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Chapter 1

Introduction

Transmission lines, used to send telegraph signals over long distance, were introduced in com-
munication technology around the middle of the nineteenth century. William Thomson (Lord
Kelvin) in 1855 presented the first mathematical model to describe the propagation of electric
current on a submarine cable. It was a diffusion model, where the cable inductance was ne-
glected. A more complete model was set up by Oliver Heaviside in 1885, in the form of teleg-
rapher’s equations, a system of two partial differential equations for the voltage and current on
the line. About at the same time James C. Maxwell published his fundamental Treatise, but this
type of formulation can also be developed very simply, by extending lumped circuit theory to the
realm of distributed circuits. Later, the term transmission line was used to indicate several types
of structures supporting the propagation of a TEM mode (or, at least, of a quasi-TEM mode, as
in microstrips), hence structures comprising at least two conductors [1], [2], [3] and [4].

However, electromagnetic waves can propagate also inside hollow pipes of various cross sec-
tions, although with properties slightly different from plain transmission lines. Lord Rayleigh in
1897 published the first mathematical analysis of a rectangular waveguide.

The key concept is that of propagation mode. A mode is a field configuration existing in the
waveguide, with the property that in the propagation its shape remains unchanged, while the
field itself is multiplied by a number. When this number is complex with unit amplitude (in the
case of a lossless waveguide) the mode is said to be above cut-off; when it is real the mode is
said to be below cut-off.
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Thanks to the work of S. A. Schelkunoff and H. G. Booker the concept of electrical impedance
started to be associated also to waves, both guided and in free space, [5]. The following natural
step was to extend lumped circuit network theory to the field of waveguide discontinuities. The
person who developed in rigorous way this circuit point of view of wave propagation is N. Mar-
cuvitz, first at the M.I.T. Radiation Laboratory during the years of Word War II in collaboration
with J. Schwinger, and then at the Polytechnic Institute of Brooklyn. Milestones in this process
are [6], [7], [8]. According to this point of view, the field in a straight waveguide, with z and ρ
as longitudinal and transverse coordinates is represented in the form (in the frequency domain):

Et(ρ, z) =
∑

i

Vi(z)ei(ρ)

H t(ρ, z) =
∑

i

Ii(z)hi(ρ)

Ez(ρ, z) =
∑

i

Ii(z)Z∞iezi(ρ)

Hz(ρ, z) =
∑

i

Vi(z)Y∞ihzi(ρ)

where ei(ρ), ezi(ρ), hi(ρ), hzi(ρ) are the mode functions and the coefficients Vi(z), Ii(z) satisfy
the ODE system

−dVi
dz

= jkziZ∞ iIi

−dIi
dz

= jkziY∞ iVi

Since these are just transmission line equations, it is reasonable to call the coefficients modal
voltage and modal current on the i-th modal transmission line, having characteristic impedance
Z∞i and propagation constant kzi. In this way, the transmission line concept has left the con-
creteness of copper and has become an abstract mathematical concept.

If we reconsider the previous expressions, we realize that the variables ρ and z have been sepa-
rated. This means that modal transmission line theory can also be interpreted as the application
to Maxwell’s equations of the classical method of separation of variables. The important point
(particularly important for engineers) is that a physical meaning has been attached to the var-
ious quantities. This characteristic has led A.A. Oliner to state: “. . . The network formulation
of microwave field theory has been fundamental to the rapid progress made by the microwave
community” [5].

Once we recognize that transmission line theory is separation of variables in disguise, we are
ready for a further step in the generalization. Canonical waveguides have cross sections (circu-
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lar, rectangular, elliptical) that allow complete separation of variables. This leads to the idea of a
transverse coordinate, such as x or y in the case of rectangular waveguides and ρ or ϕ in the case
of circular ones, as the variable on which voltages and currents depend. In this way the concept
of transverse resonance method has been developed, with its many applications in the field of
microwaves.
In the case of cylindrical waveguides, the transverse point of view leads to the introduction of
radial lines, already described in [7].

In this thesis we study discontinuity problems in a cylindrical waveguide. The approach is rig-
orous and is based on the deduction and numerical solution of an integral equation. The kernel
of the integral equation is the Green’s function of the problem and its computation is often not a
trivial task. We found very convenient to employ radial transmission line theory for this purpose.
Two problems were considered, one is that of leaky coaxial cables, the other is that of ring cavity
filters.

Leaky Coaxial Cables (LCX) are cables, in the outer conductor of which series of slots are opened
so that the field, originally propagating in the inside, is partially radiated so as to create an area
of RF coverage in the neighborhood, which is capable of providing two-way communication.
Hence, LCX are antennas, but of a peculiar type, since the user always lies in their near-field
region. Indeed LCX are mainly used in tunnels, underground and indoor applications in general.
Several types of slot arrangements were proposed in the past, but we will focus only on the
case of ϕ oriented slots, since we want in particular to analyze the potentiality of the numerical
method. An example is shown in Figure 1.1.

Figure 1.1: Example of slotted coaxial cable

Slotted cables have been studied in several papers in the past, but invariably the method used
was the application of periodic structure theory. The analysis can be limited to a single cell,
with an obvious advantage in terms of cpu-time requirements. The drawback is that only strictly
periodic LCX can be studied and also that the problem of the excitation of the LCX by means
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of an unslotted cable cannot be attacked. For this reason, our approach is general in the sense
that a finite number of slots is assumed, not necessarily identical. This method is powerful but
is intrinsically limited to cables with not more than a few hundreds slots, to keep the size of
the numerical effort within reasonable limits for a PC. In order to be able to study cables with
many more slots, also a longitudinal approach has been developed. The slots are assumed to
be identical, but always in a finite number, so that we can analyze the excitation problem. This
longitudinal approach is based on Bloch wave theory and is very unconventional since it makes
use of the continuous spectrum of an open waveguide. Finally, an eigencurrent approach based
on the computation of the approximated eigencurrents of the entire array is discussed.

The second problem we have considered is that of stop-band filters. A possible configuration,
typically used in rectangular waveguides, exploits E- or H-plane stubs. Since the capability of
double polarization operation was required, the cross section of the waveguide was selected to
be circular, so that the stub gets the shape of a disk. To reduce the transverse size of the filter, the
stubs are shortened and loaded with a ring shaped cavity, obtaining the structure shown in Figure
1.2. This structure can be studied with a method similar to that used for LCX, but in this case
two apertures are present for each cavity and the mathematical formulation consists of a system
of two coupled integral equations.

Common to both applications is the necessity of the numerical evaluation of a large number of
infinite domain integrals of oscillating, singular and slowly decaying functions. This is really the
bottleneck of the method and it was necessary to develop special integration techniques in order
to increase the efficiency. In this way it was possible to simulate structures with considerable
size.

Figure 1.2: Element of a ring cavity filter
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Organization of the thesis

The present thesis is organized as follows.

In Chapter 2 we lay the foundations for all the subsequent chapters. Radial transmission line
theory is developed starting from Maxwell’s equations. All the relevant network concepts are
introduced, such as impedances, propagators, scattering matrices, etc.

Chapter 3 is devoted to the analysis of slotted cables with the aid of an integral equation tech-
nique. Exploiting an equivalence theorem, the slots are closed with a metal conductor on which
an unknown magnetic current is introduced. The integral equation results from the enforcement
of the continuity, at the slot locations, of the total magnetic field. Hence, the problem is for-
mulated in terms of a magnetic field integral equation. The numerical solution is carried out
via the Galerkin method of moments. Subsequently, the scattering matrix of the slotted cable is
determined.

Chapter 4 describes the Bloch wave approach for the analysis of long slotted cables. This in-
volves the development of a suitable mathematical formalism for the computation of the Bloch
waves of the structure.

Chapter 5 is devoted to the application of the eigencurrent approach for the analysis of a LCX.
First the general idea behind the method is described and then the related computational detail
is worked out for its application in a LCX setting. The dependence of the eigencurrents on
the geometrical characteristics of the slots is analyzed in detail. Some further approximation
techniques are presented and are compared to the standard formulation.

In Chapter 6 the numerical results for slotted coaxial cables are discussed. Their electromagnetic
characteristics are analyzed in their dependence on the period and the geometry of the cell.
Further, the longitudinal approach is set against the radial one.

Chapter 7 discusses the radiation properties of the slots on a coaxial cable. First a single slot is
analyzed. A comparison with finite cylinders demonstrates that results that may appear strange at
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first sight, may be shown to be related to the infinite length of an LCX. Then, a cable with many
slots is considered and the properties of the field radiated in the near-field region are discussed.

Chapter 8 presents a design technique for LCXs with uniform radiation along their length. In
particular, we demonstrate how to taper the sizes of the apertures along the cable, in order to
compensate for the power decay due to the radiation into the exterior unbounded domain.

Chapter 9 is devoted to the analysis of ring cavity filters. It is shown that a combination of
the radial approach and the traditional longitudinal one allows us to generate a very efficient
numerical code for the design of ring cavity filters.

In Chapter 10 we describe the numerical integration techniques, used in the implementation of
the methods. In particular, a specific class of transformations of the variables of integration turns
out to be very efficient and accurate.

Finally, conclusions are extracted from the analytic and numeric results, and an indication of
directions for future research is given.



Chapter 2

Radial Transmission Lines

2.1 Radial transmission line equations

The electric and magnetic fields generated by electric and magnetic sources satisfy the well
known Maxwell equations:

∇× E = − µ
∂H
∂t
− J

m

∇×H = ε
∂E
∂t

+ J
e

in time domain and

∇× E = −jωµH − J m

∇×H = +jωεE + J e

in frequency domain, with the exp(jωt) time convention.
In the case of cylindrical waveguides of arbitrary cross section and axis ẑ, it is possible to define
transverse vector mode functions, whose amplitudes can be considered as modal voltages and
currents and satisfy transmission line equations [8].
Radial waveguides are non uniform cylindrical regions described by a ρ, ϕ, z coordinate system.
The transmission direction is along the radius ρ and the cross sections are the cylindrical surfaces
ρ=const. It it well known, [7] page 30, that in this case it is not possible to define transverse vector
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modes. The representation of transverse fields must be carried out on a scalar basis, i.e. in terms
of components. It will be found that a convenient matrix formalism and a radial circuit theory
can be set up.
To carry out this program, let us start by writing Maxwell’s equation a in cylindrical coordinate
system (ρ, ϕ, z):

ρ̂

[
1

ρ

∂Ez
∂ϕ
− ∂Eϕ

∂z

]

+ ϕ̂

[
∂Eρ
∂z
− ∂Ez

∂ρ

]

+ ẑ

[
Eϕ
ρ

+
∂Eϕ
∂ρ
− 1

ρ

∂Eρ
∂ϕ

]

=

= −jωµ [Hρρ̂+Hϕϕ̂+Hz ẑ]− Jmϕϕ̂− Jmρρ̂− Jmz ẑ

(2.1)

ρ̂

[
1

ρ

∂Hz

∂ϕ
− ∂Hϕ

∂z

]

+ ϕ̂

[
∂Hρ

∂z
− ∂Hz

∂ρ

]

+ ẑ

[
Hϕ

ρ
+
∂Hϕ

∂ρ
− 1

ρ

∂Hρ

∂ϕ

]

=

= jωε [Eρρ̂+ Eϕϕ̂+ Ez ẑ] + Jeϕϕ̂+ Jeρρ̂+ Je z ẑ

(2.2)

where ρ̂, ϕ̂ and ẑ represent the three unit vectors of the cylindrical reference systems.
The components of the above equations can be written as:

1

ρ

∂Ez
∂ϕ
− ∂Eϕ

∂z
= −jωµ Hρ − Jmρ

∂Eρ
∂z
− ∂Ez

∂ρ
= −jωµ Hϕ − Jmϕ

Eϕ
ρ

+
∂Eϕ
∂ρ
− 1

ρ

∂Eρ
∂ϕ

= −jωµ Hz − Jmz

1

ρ

∂Hz

∂ϕ
− ∂Hϕ

∂z
= jωε Eρ + Jeρ

∂Hρ

∂z
− ∂Hz

∂ρ
= jωε Eϕ + Jeϕ

Hϕ

ρ
+
∂Hϕ

∂ρ
− 1

ρ

∂Hρ

∂ϕ
= jωε Ez + Je z

Let us assume that the structure is infinite in the z direction for 0 ≤ ϕ < 2π and filled with
homogeneous dielectric. More general structures will be considered in Section 2.8. In order to
derive a circuit formalism to study the propagation of electromagnetic fields in the ρ̂ direction,
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the dependence on the variables ϕ and z must disappear. To this end, we introduce a spectral
representation of fields and sources:

Ẽz(ρ, n, χ) =

∫ 2π

0

∫ +∞

−∞

Ez(ρ, ϕ, z) ejnϕ ejχ zdz dϕ (2.3)

(2.4)

Ez(ρ, ϕ, z) =

(
1

2π

)2 ∞∑

n=−∞

e−jnϕ
∫

<

Ẽz(ρ, n, χ) e−jχ zdχ (2.5)

and similarly for all the other components. Here n is an integer and χ is a real number.
The use of these spectral representations is very convenient because of the symbolic relations

∂

∂z
←→ −jχ ∂

∂ϕ
←→ −jn

so that only the ρ−derivatives survive.
Substituting (2.5) in (2.3) one obtains:







−jn
ρ
Ẽz + jχẼϕ = −jωµH̃ρ − J̃mρ

−jχẼρ −
∂Ẽz
∂ρ

= −jωµH̃ϕ − J̃mϕ

Ẽϕ
ρ

+
∂Ẽϕ
∂ρ

+
jn

ρ
Ẽρ = −jωµH̃z − J̃mz

(2.6)







−jn
ρ
H̃z + jχH̃ϕ = jωεẼρ + J̃eρ

−jχH̃ρ −
∂H̃z

∂ρ
= jωεẼϕ + J̃eϕ

H̃ϕ

ρ
+
∂H̃ϕ

∂ρ
+
jn

ρ
H̃ρ = jωεẼz + J̃ez

(2.7)

By using the same procedure that is generally applied in the standard analysis of cylindrical
waveguides, we eliminate the longitudinal field components Ẽρ, H̃ρ in order to develop a set of
equations of Marcuvitz-Schwinger type, which contain only the transverse (to ρ̂) field compo-
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nents. From the first equations of the (2.6) and (2.7) we obtain:

H̃ρ =
n

ωµρ
Ẽz −

χ

ωµ
Ẽϕ +

j

ωµ
J̃mρ (2.8)

Ẽρ = −
n

ωερ
H̃z +

χ

ωε
H̃ϕ +

j

ωε
J̃eρ (2.9)

Notice that Ẽz,ϕ given by (2.5) is a spectral density of electric field per unit spatial bandwidth

(with respect to z), hence it is measured in V/m · 1

m−1
= V . Likewise, H̃z,ϕ is measured in

A/m · 1

m−1
= A.

For this reason we introduce the new symbols:

V = V (ρ, n, χ) =

(

Vu

V v

)

(ρ, n, χ) =

(

Ẽz

Ẽϕ

)

(ρ, n, χ) (2.10)

I = I(ρ, n, χ) =

(

Iu

I v

)

(ρ, n, χ) =

(

−H̃ϕ

H̃z

)

(ρ, n, χ) (2.11)

and call them (vector) voltage and current. The definition of the vector current I is chosen so as
to simplify the computation of the power flow in the ρ direction.
Clearly, if voltages and currents are (2 × 1) vectors, impedances and reflection coefficients are
(2 × 2) matrices, here denoted by a double underline. These vectors belong to an abstract “po-
larization” space, with unit vectors:

û =

(

1

0

)

v̂ =

(

0

1

)

Substituting now (2.9) and (2.8) into the second and third equations of (2.6) and (2.7) we get:

− d

dρ






V

I




 =






D
1

j Z
1

j Y
2

D
2




 ·






V

I




+






◦

v

◦

i




 (2.12)

where:

D
1
= D

1
(ρ) =







0 0

0
1

ρ







; D
2
= D

2
(ρ) =







1

ρ
0

0 0
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Z
1
= Z

1
(ρ) =









τ 2

ωε
− nχ

ωερ

− nχ

ωερ

1

ωε
(k2 − n2

ρ2
)









; Y
2
= Y

2
(ρ) =









1

ωµ
(k2 − n2

ρ2
) +

nχ

ωµρ

+
nχ

ωµρ

τ 2

ωµ









◦

v =








− χ

ωε

− n

ωερ







· J̃e ρ +






−1 0

0 1




 ·






J̃mϕ

J̃mz




 (2.13)

◦

i =








+
n

ωµρ

− χ

ωµ







· J̃mρ +






0 1

1 0




 ·






J̃eϕ

J̃e z






and k2 , ω2µε is the wavenumber and τ ,
√

k2 − χ2 plays the role of a longitudinal propaga-
tion constant. Equations 2.12 are the radial transmission line equations. The sign conventions
are shown in Fig. 2.1. The evident asymmetry in the definition of the vector current in (2.11)

v

+

0

i
0

I

V

Figure 2.1: Sign conventions for the distributed generators

is explained by the desire of a simple expression for the time-averaged power transmitted across
a cylindrical surface of radius ρ = ρ0. As well known, this power is given by the flux of the
Poynting vector

P =
1

2
<
{∫

S

E(ρ0, ϕ, z)×H∗(ρ0, ϕ, z) · ρ̂dS
}

(2.14)
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where the superscript “*” stands for complex conjugate. In terms of components1:

P =
1

2
<
{

ρ0

∫ 2π

0

∫ +∞

−∞

[
−EzH∗

ϕ + EϕH
∗

z

]
dϕdz

}

=

=
1

2
<
{

ρ0
4π2

∫

χ

∑

n

[

−ẼzH̃∗

ϕ + ẼϕH̃
∗

z

]

dχ

}

(2.15)

where Parseval theorem has been applied. Thanks to the definition (2.11), this power is computed
as:

P =
1

2
<
{

ρ0
4π2

∫

χ

∑

n

[Vu(ρ, χ, n)I
∗

u(ρ, χ, n) + Vv(ρ, χ, n)I
∗

v (ρ, χ, n)] dχ

}

i.e.:

P =
1

2
<
{

ρ0
4π2

∫

χ

∑

n

V (ρ, χ, n) · I∗(ρ, χ, n)dχ
}

(2.16)

which has a clear circuit flavor. Moreover, the integrand ρ0V (ρ, χ, n) · I∗(ρ, χ, n), measured in
Wm=W/m−1, can be interpreted as the spectral density of active power per unit spatial bandwidth
(with respect to z) associated to a cylindrical wave.

2.2 Solution of radial transmission line equations

In this section we will obtain the solution of the radial transmission line equations (2.12). It
is to be remarked that the system matrix is a function of ρ and it can be verified that also its
eigenvectors depend on ρ. This implies that no vector mode (in the u, v space) can be introduced
for this system. Nevertheless it can be solved analytically .
The (2.12) is a linear system of differential equations which concisely can be written as:







− d

dρ
ψ(ρ) = A(ρ)ψ(ρ) + s(ρ)

ψ(ρ) = ψ
0

given

(2.17)

The solution of this initial value problem is is well known in literature [9] and can be written as:

ψ(ρ) = F (ρ, ρ0) · ψ(ρ0) +
∫ ρ

ρ0

F (ρ, ρ0) · F−1(ρ′, ρ0) · s(ρ′)dρ′ (2.18)

1from here on, where not expressly indicated, the sum are from −∞ to +∞
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where F (ρ, ρ0) is the fundamental matrix (or matricant) which obeys:






− d

dρ
F (ρ, ρ0) = A(ρ)F (ρ, ρ0)

F (ρ, ρ0) = U

(2.19)

where U is the 4× 4 identity matrix.
The solution of this equation will be carried out in the next pages and the result will be finally
obtained in section 2.5. In the course of the derivation a number of useful circuit concepts will
be introduced, such as the wave impedances, the voltage/current propagators, etc.
the equation to be solved is:

− d

dρ








Ẽz

Ẽϕ

−H̃ϕ

H̃z








= A ·








Ẽz

Ẽϕ

−H̃ϕ

H̃z








(2.20)

The idea is to eliminate the transverse field components (i.e. Ẽϕ and H̃ϕ): the z axis is a symme-
try axis for the system and it can be expected that the longitudinal components (i.e. Ẽ z and H̃ z)
play a special role.
Let us, therefore, consider the homogeneous problem for an infinite radial line, where the voltage
and current generators are absent and 0 ≤ ρ < ∞. It is convenient to define the two column
vectors L̃ and T̃ to collect the Fourier transforms of the longitudinal and the transverse field
components:

L̃ =






Ẽz

H̃z




 , T̃ =






Ẽϕ

H̃ϕ






In terms of these, (2.12) can be rewritten as:

d

dρ






L̃

T̃




 =






M
11

M
12

M
21

M
22




 ·






L̃

T̃




 (2.21)

where:

M
11

=M
11
(ρ) =

jχ n

ωρ








0
1

ε

− 1

µ
0
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M
12

=M
12
(ρ) =

jτ 2

ω








0
1

ε

− 1

µ
0








M
21

=M
21
(ρ) =

j

ω

(

k2 − n2

ρ2

)








0
1

ε

− 1

µ
0








M
22

=M
22
(ρ) = −1

ρ
U − j nχ

ωρ








0
1

ε

− 1

µ
0








where U is the identity matrix. From the first equation of (2.21) one obtains:

T̃ =M−1

12
· ∂L̃
∂ρ
−M−1

12
·M

11
· L̃ (2.22)

then the second equation becomes:

∂

∂ρ

(

M−1

12
· ∂L̃
∂ρ
−M−1

12
·M

11
· L̃
)

=M
21
· L̃+M

21
·
(

M−1

12
· ∂L̃
∂ρ
−M−1

12
·M

11
· L̃
)

i.e.

d2L̃

d2ρ
−
(

M
11
+M

12
·M

22
·M−1

12

) dL̃

dρ
+

−
(
d

dρ
M

11
+M

12
·M

21
−M

12
·M

22
·M−1

12
·M

11

)

L̃ = 0

(2.23)

From a direct computation of the matrix products, one obtains:

d2L̃

d2ρ
+

1

ρ

dL̃

dρ
+

(

τ 2 − n2

ρ2

)

L̃ = 0 (2.24)

T̃ =
ω

jτ 2

(

0 −µ
ε 0

)

d

dρ
L̃− nχ

ρτ 2
L̃ (2.25)
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The first expression is recognized as the Bessel equation. In terms of the components Vu, Vv, Iu
and Iv we have:

[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+ τ 2 −

(
n

ρ

)2
]

Vu(ρ) = 0 (2.26)

[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+ τ 2 −

(
n

ρ

)2
]

I v(ρ) = 0 (2.27)

V v(ρ) = −
nχ

ρτ 2
Vu(ρ) +

jωµ

τ 2
∂

∂ρ
I v(ρ) (2.28)

Iu(ρ) = +
nχ

ρτ 2
I v(ρ) +

jωε

τ 2
∂

∂ρ
Vu(ρ) (2.29)

The general solutions of (2.26) and (2.27) can be written in a variety of ways in terms of Bessel
functions. We have chosen the following “mixed” form:

Vu(ρ, χ, n) =
!
cE Jn(τρ) +

Ã
cE H

(2)
n (τρ) (2.30)

I v(ρ, χ, n) =
!
cH Jn(τρ)
︸ ︷︷ ︸

regularwave

+
Ã
cH H

(2)
n (τρ)

︸ ︷︷ ︸

centrifugalwave

(2.31)

where!cE,H ,
Ã
cE,H are constants that depend on the boundary conditions of the circuit problem.

The right arrow indicates that the corresponding solutions propagates outwards, whereas the
double arrows indicates that the solution are regular in the interior domain, implying that they
consist of both outward and inward propagating constituents. The subscript E in the first line is
related to the fact that Vu is the transform of Ez and, hence, describes an E-field configuration
(i.e. TM). Likewise, the subscriptH in the second line denotes anH-field configuration (i.e. TE).
Moreover, cE , cH have dimensions of voltage and current, respectively, and denote the amount
of TM and TE contribution to the total wavefield. In order to use a more balanced description,
we introduce another set of variables, of the “power wave type”, with dimensions

√
W :

cE = aE
√
Z cH = ah

√
Y (2.32)

where Z =
√

µ/ε is the medium wave impedance.
By means of (2.28) and (2.29), we can complete the expressions of the V and I vectors. We
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see that the expressions of the total voltage and current decompose naturally into the sum of a
regular and a centrifugal wave. Let us highlight their respective characteristics.

–Regular wave The voltage and current of this wave can be written as

!
V (ρ) =

√
Z







!
aE Jn(τρ)

− nχ
ρτ 2
!
aE Jn(τρ) +

j k

τ
!
aH J

′
n(τρ)







and

!
I(ρ) =

√
Y







+
nχ

ρτ 2
!
aH Jn(τρ) +

j k

τ
!
aE J

′
n(τρ)

!
aH Jn(τρ)







where k = ω
√
εµ is the medium wavenumber. In a more compact form:

!
V (ρ) =

√
Z
!
M

V
(ρ) ·!a (2.33)

!
I(ρ) =

√
Y
!
M

I
(ρ) ·!a (2.34)

where:

!
M

V
(ρ) =







Jn(τρ) 0

− nχ
τ 2ρ

Jn(τρ)
j k

τ
J ′n(τρ)







!
M

I
(ρ) =







j k

τ
J ′n(τρ)

nχ

ρτ 2
Jn(τρ)

0 Jn(τρ)







!
a =






!
aE

!
aH




 (2.35)

Notice that the matrices
!
M

V,I
(ρ) have a geometrical meaning, since their elements are dimen-

sionless. This wave is called regular because it satisfies the regularity prescription at the endpoint
ρ = 0. Since the Bessel functions of the first kind are real, it is clearly a stationary wave. It may
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be of interest to compute the active power carried by this wave:

P =
1

2
<
{!
V (ρ, χ, n) ·

!
I∗(ρ, χ, n)

}

=
1

2
<
{
!
aT ·
!
MT

V
(ρ) ·
!
M∗

I
(ρ) ·!a∗

}

=

=
1

2
<







!
aT ·








−j k
τ
Jn(τρ)J

′
n(τρ) 0

0
j k

τ
Jn(τρ)J

′
n(τρ)







·!a∗







=

=
1

2
<
{
j k

τ
Jn(τρ)J

′

n(τρ)
(

|!aH |2 − |!aE|2
)}

= 0 (2.36)

in accordance with the stationary character.

–Centrifugal wave The voltage and current of this wave can be written as

Ã
V (ρ) =

√
Z







Ã
aE H

(2)
n (τρ)

− nχ
ρτ 2
Ã
aE H

(2)
n (τρ) +

j k

τ
Ã
aH H

′(2)
n (τρ)







and

Ã
I(ρ) =

√
Y







+
nχ

ρτ 2
Ã
aH H

(2)
n (τρ) +

j k

τ
Ã
aE H

′(2)
n (τρ)

Ã
aH H

(2)
n (τρ)







or in a more compact form:

Ã
V (ρ) =

√
Z
Ã
M

V
(ρ) ·Ãa (2.37)

Ã
I(ρ) =

√
Y
Ã
M

I
(ρ) ·Ãa (2.38)
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where:

Ã
M

V
(ρ) =







H
(2)
n (τρ) 0

− nχ
τ 2ρ

H
(2)
n (τρ)

j k

τ
H
′(2)
n (τρ)







Ã
M

I
(ρ) =







j k

τ
H
′(2)
n (τρ)

nχ

ρτ 2
H
(2)
n (τρ)

0 H
(2)
n (τρ)







Ã
a =






Ã
aE

Ã
aH






This wave is called centrifugal because it satisfies the radiation condition at ρ→∞. The asymp-
totic expansion of Hankel functions shows clearly that, for τρ À n, this wave has a phase that
(apart from constants) approaches −τρ, typical of an outward travelling wave. Let us compute
the power associated to it:

P =
1

2
<
{Ã
V (ρ, χ, n) ·

Ã
I∗(ρ, χ, n)

}

=
1

2
<
{
Ã
aT ·
Ã
MT

V
(ρ) ·

Ã
M∗

I
(ρ) ·Ãa∗

}

=

=
1

2
<







Ã
aT ·








−j k
τ
H
(2)
n (τρ)H

′(2)∗
n (τρ) 0

0
j k

τ
H
′(2)
n (τρ)H

(2)∗
n (τρ)







·Ãa∗







(2.39)

To simplify this expression, recall that

H
(2)
n H

′(2)∗
n = (Jn − jYn)(J ′n + jY ′n)

= (JnJ
′
n + YnY

′
n) + j(JnY

′
n − J ′nYn)

= (JnJ
′
n + YnY

′
n) + j

2

πτρ

(2.40)

where the Wronskian relation of Bessel functions has been used. In conclusion, noting that the
first term gives no contribution when the real part is taken,

P =
1

πτρ

k

τ

(

|ÃaE|2 + |ÃaH |2
)

(2.41)
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This equation shows clearly that the TM and TE field portions are power-orthogonal. By com-
parison with (2.16), this quantity is 2π times the power per unit spatial bandwidth and per unit
length along a circular arc of radius ρ. This explains why it is measured in Watt, but is inversely
proportional to ρ. If we want to compute the power per unit spatial bandwidth crossing the sur-
face of a cylinder of radius ρ we must multiply P by this radius ρ, obtaining a value, expressed
in W/m−1=Wm, independent of ρ.
It is possible to note that the structure matricesM

V
(ρ) andM

I
(ρ) for each wave type are closely

related. In particular we note the following relations

M
V
(ρ) = R−1 ·M

I
(ρ) ·R (2.42)

M
I
(ρ) = R−1 ·M

V
(ρ) ·R (2.43)

where the matrix R is

R =






0 1

−1 0






which has the properties
R−1 = −R R2 = −U

Instead of the general solution in mixed form (2.31) one could have chosen

Vu(ρ, χ, n) =
←
cE H

(1)
n (τρ) +

Ã
cE H

(2)
n (τρ) (2.44)

I v(ρ, χ, n) =
←
cH H

(1)
n (τρ)

︸ ︷︷ ︸

centripetalwave

+
Ã
cH H

(2)
n (τρ)

︸ ︷︷ ︸

centrifugalwave

(2.45)

The first term in this case is a centripetal wave, i.e. it carries power toward the origin and,
for τρ À n the phase (apart from constants) approaches τρ. This wave cannot exist alone in
a neighborhood of the origin, because it is singular at ρ = 0. In other words, the origin has a
nonzero reflection coefficient. In the following we will always use the decomposition into regular
and centrifugal wave.

