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ABSTRACT

Type 1 diabetes is a T-cell mediated chronic disease, characterised by the
autoimmune destruction of pancreatic insulin-producing S-cells and complete
insulin deficiency. It is the result of a complex interrelation of genetic and envi-
ronmental factors, most of which have yet to be identified. Simultaneous iden-
tification of these genetic factors using unphased genotype data has received in-
creasing attention in the past few years. Several approaches have been described,
such as the modified transmission/disequilibrium test procedure, the conditional
extended transmission disequilibrium test, and the stepwise logistic-regression
procedure. These approaches are limited either by being restricted to family
data or by ignoring so-called haplotype interactions between alleles. To over-
come this limit, this report provides a general method to identify the haplotype
blocks that interact to define the risk for a complex disease based on unphased
genotype data. The principle underpinning the proposal is minimal entropy. The
performance of our procedure is illustrated for both simulated and real data. In
particular, for a set of Dutch type 1 diabetes data, our procedure suggests some
novel evidence of the interactions between and within haplotype-blocks, which
are across chromosomes 1, 2, 3, 4, 5, 6, 7, 8 11, 12, 15, 16, 17, 19, and 21.
The results demonstrate that by considering interactions between potential dis-
ease haplotype blocks, we may succeed in identifying disease-predisposing genetic

variants that might otherwise have remained undetected.



Introduction

Insulin-dependent diabetes mellitus (IDDM [MIM 222100]), or type 1 diabetes, is a common
chronic disease characterized by autoimmune destruction of pancreatic S-cells and complete
insulin deficiency (Cordell and Todd 1995; Friday et al. 1999; Schranz and Lernmark 1998).
The importance of some genetic factors for the etiology of type 1 diabetes, such as HLA, has
been established unequivocally, although their precise mechanism has not been identified.
Evidence for a role of the immune system and apoptosis is accumulating. Both processes
contribute to the deterioration of beta cells in the islets of Langerhans in the pancreas.
Despite this information, in most patients no definite genetic cause can be determined,
not even in the presence of a positive family history. In this paper we present a method
for testing the influence of haplotype interactions on getting a disease when unphased
genotypes are available for a number of cases and controls, and we apply this method to
genotype data of type 1 diabetes patients and healthy controls. Here, as in Bugawan et
al.(2003), the haplotype interaction is defined as the statistical dependence between alleles

at different loci.

The increasing availability of polymorphic markers such as single nucleotide
polymorphisms (SNPs), automated genotyping technology, and large collections of family
(or case-control) based data have enabled the design of genome-wide screens for several
populations. Such screens have led to the location of susceptibility loci for type 1 diabetes
in various chromosomal regions, suggesting that type 1 diabetes is a multigenic disorder
in the sense that onset of the disease requires the simultaneous presence of a subset of
susceptibility genes. Most recent research efforts have been put on HLA genes (see Pugliese
(2001) and Cox et al. (2001) for a review). The importance of the HLA class II haplotypes
was shown by Noble et al.(2002) in families with at least two children with insulin dependent

diabetes.
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Once a disease-predisposing region has been localized, a number of potentially causative
genetic variants may exist in the regions, including a large number of SNPs. Whereas for
monogenetic diseases very often one base change in the coding region of a gene is sufficient
to cause the disease, for multigenic diseases the effect of any single genetic variant on
the risk of the disease may be small, which makes identification of these variants difficult
(Drysdale et al. 2000). Furthermore, the following questions related to identification of
the multiple risk variants arise. First, it is not clear which combination of variants has
a causative role in the disease. Secondly, it remains unknown whether susceptibility for
the disease arises due to the effects of these variants acting independently or due to some

important interactions between the variants.

These questions have received increasing attention recently (see, for example, Bugawan
et al. 2003; Cordell and Clayton 2002; Cox et al. 1999; Dassen et al. 2001; Valdes and
Thomson 1997). Cordell and Clayton (2002) proposed a simple but powerful stepwise
logistic-regression procedure, which allows for testing the dominance effects of different
combinations of polymorphisms as well as genotype interactions in the analysis of
case-control data. In particular, they measured genotype interactions in terms of penetrance
for developing disease. However, haplotype interactions, in the sense that the underlying
haplotype pairs of unphased genotypes may have different disease risks so that there are
disease-predisposing interactions, cannot be dealt with in their approach. To see this, for
the moment we consider two diallelic variants of interest in a region, variant 1 with one of
the unphased genotypes aa, AA and aA, and variant 2 with one of the unphased genotypes
bb, BB and bB. There are nine possible combinations (also called genotypes) observed at the
two variants: aa/bb,aa/bB,aa/BB, AA/bb, AA/bB, AA/BB, aA/bb,aA/bB, and aA/BB,
where, for example, aA/bb means that the alleles in variants 1 and 2 are {a, A} and {b, b},
respectively. All these genotypes except for aA/bB can be uniquely decomposed into a pair

of haplotypes. For aA/bB, there are two compatible possible haplotype pairs, (a,b)/(A, B)
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and (a, B)/(A,b). The pairing described here indicates that allele a is in coupling with
allele b or allele a is coupling with allele B. It is only when these two haplotype pairs have
different disease risks that there may be potential disease-predisposing interactions between
a and b or a and B. As pointed out by a reviewer, even when the haplotype pairs do have
different disease risks, it does not necessarily mean that the alleles interact in anything
other than a statistical sense, since this phenomenon could occur if alleles a and b, say,
were in linkage disequilibrium with (and thus marking a haplotype containing) another
predisposing variant not included in the analysis. Note that the stepwise logistic-regression
procedure takes genotypes as explanatory variables and so the possible difference between

the effects of the underlying haplotypes on the disease is ignored.

An alternative test is called the haplotype method (Valdes and Thomson 1997), which
compares the relative frequencies of alleles at a secondary locus on haplotypes that are
identical at a primary locus (or loci). The problem with the haplotype method is that,
often, the haplotypes are not known. Although one can statistically infer the haplotypes
from unphased genotypes, it is unclear how to judge the significance of the results from
the haplotype method if we want to take into account the possible haplotyping errors.
Several other approaches have been described for simultaneous identification of genetic
factors using unphased genotype data, such as the modified transmission/disequilibrium
test procedure (Cucca et al. 2001) and the conditional extended transmission disequilibrium
test (Koeleman et al. 2000). These approaches are also limited, either by being restricted
to family data or to haplotype data. This and the fact that there are 2™~! possible
haplotype pairs for a genotype of m heterozygous sites, which results in a considerable
number of potential haplotype interactions when m is large, motivated us to develop a
special procedure for testing such interactions. The proposed method is based on minimal
entropy, reflecting the principle that a good prediction of haplotype interactions should

extract a maximum amount of information from data and thus most parsimoniously explain
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the underlying haplotype structure given unphased genotypes. In general, the computation
of the entropy statistic is very intensive. To solve this problem, we have developed a new

Markov chain Monte Carlo algorithm, called structure-annealing algorithm.

