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Dynamic Behaviour of AA2024 under blast 
loading: Experiments and Simulations

J. Mediavilla Varas*,1, F. Soetens1,2, R. vd Meulen1,2, M. Sagimon1,3, 
E. Kroon1, J.E. van Aanhold1 

1)TNO, 2)TU Eindhoven, 3) TU Delft; The Netherlands

Abstract - The dynamic behaviour of AA2024-T3 is investigated. Dynamic tensile tests using 
a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The 
servo-hydraulic test machine proves to be more reliable and reaches higher strain rates. Neither 
test revealed any strain rate effect of AA2024-T3. Two types of fracture tests were carried out 
to determine the dynamic crack propagation behaviour of this alloy, using prestressed plates 
and pressurized barrels, both with the help of explosives. The prestressed plates proved to 
be not suitable, whereas the barrel tests were quite reliable, allowing to measure the crack 
speeds. Computer simulations with a user defined, rate dependent cohesive zone model were 
in agreement with experiments, capturing the rate toughening effect.

1. Introduction

Aluminium is the airplane building material for excellence for many reasons: light weight, good 
mechanical properties, good fatigue behaviour, relatively low price, adequate workability, huge 
engineering experience, etc. This will remain so in the decades to come, in spite of the growing 
importance of composites and hybrid materials. 2024T3 aluminium is one of the best known 
high strength aluminium alloys and widely used as aircraft aluminium.

Triggered by the growing terrorist threat, the EU VULCAN project [1] aims at strengthening  
airborne structures under blast and fire. An explosion is a highly dynamic event and the fuselage 
material behaves in a different manner as under a static load. Stress waves, inertia, temperature 
and strain rate effects take place. Although the strength and fracture behaviour of airplane 
aluminium alloys (e.g. AA2024) under quasi-static/fatigue loading is well known, its dynamic 
behaviour is less well understood.  Within the VULCAN project, the strain rate sensitivity and 
the dynamic fracture behaviour of AA2024-T3 has been investigated. 

This mechanical data is necessary in order to validate and develop new finite element models. 
Dynamic crack propagation experiments and simulations using a user defined rate dependent 
cohesive zone model are compared.
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2. Dynamic tensile tests

High strain rate tests have been performed using two different test machines: 

- A servo-hydraulic high-speed single shot test machine.
- A so-called lightweight shock testing machine (LSM).

The servo-hydraulic test machine was used in [2] to measure the dynamic properties of S2 glass 
fibres, Glare-3 and AA2024-T3. Stresses are directly computed from the measured force, and the 
strain and strain rates are obtained from  digital processing of high speed camera images. The 
LSM, on the other hand,  is normally used for verifying equipment’s resistance to underwater 
shock induced deck motions on board of naval ships. Stresses are computed from the mass and 
the acceleration of the clump mass and strains are measured by means of strain gauges. The servo-
hydraulic setup is preferred to the LSM, since it allows reaching higher strain rates, up to 200 1/s, 
an order of magnitude higher than the LSM. Also the results are more reliable, with less dynamic 
oscillations. On the other hand, the LSM allows for testing substantially larger specimens, for 
example structural details, at dynamic loading rates  [3]. Figure 1 shows the two setups.

Figure 1: (left) servo-hydraulic high-speed machine setup; (middle) sample and high speed camera; (right) LSM setup.

The specimens tested with the servo-hydraulic machine are 3 mm wide and 1 mm thick. Strain 
rates up 200 1/s are attained. No sign of strain rate dependency was observed, see Figure 2. The 
average failure strain rate was ef=0.2 and the failure strength sf= 550 MPa, irrespectively of the 
strain rate.

The specimens tested with the LSM were 40 mm wide and 1.0 mm thick. The average strain 
rate was 30 1/s. The interpretation of the results is not straightforward, since the measurement 
reflected dynamic structural effects (not shown).  The dynamic LSM tests showed an average 
failure strain ef=0.18 and the average failure strength sf= 407 MPa.  Figure 3 shows that failure 
occurs along the maximum shear direction, at 45o from the loading direction. Hollow specimens, 
with a hole diameter of 5 mm, were also tested to show the effect of high stress triaxialities on 
reducing the failure strain. This was indeed confirmed by experiments, which showed a lower 
failure strength and strain sf=279 MPa and ef=0.017 respectively.  The hollow specimens failed 
in the normal to the loading direction.
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Figure 3: Aluminium specimens after failure, using LSM machine.

