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MECHANICS Proceedings B 85 (4), December 13, 1982

Analytical methods for predicting the response of marine risers

by J.J.H. Brouwers

Koninklijke/Shell Exploratie en Produktie Laboratorium, Rijswijk, the Netherlands

Communicated by Prof. W.T. Koiter at the meeting of May 24, 1982

SUMMARY

A marine riser, which links a floating oil or gas production system to a sea-bed manifold, can be
modelled as a tensioned beam, the hydrodynamic transverse forces being described by the relative
velocity form of Morison’s equation. To analyse the response of the riser to random waves and
floater motions, a number of characteristic regions has been identified along the riser. For each of
these regions, the riser differential equation is reduced to an approximate form and analytical
solutions, in terms of known time- and position-dependent functions, are given. The solutions hold
asymptotically for slender (tension-dominated) risers in deep water and compare favourably with
numerical simulation results for a typical riser.

INTRODUCTION

Floating production systems tend to form an attractive possibility for the
development of offshore oil and gas fields, particularly in deep water. A critical
element in these systems is the riser, which links the floating unit (e.g. a vessel
or a semi-submersible) to the sea-bed manifold (see fig. 1). The main purpose of
the riser is to conduct fluid (oil, gas) from the sea-bed to the surface and vice
versa.

Various loads are imposed on the riser, including loads induced by waves,
currents and floater motions. Some of these, i.e. waves and floater motions,
vary randomly with time. Riser response must therefore be treated as a random
variable, characterised by probability distributions. Realistic prediction of these
distributions is important for assessing design parameters such as expected
fatigue damage and expected extreme response.
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Two types of riser analysis are commonly employed, viz. analysis in the
frequency domain using spectral analysis technigques (Tucker and Murtha,
1973, Kirk et al., 1979, Krolikowsky and Gay, 1980) and analysis in the time
domain using numerical simulation techniques (Sexton and Agbezuge, 1976,
Harper, 1979). The first method yields valid solutions for linear svstems with
Gaussian excitation, where response is also Gaussian., In riser analysis,

Fig. 1. Floating production system.
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however, it is often necessary to describe the system in a non-linear manner,
using a form of Morison’s equation for the hydrodynamic force. Spectral
analysis techniques then only yield approximate results and are unable to
predict deviations from the Gaussian form caused by non-linearities.

The second method, i.e. numerical time-domain simulation, enables the
effect of non-linear elements on response distributions to be determined. The
solution routine, however, is rather elaborate and time-consuming. Results are
generally limited to those obtained from short-term simulations of typical
cases. The solution method is less suitable for obtaining information on
extreme and long-term statistics or for identifying general trends in riser
response.

In this paper an alternative method is described for analysing non-linear riser
behaviour in random seas. Rather than numerically, riser response to random
waves and floater motions is investigated analytically. The analytical approach
involves identification of characteristic regions along the riser. For each of
these regions, the riser differential equation is reduced to an approximate form
and analytical solutions, in terms of known functions, are given. A comparison
with numerical simulation results for a typical riser is also made.

BASIC EQUATIONS

In general, a marine riser can be represented as an almost straight, vertical,
tensioned beam, which is subject to an axially distributed two-dimensional
transverse force F(z,f). For axi-symmetric riser configurations, the two-
dimensional response of the riser can be described by the differential equation

o' 9 bx) Ox
1 El——— (T2 = )+m—=~=F,
(1) o o2 ( (@) o2 m

where

x(z,t) =two-dimensional horizontal deflection,

b4 = vertical distance from riser base,
t =time,

E =modulus of elasticity,

I =moment of inertia,

T,(z) =riser tension (7,>0),

m =mass per unit length,

F(z,t) = external force per unit length.
The bottom end of the riser is assumed to be fixed to the base,
) x=0 atz=0,
and subject to rotational constraint according to

2
3) E]Z—;zcbg—: at z=0,
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where Cj, is the rotational stiffness of the riser base. At the top, the riser is
assume‘gl to be connected by a hinge to a floating structure, expressed as

4) xX=v atz=1L,

Ox
(5) EIG—Z:2=O atz=1L,

where v(r) is the time-dependent horizontal displacement of the floating
structure and L is the length of the riser. The configuration is shown in fig. 2.
The derivation of riser differential equation (1) is illustrated in fig. 3.