Two types of approaches for the investigation of interaction can be distinguished: those
that consider interaction in the sense of linkage disequilibrium between closely linked loci
(Wall and Pritchard 2003) and those that consider interaction in the sense of effects on
disease risk (Cordell and Todd 1995; Cordell et al. 2001). In this paper we focus on the
linkage disequilibrium approach while investigating interaction between all loci, and hence
also between possibly unlinked loci. For any two haplotype-blocks, let us denote by pq,
and po, the probabilities of occurrence, respectively, for allele a at block 1 and for allele
b at block 2. Let p,, be the probability of simultaneous occurrence of a and b. We are
trying to test whether for all @ and b, pu, = prapop. We assess the evidence for interactions
between and within (possibly unlinked) haplotype blocks on different chromosomal regions
by using a permutation procedure. Since the strength of linkage disequilibrium pattern is
not, typically, a monotonic function of recombination distance when there exist selective
forces that favour certain haplotypes over others as might be the case for type 1 diabetes
(Fain et al. 2001), we needed to develop an approach that is independent of this distance.
Naturally, we are mainly interested in identification of disease-predisposing interactions
by the comparisons between cases and controls. The disease-predisposing interactions are
found in a second stage by contrasting the interaction patterns observed for patients with
the interaction patterns observed for healthy controls. These interactions could facilitate
understanding of the pathological mechanisms involved in the disease, as well as the further
identification of some haplotype blocks that only provide significant association with the

disease when their interactions with other blocks are taken into account.

As an illustration of our method, we present in this paper a re-analysis of a set of
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genotypes that was obtained from a cohort of 89 Dutch type 1 diabetes patients and

47 healthy controls, with a 65 polymorphisms detection assay originally designed for
unraveling the multigenic cause of atherosclerosis (Dassen et al. 2001). Since both diabetes
mellitus and atherosclerosis can be regarded as metabolic diseases, with many overlapping
biochemical and clinical parameters, the variants that are susceptible to atherosclerosis may
also be the cause of type 1 diabetes. Dassen and co-workers examined whether certain types
of combinations of SNPs confer susceptibility to type 1 diabetes in the cohort by logistic
regression and self-learning neural networks. They found that a set of four polymorphisms,
could predict 79.9% of the cases correctly. However, a significant number of polymorphisms
could not be interpreted by their method. Note that all these variants were selected from
the pathways of lipid and homocysteine metabolism, regulation of blood pressure and
coagulation, inflammation, cellular adhesion, and matrix integrity. So we wonder whether
the variants that were unexplained in the above-mentioned study may serve as transitive
(or supporting) variants in the sense that they interact with some etiological variants within

and between these pathways.

Before we applied the proposed procedure to the above-mentioned Dutch type 1
diabetes data, we evaluated the power of our approach by conducting a simulation study
in which four different combinations of mutation and recombination rates were considered.
The results are presented below. They suggest that a high accuracy can be achieved if
appropriate critical values for our entropy statistics are selected. Note that, although
the coalescent model that we have used for our simulations, has been shown to be very
helpful in modelling haplotype populations (Stephens et al. 2001), it is still not easy to
statistically test whether this model fits to real data like the Dutch type 1 diabetes data.
Therefore, the thresholds that were obtained from the simulations were used as a guide to
the corresponding parameters as we applied our method to the data. The results of our

data analysis show some evidence for a haplotype interaction network that is potentially
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associated with type 1 diabetes, and which includes the up-interactions between the
haplotype blocks from the chromosomes pairs (1,4), (1,12), (1,19), (6, 7), and (17, 21);
and the down-interactions between blocks from the chromosome pairs (2,7), (3,19), (5,7),
(6,21), and (7,11). There are several other less significant pairs. Here, up-interaction
(down-interaction) means there exists a significant increase (decrease) of interaction
between two blocks for patients over that for controls. We further found some disease
predisposing intra-block interactions on chromosomes 1, 6, 7, 8, and 11. Finally, we searched
for loci-interactions that may account for these block-interactions. As a result, totally 25
potential disease-predisposing interactions between loci are predicted, which indicates 19
gene-gene interactions among 19 candidate genes. Having found four dominant variants
(Dassen et al. 2001), we predicted from the interaction-network 19 transitive variants. Our
results clearly demonstrate that by considering interactions between haplotype blocks, we
may succeed in identifying disease-predisposing genetic variants that might otherwise have

remained undetected.

Methods

Haplotype likelihood

Let G = (Gy,...,G,)" denote the observed genotypes for n individuals from a
population, where G; = (gi1, ..., gir)", with g;; is the genotype of individual 7 at locus j,
and L the total number of observed loci per individual. For simplicity, let g;; take values
of 0, 1, or 2 for the cases where its genetic haplotype at the locus j is homozygous and
identical with a pre-specified reference, homozygous but different from the reference, or

heterozygous, respectively. In addition, we let g;; = 7 if allele 0 is missing at locus j, g;; = 8
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if allele 1 is missing, and g;; = 9 if both alleles are missing. A genotype is called ambiguous
if it has at least two heterozygous sites. Let H = (Hy,...,H,)", where H; = (H;;, H;5)
denotes the unobserved haplotype pair of G;, H; € H;, the set of all possible haplotype
pairs compatible to G;. Given G, under the assumption of Hardy-Weinberg equilibrium

(Weir, Chapter 3, 1996), the ‘haplotype-likelihood’ can then be written as

L(G|p, H Hp i)p (1)

where p(-) denotes the population frequencies of the corresponding haplotype, and
p = (p1,... ,Pm,). Here we assume that totally there are my possible haplotypes compatible
to G.

Haplotype entropy

While performing a haplotype inference, we are usually only interested in H, and,
hence, p works as a nuisance parameter in (1). Here we follow Zhang et al (2001) to
eliminate the nuisance parameter by a maximization procedure, that is, we substitute p
in (1) by its MLE (maximum likelihood estimate). Thus, we have the following profile
log-likelihood,

ko
I(G|\H) = log —.
(G1H) kz_: 2n 2n
where ko denotes the number of different haplotypes in H, and s4,... , sy, denote their

respective frequencies. We define
S(H) = —I(G|H),
where S(H) is the entropy of the frequencies of different haplotypes in H, and

s(G) =min{S(H): H is compatible with G'}.
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Note that S(H) attains its minimum at H, the MLE of H in (1), so that

For example, suppose that G = {(0,0,0),(1,0,0),(2,2,0),(1,1,2)}. Then there
are two possible ways to decompose these genotypes into haplotypes, namely

H, = {(0,0,0)/(0,0,0),(1,0,0)/(1,0,0),(1,0,0)/(0,1,0),(1,1,0)/(1,1,1)} and

H, = {(0,0,0)/(0,0,0),(1,0,0)/(1,0,0),(1,1,0)/(0,0,0),(1,1,0)/(1,1,1)}. The cor-

responding values of the haplotype-likelihood shown in (1) are, respectively,

p((0,0,0))*p((1,0,0))*p((1,0,0))p((0,1,0))p((1, 1,0))p((1,1,1)) (3)

and

p((0,0,0))*p((1,0,0))*p((1,1,0))p((0,0,0))p((1, 1,0)p((1,1,1)), (4)

where the unknown population frequencies of the five different haplotypes in (3) satisfy the

equation

p((0,0,0)) +p((1,0,0)) + p((0,1,0)) + p((1,1,0)) + p((1, 1,1)) = 1. (5)

and the unknown population frequencies of the four different haplotypes in (4) are

constrained by

p((0,0,0)) +p((1,0,0)) + p((1,1,0)) + p((1,1,1)) = 1. (6)

