboard pattern of the variable appears. This is
shown in Fig. 1.4 for a one-dimensional pressure field. In reality often nearly uniform

odd

even

x

p

Figure 1.4. Odd-even decoupling resulting in a checkerboard pattern for the pressure.

grids are used for a smooth transition between areas with a high and a low cell den-
sity. On such a grid pi is not canceled in Eq. (1.5), but the odd-even coupling remains
weak. The most severe case of odd-even decoupling arises for the pressure in the
incompressible Navier-Stokes equations, since the pressure is only present in gradient
form. The velocity in the continuity equation is decoupled as well, but coupled (in
some cases, weakly, [31]) via the momentum equations. To calculate incompressible
flow on a collocated grid, measures have to be taken in order to prevent odd-even
decoupling. This is done either through one-sided discretization, flux splitting, Pres-
sure Weighted Interpolation (PWI), or the artificial compressibility method. These
methods are summarized in [31] and outlined here.

One-sided instead of central discretization can be used to avoid odd-even decou-
pling. A forward discretization for the velocity derivative and a backward discretiza-
tion for the pressure gradient (or vice versa) are used to establish the necessary
coupling between odd and even positions. This was applied in [15] and a proof of
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convergence was given in [11]. This method is however first-order accurate and dissi-
pative.

Flux splitting applied to the Navier-Stokes equations in [8], [9] and [10] is based on
a more sophisticated combination of one-sided forward and backward discretizations.
This method also prevents odd-even decoupling, but is dissipative as well.

The Pressure Weighted Interpolation (PWI) method was introduced in [24]. Cur-
rently this method is also called the momentum interpolation method. The core of the
solution to suppress odd-even decoupling is the addition of a small pressure term to
the continuity equation. The term is smaller than the discretization error of the origi-
nal mass conservation equation and consists of pressures from odd and even positions
thus establishing the coupling. In the originally proposed PWI method, the calcula-
tion results depend on certain relaxation factors, but a version without this drawback
was proposed in [21]. When strong body forces are present, the PWI method has to
be adapted to work properly, see [16]. For flows with a high swirl number or a curved
domain, the PWI method can be adapted as well.

The artificial compressibility method is in principle only suited to obtain steady
solutions. Using an artificial equation of state, the time derivative of the pressure is
added to the continuity equation ([5]). The pressure in the even points is now coupled
to the velocity in the odd points. Because the odd and even velocities are coupled
through the momentum equations, the odd and even pressures are coupled as well.
The solution proceeds in time until it becomes steady, driving the added artificial
compressibility term to zero. For accurate unsteady simulations the procedure has to
be changed. Pseudo time is introduced and for every physical time step the added
artificial term is driven to zero by iterating in pseudo time. This is sometimes called
dual time stepping. The artificial compressibility method and the PWI method are
compared in [25]. It turned out that the PWI method needs less computer memory
and results in better accuracy and mass conservation.

The adaptations needed to suppress decoupling are believed to result in calcu-
lations which are either less accurate or more time-consuming, especially for time-
dependent flows. An alternative method based on a staggered-grid approach does not
suffer from odd-even decoupling. It is introduced in the next section.

1.4 Staggered grid

Instead of a collocated grid, it is possible to use a staggered grid where different
variables are positioned at different locations in a cell, see Fig. 1.5. The velocities
are positioned at the centers of the faces of a cell and the pressure and other scalars
like turbulence quantities are positioned in the cell centers. The control volumes for
the continuity and momentum equations with the discretization stencils are given
in Fig. 1.6. The main advantage of the discretization on the staggered grid is that
first spatial derivatives of the velocity in the continuity equation and the pressure are
calculated using information from adjacent nodes (in case of a second-order central
scheme), thus preventing odd-even decoupling [22]. For these derivatives, the variable
is conveniently positioned on the edge of the control volume. Interpolation, which can
cause cancelation of the central variable, is not necessary. Due to this advantage a
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Figure 1.5. Staggered grid, with cartesian velocity in x-direction ux, cartesian velocity in
y-direction uy and pressure p.
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Figure 1.6. Control volume and discretization stencil for (a) the continuity equation, (b) the
convection and (c) combined pressure and viscous terms of the momentum equation respectively.

staggered grid is in principle favorable for computing incompressible flow. No artificial
terms are needed in the solution procedure.

1.5 Aim and outline

In general, collocated grids are preferred to staggered grids, because they are easier
for discretization of the equations, especially if the grid is non-uniform. However, for
incompressible flow on a uniform grid, staggered discretization is favorable [33]. On a
non-uniform grid, like in a pump, staggered discretization, as originally introduced by
Harlow and Welch [17] is very inaccurate. Wesseling [33], however, proposed a stag-
gered discretization that proved to be accurate on non-smooth grids, which makes it
useful for a much wider range of applications. Using this discretization, the RANS
equations were implemented in the block structured CFD package DeFT [1], devel-
oped at Delft University of Technology.

The aim of this thesis is to continue the development of DeFT in order to make it
applicable to pumps. Because DeFT uses a boundary-fitted grid and the rotor moves
with respect to the casing, a sliding interface between the rotating and stationary
grid is implemented. In the rotating frame of reference the Coriolis and centrifugal
forces appear in the Navier-Stokes equations. These body forces are implemented in
conservative form. Finally, to be more flexible in grid generation in the complex ge-
ometry of the pump, DeFT is adapted to handle non-matching grids. After this, the
performance of DeFT is compared with that of the commercial package Fluent for the
simulation of the flow in a centrifugal pump. The performance of the solvers is based
on the accuracy of the calculation results and the time and memory needed for the
calculation of the flow. The time-dependent velocity and pressure fields are compared
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with the results from experiments and CFD calculations available in literature.
Although this thesis focuses on the calculation of the flow in a centrifugal pump

it is just as well applicable to other machines like turbines, fans or stirring devices,
as long as the flow in the apparatus can be modeled as incompressible.

The next chapter treats the most important features of DeFT. In chapter 3, rel-
atively simple flows are simulated to verify the correct implementation of DeFT.
The accuracy of staggered and collocated discretizations is compared for a flow on a
very non-uniform grid. A time-dependent channel flow is simulated to compare the
performance of DeFT and Fluent. Chapter 4 concerns the validation of DeFT, simu-
lating a stationary flow through a cascade of blades. The results of DeFT and Fluent
are compared with the results of experiments and CFD simulations from literature.
Simulations of the time-dependent flow through a centrifugal pump are described in
chapter 5. Finally, the conclusions and recommendations of this thesis are given in
chapter 6.
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Chapter 2

DeFT

DeFT was developed in the group of Prof. Wesseling at Delft University of Technol-
ogy. The main focus was on solving the incompressible RANS equations. It was part
of the project for the development of the Information System for flow simulation based
on the Navier-Stokes equations (ISNaS). In [3] the domain decomposition procedure
for the laminar equations is described. The extension to turbulent flows is treated
in [35], where different k − ε and the k − ω turbulence models are used. Several dis-
cretization methods are implemented. Simulations can be done on a collocated grid
or a staggered grid. For staggered grids one can choose the classical discretization or
the WesBeek discretization developed by Wesseling and Van Beek [28]. The classical
discretization is accurate on smooth grids only, while the WesBeek discretization is
accurate on non-smooth grids as well. However, the WesBeek discretization stencil is
larger. DeFT was also used to test a number of iterative solvers for large sparse lin-
ear asymmetric matrix equations: the standard Conjugate Gradient Squared (CGS)
method, the Generalized Minimal RESidual (GMRES) method, the GMRES Recur-
sive (GMRESR) method, the Generalized Conjugate Residual (CGR) method and
the Conjugate Gradient STABilized (CG-STAB) method. These solvers are suitable
for DeFT because the grid is block-structured. GMRESR is robust and efficient in
terms of memory and CPU time. Therefore, it is used for the calculations in this
thesis. In [14] the efficiency of several parallel solution strategies is compared.

The goal of this chapter is to explain how DeFT performs a flow simulation. In
this thesis DeFT is used to solve the two-dimensional, time-dependent RANS equa-
tions for an incompressible, Newtonian fluid on a non-uniform, boundary-fitted grid.
Turbulence is modeled with the standard k − ε model. All calculations are done
on a single processor. Cavitation is not modeled. In the first section, the grid and
some restrictions concerning block coupling are treated. Subsequently, the govern-
ing equations are given in both the stationary and rotating frame of reference. The
conservative formulation of the Coriolis and centrifugal forces is treated as well. The
following sections are about the boundary conditions and the staggered discretization.
In the section on the solution procedure, the main steps in the structure of the solver
are explained. Finally the multi-block exchange of the primitive variables is clarified,
where the focus is on the implementation of the non-matching blocks and the sliding
interface.
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2.1 Grid

In DeFT, the grid in the flow-domain is boundary-fitted and block structured. The
cells have four edges which are straight lines. Each block can be regarded topologically
as a rectangle with directions 1 and 2 along the block faces, see Fig. 2.1. Around each

1

2

real

virtual

← four virtual corner cells

Figure 2.1. A block with real and virtual cells.

block two rows of virtual cells are used. In each corner of a block, there are four virtual
corners cells. When there is no neighboring block, the virtual cells are extrapolations
from the inner grid cells to the outside of the domain. The advantage of using virtual
cells is that the discretization stencil which is used in the inner part of the block, can
also be used close to the block face, where part of the stencil is located in the virtual
cells. The virtual cells are used to prescribe boundary conditions if the corresponding
block face is at the edge of the flow domain.

When a face of a block is connected to another block, its virtual cells overlap the
real cells of the neighboring block. They are used to transfer information between
the blocks. When the grid at the interface between two blocks matches, the virtual
cells are copies of the real cells in the first two rows of the neighboring block. In
this way, flow variables can be copied from the real cells to the virtual cells without
interpolation. This, however, restricts the way in which blocks can be coupled, see
Fig. 2.2. The C-type grid of block 3 connects to blocks 1 and 2 with only one face.

1

2

3

virtual

real

Figure 2.2. A block connection that splits the virtual cells.

The virtual cells along this face are cross hatched in blocks 1 and 2. These two virtual
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rows of cells are, however, discontinuous at the point where blocks 1, 2 and 3 meet.
This is not allowed, since the discretization scheme assumes neighboring cells in the
stencil to be adjacent in the grid. A solution to this problem is to divide blocks 1 and
3 into two blocks at the discontinuity, see Fig. 2.3. Another restrictive consequence of

1b

2

3a

1a

3b

virtual

real

Figure 2.3. More blocks to avoid discontinuous virtual rows.

the use of copies of cells for the virtual grid emerges when three blocks meet at one
point in the interior of the flow domain, see Fig. 2.4. The virtual cells of block 2 are

1

2 3

virtual

real

Figure 2.4. Where three blocks meet in an internal point, there is no space for the four corner
cells.

located in blocks 1 and 3. At the interface between blocks 1 and 3, these rows meet,
leaving no space for the four corner cells. This block coupling is therefore not allowed
(unless a special discretization is adopted).

When the grids of two neighboring blocks do not match, the coordinates of the
virtual cells are chosen such that interpolation of the flow variables is only necessary
in the direction parallel to the block face, see Fig. 2.5. The shape of the virtual cells
resembles the shape of the overlapping real cells as much as possible. In the direction
normal to the mutual block face, the size of the cells is equal. In the parallel direction,
the length of the virtual cell is determined by linear interpolation between the real
cells. The lower face of block 1 is divided into two subfaces that are connected to
blocks 2 and 3. Subfaces always contain a whole number of cells. Referring to Fig.
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1

2 3

virtual

real

Figure 2.5. Virtual cells along a non-matching block interface.

2.5, all the block interfaces are non-matching, except for the two rows of blocks 2 and
3 that overlap with the virtual cells of block 1. These rows are not allowed to be
non-matching, because it would make the virtual rows of block 1 discontinuous.