The terms on the left-hand side of equation (1) represent bending forces,
EI(0*/3z*)x, tension forces, (3/3z)(T.(d/dz)x), and inertia forces, m(d>/d¢)x,

Tr
v
I 1
SEA LEVEL
a
Lwh MEAN SEA LEVEL
X
i
Cp
BASE

LSS S

Fig. 2. Riser configuration.
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SUBSTITUTING (B), (C) AND (D) INTO (A) YIELDS DIFFERENTIAL EQUATION (I}

Fig. 3. Derivation of riser differential equation.

respectively. These forces are balanced by the transverse force F(z, r), which is
described as

(6) F=FyH(L,+a(t)-2),

where Fi(z, t) is the hydrodynamic force exerted by the water and H(L,, + a(t) —
—z) 1s Heaviside’s unit function. This function models the sea level according

to
(7a) B 1 for z< L, +a(t)
(7b) ALy +alt)=2)= { 0 for z>L,,+a(t)
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where L,, is the mean sea level as measured from the riser base and a(¢) is the
(wind-generated) surface elevation as measured from the mean sea level (see
fig. 2).

Ignoring effects such as vortex induced vibrations, the hydrodynamic force is
commonly described by the ‘relative velocity’ form of Morison’s equation:

(8) Fu=F+Fp,

where F;(z, t) is the inertia force, defined by

O F=lend’C, - dendCy 33

and Fp(z, t) is the drag force, defined by

ow ox\ | Ow ox
10 Fp=40dCpl —+u,.— — )| —+u.— —|.

(19) p=3e D(ot ¢ bt>|6t <ot
In the above equations

0 = water density,

d =riser diameter (or equivalent diameter),

Cy,s =inertia coefficient (Cy, = 2),

C, =added mass coefficient (C, = 1),

Cp  =drag coefficient (Cp=1),

w(z, t) =horizontal displacement of water particles due to (wind-generated)
surface waves,

u.(z) =horizontal current velocities (e.g. tidal currents).

The larger value for C,, as compared to that for C, in the expression for the
inertia force represents additional force due to pressure gradients associated
with acceleration of the fluid: see Batchelor (1967), p. 409. The description of
the drag force is based on the assumption that drag forces are due to pressure
differences caused by boundary layer separation from the riser surface. The
force can then be taken to be quadratically dependent on relative velocities. For
a discussion on Morison’s equation, reference is made to Hogben et al. (1977)
and Sarpkaya (1981).

REGIONS OF RISER RESPONSE

For slender (tension-dominated) risers in deep water, a distinction can be
made between three regions: a wave-active zone at the top, a boundary layer at
the bottom and a riser main section in between (see fig. 4).

In the wave-active zone, the riser is exposed to direct wave loading due to
wave-induced water particle motions w(z, f). According to wave theory (Kins-
man, 1965), w(z, t) decays exponentially in magnitude from mean sea level over
a length 4,,, given by

(11) A, =g/w?,

where g is the gravitational acceleration and w, the characteristic (mean)
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Fig. 4. Regions of response.

frequency of the sea surface elevation. In practice, g/ w? is 10-40 m. The height
of the riser above mean sea level is, in general, of the same order of magnitude.
The region extending from riser top to a distance ~ A, below mean sea level is
referred to as the ‘wave-active zone’. Below this region, wave-induced water
particle displacements w(z,?) and forces associated with w(z, ?) (see eqs. 9 and
10) can be disregarded.

The boundary layer at the bottom extends over a length ~ 4,, where

(12) Ap=(EL/T,)".

As can be verified from riser differential equation (1), (EI/T,)! is the character-
istic length over which response must vary for the tension and bending forces to
be of equal order of magnitude. If the response varies over a length substantially
exceeding A,, tension forces will dominate bending forces. For conventional
small-diameter risers (d<0.5 m), 4, will, in general, not exceed 10 m. This
length is, in general, small compared to the length over which the response
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varies in the main portion of the riser, which is discussed in the next paragraphs.
Hence, in most parts of small-diameter risers, the effects of bending forces can
be disregarded. Bending forces, i.e. the highest axial derivatives in the differ-
ential equation, are then only important in local regions of length ~ 4, at any
discontinuity in the riser, with the top and bottom ends as special cases (see
fig. 4).