2.3 Impedance relations

In this paragraph we will derive the matrix operators that relate voltages and currents in a par-
ticular section ρ = ρ0, for the regular and the centrifugal wave. In other words, their impedance
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relations will be deduced.
In the case of an ordinary (uniform) transmission line this concept tends to be confused with that
of line impedance, which coincides with the forward wave impedance. To be precise, the back-
ward wave has an opposite impedance, but usually the appropriate sign is used directly in the
equations. In the case of a radial line, instead, the impedances of the regular and the centrifugal
wave are completely different and neither can be adopted as “line impedance”. Moreover, they
are functions of ρ due to the intrinsic non uniformity of radial lines.

–Regular wave

The relevant wave impedance
!
Z(ρ) and admittance

!
Y (ρ) are defined by:

!
I =
!
Y (ρ) ·

!
V (2.46)

!
V =
!
Z(ρ) ·

!
I (2.47)

Their explicit form can be deduced combining (2.33) and (2.34):

!
Z(ρ) = Z

!
M

V
(ρ) ·
!
M−1

I
(ρ) (2.48)

!
Y (ρ) = Y

!
M

I
(ρ) ·
!
M−1

V
(ρ) (2.49)

i.e.:

!
Z(ρ) = Z









−jτ
k

Jn(τρ)

J ′n(τρ)
+
jχ n

kτρ

Jn(τρ)

J ′n(τρ)

+
jχ n

kτρ

Jn(τρ)

J ′n(τρ)
+
j k

τ

J ′n(τρ)

Jn(τρ)
− jχ2n2

kτ 3ρ2
Jn(τρ)

J ′n(τρ)









(2.50)

!
Y (ρ) = Y









j k

τ

J ′n(τρ)

Jn(τρ)
− jχ2n2

kτ 3ρ2
Jn(τρ)

J ′n(τρ)
−jχ n
kτρ

Jn(τρ)

J ′n(τρ)

−jχ n
kτρ

Jn(τρ)

J ′n(τρ)
−jτ
k

Jn(τρ)

J ′n(τρ)









(2.51)

Since the matrices
!
M

V
and
!
M

I
have the same determinant (see (2.42)), the matrices appearing

in the expressions of
!
Z and

!
Y have determinant equal to one. This explains why one can be
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obtained from the other by simple element exchanges.
Notice that the regular wave impedance is pure imaginary (for real τ ), in accordance with the
fact that this wave carries no active power. Moreover the origin is a singular point:

lim
ρ→0

!
Z(ρ) = −Z








0 −jχ
k

−jχ
k

∞








for n 6= 0 (2.52)

= −Z






∞ 0

0 0




 for n = 0 (2.53)

–Centrifugal wave

The relevant wave impedance
Ã
Z(ρ) and admittance

Ã
Y (ρ) are defined by:

Ã
I =
Ã
Y (ρ) ·

Ã
V (2.54)

Ã
V =
Ã
Z(ρ) ·

Ã
I (2.55)

As done before, one obtains from (2.37) and (2.38):
Ã
Z(ρ) = Z

Ã
M

V
·
Ã
M−1

I
(2.56)

Ã
Y (ρ) = Y

Ã
M

I
·
Ã
M−1

V
(2.57)

i.e.:

Ã
Z(ρ) = Z











−jτ
k

H
(2)
n (τρ)

H
′(2)
n (τρ)

jχ n

kτρ

H
(2)
n (τρ)

H
′(2)
n (τρ)

jχ n

kτρ

H
(2)
n (τρ)

H
′(2)
n (τρ)

j k

τ

H
′(2)
n (τρ)

H
(2)
n (τρ)

− jχ2n2

kτ 3ρ2
H
(2)
n (τρ)

H
′(2)
n (τρ)











(2.58)

Ã
Y (ρ) = Y











jk

τ

H
′(2)
n (τρ)

H
(2)
n (τρ)

− jχ2n2

kτ 3ρ2
H
(2)
n (τρ)

H
′(2)
n (τρ)

−jχ n
kτρ

H
(2)
n (τρ)

H
′(2)
n (τρ)

−jχ n
kτρ

H
(2)
n (τρ)

H
′(2)
n (τρ)

−jτ
k

H
(2)
n (τρ)

H
′(2)
n (τρ)











(2.59)
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The centrifugal wave impedance is complex in general, but

lim
ρ→∞

Ã
Z(ρ) = Z








τ

k
0

0
k

τ








(2.60)

and hence it is real (for real τ ), in accordance with the fact that this wave carries active power
toward infinity. Notice that the impedance matrices are symmetrical (as a consequence of reci-
procity). Due to the usual sign conventions for voltages and currents, see Figure 2.2, the input

Figure 2.2: Sign convention for radial lines

impedance of an infinite radial line starting at ρ = ρ0 is
Ã
Z(ρ0), while the input impedance of a

length of radial line between the origin and ρ = ρ0 is−
!
Z(ρ0). The two are obviously completely

different.

2.4 Voltage and current propagators

In this section the propagation operators for regular and centrifugal waves are derived. The cor-
responding operators in the case of travelling waves on an ordinary transmission line are just
exponentials.

–Regular wave

Voltage and current propagators are defined by

!
V (ρ) =

!
P
V
(ρ, ρ0) ·

!
V (ρ0) (2.61)

!
I(ρ) =

!
P
I
(ρ, ρ0) ·

!
I(ρ0) (2.62)
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To obtain their explicit expressions, let us recall (2.35) and (2.35) written for the section ρ0, from
which we get:

!
a =
√
Y
!
M −1

V
(ρ0) ·

!
V (ρ0)

!
a =
√
Z
!
M −1

I
(ρ0) ·
!
I(ρ0)

Substituting the values!a in (2.35) and (2.35) written for the section ρ we obtain:

!
V (ρ) =

!
M

V
(ρ) ·
!
M−1

V
(ρ0) ·

!
V (ρ0) (2.63)

!
I(ρ) =

!
M

I
(ρ) ·
!
M−1

I
(ρ0) ·
!
I(ρ0) (2.64)

From comparison with (2.62) we derive

!
P
V
(ρ, ρ0) =

!
M

V
(ρ) ·
!
M−1

V
(ρ0) (2.65)

!
P
I
(ρ, ρ0) =

!
M

I
(ρ) ·
!
M−1

I
(ρ0) (2.66)

Carrying out the matrix multiplications,

!
P
V
(ρ, ρ0) =









Jn(τρ)

Jn(τρ0)
0

nχ

τ 2

[
J ′n(τρ)

ρ0 J ′n(τρ0)
− Jn(τρ)

ρ Jn(τρ0)

]
J ′n(τρ)

J ′n(τρ0)









(2.67)

!
P
I
(ρ, ρ0) =









J ′n(τρ)

J ′n(τρ0)
−nχ
τ 2

[
J ′n(τρ)

ρ0 J ′n(τρ0)
− Jn(τρ)

ρ Jn(τρ0)

]

0
Jn(τρ)

Jn(τρ0)









(2.68)

–Centrifugal wave

Operating in the same way as before, we obtain:

Ã
P
V
(ρ, ρ0) =

Ã
M

V
(ρ) ·

Ã
M−1

V
(ρ0) (2.69)

Ã
P
I
(ρ, ρ0) =

Ã
M

I
(ρ) ·

Ã
M−1

I
(ρ0) (2.70)
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with the explicit expressions:

Ã
P
V
(ρ, ρ0) =











H
(2)
n (τρ)

H
(2)
n (τρ0)

0

nχ

τ 2

[

H
′(2)
n (τρ)

ρ0H
′(2)
n (τρ0)

− H
(2)
n (τρ)

ρH
(2)
n (τρ0)

]

H
′(2)
n (τρ)

H
′(2)
n (τρ0)











(2.71)

Ã
P
I
(ρ, ρ0) =











H
′(2)
n (τρ)

H
′(2)
n (τρ0)

−nχ
τ 2

[

H
′(2)
n (τρ)

ρ0H
′(2)
n (τρ0)

− H
(2)
n (τρ)

ρH
(2)
n (τρ0)

]

0
H
(2)
n (τρ)

H
(2)
n (τρ0)











(2.72)

It is quite useful and interesting to notice that all the propagators satisfy, as one can expect, the
semigroup property:

P (ρ2, ρ0) = P (ρ2, ρ1) · P (ρ1, ρ0) (2.73)

where ρ2 < ρ1 < ρ0.
Moreover it is simple to explain why P

V
and P

i
can be obtained one from the other by simple

element exchange. In fact, recalling (2.42),

P
V
(ρ, ρ0) =M

V
(ρ) ·M−1

V
(ρ0) =

(

T−1 ·M
V
(ρ) · T

)(

T−1 ·M
V
(ρ0) · T

)−1

=

T−1 ·M
I
(ρ) ·M

I
(ρ0) · T = T−1 · P

I
(ρ, ρ0) · T (2.74)

These properties hold for both the regular and the centrifugal wave, hence the arrows have been
omitted.

2.5 Transmission matrix for voltages and currents

At this point we are finally ready to obtain the explicit expression of the fundamental matrix
F (ρ1, ρ2) introduced in section 2.2. Notice that in circuit theory, the fundamental matrix is
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known as the ABCD matrix of a piece of transmission line comprised between ρ = ρ1 and
ρ = ρ2, i.e.






V (ρ1)

I(ρ1)




 =






A(ρ1, ρ2) B(ρ1, ρ2)

C(ρ1, ρ2) D(ρ1, ρ2)











V (ρ2)

I(ρ2)




 (2.75)

Recalling (2.33), (2.34), (2.37), (2.38), let us write the electrical state, expressed in terms of total
voltage and total current, at ρ = ρ1






V (ρ1)

I(ρ1)




 =






√
Z 0

0
√
Y












!
M

V
(ρ1)

Ã
M

V
(ρ1)

!
M

I
(ρ1)

Ã
M

I
(ρ1)












!
a

Ã
a




 (2.76)

and at ρ = ρ2






V (ρ2)

I(ρ2)




 =






√
Z 0

0
√
Y












!
M

V
(ρ2)

Ã
M

V
(ρ2)

!
M

I
(ρ2)

Ã
M

I
(ρ2)












!
a

Ã
a




 (2.77)

Solving (2.77) with respect to (
!
a
Ã
a)T and substituting into (2.76) we get






V (ρ1)

I(ρ1)




 = D







!
M

V
(ρ1)

Ã
M

V
(ρ1)

!
M

I
(ρ1)

Ã
M

I
(ρ1)













!
M

V
(ρ2)

Ã
M

V
(ρ2)

!
M

I
(ρ2)

Ã
M

I
(ρ2)







−1

D−1






V (ρ2)

I(ρ2)




 (2.78)

where the diagonal matrix D is

D =






√
Z 0

0
√
Y




 (2.79)

From this equation, the expression of the ABCD matrix is readily identified.
By carrying out a considerable amount of algebraic manipulations, the following result is ob-
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tained:

A(ρ1, ρ2) =
jπτρ2

4







−Rn(ρ1, ρ2) 0

nχ

ρ1τ 2
Rn(ρ1, ρ2) +

nχ

ρ2τ 2
Qn(ρ1, ρ2) Qn(ρ1, ρ2)







B(ρ1, ρ2) =
jπτρ2

4








τ

jωε
Pn(ρ1, ρ2) − nχ

jωετρ2
Pn(ρ1, ρ2)

− nχ

jωερ1τ
Pn(ρ1, ρ2)

n2χ2

jωετ 3ρ1ρ2
Pn(ρ1, ρ2)−

jωµ

τ
Sn(ρ1, ρ2)








C(ρ1, ρ2) =
jπτρ2

4








n2χ2

jωµτ 3ρ1ρ2
Pn(ρ1, ρ2)−

jωε

τ
Sn(ρ1, ρ2) −

nχ

jωµτρ2
Pn(ρ1, ρ2)

− nχ

jωµρ1τ
Pn(ρ1, ρ2)

τ

jωµ
Pn(ρ1, ρ2))








(2.80)

D(ρ1, ρ2) =
jπτρ2

4







Qn(ρ1, ρ2) −
nχ

ρ1τ 2
Rn(ρ1, ρ2) +

nχ

ρ2τ 2
Qn(ρ1, ρ2)

0 −Rn(ρ1, ρ2)







The terms Pn, Qn, Rn, Sn are combinations of Bessel functions and their derivatives, defined
by [10]:

Pn(ρ1, ρ2) = 2j [Jn(τρ1)Yn(τρ2)− Jn(τρ2)Yn(τρ1)] (2.81)

Qn(ρ1, ρ2) = 2j [J ′n(τρ1)Yn(τρ2)− Jn(τρ2)Y ′n(τρ1)] (2.82)

Rn(ρ1, ρ2) = 2j [Jn(τρ1)Y
′

n(τρ2)− J ′n(τρ2)Yn(τρ1)] (2.83)

Sn(ρ1, ρ2) = 2j [J ′n(τρ1)Y
′

n(τρ2)− J ′n(τρ2)Y ′n(τρ1)] (2.84)
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Taking (2.78) into account, it is straightforward to derive the following obvious property of the
ABCD matrix:






A(ρ1, ρ2) B(ρ1, ρ2)

C(ρ1, ρ2) D(ρ1, ρ2)




 =






A(ρ2, ρ1) B(ρ2, ρ1)

C(ρ2, ρ1) D(ρ2, ρ1)






−1

This property can be used to simplify (2.18). Indeed:

F (ρ, ρ0) · F−1(ρ′, ρ0) = F (ρ, ρ0) · F (ρ0, ρ′) = F (ρ, ρ′) (2.85)

so that

ψ(ρ) = F (ρ, ρ0) · ψ(ρ0) +
∫ ρ

ρ0

F (ρ, ρ′) · s(ρ′)dρ′ (2.86)

2.6 Examples of radial line theory

In this section we consider some basic problems in radial transmission line theory. Their solution,
which illustrates the concepts introduced in the preceding sections, is useful for the construction
of the Green’s functions required in the formulation of the electromagnetic problems described
further on.

2.6.1 Short circuited line

Consider a radial line comprised between ρ = ρ1 and ρ = ρ2, loaded by a short circuit in ρ = ρ1,
as shown in Figure 2.3. The input admittance Y

in
is required.

Using the transmission matrix (2.75) we can write:





V (ρ1)

I(ρ1)




 =






0

I(ρ1)




 =






A(ρ1, ρ2) B(ρ1, ρ2)

C(ρ1, ρ2) D(ρ1, ρ2)




 ·






V (ρ2)

I(ρ2)




 (2.87)

where V (a) is equal to zero because it is the voltage on the short-circuit. From the first line of
the above relation we obtain

I(ρ2) = −B−1(ρ1, ρ2) · A(ρ1, ρ2)V (ρ2) (2.88)
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Figure 2.3: Short circuited radial line: case 1

Then the input admittance (i.e. looking toward the origin) at ρ = ρ2 is:

Y
in

= B−1(ρ1, ρ2) · A(ρ1, ρ2) (2.89)

that is, explicitly:

Y
in

= Y









−k
τ

Rn(ρ1, ρ2)

Pn(ρ1, ρ2)
+
jχ2n2

kτ 3ρ22

Qn(ρ1, ρ2)

Sn(ρ1, ρ2)

j nχ

kτ ρ2

Qn(ρ1, ρ2)

Sn(ρ1, ρ2)

j nχ

kτ ρ2

Qn(ρ1, ρ2)

Sn(ρ1, ρ2)

jτ

k

Qn(ρ1, ρ2)

Sn(ρ1, ρ2)









(2.90)

We recall that Y =
√

ε/µ is the medium wave admittance.

If the short circuit is located at ρ = ρ2, as in Figure 2.4, we can proceed as before, obtaining

r

1
r

I

1
r

V

2
r

I

1
r 2

r

Figure 2.4: Short circuited radial line: case 2

Y
in

= Y









jk

τ

Rn(ρ2, ρ1)

Pn(ρ2, ρ1)
− jχ2n2

kτ 3b2
Qn(ρ2, ρ1)

Sn(ρ2, ρ1)
−j nχ
kτ a

Qn(ρ2, ρ1)

Sn(ρ2, ρ1)

−j nχ
kτ a

Qn(ρ2, ρ1)

Sn(ρ2, ρ1)
−jτ
k

Qn(ρ2, ρ1)

Sn(ρ2, ρ1)









(2.91)

Note the minus sign at the beginning and the exchange ρ1 ←→ ρ2 in the quantities Pn etc.
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2.6.2 Junction between different lines

Consider the junction between the two radial lines of Figure 2.5. The first, between ρ = ρ2 and
ρ = ρ3 refers to a dielectric medium with permittivity εr2; the second is of infinite length and
refers to a dielectric medium with permittivity εr3. The input admittance Y

in
is required.

r

e
r2

e
r3

2
r

I

2
r

V

2
r

3
r

Figure 2.5: Junction between different lines

The circuit can be modified as shown in Figure 2.6. The first transmission line length is described

),( 32 rr÷÷
ø

ö
çç
è

æ

DC

BA

2rI

2rV

3rI

3rV

3r
Y

Figure 2.6: Equivalent description of the circuit of fig.2.5

via its ABCD matrix, which is given by (2.80) with εr = εr2. The second line is represented by its
input admittance Y

ρ3
. On this line, only the centrifugal wave is present, so Y

ρ3
can be obtained

from (2.59) with ρ = ρ3 and εr = εr3.
The electrical state at ρ = ρ2 can by obtained by






V ρ2

I ρ2




 =






A(ρ2, ρ3) B(ρ2, ρ3)

C(ρ2, ρ3) D(ρ2, ρ3)




 ·






V ρ3

I ρ3




 (2.92)

with:

I ρ3 = Y
ρ3
· V ρ3

(2.93)
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By eliminating V ρ3
between the two equations above, we obtain:

I ρ2 =
[
C(ρ2, ρ3) +D(ρ2, ρ3)

]
·
[
A(ρ2, ρ3) +B(ρ2, ρ3)

]−1 · V ρ2
(2.94)

i.e.

Y
in

=
[
C(ρ2, ρ3) +D(ρ2, ρ3)

]
·
[
A(ρ2, ρ3) +B(ρ2, ρ3)

]−1 (2.95)

2.7 Properties of the admittance matrix

In this section some symmetry and electromagnetic properties of the admittance matrix (2.90)
will be deduced. It can be shown that also the other admittances of the preceding paragraph have
the same characteristics.
For the reader’s convenience, the explicit expression of (2.90) is here reported:

Y (χ, n) =

√
εr1
µ

[

Yuu Yuv

Yvu Yvv

]

where

Yuu = −j k
τ

Jn(τρ1)Y
′
n(τρ2)− J ′n(τρ2)Yn(τρ1)

Jn(τρ1)Yn(τρ2)− Jn(τρ2)Yn(τρ1)
+
jχ2n2

kρ22τ
3

J ′n(τρ1)Yn(τρ2)− Jn(τρ2)Y ′n(τρ1)
J ′n(τρ1)Y

′
n(τρ2)− J ′n(τρ2)Y ′n(τρ1)

Yuv = Yvu =
jnχ

kρ2τ

J ′n(τρ1)Yn(τρ2)− Jn(τρ2)Y ′n(τρ1)
J ′n(τρ1)Y

′
n(τρ2)− J ′n(τρ2)Y ′n(τρ1)

Yvv =
jτ

k

J ′n(τρ1)Yn(τρ2)− Jn(τρ2)Y ′n(τρ1)
J ′n(τρ1)Y

′
n(τρ2)− J ′n(τρ2)Y ′n(τρ2)

From the above equations, one notes that the diagonal elements of Y (χ, n) are even functions of
χ and n, while the off-diagonal ones are odd functions of χ and n.
Moreover from a direct computation one obtains the following behavior for χρ1 À n:

Yuu(χ, n) ∼
1

χ

(

jωεr1 −
j n2

ωµ ρ22

)

(2.96)

Yuv(χ, n) ∼
2

ωµ ρ2
(2.97)

Yvv(χ, n) ∼
−2j
ωµχ

(2.98)
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and for nÀ τρ2:

Yuu(χ, n) ∼ n

(
jωεr1
τ
− j

ωµ ρ22

)

(2.99)

Yuv(χ, n) ∼
jβ

ωµ ρ2τ
(2.100)

Yvv(χ, n) ∼
jτ

ωµn
(2.101)

It is known from circuit theory that the imaginary part of the eigenvalues of the impedance matrix
of any reactive load is an increasing monotone function of frequency, [11]. It is interesting to
note that this law is still valid for this particular kind of transmission lines, this fact enhances the
circuit interpretation carried on until now. To illustrate the property, Figure 2.7 shows a plot of
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Figure 2.7: Imaginary part of the eigenvalues λ1 and λ2 of Z(χ = 0, n) versus frequency for
n = 0

the imaginary part of the eigenvalues of Zuu in the case ρ1 = 8 mm, ρ2 = 20.65 mm and χ = 0

for n = 0.
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2.8 Limited cross-section radial waveguides

In this chapter we have developed the radial transmission line theory in the case of a radial
waveguide with unlimited cross-section (ϕ, z) ∈ [0, 2π) × (−∞,∞). We have seen in Section
2.2 that voltage and current are essentially the Fourier transform of the transverse (with respect
to ρ̂) electric and magnetic fields.
The relationship can be written in vector form as

E t(ρ, ϕ, z) =
∑

n

∫

<

K
∞
(ϕ, z;n, χ) ·BT · V (ρ, n, χ)dχ (2.102)

H t(ρ, ϕ, z)× ρ̂ =
∑

n

∫

<

K
∞
(ϕ, z;n, χ) ·BT · I(ρ, n, χ)dχ (2.103)

with the inverses

V (ρ, n, χ) =

∫ 2π

0

∫

<

K∗

∞
(ϕ, z;n, χ) ·B · E t(ρ, ϕ, z)dzdϕ (2.104)

I(ρ, n, χ) =

∫ 2π

0

∫

<

K∗

∞
(ϕ, z;n, χ) ·B · (H t(ρ, ϕ, z)× ρ̂) dzdϕ (2.105)

where the matrix B performs the base change from ẑ, ϕ̂ to û, v̂ and is given by

B = (ûẑ + v̂ϕ̂) (2.106)

The kernel is

K
∞
(ϕ, z;n, χ) =

1

4π2
e−jnϕe−jχz(ϕ̂ϕ̂+ ẑẑ) (2.107)

with the subscript making reference to the unlimited cross section. The constants have been
chosen so that

∑

n

∫

<

K
∞
(ϕ, z;n, χ) ·K∗

∞
(ϕ′, z′;n, χ)dχ =

1

4π2
δ(ϕ− ϕ′)δ(z − z′)(ϕ̂ϕ̂+ ẑẑ) (2.108)

Radial waveguides may have limited cross section −s/2 < z < s/2 and −α
2
< ϕ < α

2
because

suitable perfectly conducting planes, parallel to coordinate planes, have been introduced. It is
well known that the consequence of the introduced limitations is just a quantization of the spectral
variables, with slight changes in the kernels, while the transmission line theory developed in this
chapter does not require any modification. In the following, we show that exploiting (2.107) we
can deduce the relevant kernels.
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2.8.1 Half-space waveguide

The domain of this waveguide is defined by

z ≥ 0 (2.109)

0 ≤ α < 2π (2.110)

The presence of a metal plate in z = 0 introduces the boundary conditions:

Eϕ(ρ, ϕ, 0) = 0 (H t(ρ, ϕ, 0)× ρ̂)ϕ = 0 (2.111)
∂

∂z
E z(ρ, ϕ, 0) = 0

∂

∂z
(H t(ρ, ϕ, 0)× ρ̂)z = 0 (2.112)

In general, the relation between Eϕ and V v must be of the form

Eϕ(ρ, ϕ, z) =
∑

n

∫

<

Kϕϕ(ϕ, z;n, χ)Vv(ρ, n, χ)dχ (2.113)

The boundary condition (2.112) is certainly satisfied if

Kϕϕ(ϕ, 0;n, χ) = 0 (2.114)

Exploiting (2.107) we find that the χ variable is limited to positive values. Moreover, we con-
struct Kϕϕ in terms of K∞(ϕ, z;n,±χ) as

Kϕϕ(ϕ, z;n,m) = C sin (χz) e−jnϕ (2.115)

In view of (2.108) we find C = 2/π.
As for Kzz(ϕ, z;n, χ), we proceed in a similar way and find that the complete kernel is:

K(ϕ, z;n,m) =
e−j nϕ

4π2
· [sin (χz) ϕ̂ϕ̂+ cos (χz) ẑẑ] (2.116)

2.8.2 Parallel plate waveguide

The domain of this waveguide is defined by

−s
2
< z <

s

2
(2.117)

0 ≤ α < 2π (2.118)
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This is the type of radial waveguide that will be used in Chapter 9.
The presence of two metal plates in z = ±s/2 introduces the boundary conditions:

Eϕ(ρ, ϕ,±
s

2
) = 0

(

H t(ρ, ϕ,±
s

2
)× ρ̂

)

· ẑ = 0 (2.119)

∂

∂z
Ez(ρ, ϕ,±

s

2
) = 0

∂

∂z

(

H t(ρ, ϕ,±
s

2
)× ρ̂

)

· ϕ̂ = 0 (2.120)

In general, the relation between Eϕ and Vv must be of the form

Eϕ(ρ, ϕ, z) =
∑

n

∫

<

Kϕϕ(ϕ, z;n, χ)Vv(ρ, n, χ)dχ (2.121)

The boundary condition (2.120) is certainly satisfied if

Kϕϕ(ϕ,±
s

2
;n, χ) = 0 (2.122)

Exploiting (2.107) we find that the χ variable is discretized and can take on only the values

χm =
mπ

s

with m = 0, 1, 3, . . .. Moreover, we construct Kϕϕ in terms of K∞(ϕ, z;n,±χm) as

Kϕϕ(ϕ, z;n, χm) = C sin
(mπz

s
+
mπ

2

)

(2.123)

In view of (2.108) we find C = 1/(πs).
As for Kzz(ϕ, z;n, χ), we proceed in a similar way and find that the complete kernel is

K(ϕ, z;n, χm) =
e−j nϕ

π s εm
·
[

sin
(mπ z

s
+
mπ

2

)

ϕ̂ϕ̂+ cos
(mπ z

s
+
mπ

2

)

ẑẑ
]

(2.124)

where εm is the Neumann symbol.