2.2 RANS equations

2.2.1 Stationary frame of reference

The equation for conservation of mass for an incompressible flow is, in index notation,

∂ui

∂xi
= 0, (2.1)

where ui and xi are the cartesian velocity component and coordinate in direction i
respectively. When an index appears more than once in a term, summation over all
values of the index is applied. The conservation of momentum of an incompressible
Newtonian fluid equals

∂ui

∂t
+

∂

∂xj

[
uiuj + δij

p

ρ
− µ

ρ

∂ui

∂xj

]
= 0, (2.2)

where t is the time, p the pressure, ρ the density and µ the dynamic viscosity of the
fluid. For the turbulent flows that are treated in this thesis, the smallest scales of the
flow are too small to solve. Therefore, the governing equations are time-averaged over
a period T , which is long compared to the time-scale of the turbulent fluctuations, but
short compared to the time scale of the global time-dependent behavior of the flow.
The Reynolds Averaged Navier-Stokes (RANS) equations are derived by splitting
each velocity component in a time-averaged part, ūi, and a fluctuating part, u,

i and
likewise for the pressure

ui = ūi + u,
i, p = p̄+ p,. (2.3)

This is substituted in the continuity and Navier-Stokes equations and averaged over
time. In all linear terms in velocity and pressure, the velocity and pressure is replaced



2.2 RANS equations 23

by its average value, because the average of the fluctuating part is zero. The non-linear
terms, however, also produce products of fluctuating terms, which are not zero when
averaged over time. This yields extra terms in the averaged momentum equation

∂ūi

∂t
+

∂

∂xj

[
ūiūj + u,

iu
,
j + δij

p̄

ρ
− µ

ρ

∂ūi

∂xj

]
= 0. (2.4)

They are modeled as Reynolds stresses τij , by equating

τij = −ρu,
iu

,
j = µt

∂ūi

∂xj
, (2.5)

where µt is the turbulent viscosity, which depends on the flow and not on the fluid.
Combining the turbulent and fluid viscosity in the effective viscosity µeff = µt + µ,
the RANS equations can be written as

∂ui

∂t
+

∂

∂xj

[
uiuj + δij

p

ρ
− µeff

ρ

∂ui

∂xj

]
= 0, (2.6)

where for convenience u and p now denote time-averaged quantities. These equations
are equal to the original Navier-Stokes equations again, except for the added turbulent
viscosity. This new unknown has to be calculated with new equations that relate the
turbulent velocity fluctuations to the average velocity and pressure. This so-called
turbulence modeling is based on approximations. In the standard k − ε turbulence
model, two extra partial differential equations are solved to calculate µt: one for the
turbulent kinetic energy per unit mass,

k =
1
2
u,

iu
,
i, (2.7)

and one for the dissipation rate of turbulent kinetic energy per unit mass,

ε =
µ

ρ

∂u,
i

∂xj

∂u,
i

∂xj
. (2.8)

The turbulent viscosity is calculated from k and ε using

µt = ρCµ
k2

ε
, (2.9)

where Cµ is a closure coefficient. A closure coefficient is a constant that represents
products of fluctuations that can not be expressed in the variables that are calculated:
ui, p, k or ε. These terms are therefore not calculated, but approximated by a
constant. The exact partial differential equation for k is derived from the following
moment of the Navier-Stokes equations

u,
iN(ui) = 0, (2.10)

where N(ui) is the Navier-Stokes operator

N(ui) =
∂ui

∂t
+

∂

∂xj

[
uiuj + δij

p

ρ
− µ

ρ

∂ui

∂xj

]
= 0. (2.11)
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The modeled equation for k is

ρ
∂k

∂t
+ ρuj

∂k

∂xj
= τij

∂ui

∂xj
− ρε+

∂

∂xj

[
(µ+

µt

σk
)
∂k

∂xj

]
, (2.12)

where σk is a closure coefficient. The exact equation for ε is derived from the moment

2
µ

ρ

∂u,
i

∂xj

∂N(ui)
∂xj

= 0. (2.13)

The modeled equation for ε is

ρ
∂ε

∂t
+ ρuj

∂ε

∂xj
= Cε1

ε

k
τij

∂ui

∂xj
− Cε2ρ

ε2

k
+

∂

∂xj

[
(µ+

µt

σε
)
∂ε

∂xj

]
, (2.14)

where Cε1, Cε2 and σε are closure coefficients. For the standard k − ε turbulence
model, the closure coefficients are

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3. (2.15)

These turbulence equations and more information on turbulence modeling in CFD
can be found in [34].

The turbulence quantities ε and k should, for physical reasons, always be positive.
In case they become negative during the solution procedure, their values are clipped to
zero. This proved necessary to ensure stability during the initial part of the simulation
of the centrifugal pump in chapter 5.

2.2.2 Rotating frame of reference

Part of the domain in a pump rotates with constant angular velocity Ω of the
rotor. Because the grid is boundary-fitted, the governing equations need to be solved
in the rotating frame of reference. The continuity equation does not change when it is
transformed from the stationary to the rotating frame of reference. However, when the
momentum equations are transformed to the rotating frame, apparent forces emerge,
called the Coriolis Fcor and centrifugal Fcen forces

Fcor = (−2w2Ω, 2w1Ω), Fcen = (−x1Ω2,−x2Ω2), (2.16)

where w is the fluid velocity in the rotating frame, which can be written as w = u−s,
with s = (−Ωx2,Ωx1), the rotor velocity. These body forces can be written as source
terms in the right hand side of the equations. However, contrary to Eq. (2.2), this
formulation is not conservative. A conservative formulation is preferred because then
momentum fluxes exactly cancel at the interface between two neighboring control vol-
umes. Fortunately, Beddhu [2] showed that these forces can be written in conservative
form as well

Fcor,i + Fcen,i = (sj + 2wj)
∂si

∂xj

=
∂

∂xj

[
2siwj + sisj

]
− 2si

∂wj

∂xj

=
∂

∂xj

[
2siwj + sisj

]
, (2.17)
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where use is made of the flow being incompressible. The Navier-Stokes equations in
the rotating frame can be written as

∂wi

∂t
+

∂

∂xj

[
wiwj + 2siwj + sisj + δij

p

ρ
− µ

ρ

∂wi

∂xj

]
= 0. (2.18)

The requirement of incompressible flow, however, can give some problems. When the
continuity equation is not solved very accurately, the term with the divergence of the
fluid velocity in Eq. (2.17) can be relatively large if 2si is large. The same holds for
the first term within the square brackets of Eq. (2.18) if wi is large

∂(wiwj)
∂xj

= wj
∂wi

∂xj
+ wi

∂wj

∂xj
. (2.19)

When non-matching grids are used, interpolation of the flow variables at the non-
matching interface is necessary. Interpolation errors can lead to reduced accuracy for
the solution of the continuity equation, causing the conservative formulation to fail.
An example illustrating the use of the conservative and the source term formulation
for matching and non-matching grids is given in section 3.4.

The k − ε turbulence equations in the rotating frame can be derived by adding
the components of the Coriolis and centrifugal force Eq. (2.16) to the Navier-Stokes
operator Eq. (2.11) and using the moments Eq. (2.10) and Eq. (2.8) to calculate their
contribution. Because the centrifugal force does not depend on the fluid velocity or
pressure, its contribution does not contain products of fluctuations and is therefore
equal to zero. The Coriolis force depends on the velocity. However, the resulting
products of velocity fluctuations cancel in both the equation for k and for ε. This
is why the original equations can be used in the rotating frame of reference without
adaptations.

2.3 Boundary conditions

Several boundary conditions can be applied to the RANS equations in DeFT. The no-
slip condition is applied at walls where the velocity is zero. At the inflow boundary of
the domain, a velocity profile is prescribed. At the outflow, the normal and tangential
stress components

σnn = −p+ 2µ
∂un

∂xn
, σnt = µ

[∂un

∂xt
+
∂ut

∂xn

]
(2.20)

are given the value zero. The subscripts n and t refer to the direction normal and
tangential to the domain boundary respectively. Another boundary condition for
the Navier-Stokes equations is free-slip. In this case, the normal velocity and the
tangential stress are set to zero. In case of turbulent flow, wall functions can be used
to model the boundary layer. The normal velocity is set to zero, but instead of the
tangential velocity, the wall shear stress τw is prescribed. The appropriate value is
determined by

τw =
ρC

1/4
µ

√
kpup

u∗
, (2.21)
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where p refers to the point located at the center of a computational cell along the
surface, up and kp are the velocity and the kinetic turbulence energy in point p
respectively and u∗ is a non-dimensional velocity. This velocity is a function of the
dimensionless wall distance

y∗ =
ρC

1/4
µ

√
kpyp

µ
, (2.22)

where yp is the normal distance from point p to the blade. The relation between u∗

and y∗ is linear
u∗ = y∗ (2.23)

close to the blade when y∗ < 11.225 and logarithmic

u∗ =
1
κ

lnEy∗, (2.24)

where κ = 0.41 and E = 9.8, when y∗ > 11.225.
For the turbulence equations, k and ε are prescribed at the inflow boundary of the

domain. At the outflow, the normal gradient of k and ε are equal to zero. When wall
functions are used, the wall normal gradient of k is set to zero. The value for ε in the
first grid point next to the wall is calculated from

ε =
C

3
4
µ k

3
2

κy
, (2.25)

where Cµ = 0.09 and the Von Karman constant κ = 0.41.
For all the equations periodic boundary conditions can be used.

2.4 Staggered discretization

The finite volume staggered WesBeek discretization used in DeFT is similar to the
original Marker And Cell (MAC) discretization introduced by Harlow and Welch [17]
when used on a uniform grid. The MAC discretization is, however, not accurate on
non-uniform grids. Therefore, it is not useful for the complex geometry in turboma-
chines. The WesBeek discretization given in [33] for the incompressible Navier-Stokes
equations, is accurate on non-smooth grids as well. The control volumes for the con-
tinuity and momentum equations and their discretization stencils are given in Fig.
2.6. The velocity is represented by the volume flux across a cell edge, which is the
integral over the cell edge of the velocity component normal to the cell edge. V (1)

and V (2) are the volume fluxes in directions 1 and 2, respectively. The total stencil
for one momentum equation contains 21 velocity and 6 pressure points. The mass
conservation is discretized using just four velocity points and without interpolation.
The contribution of each pressure and velocity variable to the discrete derivatives can
be found in [33]. Accurate discretization on non-uniform grids is achieved by taking
into account the geometrical properties of the grid. Therefore, the volume flux is
defined as a function of the covariant base vectors in such a way that it is continuous
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V (2)

V (1)

p
control
volume

2

1
a b c

Figure 2.6. Control volume and discretization stencil for (a) the continuity equation, (b) the
convection and (c) combined pressure and viscous terms of the momentum equation.

across cell faces. The covariant base vectors a(α) are defined by

a(α) =
∂x

∂ξα
, (2.26)

where x and ξ are the coordinates in physical and computational space respectively.
A grid cell in both of these spaces is shown in Fig. 2.7. In computational space each

x2

x1

a b

cd

ξ1

ξ2

a b

cd

10

1

V 1
e V 1

w

V 2
s

V 2
n

Figure 2.7. A grid cell in physical space, computational space and with its volume fluxes at
the faces. The subscripts e, w, s, n denote east, west, south and north respectively.

cell is a square with the length of its sides equal to 1. The bilinear mapping from
computational to physical coordinates is given by

x = c1 + c2ξ1 + c3ξ2 + c4ξ1ξ2, (2.27)

where ci are constants within each cell given by the coordinates of the corners of the
cell

c1 = xa, c2 = xb − xa, c3 = xd − xa, c4 = xa + xc − xb − xd. (2.28)

The volume flux V (α) is defined by

V (1) = u⊗ a(2), V (2) = −u⊗ a(1), (2.29)

where the operator ⊗ is defined as

x⊗ y = x1y2 − x2y1. (2.30)
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Using Eq. (2.26)-Eq. (2.28) this can be rewritten as

V (1) = u⊗ (xd − xa + (xa + xc − xb − xd)ξ1), (2.31)
V (2) = −u⊗ (xb − xa + (xa + xc − xb − xd)ξ2). (2.32)

At the cell faces where the volume fluxes are located (see Fig. 2.7) this becomes

V (1)
e = u⊗ (xd − xa), V 1

w = u⊗ (xc − xb), (2.33)
V (2)

s = −u⊗ (xb − xa), V 2
n = −u⊗ (xc − xd). (2.34)

These expressions show that the volume flux only depends on the cell face where it
is positioned on. This is necessary to get a continuous volume flux across cell faces.

In [32] the 3D staggered WesBeek discretization is given. For the definition of the
volume flux a similar procedure can be followed as in 2D. A physical and computa-
tional cell are given in Fig. 2.8.

x3

x2

x1 ξ1

ξ2

ξ3

10

1

1

Figure 2.8. A grid cell in physical space and in computational space.

The bilinear mapping is

x = c1 + c2ξ1 + c3ξ2 + c4ξ3 + c5ξ1ξ2 + c6ξ1ξ3 + c7ξ2ξ3 + c8ξ1ξ2ξ3, (2.35)

where ci are constants within each cell. They are functions of the coordinates of the
corners of the cell. The volume flux V (α) is positioned at the middle of the cell face,
where ξα = 0 or ξα = 1, ξβ = 0.5, and ξγ = 0.5 and it is defined by

V (α) = a(β) × a(γ) · u, (2.36)

where α, β, and γ are cyclic. The covariant base vectors a(β) and a(γ) are drawn in
Fig. 2.9. Each covariant base vector is the average of two opposite edges of the cell
face. The length of the cross product of these base vectors is used to approximate
the area of the cell face, since in general the cell face is curved. The volume flux
again only depends on the geometry of the cell face where it is positioned on. This is
necessary to get a continuous volume flux across cell faces.
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ξβ

ξγ

a(β)

a(γ)

Figure 2.9. The covariant base vectors used to define the volume flux.