Given H; and under the constraint (5), the maximum of the logarithm of the likelihood in
(3) is given by 2/8log(2/8) + 3/8log(3/8) + 3/8log(1/8) = —S(H). Analogously, given
H, and under the constraint (6), the maximum of the logarithm of the likelihood in (3) is
equal to 3/81log(3/8) + 2/81og(2/8) + 2/8log(2/8) + 1/81log(1/8) = —S(H3). Obviously,
S(H,) < S(H,). Hence s(G) = S(H>).
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In this paper, we call s(G) the haplotype entropy of G. The quantity s(G) measures
the diversity of the underlying haplotypes compatible with G since the entropy is a
well-known measure of variation for a system in information theory (Jones 1979). The
stronger the interactions among the loci of GG, the less diverse the underlying haplotypes,
and the smaller the value of s(G). To explain this claim intuitively, we consider only
three diallelic loci at which there are eight possible haplotypes, namely, h; = (0,0,0)7,
hy = (0,0, 1)T, hs = (0,1,0)T, hy = (0,1,1)T, hs = (1,0,0)T, hg = (1,0,1)T, hy = (1,1, 0)7T,
and hg = (1,1,1)T. Let p(h;) be the population frequency of h; for 1 < i < 8. The population
haplotype entropy, defined as — Z?Zl p(h;)log(p(h;)), is a measure of the diversity of the
above haplotype population. In practice, we might only have a sample of genotypes of
size n, say G, which are assumed to be generated from these haplotypes according to
the Hardy-Weinberg equilibrium. Then the haplotype entropy S(ﬂ) in (2) gives rise to
an empirical version of the above population entropy. To see how the haplotype entropy
changes as the strength of interaction (i.e., dependence) increases, we first calculate this
entropy when there are no interactions among the three loci. In this situation the above
eight haplotypes have the equal probability of occurrence 1/8 in individuals. As a result,
the haplotype population reaches the highest diversity as the population entropy attains
the maximum value of log8 (Jones, Chapter 2, 1979). Now we consider the situation
where there exist some dependences among the three loci. Note that these dependences
are apparent as increased frequencies of specific haplotypes compared to what would
be expected if alleles at the three loci are combined at random. For example, if we set
p(h1) = 1/2, p(hs) = 1/2, and p(h;) = 0, i # 1,5, then the three loci are fully determined
by the first locus. With the entropy being equal to log 2, the resulting haplotype population
yields a smaller diversity than the previous one. We observe that as an empirical version of
the population entropy, S(ﬂ) is close to its population value when n is large. Therefore,

in general the population haplotype entropy, and thus its empirical version S (I:I ), tends to
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decrease as the strength of these dependences increases.

Testing for interaction between two haplotype blocks

Let G = (Gy,...,G,)T be partitioned into two blocks, say

T
(1) (1)
G — (G(l), G(2)) _ Gi Gn
GS-Z) G%Z)

Suppose we are interested in testing if there exists interaction between the two blocks
G and G®. This problem can be stated as testing the hypotheses: the two blocks are
independent (null hypothesis) versus the two blocks are dependent (alternative hypothesis).
As pointed out in the previous section, if the null hypothesis is true, s(G) will tend to have
a large value, otherwise it will tend to be small. Hence, s(G') can be used as a test statistic
for this test. Because the distribution of s(G) under the null hypothesis is unknown, the

following procedure is designed to calculate the p-values of the test.

(1) Generate n’' random permutations of (ng),... ,Gg)), and denote them by
(GY,... .G, j=1,...n.
(2) Form a random sample G, j = 1,...,n', where G7 is formed by pairing
1 )y . 2 2
(GV,...,GY) with (GY),...,GD).

(3) Calculate the haplotype entropy for each G;. An empirical p-value can then be

defined by the proportion of s(G7})’s that are less than or equal to s(G), i.e.,
#{s(G)): 5(G)) < s(@)

The number n' is usually set to a moderate number. For example, it is 500 and 1000 in this

paper.



- 13 -

Based on the central limit theorem, an empirical z-score statistic,

s(G)— A
VvV

can also be defined for the test, where A and V are the sample mean and variance of the

Z(G) =

s(G7)’s. The empirical p-value calculated in step (3) can be used to examine whether
the between block interaction existing in G' was obtained by chance or not, whereas the
empirical z-score statistic more sensitively measures how large the distance of the genotypes

under investigation is from the population of genotypes without block interactions.

The above procedure will be used below to test the significance of the pairwise
interactions among haplotype blocks or loci. In each case the significance of an interaction
will be decided by a threshold for p-values. Assessment of the overall significance to account
for multiple testing, is not straightforward because there are many correlations among
the tests. An alternative approach is to control the false discovery rate (FDR), which
is defined by the expected proportion of false positives among those called significant:
E[V*/R*|R* > 0]. Here for a given threshold, V* is the total number of false positives while
R* is the total number of interactions called significant according the threshold. We opt for
the recent proposal of Storey and Tibshirani (2003) to estimate the FDR and calculate the
g-value, a measure of statistical significance in terms of FDR, for each individual test under

dependence.

Structure annealing algorithm

In this section, we propose a new algorithm, the so-called structure annealing algorithm,
to minimize S(H). The algorithm is proposed based on the following observation. Let
G = (GY,G?) be a random partition of G, and H = (HY, H®) be the corresponding

partition of H. It is easy to see that if H is compatible with G, then H®" is compatible
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with G, Furthermore, if S(H) is a good approximation to s(G), then S(HW, H®)
should be a good approximation to s(G), provided that H is compatible with G' and the
number of loci in G® is not large. This observation motivates the following sequential way

to minimize the objective function S(H).

Suppose now that G is partitioned into z blocks, G = (G(l), o ,G(z)), where G
comprises kp loci and Y ;_, ky = L. Preferably, k; is set to a small number, for example,
ky, < 8 for all examples of this paper. The structure annealing algorithm consists of two
building blocks: a local updating algorithm and an extrapolation algorithm. The local

updating algorithm (described in Appendix A) is designed to simulate from the distributions

PH") o exp{—S(H") /1),

(0)

for b =1,...,z, where t, is called the temperature of this distribution, and H' =
(H(I), o ,H(b)) which is compatible with G® = (G’(I), . ,G’(b)). The extrapolation
algorithm (described in Appendix B) is designed to extrapolate 7Y to B, The

structure annealing algorithm starts with the simulation from P(H (1)) by the local updating
algorithm, where v = (H®). Since the block size of G is usually small, the iteration
number of the local updating steps is also moderate at this step. We denote this iteration
number by mq, and set m; = 10000 for all examples of this paper. Then the algorithm

proceeds for z — 1 steps. The (b + 1) step consists of two sub-steps which are described as

follows.

a) (Extrapolation) Extrapolate the haplotype H (b), which is obtained at the last
(a) ( y

. . . . ~ (b+1
iteration of the b step, to a compatible haplotype pair of G( " ).

~ (b—l—l))

(b) (Local updating) Simulate from the distribution P(H by the local updating

algorithm for my,; steps.
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The my is a monotone increasing function of b, for example, we set m, = m; x b for
b=1,2,...,z—1and m, = 10 x m; x z. Here we follow simulated annealing (Kirkpatrick

et al. 1983) to set a large iteration number for the last step simulation.