2.8.3 Wedge waveguide

The domain of this waveguide is defined by

−∞ < z <∞ (2.125)

−α
2
< ϕ <

α

2
(2.126)

The presence of two metal plates in ϕ = ±α/2 implies the boundary conditions:

∂

∂ϕ
Eϕ(ρ,±

α

2
, z) = 0

∂

∂ϕ

(

H t(ρ,±
α

2
, z)× ρ̂

)

· ẑ = 0 (2.127)

Ez(ρ, ϕ, z) = 0
(

H t(ρ, ϕ,±
s

2
)× ρ̂

)

· ϕ̂ = 0 (2.128)



2.8 Limited cross-section radial waveguides 35

In general, the relation between Ez and Vu must be of the form

Ez(ρ, ϕ, z) =
∑

n

∫

<

Kzz(ϕ, z;n, χ)Vu(ρ, n, χ)dχ (2.129)

The boundary condition (2.128) is certainly satisfied if

Kzz(±
α

2
, z;n, χ) = 0 (2.130)

Exploiting (2.107), it is convenient to turn n into the continuous variable ν, which becomes
discrete on enforcing the boundary conditions and can take on only the values (generally non
integer)

νn =
nπ

α
with n = 0, 1, 3, . . .. Moreover, using K∞(ϕ, z;±νn, χ), we construct

Kzz(ϕ, z;n, χ) = C sin
(nπϕ

α
+
nπ

2

)

e−j χ z (2.131)

The constant C is fixed by (2.108): C = 1/(πα).
As for Kϕϕ(ϕ, z;n, χ), we proceed in a similar way and find that the complete kernel is

K(ϕ, z;n, χ) =
e−j χ z

π α εn
·
[

sin
(nπ ϕ

α
+
nπ

2

)

ẑẑ + cos
(nπ ϕ

α
+
nπ

2

)

ϕ̂ϕ̂
]

(2.132)

where εn is the Neumann symbol.

2.8.4 “Rectangular” waveguide

The domain of this waveguide is defined by

−s
2
< z <

s

2
(2.133)

−α
2
< ϕ <

α

2
(2.134)

The term “rectangular waveguide” is to be interpreted, in the context of the radial setting. The
geometry is separable and the kernel can be written down by inspection on the basis of the cases
previously considered:

K(ϕ, z;n,m) =
4

s α εm εn
·
[

sin
(nπ ϕ

α
+
nπ

2

)

cos
(mπ z

s
+
mπ

2

)

ẑẑ+

+ cos
(nπ ϕ

α
+
nπ

2

)

sin
(mπ z

s
+
mπ

2

)

ϕ̂ϕ̂
]

(2.135)
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2.8.5 Phase Shift Wall (PSW) waveguide

The domain of this waveguide is defined by

−L
2
< z <

L

2
(2.136)

0 ≤ α < 2π (2.137)

In this case, the planes in z = ±L/2 are not actual metal plates but geometrical surfaces for
which the boundary conditions are

E(ρ, ϕ, L/2) = e−jkz0LE(ρ, ϕ,−L/2)
H(ρ, ϕ, L/2) = e−jkz0LH(ρ, ϕ,−L/2) (2.138)

where kz0 is an arbitrary real or complex constant. This is a standard method to reduce the study
of an infinite periodic structure to the central cell only. In this case the kernel K(ϕ, z;n, χ) has
to pseudoperiodic, i.e.

K(ϕ,L/2;n, χ) = e−jkz0L K(ϕ,−L/2;n, χ) (2.139)

Floquet theorem [12] implies that the χ spectral variable is discretized and the allowed values
are

χm = kz0 +m
2π

L
The kernel is given in this case by

K(ϕ, z;n,m) =
1

4π2
e−jnϕe−jχmz(ϕ̂ϕ̂+ ẑẑ) (2.140)

The modes of the PSW waveguide are known as Floquet modes.

2.9 Conclusions

In the next chapters two scattering problems in cylindrical geometry will be addressed: a leaky
coaxial cable (chapter 3, 4 and 5) and a ring-loaded stop-band filter (chapter 9). They may
seem very different at first sight, but they will be attacked by the same method, i.e. magnetic
field integral equation. The kernel of that is the Green’s function of the structure and the radial
transmission line theory will be extensively employed in its construction. Moreover, since this
theory permits to give an integral representation of the field radiated by conformal slots, it will
be employed (chapter 7) to derive the electromagnetic properties of the far field of these slots
and of the near field of the relevant array.



Chapter 3

Slotted Coaxial Cables: Transverse
Approach

3.1 Introduction

The idea of controlled energy exchange between the interior of a coaxial cable located in a tunnel
and the surrounding external space through an annular slot in the outer conductor originated from
P. Delogne in 1968 [13]. At that time, the intention was to convey communication signals with
a low specific attenuation inside the cable, and to release the minimum required energy in the
tunnel space by a few slots located at discrete places along the cable, in order to provide com-
munication to mobile receivers located therein. As the radiation process involved is reciprocal,
two-way communications can be established between a base station connected to the cable and
mobile transceivers.
From that time, this idea has been extended in order to provide communication links in many
places, such as subways, underground shops and generally indoor environment. The applica-
tions range from telephone to WiFi and WLAN systems. Also, the operating frequency range
has changed during these years, nowadays there is an increasing interest in the application of this
technology in the GSM and UMTS bands.
Currently available slotted coaxial cables fall mainly in two groups. One is the surface-wave
type, and the other is the leaky-wave type. The former is usually called radiative coaxial cable
(RCX), the latter leaky coaxial cable (LCX). Both RCX and LCX are periodically slotted, the
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most significant difference between them is their pitch, i.e. the separation between adjacent slots.
The pitch of RCX is quite small, so that a guided surface wave is supported on the outside of the
cable. The link is established by a coupling of the receiving antenna to this reactive field. The
pitch of LCX is larger and no surface wave is guided on the outside of the cable. On the contrary
a real radiation takes place, which is conveniently described in terms of a leaky wave.

Slotted coaxial cables have been studied by several researchers. Wait, Hill and Siedel studied
the characteristics of guided waves on helical wire shielded coaxial cables and braided cables
within tunnels [14]. These types of cables are now less attractive because of the large longitudi-
nal attenuation.
Hassan, Delogne and Laloux [15] analyzed axially slotted coaxial cables, which are also known
to have relatively large longitudinal attenuation but are easier to fabricate than the periodically
slotted cables.
Hill and Wait [14], Richmond, Wang and Tran [16] studied coaxial cables with vertical periodic
slots.
Kim, Yun, Park and Yoon [17] analyzed the propagation and radiation properties of coaxial ca-
bles with multi-angle multi-slot configuration.
The analysis techniques employed in these studies have various degrees of accuracy. Some of
them are based on Bethe’s small aperture theory, others adopt some form of mode matching or
exploit the FDTD method. Without exceptions, only the infinite periodically slotted cable is ana-
lyzed, and no consideration is given to the problem of the junction between a closed and a slotted
cable.

As discussed above, a standard application of an LCX is to convey the incident electromag-
netic signals along a tunnel in order to obtain a uniform coverage.
If a cylindrical frame of reference is introduced, where z is the tunnel axis, one is interested in
the properties of the radiated field for specific values of ρ as function of z for an angular sector ϕ
(see Figure 3.1). Certainly, the field in a specific point depends both on the LCX and on the tun-
nel characteristics, so that it would seem necessary to model accurately both of them. Actually,
some work has been done along this line [18].
On the other hand, we should realize that the tunnel walls are rough and lossy, and the tunnel en-
vironment itself has a high degree of randomness related, for instance, to the presence of moving
vehicles. For these reasons, it is reasonable to expect that the reaction of the tunnel environment
on the slotted cable is very weak, so that the two parts of the problem can be decoupled. First,
the radiation of the cable is modeled assuming it is placed in free space; then the presence of
the actual environment is taken into account only on the radiated field, assuming that the slot
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Figure 3.1: Schematic representation of a tunnel with an LCX

excitation is not changed by it. In this thesis, only the first issue is studied.

In this chapter, the problem is attacked by an integral equation technique, and the relevant Green’s
function is constructed by exploiting the radial transmission line theory developed in Chapter 2.
The solution is carried out by the Galerkin method of moments and the slot array is characterized
in terms of its scattering matrix. The formulation is general, and can be applied also to the case
of large slots.
In practical applications, the slots are very thin and the formulation can be simplified.
The numerical solution is carried out by the method of moments, applied directly in the spec-
tral domain. Suitable basis functions are chosen to expand the magnetic current, which describe
accurately the field behavior in the neighborhood of the edges. The results of a convergence
study are described and indications are given for the choice of the parameters of the numerical
method.

3.2 Magnetic Field Integral Equation (HFIE) and its solution

Let us consider a coaxial cable with Nslot rectangular apertures on the external conductor, or-
thogonal to the cable axis, as shown in Figure 3.2. The radii of the inner, outer conductor and of
the external dielectric cover, are denoted by ρ1, ρ2 and ρ3, respectively; εr1 and εr2 are the rel-
ative dielectric permittivities (in general complex) of the internal and external dielectric media;
the width and the angular aperture of the q-th slot (with q = 1, .., Nslot), are sq and αq; the lon-
gitudinal distance between the first slot and the q-th one is Lq. The ohmic losses in the cable are
described by an equivalent loss tangent, which takes approximately into account both dielectric
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Figure 3.2: Slotted coaxial cable

and copper losses.

The scattering problem under consideration is solved by the domain decomposition method. For
this purpose, applying an Equivalence Theorem [19], the apertures are closed by perfect electric
conductors and two magnetic equivalent current distributions J

m1
and J

m2
are placed in ρ = ρ−2

and ρ = ρ+2 , respectively. The support Σslots of these currents coincides with the apertures. The
conductor thickness is assumed negligible, so that the tangential electric field is continuous. By
denoting by E0 the electric field in the slots, the magnetic currents J

m1
and J

m2
are equal in

magnitude but opposite:

J
m1

(ρ, ϕ, z) = (E 0(ϕ, z)× ρ̂)
δ(ρ− ρ2)

ρ

J
m2

(ρ, ϕ, z) = (E 0(ϕ, z)× (−ρ̂)) δ(ρ− ρ2)
ρ

Enforcing the tangential magnetic field continuity in the slots, we obtain the Magnetic Field
Integral Equation (HFIE) of the problem:

H inc(ρ2, ϕ, z) +Hscat
int {Jm}(ρ2, ϕ, z) = Hscat

ext {−J
m
}(ρ2, ϕ, z) for (ϕ, z) ∈ Σslots (3.1)

where Hscat
ext (Hscat

int ) is the scattered tangential magnetic field in the external (internal) region.
H inc is the incident magnetic field, i.e. the one that propagates in the un-slotted cable.
To make (3.1) explicit, we must determine the relation between the magnetic current distribution
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J
m

and the scattered fields (H scat
int , Hscat

ext ), which is in the form of a double convolution integral
due to the invariance of the structure with respect to ϕ− and z−translations (see below). The
kernel of the integral operator, which is the Green’s function of the problem, will be computed
employing the radial transmission line theory developed in Chapter 2.

By adopting the radial point of view, the slotted outer conductor has the form of a grid that
couples two possibly different waveguides. Since, in this case, the inner and the outer part of
the cable are radially represented by identical waveguides (both have no boundaries in the ϕ and
z direction), the scattering problem is of iris type and its equivalent radial circuit is shown in
Figure 3.3.

Figure 3.3: Equivalent radial circuit of the slotted cable

Here, ◦

v(χ, n) is the voltage generator representing the Fourier transform of the magnetic cur-
rent J

m
(ϕ, z), Y

int
(χ, n) and Y

ext
(χ, n) are the equivalent admittance matrices of the internal

and external region of the cable, respectively. The vector currents I 1(χ, n) and I2(χ, n) are the
Fourier transforms of the scattered magnetic fields. Finally, the current generator I inc(χ, n) is
the Fourier transform of the incident magnetic field in ρ = ρ−2 .
Let us compute the current flowing through the voltage generator. By inspection of the circuit:
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∆I(χ, n) = I1(χ, n)− I2(χ, n) =
= I inc(ρ2, χ, n)−

(
Y int(ρ2, χ, n) + Y ext(ρ2, χ, n)

)
· ◦v(χ, n)

This is a typical equation of Wiener-Hopf type. It contains two unknowns, one ( ◦

v(χ, n)) is the
Fourier transform of a function (J

m
(ϕ, z)) with support on the apertures, the other (∆I(χ, n)) is

the Fourier transform of a function (∆H(ϕ, z)) with complementary support. The two functions
are obviously orthogonal in the natural domain, but also in the spectral domain, by Parseval’s the-
orem. In conclusion, the complete formulation of the scattering problem in the spectral domain
is 





∆I(χ, n) = I inc(χ, n)− (Y int(ρ2, χ, n) + Y ext(ρ2, χ, n)) · ◦v(χ, n)

0 =
1

4π2

∑

n

∫ +∞

−∞

∆I(χ, n) · ◦v(χ, n)dχ
(3.2)

Now we take the inverse Fourier transform with respect to χ and n and get







H inc(rho2, ϕ, z)× ρ̂ =
1

4π2

∑

n

∫ +∞

−∞

BT · Y tot(ρ2, χ, n) · ◦v(χ, n) · e−jnϕ e−jχ zdχ

for ρ = ρ2 and (ϕ, z) ∈ Σslots

(3.3)

where B = (ûẑ + v̂ϕ̂) and Y tot(ρ2, χ, n) = Y int(ρ2, χ, n) + Y ext(ρ2, χ, n) is the total load ad-
mittance of the voltage generator.

Let us consider a general multimode field in the coaxial cable, incident on the slots from the
left and from the right. The tangential magnetic field on the wall can be expressed as1:

H inc
tg (ρ2, z, ϕ) = Ȟ

inc

tg (ρ2, z, ϕ) + Ĥ
inc

tg (ρ2, z, ϕ) (3.4)

with

Ȟ
inc

tg (ρ2, z, ϕ) =
∑

i

Y∞ iV̌
inc
i (z1)e−j kz i(z−z1)ȟ

tg

i (ρ2)e
j m(i)ϕ (3.5)

Ĥ
inc

tg (ρ2, z, ϕ) = −
∑

i

Y∞ iV̂
inc
i (z2)ej kz i(z−z2)ĥ

tg

i (ρ2)e
j m(i)ϕ (3.6)

1the subscript“i” is used from here as an index for the i-th mode of the coaxial cable, the azimuthal mode index
m depends on i and therefore it is indicated as m = m(i)
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and

ȟ
tg

i (ρ2) = hϕi(ρ2)ϕ̂+ hzi(ρ2)ẑ (3.7)

ĥ
tg

i (ρ2) = hϕi(ρ2)ϕ̂− hzi(ρ2)ẑ (3.8)

where kz i, Y∞ i, are the propagation constant and modal admittance of the i-th mode of the coax-
ial cable. V̌ inci (z1) and V̂ inci (z2) are incident voltages on the left (z = z1) and on the right (z = z2)
reference planes of the structure.2

The relation between the magnetic current and the voltage generator can be written as

◦

v(χ, n) =

∫ +∞

−∞

∫ 2π

0

B · J
m
(ϕ, z)× ρ̂ ej nϕ ejχ zdϕ dz (3.9)

Substituting into (3.3) and performing first the summation over n and the integration over χ, we
obtain the explicit integral equation of the problem under consideration:







H inc(ρ2, ϕ, z)× ρ̂ =

∫ +∞

−∞

∫ 2π

0

Y tot(ρ2, ϕ− ϕ′, z − z′) · Jm(ϕ
′, z′)dϕ′dz′

for ρ = b and (ϕ, z) ∈ Σslots

(3.10)

where the Green’s function is given by

Y tot(ρ2, ϕ− ϕ′, z − z′) =
1

4π2

∑

n

∫ +∞

−∞

BT · Y tot(ρ2, χ, n) ·B e−jn(ϕ−ϕ
′) e−jχ (z−z

′)dχ(3.11)

Actually, what is relatively simple to determine is the spectral representation Y tot(ρ2, χ, n). On
the contrary, the computation of the Green’s function is numerically very problematic because
of the infinite summation and of the infinite domain integral, both very slowly convergent. How-
ever, the integral equation (3.10) can be solved by the Method of Moments applied directly in
the spectral domain, so that the computation of the Green’s function is not necessary. For this
purpose we introduce a set {uc(z, ϕ)} of vector basis functions in order to expand the unknown
magnetic current distribution:

J
m
(z, ϕ) =

Nf∑

c=1

x cu c(z, ϕ) (3.12)

2From here on the superscriptsˇandˆare related to the left and right reference plane of the structure under
consideration, respectively. Except, of course, for the unit vector
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At this point we do not want to be specific about the details of these basis functions. They could
be defined on the complete slotted cable, or on each slot or else they could be of subdomain type.
This subject will be discussed in Section 3.4. The equations below are valid for each choice.
Combining (3.12) with (3.3) and (3.9) we obtain:

H inc × ρ̂ =

Nf∑

c=1

xc
∑

n

∫ +∞

−∞

e−j χ ze−j nϕB T · Y tot(ρ2, χ, n) ·B · ũ c(χ, n)dχ (3.13)

where ũc(χ, n) is the double Fourier transform of uc(z, ϕ).
Applying the Galerkin version of the Method of Moment, we project (3.13) on u r(z, ϕ), r =

1, . . . , Nf , obtaining:

<
(
H inc × ρ̂

)
, u r >=

Nf∑

c=1

xc
∑

n

∫ +∞

−∞

(ũ∗r(χ, n))
T ·B T · Y tot(ρ2, χ, n) ·B · ũ c(χ, n)dχ(3.14)

where, clearly, the inner product is defined in the ϕ, z domain and the exponential kernel on the
right hand side gives rise to the Fourier transform of the test function. It is convenient to write
this linear system in matrix form:

A · x =
[

B̌ + B̂
]

⇒ x = A−1
[

B̌ + B̂
]

(3.15)

where, the right hand side shows explicitly the contributions of the field incident from the left
and from the right. The moment matrix A has elements

Arc =
∑

n

∫ +∞

−∞

ũ∗r(χ, n) ·B T · Y tot(ρ2, χ, n) ·B · ũ c(χ, n)dχ (3.16)

The two terms on the right hand side are given by

B̌r = <
(

Ȟ
inc × ρ̂

)

, ur >=

= <

Ni∑

i=1

Y∞ iV̌
inc
i (z1)e−j kz i(z−z1)

(

ȟ
tg

i (ρ2)× ρ̂
)

ej m(i)ϕ, ur >=

=

Ni∑

i=1

Y∞ iV̌
inc
i (z1)ej kz iz1

(

ȟ
tg

i (ρ2)× ρ̂
)

· ũ∗r(−kzi,m(i)) (3.17)
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and likewise

B̂r = <
(

Ĥ
inc × ρ̂

)

, ur >=

= <

Ni∑

i=1

Y∞ iV̂
inc
i (z2)e−j kz i(z−z2)

(

ĥ
tg

i (ρ2)× ρ̂
)

ej m(i)ϕ, ur >=

=

Ni∑

i=1

Y∞ iV̂
inc
i (z2)e−j kz iz2

(

ĥ
tg

i (ρ2)× ρ̂
)

· ũ∗r(kzi,m(i)) (3.18)

These expressions can be written more concisely by introducing a matrix formalism. Let us
define the Ni ×Ni diagonal matrices

D
1

= diag
{

e+j kz iz1
}

(3.19)

D
2

= diag
{

e+j kz iz2
}

(3.20)

Y
∞

= diag {Y∞ i} (3.21)

ȟ = diag
{

ȟ
tg

i (ρ2)× ρ̂
}

(3.22)

ĥ = diag
{

ĥ
tg

i (ρ2)× ρ̂
}

(3.23)

and the Ni ×Nf full matrices U−+, U++ with elements:

U−+| r,c = ũ r(−kz c,+m(c))

U++| r,c = ũ r(+kz c,+m(c))

Some of these matrices are abstract in the sense that their elements are vectors. With these
notations, the known term of the linear system is expressed as:

B̌ =
(
U−+

)∗ · ȟ · Y
∞
·D

1
· V̌ inc (3.24)

B̂ =
(
U++

)∗ · ĥ · Y
∞
·D−1

2
· V̂ inc (3.25)

where the amplitudes of the incident modes (TE and TM) have been grouped in the vectors V̂
inc

,
V̌
inc

. In Section 3.3 it will be useful to exploit a direct relation between the incident voltages and
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the magnetic current coefficients. This is easily derived from (3.15) and (3.25):

x = A−1 ·
[

B̌ + B̂
]

(3.26)

= Č · V̌ inc + Ĉ · V̂ inc = C ·
(

V̌
inc

V̂
inc

)

(3.27)

where the matrix C has size Nf × 2Ni.

3.3 Array scattering matrix

Once the linear system is solved, i.e. an approximation of the equivalent magnetic current J
m

in the subspace spanned by the basis functions is obtained, it is possible to compute the field
scattered both inside the cable and outside of it. In this section we will derive the scattering
matrix of the structure for all the modes of the coaxial cable, as well as the power radiated from
the slots.
The equivalent circuit of the slotted cable for the i-th mode is shown in Figure 3.4 where:

v i(z) = < J
m
, hϕ i >=

Nf∑

c=1

xc < ϕ̂ · uc, hϕi > (3.28)

i i(z) = Y ∗
∞ i < J

m
, hz i >= Y ∗

∞ i

Nf∑

c=1

xc < ẑ · uc, hzi > (3.29)

These inner products are integrals defined on the cable cross section. However, since the mag-
netic current support is the wall ρ = b, only the ϕ integral remains. We will first compute the
voltages produced by the generators. Consider the couple of a voltage and a current genera-
tor, located in the point z ′. Applying the superposition principle, the partial voltages at the two
terminal planes z1, z2 are given by

V̌ scati (z 1, z
′) =

1

2

(
vi(z

′)− Z∞ iii(z
′)
)

e−j kz i (z
′−z 1) (3.30)

V̂ scati (z 2, z
′) = −1

2

(
vi(z

′) + Z∞ iii(z
′)
)

e−j kz i (z 2−z′) (3.31)

By substituting the expression of the generators (3.29), integrating with respect to z ′ over the
support of the slots, and recognizing the exponentials

exp(±jkziz′ ± jm(i)ϕ)
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inc

i
V
(

inc

i
V
)

)(zv
i

ẑ

1zz =
2zz =

+ +

)(zi
i

+

Figure 3.4: Equivalent circuit for the i-th mode of the coaxial cable

as Fourier kernels, we get the total scattered voltages:

V̌ scati (z 1) =
1

2
e+j kz i z 1

Nf∑

c=1

xc
[
h∗ϕ i(ρ2)ϕ̂ · ũ c(−kz i,−m(i))− Z∞ iY

∗

∞ i h
∗

z i(ρ2) ẑ · ũ c(−kz i,−m(i))
]

V̂ scati (z 2) = −
1

2
e−j kz i z 2

Nf∑

c=1

xc
[
−h∗ϕ i(ρ2)ϕ̂ · ũ c(kz i,−m(i)) + Z∞ iY

∗

∞ i h
∗

z i(ρ2)ẑ · ũ c(+kz i,m(i))
]

Using the definition (3.8), this expression simplifies in

V̌ scati (z 1) =
1

2
e+j kz i z 1

Nf∑

c=1

xc

[

ĥ
tg∗

i (ρ2) ·W i
· ũc(−kz i,−m(i))

]

V̂ scati (z 2) = −
1

2
e−j kz i z 2

Nf∑

c=1

xc

[

ȟ
tg∗

i (ρ2) ·W i
· ũc(−kz i,−m(i))

]

where the dyadic W
i

is defined by

W
i
= ϕ̂ϕ̂+ (Z∞ iY

∗

∞ i) ẑẑ = ϕ̂ϕ̂+

(
k∗z i
kz i

)

ẑẑ (3.32)

Note that W
i

is the identity in the tangent plane to the cable ϕ̂, ẑ for above cut-off modes (in
the lossless case). Note also that only the TE mode expression of the modal impedance has been
used: indeed, if the incident i mode is TM, the vector ȟ

tg

i (ρ2) has only the ϕ component.
We write now this expression in matrix form. Define the diagonal matrix W , with dyadic ele-
ments:

W = diag{W
i
}
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Then the vectors of the scattered voltages are given by:

V̌
scat

=
1

2
D
1
· ĥ∗ ·W · (U−−)T · x = M̌

int
· x (3.33)

V̂
scat

= −1

2
D−1
2
· ȟ∗ ·W · (U−−)T · x = M̂

int
· x (3.34)

where the N i × N f matrices M̌
int

and M̂
int

represent the operators which relate the magnetic
current on the slot to the scattered voltages.
Combining Eqs. (3.33), (3.34) and (3.27) we obtain the scattered voltages as a functions of the
incident ones:

V̌
scat

= M̌
i
·
(

Č · V̌ inc + Ĉ · V̂ inc
)

(3.35)

V̂
scat

= M̂
i
·
(

Č · V̌ inc + Ĉ · V̂ inc
)

(3.36)

By introducing power waves to describe the incident and scattered mode amplitudes via the usual
normalizations:

a 1 = Y −1/2
∞
· V̌ inc a 2 = Y −1/2

∞
· V̂ inc

b 1 = Y −1/2
∞
· V̌ scat b 2 = Y −1/2

∞
· V̂ scat

(3.37)

we can obtain the scattering matrix of the slotted cable (with respect to the cable modes):
(

b 1
b 2

)

=

(

S
11

S
12

S
21

S
22

)

·
(

a 1
a 2

)

(3.38)

where the submatrices have the expressions:

S
11

= Y 1/2
∞
· M̌

int
· Č · Y −1/2

∞
(3.39)

S
12

= Y 1/2
∞
· M̌

int
· Ĉ · Y −1/2

∞
+D−1

2
·D

1
(3.40)

S
21

= Y 1/2
∞
· M̂

int
· Č · Y −1/2

∞
+D−1

2
·D

1
(3.41)

S
22

= Y 1/2
∞
· M̂

int
· Ĉ · Y −1/2

∞
(3.42)

The term D−1
2
· D

1
, present in S

12
and S

21
accounts for the direct contribution of the incident

voltages.
Even if the dielectric media are lossless, the scattering matrix S is not unitary due to the power
Prad radiated from the slots, which is “lost” from the point of view of the coaxial cable modes.
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The matrix is, however, symmetric because the structure is reciprocal.

To complete the global characterization of the slotted cable, we compute the total radiated power.
To this end we apply the Poynting theorem:

Prad =
1

2

∫

Σ

<{E ×H∗ · ρ̂}dΣ =
b

8π2
<
{
∑

n

∫

<

V (ρ2, χ, n) · I∗(ρ2, χ, n)dχ
}

=

=
b

8π2

∑

n

∫ k0

−k0

◦

v∗(χ, n) · <{Y ext(ρ2, χ, n)} · ◦v(χ, n) dχ =

=
b

8π2

∑

c,r

x∗rxc
∑

n

∫ k0

−k0

ũ∗r(χ, n) ·B T · <{Y ext(ρ2, χ, n)} ·B · ũ c(χ, n)dχ (3.43)

where Σ is a cylindrical surface flush with the outer conductor ρ = b and k0 is the free space
wavenumber. Parseval theorem has been exploited to convert the surface integral to the spectral
domain.
Note that the integration interval is limited to the visible range, because it is the only one that
gives contribution to the real part. It is to be remarked that the integrals in this equation are the
same occurring in the computation of the Moment matrix A.