Going back to 2D, according to [33] in several publications the velocity is represented
by Uα = u · a(α), where a(α) are the contravariant base vectors that are defined as

a(α) =
∂ξα
∂x

. (2.37)

U (α) can be written in terms of V (α) as

U (α) =
V (α)
√
g
, (2.38)

where
√
g =

∂x

∂ξ1
⊗ ∂x

∂ξ2
(2.39)

is the Jacobian of the mapping. For the mapping of Eq. (2.27) it can be rewritten as
√
g = c2 ⊗ c3 + (c2 ⊗ c4)ξ1 + (c4 ⊗ c3)ξ2, (2.40)

which is discontinuous across cell faces for general grids. This is the reason for bad
accuracy when U (α) is used. However, on a grid where for each cell its opposite faces
are parallel (c4 = 0) and the cell surface c2 ⊗ c3 is constant, the Jacobian

√
g is

constant. So, on a skewed uniform grid U (α) is continuous across cell faces.
Furthermore, using the WesBeek discretization, for a constant flow velocity u, the

interpolation of the volume flux V to points between its grid nodes is such that when
u is recomputed from the interpolated fluxes, the exact velocity is recovered. Another
criterion is that irrespective of the grid, the discretization error must be zero for a flow
with a constant velocity and a constant pressure gradient. Finally, the discretization
avoids the use of Christoffel symbols by preceding the transformation of the equations
to invariant form by the finite volume integration, removing the second derivative of
the bilinear mapping.

The convection term can be discretized by a central or a first-order upwind scheme.
The higher order upwind schemes that are implemented in DeFT are not accurate
on non-uniform grids. The pressure and viscous terms are discretized with central
schemes. For the temporal discretization the first-order Euler scheme is implemented,
using a constant time step.
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2.5 Solution procedure

Because the RANS equations for time-dependent incompressible flow are coupled,
they should be solved as one system of equations. However, since the pressure is
only present in the momentum equations and the continuity equation does not con-
tain k and ε, the resulting global matrix of the system of linearized equations is
ill-conditioned. To avoid this, the equations are solved sequentially, which reduces
the size of the system of equations as well. Therefore, the pressure-correction method
is used to solve the continuity and momentum equations. After that, the turbulence
equations are solved. The discrete momentum equations are written as a system of
linear equations

M
un+1 − un

∆t
+B(un)un+1 +Gpn+1 = Fn+1 −A(un). (2.41)

where M is the diagonal mass matrix, u is the velocity vector, n is the old time level
on which the converged solution is known, n + 1 is the new time level on which the
solution has to be calculated, ∆t is the time step and B is the matrix with convective
and viscous terms. B depends on the velocity at the old time level, because the
convective term is linearized in the velocity at the new time level. G is the gradient
matrix, p is the pressure vector, F is the vector with boundary conditions at the new
time level and the vector A represents the part of the linearized convective term that
depends on the velocity at the old time level only. This equation is solved for an
intermediate velocity u∗ using the pressure at the old time level.

M
u∗ − un

∆t
+B(un)u∗ +Gpn = Fn+1 −A(un). (2.42)

u∗ can be regarded as a prediction of the velocity un+1. When Eq. (2.42) is subtracted
from Eq. (2.41) and the difference between the convection terms B(un)(un+1 − u∗) is
neglected, the velocity correction equation arises

M
un+1 − u∗

∆t
+G(pn+1 − pn) = 0. (2.43)

The pressure correction equation is subsequently derived by taking the divergence of
Eq. (2.43) and using Dun+1 = 0 for incompressible flow, yielding

M
−Du∗

∆t
+DG∆p = 0, (2.44)

where D is the divergence matrix and

∆p = pn+1 − pn, (2.45)

the pressure difference between two time levels.
The solution algorithm for the RANS equations is shown in Fig. 2.10. First, the

known solution at the old time level n is used as the first iterate in the iteration
loop. Then, the equations are solved sequentially, where the most recently calculated
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α = 0, uα = un, pα = pn, kα = kn, εα = εn

M
u∗α+1−un

∆t +Bu(uα, kα, εα)u∗α+1 +Gpα = Fn+1 −Au(uα)→ u∗α+1

Du∗α+1 = DM−1∆tG∆pα+1 → ∆pα+1

M
uα+1−u∗α+1

∆t = −G∆pα+1 → uα+1

∆pα+1 = pα+1 − pα → pα+1

M kα+1−k0
∆t +Bk(uα+1, kα, εα)kα+1 = Ak(uα+1, kα, εα)→ kα+1

M εα+1−ε0
∆t +Bε(uα+1, kα+1, εα)εα+1 = Aε(uα+1, kα+1, εα)→ εα+1

converged?
no, α = α + 1

yes

un+1 = uα+1, pn+1 = pα+1, kn+1 = kα+1, εn+1 = εα+1, n = n+ 1

Figure 2.10. The solution algorithm, with the time step loop (outer) and the iteration loop
(inner). For u, u∗, p, ∆p, k and ε the superscript n denotes the time level and the subscript α
the iteration level.

values of the unknowns are used to construct matrix B and vector A. After that, the
iteration loop starts again and continues until convergence of the non-linear coupled
equations is reached. A convergence criterion for the iteration loop in Fig. 2.10 is not
implemented; instead, a fixed number of iterations is performed. Finally, the outer
loop, representing the time stepping, continues to the next time level.

In the core of the solver, matrix equation Ax = b is solved using the iterative
GMRESR method. This method is proposed in [29] and tested using the Navier-
Stokes equations in [30]. In the matrix equation all discrete velocity, pressure, k or ε
unknowns of all blocks are present. The convergence criterion for the iterative matrix



32 DeFT

solver depends on the residual vector of the global matrix equation Ax = b, which is
defined as r = b − Ax. The relative convergence criterion used in DeFT is based on
the initial residual r0 = b−Ax0 with the initial iterate x0. Iteration xk is considered
a converged solution of the equation if εc||r0||2 > ||rk||2, where εc is specified by the
user. The default value for εc is 10−4 for the pressure equation and 10−3 for the other
RANS equations.

In order to perform the matrix vector multiplications in the GMRESR algorithm,
the global matrix and vector are extended with the virtual part. For example, the
matrix equation for three blocks is

 A1r A1v Ø Ø Ø Ø
Ø Ø A2r A2v Ø Ø
Ø Ø Ø Ø A3r A3v




x1r

x1v

x2r

x2v

x3r

x3v


=

b1r

b2r

b3r

 , (2.46)

where A1r, A1v, x1r and x1v are the real and virtual part of the matrix and vector
for block 1 respectively. Because the virtual part is included in the matrix equation,
there are more unknowns than equations. However, for a matrix vector multiplication
this is not a problem. The virtual values of x are interpolated from the real values
of x from a neighboring block, before the multiplication is carried out. In this way,
the global multiplication is done at block level. The extension from matching to
non-matching blocks does not affect the structure of the global matrix. Updating
the virtual variables only changes from copying to interpolating from the neighboring
block.

After an equation is solved, the virtual cells are updated with the new solution.
When the velocity prediction is calculated, the velocity which is calculated at the
multi block boundary, is averaged with its corresponding velocity at the neighboring
block. It is necessary to have a unique value of this velocity to achieve convergence
of the pressure equation. Also within the iterative matrix solver, there is information
exchange between blocks. The residual and error in the solution are communicated
across block boundaries.

The solver in DeFT is designed for time-dependent flows. There is no solver where
the acceleration term of the Navier-Stokes equations is omitted. When a stationary
flow is simulated, the solution is carried on in time until the flow is stationary.

2.6 Multi block exchange of primitive variables

In case the computational domain is divided into multiple blocks, the double row of
virtual cells around each block plays an important role in the block coupling. The
virtual cells of a block overlap the first two rows of the real grid of the neighboring
block. Matching grids can be used in simple geometries. But for complex geometries,
matching grids can be difficult to construct and often result in very skewed and
stretched cells. To improve the grid quality, it is necessary to allow non-matching
grids.
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Non-matching grid

For non-matching grids, the virtual cells along the multi block boundary, do not
match the real cells of the neighboring block, as already shown in Fig. 2.5. Therefore
the variables can not be copied from one block to another, but interpolation in the
direction parallel to the block boundary is needed. The resulting interpolation errors
are a drawback of non-matching grids. The interpolation of variables from the real
part of the grid to the overlapping virtual part is shown in Fig. 2.11. The unknown

p

un

Vt

virtual grid

Figure 2.11. Interpolation of the pressure p, normal velocity un and tangential volume flux Vt

from the nearest neighbors on the real grid to the virtual grid.

values in the virtual grid are linearly interpolated between the two nearest neighbors
from the overlapping real grid. The volume flux normal to the block face is not
interpolated directly. Because the velocity is continuous across the block face, the
volume flux is discontinuous if the length of the cells in the direction parallel to
the block boundary is different in both blocks. This is why the normal velocity is
interpolated instead.

Sliding interface

To couple the moving grid of the rotor to the stationary grid of the casing, a sliding
interface is necessary. The sliding interface must be able to handle non-matching grids.
The connections between cells from the rotating and the stationary part change at
the start of every time step in Fig. 2.10. Because the shape of the virtual grid depends
on the shape of the overlapping real grid, the geometry of the virtual grid changes
every time step as well.

The flow in the blocks of the rotating part of the domain is calculated in the
rotating frame of reference. Therefore, variables have to be transformed from the
moving to the stationary reference frame. The rotor velocity has to be added to the
relative velocity to get the absolute velocity. The pressure, k and ε do not have to be
transformed across the sliding interface.

The transformation of the pressure difference ∆p between two time levels from the
moving to the stationary reference frame is not straightforward. Across the sliding
interface this variable is discontinuous during the first iteration of the loop over the
equations, because it becomes a pressure difference in space as well. In Fig. 2.12 two
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radial lines across the sliding interface are shown. The angle between the lines equals

θ2 − θ1 = Ω∆t

sliding interface

Ω

θ1

θ2

Figure 2.12. Radial lines across the sliding interface at θ1 and θ2 .

the rotation of the inner part of the domain in one time-step. The lower curve in Fig.
2.13 represents the pressure at time level n on the radial line θ2. When the variables

pn(θ2)

pn+1(θ2)

pn(θ1)

∆p↑
↓ ∆p↑

↓

p

r

sliding interface

Figure 2.13. Pressure levels at the radial line θ2, as a function of the radial coordinate.

are calculated at the next time level n + 1, the domain within the sliding interface
is rotated, before the iteration loop over the equations starts. In the rotated part of
the domain, the pressure distribution at the line θ2 changes from pn(θ2) to pn(θ1),
which makes the pressure at this line discontinuous across the sliding interface. The
pressure at the new time level pn+1(θ2) is continuous across the sliding interface, but
the pressure difference ∆p = pn+1(θ2)−pn(θ2) is discontinuous. In section 3.5, where
the sliding interface is tested, it turns out that the pressure equation can be solved for
∆p when the sliding interface is used. However, several pressure-correction iterations
are needed to eliminate the discontinuity.

To avoid this problem, the pressure equation Eq. (2.44) is rewritten as

DM−1∆tGpα+1 = Du∗α+1 +DM−1∆tGpα. (2.47)

By putting the known pressure from the current iteration level in the right hand side
and solving directly for the pressure at the new iteration level, a discontinuity in the
variable that is solved is avoided. This method is verified in section 3.5 as well.



Chapter 3

Verification

In this chapter a number of relatively simple flow simulations are presented. The goal
is to verify the correct implementation of DeFT as well as to verify the statements from
theory concerning accuracy and calculation time. In section 3.1, a time-dependent
channel flow is simulated by DeFT and Fluent. The calculation time and the accuracy
of the calculated solution are compared. In section 3.2 the staggered discretizations
(both classical and WesBeek) and a collocated discretization are compared for a flow
on a rough grid. Calculations in a rotating frame of reference are the subject of section
3.4, for laminar flow, and section 3.3, for turbulent flow. Finally, in section 3.5, the
correct implementation of the sliding interface is verified.