In the riser main section, bending forces and hydrodynamic forces due to
wave-induced water particle motions can be disregarded. In this region, the
riser can be represented as an entirely submerged tensioned string, subject to
transverse displacement excitation at one end, and fixed at the other. The
characteristic length over which the response varies can be indicated by 4,,,
defined as the minimum of the ‘dynamic’ lengths A; and 4,, and riser length L:
ie.,

(13) Am :min'[}-i’ ’la’s L],

where

(14) h=nT m+my) tw,

and
(15) Ag=A;, 0671

In the above equations, m, =+tond?C, is added mass of the water per unit
length and ¢ is drag-inertia parameter, to be defined below.

The length A,, as defined by equation (14), corresponds to half the wave
length of a lightly damped tensioned string. Here the response length is deter-
mined by a balance between the tension and inertia forces in riser differential
equation (1). For some typical values of riser parameters it has been found that
A; 1s between 150 and 300 m.

In the case of large damping, the dynamic response length can well be deter-
mined by a balance between tension and drag forces. The characteristic length
of the response is then smaller than 4, and can be related to A, as indicated in
equation (15). Here, J represents the ratio between drag forces and inertia
forces. For low current velocities, i.e. where u, is small as compared to riser
velocity (0/0¢)x, this ratio can be expressed as

_30dCpa

16 0 ,
(16) m+my

where o is the typical value for riser deflection, e.g. standard deviation of
floater displacement. For high current velocities, i.e. |u.|> |(d/dt)x|, the
dynamic component of the drag force is primarily given by cross-products of u,
with (0/07)x: see equation (10). An appropriate drag-inertia parameter is then
given by equation (16), if o is replaced by w, ' lu,|.

The smaller of the lengths A; and A, is representative of the length over which
the response varies in the main section, as long as this length is of the same
order of magnitude as the riser length L, or smaller. If 1; and A, are much larger
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than L, however, the response is of a quasi-static nature. Restoring forces then
dominate inertia and drag forces and the response in the main section will vary
over the length L. Note that also in local response regions (wave-active zone,
boundary layer at the bottom), whose lengths are much smaller than the
dynamic lengths 4; and 4,, response will be of quasi-static nature.

SOLUTION PROCEDURE

To calculate riser response in the wave-active zone at the top, the boundary
layer at the bottom, and the riser main section, use can be made of a formal
mathematical procedure which consists in applying perturbation techniques and
methods of matched asymptotic expansions (Van Dyke, 1964). The solution
procedure involves reduction of the riser differential equation to an approxi-
mate form by expressing the solution as a perturbation expansion in powers of a
small dimensionless parameter. For the wave-active zone at the top and the
boundary layer at the bottom, the small dimensionless parameter is given by the
ratio of the characteristic lengths 4,,/4,, and 4,/4,,, respectively; the expansion
for the main section involves both A,,/4,, and 4,/4,,. The requirement that the
solutions of the simplified differential equations of each region must join in a
prescribed manner is known as the matching principle (Van Dyke, 1964). It
connects the solutions of each region and leads to a consistent description of the
response over the entire riser.

In the subsequent paragraphs a less formal approach will be adopted to
calculate riser response. Rather than introducing extensive perturbation
schemes, the riser differential equation is directly reduced to an approximate
form by neglecting those terms that are small according to the analysis given in
the previous section. Matching is accomplished by employing heuristic argu-
ments such as ‘solutions for the boundary layer at the bottom should remain
finite as the boundary layer coordinate tends to infinity’. The resulting solutions
are equal to the descriptions of the first term of the perturbation expensions as
obtained from perturbation techniques and matched asymptotic expansion
procedures. The given solutions and descriptions are thus asymptotically valid
in the limit of 1,,/1,,—0 and 4,/4,,~0, and can be expected to be accurate if

(17)  A,<A, and A, <4,

i.e. if the characteristic lengths of the wave active zone (cf. eq. 11) and the
boundary layer at the bottom (cf. eq. 12) are much smaller than the character-
istic length over which response varies in the main section (cf. egs. 13-16).