3.4 Expansion functions for the magnetic current

The choice of a good set of basis functions is a decisive and delicate step in the numerical
solution of any integral equation by the Method of Moments. It is well known, indeed, that a
poor selection can create various problems (e.g. slow convergence of the numerical solution or
ill conditioning of the Moment Matrix). Moreover, in the problem under consideration, only an
appropriate choice of this set can keep the number of unknowns within reasonable limits.
The type of discontinuity considered (i.e. complete or incomplete rectangular apertures) has a
canonical geometrical shape. This fact suggests the use of entire domain expansion functions,
defined on each slot, instead of sub-domain ones (such as Rao-Wilton-Glisson (RWG), rooftops,
piecewise ones, etc.).
Each slot may have a different width sq and angular dimension αq, in general, but the same
basis functions will be used for all them. The set of basis functions can be generated in the
following way. First, one introduces a set of functions {u t(z, ϕ)} where z and ϕ are normalized
variables belonging to the interval [−1,+1]. Since metallic losses are neglected in this study, it
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is convenient to employ a set of basis functions that satisfy the Meixner edge conditions [20].
Hence, we assume:

u t(z, ϕ) = fm(t)(z)gl(t)(ϕ)ϕ̂+ gl(t)(z)fm(t)(ϕ)ẑ (3.44)

where m(t) and l(t) are suitable index mapping functions. In particular:

fm(z) = Tm(z)
1

√

1− (z)2
(3.45)

gl(ϕ) = Ul(ϕ)
√

1− (ϕ)2 (3.46)

where Tm(z) and Ul(ϕ) are Tchebychev polynomials of first and second kind, respectively. Some
of these functions are plotted in Figures 3.5 and 3.6. The fm functions have a square root
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Figure 3.5: Plot of fn(z) for n = 0, 1, 2, 3

divergence at the domain limits and are therefore useful to expand a current component parallel
to the edge. On the contrary the gl functions go to zero as a square root and are appropriate to
represent current components normal to the edge.
The Fourier transforms of these functions can be evaluated in closed form as [10]

f̃m(χ) = π jmJm(χ)

g̃ l(n) =
π (l + 1)jl

n
Jl(n)
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Figure 3.6: Plot of gn(ϕ) for n = 0, 1, 2, 3

Note that fm(z) and gl(ϕ) are alternatively even and odd real functions, which implies that their
Fourier transforms are real even or imaginary odd functions, respectively.
Some of these transforms are plotted in Figures 3.7 and 3.8.
Then, for the q-th slot, one defines the specific subset Uq:

Uq =
Ntot⋃

t=1

{u t(2zq/sq, 2ϕ/αq)} (3.47)

where zq is defined with respect to the local reference system, centered on the q-th slot andNtot =

2NfϕNfz, where Nfϕ, Nfz denote the numbers of functions used to expand the two components.
If the origin of the global reference system is centered on the first slot, then zq = z − Lq and the
total set U of basis functions is defined as [21]:

U =

Nslot⋃

q=1

Uq =

Nslot⋃

q=1

Ntot⋃

t=1

{u t(2(z − Lq)/sq, 2ϕ/αq)} (3.48)

In section 5.5 the eigenfunctions of the admittance operator related to one slot are numerically
computed using as basis functions, for the ϕ-dependence, weighted Chebyshev polynomials of
the second kind and piecewise linear functions. For the sake of completeness the relevant ex-
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Figure 3.7: Plot of f̃m(χ) for m = 0, 1, 2, 3

pressions of the elements of this last set are here reported:

gl(ϕ) =







1 + ϕ−ϕ l

∆
−∆ ≤ ϕ− ϕ l ≤ 0

1− ϕ+ϕ l

∆
0 ≤ ϕ+ ϕ l ≤ ∆

with l = 1, . . . , N fϕ (3.49)

where the centers of the triangles are ϕ l =
lα

1+N fϕ
− α

2
and the semi-width ∆ = α

N fϕ+1
.

The Fourier Transform of gl(ϕ) is:

g̃l(n) = e nϕl
2

n2∆
(1− cosn∆) (3.50)

3.5 Simplifying assumptions

Slotted cables are always designed to be single mode in the frequency band of interest, then the
incident field on each slot can be assumed to be TEM only:

H inc(ρ2, ϕ, z) = I inc(z)hϕ(ρ2, ϕ)ϕ̂ = I inc(z)
1

ρ2
√

2π ln(ρ1/ρ2)
ϕ̂

Also, in the standard application of this kind of antennas, the slots are very narrow in comparison
with the free-space wavelength λ0 (i.e. sq < λ0/10 with q = 1, .., Nslot). This fact suggests a
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Figure 3.8: Plot of g̃ l(n) for l = 0, 1, 2, 3

simplification in (3.14), i.e. we can assume that the equivalent magnetic current distribution J
m

has a negligible z-component:

J
m
' Jmϕϕ̂⇐⇒ ◦

v(χ, n) ' ◦

vu(χ, n)û (3.51)

This assumption, widely employed in literature, has been also numerically verified by means of
numerical experiments.

Hence,only ϕ̂ directed vector basis functions are used. Equation 3.14 assumes the following
form:

< H inc
ϕ , uϕ r >=

∑

c

xc
∑

n

∫ +∞

−∞

u∗ϕ r(χ, n)Y
tot
uu (χ, n)ũϕ c(χ, n)dχ

< H inc
z , uz r >= 0 =

∑

c

xc
∑

n

∫ +∞

−∞

u∗z r(χ, n)Y
tot
vu (χ, n)ũϕ c(χ, n)dχ

(3.52)

where it has been taken into account that the incident field has no ẑ component. For the reader’s
convenience we report here the explicit expressions of Y tot

uu and Y tot
vu , in the case the dielectric
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cover is neglected, as computed in Section 2.7:

Y int
uu = −jωε1

τ1

Jn(τ1ρ1)Y
′
n(τ1ρ2)− J ′n(τ1ρ2)Yn(τ1ρ1)

Jn(τ1ρ1)Yn(τ1ρ2)− Jn(τb)Yn(τ1ρ1)
+

jχ2n2

ωµ0ρ22τ
3
1

J ′n(τ1ρ1)Yn(τ1ρ2)− Jn(τ1ρ2)Y ′n(τ1ρ1)
J ′n(τρ1)Y

′
n(τ1ρ2)− J ′n(τ1ρ2)Y ′n(τ1ρ1)

Y int
uv =

j nχ

ωµ0ρ2τ1

J ′n(τ1ρ1)Yn(τ1ρ2)− Jn(τ1ρ2)Y ′n(τ1ρ1)
J ′n(τ1ρ1)Y

′
n(τ1ρ2)− J ′n(τ1ρ2)Y ′n(τ1ρ1)

Y ext
uu =

jωε0
τ

H
′(2)
n (τρ2)

H
(2)
n (τρ2)

− jχ2n2

ωµτ 3ρ22

H
(2)
n (τρ2)

H
′(2)
n (τρ2)

Y ext
vu = − jχ n

ωµτρ2

H
(2)
n (τρ2)

H
′(2)
n (τρ2)

where:

τ1 =
√

k20εr1 − χ2

τ =
√

k20 − χ2

are the radial propagation constants.
For the case of complete slots, since the incidence is ϕ-independent, the basis functions uϕ(ϕ, z)
do not depend on ϕ, then the relevant Fourier transforms are different from zero only for n equal
to zero. Since Y tot

uv is proportional to n, the second equation of (3.52) is automatically satisfied
and the problem is not over-determined. On the contrary, in the general case of incomplete slots,
the second equation is not automatically satisfied, because the transform of the basis functions
ũϕ(χ, n) is non-zero for all n and the problem is over-determined. This fact depends on the
hypothesis that the magnetic current J

m
has only a ϕ component. The usual approach, when the

slot width is very small as in this case, is just to neglect the second equation. Indeed if one should
solve the complete problem, would find that the z component of the unknown magnetic current
distribution is negligible.

It can be useful to write here the expressions of the moment matrix and of the right hand side of
the linear system, in the case of the simplified approach:

A r,c =
∑

n

∫ +∞

−∞

ũ∗t(r)(χ, n; sq(r), αq(r))Y
tot
uu (χ, n)ũt(c)(χ, n; sq(c), αq(c)) e−j χ(Lq(c)−Lq(r)) dχ

B r,1 = −4π2 Y∞hϕ(ρ2)ũ∗t(r)(−k 1, 0; s q(r), α q(r)) e−j k 1(L q(r)−z 1) (3.53)

B r,2 = +4π2 Y∞hϕ(ρ2)ũ
∗

t(r)(+k 1, 0; s q(r), α q(r)) e−j k 1(z 2−L q(r))

Here, ũ t(χ, n; s q, α q) is the double Fourier Transform of the basis function u t(z, ϕ; s q, α q),
constructed as explained in section 3.4.
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3.6 Convergence study for a single slot

In order to study the convergence of the numerical scheme that has been developed up to now,
a LCX with a single slot will be considered. The geometrical and electric characteristics of this
cable are: inner conductor radius a = 3.4 mm, outer conductor radius b = 8.8 mm, slot width
s = 3 mm, relative permittivity εr1 = 1.26 and frequency f = 1 GHz. To distinguish the differ-
ent convergence rates of the subsets fr(z) and gr(ϕ), the best strategy consists in treating first the
particular case of a complete slot, in order to deduce the appropriate number of basis functions
for the z−dependence and subsequently the general case.
Even if the actual unknown of the integral equation is Jm, from an engineering point of view
it is more interesting to study the convergence of the real design parameters, i.e. the scattering
coefficients and the radiated power. They allow an immediate understanding of the electromag-
netic characteristics of these antennas and have also a faster convergence due to their stationary
character (see [22] and [23]).
In Figures 3.9 and 3.10, the reflection and transmission coefficients (in dB) versus Nf are shown
for a LCX with a complete aperture.
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Figure 3.9: Reflection and transmission coefficients versus the number of basis functions for a
complete slot

From the pictures we note that, as it can be expected since k0s ¿ 1, one basis function is suffi-
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Figure 3.10: log10 of the relative error of the reflection and transmission coefficients versus the
number of basis functions for a complete slot

cient to guarantee a good accuracy. This fact fixes the value of Nz to be equal to one. Now, we
must determine Nϕ and the truncation criterion of the n series in (3.53).
For symmetry reasons, the upper and lower limit of the series (3.53) are chosen equal and op-
posite, i.e. ±Nmax. In order to take into account the well known relative convergence phe-
nomenon [24] Nmax and Nϕ have to be chosen together. From an accurate convergence anal-
ysis, it has been shown that an excellent compromise between the number of basis functions
Nϕ and the value of Nmax can be obtained, for not too small values of α, with Nϕ = 3 and
Nmax = d50/αe (with α expressed in radians). It can be shown [25] that, Nmax should be about
three times the value of the first zero after the absolute maximum of g̃ 3(n). As an example, Fig-
ures 3.11 and 3.12 show the reflection and transmission coefficients (in dB) versus Nmax with
Nϕ = 3, for a slot of aperture α = 180◦.
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Figure 3.11: Reflection coefficient of an incomplete slot (α = 180◦) versus the number of terms
of the azimuthal series. Nϕ = 3
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Figure 3.12: Transmission coefficient of an incomplete slot (α = 180◦) versus the number of
terms of the azimuthal series. Nϕ = 3
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Figure 3.13: log10 of the relative error of the reflection and transmission coefficients versus the
number of terms of the azimuthal series. Nϕ = 3



Chapter 4

Slotted Coaxial Cables: Longitudinal
Approach

4.1 Introduction

In chapter 3 an integral equation technique for the computation of the radiated and scattered
electromagnetic field of a generic LCX has been developed. That formulation is rigorous and the
solution is obtained by the Method of Moments in the Galerkin’s form directly in the spectral
domain where the relative Green function is known in closed form.
One of the main limitation of this technique lies in the size of the linear system needed for a
proper representation of the HFIE, which increases linearly with the number of slots. This aspect
represents an obstacle to the application of this method to real LCXs, which often cover wide
zones and contain thousands of slots. On the other hand, the fact that almost always the slots are
identical and arranged in a periodic lattice suggests the use of Bloch wave theory.
The standard approach [26] for the determination of Bloch waves in a periodically loaded closed
waveguide consists first in the computation of the scattering matrix S of the unit cell (see Fig. 4.1
where a and b denote the incident and scattered power waves at the left (port “1”) and right (port
“2”) reference planes of the cell, respectively). Then, the transmission matrix, whose definition
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is recalled in Fig. 4.2, is computed from S via the relations:

T
11

= S−1
21

(4.1)

T
12

= −S−1
21
· S

22
(4.2)

T
21

= S
11
· S−1

21
(4.3)

T
22

= S
12
− S

11
· S−1

21
· S

22
(4.4)

Finally, Bloch waves are determined, in the basis of the waveguide modes, as eigenvectors of T ,

Figure 4.1: Unit cell of a periodic structure described by the generalized scattering matrix. The
standard notation for the power wave amplitudes has been used

Figure 4.2: Unit cell of a periodic structure described by the transmission matrix. The standard
notation for the power wave amplitudes has been used
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whereas the eigenvalues yield the associated phase shifts per cell. This standard approach is not
trivial in our case since the discontinuities are inserted in an open waveguide and the modal spec-
trum of the free space region around the cable is continuous. The unit cell behavior, therefore
can not be described by a matrix relation but requires a scattering operator and the computation
of the transmission operator requires, as it is evident from (4.1), the inversion of the operator
corresponding to S

21
and this aspect, as well known, is in general not trivial. The solution of

this problem is discussed in this chapter.
In order to simplify the exposition, we will proceed in two steps. First, we will address a prob-
lem that is similar to that of LCX but simpler. Essentially, the outer region does not extend to
infinity, but is closed by a metal cylinder. In this way the complete modal spectrum is discrete
and the difficulty is just that several modes may be above cut-off in the two guides. The goal is
to compute the generalized scattering matrix (GSM) of a slot cut in the common wall, for all the
modes of interest and not just for those of the (inner) coaxial cable, as in Section 3.3.

Next, the actual problem of an LCX with a single slot is treated. Also in this case the GSM of
the slot is computed. As mentioned above, the spectrum of the outer waveguide is continuous
and this implies that we have to do with a scattering operator instead of a matrix. Nevertheless,
its computation goes more or less along the same lines as in the case of Section 4.2. However,
if we want to study the simultaneous presence of two or more slots it becomes computationally
necessary to discretize the spectrum of the outer waveguide.
The first idea that comes to mind is just to select a discrete subset of the modal spectrum, com-
posed by a finite number of elements. The method that is actually employed is more refined and
is based on the introduction of a set of expansion functions (of the modal index) to represent the
modal amplitudes. In this way it becomes possible to compute the GSM of the slot and to exploit
the same technique as in Section 4.2. In particular, the Bloch waves of a periodic arrangement
of slots are determined and their characteristics analyzed in detail. Once the Bloch spectrum is
available, we determine the scattering matrix of the junction between an ordinary coaxial cable
and a semi-infinite LCX. This is a result of direct interest also in the case of very long LCX.
Finally, in order to compute the scattering matrix of an LCX consisting of a finite number of
periodic cells, we view the structure as a kind of Fabry-Perot interferometer, consisting of two
junctions, the first unslotted/slotted, the second slotted/unslotted, separated by a number of cells.

The Bloch wave analysis yields in a natural way the generalized scattering matrix of the array.
Two methods can be used for the computation of the radiated field: one is the direct exploitation
of the Bloch wave representation, the other passes through the determination of the magnetic
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currents. Both techniques are discussed in the last section.

4.2 GSM of the coupling slot between two coaxial cables

As an introductory example, let us consider a rectangular aperture which couples two concentric
coaxial cables, as shown in Figure 4.3. The radii of the cylinders are denoted by r1, ρ2 and r3.
The intermediate cylinder is assumed of negligible thickness and serves as the outer conductor of
the inner coaxial and inner conductor of the outer coaxial. The relative permittivities of the two
cables are εr int and εr ext; the width and the angular aperture of the slot are s and α, respectively.
Finally, let z = z 1 and z = z 2 be the left (port “1”) and right (port “2”) reference planes of the
GSM. In this case we have to consider the multimode field incident on the slot along the two

Figure 4.3: Two coaxial cables coupled by an aperture in the common conductor

different waveguides:

H inc
tg int(ρ2, z, ϕ) = Ȟ

inc

tg int(ρ2, z, ϕ) + Ĥ
inc

tg int(ρ2, z, ϕ) (4.5)

H inc
tg ext(ρ2, z, ϕ) = Ȟ

inc

tg ext(ρ2, z, ϕ) + Ĥ
inc

tg ext(ρ2, z, ϕ) (4.6)

The subscripts int and ext will be used to denote the parameters of the internal and external
waveguides. This scattering problem can be solved by slightly modifying the formalism devel-
oped in chapter 3.
In particular, the expression of the kernel Y tot of the moment matrix A is changed since the term
Y ext has to be replaced by the input admittance of a radial line between ρ = ρ2 and ρ = ρ3,
loaded by a short circuit in ρ = ρ3, which has already been computed in Section 2.6. The vectors
B̌ and B̂ have to be generalized in order to take into account the fields incident along the two
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waveguides:

B̌ = B̌ int + B̌ ext (4.7)

B̂ = B̂ int + B̂ ext (4.8)

The elements of these vectors are given by expressions identical to (3.17) and (3.18), where the
suitable propagation constant, modal admittance and mode eigenfunctions of the two waveguides
are used. In compact form, as it has been done in Section 3.2, we obtain:

B̌ int = U−+
int
· ȟ

int
· Y

∞ int
·D

1 int
· V̌ incint (4.9)

B̂ int = U++
int
· ĥ

int
· Y

∞ int
·D−1

2 int
· V̂ incint (4.10)

B̌ ext = U−+
ext
· ȟ

ext
· Y

∞ ext
·D

1 ext
· V̌ incext (4.11)

B̂ ext = U++
ext
· ĥ

ext
· Y

∞ ext
·D−1

2 ext
· V̂ incext (4.12)

Finally, the unknown coefficient vector x is given by:

x = A−1 ·
[

B̌ int + B̌ ext + B̂ int + B̂ ext

]

= (4.13)

= Č
int
· V̌ incint + Ĉ

int
· V̂ incint + Č

ext
· V̌ incext + Ĉ

ext
· V̂ incext = C ·









V̌
inc

int

V̌
inc

ext

V̂
inc

int

V̂
inc

ext









(4.14)

Now the matrixC has size 2Nf×4Ni ifNi is the number of modes considered in each waveguide.
The scattered voltages can be computed as shown in Section 3.3, the only modification being the
sign of the terms, since the magnetic current distributions J

m
are equal and opposite in the two

wave-guides. The scattered voltages for all the modes (TE and TM), can be written in vector
form as:

V̌
scat

int =
1

2
D
1 int
· ĥ∗

int
·W

int
· (U−−

int
)T · x = M̌

int
· x (4.15)

V̂
scat

int = −1

2
D−1
2 int
· ȟ∗

int
·W

int
· (U−−

int
)T · x = M̂

int
· x (4.16)

V̌
scat

ext = −1

2
D
1 ext
· ĥ∗

ext
·W

ext
· (U−−

ext
)T · x = M̌

ext
· x (4.17)

V̂
scat

ext =
1

2
D−1
2 ext
· ȟ∗

ext
·W

ext
· (U−−

ext
)T · x = M̂

ext
· x (4.18)
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where theN int× N f matrices M̌
int

, M̂
int

, M̌
ext

and M̂
ext

represent the operator which relates
the magnetic current on the slot to the scattered voltages. Furthermore, the dyadics W

int
and

W
ext

are defined by

W int = diag{W int
r }

W ext = diag{W ext
r }

where:

W int|r = ϕ̂ϕ̂+

(
k∗z int(r)

kz int(r)

)

ẑẑ

W ext|r = ϕ̂ϕ̂+

(
k∗z ext(r)

kz ext(r)

)

ẑẑ

By introducing power waves to describe the incident and scattered mode amplitudes via the usual
normalization:

a 1 =

(

Y −1/2
∞ int

· V̌ incint
Y −1/2
∞ ext

· V̌ incext

)

a 2 =

(

Y −1/2
∞ int

· V̂ incint
Y −1/2
∞ ext

· V̂ incext

)

b 1 =

(

Y −1/2
∞ int

· V̌ scat

int

Y −1/2
∞ ext

· V̌ scat

ext

)

b 2 =

(

Y −1/2
∞ int

· V̂ scat

int

Y −1/2
∞ ext

· V̂ scat

ext

)
(4.19)

we obtain the scattering matrix of the device (with respect to the cable modes):

(

b 1
b 2

)

=

(

S
11

S
12

S
21

S
22

)

·
(

a 1
a 2

)

(4.20)
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where the submatrices have the following expressions:

S
11

=






Y 1/2
∞ int

· M̌
int
· Č

int
· Y −1/2

∞ int
Y 1/2
∞ int

· M̌
int
· Č

ext
· Y −1/2

∞ ext

Y 1/2
∞ ext

· M̌
ext
· Č

int
· Y −1/2

∞ int
Y 1/2
∞ ext

· M̌
ext
· Č

ext
· Y −1/2

∞ ext






S
12

=






Y 1/2
∞ int

· M̌
int
· Ĉ

int
· Y −1/2

∞ int
+ F

int
Y 1/2
∞ int

· M̌
int
· Ĉ

ext
· Y −1/2

∞ ext

Y 1/2
∞ ext

· M̌
ext
· Ĉ

int
· Y −1/2

∞ int
Y 1/2
∞ ext

· M̌
ext
· Y −1/2

∞ ext
+ F

ext






S
21

=






Y 1/2
∞ int

· M̂
int
· Č

int
· Y −1/2

∞ int
+ F

int
Y 1/2
∞ int

· M̂
int
· Č

ext
· Y −1/2

∞ ext

Y 1/2
∞ ext

· M̂
ext
· Č

int
· Y −1/2

∞ int
Y 1/2
∞ ext

· M̂
ext
· Č

ext
· Y −1/2

∞ ext
+ F

ext






S
22

=






Y 1/2
∞ int

· M̂
int
· Ĉ

int
· Y −1/2

∞ int
Y 1/2
∞ int

· M̂
int
· Ĉ

ext
· Y −1/2

∞ ext

Y 1/2
∞ ext

· M̂
ext
· Ĉ

int
· Y −1/2

∞ int
Y 1/2
∞ ext

· M̂
ext
· Ĉ

ext
· Y −1/2

∞ ext






The N int × N int matrices F
int

and F
ext

represent the direct contribution of the incident volt-
ages:

F
int

= D−1
2 int
·D

1 int

F
ext

= D−1
2 ext
·D

1 ext

It can be proved algebraically that, if the metallic and dielectric losses are neglected, the scat-
tering matrix referring to the above-cut-off modes in the two waveguides (possibly only the two
TEM modes) is unitary. This property depends neither on the number of expansion functions
used nor on the number of azimuthal harmonics taken into account. Moreover, the scattering
matrix is symmetric since the structure is reciprocal and the mode eigenfunctions are real.
Suppose now that the two coaxial cables are coupled throughNslot apertures. Since the scattering
matrix of each slot can be computed as described above, the response of the complete structure
can be obtained by the well known cascading procedure [12]. In the application of this method it
is useful to recall the concept of localized and accessible modes [27]: when two discontinuities
in a waveguide are cascaded, they interact via propagating and evanescent modes. The modes



66 Slotted Coaxial Cables: Longitudinal Approach

whose attenuation over the distance between the two discontinuities is smaller than a predefined
threshold are called accessible, the others localized. Clearly, only the accessible modes are con-
sidered in the cascading, which implies that fairly small matrices need to be manipulated.

4.3 GSM of a radiating slot in a coaxial cable

Let us consider now the case of a slotted coaxial cable with a single aperture. The dielectric
cover of the coaxial outer conductor will be neglected for simplicity. For the reader convenience
a picture of the structure is shown in Fig. 4.4 where s is the slot width, L is the period of the unit
cell and the radii of the inner and outer conductor are denoted by ρ1 and ρ2, respectively. The
left and right reference planes of the unit cell are z = −L/2 and z = L/2, respectively.
Applying the same approach of the preceding paragraph the aperture is considered as coupling

Figure 4.4: Unit cell of a periodic structure of period L, the slot width is s

element between two coaxial waveguides. The first one is the actual coaxial cable, the second one
is the free space region surrounding the outer conductor of the cable. This is an open waveguide,
i.e. its cross section Σ is infinite1. Since the dielectric is homogeneous, its modal spectrum is
continuous [8], and the expressions of the mode eigenfunctions are listed in Table 4.1 where the
modes are labelled by the continuous index τ ∈ (0,∞) and the integer m.

1Σ = {(ρ, ϕ) with ρ > ρ2 and ϕ ∈ [0, 2π]}
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Clearly these modes satisfy the orthonormality condition which, in this case, assumes the fol-
lowing form:

< e(τ,m), h(τ ′,m′)× ẑ >=
∫ 2π

0

∫
∞

ρ2

e(ρ, ϕ; τ,m) ·h∗(ρ, ϕ; τ ′,m′)× ẑ ρdρdϕ = δ(τ−τ ′)δmm′

(4.21)
In order to distinguish the modes of the two different waveguides we will use the subscripts “ int”
and “ ext”, for the internal and external ones, respectively. It is important to remark that, since
the modes of the external guide have a continuous spectrum, the total field for ρ > ρ2 is given
by an integral superposition instead of a standard sum. For example, the ϕ component of the
magnetic field is given by:

Hϕ(ρ > ρ2, ϕ, z) =
∞∑

m=−∞

∫
∞

0

I ext(z; τ, m)hϕ ext(ρ, ϕ; τ,m)dτ

where I ext(z; τ, m) is the current coefficient in the section z for the (τ, m) mode.

We derive now the scattering characteristics of the slot, generalizing the formalism developed in
Sections 3.2 and 4.2. Due to the symmetry of the structure, here we consider only the incidence
from the left reference plane. Moreover since the incidence from the cable has already been
discussed in Section 4.2, here we will focus on the multimode field of the external waveguide
incident on the slot.
The tangential incident magnetic field on the wall can be expressed as:

H inc
ext tg(ρ2, z, ϕ) =

∫
∞

0

∑

m′

Y∞ ext(τ
′,m′) V̌ inc

ext ( τ
′,m′) e−jβ(τ

′)(z+L/2) ȟ
tg

ext(b; τ
′,m′)ej m

′ϕdτ ′(4.22)

where β(τ ′) =
√

k20 − τ ′2 and Y∞ ext(τ
′,m′), are the propagation constant and modal admittance

of the mode (τ ′,m′) of the external waveguide, while V̌ inc
ext (z = −L/2; τ ′,m′) is the correspond-

ing incident voltage on the left (z = −L/2) reference plane of the structure.
Let us compute the right hand side of the linear system and in particular the matrix B̂ ext of (4.14),
while, obviously, the terms B int coincide with (3.17) and (3.18). The explicit expression of the
r-th element of B̂ ext is:

B̌ ext| r = <
(

Ȟ
inc

ext × ρ̂
)

, ur >=

=

∫
∞

0

∑

m′

Y∞ ext(τ
′,m′)V̌ inc

ext (z1; τ
′,m′)ejβ(τ

′)z1
(

ȟ
tg

ext(b; τ
′,m′)× ρ̂

)

· ũ∗r(−β(τ ′),m′)dτ ′
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This expression can be written more concisely applying a matrix formalism as it has been done
for the internal ones. In fact, define the Nm × Nm diagonal matrices:

D
ext

(τ) = diag
{

e−j β(τ)L/2
}

(4.23)

Y
∞ ext

(τ) = diag {Y∞ ext(τ,m)} (4.24)

ȟ
ext

(τ) = diag
{

ȟ
tg

ext(b; τ,m)× ρ̂
}

(4.25)

and the Nm × N f full matrices U−+, U++ with elements:

U−−ext | r,c(τ) = ũ r(−β(τ),−m(c)) (4.26)

U−+ext | r,c(τ) = ũ r(−β(τ),+m(c)) (4.27)

U+−ext | r,c(τ) = ũ r(+β(τ),−m(c)) (4.28)

U++ext | r,c(τ) = ũ r(+β(τ),+m(c)) (4.29)

where Nm represents the number of azimuthal harmonics2. Note that the elements of these ma-
trices are not numbers but functions of the variable τ . The addressing function m(c) is necessary
because m ∈ Z and c is used both for modal and column index. Using this notation, the known
term of the linear system can be expressed as:

B̌ ext =

∫
∞

0

(

U−+
ext

(τ ′)
)∗

· ȟ
ext

(τ ′) · Y
∞ ext

(τ ′) ·D
ext

(τ ′) · V̌ ext(τ
′) dτ ′ (4.30)

The amplitudes of the incident modes (TE and TM) have been grouped in the vector V̌ ext(τ
′).

The vector x of unknown coefficients, solution of the linear system, is given by:

x = A−1 ·
[
B̌ int + B̌ ext

]
= Č

int
· V̌ inc

int +

∫
∞

0

Č
ext

(τ ′) · V̌ inc

ext(τ
′)dτ ′ (4.31)

The size of Č
int

is Nf × Ni, while that of Č
ext

(τ ′) is Nf × Nm.