Results

Simulated data sets

We used a coalescent-based program of Professor R. Hudson, named MS, to simulate
haplotypes for four different situations described by quantities (6, R) = (4,0), (4, 4), (4, 20)
and (16, 16) respectively. Here 8 = 4N.u, R = 4N,r, N, is the effective population size, u is
the total per-generation mutation rate across the region sequenced, and r is the length, in
Morgans, of the region sequenced. For each setting of (#, R), this generated 40 independent
data sets, each containing 40 haplotypes. For each data set the haplotypes were randomly
paired to form 20 genotypes. As a result, for each case of (6, R), we had 40 sets of 20
genotypes. They are denoted by Gy, ..., Gy, with G; = (Giy,...,Gi20)". We split each

of G;;’s into two parts, G and g%

by ij, of equal length for i =1,...,40 and y = 1,...,20.

Totally we have 80 genotype segments. With these segments, 20 new data sets, which are

denoted by G7, ..., G5y, are formed, where G, is formed by attaching the segment G%{rk,j
to the segment Ggg for k =1,...,20. The above construction procedure shows that there

exist two independent blocks in each of G}.’s.

In the following we will regard G7, ... , G5, as samples from a population of which the
two genotype blocks are independent, while we will regard G, ... , Gy as samples from a
population of which the two genotype blocks are dependent. To evaluate the power of our

procedure, we applied it to these genotype data sets. The resulting p-values and z-scores
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were summarised in Figure 1. To find the interesting blocks, we further analysed these
p-values by setting the lower and upper thresholds of 0.01 and 0.15. We say two blocks are
dependent if the corresponding p-value is less than or equal to 0.01, whereas we say they are
independent if the corresponding p-value is larger than or equal to 0.15. The performance
of our procedure is measured by the proportions of false positives and negatives, F, and
F,. That is, F, is the proportion of falsely rejecting the null hypothesis when the null
hypothesis is true, and Fj, is the proportion of falsely not rejecting the null hypothesis when
the alternative is true. For the above simulated data, we have (F,, Fy,) = (0,2/20) when
(0, R) = (4,0); and (F,, F,,) = (0,0) when (6, R) = (4,4), (4,20), and (16,16). These results
show that our procedure is indeed an effective tool for detecting haplotype-interactions. As
pointed out in the Introduction, the coalescent model can capture certain main features
in a haplotype population (Stephens et al. 2001). The above simulated coalescent models
might share some common features with real haplotype data. Thus these thresholds were
used to guide our choice of the corresponding thresholds when we applied our method to

the Dutch type 1 diabetes data below.

Put Figure 1 here.

Type 1 diabetes data

36 candidate genes, listed in Table 1, were selected from the pathways, which are
potentially implicated in the development and progression of atherosclerosis: lipid and
homocysteine metabolism, regulation of blood pressure and coagulation, inflammation,
cellular adhesion, and matrix integrity (Cheng et al. 1999; Dassen et al. 2001). All of
them have been reported in the database called Online Mendelian Inheritance in Man

(OMIM). Then Dassen et al. (2001) described an assay for genotyping a panel of 65 SNPs
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that represent variation within these genes, which is an early version of RMS Research
Assay for cardiovascular disease (CVD) Genetics designed by Roche Molecular Systems,
Inc. Most of these SNPs have been shown to be implicated with some metabolic diseases
such as cardiovascular disease, coronary artery disease, hypertension, asthma, obesity,
atherosclerosis, myocardial infarction, hyperlipidemia, Alzheimer disease, and so on. See
Table 1 and the database OMIM for more details. The rest of these SNPs are either the
polymorphisms at (or close to) the promoter regions that may (directly or indirectly) play
certain dysregulation role for the genes of interest or the polymorphisms at coding regions
with nonsynonymous changes (Dassen et al. 2001; Cheng et al. 1999; Flori et al. 2003; Vatay
et al. 2003). For example, V67 was selected because it could have a protective role against
type 2 diabetes (NIDDM) (Vatay et al. 2003). V66 was included as it often interfered with
our ability to call V67 correctly. We had no prior functional information, other than that
its proximity to V67 could mean that it would also have impact on the function of the gene
TNF. As pointed out in the Introduction, since both diabetes mellitus and atherosclerosis
can be regarded as metabolic diseases, with many overlapping biochemical and clinical
parameters, the variants that are susceptible to atherosclerosis may also be the cause of type
1 diabetes. So this assay was also applied to a Dutch diabetes cohort, which includes 136
unrelated individuals (89 type 1 diabetes patients with impaired endothelial function, and
47 healthy controls). Endothelial function was assessed by measuring changes in forearm
blood flow after pharmacological interventions. The DNA samples from the 136 individuals
were genotyped by using the polymerase chain reaction (PCR). This led to 136 genotypes
of 65 loci. 9 loci (V58, V59, V66, V67, V5, V57, V51, V52 V30) were not used in our
following data analysis since these loci have the so-called heavy missing problem, where at
least 21% of the 136 individual genotypes were incomplete in the PCR experiments. The
heavy missing may introduce the bias in our data analysis. The cutting-point 21% was

selected according to our experience. We ended up with a 136 by 56 data matrix. Each
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genotype can be divided into 16 blocks according to their chromosome identities. See Table

1 for more details.

Put Table 1 here.

We started with the search for pair-wise interactions among these 16 unlinked blocks.
The search was performed on the cases and controls separately. The p-values for the cases

and controls were contrasted by plotting them in Figures 2 and 3, respectively.

Put Figures 2 and 3 here.

We obtained 10 pairs of interacting blocks, which are located on chromosome pairs (1,4),
(1,12), (1,15), (1,19), (2,7), (3,19), (5,7), (6,7), (6,21), (7,11), and (17,21), respectively. See
Table 2 for more details. These block pairs were selected by the following criteria: for the
up-interaction, we claimed that there is an increase in haplotype-interaction if the p-value
of the controls is larger than 0.15, and the p-value of the cases is less than or equal to 0.01,
and the z-score of the cases is less than or equal to —2. This says that in contrast to the
healthy individuals, there is a significant interaction between two haplotype-blocks under
consideration in the disease individuals. For the down-interaction, we claimed that there
is a decrease in haplotype-interaction if the p-value of the cases is larger than 0.15, and
the p-value of the controls is less than or equal to 0.01, and the z-score of the controls is
less than or equal to —2. This implies that in contrast to the healthy individuals, there is
no significant interaction between two haplotype-blocks under consideration in the disease
individuals. Among these selected blocks, the up-interaction pairs for chromosome pairs
(1,4), (1,12), (1,15), (1,19), (6,7), and (17,21) indicate that the pathways harboring these
variants may have been modified by adding some interactions between some genes due to
the disease. Analogously, the down-interaction pairs on chromosome pairs (3,19), (2,7),

(6,21), (7,11), (5,7), (12,15) indicate that the related pathways may have been changed as
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interactions between some genes are disrupted. Note with the p-value thresholds 0.01 and
0.15 for cases and controls respectively, the corresponding estimated FDRs of these multiple
tests for cases and controls are 0.017 and 0.029. There will be more interaction pairs if we
take 0.035 and 0.2 as the thresholds for cases and controls, respectively. The FDRs will

then become 0.040 and 0.048. All the p-values are below 0.05. See Table 2 for more details.