3.1 Unsteady channel flow

The potential difference in performance between collocated and staggered-grid meth-
ods is illustrated for a simple laminar, but unsteady, channel flow. The block topology
of the grid and the number of grid cells were selected to reflect the case of an actual
pump simulation in 2D. In Fig. 3.1 the geometry of the channel is given, as well as the
dimensions of the uniform grid that consists of 10 blocks of 100 times 100 cells. The

200 cells
500 cells

100

1

-1

y(m)

x(m)inflow outflow

wall

wall

Figure 3.1. The size of the channel and the boundary conditions of the flow.

walls are modeled by the noslip condition. At the outflow boundary, Fluent imposes
zero pressure, where DeFT prescribes a parallel outflow, which means zero tangential
velocity and zero normal stress. The time-dependent velocity prescribed at the inlet



36 Verification

boundary is

ux = <(us(1− (
2y
b

)2) + 2ud(cosh(ωy)− cosh(
ωb

2
)) exp(νω2t− a)), (3.1)

uy = 0, (3.2)

where
us = 10 ms−1, ud = 0.5 ms−1,
b = 2 m, ν = 0.01 m2s−1,
a = 20, ω = 20(1 + i) m−1,

with <(x) denoting the real part of x, i the imaginary unit, ν the fluid kinematic
viscosity and b the width of the channel. The inlet velocity profile is plotted in Fig.
3.2 for three different points in time. The dynamic part of the velocity with maximum
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Figure 3.2. The maximum, minimum and static inlet velocity profile.

amplitude ud in the center of the channel is added to the static part of the velocity
with its maximum value us. The Reynolds number based on the average velocity at
the center of the channel us and the channel width b is 2000. Both Fluent and DeFT
are used to simulate this flow, starting from an initial condition of zero pressure and
velocity. For temporal discretization the first-order Euler scheme is used with a time
step of 0.0025 s. The convective terms are discretized with a central scheme in DeFT
and the QUICK scheme in Fluent.

To quantify the accuracy of the numerical calculations, the results are compared
with the analytical solution of the time-dependent channel flow. The flow is derived
by setting uy = 0. From the momentum equation in y-direction it now follows that
∂p
∂y = 0 and from the continuity equation it follows that ∂ux

∂x = 0. The momentum
equation in the x-direction yields

∂ux

∂t
+
∂p

∂x
= ν

∂2ux

∂y2
. (3.3)
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The analytical solution of this equation for the velocity is given by Eq. (3.1), which
does not depend on x and Eq. (3.2). The pressure is given by

p = <(νρ(L− x)(8us

b2
− 2ω2ud cosh(

ωb

2
) exp(νω2t− a))), (3.4)

where the fluid density ρ = 1 kgm−3 and the length of the channel equals L = 10
m. The pressure at the inlet of the channel is shown as a function of time in Fig.
3.3. For both the velocity and the pressure, the static part is proportional to us and
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Figure 3.3. The pressure at the inlet as a function of time. The stationary part of the pressure
is given separately.

the amplitude of the dynamic part is proportional to ud. Note that while the the
amplitude of the velocity ud is only 5% of the the static velocity us, the dynamic part
of the pressure is 20 times larger than the static part of the pressure in Fig. 3.3.

To compare the accuracy of the simulations, the calculated average pressure at
the channel inlet is monitored. In Fig. 3.4 (DeFT) and Fig. 3.5 (Fluent) the error εp
is plotted as a function of time. The error is normalized by the amplitude of the an-
alytical pressure fluctuation at the inflow boundary, which is 40 Pa. The error-curves
for DeFT and Fluent are almost equal, except for small oscillations that are present
in the Fluent result. Because the numerical initial solution does not correspond to the
exact solution, the error in the inlet pressure is large during the first 2.5 s. The error
in the pressure is oscillating because the pressure in the numerical calculation shows
a phase lag with respect to the analytical solution. When the inlet pressure is at its
maximum, for example at t ≈ 4 s, its derivative with respect to time is zero. Here,
the phase lag has only a small influence and εp is close to zero. When the derivative
of the inlet pressure with respect to time is large, for example at t ≈ 5 s, the phase
lag causes εp to be large as well.

Different settings for the convergence criteria and the number of pressure-correction
iterations were evaluated. For the residual of the pressure equation, the minimum
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Figure 3.4. Normalized error εp in average inlet pressure for the calculation with DeFT.
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Figure 3.5. Normalized error εp in average inlet pressure for the calculation with Fluent.

value that Fluent could attain was between 10−4 and 10−5. When the convergence
criterion for this equation was set to its default value of 10−3, the amplitude of the
error εp was approximately 1. The different settings were selected such that εp re-
duced to within 0.01 in the shortest possible calculation time. Fluent took about 13.5
hours with 40 pressure-correction iterations per time-step, while DeFT only needed 1
pressure-correction iteration per time-step and 4 hours calculation time. Both simu-
lations were on 1 core of a dual core Intel Xeon 5130 2GHz processor. Despite the fact
that Fluent, unlike DeFT, treats the whole domain as one grid and uses a multi-grid
method to accelerate the calculation, the performance of DeFT is superior for this
flow simulation.
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3.2 Accuracy on a rough grid

Wesseling showed in [33] that the WesBeek discretization is accurate on a non-smooth
grid for the example of a Poiseuille flow. For this flow the convection is zero and the
pressure gradient is constant. In this section a different two-dimensional flow is used
to show the accuracy on a rough and a smooth grid and on a grid that is uniform
in polar coordinates. The flow simulations are performed using the classical and
WesBeek staggered discretization using DeFT and a collocated discretization using
Fluent. The problem represents the flow through a vaneless diffusor with constant
height. The domain and the grid are shown in Fig. 3.6. The domain is given by

x versus y

0.152 0.268 0.384

outflow (DeFT)

pressure outlet (Fluent)

inflow

free slip

free slip

Figure 3.6. Flow domain, boundary conditions and the smooth non-uniform grid.

0.05 ≤ r ≤ 0.5, 0 ≤ θ ≤ π
4 , (3.5)

with r the radial coordinate in m. In radial and tangential direction 64 and 16 cells
are used respectively. The radial cell length is increasing with the radius, because
the velocity and the pressure gradient are decreasing with r. A locally deformed grid
for the same domain is plotted in Fig. 3.7. Besides these two grids, an equidistant

x versus y

0.152 0.268 0.384

16 cells

64 cells

Figure 3.7. Rough non-uniform grid.

grid in polar coordinates is used as well, with 512 cells in radial direction and 16 cells
in tangential direction. The boundary condition types are given in Fig. 3.6 as well.
The inflow velocity is 1 ms−1 in radial direction. The fluid density ρ = 1 kgm−3 and
its dynamic viscosity µ = 0.001 kgm−1s−1. The Reynolds number based on the inlet
velocity and the length of the domain in radial direction is 450. The flow is given
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analytically by

v = 0, u = uoro

r , p =
1
2
ρ(u2

o − u2)− 2µ
uo

ro
, (3.6)

where v is the velocity in tangential direction, u the radial velocity, and uo = 0.1
ms−1, where the subscript o denotes the outflow edge of the domain.

For the rough grid, the resulting pressure distribution for the collocated, WesBeek
staggered and the classical staggered discretization are given in Fig. 3.8, Fig. 3.9 and
Fig. 3.10 respectively. Except for the results of the classical staggered discretization,

Figure 3.8. Pressure contours for the collocated discretization on the rough grid.

Figure 3.9. Pressure contours for the WesBeek discretization on the rough grid.

Figure 3.10. Pressure contours for the classical staggered discretization on the rough grid.
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the pressure contours are close to lines at constant radius. On the smooth and the
equidistant grid the pressure contours are even more rotational symmetric, also using
the classical staggered discretization. The analytical pressure difference across the
diffusor is 0.495 Pa. The numerical results for this parameter are given in Tab.3.1. For

equidistant smooth rough
collocated 0.488 0.494 0.492
WesBeek staggered 0.494 0.495 0.498
classical staggered 0.494 0.500 0.444

Table 3.1. Pressure difference [Pa] across the diffusor for different grids and discretizations.
The theoretical value is 0.495 Pa.

the collocated method the error on the equidistant grid is larger than on the smooth
and even the rough grid. Because odd-even decoupling is worst on uniform grids
(section 1.3), this larger error can be the result of the artificial odd-even coupling that
is associated with collocated grids. The classical staggered discretization is designed
for equidistant grids only. On the smooth non-uniform grid and especially on the
rough grid the error in the pressure difference is large. On the rough grid, the WesBeek
staggered and the collocated discretization have equal accuracy. The overall accuracy
of the WesBeek staggered discretization is better than the accuracy of the classical
staggered and the collocated discretization.

3.3 Turbulence model in the rotating frame

In this section the correct implementation of the k − ε turbulence model is verified
by solving a turbulent flow in the stationary and the rotational frame of reference.
When the shape of the domain is circular, the boundaries of the domain coincide
with the boundaries of the rotated domain. This is convenient for prescribing the
boundary conditions at the correct location in both frames, since in DeFT the shape
of the domain in not allowed to change during a simulation. In this section the flow
is periodic in the direction of the rotation, which provides the opportunity to solve
only one period of the domain.

The streamlines, block topology and boundary conditions of the flow in the sta-
tionary frame of reference are shown in Fig. 3.11. To the left of the inflow boundary

outflow
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periodic

inflow
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Figure 3.11. The block topology, boundary conditions and streamlines of the flow in the
stationary frame of reference.
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where a zero velocity is prescribed, there is an area of reverse flow. The upper and
lower boundaries are lines that are 6 degrees apart and the left and right boundaries
are parts of circles with their centers at the intersection of the two lines. The angle
between the radial lines is 6 degrees. The radius of the outflow boundary equals 1
m, while the inflow boundary is at 1.5 m. In tangential direction the equidistant grid
consists of 360 cells. In radial direction there are 60 cells, while the grid is refined
towards the inflow boundary.

The density equals 1 kgm−3 and the dynamic viscosity is 10−4 kgm−1s−1. The
maximum of the radial inflow velocity profile given in Fig. 3.11 is 1 ms−1. The velocity
profile has a linear part from 0 to 1. When a step function is used instead, the grid
in the inflow region needs to be much finer. This is avoided to reduce the calculation
time. The Reynolds number based on the maximum inflow velocity and the length
of the domain in radial direction is 5000. At the outlet zero stress is prescribed. For
the turbulence equations k = 10−2m2s−2 and ε = 10−4m2s−3 are prescribed at the
inflow boundary. At the outflow the normal gradients of both k and ε are set to zero.
For the convective terms of the momentum and turbulence equations the first-order
upwind scheme is used. Temporal discretization is done with the first-order Euler
scheme using a time-step of 10−3 s.

In the rotating frame of reference, both blocks rotate with an angular velocity
Ω ≈ 0.29 rads−1 such that the rotation during one time-step corresponds with the
length of one cell in tangential direction. This is convenient for prescribing the inflow
velocity profile, because it rotates along the inflow boundary with −Ω. In the rotating
frame of reference the flow is periodic in time, with a period of 360 time-steps. The
Coriolis and centrifugal forces are modeled using the source-term formulation. The
streamlines in the rotating domain are given in Fig. 3.12. In Fig. 3.13 pressure con-
tours of the solutions in the stationary and rotating frame are plotted. These results

Figure 3.12. The streamlines of the jet flow in the rotating frame of reference.

stationary
rotating

Figure 3.13. Pressure contours of the solutions in the rotating and stationary frame of reference.
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agree very well, which suggests that the turbulence model is implemented correctly.
However, the viscous terms in the momentum equations can be very small, such that
the turbulence model has no significant influence on the pressure. Therefore the sim-
ulation in the stationary frame of reference is repeated with the turbulent kinetic
energy at the right boundary decreased to 0.7 · 10−2m2s−2. The pressure contours
are shown in Fig. 3.14 Because the isobars are clearly different in the inflow part of

stationary
stationary, low k

Figure 3.14. Pressure contours with smaller turbulent kinetic energy at the right boundary.

the domain, the turbulent viscosity has a significant influence on the pressure in that
region. From Fig. 3.13 it can now be concluded that the turbulence model gives the
same results in the stationary and the rotating frame of reference.

3.4 Coriolis and centrifugal forces

In section 2.2.2, the treatment of centrifugal and Coriolis forces in conservative for-
mulation was introduced. It served as an alternative to the implementation of these
apparent forces as source terms in case the Navier-Stokes equations are to be solved in
a rotating coordinate system. A comparison between the two methods is addressed in
this section. A stationary laminar and axi-symmetric flow is calculated on a domain
consisting of four blocks, as given in Fig. 3.15. At the inflow boundary the radius is 1

outflowinflow

Figure 3.15. Block-structure and streamlines of the axi-symmetric flow in the steady frame of
reference.

m, a normal velocity of 1 ms−1 and a tangential velocity of 0.5 ms−1 in the stationary
frame of reference are prescribed. At the outflow boundary the radius is 2 m and an
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outflow boundary condition is imposed. The fluid density is equal to 1 kgm−3 and
the dynamic viscosity is 0.01 kgm−1s−1. The Reynolds number based on the normal
inlet velocity and the distance between the inlet and outlet boundary is equal to 100.
The streamlines of the flow in the stationary frame of reference are given in Fig. 3.15
as well.