Once the linear system is solved, the scattered voltages at the reference planes can be com-
puted as shown in the Sections 3.3 and 4.2. In this case, one obtains:

2i.e. m = [−Nm/2 + 1, Nm/2]
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V̌ scat
ext (τ, m) = −1

2
e−jβ(τ)L/2

Nf∑

c=1

xc
[
h∗ϕ ext(b; τ, m)ϕ̂ · ũ c(−β(τ),−m)+

−Z∞ ext(τ,m)Y ∗
∞ ext(τ,m)h∗z ext(b; τ, m) ẑ · ũ c(−β(τ),−m)]

V̂ scat
ext (τ, m) = +

1

2
e−jβ(τ)L/2

Nf∑

c=1

xc
[
−h∗ϕ ext(b; τ, m)ϕ̂ · ũ c(+β(τ),−m)+

+Z∞ ext(τ,m)Y ∗
∞ ext(τ,m)h∗z ext(b; τ, m)ẑ · ũ c(+β(τ),−m)]

In matrix form:

V̌
scat

ext (τ) = −1

2
D
ext

(τ) · ĥ∗
ext

(τ) ·W
ext

(τ) · (U−−
ext

(τ))T · x (4.32)

V̂
scat

ext (τ) = +
1

2
D
ext

(τ) · ȟ∗
ext

(τ) ·W
ext

(τ) · (U+−
ext

(τ))T · x (4.33)

where the dyadic W
ext

is defined by

W
ext

(τ) = ϕ̂ϕ̂+

(
β(τ)∗

β(τ)

)

ẑẑ

Combining (3.33), (3.34), (4.31), (4.32) and (4.33) we obtain the scattered voltages as a function
of the incident ones:

V̌
scat

int = M̌
int
·
[

Č
int
· V̌ inc

int +

∫
∞

0

Č
ext

(τ ′) · V̌ inc

ext(τ
′) dτ ′

]

V̂
scat

int = M̂
int
·
[

Č
int
· V̌ inc

int +

∫
∞

0

Č
ext

(τ ′) · V̌ inc

ext(τ
′) dτ ′

]

V̌
scat

ext (τ) = M̌
ext

(τ) ·
[

Č
int
· V̌ inc

int +

∫
∞

0

Č
ext

(τ ′) · V̌ inc

ext(τ
′) dτ ′

]

V̂
scat

ext (τ) = M̂
ext

(τ) ·
[

Č
int
· V̌ inc

int +

∫
∞

0

Č
ext

(τ ′) · V̌ inc

ext(τ
′) dτ ′

]

where the matrices:

M̌
int

=
1

2
D
int
· ȟ∗

int
·W

int
· (U−−

int
)T (4.34)

M̂
int

= −1

2
D−1
int
· ĥ∗

int
·W

int
· (U+−

int
)T (4.35)

M̌
ext

(τ) = −1

2
D
ext

(τ) · ȟ∗
ext

(τ) ·W
ext

(τ) · (U−−
ext

(τ))T (4.36)

M̂
ext

(τ) =
1

2
D
ext

(τ) · ĥ∗
ext

(τ) ·W
ext

(τ) · (U+−
ext

(τ))T (4.37)
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represent, physically, the linear operators that relate the equivalent magnetic current distributions
to the scattered mode voltages. Their dimensions are Ni× Nf and Nm× Nf for M̌

int
, M̂

int
and

M̌
ext

(τ), M̂
ext

(τ), respectively.

By introducing power waves to describe the incident and scattered mode amplitudes via the
usual normalization:

ǎ int = Y 1/2
∞ int
· V̌ incint ǎ ext(τ) = Y 1/2

∞ ext
(τ) · V̌ incext(τ)

b̌ int = Y 1/2
∞ int
· V̌ scatint b̂ int = Y 1/2

∞ int
· V̂ scatint

b̌ ext(τ) = Y 1/2
∞ ext

(τ) · V̌ scatext (τ) b̂ ext(τ) = Y 1/2
∞ ext

(τ) · V̂ scatext (τ)

(4.38)

we obtain:

b̌ int = M̌
int
· Č

int
· ǎ int + Y 1/2

∞ int
· M̌

int
·
∫
∞

0

Č
ext

(τ ′) · Y −1/2
∞ ext

(τ ′) · ǎ ext(τ ′) dτ ′ (4.39)

b̂ int =
(

M̂
int
· Č

int
+ F

int

)

· ǎ int + Y 1/2
∞ int
· M̂

int
·
∫
∞

0

Č
ext

(τ ′) · Y −1/2
∞ ext

(τ ′) · ǎ ext(τ ′) dτ ′(4.40)

b̌ ext(τ)=Y
1/2

∞ ext
(τ) · M̌

ext
(τ) ·

(

Č
int
· Y −1/2

∞ int
· ǎ int +

∫
∞

0

Č
ext

(τ ′) · Y −1/2
∞ ext

(τ ′)ǎ ext(τ
′) dτ ′

)

(4.41)

b̂ ext(τ) = Y 1/2
∞ ext

(τ) · M̂
ext

(τ) ·
(

Č
int
· Y −1/2

∞ int
· ǎ int +

∫
∞

0

Č
ext

(τ ′) · Y −1/2
∞ ext

(τ ′) · ǎ ext(τ ′) dτ ′
)

+

+ F
ext

(τ) · ǎ ext(τ) (4.42)

where the matrices F
int

(with size N int × N int) and F
ext

(τ) (with size Nm × Nm) take into
account the direct contribution of the incident voltages and are defined by:

F
int

= diag{e−jkz int(c)L}

F
ext

(τ) = diag{e−jβ(τ)L}

It can be noted from (4.39), (4.40), (4.41) and (4.42) that, due to the continuous spectrum of the
external modes, the incident and scattered power waves are not related by a matrix relation, but by
an integral operator. Hence, even the determination of the transmission operator is complicated
because it requires the solution of an integral equation. It is clearly necessary to adopt a numerical
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technique, based on a discretization of the spectrum.
The easiest approach could be to define a grid of points τq in the range 0 < τq < ∞ and then to
consider only the corresponding modes. To give a sounder physical background, we could select
the τq coincident with the cut-off wave-numbers of a virtual coaxial cable, with inner conductor
of radius b and outer conductor of very large radius R. It is clear, however, that it is contradictory
to model free-space by a box, and moreover, the number of modes to be taken into account could
be impractical if the outer radius R is very large.
We follow therefore another approach, more in line with the usual solution of integral equations
by the Method of Moments, which was already suggested in [28] and [29] to study waveguide
gratings for optical applications. In order to have a clear idea of the method, let us first analyze
the simple case of the scalar relation

b(τ) =

∫
∞

0

Γ(τ, τ ′)a(τ ′)dτ ′ (4.43)

This equation models, for instance, the plane wave reflection from a 2D rough surface, with τ ′

and τ denoting the transverse wavevectors of the incident and scattered plane wave. To discretize
this relation and define a scattering matrix, let us introduce an orthonormal set of basis functions
{l c(τ)}, with c = 1, . . . , Nτ to represent, in weak form, the power wave amplitudes of the
continuous spectrum modes:

a(τ) '
Nc∑

c=1

a c l c(τ) = l(τ) · a (4.44)

b(τ) '
Nc∑

c=1

b c l c(τ) = l(τ) · b (4.45)

where the expansion functions have been collected in the 1×Nτ row vector l(τ)

l(τ) =
(

l1(τ) l2(τ) . . . lNτ
(τ)

)

and the expansion coefficients have been collected in the Nτ × 1 column vectors a, b. Also, the
same symbol is used on the left hand side to denote a function of τ and on the right hand side to
denote the associated set of coefficients.
Note that we use the same basis {l n(τ)} for the incident and scattered waves. This fact is not
imperative, but is useful in order to simplify the notation.
Besides the expansion functions we introduce also a set of test functions {hr(τ)}, with r =

1, . . . , Nτ and the corresponding 1×Nτ row vector h(τ)

h(τ) =
(

h1(τ) h2(τ) . . . hNτ
(τ)

)
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Next we denote the projection operation by

< f(τ), g(τ) >=

∫
∞

0

f(τ)g∗(τ)dτ

Now we substitute the expansions of (4.45) into (4.43) and take projections of both sides onto
h(τ):

< hT , l > ·b =
∫
∞

0

< hT (τ), Γ(τ, τ ′)l(τ ′) > dτ ′ · a (4.46)

Our goal is reached if we define the Nτ ×Nτ square matrices K and Γ

K =< hT , l >=

∫
∞

0

h∗T (τ)l(τ)dτ

and
Γ =< hT (τ), Γ(τ, τ ′)l(τ ′) >=

∫
∞

0

∫
∞

0

h∗T (τ)Γ(τ, τ ′)l(τ ′)dτ dτ ′

so that
b = K−1 · Γ · a = S · a

We may say that the scattering matrix S represents the operator (4.43) in the subspace spanned
by {l c(τ)} and {hr(τ)}. It is useful to remark that if the sets {h n(τ)} and {ln(τ)} are bi-
orthonormal, then the matrix K reduces to the identity matrix.
Now we are prepared to apply the discretization method to the case of (4.39), (4.40), (4.41) and
(4.42). This is more complicated because there are two waveguides. Moreover, the modes of
the free space region surrounding the outer conductor are labelled not only by the continuous
variable τ , but also by the discrete index m. The index m does not appear explicitly in (4.39),
(4.40), (4.41) and (4.42) but is taken into account via the vector notation.
Let us start by representing the power wave amplitudes of the continuous spectrum modes in the
basis {l c(τ)}:

b̌ ext(τ)|q =
∑

n

b̌ ext| q,n ln(τ) (4.47)

b̂ ext(τ)|q =
∑

n

b̂ ext| q,n ln(τ) (4.48)

ǎ ext(τ)|q =
∑

n

ǎ ext| q,n ln(τ) (4.49)

These equations can be written in compact form as:

b̌ ext(τ) = L(τ) · b̌ ext (4.50)

b̂ ext(τ) = L(τ) · b̂ ext (4.51)

ǎ ext(τ) = L(τ) · ǎ ext (4.52)
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with the definition of the Nm ×NmNτ matrix

L(τ) =






l(τ) . . . 0
... . . . ...
0 . . . l(τ)






Substituting these expansions into (4.39), (4.40), (4.41) and (4.42) we obtain:

b̌ int = M̌
int
· Č

int
· ǎ int + Y 1/2

∞ int
· M̌

int
·
∫
∞

0
Č
ext

(τ ′) · Y −1/2
∞ ext

(τ ′) · L(τ ′) · ǎ ext dτ ′

b̂ int =
(

M̂
int
· Č

int
+ F

int

)

· ǎ int + Y 1/2
∞ int
· M̂

int
·
∫
∞

0
Č
ext

(τ ′) · Y −1/2
∞ ext

(τ ′) · L(τ ′) · ǎ ext dτ ′

L(τ) · b̌ ext = Y 1/2
∞ ext

(τ) · M̂
ext

(τ) · Č
int
· Y −1/2

∞ int
· ǎ int+

+Y 1/2
∞ ext

(τ) · M̌
ext

(τ) ·
∫
∞

0
Č
ext

(τ ′) · Y −1/2
∞ ext

(τ ′) · L(τ ′) · ǎ ext dτ ′

L(τ) · b̂ ext = Y 1/2
∞ ext

(τ) · M̂
ext

(τ) · Č
int
· Y −1/2

∞ int
· ǎ int+

+Y 1/2
∞ ext

(τ) · M̂
ext

(τ) ·
∫
∞

0
Č
ext

(τ ′) · Y −1/2
∞ ext

(τ ′) · L(τ ′) · ǎ ext dτ ′ + F
ext

(τ) · L(τ) · ǎ ext

(4.53)

In order to obtain a matrix relation from the third and fourth equation of (4.53), we take projec-
tions on the set {hr(τ)}. Formally, this operation can be performed directly in compact form.
Define the Nm ×NmNτ matrix

H(τ) =






h∗(τ) . . . 0
... . . . ...
0 . . . h∗(τ)






At this point we project the third and fourth equations of (4.53) on HT (τ). To simplify the
notation, we define the NτNm ×Nm matrices:

Ě = < HT , Y 1/2
∞ ext

· M̌
ext

>

Ê = < HT , Y 1/2
∞ ext

· M̂
ext

>

J = < HT , F
ext
· L >
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the Nf × NmNτ matrices Ǧ and Ĝ:

Ǧ =

∫
∞

0

Č
ext

(τ ′) · Y −1/2
∞ ext

(τ ′) · L(τ ′) dτ ′

Ĝ =

∫
∞

0

Ĉ
ext

(τ ′) · Y −1/2
∞ ext

(τ ′) · L(τ ′) dτ ′ (4.54)

and the NmNτ × NmNτ block diagonal matrix K :

K =< HT , L > (4.55)

The discretized form of (4.53) can be written:

b̌ int = M̌
int
· Č

int
· ǎ int + Y 1/2

∞ int
· M̌

int
· Ǧ · ǎ ext

b̂ int =
(

M̂
int
· Č

int
+ F

int

)

· ǎ int + Y 1/2
∞ int
· M̂

int
· Ǧ · ǎ ext

K · b̌ ext = Ě · Č
int
· Y −1/2

∞ int
· ǎ int + Ě · Ǧ · ǎ ext

K · b̂ ext = Ê · Č
int
· Y −1/2

∞ int
· ǎ int + ÊǦ · ǎ ext + J · â ext

(4.56)

Moreover, note that the matrix J represents the direct contribution of the incident composite
mode voltages to the scattered one. Finally, if one defines the vectors b 1, b 2 and a 1 as:

a1 =

(

ǎ int
ǎ ext

)

b1 =

(

b̌ int
b̌ ext

)

b2 =

(

b̂ int
b̂ ext

)

(4.57)

we obtain the relevant terms of the Generalized Scattering Matrix of the cell as:

b 1 = S
11
· a 1

b 2 = S
21
· a 1

where the sub-matrices have the expression:

S
11

=






M̌
int
· Č

int
Y 1/2
∞ int
· M̌

int
· Ǧ

K−1 · Ě · Y −1/2
∞ int
· Č

int
K−1 · Ě · Ǧ






S
21

=







M̂
int
· Č

int
+ F

int
Y 1/2
∞ int
· M̂

int
· Ǧ

K−1 · Ê · Y −1/2
∞ int
· Č

int
K−1 ·

(

Ê · Ǧ+ J
)
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It is also useful, for the computation that will be carried out in Section 4.7, to write (4.31) in
matrix form. By recalling the definitions (4.54), we find:

x = Č
int
· Y −1/2

∞ int
· ǎ int + Ǧ · ǎ ext (4.58)

In this way it is straightforward to compute the representation of the magnetic current in terms
of the incident voltages on the slot.
From a physical point of view, the introduction of the set {l n(τ)} to expand the modal amplitudes
amounts to grouping the continuous spectrum modes into a discrete set of “spectral composite
modes” [28]. Indeed

Et(ρ, ϕ, z) =
∑

m

∫
∞

0

Vm(z; τ)em(ρ, ϕ; τ)dτ =
∑

m

∑

n

(amn + bmn)ẽmn(ρ, ϕ) (4.59)

H t(ρ, ϕ, z) =
∑

m

∫
∞

0

Im(z; τ)hm(ρ, ϕ; τ)dτ =
∑

m

∑

n

(amn − bmn)h̃mn(ρ, ϕ) (4.60)

where the spectral composite mode functions are defined by
(

ẽmn(ρ, ϕ)

h̃mn(ρ, ϕ)

)

=

∫
(

Y
−1/2
∞ ext(τ,m)em(ρ, ϕ; τ)

Y
1/2
∞ ext(τ,m)hm(ρ, ϕ; τ)

)

ln(τ)dτ (4.61)

The ports, in the external waveguide, where the scattering matrix S is defined, are associated to
the spectral composite modes. These composite waves have useful characteristics, such as that
of forming an orthonormal basis, each element carrying a finite power. However, the evolution
law of their amplitudes is very complicated, because they are all coupled, even in a uniform
waveguide.
The discretization of the continuous spectrum and the computation of the GSM has been carried
out by using different sets of basis functions, more details can be found in the next sections. The
evaluation of the integrals has been performed using special numerical techniques see Section
10.5.
Finally, even if the structure is reciprocal, the scattering matrix is not symmetrical because the
mode eigenfunctions of the external waveguide are neither real nor imaginary [26].
At this point, an LCX consisting of Nslot apertures can be analyzed by cascading the scattering
matrices of each aperture. The procedure is not efficient, since in general Nslot is very large.
However, the apertures are generally all equal, so that Bloch theory can be very useful to increase
the efficiency of the method. This subject will be discussed in the next section.
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4.4 Expansion functions for the mode amplitudes

In the preceding sections, in order to derive a matrix representation of the scattering and trans-
mission operator, sets of expansion and testing functions, {l c(τ)} and {h r(τ)}, have been intro-
duced. Unfortunately, differently from the case of HFIE, this discretization procedure is far from
being standard, and it is difficult to select good sets of functions. The simplest choice could be a
point matching scheme, but a Galerkin procedure usually gives better results.
Moreover, since the waves scattered form a slot are incident on another one, it appears reasonable
to employ the same set to expand both incident and scattered waves amplitudes. In order to de-
fine this set of expansion functions, it is useful to consider the explicit expression of the scattered
power wave in the right reference plane in z = L/2 for the simplest case of a complete slot, only
the TEM mode in the cable and one expansion function to represent the magnetic current on the
aperture. Note that, since the slot is complete, only ϕ-independent TM modes are excited in the
cable and in the external waveguide. According to (4.39), (4.40), (4.41) and (4.42), the scattered
power wave b̌ e(τ) is given by:

b̂ e(τ) =
M̂e(τ)

√

Z∞ e(τ)

(∫
∞

0

√

Z∞ e(τ ′) · Ĉe(τ ′)ǎ e(τ ′)dτ ′ +
√

Z∞ iČ i ǎ i+

)

+ ǎ e(τ)e−j β(τ)L(4.62)

Note that the term in the parenthesis is not a function of τ but a number B, so that (4.62) can be
written as

b̂ e(τ) =
M̂ e(τ)
√

Z∞ e(τ)
B + ǎ e(τ)e−jβ(τ)L

i.e., using (4.23), (4.24), (4.25), (4.28) and (4.37), more explicitly :

b̂ e(τ) = −


π

√
ωε

2π

f̃(β(τ))e−j β(τ)L/2
√
τ(k20 − τ 2)1/4H

(1)
0 (bτ)

B + ǎ e(τ)e−j β(τ)L (4.63)

The first part of the right hand side of this equation has a fourth root singularity τ = k0 and
a
√
τ log τ singularity in τ = 0. Moreover, the exponential term in the numerator approaches

e−τ L/2 for τ À k0. It would be useful that also the basis functions had the same characteristics,
but it is difficult to find a set that matches the τ → 0 behavior. According to [28], it is convenient
to use different sets in the above-cut-off range τ ∈ (0, k0] and in the below-cut-off range τ ∈
[k0,∞). We have tried different sets of functions and after numerical experiments we have shown
that the following ones guarantee a fast convergence of the desired electromagnetic parameters
(i.e. Bloch waves and their propagation constants):
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• For the above cut off range:

{lm(τ)} =
{

Tm

(
2τ − k0
k0

)

/(k0τ − τ 2)1/4
}

• For the below cut off range:

{lm(τ)} =
{√

Ld eLd k0

m
e−Ldτ/2Lm(Ldτ − Ld k0)

}

where Tm(x) and Lm(x) represent the Chebyshev and Laguerre polynomials, respectively and
the exponential decay length Ld is equal to L/2. Note that these basis functions are orthonormal:
this fact implies that the matrix K introduced in (4.55) reduces to the identity. The functions
used to describe the below cut off range do not diverge for τ = k0 as the elements of the other
set. Even if this is not, from a mathematical point of view, strictly correct, from a numerical
point of view we have shown that it allows the use of a reduced number of basis functions since
they present the correct decay factor for τ À k0.
In order to analyze the convergence of the numerical scheme, we have considered a specific
example in which the continuous spectrum of above cut-off modes is discretized by Ne = 10

expansion functions and we assume that the first composite mode, m = 0, is incident at the
frequency f = 2 GHz from the left on a complete slot (α = 360◦, s = 3 mm) in a cable with
inner conductor radius a = 8 mm, outer conductor radius b = 20.65 mm, εr1 = 1.26.
First, we have computed the scattered power wave distribution b̌ e(τ), for the TM modes, accord-
ing to (4.62), by introducing the appropriate incidence. The result is shown by the solid line in
Figure 4.5. As an alternative, we have computed b̌ e according to (4.56), which is the discretized
version of (4.62), and then we have obtained the scattered power wave distribution according to
(4.47). The curve obtained in this way is plotted as dashed line in Figure 4.5. It can be seen
that the difference between the two curves is quite small (error in L2-norm less than 1%), which
confirms that Ne = 10 of the selected expansion functions provide an accurate discretization of
the continuous spectrum.
All the details related to the computation of the integrals can be found in Section 10.5.
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Figure 4.5: Comparison between two ways to compute the scattered power wave distribution.
See text

4.5 Bloch waves in a periodically slotted coaxial cable

Once the Generalized Scattering Matrix S of a section of cable containing a slot is known, the
corresponding transmission matrix T can be computed using the standard relations [12]:

T
11

= S−1
21

(4.64)

T
12

= −S−1
21
· S

22
(4.65)

T
21

= S
11
· S−1

21
(4.66)

T
22

= S
12
− S

11
· S−1

21
· S

22
(4.67)

Note that all the modes with nominal attenuation higher than αdB over the cell length are consid-
ered as localized and not used in the computation of the transmission matrix.
In order to study the characteristics of a finite periodic structure, consisting of a number Nslot of
identical cells, we could simply compute the power Nslot of the transmission matrix T of a single
cell. However, it is well known that this procedure suffers from numerical instabilities due to the
large dynamic range of the eigenvalues of T and ifNslot is large, as in this application, a different
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approach is more convenient. In fact, the structure can be seen as a length of periodically slotted
cable, inserted between two semi-infinite ordinary cables. As well known, the propagation along
the slotted cable, which can be described as a periodically loaded waveguide, is best analyzed
by introducing the so called Bloch waves, which play the same role as the modes in a uniform
waveguide. Hence, we identify two junctions, between a periodically slotted and an unslotted
cable. In circuit terms, each junction is an N -port characterized by a scattering matrix and the
two are connected by a number of equivalent transmission lines, relative to the Bloch waves in-
volved. This point of view is illustrated in Figure 4.6. The Bloch wave equivalent transmission
lines are shown dotted, to recall that they are a discrete structure, where Bloch wave amplitudes
are defined only at the cell reference planes.

Let us recall the basic facts about Bloch waves [12]. The T matrix expresses the relationship

us
S

su
S

ia
,1

1
y 2

y qy
Nsloty

Figure 4.6: Slotted cable with Nslot apertures and equivalent circuit in the Bloch domain

between the electrical state at the output and that at the input of the generic cell n:

(

p+
n

p−
n

)

=

(

T
11

T
12

T
21

T
22

)

·
(

p+
n+1

p−
n+1

)

(4.68)



80 Slotted Coaxial Cables: Longitudinal Approach

where p+
n

and p−
n

are the vectors of progressive and regressive power waves. They coincide with
those of (4.57):

p+
n
= a1 =

(

ǎ i
ǎ e

)

p−
n
= b1 =

(

b̌ i
b̌ e

)

p+
n+1

= b2 =

(

b̂ i
b̂ e

)

p−
n+1

= a2 =

(

â i
â e

)
(4.69)

The Bloch waves are defined as the states that satisfy
(

p+
n+1

p−
n+1

)

= exp(−jkBL)
(

p+
n

p−
n

)

(4.70)

Combining this defining equation with (4.68), we infer that Bloch waves are described, in the
basis of the internal cable modes and external composite modes, by the eigenvectors of the trans-
mission matrix T [26]

(

T
11

T
12

T
21

T
22

)

·
(

p+
n

p−
n

)

= λ

(

p+
n

p−
n

)

= exp(jkBL)

(

p+
n

p−
n

)

The eigenvalues λ are generally written in exponential form to define a (possibly complex) Bloch
wave phase shift per cell (kBL). If Nd and Ne are the number of accessible coaxial cable modes
and the number of external composite modes, the vector ((p+

n
)T , (p−

n
)T ) has dimension 2(Nd +

Ne). In general, the structure is characterized by 2(Nd+Ne) Bloch waves, half forward and half
backward propagating. It is to be remarked that the classification has to be done on the following
basis. A Bloch wave is progressive if

• kB is complex and Im{kB} < 0

• kB is real and the wave carries active power in the direction of increasing z

The transverse electric and magnetic fields of the j-th Bloch wave at the cell reference planes are
given by (the cell label n is dropped):

E j(ρ, ϕ) =

Nd∑

q=1

(p+qj + p−qj)ed q(ρ, ϕ) +

Ne+Nd∑

q=Nd+1

(p+qj + p−qj)ee q(ρ, ϕ) (4.71)

H j(ρ, ϕ) =

Nd∑

q=1

Yd q(p
+
qj − p−qj)hd q(ρ, ϕ) +

Ne∑

q=Nd+1

(p+qj − p−qj)he q(ρ, ϕ) (4.72)
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where ed q and hd q are the transverse electric and magnetic field distributions of the q−th mode
of the coaxial cable (and Yd q the corresponding modal admittance), ee q and he q are the trans-
verse electric and magnetic field distributions of the q−th external composite mode. Note that
no modal admittance has been introduced for the external composite modes.
If the fields of a Bloch wave are desired at any location z within a cell, the individual constituent
modes have to be propagated from the cell boundaries, using the relevant propagation constants
kzd q. As for the external composite modes, the procedure is less straightforward, since they are
all coupled even in a uniform waveguide, as noted in the preceding section. Hence, it is neces-
sary to reconstruct the continuous spectrum modes and let them propagate, using the propagation
constants β(τ).

Bloch waves have also another useful representation in terms of spatial harmonics. Indeed, it can
be proved, [12], that the fields of the j-th Bloch wave satisfy

E j(ρ, ϕ, z) = E p(ρ, ϕ, z)e
−j kBjz (4.73)

H j(ρ, ϕ, z) = H p(ρ, ϕ, z)e
−j kBjz (4.74)

where kBj is the Bloch wave propagation constant and E p(ρ, ϕ, z), H p(ρ, ϕ, z) are periodic
functions of z, with period L. This implies that they can be represented by a Fourier series

E p(ρ, ϕ, z) =
∞∑

m=−∞

Epm(ρ, ϕ) e−j
2πm
L

z (4.75)

H p(ρ, ϕ, z) =
∞∑

m=−∞

Hpm(ρ, ϕ) e−j
2πm
L

z (4.76)

(4.73) and (4.74) become
(

E j(ρ, ϕ, z)

H j(ρ, ϕ, z)

)

=
∞∑

m=−∞

(

Epm(ρ, ϕ)

Hpm(ρ, ϕ)

)

e−jkzj mz (4.77)

where the terms of the series are called spatial harmonics and each one has a longitudinal propa-
gation constant

kzj m = kBj +
2πm

L
(4.78)

This is the reason why the Bloch wave propagation constant kBj is always defined up to an
integer multiple of 2π/L. It is to be remarked that each spatial harmonic does not satisfy all the
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boundary conditions on the slotted cable, so that they do not have independent existence. Spatial
harmonics are also called Floquet modes and can be interpreted as modes of a radial waveguide
limited by phase shift walls, located at the cell reference planes, [30], see also Section 2.8.5. As
such, their longitudinal propagation constants (in the ρ̂ direction in this “transverse” picture), in
the free space region surrounding the cable, are given by

τjm =

√

k20 −
(

kBj +
2πm

L

)2

(4.79)

The evolution in the radial direction of these Floquet modes is governed by the radial transmis-
sion line theory. In particular, the propagation of the centrifugal wave, as discussed in the first
chapter, is related to the Hankel function H (2)

n (τjmρ). Owing to the properties of this function,
we say that a specific harmonic is radiating if the corresponding τjm is real or, equivalently, the
corresponding kzj m lies in the visible range [−k0, k0]. If no harmonic is radiating, the Bloch
wave is of surface type and, in general, a finite number of them (possibly zero) can exist. If at
least one harmonic is radiating, the Bloch wave belongs to the continuous spectrum.

We remark that the formulation presented in this section, owing to its longitudinal nature, forces
us to view the slotted coaxial cable as an infinite cross section waveguide, in which for conve-
nience two regions are identified, i.e the inner and the outer portions of the cable. However, the
distinction between the two periodically fails, due to the presence of the slots. The consequence
is that only surface Bloch waves and the continuum of radiated Bloch waves can be obtained.
Obviously, in the numerical implementation, the continuous spectrum has been discretized and a
finite number of radiated Bloch waves is determined.