To see how these interactions modify the related pathways, we ran our procedure on
the pairs of variants on these blocks. Consequently 25 pairs of variants were found to show
certain evidence of susceptibility to the disease. Table 2 indicates that these variants are
distributed on 19 genes: NPPA, SELE, ADOB, AGTR1 ADRB2, LPA, TNF, TNFb, DCP1,
ADD1, SCNN1A, APOE, NOS3, LPL, LIPC, PON1, CBS, APOA4, and APOC3. Note
that APOB, ADRB2, LPA, APOE, LPL, LIPC, PON1, and APOA4 are on the pathway of
lipid metabolism; CBS is on the pathway of homocysteine metabolism; NPPA, AGTRI1,
ADRB2, DCP1, SCNN1A, NOS3 are on the pathway of blood pressure; SELE is on the
pathway of coagulation; SELE, TNF, TNFb are on the pathway of inflammation; and
ADD1 are on the pathway of matrix integrity. Thus, within the pathway of lipid metabolism
there are seven up- or down-interactions, denoted by the symbols (+) and (-) respectively,
among some genes. They are V9:V22 (APOB:LPL) (+), V8:V20 (APOB:LIPC) (-), V4:V26
(LPA:PON1) (+), V26:V7 (PON1:APOA4) (-), V25:V10 (PON1:APOC3) (-) and V25:V12
(PON1:APOCS3) (-). These interactions are predisposing to the disease. Similarly, within
the pathway of blood pressure there is one down-interaction: V50:V38 (ADRB2:NOS3)
(-). The rest are related to interactions among the six pathways mentioned above. Here
up-interaction (down-interaction) is trying to capture the biological phenomenon that the
pathways of lipid metabolism, homocysteine metabolism, blood pressure, inflammation, and
matrix integrity are modified by creating (disrupting) interactions among some genes that
lie in these pathways. Similar to Sudbery (p.144, 1998), the up-interactions would suggest

that those interactions lead to a susceptibility to the disease while the down-interactions
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could imply that the related interactions may have a protective effect on developing the
disease. These results indicate a complicated feature of (possibly non-multiplicative) effects

of the interactions on the risk for type 1 diabetes.

Note that Dassen et al. (2001) have identified a set of dominant variants: V4, V15,
V28, and V50, which are on chromosomes 6, 11, 19, and 5. This combined with the above
results yields the following transitive and disease-predisposing variants in the sense that
there are significant increases (or decreases) of interactions of these variants with some
dominant variants: V26, V37, V38, V39, V7, V8§, V10, V11, V12, V13, V65, V68, V20, V25,
and V47.

Put Table 2 here.

In the next step, we screened for interactions in linked regions. For simplicity, we
adopted the following strategy. Taking Block 1 as example, we sequentially tested 6
sub-block pairs for the cases and controls: the first pair {1},{2,3,4,5,7} with 1 being the
splitting-location; the second pair {1,2}, {3,4,5,7} with 2 being the splitting-location;
and so on. Here the numbers 1, 2, 3, 4, 5, 6, and 7 denote 7 variants in Block 1. The
six sub-block pairs are uniquely defined by six splitting-locations 1, 2, 3, 4, 5, and 6. We
compared the resulting six pairs of p-values and z-scores in Table 3. It suggests that
there exists some disease predisposing interaction between sub-block pairs {1,2,3,4} and
{5,6,7}. Following the same argument as above, for block 6 we may conclude that variant
V64 might be a transitive disease-predisposing variant because the dominant variant V4 is
at sub-block {1,2,3}. The evidence of disease-predisposing interactions within the other
blocks are reported in Table 4, which yields the transitive variant V14. Note that in practice
we need to test the interactions for all bi-partitions of seven loci since the strength of linkage

disequilibrium patterns is not, typically, a monotonic function of genetic distance. Our



- 21 —

procedure can be easily extended to this general setting as it does not use any information

on genetic distances among these loci.

Put Tables 3 and 4 here.

Discussion

The logistic regression mentioned in the Introduction is a very important genotype-based
tool for detecting dominant polymorphisms and epistatic effects (i.e., genotype interactions)
that are associated with the disease. One disadvantage of this method over some
haplotype-based methods is that it ignores the potential disease-predisposing haplotype
interactions. To contend this disadvantage, we have presented a procedure for evaluating
the contributions of these haplotype-interactions to susceptibility of disease, in which the
entropy is used to measure the diversity of a haplotype population. Our procedure can
be easily generalized to other measures of the haplotype-diversity (Clayton 2002; Weir
1996). Of course, for applications, we should combine these two methods together in
order to extract more complete information from unphased genotype data in the following
steps: first, apply the logistic regression to detect dominant disease-predisposing variants
and genotype-interactions. Then, as a complement, use our procedure to find potential
haplotype-interactions. Finally, the transitive variants are predicted by finding these

variants that are interacting with the dominant ones.

In the first step, we assume to have a sample of n; cases and nsy controls, each is
genotyped at m polymorphisms. Let p; be the probability of individual j being a case

rather than a control. Following McCullagh and Nelder (1989), we model p; as

logit(p;) = log(lfijp) =0+ Biz1+ ...+ BmTm
j
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where x4, ..., z,, are covariates depending on the genotypes of the individual and Sy, ... , Bm
are coeflicient to be estimated. To examine the effects of a set of polymorphisms, we can
test whether the data is significantly better represented when these polymorphisms are
included in the model compared to when they are not in the model, using likelihood ratio
tests (Cordell and Clayton 2002). This is equivalent to testing whether the corresponding
coefficients are significantly different from 0. Similarly, we can account for the genotype
interactions by adding some epistatic terms to the above model. A commonly used strategy
for evaluation of the effects of the different polymorphisms is to fit these models in a
stepwise fashion. Following Cordell and Clayton (2002), for the Dutch type 1 diabetes
data, we first code z; = —0.5,0.5,0.5 for genotypes 0,2, 1, and also code 0.5 for the cases
where genotypes are missing. We set 0.05 as a nominal significance level for all these tests
involved in the stepwise logistic-regression procedure. This yields seven dominant disease
susceptible alleles on chromosomes 3, 6, 7, 6, 11, 2, 19 respectively: V41(AA), V4(TT),
V26(GG), V64(GG), V15(GG), V28(-), V9(missing), and one genotype interaction between
V41(AA) and V64(GG), where for example in the notation V41(AA), V41 is the name of
the variant while (AA) is one of its alleles. See Table 5. The result is slightly different from
the prediction-based logistic-regression procedure of Dassen et al. (2001). This might be

due to different criteria being used.

Put Table 5 here.

In the second step, we start with search for the haplotype interaction between blocks
located on different chromosomes followed by testing the interactions within each blocks.
If two blocks are found interacting, we can further narrow the search area to identify
which variants in the blocks are involved in this interaction. For the Dutch type 1 diabetes
data, in the previous section we have shown 9 pairs of interacting blocks, which are

predisposed to type 1 diabetes. Combining with the result from the first step, we can
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infer some transitive disease-predisposing variants as shown in the previous section. The
results demonstrate a complicated gene-gene interaction network, which might predispose
to type 1 diabetes through modifying the pathways of lipid metabolism, blood pressure,

inflammation, coagulation, and matrix integrity.