SOLUTIONS FOR THE WAVE-ACTIVE ZONE

For most practical cases, A,, is much smaller than the dynamic lengths A, and
A4. Response in the wave-active zone is then of a quasi-static nature and both
the inertia term and fluid loading term can be disregarded as a first approxi-
mation for evaluating x. Displacement response in the wave active zone is thus
primarily governed by a balance between the tension forces and bending forces
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only. Assuming that the tension 7,(z) is almost constant over the wave-active
zone, riser differential equation (1) can then be approximated by
dx 0’x

~T,—==0.

18 El — B
(18) oz4 dz2

The solution of this equation, which satisfies the boundary conditions imposed
at the riser top (equations 4 and 5) and which remains finite as (L — z)A, ' - o0,
i.e. when entering into the riser main section, is

(19) x(z,1)=v(r).

To first order, the horizontal deflection of the riser in the wave-active zone is
thus equal to the horizontal deflection of the floater imposed at the top. The
effect of direct wave loading on horizontal deflection can be shown to be
O(|w|A2/42%), where |wi is the characteristic magnitude of wave-induced
horizontal water particle displacement: e.g. standard deviation of sea-surface
elevation. In general, this effect is small (because /lzw//l,z,,é 1).

Descriptions for the bending moment in the wave-active zone can be derived
by substituting the above solution for deflection into the expressions for the
inertia forces and damping forces of riser differential equation (1). This gives
the equation

Otx Ox

20) B o7 9%
(20) 0z?

oz* s.

or, in terms of the bending moment M(z, t) defined by

Ox
21 M=E]—,
(21) e

the equation

2
@ 2M_rEnm=k.
o072

Here, F(z, 1) is the sum of the inertia forces and hydrodynamic forces acting on
the riser when the horizontal displacement of the riser is equal to the horizontal
displacement of the vessel v(¢):

d*v

(23) ,'-SZ—'m -(F'{‘szv,

where F(z, ) is defined by equations (6)-(10).

The solution of equation (22), which satisfies the boundary condition
imposed at the top (equation 5) and which remains finite as (L —z)A,,' = o, can
be obtained using Laplace transformation techniques. This solution is given by
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M(z,t)= 14, ? F.(x,¢t) sinh {(x—2)4, ! Ydx

(24)
— Ay sinh {(L—2)4; '} § Fi(x,¢) exp {(x— L)A; '}dx,
0

where A, is the ‘boundary layer’ length defined by equation (12).

According to the above solution, the bending moment in the wave-active
zone is linearly and quasi-statically related to the inertia and hydrodynamic
force F,(z,t) acting on the riser when the riser moves with the floater. The
governing probability distributions of bending moment, such as the distribution
of instantaneous values and peak values, can therefore be expected to be similar
to those of the force F,(z, t). Because of the nonlinear elements in the descrip-
tion of the force (cf. equations 6-10), for Gaussian wave-induced water particle
displacements and floater motions, these probability distributions will be
different from those known for linear Gaussian processes. To calculate these
distributions, use can be made of methods of nonlinear transformation of
random variables. These methods have been widely used in the evaluation of
the wave force on a fixed pile (Pierson and Holmes, 1965, Borgman, 1972,
Tung, 1974, Tickell, 1977, Moe and Crandall, 1978). Extension of these
methods to equation (24) is possible and enables determination of the important
statistic parameters of bending moment response, such as standard deviation
(= root-mean square value in the case of zero-mean response), expected extreme
response ( = expected value of largest peak in a stationary sea-state of approx. 3
hours) and expected fatigue damage ( = expected value of fatigue damage asso-
ciated with randomly varying bending stress).