Of course also a transverse point of view is possible, which exploits the radial transmission line
theory of Chapter 1. In this case, surface Bloch waves are related to resonances of the structure,
i.e. to poles of the Fourier transform of the relevant Green’s function. This Green’s function is
defined on a multi-sheeted Riemann surface, and beyond the possible poles on the proper sheet
(=τjm < 0), related to the surface waves, possesses leaky poles on improper sheets. Sometimes,
a representation in terms of a single leaky complex Bloch wave instead of a continuum, is possi-
ble and very convenient. Notice that this point of view lends itself to a very intuitive description
of the radiation phenomenon. In fact, since slots (particularly the ones with limited angular ex-
tent) represent a small perturbation of the uniform cable, it is easy to anticipate that the real part
of the leaky propagation constant will be close to k0

√
εr1. The imaginary part describes the de-

cay of power in the slotted cable due to radiation, and its value, which depends on the shape, size
and arrangement of the slots, is more difficult to estimate, but is typically very small.
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On the basis of these considerations, it is possible to identify essentially the following opera-
tion conditions (if εr1 < 9):

1.
L <

λ0
1 +
√
εr1

No spatial harmonics in the visible range. We refer to this case as “Surface wave” condi-
tion;

2.
λ0

1 +
√
εr1
≤ L <

2λ0
1 +
√
εr1

Harmonic “-1” in the visible range. We refer to this case as “Mono Radiation” condition.
In this case the propagation direction is identified by

θ−1 = sin−1
√

εr1 −
λ0
L

with respect to the z axis;

3.
L >

2λ0
1 +
√
εr1

More than one harmonic is in the visible range. We refer to this case as “Multi-Radiation”
condition. Of course there are multiple propagation directions, with angles:

θ−n = sin−1
√

εr1 − n
λ0
L

as long as the square root is real.

4.6 Junction between a uniform and a periodically slotted coax-
ial cable

Let us compute the scattering matrix of the junction between a semi-infinite periodically slotted
cable placed in the region z > 0 and a standard cable, located in z < 0 (see Figure 4.7). The
electric and magnetic fields in the two regions are expressed in terms of the relevant eigenmodes:
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the modes of the coaxial cable and the spectral composite waves in the unslotted region; Bloch
waves in the periodic structure. Enforcement of the boundary conditions at the junction plane,
i.e. matching of the transverse field components, yields:

∑

j

(
V inc
j + V scat

j

)
e j =

∑

j

(
cincj E

inc
j + cscatj Escat

j

)
(4.80)

∑

j

Y j
(
V inc
j − V scat

j

)
h j =

∑

j

(
cincj H

inc
j + cscatj Hscat

j

)
(4.81)

where the superscripts inc and scat mean incident and scattered with respect to the junction.
E j(ρ, ϕ) and H j(ρ, ϕ) are the transverse electric and magnetic fields of the j-th Bloch wave at
the cell reference planes, see (4.71). From 4.80 and 4.81 we derive the Generalized Scattering
Matrix of the junction which relates the scattered wave amplitudes (V scat

p , cscatq ) to the incident
ones (V inc

p , cincq ). We may assume that the junction plane coincides with the reference plane of
the first cell of the periodic structure.

By substituting (4.71) and (4.72) into (4.80) and (4.81), projecting on the coaxial cables and

ẑ
0=z

ẑ
0=z

Figure 4.7: junction between an unslotted cable and a slotted one

external composite modes and exploiting the orthonormality properties, we obtain the following
set of linear equations for p = 1, . . . , Nd +Ne:







V inc
p + V scat

p =
∑

j

(
p+ incqj + p− incqj

)
cincj +

(
p+ scatqj + p− scatqj

)
cscatj

V inc
p − V scat

p =
∑

j

(
p+ incqj − p− incqj

)
cincj +

(
p+ scatqj − p− scatqj

)
cscatj

(4.82)

These equations can be simplified by a matrix formalism. Let us define a matrix U consisting
of the eigenvectors of T arranged columnwise, first the progressive ones and then the regressive
ones

U =

(

U
11

U
12

U
21

U
22

)

=

(

. . . p+ scatqj . . . . . . p+ incqj . . .

. . . p− scatqj . . . . . . p− incqj . . .

)

(4.83)
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where it has been taken into account that, in the case of this junction, the progressive Bloch
waves are the scattered ones. With these notations, the (4.82) becomes







V inc + V scat = (U
12
+ U

22
) · cinc + (U

11
+ U

21
) · cscat

V inc − V scat = (U
12
− U

22
) · cinc + (U

11
− U 21) · cscat

(4.84)

Solving for V scat, cscat we obtain the GSM Sus of the junction in the form:

(

V scat

cscat

)

=






U
21
· U−1

11
U
22
− U

21
· U−1

11
U
12

U−1
11

−U−1
11
· U

12




 ·

(

V inc

cinc

)

= Sus ·
(

V inc

cinc

)

(4.85)

It is interesting to note that this result can also be obtained in a simpler way. By a well known
theorem of linear algebra, the power Nslot of the matrix T can be computed in the eigenvector
basis as

TNslot = U · λNslot · U−1 (4.86)

with U defined above and λ = diag{exp(jkBL)} the diagonal matrix of the eigenvalues of T .
Taking into account the product law of the transmission matrices of cascaded structures, it is easy
to recognize from (4.86) that U is the transmission matrix of the junction between the unslotted
and the slotted cable and U−1 is that of the complementary junction. Moreover, λNslot is the
transmission matrix describing the propagation of the Bloch waves across Nslot cells. Owing to
the ordering of the columns of U , the definition of the transmission matrix of the junction is

(

V inc

V scat

)

=

(

U
11

U
12

U
21

U
22

)

·
(

cscat

cinc

)

(4.87)

and the expression of the corresponding scattering matrix, already given in (4.85) follows imme-
diately, thanks to the well known transformation formulas dual to (4.64).
The scattering matrix Ssu of the complementary junction between the slotted coaxial cable and
the unslotted one is simply obtained by applying the operations indicated in (4.85) to the matrix
U−1.
In order to cascade the two discontinuities, it is necessary to move the left reference plane of S su

of Nslot cells to the left. By taking into account that

c+n+1 = diag{1/λ+} · c+n (4.88)

c−n+1 = diag{1/λ−} · c−n (4.89)
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where c+n is an array of amplitudes of progressive Bloch waves (with eigenvalues diag{λ+}),
evaluated at the input of cell n and c−n is an analogous array of regressive Bloch waves (with
eigenvalues diag{λ−}), the new GSM of the second discontinuity is

(

diag{1/λNslot} · Ssu
11
· diag{1/λNslot} diag{1/λNslot} · Ssu

12

Ssu
21
· diag{1/λNslot} Ssu

22

)

(4.90)

where we denote simply by λ the set of eigenvalues λ+ of progressive Bloch waves. Notice
that the stability of the algorithm originates by the fact that all the eigenvalues appearing in the
preceding formula belong to progressive waves, so that |λ| ≥ 1.
At this point the reflection and transmission coefficients of the complete array of slots are com-
puted by the usual cascading formulas as

Stot
11

= Sus
11
+ Sus

12
· diag{1/λNslot} · Sus

22
· diag{1/λNslot} ·R · Sus

21
(4.91)

Stot
21

= Sus
12
· diag{1/λNslot} ·R · Sus

21
(4.92)

where R denotes the resonant denominator

R =
(

I − Sus
22
· diag{1/λNslot} · Sus

22
· diag{1/λNslot}

)−1

(4.93)

and I is the identity matrix. The Bloch wave approach yields in a natural way the scattering
matrix of the slotted cable.
Note, anyway, that, due to the finite discretization of the scattering operator and the numerical
computation of the integrals, the submatrix of the G.S.M., which refers to the above cut-off
modes, S

ac
is not exactly unitary. In particular, in Figure 4.8, the eigenvalues of S

ac
SH
ac

are
shown, the geometry is the same of the preceding example. Note that most of the eigenvalues
are exactly one, only four are less than one. The discretization should be sufficiently fine that
these modes are not excited. This fact implies that the Bloch wave propagation constants are not
exactly real or purely imaginary.

4.7 Computation of the radiated field

In the preceding section we have shown how to compute the scattering matrix of the array of
Nslot apertures on the basis of Bloch wave theory. For the computation of the radiated field, two
alternatives are possible. One is to determine the Bloch wave amplitudes in the slotted part of
the cable and from them the magnetic currents. The other is to exploit directly the Bloch wave
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amplitudes.

As for the first method, we recall that the expansion coefficients of the magnetic current on a
specific slot are given by (4.31) or, in matrix form, by (4.58). Hence, what is needed first of all
are the incident voltages on each slot. According to the theory of scattering matrix connections,
we find that

c+1 = R · Sus
21
· a1 (4.94)

c−1 = diag{1/λNslot} · Sus
22
· diag{1/λNslot} · c+1 = (4.95)

= diag{1/λNslot} · Sus
22
· diag{1/λNslot} ·R · Sus

21
· a1 (4.96)

where R is the resonant denominator introduced in (4.93). Moreover, a1 is an array of ampli-
tudes of unslotted cable modes (discrete and discretized), c+1 , c−1 are arrays of progressive and
regressive Bloch waves at the left reference plane of the first slot. Consider now the q-th slot.
The incident field on its left reference plane is described, in the Bloch wave basis, by c+q , the one
incident on its right reference plane by c−q+1, given by

c+q = diag{1/λq−1} · c+1 (4.97)

c−q+1 = diag{λq} · c−1 (4.98)
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We need, however, the representations of the incident fields in the basis of the cable modes and,
recalling (4.83), these are given by

p+
q

= U
11
· c+q + U

12
· c−q (4.99)

p−
q+1

= U
21
· c+q+1 + U

22
· c−q+1 (4.100)

We have, in this way, all the data for computing the magnetic current coefficients on the q-th slot
via (4.58).
With this formulation it is possible to solve also the canonical problem of a junction between an
unslotted and a semi-infinite periodically slotted cable, which obviously cannot be analyzed by
the radial technique of the preceding chapter. In this case the equations above simplify drastically,
since

c+1 = Sus
21
· a 1 (4.101)

c−1 = 0 (4.102)

so that the incident waves on the q-th slot are

p+
q

= U
11
· c+q (4.103)

p−
q+1

= U
21
· c+vq+1 (4.104)

and, again, we can compute the magnetic current coefficients by (4.58)

Coming to the second method for the field computation, it is to be remarked that it is relatively
easy to evaluate the radiated fields, as functions of ρ, ϕ, only in the reference planes of each cell.

For this purpose we may recall (4.60), which requires only the computation of the progressive
and regressive wave amplitudes p±

q
. The formulas of this section are sufficient for this goal. The

integrals involved in the definition of the spectral composite modes are to be computed using
special numerical schemes, more details are shown in Section 10.5.

The computation of the radiated field in points not lying on the cell reference planes is more
involved, since composite modes are all coupled. This means that first the amplitudes of the
single radiation modes have to be found. These are then moved to the points where they are
needed.
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CONTINUOUS SPECTRUM MODE EIGENFUNCTIONS

TM modes:

eρ ext(ρ, ϕ; τ,m) = −
√

τ

2π

[

J ′m(τρ)−
Jm(τ ρ2)

H
(2)
m (τ ρ2)

H ′(2)
m (τρ)

]

e−j mϕ

eϕ ext(ρ, ϕ; τ,m) = − j m

ρ
√
2πτ

[

Jm(τρ)−
Jm(τ ρ2)

H
(2)
m (τ ρ2)

H(2)
m (τρ)

]

e−j mϕ

ez ext(ρ, ϕ; τ,m) = − jτ
√

k20 − τ 2

[

Jm(τρ)−
Jm(τ ρ2)

H
(2)
m (τ ρ2)

H(2)
m (τρ)

]

e−j mϕ

hρ ext(ρ, ϕ; τ,m) =
j m

ρ
√
2πτ

[

Jm(τρ)−
Jm(τ ρ2)

H
(2)
m (τ ρ2)

H(2)
m (τρ)

]

e−j mϕ

hϕ ext(ρ, ϕ; τ,m) = −
√

τ

2π

[

J ′m(τρ)−
Jm(τ ρ2)

H
(2)
m (τ ρ2)

H ′(2)
m (τρ)

]

e−j mϕ

hz ext(ρ, ϕ; τ,m) = 0

TE modes:

eρ ext(ρ, ϕ; τ,m) =
j m

ρ
√
2πτ

[

Jm(τρ)−
J ′m(τ ρ2)

H
′(2)
m (τ ρ2)

H(2)
m (τρ)

]

e−j mϕ

eϕ ext(ρ, ϕ; τ,m) =

√
τ

2π

[

J ′m(τρ)−
J ′m(τ ρ2)

H
′(2)
m (τ ρ2)

H ′(2)
m (τρ)

]

e−j mϕ

ez ext(ρ, ϕ; τ,m) = 0

hρ ext(ρ, ϕ; τ,m) = −
√

τ

2π

[

J ′m(τρ)−
J ′m(τ ρ2)

H
′(2)
m (τ ρ2)

H ′(2)
m (τρ)

]

e−j mϕ

hϕ ext(ρ, ϕ; τ,m) =
j m

ρ
√
2πτ

[

Jm(τρ)−
J ′m(τ ρ2)

H
′(2)
m (τ ρ2)

H(2)
m (τρ)

]

e−j mϕ

hz ext(ρ, ϕ; τ,m) = − jτ√
k2 − τ 2

√
τ

2π

[

Jm(τρ)−
J ′m(τ ρ2)

H
′(2)
m (τ ρ2)

H(2)
m (τρ)

]

e−j mϕ

with τ ∈ (0,∞) and m ∈ Z

Table 4.1: Mode eigenfunctions of the free space region around the cable
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Chapter 5

The Eigencurrent Approach

5.1 Introduction

In Chapter 3 the scattering problem of a TEM mode incident on a LCX has been formulated in
terms of a magnetic field integral equation, which has been solved employing the MoM in the
Galerkin form. For this purpose, a suitable set of basis functions has been chosen and the solution
has been obtained by inversion of the corresponding moment matrix A. As already outlined, one
of the main limitations of this method is related to the size of A, which increases linearly with
the number of slots in the array. This point is particularly critical since standard LCXs contain
thousands of slots.

To overcome this problem, an alternative approach, based on Bloch Wave Theory, has been
presented in Chapter 4. This method requires that all the slots are equal and equally spaced.

Here we describe another method, based on the computation of the approximate eigenvalues
and eigenvectors of A as a linear concatenation of the eigencurrents of a subarray of the entire
antenna. In this way, it is possible to obtain the electromagnetic solution avoiding the storage
and inversion of a large moment matrix. This method was developed originally in [31] for the
analysis of a linear array of patches.
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5.2 The Idea of the Eigencurrent Approach

The concept of eigenfunction of a linear operator is so widespread in the mathematical and
physical literature that there is no need to recall its importance for an intrinsic characterization
of the operator itself [32]. In this section we start describing its application in the numerical
solution of the electromagnetic problem under consideration, then the basis idea of Eigencurrent
Approach is discussed in detail. Let us consider the HFIE derived in Chapter 3, rewritten here
for the reader’s convenience:

H inc(z, ϕ) =

∫

Σ

Y tot(z − z′, ϕ− ϕ′) · J
m
(z′, ϕ′)dz′dϕ′ (5.1)

For the application of the Galerkin MoM, a set of basis functions {u c(z, ϕ)} (with c = 1, .., Nf )
was introduced and the following linear system was obtained

A · x = b (5.2)

where:

A r,c = <

∫

Σ

Y tot(z − z′, ϕ− ϕ′) · u c(z′, ϕ′)dz′dϕ′, u r(z, ϕ) > (5.3)

b r = < H inc, u r > (5.4)

and < ·, · > is the standard L2− scalar product. Since the matrix A is full, the solution can only
be obtained numerically.

Let {λn} and {ψ
n
(z, ϕ)}, with n = 1, .., Nf , be the sets of the eigenvalues and eigenfunctions of

the admittance operator. The eigenvalues have the dimension of admittances, the eigenfunctions
of magnetic currents: for this reason, they will also be called eigencurrents. If we use these
eigenfunctions as MoM expansion functions, the left hand side of (5.1) reduces to:

∫

Σ

Y tot(z − z′, ϕ− ϕ′) · J
m
(z′, ϕ′)dz′dϕ′ =

=
∑

c

x̃ c

∫

Σ

Y tot(z − z′, ϕ− ϕ′) · ψ
c
(z′, ϕ′)dz′dϕ′ =

∑

c

λ c x̃ cψ c
(z, ϕ) (5.5)

and (5.2) becomes

Ã · x̃ = b̃ (5.6)

where:

Ã r,c = λc < ψ
c
, ψ

r
> (5.7)

b̃ r =< H inc, ψ
r
> (5.8)
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In general the eigenfunctions ψ
r
(z, ϕ) are not orthonormal with respect to the standard L2-scalar

product, so that the moment matrix Ã is still full and this choice of basis functions is not more
advantageous than that of Chapter 3. However, if we define a new scalar product < ·, · >s such
that the eigenfunctions are orthonormal1, the new moment matrix is diagonal:

Ãnewr,c = λc < ψ
c
, ψ

r
>s= λ c δ r,c (5.9)

b̃newr =< H inc, ψ
r
>s (5.10)

and the solution of the linear system is straightforward. In particular, the r−th component of the
unknown vector x̂ is given by:

x̂ r =
1

λ r
< H inc, ψ

r
>s (5.11)

and, finally, J
m
(z, ϕ):

J
m
(z, ϕ) =

∑

n

1

λn
< H inc, ψ

n
>s ψ n

(z, ϕ) (5.12)

The eigencurrents that match better the incident fieldH inc give rise to the largest scalar products.
Since we consider thin slots and the incident field is the TEM mode, which is ϕ̂-independent, it
is apparent that the greatest contribution is given by the less oscillating eigencurrents ψ

n
(z, ϕ).

Since the eigenvalues of these are the smallest ones, the first terms of the summation are domi-
nant.

In principle, the eigenfunctions {ψ
n
(z, ϕ)} could be computed from the eigenvectors of the ma-

trix A. However, there is a more efficient method, which provides a good approximation of the
eigenfunctions and eigenvalues of the admittance operator, starting from a relatively small mo-
ment matrix.

Let us consider an array composed by N sub identical subarrays. The antenna, then, can be
described by the position of these subarrays and the geometry of a single subarray. We can say
that the array is generated by a single subarray, which will be called “generating subarray”.
Assume that the generating subarray has eigencurrents ψsub

n
(z, ϕ) with eigenvalues λsubn with

n = 1, . . . , N sub
eig where N sub

eig is the number of basis functions on the subarray. If the mutual
coupling between the subarrays is ignored, the eigenvalues of the complete array are λsubn each
with multiplicityN sub. In the same conditions, the eigencurrents corresponding to the eigenvalue

1In the case of degenerate eigenvalues we may conclude on physical grounds (conservation of energy) that the
geometric and algebraic multiplicity of the eigenvalue are equal
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λsubn belong to the linear span of the N sub independent currents, each of which is zero on all
subarrays but one, where it is equal to ψsub

n
(z, ϕ). We define En the set of these independent

currents which correspond to the eigenvalue λsubn . Figure 5.1 shows a symbolic representation of
En for a linear array of four subarrays. If the mutual coupling is not ignored, the eigencurrents

Figure 5.1: Schematic representation of the elements of E n. The subarrays are symbolically
denoted by rectangles

{ψ
r
(z, ϕ)} are given by a linear combination of all the elements of the set E =

⋃Nsub
eig

n=1 En.
It is convenient to group these eigencurrents into N sub

eig families according to which set E n the
dominant component of ψ

r
(z, ϕ) belongs; the eigenvalues are grouped accordingly. Hence we

use the notation {ψ
nq
(z, ϕ)} and {λnq}, where the subscript q, (q = 1, . . . , N sub) denotes the

elements of the family n, (q = 1, . . . , N sub). It will be shown in 5.7.2 that the elements of all the
eigenvectors with a specific q have the same structure.
From another point of view, the generic eigencurrent ψ

nq
(z, ϕ) can be seen as the sum of a

“dominant part”, which is a linear combination of the elements of E n, and a “perturbation term”,
which is, instead, a linear combination of the elements of the other sets En′ , with n′ 6= n. Both
terms are related to the coupling between the subarrays. In particular, we define “intra-mode”
coupling the one between the elements of E n, which is responsible of the “dominant part”. The
“inter-mode coupling” is the one taking place between the elements of different sets.
It is useful to introduce a complex valued perturbation ε nq for each eigenvalue,

εnq =
λnq − λsubn

λsubn

The absolute value of ε nq yields the relative deviation of the q-th eigenvalue of the family {λ nq}
from the “reference” eigenvalue λsubn . The range of this parameter depends clearly on the strength
of the mutual coupling.
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In order to fix the preceding concepts and to describe the main idea of the Eigencurrent Ap-
proach, it is useful to consider a simple example in detail. For this purpose we consider an array
composed by two generating subarrays and four basis functions on each subarray. The gener-
ating subarray may consist of a single slot, as well as of a group of (not necessarily identical)
slots. Assume that the eigenvalues λsubn , with n = 1, . . . , 4, and the eigencurrents ψsub

n
(z, ϕ) of

the generating subarray are known, as well as the inner product < ·, · > sub with respect to which
these eigencurrents are orthonormal. By definition, if the eigencurrents are chosen as expansion
functions, the moment matrix of the generating subarray with respect to < ·, · > sub is diagonal,
with the eigenvalues λsubn as elements (see Figure 5.2). Since the eigencurrents ψsub

n
(z, ϕ) are

Figure 5.2: Moment matrix of the subarray: the basis functions are the eigencurrents and the
inner product is < ·, · > sub

orthonormal with respect to < ·, · > sub, the currents of E are orthonormal with respect to the
composite inner product, defined as:

< ·, · >comp=

N sub∑

q=1

< (·)q, (·)q > sub (5.13)

The dots in < ·, · >comp indicate the currents on the complete array, while (·)q is a symbolic
notation for the component of the corresponding currents on the q−th subarray. Note that (5.13)
represents the natural generalization of < ·, · > sub for the entire array. Indeed, if the mutual cou-
pling is ignored the moment matrix is diagonalized by the currents ofE with the eigenvalues λsubn
on the diagonal each with multiplicityN sub (in the case under considerationN sub is equal to two,
see Figure 5.3). On the other hand, if the mutual coupling is not ignored, the moment matrix has
a block structure: the blocks on the main diagonal are diagonal with {λsubn } as elements, while
the off-diagonal blocks are non zero full matrices (see Figure 5.4). Let us see the meaning of
the elements of the off-diagonal blocks in terms of inter- and intra-mode coupling. The element
(1, N sub

eig +1) represents the intra-mode coupling between the elements of E1, while the elements
(1, N sub

eig + 2), (1, N sub
eig + 3), . . . , (1, 2N sub

eig ) represents the inter-mode coupling between E1 and
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Figure 5.3: Moment matrix of the complete array using the subarray eigencurrents as basis func-
tions and < ·, · > comp as scalar product. In this case the mutual coupling is neglected

Figure 5.4: Moment matrix of the complete array using the subarray eigencurrents as basis func-
tions and < ·, · > comp as scalar product. In this case the mutual coupling between subarrays is
not neglected

the other sets En′ , with n′ = 2, . . . , N sub
eig . Clearly, the presence of the off-diagonal block terms

produces the perturbations {εnq}.
The elements of the eigenvectors u nq of this matrix are the expansion coefficients of the eigen-
currents ψ

nq
(z, ϕ) in the basis of the the functions in the set E, i.e. the eigencurrents of the array

in which the mutual coupling between subarrays is ignored. In general, these eigenvalues and
eigencurrents can be computed only numerically from the complete moment matrix. However,
if the spread of a group of eigenvalues, say the n−th group, is negligibly small, its elements can
be set equal to λsubn and the corresponding eigencurrents can be safely replaced by the currents
of En. Indeed, in this case, the currents of E n are coupled neither with each other nor with the
other sets En′ , i.e. the inter- and intra-mode couplings are negligible. This fact means that the
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corresponding entries in the moment matrix are negligible and can be set equal to zero, i.e. the
size of the moment matrix can be reduced.
An example is shown in Figure 5.5 where the spread of the 4th group is assumed to be negligible,
so that the eigenvalues and eigencurrents related to the other groups can be computed from the
reduced moment matrix (see Figure 5.6) with a reduced computational effort.
Once the eigencurrents ψ

nq
(z, ϕ) have been computed, one can construct a suitable scalar prod-

Figure 5.5: Moment matrix of the complete array using the subarray eigencurrents as basis func-
tions and < ·, · > comp as scalar product. The spread of the 4th-group of eigenvalues is assumed
to be negligible

Figure 5.6: Reduced moment matrix of the complete array using the subarray eigencurrents as
basis functions and < ·, · > comp as scalar product

uct < ·, · >A such that the corresponding moment matrix is diagonal with the eigenvalues λ nq
along the diagonal. Following the example that we are discussing, we would finally obtain the
matrix shown in Figure 5.7 where λ 4q has been set equal to λsub4 since the spread was considered
negligible.
In principle, the described procedure can be iterated: the array made of two subarrays can be
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Figure 5.7: Moment matrix of the complete array using the eigencurrents {ψ
nq
} as basis func-

tions

viewed as the generating subarray of a larger structure.
In general, we need to construct the moment matrix only from sets E n that contribute signifi-
cantly to the mutual coupling between the subarrays.
These sets are not known a priori, but, as discussed in [31], we expect that they correspond to
the lowest order eigenvalues. In 5.8 we carry out a direct analysis of the MoM matrix elements,
which confirms this guess.

5.3 Eigencurrent Approach

We are now ready to describe the Eigencurrent Approach based on the preceding ideas. Here we
list the steps of the method as reported in [31], the calculation details are described in the next
sections of this chapter.

The method can be used in an iterative way, so here we describe the structure of the cycle.
Assume that the eigenvalues λsubn and eigencurrents ψsub

n
(z, ϕ), with n = 1, . . . , N sub

eig , of the
generating subarray are known as well as the scalar product < ·, · > sub such that ψsub

n
(z, ϕ) are

orthonormal.
The approximate eigencurrents and eigenvalues of the complete array can be computed as fol-
lows:

1) Choose a new (higher level) generating sub-array of the complete array, consisting of N sub



5.3 Eigencurrent Approach 99

elements; it can even coincide with the complete array.

2) Define the sets En (n = 1, . . . N sub
eig ) such that each set En consists of N sub independent

currents, each of which is zero on all the sub-arrays but one, where it is equal to ψsub
n
(z, ϕ). Let

E be the union of these sets.

3) Let Ecpl be the union of the sets E n that are expected to contribute to the mutual coupling.
We construct a reduced moment matrix of the array using the scalar product < ·, · >comp defined
in (5.13) and the elements of Ecpl as basis functions.

4) Determine the eigenvalues λ nq and the matrix of the eigenvectors U
nq

of the reduced mo-
ment matrix. Note that λ nq are the approximate eigenvalues of the complete moment matrix; the
eigenvectors represent the expansion coefficients of the eigencurrents ψ

nq
(z, ϕ) in the basis of

the elements of Ecpl. Let Eeig be the set of these eigencurrents.

5) Investigate the spreads of the families of eigenvalues {λ nq}N sub

q=1 whether more sets En are
required to describe the mutual coupling. If more sets are required, return to step 3).

6) Let Eunc be the union of the sets E n that are not taken into account in the reduced moment
matrix in step 3). By assumption the complete moment matrix is diagonalized by the elements
of Eeig

⋃
Eunc, using a suitable scalar product < ·, · > a which consists of a combination of

< ·, · > sub and < ·, · > comp;

7) Stop if the considered array is equal to the complete one. Otherwise return to step 1) where
the new generating subarray becomes the array just considered. The scalar product < ·, · > sub

is replaced by < ·, · > a and {λsubn } and {ψsub
n
(z, ϕ)} are replaced by the new set of eigenvalues

and by the elements of Eeig
⋃
Eunc, respectively.

The following initialization procedure can be employed in order to start the cycle above:

a) Choose a subarray;

b) Choose a set of basis functions. The expansion functions can be, for example, rooftops or
entire domain basis functions;

c) Construct the moment-matrix A
sub

using the standard L2 inner product;
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d) Determine the eigenvalues and eigenvectors of A
sub

;

e) Construct the new scalar product with respect to which the eigencurrents are orthonormal;

f) Start the Eigencurrent-Approach;

5.4 Initialization: Computation of the eigencurrents of a sin-
gle slot

We analyze in detail the application of the Eigencurrent approach in the simple case of thin slots.
Moreover, in the following, we will consider a single slot as generating subarray.
Let {usubn (z, ϕ)}, with n = 1, . . . , N sub

eig , be the set of basis functions defined on the slot. Apply-
ing the MoM in the Galerkin form (see Chapter 3) we obtain the following linear system:

A
sub
· x sub = b sub (5.14)

The matrixA
sub

is aN sub
eig × N sub

eig square matrix while b sub is aN sub
eig × 1 column vector. Let U

sub

and {λsubn } be the matrices which contain the eigenvectors and eigenvalues of A
sub

, respectively;
in particular the r-th column of U

sub
is the r-th eigenvector of A

sub
with eigenvalue λsubr . These

eigenvectors contain the expansion coefficients, in the basis {usubn (z, ϕ)} of the slot eigencurrents
{ψsub

r
(z, ϕ)}; the explicit expression for the r-th eigencurrent is:

ψsub
r
(z, ϕ) =

Nsub
eig∑

n=1

U sub|n,r usubn (z, ϕ) (5.15)

To construct the new scalar product mentioned in step e) of the initialization procedure, we notice
that the eigencurrents {ψsub

r
(z, ϕ)} are linearly independent since A

sub
is a full rank matrix.