The flow is simulated on four uniform grids: a coarse and a fine grid, both match-
ing and non-matching. Each block of the coarse matching grid has 20 cells in radial
direction and 80 cells in circumferential direction. The non-matching grid has 21 cells
in radial direction in the 2 lowest blocks of Fig. 3.15. For the non-matching grid, the
rotating blocks are shifted half a cell in the circumferential direction in order to make
the grid along the sliding interface non-matching as well, see Fig. 3.16. The fine grids
have twice the number of cells of the coarse grids in each direction. A part of the
coarse non-matching grid is shown in Fig. 3.16.

Figure 3.16. Part of the coarse non-matching grid.

For each grid three different simulations are done: a calculation in the steady frame of
reference for the entire domain (1), and two simulations in which part of the domain
rotates, using source terms (2) and the conservative formulation (3) to account for
the apparent forces. For the two latter simulations, the two inner blocks rotate at
a speed of 0.5 rads−1 where the connection to the outer blocks is through a sliding
interface. Each time step the grid rotates over one cell. The central discretization
scheme is used for the convective terms, while the Euler scheme is used for the time
discretization.

The error in the pressure of the numerical solution εp is calculated using the L2-
norm

εp =

√√√√ 1
n

n∑
i=1

(pa,i − pi)2, (3.7)

where pi is the numerically calculated pressure, pa is the analytical pressure, and n is
the total number of cells. The error is given in Tab. 3.2 for the different cases. Both
on the fine and the coarse grid the error hardly depends on the case. The reduction
of the error by a factor of 4 when going from the coarse to the fine grid is consistent
with the second order accuracy of the spatial discretization. There is no preference
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reference stationary partly rotating
frame
apparent conservative source term
forces formulation formulation
interfaces matching non- matching non- matching non-

matching matching matching
εp, coarse 6.5 10−5 6.9 10−5 7.0 10−5 7.4 10−5 6.4 10−5 6.6 10−5

εp, fine 1.6 10−5 1.7 10−5 1.7 10−5 1.8 10−5 1.7 10−5 1.6 10−5

εp, coarse
εp, fine 4.0 4.1 4.1 4.2 3.9 4.0

Table 3.2. Pressure error εp using a coarse or a fine, a matching or a non-matching, and
a stationary or a partly rotating grid with sliding interface and conservative or source term
formulation of the Coriolis and centrifugal forces.

for the conservative or the source term formulation. The interpolation along the non-
matching block faces only gives a small increase in the error and does not decrease
the order of accuracy.

3.5 Sliding interface

In this section the implementation of the sliding interface is tested by simulating
a laminar flow around a cylinder. The domain, block topology and the boundary
conditions are given in Fig. 3.17. On the left side the inflow velocity is 1 ms−1 in

outflowinflow inflow

periodic

periodic

r=1

r=1.5
r=2

r=5

Figure 3.17. Block topology and boundary conditions of the domain around the cylinder.

horizontal direction. On the cylinder, a normal velocity of 0.5 ms−1 is prescribed.
This avoids flow separation with vortices and thus the need for a fine grid to resolve
vortices. Because of the periodic boundary conditions at the upper and lower edge,
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this domain can be seen as part of a cascade of cylinders. The grid of the upper
left part of the domain is shown in Fig. 3.18. The ring-shaped blocks have 16 times

Figure 3.18. Part of the grid around the cylinder. In this plot the number of cells is reduced
by a factor 2 in each direction.

240 cells, while the other blocks consist of 60 times 64 cells. The grid is matching
everywhere, also when the sliding interface between the two inner blocks is used. The
fluid density and dynamic viscosity are 1 kgm−3 and 0.1 kgm−1s−1 respectively. The
Reynolds number based on the diameter of the cylinder and the inflow velocity of
1 ms−1 is 20. When the sliding interface is used, the inner block rotates with an
angular velocity of 0.5 rads−1. Together with the condition of one cell rotation per
time-step along the sliding interface, this determines the time step at approximately
0.052 s. The central scheme is used for discretization of the convective terms. The
conservative implementation of the Coriolis and centrifugal forces is used.

The streamlines of the flow are shown in Fig. 3.19. The pressure contours resulting

Figure 3.19. The streamlines of the flow through the cascade of cylinders.
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from the simulation in the stationary frame and the simulation with the inner block in
the rotating frame are given in Fig. 3.20. The result of the simulation with the sliding

stationary

partly rotating

Figure 3.20. Isobars of the flow along a cylinder, calculated using one pressure-correction
iteration, for both a stationary and a partly rotating domain and solving the pressure equation
for ∆p.

interface shows a discontinuity at the sliding interface, because the pressure equation
was solved for ∆p and only one pressure-correction iteration was used. When this
number is increased, the pressure discontinuity decreases, as can be seen in Fig. 3.21,
where three pressure-correction iterations were used. In Fig. 3.22 the pressure on the
vertical line from the center of the cylinder to the lower side of the flow domain is
plotted. The pressure discontinuity at the sliding interface (r = 1.5 m) decreases if
more pressure-correction iterations are done. However, the simulation with sliding
interface was also done for the case where the pressure equation is solved for pn+1

instead of ∆p. With only a single pressure-correction iteration, the resulting pressure
contours are indistinguishable from those of the simulation in the stationary frame of
reference. That is why it is preferred to solve the pressure equation for pn+1 when a
sliding interface is used.
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stationary
partly rotating

Figure 3.21. Isobars of the flow along a cylinder, calculated using three pressure-correction
iterations, for both a stationary and a partly rotating domain and solving the pressure equation
for ∆p.
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Figure 3.22. The pressure on the vertical line from the center of the cylinder to the lower
boundary of the flow domain. The pressure equation is solved for ∆p, using 1 or 3 pressure-
correction iterations in the partly rotating domain. The solution obtained in the stationary frame
is shown as well.



Chapter 4

Validation

As a first step towards calculating a complete turbomachine, the flow through a
cascade is calculated. A cascade is an infinite row of blades that can be regarded
as a two-dimensional model for an axial turbomachine, see Fig. 4.1. This model
assumes that the flow through the turbomachine is in radial equilibrium. For the
flow through the cascade, the pressure distribution and the total force on a blade
are calculated using DeFT and Fluent. This force is expressed both in terms of lift
and drag components and in terms of axial and tangential components. The results
are compared with experimental and numerical results obtained from literature. The
goal of this comparison is to validate DeFT for this type of flow. In the next sections
the measurements, the CFD models in DeFT and Fluent, and the comparison of the
results are given.

4.1 Measurements

Measurements of the flow through cascades of NACA 65-series compressor blade sec-
tions are described in [12]. The influence of many combinations of inlet angle β1,
angle of attack α1, solidity σ and blade shape on lift coefficient Cl, drag coefficient
Cd and pressure distribution coefficient Cp is presented. The geometry of the cas-
cade is shown in Fig. 4.1. It is determined by the stagger angle γ = β1 − α1 and
the solidity σ = c/s, where c is the blade chord and s the pitch. A two-dimensional
cascade tunnel with 7 blades was used to simulate the infinite blade row. The chord
length of the blades was 0.1270 m. The experimental setup is shown in Fig. 4.2. The
low-speed tests were within the incompressible speed range. An open air circuit was
used, where the air velocity was 29 ms−1 and the chord based Reynolds number was
245000. Porous flexible walls and a suction chamber were used to control boundary
layer build up and to ensure the flow being uniform and two dimensional.

The pressure coefficient is defined by

Cp =
2(p− p1)
ρu2

1

, (4.1)
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Figure 4.1. Axial impeller and cascade geometry [20].

Figure 4.2. Vertical cross section of the experimental setup [12].

where p is the static pressure at the blade surface, p1 is the static pressure far up-
stream of the blade, ρ is the fluid density and u1 is its velocity far upstream. The
blade pressure distribution was measured at midspan position of the central airfoil.

The components of the force on the blade perpendicular and parallel to the in-
coming velocity are the lift force Fl and drag force Fd respectively∗. The lift and drag
coefficients are defined as

Cl =
2Fl

ρu2
1cb

, Cd =
2Fd

ρu2
1cb

, (4.2)

∗It is important to notice that in [12] the direction of the lift and drag force is not based on α1,
but on the mean velocity angle αm = (α1 + α2)/2, where α2 is the angle of the flow far downstream
of the blade. In this thesis, these forces are converted to lift and drag forces based on the angle of
attack. Use is made of the turning angle θ = α2 − α1, which is also given in [12].
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where b is the span of a blade. The forces on a blade were determined by integration
of the pressure and momentum terms across a suitable control volume far from the
blade. Therefore the flow discharge angle was measured one to three chords behind
the blade in the flow direction at several points at the tunnel center line (midspan).
The average value was taken, but the measurement points inside the wake were left
out to get less scatter. The velocity far downstream was obtained from these mea-
surements by using a momentum weighted average. This was found necessary to give
consistent drag values. The upstream flow angle was measured approximately one
chord upstream of the blade row. Flow angles were obtained using a claw-type yaw
head and the null method.

Total pressure surveys were made with a non-integrating multitube rake, approxi-
mately one chord downstream of the blade trailing edge. Total pressure was measured
as well in the settling chamber far upstream of the blade row. Static pressure was
measured approximately one chord upstream of the blade row. Pressures were ob-
tained by orifices with pressure leads to manometer boards.

From the many cascade configurations that were tested, the asymmetric compres-
sor blades of the NACA 65-410 type with β1 = 70o and σ = 1 was selected to use
for validation. In the experiment, the stagger angle γ was varied from 69.5o to 53.5o,
which caused the angle of attack α1 to range from 0.5o to 16.5o. This series of mea-
surements can be regarded as a model for an axial pump with variable blade angle
at constant flow rate and shaft speed. The coordinates of the blade surface are given
in Tab. A.1 of appendix A. The measured results for Cp are given in Fig. 4.10, while
Cl and Cd are shown in figures 4.12 and 4.13 respectively. According to [12], the
accuracy of the measured angles of attack is 0.5o for angles of attack near 6.5o.

4.2 Numerical model

The flow through the cascade is periodic in the direction of the blade row. Because
of this, the flow around only one blade has to be modeled. A typical computational
domain is given in Fig. 4.3, showing the topology of the 2D block-structured grid and
the number of elements at each block face. For the simulations in DeFT and Fluent

24

24

30

30

22 20 150 117

42 100 11750

7c

12c

γ

45o

45o

Figure 4.3. The block structure of the cascade, with number of elements for each block face.

the same grid is used. However, a separate grid has to be made for each stagger angle.
Because DeFT can handle only one type of boundary condition per block face and
because the two rows of virtual cells around each block must be continuous (section
2.1), a total number of 9 blocks is necessary. The grid close to the blade is plotted
in Fig. 4.4. The total number of cells equals 16776. All internal block boundaries
have matching grids. The block topology allows for a C-type grid around the blade,
to ensure optimum mesh quality near the blade surface. In the simulations the chord
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Figure 4.4. Grid close to the blade.

length is 1 m, the density is 1 kgm−3, the upstream velocity is 1 ms−1 and the vis-
cosity is 4.08 · 10−6 Pa·s, consistent with the Reynolds number of 245000.

In DeFT, as well as in Fluent, the incompressible Reynolds-Averaged Navier-
Stokes (RANS) equations are solved on this domain using the standard k − ε tur-
bulence model to calculate the Reynolds stresses. Log law wall functions are used
to model the boundary layer at the blade. At the blade surface, a shear stress de-
termined from this law and a zero normal velocity are prescribed. The value for y∗

ranges between 15 and 55, with a relatively small part below 30 close to the leading
and trailing edges. For the case of α1 = 6.5o, y∗ is shown in Fig. 4.5. The Fluent user

0 0.2 0.4 0.6 0.8 1
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20

30

40

50

55

y*

x

suction side

pressure side

x

y∗

Figure 4.5. Distribution of y∗ versus distance x from the leading edge along the blade chord,
for α1 = 6.5o (DeFT).

guide recommends y∗ to be between 30 and 300 for the wall functions to be valid.
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At the inlet, the velocity is prescribed and k and ε are given values of 0 m2s−2 and
10−6 m2s−3 respectively. At the lower and upper boundaries of the domain a peri-
odic boundary condition is prescribed. The grid at these boundaries is non-matching.
At the outflow boundary on the right side of the domain, zero stress is prescribed
in DeFT. For the turbulent quantities in DeFT and all flow variables in Fluent the
gradient normal to the outflow boundary is set to zero. The initial conditions are
equal to the boundary conditions at inflow. The initial pressure is equal to zero.

DeFT has an unsteady flow solver. Stationary flow solutions have to be found by
calculating the flow in time until the flow becomes stationary. The time derivative
of the velocity is discretized using the implicit first order Euler scheme. The time
step equals 0.01 s when the first order upwind scheme is used for the discretization
of the convective terms in the momentum equations. When the central differencing
scheme is used for these terms, a time step of 0.001 s is used. For the first part of
the calculations in DeFT, the upwind scheme was used. When a steady solution was
obtained, the spatial discretization was changed to the central scheme to continue the
calculation. For the turbulence equations a first-order upwind scheme is used. For
each of the RANS equations the default value for the convergence criterion parameter
εc was used (section 2.5).