Use of interaction between unlinked genomic regions has been suggested for improving
power of detecting loci of small effects on the disease phenotype, for example, in type 1
diabetes (Bugawan et al. 2003; Cordell et al. 1995, 2000), type 2 diabetes (Cox et al. 1999)
and inflammatory bowel disease (Cho et al. 1998). Cordell et al. (1995) reported that there
are interactions between the loci IDDM1 (chromosome 6p21) and IDDM2 (chromosome
11p15) and between the loci IDDM1 and IDDM4 (on chromosome 11q13.3) in the context
of the logistic regression model. Cox et al. (1999) showed that the loci on chromosomes 2
and 15 interact to increase susceptibility to type 2 diabetes in the context of nonparametric
lod score. Cox et al. (2001) made a systematic screen for correlation between family-specific
non-parametric lod scores in order to evaluate evidence of interactions between some
unlinked regions on chromosomes 1, 2, 3, 4, 6, 11, and 19. These methods are usually
restricted to family data. Unlike these authors, we focus here on interactions between
genetic variants in a list of potential candidate genes across a number of chromosomes,
where some of these variants have already been shown to be associated with some metabolic
diseases. Moreover, the proposed approach is specified for unphased genotype data (possibly
with missing problems) from case-control studies. Thus, our method could be a valuable
contribution to a genome-wide association study of a complex disease, especially when
direct determination of the molecular haplotypes from experiment or family data is not

feasible.

Although significant and consistent linkage evidence was reported for the susceptibility

intervals IDDMS8 (on chromosome 6q27), IDDM4 (on 11q) and IDDM5 (on 6q25), evidence
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for most other intervals varies in different data sets—probably due to a weak effect of
the disease genes, genetic heterogeneity, random variation or inappropriate correction for
multiple tests (see Pugliese 2001). To reduce the possible effect of genetic heterogeneity, we
need to confirm our initial finding by analysing other populations in future studies. Since
we compared correlated variants, it is important to take into account the potential effects
of multiple tests on the power of our procedure. For our case, there are 120 pairwise tests
among 16 haplotype blocks. A simple Bonferroni (or Dunn-Sidak) correction leads to the
adjusted threshold of 4.17 x 10~ for p-values if we want to achieve the significant level of
0.05. Then there are only 7 block-pairs in Table 2 remained nominally significant after this
correction. Such a correction seems too conservative due to high dependences among these
tests. This has been confirmed by Bugawan et al. (2003) based on a permutation procedure.
Unfortunately using resampling methods such as permutation can be computationally
prohibitive in our case. However, we have shown that the recently developed procedure of

Storey and Tibshirani (2003) is applicable to our setting.
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Appendix A: Local updating

The local updating algorithm includes two operators, v-mutation and peer learning.
In every iteration, they are selected to perform with probability 0.2 and 0.8, respectively.
Of course, the probabilities can be tuned by the user. But a large performing probability
is usually assigned to the peer learning operator, as it tends to force the haplotypes to

coalesce. The two operators are described as follows.

v-mutation

In the v-mutation operator, a total of max{1, y,} haplotype pairs at the heterozygous
(gij = 2) or missing loci (¢g;; = 9,8,7) are randomly selected to undergo changes, where
7, is the total number of heterozygous and missing loci in Gy, and v is the mutation rate
specified by the user. The v is usually set to a small number, for example, we set v = 0.001
for all examples of this paper. The changes are accepted or rejected according to the

Metropolis-Hastings rule (Metropolis et al. 1953; Hastings 1970), i.e., the new haplotypes

H ib) are accepted with probability min(1,r,,), where
() o (b)

0 T(H, — H")

) — (B e 2 H
TH"” - H)

where T'(- — -) denotes the transition probability between the current and new haplotypes.

P = exp{—[s(ff(b)

*

The transition proceeds as follows. If the pair (hs,j1, hsij2) is selected to undergo a change,
and if g;; = 2, then the values of hy;;; and hy ;2 will be simply swapped by setting
hpija =1 — hpij1 and hyijo =1 — hyii0. If g;; =9, one of the pairs (0,0), (0,1), (1,0) and
(1,1) will be re-assigned to (hpj1, hej2) equally likely. Similarly, if g;; = 8 or 7, one of the
possible haplotype pairs will also be re-assigned to (hy 1, hpij2) equally likely. The other

selected haplotype pairs will be mutated in the same way, but independently. It is easy to
(b) (b)

see that transition is symmetric in the sense that T(H, — ﬁ(b)) =T(H" — ﬁib)).
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Peer learning

(a)
(b)

The peer learning operator works as follows.

Randomly select one haplotype, say hy ., from the set {hy11,h61,2;--- ; Rbn1, Ron2}-

Randomly select one haplotype, say hp s+, from the set {hp 11, Pp12; - - ;Pbu—11, Pou—12;
Pbut11y Pbut1,2; ---; Pon, hone} with probability wys ./ Z#u 23:1 wy;,;, Where
wyi,; = eXP{—d(hpuw, Piij)/tsel b (P, heij) is the number of different haplotypes
at the first Zle ki loci of hpy, and hy;j, and tg, is the so-called selection

temperature.

For each genotype g, if gu; = 0 or 1, we keep hsyj, unchanged; if g,; =2, 9, 8, or 7
and hpuj0 = hesjt, we keep hy ., unchanged with probability p;, and change A yj,, to
hy,sj,c with probability 1 — py; if g,; = 2, 9, 8, or 7 and hy,yj (v) 7# Nb,sjt, We keep Ry ;o
unchanged with probability 1 — p;, and change hp 4, to hp 55 With probability p;.
Update the complementary pair of hy,, accordingly such that they are compatible

with g,.

According to the Metropolis-Hastings rule, accept the new haplotype pair with
probability min{1, r;}, where

”(b)
n = exp{—[s(E — s(B") s} L =
(H

fIP)

Here the transition probability equals

= (b) = (b) o as /e
T(H _>H* ):pl (l_pl) (5) 37

where o is the total number of the common haplotypes of H and H at the

heterozygous and missing loci; as is the total number of the different haplotypes of

i (® (b)

H,_ ' and H" at the heterozygous and missing loci; and a3 counts the total number
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of times of randomly assigning the haplotype values in the complementary haplotype
pair of hp, . The p; is a user-specified parameter. We set p; = 0.9 for all examples of

(0) (b))

this paper. The transition probability T(ﬁ . — H'") can be computed similarly.

This operator makes it possible for haplotypes to coalesce together very fast if it is feasible.