It is well known that it is possible to define a set of functions {φsub
p
(z, ϕ)} bi-orthogonal to

{ψsub
r
(z, ϕ)}. For this purpose we need first to compute the Gram Matrix G

U
of {ψsub

r
(z, ϕ)}

with respect the L2- inner product < ·, · >. It can be shown that the matrix G
U

is given by:

G
U
= UH

sub
·G · U

sub
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where the matrix G is the Gram-matrix, obtained using the L2-scalar product, of the basis func-
tions defined on the slot. The functions {φsub

p
(z, ϕ)} are given by:

φsub
p
(z, ϕ) =

Nsub
eig∑

r=1

G−1U | rp ψsubr (z, ϕ) (5.16)

and the new inner product < ·, · > sub is defined as

< w,ψ
r
> sub=< w, φ

r
>=

∫

Σ

w(z, ϕ) · φ∗
r
(z, ϕ)dz dϕ (5.17)

wherew = w(z, ϕ) is a generic function of (z, ϕ) and Σ represents the support of the slot. Hence,
the procedure can be described in two alternative ways:

• the same set of functions {ψsub
r
(z, ϕ)} is used both for expansion and testing, but the inner

product used is < ·, · > sub

• {ψsub
r
(z, ϕ)} are used for expansion and {φsub

p
(z, ϕ)} for testing but the standard L2 inner

product is adopted (non-Galerkin procedure)

It is useful to derive a compact form of the preceding results. Let Φ
sub

be the matrix whose
columns contain the expansion coefficients of {φsub

p
(z, ϕ)} in the basis {usubn (z, ϕ)}. Let us

consider again the linear system (5.14), repeated here for the reader’s convenience:

A
sub
· x sub = b sub (5.18)

We change basis from {usubn (z, ϕ)} to {ψsub
r
(z, ϕ)} via x sub = U

sub
· x̂ sub and multiply both

sides of (5.14) by the matrix ΦH

sub
:

ΦH

sub
· A

sub
· U

sub
· x̂ sub = ΦH

sub
· b sub (5.19)

The product ΦH

sub
· A

sub
· U

sub
coincides with the diagonal matrix diag{λsubn }, hence the vector

x̂ sub, which contains the unknown expansion coefficients of the equivalent magnetic current
distribution J

m
in the basis of the eigencurrents of the sub-array, is given by:

x̂ sub = diag{ 1

λsubn
} · ΦH

sub
· b sub (5.20)

and finally:

x sub = U
sub
· diag{ 1

λsubn
} · ΦH

sub
· b sub (5.21)



102 The Eigencurrent Approach

Table 5.1: First four slot eigenvalues [Ω−1], computed using 20 triangular functions

λsub1 4.6 · 10−5 − 1.5 · 10−4
λsub2 6.8 · 10−6 − 8.1 · 10−4
λsub3 3.8 · 10−6 − 1.7 · 10−3
λsub4 8.3 · 10−7 − 2.9 · 10−3

5.5 Single slot Eigencurrents

In this section we analyze the eigencurrents of a single slot. We want first to illustrate the ob-
vious fact that these eigencurrents can be computed with different choices of basis functions.
Clearly, there are particular sets that are more representative of the eigencurrents and therefore
they guarantee a more rapid convergence than other ones.
Since we use basis functions that are not orthonormal with respect to the scalar product L2,
the eigenfunctions and eigenvalues of the admittance operator have been determined solving the
generalized eigenvalue problem:

A
sub
· x = λ G · x (5.22)

where G is the Gram matrix of the expansion functions.
Let us consider a cable with the following parameters: inner and outer conductor radii a = 12

mm, b = 30 mm, width s = 3 mm, angular aperture α = 180◦, frequency f = 1 GHz, and
relative permittivity ε r1 = 1.26. Since the slots are thin, we employ one weighted Chebyshev
polynomial of the first kind for the z dependence. As for the ϕ−dependence, we use two differ-
ent sets, piecewise triangular functions and weighted Chebyshev polynomials of the second kind
(see section 3.4 for more details). The first four eigencurrents, computed with twenty triangular
functions, are shown in Figure 5.8. They are sorted so that the corresponding eigenvalues, listed
in Table 5.1, satisfy |λ n| < |λn+1|. This ordering will always be used. Let us repeat the com-
putation by using a basis of eight weighted Chebyshev polynomials of the second kind. The first
four eigencurrents are shown in Figure 5.9, the corresponding eigenvalues are listed in Table 5.2.
Figures 5.10 and 5.11 show a comparison between the first eight eigencurrents in the basis of

these two sets. We can note that there is a good agreement for the first four eigenfunctions, while
the others do not match so well. A better agreement can be reached by increasing the number of
basis functions. As a rule of thumb, N sub

eig basis functions yield N sub
eig /2 eigencurrents, so it is in
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Figure 5.8: First four eigencurrents of a single slot ψsub
r
(0, ϕ), computed using 20 triangular

functions. Eigenfunctions normalization: maximum value
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Figure 5.9: First four eigencurrents of a single slot ψsub
r
(0, ϕ), computed using 8 weighted

Chebyshev polynomials of the second kind. Eigenfunctions normalization: maximum value
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Table 5.2: First four slot eigenvalues [Ω−1] computed using 8 Chebyshev polynomials

λsub1 4.6 · 10−5 − 1.4 · 10−4
λsub2 7.0 · 10−6 − 7.9 · 10−4
λsub3 3.9 · 10−6 − 1.7 · 10−3
λsub4 8.6 · 10−7 − 2.8 · 10−3

particular the number of Chebyshev functions that must be increased.
Figure 5.12 shows the absolute values of the elements of the matrix of the eigenvectors U

sub
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Figure 5.10: Comparison between the first four slot eigencurrents in the basis of the Chebyshev
polynomials (solid line) and of the piecewise triangular functions (dashed line).

the case of eight weighted Chebyshev polynomials. It can be noticed that each weighted Cheby-
shev polynomial is a very good approximation of the slot eigencurrents, since the diagonal terms
of the matrix are dominant. Moreover, the corresponding Gram Matrix is quasi-diagonal (see
Figure 5.13), which means that the eigencurrents are almost orthogonal. Because of the slot
symmetry, the eigencurrents are alternatively even and odd, obviously uncoupled. Since in our
application the excitation term is ϕ-independent, in the following we will consider only the set
of the even basis functions.
Since these eigenfunctions are sorted so that |λ n| < |λn+1|, these results give a numerical confir-
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Figure 5.11: Comparison between the following four slot eigencurrents in the basis of the Cheby-
shev polynomials (solid line) and of the piecewise triangular functions (dashed line).

mation of the statement that larger eigenvalues belong to more oscillating eigenfunctions. More-
over, Figure 5.14 shows a plot of the inverse of the first slot eigenvalues. Note that the curve
goes rapidly to zero, so that only few eigencurrents give a significant contribution to J

m
(z, ϕ),

according to (5.12).

5.6 Parameter dependence of the Eigencurrents of a single
slot

In the preceding section we have analyzed the eigencurrents of the admittance operator as a
function of the number and kind of basis functions employed in the MoM scheme when the
geometrical and electrical characteristics of the cable were fixed.
We want now to investigate the dependence of these eigencurrents on the angular aperture α
and the frequency. For this purpose we fix the remaining geometrical and electrical parameters
as follows: inner and outer conductor radii ρ1 = 12 mm, ρ2 = 30 mm, width s = 3 mm
and relative permittivity ε r1 = 1.26. In the simulation we use four even weighted Chebyshev
polynomials for the ϕ-dependence. In Figures 5.15 and 5.16 the amplitude and the phase of the
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Figure 5.12: Color pattern representation of the eigenvector matrix U
sub

for a slot. 8 weighted
Chebyshev polynomials were used. Eigenvector normalization: maximum component

first eigencurrent is shown for frequency f = 1 GHz and α = 45◦, 90◦, 135◦, 180◦, respectively.
The corresponding eigenvalues are reported in Table 5.3. On the other hand, in Figures 5.17 and

Table 5.3: Slot first eigenvalue [Ω−1] for various angular apertures

α λsub1

45◦ 1.3·10−5 − 2.3·10−3j

90◦ 2.6·10−5 − 7.0·10−4j

135◦ 369·10−5 − 3.0·10−4j

180◦ 4.6·10−5 − 1.4·10−4j

5.18 the amplitude and the phase of the first eigencurrents are shown for α = 90◦ and frequency
f = 0.25 GHz, 0.5 GHz, 1 GHz, 2 GHz, while the corresponding eigenvalues are listed in Table
5.4. From Fig. 5.17 it is evident that the eigencurrents are practically independent of frequency
and slot size, while the eigenvalues exhibit a consistent variation.
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Table 5.4: Slot first eigenvalue [Ω−1] for various frequencies

f λsub1
0.25 GHz 2.9·10−5 − 1.0·10−3j
0.5 GHz 3.4·10−5 − 4.6·10−4j
1 GHz 4.6·10−5 − 1.4·10−4j
2 GHz 7.3·10−5 − 8.7·10−4j

This invariance of the eigencurrents gives a significant computational advantage in the use of the
Eigencurrent Approach as analysis tool. Indeed, the eigencurrents need to be computed only for
an initial set of geometrical parameters and frequency. The eigenvalues can be derived by the
Rayleigh-Ritz quotients:

λn =
< ψ

n
,
∫

Y
sub · ψ

n
>

< ψ
n
, ψ

n
>

(5.23)

As an example, Figure 5.19 shows the relative error of the eigenvalues at 2 GHz computed by
(5.23) with the eigencurrents evaluated at 0.2 GHz. The agreement is quite good, indeed the
maximum relative error is less than 2.6%.
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5.7 Eigencurrent Approach: Cycle

5.7.1 Calculation Details

In this section we discuss the computation details of the cycle as described in Section 5.3. Once
the generating subarray in step 1 has been chosen and the corresponding eigenvalues and eigen-
currents have been computed, we construct the setsE n, as explained in Section 5.2. If all the sets
En contribute to the mutual coupling between the subarrays, the complete moment matrix has
to be computed and no numerical advantage is obtained by the application of the Eigencurrent
Approach. If this is not the case, a reduced moment matrix is constructed from a selection of
the sets En. Assume that the sets E 1, . . . , ENsub

cpl
, (whose union is denoted Ecpl), contribute to

the mutual coupling and that, instead, the contribution of the remaining sets ENsub
cpl
+1, . . . , ENsub

eig
,

whose union is Eunc, to the mutual coupling is negligible. Then the complete moment matrix is
block diagonal:

A =






Acpl 0

0 Aunc




 (5.24)
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where Aunc is diagonal with the eigenvalues λsubn (n = N sub
cpl + 1, . . . , N sub

eig ), each with multi-
plicity N sub, as elements. The upper block Acpl is a dense matrix. Let Eeig be the set of the
eigencurrents related to the eigenvectors of Acpl. We can define a scalar product < ·, · > eig such
that these eigencurrents are orthonormal. Since the moment matrix has the form shown in (5.24),
the set of the eigencurrents of the array is given by the union of the elements of E eig and Eunc.
We can, then, finally define a new scalar product < ·, · >A:

< v,w >A=< v 1, w 1 > eig + < v 2, w 2 > comp (5.25)

with v = v 1 + v 2 and w = w 1 + w 2 where v 1 and w 1 belong to Eeig, while v 2 and w 2 belong
to Eunc.
Finally, the unknown magnetic current distribution J

m
can be computed by:

J
m
(z, ϕ) =

Ncpl∑

n=1

N sub∑

q=1

< H inc, ψ
nq
>eig

λnq
ψ
nq
(z, ϕ)+

Nf∑

n=Ncpl+1

∑N sub

q=1 < H inc, ψ
nq
>comp ψ nq

(z, ϕ)

λsubn

(5.26)
where the scalar product <,>comp has been defined in (5.13).



110 The Eigencurrent Approach

−0.5 0 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5
Eigencurrent n.1

φ/α

[d
eg

]

α=45.0 [deg]
α=90.0 [deg]
α=135.0 [deg]
α=180.0 [deg]

Figure 5.16: Phase of the first eigenfunction for various angular slot sizes.

5.7.2 Analysis of the spread of eigenvalues as Measure of Mutual Coupling

The efficiency of the Eigencurrent Approach is strictly related to the number of sets E n that have
to be taken into account in the cycle.
Here we first illustrate the validity of some conjectures, discussed in the first section of this
chapter, on the behavior of the eigenvalues of the admittance operator of the array, then we will
analyze the relation between the perturbation ε nq and the error introduced by the application of
the eigencurrent procedure. This preliminary analysis permits to prove the correctness of the
Eigencurrent Approach.
In the following simulations, we will employ one basis function for the z-dependence and three
even weighted Chebyshev polynomials of the second kind for the ϕ-dependence. The geometri-
cal and electrical characteristics of the slotted cable are: inner/outer conductor radii 3.4/8.8 mm,
slot angular width α = 180◦, dielectric permittivity ε r1 = 1.26 and frequency f = 1 GHz.
In order to start our investigation, let us consider a uniform LCX composed by ten apertures with
a slot separation L = 15 cm. Figure 5.20 shows a sketch in the complex plane of the array and
subarray (slot) eigenvalues.
It is interesting to observe that the array eigenvalues (represented by circles) lie in three different

areas the complex plane, this fact gives a preliminary justification of our subdivision into groups.
Moreover it can be noted that while the first ten array eigenvalues are clearly distinguishable
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from λsub1 (represented in figure by a triangle near the real axis), the others are so close to the
corresponding sub-array eigenvalues to be indistinguishable. From a quantitative point of view
this fact can be illustrated by analyzing the absolute value of the perturbations ε nq as a function
of the index q, that scans the eigenvalues in a specific group, for n=1, 2 and 3 (see Fig. 5.21).
From the plot it is evident that only the eigenvalues related to λsub1 present a significant pertur-
bation (of the order even of 50% in the case under consideration). This observation permits to
conclude that the eigenvalues {λ nq} can be approximated with λsubn for n > 1,
It is interesting to analyze the behavior of the maximum and minimum values of ε nq as a func-

tion of the number of slots considered. The results are shown in Figure 5.22 where it can be
noticed that while the maxima tend to increase as a function of the number of subarrays, the min-
ima decrease to a constant value that is close to zero. It can be shown that the maxima related
to the second and third sets E n tend, slowly, to a constant maximum value that is, anyway, less
than 0.1%. This observation permits to assert that the preceding consideration is valid indepen-
dently on the number of apertures in the LCX. Until now we have numerically shown that, for
what concerns the eigenvalues, the coupling is appreciable only on the elements related to E 1;
we still need to verify that the eigenvalues and eigencurrents of admittance operator of the array
computed from the reduced moment matrix, i.e. the moment matrix built using only the ele-
ments of E 1 as basis functions, represent a suitable approximation of the corresponding “exact”
eigenvalues and eigencurrents computed from the complete moment matrix built using all the set
En. For this purpose, in Figures 5.23 and 5.24 the relative errors for all the eigenfunctions (in
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L2 norm) and eigenvalues are reported. From the plot the accuracy of the eigencurrent approach
approximation is evident.
In order to conclude our investigation, it is interesting to analyze the relation between the spread

of the perturbation ε nq and the relative error on the electromagnetic solution that one produces
neglecting some sets En in the cycle procedure of the Eigencurrent Approach. For this purpose,
as suggested in [31] section 6.3, it is useful to introduce the maximum relative perturbation of
the n−th group, with respect to the first subarray eigenvalue:

MRP [N sub]
n = max{|εnq|}N sub

q=1 · |λsub1 |/|λsubn | (5.27)

and the maximum relative L2 difference:

MRDL2 = max q=1,..., N sub

||J̃ (q)m − J
(q)
m
||L2

||J(q)
m
||L2

(5.28)

Here J
(q)
m

and J̃
(q)

m are the equivalent magnetic currents on the q−th slot obtained by the MoM and
eigencurrent approach, respectively. We expect a strict relation between these two parameters.
To verify this statement we consider a LCX composed by 40 slots and we compare the preceding
quantities as a function of the slot spacing L normalized to the equivalent wavelength λ. Figure
5.25 (left) shows that MRP

[40]
n of the three groups of eigenvalues: it can be observed that all the

curves show the same behavior as a function of the spacing. In particular, the perturbation of
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the second and third groups are 24dB-32dB and 32dB-42dB lower than the perturbations of the
first group, respectively. Figure 5.25 (right) shows that MRD L2 exhibits a behavior qualitatively
similar to that of the maximum absolute perturbations.

5.7.3 Description of the Eigenvalues and Eigencurrents of the array

In this section we want to investigate some interesting properties of the eigenvalues and eigen-
currents of the admittance operator of the array of slots, using the basis of the elements of E.
Let us analyze the position of the eigenvalues {λ nq} in the complex plane as a function of the
number of subarrays. For this purpose we consider two LCXs composed by 15 and 29 identical
slots, respectively, whose geometrical and electrical characteristics are: inner/outer conductor
radii 3.4/8.8 mm, slot angular width α = 180◦, slot separation L = λ0/2, dielectric permittivity
ε r1 = 1.26 and frequency f = 1 GHz. In the simulation we employ one basis function for
the z-dependence and three even weighted Chebyshev polynomials of the second kind for the
ϕ−dependence.
Figures 5.26 and 5.27 show the plots of the eigenvalues of the first two groups normalized to
the absolute value of the corresponding single slot eigenvalue. From a direct comparison we can
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conclude that each group tends to line up on a curve in the complex plane independently on the
number of slots. This statement is not only valid for the first two groups, but it is completely
general.
Moreover, we can note that the eigenvalues tend to accumulate, as the number of slots is in-
creased, to a specific eigenvalue (in the plots it is labelled by the number 1). As found in [31]
pag 156, this eigenvalue belongs to an eigencurrent without phase jumps in the coefficients of the
dominant single slot eigencurrent. In this and in the following section the eigenvectors of each
family En are sorted in ascending order according to the number of phase jumps.
Let us now analyze how the eigencurrents of a LCX are described in the basis E 1

⋃
E 2. For

this purpose we consider the eigenvector components of the moment matrix related to the LCX
of 15 slots just considered. In Figure 5.28 the pattern of the absolute values of the components
of the matrix of the eigenvectors of the Moment Matrix in the basis E are shown. From the plot
it can be noted, as one can expect after the investigation done in the preceding section, that the
eigencurrents {ψ

nq
(z, ϕ)} are a linear combination of the currents of the corresponding set E n

plus a perturbation (represented by the off-diagonal blocks) that is practically negligible (see, for
example, the zoom in Figure 5.29).
It is interesting to consider the distribution of the dominant coefficients of the eigencurrent of

the array in the basis E. For this purpose in Fig. 5.30 (top), the coefficients of ψ
1,k

(z, ϕ), for
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Figure 5.21: Absolute value of ε nq for each family n as a function of the index q

k=1,2 and 3, in the basis ψsub
1
(z, ϕ) are shown for an array of 15 slots. The curves in the bottom

part of the figure represent the relevant plot for ψ
2,k

(z, ϕ) in the basis ψsub
2
(z, ϕ). Hence, these

are the plots of the first three columns of each sub-block of the matrix in Figure 5.28. Finally
in Fig. 5.31 the same plots are reported for the case of 30 slots. By inspection of the figures,
one can conclude that not only the “shape” is practically independent on the number of slots, but
also is the same for the eigencurrents related to E 1 and E 2. This behavior of the eigenvector
coefficients is a consequence of the Toeplitz form of the moment matrix. In particular this result
would be exact if the moment matrix were tridiagonal [33]

5.7.4 Parameter Dependence of the Eigencurrents

In this section we investigate the dependence of the dominant coefficients of the array eigen-
currents on the geometrical and electrical parameters of a LCX. This kind of analysis can be
considered the extension of what has been done in section 5.6 where we have analyzed the de-
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pendence of the single slot eigencurrents on the frequency and on the angular aperture α.
In particular, here we focus our attention on the dependence on the slot distance L, the angular
aperture α, the frequency and the number of apertures.
Let us consider the behavior of the eigencurrents ψ 1q(z, ϕ) for a LCX composed by 30 equal
slots as a function of the slot separation L. The fixed geometrical and electrical parameters
are: inner/outer conductor radii 3.4/8.8 mm, slot angular width α = 180◦, dielectric permittivity
ε r1 = 1.26 and frequency f = 1 GHz. In Figures 5.32 and 5.33 the absolute value and the phase
of the dominant coefficients of the first four eigencurrents ψ 1q(z, ϕ) are shown for L = 10 cm
and L = 18 cm. From the plots it can be noted that the eigenvector coefficients are practically
independent of the slot separation (maximum difference less than 1e − 3 in amplitude and less
than 5◦ in phase).
Let us turn now our investigation to the frequency dependence of the dominant coefficients. For
this purpose we consider the same LCX as before, with a slot distance L = 18 cm. In Figures
5.34 and 5.35 the dominant coefficients, of the first four eigencurrents ψ 1q(z, ϕ) are shown for
two values of frequency f = 0.5 GHz(+) and f = 2 GHz(o). In this case the curves show a
larger change than before.
Finally, let us analyze the dependence of the dominant eigencurrent coefficients on the geomet-
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Figure 5.23: Percentage error for the eigenvectors related to E 1

rical apertures of the slots. For this purpose we consider the same LCX as before and we fix the
frequency equal to 1GHz. Since it has been discussed in Section 8.3 that a way to control the
radiation power of a LCX consists in tapering, by groups, the slot angular dimensions, if we want
to employ the eigencurrent approach to such structure this kind of investigation becomes clearly
quite important. In Figures 5.36 and 5.37 the absolute value and the phase of the coefficients
of the dominant single-slot eigencurrents for the first four eigencurrents ψ

1q
(z, ϕ) are shown for

various angular apertures α = [90◦, 135◦, 180◦]. It is clear that these eigencurrents do not depend
appreciably on the slot angular apertures.
To summarize, the preceding results have shown the almost complete independence of the domi-

nant eigencurrent coefficients on the geometrical parameters of the LCX. This observation can be
usefully employed, since once the eigencurrents have been computed for a specific set of param-
eters, the same coefficients can be employed for another geometrical set and the corresponding
eigenvalues can be computed using the Rayleigh-Ritz quotient.

5.8 Numerical justification of the behavior of the eigenvalues
of the admittance operator

In the preceding sections we have commented some peculiarities of the eigencurrents and eigen-
values of the array and thanks to these properties the EigenCurrent Approach can be efficiently
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applied to the analysis of LCX. The main points are:

• The eigenvalues related to the family E 1 have a significant spread with respect to the slot
eigenvalue λsub1 , while the eigenvalues related to E n′ , with n′ > 1, have a negligible spread

• The off-diagonal blocks of the matrix of the coefficients of the array eigencurrent, de-
scribed in the basis E assume negligible values.

Both aspects are related to the inter and intra mode coupling effects between the eigencurrents of
different slots. In section 5.2 it has been discussed how these two types of coupling are related to
some specific entries of the moment matrix. In this section we want to give a qualitative justifica-
tion of both observations starting from the behavior of the elements of the array moment matrix
in the basis E. For this purpose let us consider the following three types of matrix elements:

• a)
∑

n

∫

<
|ψ̃sub1 (χ, n)|2Y tot(χ, n)e− χLdχ, that is the intra-mode coupling term between

the elements of E 1

• b)
∑

n

∫

<
ψ̃sub1 (χ, n)ψ̃∗sub3 (χ, n)Y tot(χ, n)e− χLdχ, that is the inter-mode coupling term

between the elements of E 1 and E2
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• c)
∑

n

∫

<
|ψ̃sub2 (χ, n)|2Y tot(χ, n)e− χLdχ, that is the intra-mode coupling term between

the elements of E 2

where L is the distance between two slots and the superscript ∼ indicates the double Fourier
transform of the eigenfunctions. The numerical results shown in this section refers to a specific
LCX whose geometrical and electrical characteristics are: inner/outer conductor radii 3.4/8.8
mm, slot angular width α = 180◦, dielectric permittivity ε r1 = 1.26, frequency f = 1 GHz and
spacing L = 11 cm.
In our qualitative analysis we now assume the slot eigencurrents ψsubn coincides, for what concern
the ϕ-dependence, with the weighted Chebyshev polynomials of the second order, i.e.:

ψsubq (z, ϕ) =
1

√

1− (2z/s)2
U2q−1(2ϕ/α)

√

1− (2ϕ/α)2 = f(z) gq(ϕ) (5.29)

for q = 1, . . . , N sub
eig

This statement is valid since in section 5.5 it has been observed that the set of weighted Cheby-
shev polynomials of the second order is a very good approximation of the slot eigencurrents.
Under this assumption the preceding terms become:

• a)
∑

n |g̃ 1(n)|2
∫

<
|f̃(χ)|2Y tot(χ, n)e− χLdχ =

∑

n |g̃ 1(n)|2I(n)
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Figure 5.26: Normalized (with respect to |λsub1 |) eigenvalues (◦) of the 1st group for a LCX of 15
(left) and 29 (right) slots and the corresponding normalized eigenvalue (♦) of a single slot, i.e.
λsub1

• b)
∑

n g̃ 1(n)g̃
∗
2(n)

∫

<
|f̃(χ)|2Y tot(χ, n)e− χLdχ =

∑

n g̃ 1(n)g̃
∗
2(n)I(n)

• c)
∑

n |g̃ 2(n)|2
∫

<
|f̃(χ)|2Y tot(χ, n)e− χLdχ =

∑

n |g̃ 2(n)|2I(n)

where I(n) =
∫

<
|f̃(χ)|2Y tot(χ, n)e− χLdχ.

Since the factor I(n) is common to all the terms, let us start analyzing its behavior as a function
of n. As discussed in detail in chapter 10, it is useful to subdivide the preceding integral into the
sum of internal and external contributions: I(n) = I int(n) + I ext(n). As shown in section 10.3,
the computation of I int(n) can be done by means of the Cauchy Theorem. In this way we obtain:

I int(n) =
∑

q

e− k
(q)
z n LResq(n) (5.30)

where k(q)z n is the propagation constant of the q − th mode of the coaxial cable with azimuthal
index n and Resq(n) is the corresponding residue term, which is a combination of Bessel func-
tions of the first and second kind. Since in the standard application of LCX only the TEM mode
is above cut-off, due to the exponential term, only the component with n = 0 is non negligible.
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Figure 5.27: Normalized (with respect to |λsub2 |) eigenvalues (◦) of the 2nd group for a LCX of
15 (left) and 29 (right) slots and the corresponding normalized eigenvalue (♦) of a single slot,
i.e. λsub2

Let us now consider the term I ext(n). In section 10.3 it has been shown that its computation can
be reported to the computation of the following integral:

I ext(n) =

∫
∞

0

e−t (k0L) h(t;n) dt (5.31)

where the function h(t;n) is a combination of Hankel functions of the first and second kind. A
numerical investigation has shown that the term with n = 0 is the dominant one (see figure 5.38).
Then, let us consider the products g̃ i(n)g̃∗j(n) for the three cases of interest, i.e. i, j = 1, 2. In
Figure 5.39 it can be observed that only in the case i = 1, j = 1 ( case a)), the product is different
from zero in n = 0.
Combining the results of Figures 5.38 and 5.39 we can conclude that intra-mode coupling be-

tween the elements of E 1 is not negligible. On the other hand, this fact does not happen in the
cases b) and c) and, qualitatively speaking, it is responsible of the low (almost insignificant)
intra-mode coupling between the elements of E 2 and of the inter-mode coupling between the
elements of E 1 and E 2.
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Figure 5.28: Pattern of the absolute values of the components of the eigencurrents {ψ
nq
(z, ϕ)},

with n = 1, 2, in the basis E, for a LCX of 15 slots. Eigenvector normalization: maximum
coefficient

5.9 Numerical validation of the Eigencurrent Approach

In this section we validate the Eigencurrent Approach and its implementation in terms of ac-
curacy and CPU time reduction. The comparison refers to the computation of the unknown
magnetic current distribution once the series of integrals have been evaluated.
In particular we make the following comparison. We fix the slot geometry and separation and
analyze LCXs with different number of apertures: 40, 100, 200, 500 and 1000 slots. The geo-
metrical and electrical characteristic of the structure are: inner/outer conductor radii 3.4/8.8 mm,
slot angular width α = 180◦, slot separation L = 11 cm, dielectric permittivity ε r1 = 1.26. The
slot magnetic current has been represented by three basis functions (Chebyshev polynomials of
the first kind for the z-dependence and of the second kind for the ϕ-dependence). In the eigen-
current approach, only the elements of the first group E 1 in the cycle have been employed.
Figures 5.40 and 5.41 show the frequency response of the reflection and transmission coefficient
of a 200 slot cable, computed by the two techniques. The results are in extremely good agree-
ment.
Table 5.5 shows a summary of the percentage CPU time reduction on the solution obtained be-
tween the two methods. The L2-norm error (in terms of MRDL2 , see (5.28)) remains lower then
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Figure 5.29: Zoom of figure 5.28 which shows the components of {ψ
2q
(z, ϕ)} in the basis E 1.