In addition to an unsteady flow solver, Fluent also has a steady flow solver which is
used to calculate the cascade flow. The Quadratic Upwind Interpolation for Convec-
tive Kinematics (QUICK) scheme is used for the discretization of the convective terms
in the momentum equations. The pressure is interpolated to the face of a cell using
the second order scheme. The turbulence equations are discretized with a first order
upwind scheme. The value of the scaled residual necessary to reach convergence was
set equal to 10−4 for the continuity equation. For the other equations this value was
10−3. The definitions of the convergence criteria in DeFT and in Fluent are different.
Besides that, the equations that are solved are different; in Fluent the stationary and
in DeFT the time-dependent RANS equations. Therefore, in both Fluent and DeFT
the convergence criteria were determined as to give approximately equal simulation
results. All other parameter settings that Fluent 6.2.1.6 provides, have the default
value.

In DeFT and in Fluent, calculation of the force on the blade is done by integration
of the stresses on the surface. In Fig. 4.6 the local normal-tangential (n−t) coordinate
system is drawn. The stress components of the fluid on the blade are written as

σnt u t

σnn

v
n

Figure 4.6. Surface stress on the blade.
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σnn = −p+ 2µ
∂v

∂n
, σnt = µ(

∂u

∂n
+
∂v

∂t
), (4.3)

where µ is the viscosity of the fluid. In each expression one term is equal to zero.
Because the velocity on the surface of the blade is equal to zero, the derivative of
the velocity in tangential direction is zero as well. Using this in the incompressible
continuity equation

∂u

∂t
+
∂v

∂n
= 0, (4.4)

it turns out that
∂v

∂n
= 0. (4.5)

Therefore, the wall normal stress is determined by the pressure only. Since wall
functions are used to prescribe the velocity profile near the blade, the actual wall
shear stress

τw = µ
∂u

∂n
(4.6)

is calculated using equations (2.21)-(2.24). It is subsequently integrated together with
the pressure to find the total force on the blade.

The simulations in DeFT and Fluent are performed for various angles of attack.
The results are presented in the next section.

4.3 Results and comparison with measurements

In this section the simulation results are introduced by a plot of the streamlines,
the pressure contours and the turbulent viscosity contours. After this, the pressure
distribution on the blade is given for several stagger angles. Finally, the lift and drag
forces, the axial and tangential forces and the influence of pressure and shear stress
on these forces are presented.

4.3.1 Flow field

Streamlines around the blade are given in Fig. 4.7. The turning of the flow by the
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11
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Figure 4.7. Streamlines for α1 = 8.5o and γ = 61.5o (Fluent).

cascade is clearly visible. A contour plot of the pressure is shown in Fig. 4.8. Due
to the periodicity of the flow, the pressure distribution along the upper and lower
domain edge is equal, but shifted in horizontal direction. A contour plot of the
turbulent viscosity is given in Fig. 4.9. At the blade surface, the turbulent viscosity
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Figure 4.8. Pressure contours for α1 = 8.5o and γ = 61.5o (Fluent).
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Figure 4.9. Contours of turbulent viscosity µt for α1 = 8.5o and γ = 61.5o (Fluent).

is much larger than the fluid viscosity 4.08 · 10−6 Pa·s. The higher levels of turbulent
viscosity are concentrated in the wake of the blade.

4.3.2 Blade surface pressure

The pressure at the blade is given by the distribution of Cp, for 6 angles of attack, in
Fig. 4.10. Results from experiments [12] and numerical simulations of [4] are given as
well. These numerical results are not available for the angle of attack equal to 6.5o

and 16.5o. The CFD package Star-CD was used with a different mesh with 153 cells
from leading to trailing edge and 54 cells between two blades. Note that the scale
for Cp is not the same for the graphs in Fig. 4.10. For high Reynolds number flows,
the largest value of Cp occurs at stagnation points, where Cp = 1. The results shown
here are consistent with this theoretical maximum.

In the graph for α1 = 16.5o in Fig. 4.10, the experiments show that the pressure
on the suction side of the blade is approximately constant along the rear part of
the blade. This is often seen when there is an area of flow separation. In Fig. 4.11
streamlines near the trailing edge are plotted for this case. There is flow separation
along 30% of the blade, but apparently it is not modeled accurately enough, because
the CFD results do not show the constant pressure region.
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Figure 4.10. Pressure coefficient versus distance x/c from the leading edge along the blade
chord, for different angles of attack.
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Figure 4.11. Streamlines near the trailing edge for α1 = 16.5o and γ = 53.5o (Fluent).

4.3.3 Lift and drag forces

The lift and drag coefficients are given in Fig. 4.12 and Fig. 4.13. The decreasing
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Figure 4.12. Lift coefficient as a function of angle of attack α1.

lift at α1 = 16.5o is predicted by DeFT as well as by Fluent. The horizontal error
bars in both the lift and drag represent an uncertainty in α1 of ±0.5o. The vertical
error bars, shown for the measured drag coefficients, represent the influence of this
uncertainty on the drag force. Since the force on the blade is roughly perpendicular
to the incoming flow direction for the larger angles of attack, a small uncertainty in
α1 results in a large relative error in the drag force, while the lift force is virtually
unaffected. In Fig. 4.14 and Fig. 4.15, the relative error in the lift and drag prediction
is shown. The error in the lift is defined as

ECl
=
Cexp

l − Ccfd
l

Cexp
l

(4.7)
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Figure 4.13. Drag coefficient as a function of angle of attack α1.
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Figure 4.14. Error in lift coefficient as a function of angle of attack α1.

The error in the drag is defined analogously. For both the lift and the drag, the errors
are large for small and large angles of attack. An important explanation for this is
the increased complexity of the flow due to flow separation for the larger angles of
attack. For the smaller angles of attack, the relative error in the lift is large, because
the lift itself is small. For intermediate angles of attack, the errors in lift and drag are
much smaller. In this region the CFD prediction of lift is good, while the prediction
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Figure 4.15. Error in drag coefficient as a function of angle of attack α1.

of drag is within the uncertainty range of the measurements.
In order to check the influence of the outflow boundary conditions on the solution,

the domain was extended from approximately 12 to 21 chord lengths behind the
trailing edge. A flow simulation was performed for α1 = 8.5o using Fluent. The
differences in lift and drag coefficient were below 0.5%, which shows that the outflow
boundary conditions have little influence on the flow close to the blade and the outflow
boundary is sufficiently far away from the blade.

The grid dependency of the solution is also checked for a calculation at α1 = 8.5o.
Based on the topology and structure of the original grid, three additional grids were
constructed: two coarser and one finer. The results for lift and drag on these grids are
shown in Fig. 4.16 and Fig. 4.17 respectively. The average grid size h is determined
from

h =

√
A

n
, (4.8)

where A = 9.33 m2 is the total area of the grid and n equals the total number of cells.
Results show that grid convergence is reached on the original grid, since for both Cl

and Cd the difference in its value on the original and the finest grid is below 1%.
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Figure 4.16. Lift coefficient as a function of average cell size h.
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Figure 4.17. Drag coefficient as a function of average cell size h.

4.3.4 Axial and tangential forces

Instead of the lift and drag forces, the total force on the blade can also be decom-
posed into a tangential force in circumferential direction of the rotor and an axial
force. These forces are more relevant for turbomachinery. The corresponding force
coefficients can be determined from the lift and drag force by

Ct = Cl cosβ1 + Cd sinβ1, Ca = Cl sinβ1 − Cd cosβ1. (4.9)

Fig. 4.18 and Fig. 4.19 give Ct and Ca as a function of α1. These plots are for
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Figure 4.18. Tangential force coefficient as a function of angle of attack α1.
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Figure 4.19. Axial force coefficient as a function of angle of attack α1.

varying stagger angle γ, but constant inlet angle β1. Each value of γ represents a
different pump. The relation between inlet angle β1 and the axial velocity ua is given
in Fig. 4.20 for a blade section at radius r and shaft speed Ω. The relative velocity
u1 is the incoming velocity with respect to the rotating frame of reference. It follows
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Figure 4.20. Axial component ua and tangential component ut of the velocity vector.

that, if β1 and Ω are constant, also axial velocity - and thus flow rate - is constant. In
Fig. 4.21 the axial force coefficient is given as a function of axial velocity for different
stagger angles. The previous flow simulations are for different pumps (stagger angle),
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Figure 4.21. The axial force coefficient as a function of axial velocity for different stagger
angles.

but all at the same axial velocity. To determine the Best Efficiency Point (BEP) for
each of these pumps, additional simulations were performed with Fluent. For each
stagger angle, the angle of attack was varied from 0 to 16.5 degrees, where ut was
kept constant for all pumps. The resulting force-velocity curves are given as well in
Fig. 4.21. The ratio of axial and tangential forces for these pumps is shown in Fig.
4.22. Since this ratio is a measure of the efficiency of the pump, it is concluded that
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Figure 4.22. The axial to tangential force ratio for stagger angles from 53.5o to 69.5o as a
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the BEP condition corresponds to an angle of attack α1 of approximately 6o for all
pumps considered. For each curve, the BEP condition is given in Fig. 4.21. The
curves of Fig. 4.21 are also plotted in Fig. 4.23, where they are scaled with the values
of the axial force and velocity at BEP. Since the inlet angle at BEP can be written
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Figure 4.23. The scaled axial force coefficient as a function of the scaled flow rate for different
stagger angles.
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as βbep
1 = γ + αbep

1 , the deviation from Qbep for each pump is equal to

Q

Qbep
=
tan(γ + αbep

1 )
tan(β1)

. (4.10)

Note that Fig. 4.23 corresponds to graphs known as head characteristics that are
frequently used in turbomachinery applications. With Eq. (4.10) the tangential and
axial force coefficients are given as a function of Q/Qbep in Fig. 4.24 and Fig. 4.25
respectively.
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Figure 4.24. Tangential force coefficient versus the deviation from BEP.
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Figure 4.25. Axial force coefficient versus the deviation from BEP.
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The relative error in the CFD results for the tangential force is defined as

ECt
=
Cexp

t − Ccfd
t

Cexp
t,bep

, (4.11)

where the absolute error is normalized by its value at BEP. The error for the axial
force coefficient is defined analogously. Both are given as a function of Q/Qbep in
Fig. 4.26 and Fig. 4.27. For flow rates between approximately 0.8Qbep and (at least)
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Figure 4.26. Tangential force error versus the deviation from BEP.
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Figure 4.27. Axial force error versus the deviation from BEP.
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1.4Qbep the errors are only a few percent. This is why it is expected that CFD can be
used to model the flow through a turbomachine when it operates in this range of flow
rates. At lower flow rates the error becomes larger, probably due to flow separation
and the difficulty of the CFD model to accurately capture this.

4.3.5 Pressure and shear stress forces

The contribution of the shear stress to the lift, drag, axial and tangential forces,
is shown in Fig. 4.28. Both the direction and the relative magnitude of the forces
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Figure 4.28. Contribution of shear stress to different force components on the blade (Fluent).

due to pressure and shear stress play an important role in the explanation of their
influence. They are plotted in Fig. 4.29 and Fig. 4.30. The lift force is dominated
by the pressure for all angles of attack, because the force due to pressure is close
to perpendicular to the direction of the incoming flow, while the force due to shear
stress is almost parallel to the incoming flow. Another reason is that the pressure
force is much larger than the force due to shear stress for angles of attack not close
to zero. For a small angle of attack, the pressure force is comparable to the shear
stress force. The pressure contribution is always dominant, also for drag calculation
(except for α1 = 0.5o). The shear stress is not important for the lift force, and for the
larger angles of attack its influence on the axial and tangential force is less than 10
%. In Fig. 4.31 and Fig. 4.32 the pressure force vector Cp and the shear stress force
vector Cτ are plotted for all considered angles of attack. The total force vector on
the blade calculated from the measurement results Cexp is drawn as well. The forces
are scaled to coefficients in the same way as the lift and drag forces. The horizontal
axis is parallel to the blade chord. For all cases and certainly for the smaller angles
of attack, Cτ is nearly parallel to the blade chord. This can also be concluded from
Fig. 4.29. Because most of the blade surface is nearly parallel to the chord, this
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Figure 4.29. The angle, with respect to the direction of the incoming flow, of the forces due
to pressure and shear stress (Fluent).