Appendix B: Extrapolation

(b+

The extrapolation operator extrapolates H ®) to H Y by attaching the haplotype

. . o . (b) .
b+1)  Let’s call a haplotype “original” if it first appears in H( ) in

pairs compatible with G
some scanning order, for instance, the natural order (hp11,hp12;---; Rbni, Pon2) used in
this paper, where (hp; 1, hp;2) is the haplotype pair of the i-th genotype in é(b); otherwise,
we call it “duplicate”. The extrapolation proceeds in the pre-fixed scanning order as
follows. If a haplotype and its complementary pair are both “original”, it is extrapolated
independently, i.e., if g;; is a heterozygous or missing allele, then (hyi14j1, hot1,ij,2) is
equally likely set to one of the possible haplotype pairs. If a haplotype is “duplicate”, then
it will be extrapolated according to the corresponding original copy. Note that in this case
the extrapolation for the corresponding original copy has been finished. For example, if
Py is a duplicate of hy;, if g,; is a heterozygous or missing allele, then hyq 4, Will be
set to the same value as hy1,45¢ with probability p., and a different value from hyq 45 Wwith
probability 1 — p.. The complementary pair of hj1,4;, Will be set accordingly such that the
pair is compatible with g,. We usually set p. to a large value, say, 0.95, for all examples of
this paper. Obviously, the extrapolation operator will provide a good starting point for the

simulation from the distribution P(H (b+1)).
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URLs for data in this article are as follows:

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nih.gov/Omin/ (for the
36 candidate genes in Table 1).

Online SNP database, http://www.ncbi.nih.gov/SNP/ (for the 65 SNPs in Table 1).

http://research.bwh.harvard.edu/cal6ref.doc (for more references to these 65 SNPs).
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Table 1: SNPS USED IN THIS STUDY

block variant (symbol, dbSNPrs#) gene name (MIM) location reported implication
1 Ce677T (V36,1801133) MTHFR (607093) 1p36.3 risk factor in vascular disease
1 Arg506Gln (V53, 6025) F5 (227400) 1923 activated protein C resistence
1 Ser128Arg (V61, 5361) SELE (131210) 1g23-25 coronary artery disease
1 Leu554Phe (V62, 5355) SELE (131210) 1q23-25 coronary artery disease
1 Met235Thr (V42, 699) AGT (106150) 1q42-43 hypertension
1 Val7Met (V43, 664) NPPA (108780) 1p36.2 hypertension
1 T2238C (V44, 2238) NPPA (108780) 1p36.2
2 Thr71Ile (V8, 1367117) APOB (107730) 2p24 increased plasma LDL cholesterol level
2 Arg3500GIn (V9, 5742904) APOB (107730) 2p24 hypercholesterolemia
3 Prol2Ala (V19, 1801282) PPARG (601487) 3p25 nonsynonymous change, type 2 diabetes
3 A1166C (V41, 5186) AGTR1 (106165) 3q21-25 hypertension
4 Gly460Trp (V45, 4961) ADD1(102680) 4p16.3 hypertension
4% G-455A (V58, 1800790) FGB (134830) 4928 progression of atherosclerosis
5 Argl6Gly (V49, 1042713)  ADRB2 (109690)  5q32-34 asthma
5 GIn27Glu (V50, 1042714) ADRB2 (109690) 5q32-34 obesity
5 G8T73A (V59, 1062535) ITGA2 (192974) 5q23-31 GP Ia/Ila surface expression
6 C93T (V4, 1652503) LPA (152200) 6927 atherosclerosis
6 Thr26Asn (V32, 1041981) LTA (153440) 6p21.3 myocardial infarction
6 Thr26Asn (V68, 1041981) TNFb (153440) 6p21.3 myocardial infarction
6 G-376A (V64, 1800750) TNF (191160) 6p21.3 malaria
6 G-308A (V65, 1800629) TNF (191160) 6p21.3 asthma
6* G-244A (V66, 673) TNF (191160) 6p21.3
6* G-238A (V67, 361525) TNF (191160) 6p21.3 protective against type 2 diabetes
6* G121A (V5, 1800769) LPA (152200) 6427
7 A-922G (V37, 1800779) NOS3 (163729) 7436
7 C-690T (V38, 3918226) NOS3 (163729) 7q36
7 Glu298Asp (V39, 1799983) NOS3 (163729) 7q36 hypertension, Alzheimer’s disease
7 5G(-675)4G (V56, 1799768) PAI1 (173360) 7q21.3-22 coronary artery disease
7 Met55Leu (V25, 3202100) PONT1 (168820) 7q21.3 cardiovascular disease
7 GIn192Arg (V26, 662) PONT1 (168820) 7q21.3 coronary artery disease
7 Ser311Cys (V27, 7493) PON2 (602447) 7921.3 coronary artery disease
7* G11053T (V57, 7242) PAIL (173360)  7q21.3-22
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block variant (symbol, dbSNPrs#) gene name (MIM) location reported implication
8 Trp64Arg (V18, 4994) ADRB3 (109691) 8pl2-11.2 NIDDM in some population
8 T-93G (V21, 1800590) LPL (238600) 8p22 combined hyperlipidemia
8 Asp9Asn (V22, 1801177) LPL (238600) 8p22 combined hyperlipidemia
8 Asn291Ser (V23, 268) LPL (238600) 8p22 combined hyperlipidemia
8 Serd47term (V24, 328) LPL (238600) 8p22 type 1 hyperlipidemia
9 Thr347Ser (V6, 675) APOA4 (107690) 11q23
9 GIn360His (V7, 5110) APOA4 (107690) 11923 the metabolism of APOB
9 C-641A (V10, 2542052) APOC3 (107720) 11923
9 C-482T (V11, 2854117) APOC3 (107720) 11923 increased plasma triglyceride levels
9 T-455C (V12, 2854116) APOC3 (107720) 11923 increased plasma triglyceride levels
9 C1100T (V13, 4520) APOC3 (107720) 11923 increased plasma triglyceride levels
9 C3175G (V14, 5128) APOC3 (107720) 11923 increased plasma triglyceride levels
9 T3206G (V15, 4225) APOC3 (107720) 11923
9* 5A(-1171) 6A (V51, 3025058) MMP3 (185250) 11923 coronary heart disease
9* G20210A (V52, 1799963) F2 (176930) 11pll-ql12 hyperprothrombinemia
10 Trp493Arg (V46, 5742912) SCNN1A (600228) 12p13 nonsynonymous change
10 Thr663Ala (V47, 2228576) SCNN1A (600228) 12p13 nonsynonymous change
10 C825T (V48, 5443) GNB3 (139130) 12p13 hypertension
11 -323 10-bp Ins/Del (V54, 5742910) F7 (227500) 13q34 hypertension
11 Arg353Gln (V55, 6046) F7 (227500) 1334 myocardial infarction
12 C-480T (V20, 1800588) LIPC (151670) 15q21-23 regulation of plasma lipids
13 C-631A (V29, 1800776) CETP (118470) 16q21
13 Ile405Val (V31, 5882) CETP (118470) 16921 plasma HDL cholesterol level
13 Asp442Gly (V33, 2303790) CETP (118470) 16q21 CETP deficiency
13 G-+1A (V34, 5742907) CETP (118470) 16¢21 CETP deficiency
13* C-629A (V30, 1800775) CETP (118470) 16q21
14 Alu-element Ins/Del (V40, 1799752) ACE(or DCP1) (106180) 17923 myocardial infarction
14 Leu33Pro (V60) ITGB3 (173470) 17q21.32 coronary heart disease
15 Cys112Arg (V16, 429358) APOE (107741) 19q13.2 hyperlipoproteinemia
15 Argl58Cys (V17, 7412) APOE (107741) 19q13.2 hyperlipoproteinemia
15 Gly241Arg (V63, 1799969) ICAM1 (147840) 19p13.3-13.21
15 Ncol+/- (V28, 5742911) LDLR (606945) 19p13.2 cholesterol homeostasis
16 Te278Thr (V35, 5742905) CBS (236200) 21¢22.3 homocystinaria