To illustrate the analogy between the expressions for bending moment in the
wave-active zone and wave force on a fixed pile, consider the case that floater
motions and current are small and can be disregarded. Furthermore, assume
that the fluctuation of the sea level in the expression for the hydrodynamic
force (cf. equation 6) can be neglected. This assumption can be shown to be
justified when the standard deviation of sea surface elevation is much smaller
than the boundary layer distance 1,. For a unidirectional and narrow-band
representation of wave-induced water particle motions as given by Borgman
(1972), the expression for bending moment given by equation (24) can then be
reduced to

25  M(x )= — Aj{tend’ Cpa(x)Wws(t) + $odCpSx)W,(1) | ws(f) | }.

Here, x is the distance above mean sea level, w,(¢) is the wave-induced water
particle displacement at mean sea level (apart from a phase lack of 7/2, wy(f) is
equal to sea-surface elevation) and dots denote the differentiation with respect
to time. The x-dependent constants a(x) and f(x) are defined by:

a(e)=4(1+ A,/A,) " {exp (—x/Ap) —exp ((x—2L,)/Ap)},
(26a) B =(1+24,/4,) (1 + Ap/A,)alx),
for x>0 (above mean sea level),
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and
[ a() =31+ 2,/A) " {exp (x/A,) —exp ((x—2L1)/A)}
+ 31— 4,/2,) " H{exp (x/A,) —exp (x/A)},
(26b) < B =L(1+24,/4,) Yexp 2x/4,) —exp (x—2L,)/A,)}

+3H1=24,/4,)" Hexp 2x/A,) —exp (x/A,)},

g for x <0 (below mean sea level).

In the above equations, 4,, is the length of wave-induced water particle displace-
ments, defined by equation (11), and L, is the height of the riser above mean sea
level.

Apart from some multiplicative constants, equation (25) is equal to
Morison’s equation for the wave force on a fixed pile. Values for the relevant
statistical parameters of bending moment response are thus directly obtainable
from the solutions given for the wave force on a fixed pile: e.g. see Borgman
(1972). An illustration of the results thus obtained for the vertical distribution
of standard deviation of bending moment will be given in the comparison with
numerical simulation results at the end of this paper.

SOLUTIONS FOR THE BOUNDARY LAYER AT THE BOTTOM

For tension-dominated risers, 4, is much smaller than the dynamic lengths A;
and A;. Hence, in the boundary layer at the bottom, inertia forces and damping
forces are small. Assuming that the variation of riser tension 7,(z) over the
boundary layer is small, riser differential equation (1) can then be approximated
by

o* d?
Q7))  EI = -T,>=0.

dz dz”
In terms of the ‘boundary layer’ length A,, defined by equation (12), and in
terms of the riser angle €(z, ), defined by

ox

28 0=—,

(28) 0z

equation (32) can also be written as
o0 o0

29 i —-—=0.

(29) Y Y

The three basic solutions of equation (29) are

(30) &z, 1} = constant (z), exp (—z/4,), exp (+2/4,).

For z/4,— o0, these solutions should match the value of the angle at the bottom
of the riser main section, denoted by 6,,(0, #). Furthermore, for z=0 the above
solutions must satisfy the boundary conditions imposed at the riser base (cf.
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equation 3). The solution for riser angle in the boundary layer at the bottom is
then found to be

-1
3D Nz, t)=40,/ o, t)[l — (l + CE/II ) exp (—z//lb)],

bb

while for the bending moment we can write

-1
(32) M(z,t)zEIHm(o,t)Atfl(l+CEi> exp (—z/A,).

P
From the above solutions it can also be verified that the deflection in the
boundary layer at the bottom is small and only O(4,/4,,) compared to the
deflection in the riser main section.

From solutions (31) and (32) it is noted that the time-domain behaviour of the
angle and bending moment in the boundary layer at the bottom is equal to the
(random) time-domain behaviour of the angle at the bottom of the riser main
section. The relevant probability distributions of response variables in the
boundary layer at the bottom are thus of the same form as those of the angle at
the bottom of the main section.

From solutions (32) it is also noted that the rotational constraint C;, imposed
at the riser base results in an exponential increase of the bending moment as
2/A,—0. At =0, we have

-1
(33) M(o,t)=E10m(0,t)Ab1(1+ EI) .
Cb b

According to this result, the bending moment at z =0 increases with increasing
rotational stiffness of the riser base Cj, and reaches a maximum, equal to

(34) Mo, t)=EI8,(0,0)4, ',

when C, A, > El. This maximum value is equal to the value obtained in the case
of a clamped bottom end. The bottom end thus behaves as a clamped end for
rotational stiffnesses of the riser base C,> El/4,,.