52545658606264666870

γ [ o ]

   

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

α
1
 [ o ]

F
p
/Fτ

Fp/Fτ
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seems plausible. According to Fig. 4.31 and Fig. 4.32, when the shear stress force
can not deviate a lot from the horizontal direction, the error in the total force of the
CFD calculations seems to be caused mainly by an error in the length of the pressure
force, for all cases except α1 = 0.5o. This statement can not be proven, because the
CFD results for pressure and shear stress both have errors which are not quantified.
However, for α1 = 0.5o the total pressure force of the CFD calculations is certainly
erroneous according to Fig. 4.10.
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Figure 4.32. The pressure and shear stress force vectors of the Fluent calculation and the total
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4.4 Summary

An axial pump is modeled by a cascade of blades. For the inlet angle equal to 70o the
turbulent flow through several pumps, each with a different stagger angle, is simu-
lated with DeFT and Fluent. The calculated blade surface pressure is compared with
results from experiments and CFD, both available in literature. For most cases there
is good agreement between the results. Lift and drag forces are calculated as well.
The agreement between results from CFD and experiments is good for an angle of
attack between 4o and 10o.

To determine the Best Efficiency Point (BEP) for each pump, additional simula-
tions were done with varying inlet angle. It turned out that for all pumps the BEP
corresponds with an angle of attack equal to 6o.

The force on the blade is also decomposed into axial and tangential components,
which are a measure for the head and the torque of the pump. These forces are plot-
ted as a function of the deviation of the flow rate from BEP condition. For flow rates
from 0.8Qbep to 1.4Qbep the errors are only a few percent. That is why it is expected
that CFD can be used to model the flow through a turbomachine when it operates
in this range of flow rates. At lower flow rates the errors are larger, probably due to
flow separation.



Chapter 5

Unsteady flow in a pump

One of the goals of this thesis is to show that the flow through a pump can be
calculated on a staggered grid. This is done in the current chapter for an unsteady
incompressible flow through a two-dimensional centrifugal pump with a vaned diffusor.
The flow simulations are performed with DeFT, on a staggered grid, but also using
Fluent, on a collocated grid. The calculated time-averaged radial and tangential
velocity and pressure along the pitch of a rotor channel are compared with results from
experiments and other CFD simulations obtained from literature. The calculation
times of DeFT and Fluent are compared as well in order to draw conclusions about
the performance of both solvers.

5.1 Centrifugal pump and measurements

The centrifugal pump that is used to validate the simulation results is of radial type,
with a vaned diffuser. It was tested experimentally in [27]. The main reason for
choosing this case is the present version of DeFT being limited to 2D. In good ap-
proximation, the geometry of this pump is two-dimensional as well, except for the
inlet region, see Fig. 5.1. Another reason is that results of CFD simulations are avail-
able in literature ([7], [18] and [26]). The geometrical data of the pump is given in
Tab. 5.1.

rotor stator
number of blades z 7 - z 12 -
inlet radius r1 120 mm r3 222 mm
outlet radius r2 210 mm r4 332 mm
blade span b 40 mm b 40 mm
chord length c 222 mm c 294 mm
tip clearance δ 0.4 mm

Table 5.1. Geometrical data
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Figure 5.1. Geometry of the pump.

In an open circuit air is fed to the pump via an axial pipe and driven back into the
surroundings shortly after it leaves the stator vanes. The operating conditions are
given in Tab. 5.2. The gravitational acceleration equals g = 9.83 ms−2. The total
pressure is defined as the sum of the static pressure and the kinetic energy density of
the flow

pt = p+
1
2
ρu2. (5.1)

A constant-temperature anemometer with single sensor probes was used to measure
the unsteady 3D velocity at mid-span at the impeller outlet. A flush mounted minia-
ture fast response pressure transducer was used to measure the unsteady static pres-
sure at the front cover of the unshrouded impeller. Velocity and pressure were mea-
sured at different circumferential positions at a constant radius of 214 mm, in the
clearance gap between the rotor and stator. For each of the 30 positions across a
stator passage 160 measurements were done at a rate of 18.7 kHz covering two rotor
channel passages. This was repeated 700 times to be able to ensemble average the
measured quantities. Velocity and pressure are also averaged over the 30 stator posi-
tions to get the time-averaged flow in a rotor passage. The normalized time-averaged
radial velocity, relative tangential velocity and static pressure coefficient are presented
in Fig. 5.16.
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shaft speed Ω 2000 rpm
flow coefficient φ = Q

πr2
2U2

0.048 -
flow rate Q 0.29 m3s−1

total pressure coefficient ψ = 2pt4−pt0
ρU2

2
0.65 -

head H = pt4−pt0
ρg 64.0 m

specific speed coefficient nω = ΩQ1/2

(gH)3/4 0.90 -
Reynolds number Re = ρcU2

µ 6.5 105 -
fluid density ρ 1.2 kgm−3

fluid viscosity µ 1.80 10-5 Pa·s
tip velocity U2 = Ωr2 44 ms−1

Table 5.2. Operating conditions, where the numbers in the subscripts refer to the radial
positions shown in Fig. 5.1

5.2 Numerical model

Since DeFT can handle only one type of boundary condition on each block face, a
large number of blocks is required for this particular pump. Fig. 5.2 shows part of
the 126 blocks. A detail of the mesh is plotted in Fig. 5.3. The number of grid cells

Figure 5.2. Block structure of the pump.

in a rotor and a stator channel are 3920 and 7032 respectively. The total number of
cells cumulates to well over 110,000. The inlet and outlet radius of the domain are
50 and 500 mm respectively. The value of y+ in the centroid of the wall-adjacent
cells ranges from 2 to 40. Due to the boundary layers at the hub and the casing, the
radial velocity at mid-span is larger than the span-averaged radial velocity. Because
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Figure 5.3. Close-up of the mesh near the sliding interface.

this displacement effect of the flow is not modeled in 2D, the flow rate used in the
simulations is increased by 14% from 0.29 to 0.33 m3s−1. This new flow rate is
determined through integration of the measured radial velocity at mid-span in [27].
At the inlet the corresponding radial velocity is prescribed together with k = 1 m2s−2

and ε = 10 m2s−3 which corresponds to a turbulence intensity of 3.8% of the inflow
velocity and a length scale of 16 mm. Wall-functions are prescribed at all blade
surfaces. At the outlet of the domain a zero stress is prescribed in DeFT. For the
turbulent quantities in DeFT and all flow variables in Fluent the gradient normal to
the outflow boundary is set to zero. For the velocity and pressure zero initial values
are prescribed, while k and ε are initialized with their values at the inflow boundary.
For temporal discretization the first-order Euler scheme is used with a constant time
step of 2 · 10−5 s, which results in 1500 time steps per revolution. The residual
that has to be reached for convergence is set to 10−4 for all equations in Fluent. In
DeFT the residual for the pressure equation has to be less than 4.5 · 10−4 to reach
convergence. For the other equations the residual has to drop 4 orders of magnitude
to reach convergence. The pressure equation in DeFT is solved for pn+1 (section 2.6).
The above described simulation model is used in both DeFT and Fluent. There are,
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however, some important differences between Fluent and DeFT. Fluent uses a multi-
grid method and has an unstructured solver, while DeFT uses a block-structured
GMRES solver.

5.3 Flow field

In this section the flow in the pump is presented. For the flow rate of 0.33 m3s−1 the
contours of the total pressure pt of the flow through the pump are given at a certain
rotor position in Fig. 5.4. Due to the kinetic energy transfer from the rotor to the
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Figure 5.4. Contours of the total pressure pt of the flow through the pump.

fluid, the total pressure increases from the inflow of the pump towards the outflow
region of the rotor. As a result of losses in the flow, the total pressure then decreases
slightly in the stator.
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In Fig. 5.5 it is shown that the static pressure increases in the stator as well, because
of the deceleration of the flow resulting in a conversion of kinetic energy to pressure.
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Figure 5.5. Contours of the static pressure p of the flow through the pump.
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For the same flow rate and rotor position, the absolute and relative velocity vectors
are given in Fig. 5.6 and Fig. 5.7 respectively. The relative velocity vectors smoothly

Figure 5.6. The absolute velocity vectors of the flow through the pump.

approach the leading edges of the rotor blades. Instead of smoothly approaching
the leading edges of the stator vanes, the absolute flow seems to enter at a small
incidence angle. In order to have a more precise view on the direction of the flow that
approaches the stator vanes and its relation to the flow rate, simulations at several
flow rates were done at constant shaft speed. The flow rate of 0.33 m3s−1 is changed
in steps of 10% from 50% to 120%. For these cases the head of the pump H, defined
in Tab. 5.2, is given as a function of the flow rate in Fig. 5.8.



78 Unsteady flow in a pump

Figure 5.7. The relative velocity vectors of the flow through the rotor.

0.15 0.2 0.25 0.3 0.35 0.4 0.45
30

40

50

60

70

80

90

100

 H [m]

 Q [m3s−1]

Figure 5.8. The head characteristic of the pump.
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To calculate the head, the total pressure pt is mass-averaged at the outflow and at the
inflow surface. The loss of total pressure between the inflow surface of the numerical
flow domain and the inlet of the axial pipe of the experimental setup is neglected.
Conservation of total pressure is also assumed for the region between the stator outlet
and the outflow surface of the numerical domain. To determine the best efficiency
point (BEP) of the pump, its efficiency η is calculated by

η =
Q(pt4 − pt0)

ΩT
, (5.2)

where T is the shaft torque. Both the shaft torque and total pressure difference is
calculated for one rotor position. Because the number of rotor blades and stator vanes
is large, it is assumed that these integrated quantities don’t deviate much from the
average over all possible rotor positions. The efficiency of the pump is shown as a
function of flow rate in Fig. 5.9. The BEP is at a flow rate of approximately 0.27
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Figure 5.9. The efficiency of the pump versus the flow rate.

m3s−1, which is close to the flow rate used in the experiments, see Tab. 5.2. This
suggests that the pump design is based on a uniform velocity profile between the hub
and the casing. The influence of the blockage effect by the boundary layers is not
taken into account.

The calculated total pressure coefficient ψ = 0.657 at Q = 0.33 m3s−1 is very close
to the value calculated from the experiments which is given in [27] and in Tab. 5.2.
The streamlines of the flow around the leading edge of a stator vane are shown in Fig.
5.10 for the flow at Q = 0.75QBEP , in Fig. 5.11 for the flow at Q = QBEP and in Fig.
5.12 for the flow at Q = 1.25QBEP . These streamlines are determined for the flow
corresponding to the rotor location shown. The flow approaches the leading edge of
the stator vane smoothly at BEP. At the flow rate below QBEP , the flow direction
is more towards the rotor side of the stator vane. At the flow rate above QBEP , the
flow direction is more towards the stator channel above the stator vane.
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Figure 5.10. Streamtraces for the flow at Q = 0.75QBEP .

Figure 5.11. Streamtraces for a flow at Q = QBEP .



5.3 Flow field 81

Figure 5.12. Streamtraces for a flow at Q = 1.25QBEP .

The pressure fluctuations in the area between the rotor and the stator play an impor-
tant role in noise production of a pump. Therefore the static pressure is calculated
as a function of time in two points. The location of point A close to the leading edge
of a stator vane and point B in the middle of a stator channel is shown in Fig. 5.13.

A
B

Figure 5.13. The location of the points A and B, both with a radial coordinate of 0.220 m.
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In these points the pressure coefficient Cp is calculated by

Cp = 2
p− p0

ρU2
2

, (5.3)

with p0 the static pressure at the inlet of the axial pipe of the experimental setup.
The static pressure difference between the inflow surface of the numerical domain
and p0 equals 328 Pa by assuming constant total pressure. For three flow rates Cp is
shown in Fig. 5.14 for point A and in Fig. 5.15 for point B. The pressure level in point
A, close to the leading edge of the stator vane is larger than in point B. The pressure
fluctuation has a minimum at Q = QBEP in point A, as expected. However in point
B the pressure fluctuation is smaller for a smaller flow rate.
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Figure 5.14. The normalized pressure in point A as a function of the dimensionless time, with
T the time between two consecutive rotor blade passings. The ⇓ marks the time at which the
tip of the rotor blade passes point A.
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Figure 5.15. The normalized pressure in point B as a function of the dimensionless time, with
T the time between two consecutive rotor blade passings. The ⇓ marks the time at which the
tip of the rotor blade passes point B.
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5.4 Comparison

Results of calculations using DeFT and Fluent are given in Fig. 5.16. Radial velocity
wr, relative tangential velocity wθ and static pressure coefficient Cp, time-averaged in
the rotating frame of reference, are compared with measured values. The trailing edge
of the rotor blade coincides with the zero position along the horizontal axis. As seen
from the rotating frame of reference, the stator blades move from left to right. The
Fluent calculation was done with 5 different types of pressure interpolation, all giving
the same result. The QUICK scheme, used in Fluent for higher order accuracy, results
in a solution that becomes unstable after one revolution. For reasons of comparison,
the order of the discretization was therefore reduced to first-order upwind, for both
Fluent and DeFT. The results obtained with DeFT and Fluent are very similar and
the calculation times are approximately equal as well. For 5 rotor revolutions DeFT
needed 20 hours, with two pressure-correction iterations per time-step, while Fluent
needed 21 hours. The results in Fig. 5.16 are obtained by rotating another stator vane
passage, while the pressure and velocity are averaged over time. The flow has become
periodic in time, because the results do not change when the calculation is continued
further. Both simulations were performed with one core of a dual core Intel Xeon
5130 2GHz processor. The computer memory used by DeFT and Fluent is equal to
181 and 153 MB respectively, both using double precision.