* means that the locus is not used in data analysis due to the problem of heavy missing in the sense that at

least 21% of the 136 individual genotypes are imcomplete at this locus.
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Table 2: Haplotype-interactions that predispose to type 1 diabetes

Block-pair Chromosomal location Cases Control
(variant-pair)  (gene-pair) p-value g-value z-score p-value g-value z-score
(1,4) (1,4) 0.000 0.000 -2.9732 0.40 0.13 -0.133
(V44:V45) (NPPA:ADDI1) 0.01 -3.4988 0.964 1.0808
(1,10) (1,12) 0.000  0.000  -3.5908 0.22 0.1 -0.712
(V62:V46) (SELE:SCNN1A) 0.032 -5.8305 1.00 0.3251
(1,15) (1,19) 0.000  0.000  -3.7758 0.60 0.18 0.243
(V43:V17) (NPPA:APOE) 0.018 -3.2417 0.93 0.3975
(2,7) (2,7) 0.31 0.12 -0.4364 0.01 0.019  -2.4063
(V8:V39) (APOB:NOS3) 0.35 -0.2049 0.002 -3.7312
(2,8) (2,8) 0.03 0.036  -2.0210 0.20 0.10 -0.709
(V9:V22) (APOB:LPL) 0.002 2.3361 1.00 -0.9950
(2,12) (2,15) 0.032 0.037 -2.2290 0.59 0.18 0.315
(V8:V20) (APOB:LIPC) 0.6 0.4021 0.022 -2.2037
(3,15) (3,19) 0.258 0.11 -0.6140 0.00 0.000 -4.380
(V41:V16) (AGTR1:APOE) 0.528 0.1457 0.0475 -2.1793
(5,7) (5,7) 0.22 0.10 -0.9170 0.000  0.000  -2.2606
(V50:V38) (ADRB2:NOS3) 0.37 -0.3814 0.01 -2.7346
(6,7) (6,7) 0.01 0.017  -2.4328 0.30 0.12 -0.6584
(V4:V26) (LPA:PON1) 0.0075 -3.1221 0.996 1.3345
(V4:V37) (LPA:NOS3) 0.016 -3.0343 0.968 0.7989
(V4:V39) (LPA:NOS3) 0.636 0.5031 0.046 -2.6121
(V65:V38) (TNF:NOS3) 0.014 -2.5465 0.85 1.0279
(V68:V3T) (TNFb:NOS3) 0.01 -3.6194 0.222 -0.6165
(6,16) (6,21) 0.45 0.15 -0.4934 0.000 0.000 -2.0156
(V32:V35) (TNFb:CBS) 0.61 -0.2664 0.0375 -4.2425
(7,9) (7,11) 0.21 0.10 -0.9432 0.000  0.000  -2.9033
(V38:V7) (NOS3:APOA4) 0.16 -1.6673 0.000 -11.3963
(V26:V7) (PON1:APOA4) 0.37 -0.3737 0.025 -2.3077
(V25:V10) (PON1:APOC3) 0.51 -0.0683 0.028 -2.4287
(V25:V12) (PON1:APOC3) 0.78 0.8031 0.028 -2.1233
(V38:V11) (NOS3:APOC3) 0.786 0.6522 0.004 -3.5639
(V37:V11) (NOS3:APOC3) 0.78 0.6673 0.028 -2.6518
(V37:V10) (NOS3:APOC3) 0.296 -0.4199 0.002 -4.8354
(V37:V12) (NOS3:APOC3) 0.73 0.7839 0.000 -4.7122
(V38:V13) (NOS3:APOC3) 0.71 0.4653 0.024 -3.3368
(9,13) (11,16) 0.02 0.027  -2.3164 0.19 0.1 -0.7887
(10,12) (12,15) 0.155  0.09 -0.9611 0.01 0.019  -2.5475
(V47:V20) (SCNN1A:LIPC) 0.172 -1.1070 0.002 -4.7115
(14,16) (17,21) 0.000 0.000 -4.1709 0.59 0.18 0.1466
(V40:V45) (DCP1:CBS) 0.025 -4.0039 0.697 0.7439
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Table 3: P-values and z-scores for testing interactions within Block 1

Splitting-location Cases Control

p-value z-score z-value z-score
1 0.42  -0.0497 0.23  -0.6620
2 0.06  -1.5060 040  -0.3271
3 0.07  -1.6728 0.69 0.5059
4 0.00  -2.4910 0.31  -0.4083
5 0.05 -1.6461 0.53 0.0784
6 0.10 -1.2424 0.33  -0.2145




— 38 —

Table 4: Within-haplotype-interactions that predispose to type 1 diabetes

Block splitting-location Cases Control

p-value z-score p-value z-score

1 4 0.00  -2.4910 0.31  -0.4083
5 0.06  -1.6461 0.53 0.0784

6 3 0.27  -0.5888 0.00  -4.2116
7 5 0.04 -1.9404 0.26  -0.5867
8 1 0.16  -0.7903 0.01  -2.9411
2 0.52 0.2147 0.02  -3.0241

9 3 0.11 -1.3035 0.00  -7.8697
4 0.10  -1.1386 0.00  -9.2839

5 0.13  -0.8928 0.00  -3.6252

6 0.19  -0.8848 0.00  -4.8922

7 0.46  -0.1373 0.02  -1.7784
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Table 5: The result of the stepwise logistic-regression for the Dutch data

Terms added sequentially

Variant Coefficient Std. error Resid. deviance p-value
Intercept 0.93277 0.42811 175.35

V4l -0.04511 1.10738 170.65 0.0302

V4 17.2308 1.10738 162.98 0.0056

V26 -1.3954 0.94438 158.65 0.0375
V64 0.73047 1.21786 151.01 0.0057
V15 4.58316 1.49003 141.54 0.0021
V9(missing)  19.6659 73.3194 137.1299 0.0357
V28 -4.8015 1.9924 129.9424 0.0073

V41:V64 -11.0055 4.3711 122.5526 0.0066
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Figure legends

Figure 1 The p-values and z-scores for 40 sets of genotypes with (6, R) = (4,0), (4,4),
(4,20) and (16,16) respectively. The dotted lines are for the data sets where there are
interactions between two haplotype-blocks, while the lines with small triangles are for the

data sets where there are no interactions between the two haplotype-blocks.

Figure 2 The p-values of testing the interactions of Blocks 1~8 with the other blocks for
the cases and controls in the Dutch type 1 diabetes data, respectively. The dotted lines are
for the cases while the lines with small triangles are for the controls. The normal line, a

contrast between the two lines is derived by subtracting the corresponding p-values of the

control from those of the case.

Figure 3 The p-values of testing the interactions of Blocks 9~16 with the other blocks for
the cases and controls in the Dutch type 1 diabetes data, respectively. The dotted lines are
for the cases while the lines with small triangles are for the controls. The normal line, a

contrast between the two lines is derived by subtracting the corresponding p-values of the

control from those of the case.
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