SOLUTIONS FOR THE RISER MAIN SECTION

In the riser main section, the effects of wave-induced water particle displace-
ments and bending stiffness can be disregarded. For calculating the response in
the main section, riser differential equation (1) can thus be approximated by

0 ox O%x Ox
35 —— | T,(x) — |+ (m+Ltond*Cy) — +F (—):0,
(35) 0Z< (2) Oz) ( ry e ) a2 4\ 3¢
where F;(0x/dt) is the damping force due to fluid drag:

(Ox )
——u, ).
oOf

ox ox
(36) F, <$> =30dCp

X _u.
o °

The boundary conditions for the above second-order differential equation
follow from matching to the solutions found for the wave-active zone and the
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boundary layer at the bottom, respectively. As indicated in the previous section,
changes in the horizontal deflection over the boundary layer at the bottom are
small. Furthermore, changes in deflection over the wave-active zone are
O(| w|/1ﬁ,//1,2,,) and are also assumed to be small (compared to floater displace-
ment). The deflections to be prescribed for differential equation (35) can then
be taken to be the sames as those prescribed at riser top and bottom:

37 x=v atz=1L,
(38) x=0 atz=0.

In the particular case of small floater displacement so that |v| ~ |w|A5 /42, or
less, however, an additional displacement due to wave forces has to be included
in boundary condition (37). This displacement is equal to the change in hori-
zontal deflection over the wave-active zone due to wave forces and can be
described as

L
T ] | Fy_odadz
[
where F, _ is the hydrodynamic force for zero riser deflection (cf. eqgs. 6-10).
A large response in the riser main section can be expected to occur when the
damping force is small and when the power density of random floater motion
v(¢) is such that the riser is also excited at one of its natural frequencies. The
solution can then be expressed as the sum of a quasi-static component x,(z, t)
and a dynamic component x,(z, t):

39) X=X+ X,.

The quasi-static component represents the static deflection of the riser due to
floater displacement imposed at the top:

(40) x,(z, 1) =v(t)s(z),

where
@) s@= T '@d/ | T, \(@dz
0 0

is the static deflection of the riser for unit deflection imposed at the top. For
constant riser tension 7,(z) with respect to z, s(z) reduces to a linear function of
z:i.e. s5(2)=z/L.

The dynamic component x,(z,f) of the solution represents the resonance
response generated by the inertia forces acting on the riser, when the riser
moves according to the quasi-static solution. The governing differential
equation and boundary conditions for this component can be obtained by
substituting equations (39)-(41) into (35)-(38). Neglecting damping forces due
to quasi-static riser velocities, it is then found that

0

2
(42) - (T,(z) —Ox") +(m+ tond*C,) —O Xa +Fy (—ox"> =F,,
0z 0z or?
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(43) x;,=0 atz=0and z=L,
where the excitation force F,(z, t) is given by

d?v(t)

(44) F,= —(m+tond*C,)s(z) PR

Solutions of equations (42)-(44) can be obtained when the damping is small
and excitation occurs predominantly at one of the natural frequencies of the
riser (Brouwers, 1982). In this case, the riser will respond predominantly in the
corresponding natural mode x, (z):

(45)  x4(3,1) =a,(1)X,(2).
FLOATER MOTION

BALL JOINT (HEAVE- COMPENSATED

—t RISER TENSION
A FLOWLINE TENSION }TOTAL 1LOMN
152 m
4
MEAN seg)
LEVEL
* ) 1524 mm
X
) SECTION XX
CENTRAL RISER, 00 324 mm
A WT 22.2mm
152 4m PERIPHERAL LINES, 0D 88.9 mm
JH WT. 6.35mm
) PERIPHERAL FLOW + SERVICE LINES
) GUIDE FUNNELS
RISER CONNECTOR
) CENTRAL EXPORT RISER
{———— FLEX- JOINT . ROTATIONAL 3
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Fig. 5. Multibore production riser.
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The amplitude of this mode a,(¢) can be described by a differential equation
which is analogous to that of a non-linearly damped system with a single degree
of freedom. Closed-form solutions for this problem, in terms of non-Gaussian
probability distributions and associated statistical quantities such as standard
deviation, expected extreme response and expected fatigue damage, have been
given by Brouwers (1982).
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Fig. 6. Standard deviation of deflection versus height above riser base.
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An entirely different type of response will occur when the damping forces are
large as compared to the inertia forces: i.e. when the drag-inertia parameter J,
defined by equation (16), is large. As for linearly damped tensioned strings
subject to transverse displacement excitation at one end, in this case the
response will decay in magnitude from the top, over the characteristic distance
A4, defined by equation (15). Maximum response will then occur at the top of
the riser, i.e. in the wave-active zone, for which solutions have been given.
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NUMERICAL VERIFICATION OF ANALYTICAL SOLUTIONS