Figure 2: Stress-strain curves at different strain rates, with servo-hydraulic high-speed machine.
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3. Dynamic fracture tests

Two types of fracture experiments have been performed:

3.1 Prestressed plate tests. 

Flat plates of dimensions 800-1600 mm (w-l) were prestressed at different stress levels, 100 and 
200 N/mm2. Crack propagation was triggered by creating a notch (200 mm long) in the middle 
of the plate, by means of an explosive charge. Crack propagation was recorded using high speed 
camera recordings, which allowed computing the crack speed. Figure 4 shows the hydraulic used 
in the prestressed plate tests and the explosive charge used to create the prenotch.

Figure 4: (left) prestressed plate setup; (right) line explosive charge to create prenotch.

It turned out that this setup was not suitable for studying crack propagation for a number of 
reasons: unknown extent of the damage near the explosive charge, out of plane movement of 
the plates due to the explosive load; asymmetric crack propagation. Figure 5 shows a sequence 
of snapshots during crack propagation. Fracture occurred perpendicular to the loading direction 
(mode-I).

3.2 Pressurized barrel tests.

In the barrel tests, a barrel with a prenotch (56 mm long) is pressurized, and crack propagation is 
triggered by the explosion of a TNT charge placed inside, in the middle of the barrel. The barrel 
dimensions are: 1.2 m by 1 m (diameter x height), a scaled down simple model of a fuselage. 
The top and bottom of the barrel are made of massive steel plates, which are firmly fixed relative 
to one another in the vertical direction. The skin of the barrel is fixed to the end plates with 
bolts. The explosive charge is spherical and has a mass of 54 gr. To simulate flying conditions, 
the barrel was pressurized at 200 kPa. The prenotch is taped off to avoid depressurization. 
Upon pressurization, the explosive is detonated, triggering crack propagation. Figure 6 shows 
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a sketch of the barrel test setup, the high speed cameras and the measured blast pressure inside 
the barrel.

Figure 6: (a) sketch of pressurized barrel test; (b) barrel setup and high speed cameras; (c) measured blast pressure 
inside the barrel.

Figure 5: Crack propagation snapshots.
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Figure 7 shows the barrel after the explosion, a close-up of the crack and the crack speed versus 
crack. Failure occurred in a ductile manner, with crack perpendicular to the maximum hoop 
stress (mode-I), and relatively low crack speeds. The average crack speeds were 300 m/s. SEM 
images show the typical dimple like structure, characteristic of ductile fracture.

Figure 7: (a) Aluminium barrel after explosion; (b) high speed camera snapshots during crack propagation; (c) SEM 
image of the fracture surface.

4. Simulations

To better understand the fracture process, numerical simulations of the barrel test experiments 
have been performed. Fracture was modelled using cohesive zone elements. It turned out that 
static fracture toughness overpredicts the crack speed. Hence, a newly developed viscoplastic 
cohesive zone model is used [4], which has been implemented in the nonlinear finite element 
code LS-DYNA [5]. Using one set of material parameters, the model is able to reproduce static 
as well as dynamic tests. The model can capture the increase in fracture toughness with loading 
rate which is observed in experiments [6]. This effect is seen in Figure 8, which shows the rate 
effect on the traction-opening law.

Figure 9 shows a sequence of Von-Mises stress contour plots during crack propagation. The 
cohesive elements have been placed along the expected, vertical, crack path, in between the shell 
elements which are used to model the barrel. Figure 10 shows the simulated and experimental 
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crack velocity versus crack length curves and the crack length versus time. The agreement is 
quite reasonable, considering the uncertainty in the blast load.

Figure 9: Von-Mises stress contour plots during crack propagation of the barrel test.

Figure 8: Perzyna viscoplastic cohesive zone model for dynamic crack propagation, showing load rate sensitivity.
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Figure 10: (left) Fracture velocity-fracture length; (right) fracture length-time.

Conclusions

To characterize the mechanical behaviour of airplane fuselage material AA2024-T3 under 
dynamic loading, dynamic tensile tests and fracture tests have been performed. The main 
conclusions are summarized below.

1-Dynamic tensile tests. 
AA2024-T3 shows no strain rate effect, constant failure strain and failure strength upon different 
strain rates. 

The servo-hydraulic tests are preferred over the LSM tests, since they show less structural 
dynamic effects, and allow reaching higher strain rates can be attained, up to 200 1/s, while the 
LSM test just 20-30 1/s.

2-Dynamic crack propagation tests.
The prestressed plate tests prove not to be suitable for monitoring crack propagation, due to a 
lack of symmetry, undesirable effects caused by the explosive charge (out of plane displacement 
and unknown extent of  damage around the crack tips).

The barrel tests on the other hand allow monitoring the mode-I crack propagation and measure 
the crack speed of the different material tested. Aluminium displayed a ductile behaviour, with 
moderate crack velocities.

3-Computer simulations.
The barrel tests and the computer simulations using a rate dependent cohesive zone model were 
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in good agreement. The model can capture the increase in toughness with an increasing  loading 
rate.
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