In Fig. 5.17 the curves for the central discretization in DeFT are compared with
the experimental results and CFD results from [18] and [26]. In [18] the 3D thin-layer
RANS equations are solved, using the artificial compressibility method with dual time
stepping combined with a PWI method. The grid consists of 874,000 nodal points and
the tip clearance is modeled using one computational cell. The pressure distribution
is not given in [18]. In [26] the 2D RANS equations are solved using CFX4.1 using a
very coarse grid of 21,048 cells. There is qualitative agreement between measurements
and calculations, with a pronounced difference in values of minima and maxima, and
phase. The calculated radial velocity is too low for both [18] and [26]. The viscous
blockage effect of the boundary layers at the hub and the casing is not modeled in
[26] because the flow domain is two-dimensional. In [18] these boundary layers were
modeled, but probably with a too low grid resolution. The tangential velocity of
[26] is too large, which gives an increased head of the pump. This is consistent with
a flow rate that is too small. The pressure phase shift between the numerical and
experimental results is larger than the phase shift between the numerical results. In
[26] and [6] it is argued that the pressure minimum should be positioned close to the
trailing edge of the rotor, due to high relative velocities. A time lag in the pressure
measurement therefore seems to be a plausible explanation for the phase shift.

The time-averaged quantities are calculated at a radius of 214 mm. They are re-
calculated at radii of 213 and 215 mm to see their sensitivity with respect to radius.
The results are shown in Fig. 5.18. The sensitivity is strongest close to the blade,
where the maximum and minimum values are attained. In the middle of the rotor
channel the sensitivity is much smaller.
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Figure 5.16. Time-averaged radial velocity, relative tangential velocity and pressure coefficient
in a rotor channel.
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Figure 5.17. Time-averaged radial velocity, relative tangential velocity and pressure coefficient
in a rotor channel.
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5.5 Conclusions

When compared with the experimental results, the calculations of [18] are obviously
better than the other CFD results. Apparently 3D flow effects are significant. The
staggered method of DeFT and the collocated method of Fluent perform equally
well in terms of calculation time to obtain equal accuracy. Note that Fluent uses a
multi-grid method, which is known to reduce computing time considerably. The large
difference in performance between both methods for the simulation of the unsteady
channel flow in section 3.1, is not observed for the flow simulation of this pump. Since
the current implementation of DeFT can only handle one type of boundary condition
at each block face, the total number of blocks in the grid is unnecessarily large,
deteriorating the convergence behavior of DeFT. With 203 words per node, computer
memory usage for DeFT is large but not significantly larger than for Fluent.
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Chapter 6

Conclusions and discussion

6.1 Conclusions

Turbines and pumps are examples of hydraulic turbomachines if the working fluid
is incompressible. To optimize these machines it is necessary to analyze the time-
dependent flow in detail. Flow simulations using Computational Fluid Dynamics
(CFD) can achieve this. The software solves the discretized partial differential equa-
tions for mass and momentum conservation on a grid that contains the entire flow
domain. Two basic discretization schemes can be distinguished: collocated and stag-
gered. When a collocated scheme is used, the solution suffers from odd-even decou-
pling. In practice this is suppressed with artificial measures which either decrease
the accuracy of the simulation or increase the calculation time for an unsteady in-
compressible flow. Using a staggered scheme, accurate discretization is more difficult,
but odd-even decoupling is avoided. In this thesis the development of the existing
staggered CFD package DeFT is continued to make it suitable for the simulation of
the flow through a turbomachine.

6.1.1 DeFT

DeFT is a numerical solver that uses boundary-fitted block-structured grids. The
time-dependent incompressible Reynolds-Averaged Navier-Stokes equations are dis-
cretized on the grid and solved with the k-ε turbulence model. Calculations can
be done in the rotating frame of reference. The Coriolis and centrifugal forces that
arise in the governing equations in this case, can be modeled by source terms. An
alternative method to account for the apparent Coriolis and centrifugal forces, us-
ing a conservative formulation, was added to the program. The system of equations
is solved with the pressure-correction method. Both the classical and the WesBeek
staggered discretization can be used. The WesBeek discretization is suited for non-
uniform grids, while the classical discretization is not.

An interpolation procedure for the grid and the primitive variables is implemented
to handle non-matching grids for more flexibility in grid generation. The sliding inter-
face between the rotating grid in the impeller and the stationary grid is developed as
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well. Usually, the pressure equation is solved for the pressure difference between two
time-steps. However, at the sliding interface the pressure difference is discontinuous
during the first iteration of the loop over the equations, leading to slow convergence.
Therefore, the pressure equation is adapted to solve for the pressure at the new time-
level directly. In this way the iteration process should converge faster. All simulations
and adaptations of DeFT are done in 2D.

6.1.2 Verification

The performance of DeFT and the collocated CFD program Fluent are compared
for an unsteady laminar channel flow. On a grid of 10 blocks and 100,000 grid cells
the error in the pressure at the channel inlet is monitored. For equal accuracy, the
calculation time needed by Fluent is more than 3 times larger than the calculation
time needed by DeFT.

The accuracy of the classical and the WesBeek staggered discretizations in DeFT
and the collocated discretization of Fluent is compared for a flow through a vane-
less diffusor. The difference between the numerical and the theoretical values of the
pressure difference across the diffusor is used to represent the numerical error. Three
different grids are used: an equidistant grid, a smooth non-uniform grid with an in-
creasing cell density towards the diffusor inlet, and a rough grid. On the rough grid
the collocated and the WesBeek discretizations give good results, while the error using
the classical staggered discretization is large, as expected. The same is true for the
smooth non-uniform grid. On the equidistant grid, the error using the collocated grid
is much larger than the error using both staggered discretizations. This can be the
result of an artificial odd-even coupling method which is insufficient.

A turbulent jet flow is simulated in the stationary and the rotating frame of refer-
ence. Because the resulting pressure distributions in both frames are approximately
equal, it is concluded that the implementation of the turbulence model is correct, also
in the rotating frame of reference.

The source term and the conservative formulations of the Coriolis and the centrifu-
gal forces are compared for an axi-symmetric laminar flow. The error and the grid
convergence for the pressure and the velocity components are determined using the
analytical solution of the flow. Because the errors for both methods are approximately
equal, there is no preference for the conservative or the source term formulation.

The flow around a cylinder is used to verify the correct implementation of the
sliding interface. The flow is simulated in two ways. The first simulation is with
all blocks in the stationary frame of reference. The second simulation is the same,
except for the inner region which is calculated in the rotating frame of reference. The
pressure distributions resulting from both simulations are close to identical if the pres-
sure equation is directly solved for the pressure at the new time-step while using one
pressure-correction iteration. When the pressure equation is solved for the pressure
difference between two time-steps, a discontinuity in the pressure across the sliding
interface arises when only a few pressure-correction iterations are used. This confirms
the anticipated preference to solve the pressure equation directly for the pressure at
the new time-level when a sliding interface is used.
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6.1.3 Validation

An axial pump is modeled by a cascade of blades. For the inlet angle equal to 70o the
turbulent flow through several pumps, each with a different stagger angle, is simu-
lated with DeFT and Fluent. The calculated blade surface pressure is compared with
results from experiments and CFD, both available in literature. For most cases there
is good agreement between the results. Lift and drag forces are calculated as well.
The agreement between results from CFD and experiments is good for an angle of
attack between 4o and 10o.

To determine the Best Efficiency Point (BEP) for each pump, additional simula-
tions were done with varying inlet angle. It turned out that for all pumps the BEP
corresponds with an angle of attack equal to 6o.

The force on the blade is also decomposed into axial and tangential components,
which are a measure for the head and the torque of the pump. These forces are plot-
ted as a function of the deviation of the flow rate from BEP condition. For flow rates
from 0.8Qbep to 1.4Qbep the errors are only a few percent. That is why it is expected
that CFD can be used to model the flow through a turbomachine when it operates
in this range of flow rates. At lower flow rates the errors are larger, probably due to
flow separation.

6.1.4 Unsteady flow in a pump

Using the staggered WesBeek discretization in DeFT, the turbulent flow through a
centrifugal pump with a vaned diffusor can be simulated on a rough grid in 2D. The
flow in this pump is simulated with a collocated discretization in Fluent as well. For
several flow rates the head and the efficiency of the pump are determined. The flow
at the best efficiency point has the most smooth approach of the stator vanes. The
calculated time-averaged pressure and velocity along the pitch of a rotor channel by
DeFT and Fluent show good correspondence. The agreement with values from ex-
periments and other CFD calculations obtained from literature is more qualitative.
On a grid of over 110,00 cells, the calculation time needed by DeFT and Fluent is
approximately equal, despite the use of a large number of 126 blocks in DeFT and its
lack of a convergence enhancing multi-grid method which is used by Fluent.

6.2 Discussion

In this thesis it is shown that a staggered grid method, based on the WesBeek dis-
cretization, is suited for calculating the time-dependent flow through a centrifugal
pump. The method has advantages over the collocated method, in terms of speed
and accuracy. Although this advantage was not shown clearly by the pump simu-
lations of chapter 5, one has to remember that the staggered method was hindered
by the large number of grid blocks, slowing down its convergence speed considerably.
Moreover, the current version of DeFT lacks the multi-grid method employed by Flu-
ent. The performance of DeFT will enhance greatly, should it be possible to remove
the above mentioned drawbacks. To increase the convergence speed, the stability and
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the flexibility of DeFT, it is recommended to address the following issues in a future
study:

• To increase the convergence rate of DeFT for simulations with a large number
of cells, the implementation of a global multi-grid procedure is recommended.

• Reducing the number of blocks in a grid increases the convergence rate as well.
Therefore it is recommended to implement the possibility of handling multiple
types of boundary condition per block face.

• The implementation of the convergence check of the total system of equations
is needed to decide if another iteration loop over these equations is necessary.

• In order to increase the stability of calculations while using a higher order
discretization scheme for the convection terms, a higher order upwind scheme
should be implemented that is more stable than the present central scheme, but
accurate on rough grids as well.

• Often the result of a steady flow calculation is used as initial solution for a
transient simulation. Therefore it is recommended to implement a solver for
the steady flow equations in DeFT.

• The current method for information exchange between non-matching blocks uses
interpolation of the variables in the direction parallel to the multi-block bound-
ary only. The disadvantage of this method is that is poses restrictions on the
block-topology. This often leads to extra blocks. To be more flexible with grid
generation and to reduce the total number of blocks needed, the implementation
of a method that determines the virtual coordinates using extrapolation of the
real grid of the same block is recommended. However, the disadvantage of this
method is the need for interpolation in the direction normal to the multi-block
boundary as well.

• In [32] the current staggered discretization is developed in 3D. Therefore, and
to increase the applicability of DeFT, the previous recommendations and the
sliding interface should be extended to 3D.
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Appendix A

Blade surface coordinates

suction side pressure side
x y x y
1.00000 0.00000 1.00000 0.00000
0.95029 0.00937 0.94971 0.00327
0.90057 0.01842 0.89943 0.00226
0.85076 0.02729 0.84924 -0.00037
0.80088 0.03577 0.79912 -0.00393
0.75090 0.04372 0.74910 -0.00792
0.70085 0.05099 0.69915 -0.01211
0.65073 0.05741 0.64927 -0.01621
0.60053 0.06288 0.59947 -0.02004
0.55029 0.06720 0.54971 -0.02340
0.50000 0.07018 0.50000 -0.02606
0.44968 0.07153 0.45032 -0.02773
0.39936 0.07138 0.40064 -0.02854
0.34903 0.06983 0.35097 -0.02863
0.29872 0.06702 0.30128 -0.02814
0.24843 0.06290 0.25157 -0.02710
0.19817 0.05731 0.20183 -0.02547
0.14798 0.05006 0.15202 -0.02314
0.09788 0.04067 0.10212 -0.01999
0.07289 0.03487 0.07711 -0.01791
0.04797 0.02800 0.05203 -0.01536
0.02318 0.01935 0.02682 -0.01191
0.01089 0.01372 0.01411 -0.00944
0.00607 0.01061 0.00893 -0.00781
0.00372 0.00861 0.00628 -0.00661
0.00000 0.00000 0.00000 0.00000

Table A.1. The cartesian Naca 65-410 blade coordinates for a chord length of 1. The x and y
direction are parallel and perpendicular to the blade chord respectively.
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