The power of the analytical methods given can be demonstrated by analysing
the response of the multi-bore riser of a floating production system shown in
fig. 5. The response of this riser to uni-directional random waves and floater
motions has been calculated numerically using random time-domain simulation
techniques: see Harper (1979). In the calculations, deflections, angles and
curvatures of the central export riser and the peripheral flow lines were assumed
to be the same. In this way, the riser could be modelled as a single tensioned
beam. The hydrodynamic forces were described according to the relative
velocity form of Morison’s equation. A Pierson-Moskowitz spectrum, charac-
terised by a significant wave height H, and a mean period 7,,, was assumed for
the power spectral density of sea-surface elevation. Water particle velocities and
accelerations were described according to a linear Gaussian model of the sea.
Vessel motions correspond to those of a typical semi-submersible. Numerical
results for the vertical distribution of standard deviation of riser deflection and
riser bending moment obtained for a significant wave height H; of 2 m, a mean
period of the waves T,, of 7 s and zero current, are shown in figs. 6 and 7.

For the riser and environmental conditions under consideration, the charac-
teristic lengths A,,, 4, and A,, were calculated to be 12 m, 6 m and 155 m, respec-
tively. This indicates that a distinction between a wave-active zone at the top, a
boundary layer at the bottom and a riser main section is justified. Furthermore,
the drag-inertia parameter J, based on floater displacement, was approximately
0.1 and the first natural frequency approximately 0.8 rad/s. The dynamic
component of the solution for response in the riser main section, given by
equation (39), was therefore dominated by resonance in the first natural mode
and could be calculated using the analytical methods given by Brouwers (1982).
Analytical results thus obtained for the standard deviation of the deflection and
bending moment in the riser main section have been plotted in figs. 6 and 7. Fig.
7 also shows analytical results for standard deviation of bending moment in the
wave-active zone and in the boundary layer at the bottom, as obtained from
solutions (25) and (32), respectively.

From fig. 6 it is noted that the analytical solutions for deflection in the riser
main section and the numerical results for deflection are in close agreement
over the entire riser. Effects of direct wave loading at the top and ‘boundary
layer’ effects at the bottom are not directly apparent. This is in agreement with
the analytical results given. From fig. 7 it can be seen that the analytical results
for the bending moment in the wave-active zone, the boundary layer at the
bottom and the riser main section agree reasonably well with the corresponding
numerical solutions. Differences between numerical and analytical results in the
wave-active zone can be ascribed to neglect of floater motion in solution (25).
Differences between numerical and analytical results in the boundary layer at
the bottom are due to omission of a ‘lower order term’ in solution (32). This
lower order term describes adjustment of non-zero bending moment at the
bottom of the main section and becomes significant, in comparison with the
given solution, in the case of small rotational stiffness of the riser base.
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Apart from standard deviations, comparisons between numerically and
analytically calculated non-Gaussian probability distributions of response have
also been made (e.g. Brouwers, 1982). Also here, numerical results, in general,
confirm analytical predictions.

CONCLUDING REMARKS

The previous analysis has shown that it is possible to distinguish three charac-
teristic regions along slender (tension-dominated) risers in deep water: a wave-
active zone at the top, a boundary layer at the bottom and a main section in
between. For each of these regions it is possible to give analytical solutions, in
terms of known time- and position-dependent functions. These solutions,
supported by numerical calculations where required, provide a comprehensive
and economic means for predicting the important statistic parameters of
random riser response, such as expected fatigue damage and expected extreme
response. Furthermore, the closed-form nature of the solutions enables the
influence of major parameters (water depth, diameter, wave height, etc.) on
riser response to be determined. General trends in riser behaviour can thus be
identified.
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