Same pattern for the components of {ψ
1q
(z, ϕ)} in the basis E 2. Eigenvector normalization:

maximum coefficient

1%. As reported in the table, the advantage in terms of computation times using the eigencur-
rent approach becomes remarkable as the number of slots is increased. Moreover the application
of the Eigencurrent Approach becomes really important when the number of slots is very large
(more than 1000 slots). Indeed, in this case the standard method of moment code cannot be ap-
plied, while the Eigencurrent Approach can be still efficiently used.
It is important to remark that in the case under examination we employ a small set of entire do-
main basis functions for the representation of the slot magnetic current. In the preceding section
it has been shown that only the elements belonging to E 1 have to be taken into account in the
cycle scheme, therefore the size of the moment matrix is reduced only by a factor of 9. If roof-top
or RWG subdomain basis functions were used, as it would be necessary in the case of complex
shape slots, the reduction factor would be much higher, as in [31].

This method can be successfully applied to LCX consisting of groups of slots with slightly differ-
ent size, as proposed in section 8.3. In this case the Eigencurrent Approach can be applied twice,
first for the computation of the eigencurrents and eigenvalues of each subarray which coincides
with the blocks of equal slots, then to the entire antenna.
Finally, it is important to remark that, since the computation time of the projection integrals is
considerable, the global time saving is of the order of 50%.
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Figure 5.30: LCX of 15 slots. Amplitude of the coefficients of the first three eigencurrents ψ 1,q

(top) and ψ 2,q (bottom), (q = 1(+), q = 2(∗) and q = 3(♦)), in the basis ψsub1 and ψsub2 ,
respectively.

5.10 Conclusion

In this chapter we have described the application to the analysis of LCX of the Eigencurrent
Approach, a method originally developed for linear array of patches.
We have shown the importance of employing eigencurrents as expansion functions in order to
avoid the storage and inversion of the Moment Matrix. It has been shown that these eigencurrents
present a negligible dependence on the geometrical parameters of the slot.
Then the eigencurrents of the entire array in the basis of the ones of a slot have been analyzed.
In particular the behavior of the shape of the dominant coefficient of each eigenvector has been
considered. It has been numerically proved the approximate invariance of this shape with respect
to changes in the geometrical and electrical characteristics of the slots. According to this analysis
the eigencurrents and eigenvalues of the array have been organized in groups and the spread of
these eigenvalues has been used as a quantitative measure of the coupling between the slots.
By this analysis it has been shown how to compute these eigencurrents as a linear concatena-
tion of the subarray ones. Finally the effective accuracy of the method and its computational
advantages have been shown in the simulation of very large LCX.
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Figure 5.31: As Figure 5.30 but in the case of LCX with 29 slots
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Figure 5.32: Absolute value of the expansion coefficients of ψ 1q(z, ϕ) in the basisE 1 for L = 10

cm(+) and L = 18 cm(o). The curves are superimposed.
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Figure 5.33: Phase (deg) of the expansion coefficients of ψ 1q(z, ϕ) in the basis E 1 for L = 10

cm(+) and L = 18 cm(o). The curves are almost superimposed.
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Figure 5.34: Absolute value of the expansion coefficients of ψ 1q(z, ϕ) in the basisE 1 for f = 0.5

GHz(+) and f = 2 GHz(o). Eigencurrent normalization: maximum component
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Figure 5.35: Phase of the expansion coefficients of ψ 1q(z, ϕ) in the basis E 1 for f = 0.5 GHz(+)
and f = 2 GHz(o).

Table 5.5: Percentage CPU time reduction of the Eigencurrent Approach versus the standard
Method of Moment Code for different number of slots

Number of slots Percentage CPU time Reduction

40 10%

100 100%

200 500%

500 1400%

1000 1500%
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Figure 5.36: Absolute value of the expansion coefficients of ψ 1q(z, ϕ) in the basis E 1 for various
values of the angular aperture α. In particular α = {90◦(+), 135◦(o), 180◦(∗)}. The curves are
indistinguishable. Eigencurrent normalization: maximum component
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Figure 5.37: Phase (deg) of the expansion coefficients of ψ 1q(z, ϕ) in the basis E 1 for various
values of the angular aperture α. In particular α = {90◦(+), 135◦(o), 180◦(∗)}. The curves are
indistinguishable.
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Figure 5.40: Comparison between the reflection coefficient (in dB) computed by the Method of
Moment code and the Eigencurrent Approach for a LCX composed by 200 slots.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

f [GHz]

S
21

 d
B

 

 

MoM
EigenCurrent

Figure 5.41: Comparison between the transmission coefficient (in dB) computed by the Method
of Moment code and the Eigencurrent Approach for a LCX composed by 200 slots.



Chapter 6

Slotted Coaxial Cables: numerical results

6.1 Introduction

In this chapter we present some numerical results obtained with the methods described in Chap-
ters 3 and 4.
First a cable with a single slot is considered. We derive a simple equivalent circuit for the TEM
mode, in the form of a parallel resonator connected in series to the main line. We define the slot
radiation efficiency, a parameter that plays an important role in Chapter 8, and obtain a plot in
terms of the electrical slot length. Also the slot reflection coefficient is parameterized in the same
way.

In Section 6.3 the properties of Bloch waves in a periodically slotted cable are discussed in depth.
It is shown that practically only one Bloch wave is excited by the discontinuity between unslotted
and slotted cable. This property holds in general, also in the case of a finite number of slots. On
this basis, a simple model is derived, to describe the magnetic currents on the various slots.

Finally, a comparison is presented between the radial and longitudinal analysis of the same LCX.
The agreement is remarkable, while the Bloch wave analysis is considerably faster when the ca-
ble has more than a few tens of slots.
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6.2 TEM equivalent circuit of a single slot

A slot in the outer conductor of a coaxial cable represents a discontinuity for the incident TEM
mode and it can be useful to derive its equivalent circuit.
Let us consider the longitudinal equivalent circuit of Figure 3.4, particularized here in the case of
the TEM mode. The circuit of Figure 6.1 shows that the currents in z = z1 and z = z2 are equal,
whereas the voltages V (z1) and V (z2) are different due to the distributed voltage generators v(z).
The discontinuity, then, can be described by a series impedance Zslot as shown in Figure 6.2.

)( 1zV

)(zv

ẑ

1zz =
2zz =

+ + +)( 1zI )( 2zI

)( 2zV

Figure 6.1: TEM mode equivalent circuit of a single slot

slot
Z

Figure 6.2: Definition of the slot impedance Zslot

The normalized impedance zslot can be related to the reflection coefficient S11 by the following
equation:

zslot =
Zslot
Z∞

=
S11

2(1− S11)
(6.1)

As an example, Figure 6.3 shows a frequency plot of the slot normalized impedance zslot, in the
case of a α = 270◦, width s = 3 mm slot in a coaxial cable with inner conductor radius a = 12

mm, outer conductor radius b = 30 mm, relative permittivity εr1 = 1.26. The response is similar
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to that of a parallel RLC resonator, hence we plot in Figure 6.4 the normalized slot admittance
yslot = 1/zslot, which exhibits a nearly frequency independent conductance and a hyperbolic
susceptance curve. The equivalent circuit of the slot can be conveniently drawn in the form of
Figure 6.5. The elements R, L and C have been determined numerically by local best fit and
are plotted in Figures 6.6, 6.7 and 6.8. We see that their frequency variation is very weak, which
confirms the validity of the equivalent circuit.
Observe that the resonance ={yslot} = 0 occurs when the frequency is f = 1.015 GHz. If
we define an average wavelength λ = λ0/

√

(1 + εr1)/2 to take approximately into account the
presence of two different dielectrics, we see that resonance occurs for bα/λ = 0.508, i.e. for a
slot length very close to half wavelength, as one could expect.

If we use a single expansion function for the magnetic current, we can obtain an explicit
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Figure 6.3: Real and imaginary part of the normalized slot impedance zslot

expression of the real and imaginary parts of the normalized slot admittance yslot = gslot+j bslot.
In fact, combining (6.1) and the explicit expression of S11 (3.39), after some simplifications, we
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Figure 6.4: Real and imaginary part of the normalized slot admittance yslot

obtain:

gslot =

∑

n

∫ k0

−k0

<{Y ext(χ, n)} |ũ(χ, n)|2dχ

4π2Y∞|hϕ(b)|2|ũ(k1, 0)|2
(6.2)

bslot =

∑

n

∫
∞

−∞

={Y tot(χ, n)} |ũ(χ, n)|2dχ

4π2Y∞|hϕ(b)|2|ũ(k1, 0)|2
(6.3)

where Y∞ and hϕ(b) are the TEM admittance and magnetic field evaluated on the outer conductor.
The slot conductance is essentially a radiation conductance and correctly depends only on the
external part of the total admittance Y tot(χ, n). On the other hand the slot susceptance bslot is
linked to the reactive field excited inside and outside the cable and is related to Y tot(χ, n).

In the standard application of an LCX, each slot should radiate, as much as possible, a constant
power level in order to maintain a uniform electromagnetic coverage along the tunnel where the
LCX is placed. For this to be possible, it is necessary that each slot radiates only a small amount
of the incident power and hence it must be electrically small.
From this point of view, it is convenient to define a slot radiation efficiency ηslot = Prad/Pinc,
which clearly is related to the circuit parameters previously introduced. In general, both the
slot radiation efficiency and reflection coefficient depend on frequency and cable and slot size.
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Figure 6.5: TEM mode slot equivalent circuit in the form of a parallel RLC resonator

However, extensive numerical experiments have shown that an important global parameter is the
slot electrical length ρ2α/λ. Figures 6.9 and 6.10 show plots of the slot efficiency and of the
corresponding reflection coefficient versus the slot electrical length, for different values of the
slot width s. These plots have been generated by keeping the cable characteristic impedance
constant, Z∞ = 50Ω. The dependence of these parameters on the slot width s is very weak, in
the range of interest.
Moreover, a single slot arrives at radiating 50% of the incident power at resonance, i.e. when its
geometrical length ρ2α is close to λ/2. The corresponding reflection coefficient in this condition
is about -6 dB. Obviously, these curves are valid only in a certain parameter range. In particular,
the higher order cable modes must be well below cut-off and the slot angular width must lie in
the range 10◦ . α . 350◦

As indicated above, the slots of a LCX should radiate very little, hence we are mainly interested
in the highlighted part of Figure 6.10 and 6.9, where the slot presents a very low value of S11
(less than −30dB) and the radiated power is only a few percent of the incident one.
In these conditions, the mutual interactions among the slots can be attributed to the TEM mode
only and the theory of small reflections, (see Figure 6.11) [12], can be used to predict the quali-
tative properties of the frequency behavior of the slotted cable.
Assuming that the slots are identical and have equal spacing L, the input reflection coefficient
for a LCX with Nslot slots can be written as:

Γin ≈ Γslot

Nslot−1∑

n=0

(e−2jk1L)n = Γslot exp{j(Nslot − 1)k1L}
sin(Nslotk1L)

sin(k1L)
(6.4)

This response, shown in Figure 6.12 in the case Nslot = 40, is characterized by reflection peaks
and reflection nulls. Their frequencies are given by:
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nulls: fz = m
clight

2
√
ε1NslotL

with integer m

peaks: fp = m
clight
2
√
ε1L

with integer m

The frequency separation of two adjacent peaks is, hence:

∆f =
clight

2
√
εr1L

and there are Nslot nulls between two peaks. These results have been confirmed by a full-wave
simulation. The cable data are a = 3.4 mm, b = 8.8 mm, s = 3 mm, εr = 1.26 and α = π.
Figure 6.13, where the two curves are superimposed, shows that the agreement is quite good,
apart form the reflection peaks that clearly cannot be described by small reflection theory.

6.3 Properties of the Bloch waves in a slotted cable

A slotted cable, examined from the longitudinal point of view, is an open periodic waveguide,
with period L. Hence we may expect that it has a continuous spectrum of Bloch waves (radiated



6.3 Properties of the Bloch waves in a slotted cable 137

0.5 1 1.5
2.43

2.44

2.45

2.46

2.47

2.48

2.49

2.5

2.51

2.52

2.53
x 10−4

f [GHz]

nH

 

 

L
slot

Figure 6.7: Frequency plot of the slot inductance Lslot

Bloch waves) and a finite number (possibly zero) of surface Bloch waves (guided Bloch waves).
Depending on the frequency, each of these waves may have a real propagation constant kB (pass-
band) or a complex one kB = pπ/L− jα, with integer p (stopband). As recalled in Section 4.5,
each Bloch wave can also be seen as a collection of spatial harmonics [30]. If the period L is
smaller than Lmin, where Lmin = λ0/(1+

√
εr1), then all the spatial harmonics lie outside of the

“visible range” [−k0, k0] and a Bloch (slow) wave exists, with propagation constant larger than
k0, i.e. a surface Bloch wave.

In order to verify the preceding considerations, we have analyzed a lossless LCX with inner
conductor radius a = 8 mm, outer conductor radius b = 20.65 mm, εr1 = 1.26, and complete
apertures (α = 2π) of width s = 3.24 mm. Of the cable modes, only the TEM has been consid-
ered accessible. The continuous spectrum has been discretized by using 101 Chebyshev weighted
polynomials and one Laguerre polynomial: such a large number is absolutely not necessary for
the accurate computation of the slot aperture field, but is useful to appreciate the Bloch wave
spectrum.

Three slot spacings have been considered: in case a) L = 0.43Lmin so that a surface wave is
expected, while in cases b) and c) L = 1.5Lmin and L = 1.891Lmin, respectively, and only
continuous spectrum should be present. The Bloch propagation constants kBj at f = 2 GHz are
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Figure 6.8: Frequency plot of the slot capacitance Cslot

shown in Figures 6.14 , 6.15 and 6.16 for the cases a), b) and c), respectively. In all cases, one
recognizes a number of points in the interval−k0 ≤ kBj ≤ k0 that increases with the number of
basis functions {ln(τ)} used to discretize the continuous spectrum. These are fast Bloch waves
and can be considered as a numerical approximation of the continuous spectrum of Bloch waves
of the slotted cable.
Moreover, in case a) there is also an isolated point with kB slightly larger than k0, whose position
is quite stable when the number of expansion functions is changed: this is a surface Bloch wave.
The composition of the relevant eigenvector is shown in Figures 6.17 and 6.18 for the progres-
sive wave and the regressive one. The cell transmission matrix has size 204 × 204, hence the
eigenvectors have 204 components, the first 102 referring to progressive waveguide modes, the
other 102 to regressive ones. The dominant coefficients refer to the progressive (position 1) and
regressive (position 103) TEM mode. The first is larger than the second, or viceversa according
to the progressive or regressive character of the Bloch wave.

Figure 6.19 shows the excitation coefficients of all the 102 progressive Bloch waves when a TEM
mode impinges on the junction between an unslotted cable and a semi-infinite slotted one with
the spacing of case a). These are the elements of the first column of the matrix Sus21 defined by
(4.85). We can see that the surface Bloch wave, whose index is 1, is the most heavily excited.
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Figure 6.9: Radiation efficiency ηslot of an isolated slot versus ρ2α/λ

In cases b) and c), no surface Bloch wave is possible on the slotted cable, since at least one spatial
harmonic lies in the visible range. However, also in this case, when a TEM mode impinges on
the junction unslotted-slotted cable, mainly a single Bloch wave is excited, as shown in Figures
6.20 and 6.21, although with quite different absolute levels. It turns out that this Bloch wave is
evanescent in case c) (stop band), since its propagation constant is purely imaginary. Moreover,
if we analyze its modal composition, shown in Figure 6.22, we note that the coefficients of the
progressive and regressive waveguides modes are equal, so that no active power is carried by this
wave. On the other hand, in case b) the propagation constant of the most excited Bloch wave is
real (kB = −0.29k0). Its modal composition is shown in Figure 6.23: we see that this wave is
mainly composed by the progressive and regressive TEM modes (components in position 1-103)
but has also quite strong components related to the regressive composite modes (components in
positions 104-204).

It is interesting to analyze how the propagation constant of the most excited (progressive) Bloch
wave, changes as a function of the normalized period L/Lmin (see Figure 6.24 ). The study has
been carried out on a LCX with semicircular apertures and the following geometrical charac-
teristics: inner conductor radius a = 6 mm, outer conductor radius b = 15 mm, εr1 = 1.26,
slot width and angular aperture s = 3 mm, α = 180◦, and frequency f = 1 GHz. As already
discussed in the preceding example, when L/Lmin < 1, the propagation constant of the mostly
excited Bloch wave is kB > k0 since the wave is of surface type (slow). On the other hand,
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Figure 6.10: Reflection coefficient of an isolated slot versus ρ2α/λ

when the period L/Lmin < 1, the mostly excited Bloch wave is fast, with propagation constant
kB < k0. Note that the discontinuity in the plot is artificial and arises because the phase shift per
cell kBd has been taken always in the fundamental range (−π, π].
We see that the transition between slow and fast behavior occurs at L = Lmin, in which case
kB = −k0 corresponding to backfire radiation. When the spacing L is increased, kB becomes
progressively less negative until it vanishes for L = 1.8Lmin, corresponding to broadside ra-
diation. The statements about the radiation directions are supported by the examination of the
eigenvector content. As an example, consider the case L = 1.25Lmin, in which the mostly ex-
cited Bloch wave has a propagation constant kB = −0.56 k0. We must not be surprised by the
fact that a progressive Bloch wave has a negative propagation constant. This wave is progressive
because it carries active power in the positive z direction. If we attribute this propagation con-
stant to the -1 harmonic (recall (4.78)), the fundamental has the value kB + 2π/L = 1.139k0.
To analyze the eigenvector, we distinguish the TEM mode from the continuous spectrum. The
latter is reconstructed as a sum of expansion functions weighted by the eigenvector coefficients.
The result is shown in Figures 6.25, 6.26 for the progressive and regressive power waves of the
external modes for the azimuthal harmonics m = 0, ±1. As for the TEM mode, the coefficients
are 0.98 and −0.04 for the progressive and regressive waves, respectively. Hence, this Bloch
wave consists mainly of a progressive TEM mode, inside the cable, accompanied by a weak trail
of progressive TM and TE continuous spectrum modes in the outside region. Figure 6.26 exhibits
a clear peak at τ = 0.84k0, which means that the Bloch wave produces a consistent radiation at
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Figure 6.11: Small reflection theory concept

the angle θ = 180◦ − arcsin(τ/k0) = 122◦.

Let us consider now the actual case of a cable with a large but finite number of slots. The result of
a careful numerical analysis is that the mostly excited Bloch wave is the same as in the case of the
semi-infinite slotted cable. When this wave (call it Forward wave) reaches the junction between
the slotted and unslotted cable, it gives rise to several reflected Bloch waves that, on the further
reflection on the first junction, couple only with the Forward wave. Moreover, it can be observed
that all the regressive Bloch waves have globally a negligible effect on the magnetic currents on
the slots. Hence, the results obtained above, in the idealized case of a semi-infinite slotted cable,
maintain their validity. In particular, the field propagating in the region of the slotted cable is
essentially a progressive wave. The magnetic currents in the various slots are almost identical
apart from a complex amplitude coefficient xq:

xq = x0 e−j kzq L (6.5)

The real part of kz is essentially the propagation constant of the mostly excited progressive
Bloch wave and then it is close to the TEM value k0

√
εr1. Although Bloch waves have real

propagation constants in their pass-bands, they form a continuum and their combined effect can
be conveniently described by an imaginary part of kz, which depends on the slot characteristics
and describes the effect of the power leakage. The value of this imaginary part will be determined
in Section 8.2 as a function of slot size and spacing.
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Figure 6.12: Small reflection theory approximation: response of a 40 slot array

6.4 TEM mode behavior in a slotted cable

It is useful to see the validity of the simple exponential model of the slot coefficients, presented in
the last section, in a specific example, where in particular the attention is focused on the behavior
of the TEM mode in the cable.
Let us consider an LCX with 200 slots, whose geometrical and electrical characteristics are: in-
ner and outer conductor radii a = 6 mm and b = 15 mm, permittivity εr1 = 1.26, slot width,
angular length and spacing s = 3 mm, α = 180◦ and L = 20 cm and frequency f = 1 GHz.
Since Lmin = 14.1cm, the cable is in mono-radiation condition. The unknown magnetic cur-
rent on each slot has been approximated with three basis functions, but the first one is by far
the mostly excited one and we will focus our attention on its coefficient. Also, sixty azimuthal
harmonics have been used in the construction of the Green’s function.

The first check is on the phase of the main coefficient, which results to be essentially that of
the mostly excited Bloch wave field at each slot location. Figure 6.27 shows, for each slot, the
difference between the phase of the main coefficient and kBLq, where Lq denotes the distance
of the q-th slot from the array input. We can notice that the structure of the phase difference
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Figure 6.13: Input reflection coefficient of an array of 40 slots versus frequency. Comparison
between small reflection theory and full wave approach.

is complicated, but small over the array length. Figures 6.28, 6.29 show the amplitudes of the
TEM progressive and regressive voltages at the midpoints zq between the q-th and (q+1)-th slot,
computed according to the following equations:

V +(z q) = V inc e−j k1 (L/2+z q+s/2) − 1

2

q
∑

r=1

˜◦v q(k1)e−j k1 (L/2+z q−z r) (6.6)

V −(z q) = +
1

2

q
∑

r=1

˜◦v q(−k1)e−j k1 (L/2+z q−z r) (6.7)

where ◦

vq(z), with q = 1, . . . , Nslot, is the equivalent voltage generator at the q-th slot loca-
tion. The values are normalized to the incident voltage at the beginning of the array and the end
of the cable is assumed to be matched. The plots show clearly that the regressive voltage is
much smaller than the progressive one; this fact confirms that the electromagnetic phenomenon
is purely progressive. The progressive voltage has an exponential decay amounting to about 20%
over the array length, with a slight ripple. It is to be remarked that the slots are coupled both
through the TEM mode and through the space wave propagating just outside of the cable. The
simplified model of an electric current along the external conductor of the cable, employed in
Section 7.3, can be used here in order to explain the ripple in Figure 6.28. In fact, as it has been
verified through a Fourier analysis, this ripple is caused by the interference of an electromagnetic
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Figure 6.14: Real and imaginary part of the Bloch wave propagation constants kBj for case a):
slot spacing L = 0.43Lmin. Note the isolated point that corresponds to the surface Bloch wave

field presenting a dominant progressive phase shift of the form e−j k0z with the TEM mode.
Finally, Figure 6.30 shows a plot of the TEM power flow along the cable, which practically

coincides with that of Figure 6.28, owing to the very small regressive voltage. The same expo-
nential decay characterizes also the amplitude distribution of the main basis function coefficient
and this fact finally justifies completely the model (6.5).
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Figure 6.15: Real and imaginary part of the Bloch wave propagation constants for case b): slot
spacing L = 1.5Lmin. There is no surface Bloch wave

6.5 Comparison between transverse and longitudinal approach

In the two preceding chapters, two completely different methods have been described for the
analysis of LCX. The first views the slotted cable in the transverse direction and computes the
electric field in the slots by solving a magnetic field integral equation. The second carries out the
study in the longitudinal direction on the basis of Bloch wave theory. Since the free space region
surrounding the cable is an open waveguide, we face the problem of discretizing its continuous
spectrum.
It is interesting to compare the two approaches in the specific case of a cable with 200 slots. The
apertures have an angular extent α = π/2, the width is s = 3 mm, the inner and outer conductor
radii are a = 5.8 mm and b = 15 mm and εr1 = 1.26.
For the transverse approach, three basis functions have been used to represent the magnetic
current and the azimuthal series in the computation of the moment matrix elements has been
truncated according to the criterion of Section 3.6. In the longitudinal approach, ten Chebyshev
weighted polynomials and one Laguerre polynomial have been used for the continuous spectrum
discretization, as well as three angular harmonics; only the TEM mode has been considered in
the cable. Hence the slot GSM has a size 2 · [3 · (10 + 1) + 1].
Figure 6.31 shows a comparison between the TEM mode reflection responses computed by the
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Figure 6.16: Real and imaginary part of the Bloch wave propagation constants for case c): slot
spacing L = 1.89Lmin. There is no surface Bloch wave

two approaches. The agreement is practically perfect, with a slight difference showing up only
in the upper frequency band, but the CPU time is widely different. In general, with these param-
eters, the Bloch wave method is more convenient when the cable contains more that twenty slots.
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Figure 6.17: Modal composition of the progressive Surface Bloch Wave (in dB), the peaks cor-
respond to the TEM progressive mode (position 1) and to the regressive one (position 103)
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Figure 6.18: Modal composition of the regressive Surface Bloch Wave (in dB), the peaks corre-
spond to the TEM progressive mode (position 1) and to the regressive one (position 103)
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Figure 6.19: Bloch wave excitation coefficients at the junction unslotted-slotted cable for case a)
(L = 0.43Lmin), in which a surface Bloch wave exists. Its index is 1
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Figure 6.20: Bloch wave excitation coefficients at the junction unslotted-slotted cable for case b)
(L = 1.5Lmin), in which no surface Bloch wave exists.
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Figure 6.21: Bloch wave excitation coefficients at the junction unslotted-slotted cable for case c)
(L = 1.89Lmin), in which no surface Bloch wave exists
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Figure 6.22: Modal composition of the most excited Bloch wave in case c) (in dB), the peaks
correspond to the TEM progressive mode (position 1) and to the regressive one (position 103).
This Bloch wave is in stop band.
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Figure 6.23: Modal composition of the most excited Bloch wave in case b) (in dB), the peak
correspond to the TEM progressive mode (position 1)
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Figure 6.25: Continuous spectrum composition of the Bloch wave: TM and TE progressive
power waves
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Figure 6.26: Continuous spectrum composition of the Bloch wave: TM and TE regressive power
waves
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Figure 6.27: Difference between the phases of the main coefficient on each slot and that of the
mostly excited Bloch wave
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Figure 6.28: TEM mode progressive voltage, normalized to the incident voltage at the array input



6.5 Comparison between transverse and longitudinal approach 153

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

z [m]

 

 

V−(z)/Vinc

Figure 6.29: TEM mode regressive voltage, normalized to the incident voltage at the array input
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Chapter 7

Radiation Properties of Slotted Coaxial
Cables

7.1 Introduction

In the preceding chapters we have focused our attention on the scattering characteristics of a slot
array, in this chapter we will determine its radiation properties.

The first step is the computation of the radiation pattern of a single slot on the outer conductor of
an infinite coaxial cable. The radial transmission line theory enables us to compute the spectral
representation of the radiated field. The inverse transform cannot be performed in closed form
and we exploit the classical saddle point method to obtain an asymptotic estimate valid in the far
field region of the slot. The accuracy of the result is confirmed by a direct numerical evaluation
of the radiation integral along the steepest descent path (SDP).

The slot radiation pattern seems strange at first sight, since it is characterized by a minimum in
the broadside direction and a steady increase as endfire is approached. The reason for this can be
attributed to the presence of the infinitely long cylinder on which the aperture lies. Actually, the
observer can be in the far field region of the slot, but never of the cylinder. To verify this point
we studied in an approximate way the problem of a slot on a finite length cylinder. In particular,
we computed both the magnetic current associated to the slot and the electric current induced
on the metal, in the assumption the cylinder is infinite. Applying the Equivalence theorem, the
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cylinder is removed and the two current distributions radiate in free space. The finite length of
the cylinder is taken into account by simple truncation, hence using a kind of Physical Optics
approximation.
The patterns obtained in this way have always a null in the endfire direction, as intuitively ex-
pected, but have also main lobes approaching endfire if the cable length is increased, thus con-
firming the original results of Section 7.2.
It is interesting to note that the pattern of a slot on a finite length cylinder can be explained also
by the elementary model of a filamentary electric current with progressive phase shift from the
center to the ends.

After studying the radiation properties of a single slot, we turn to the array of Nslot slots. It is
to be remarked that in the practical exploitation of LCX, the receiver is always in the near field
region of the array, but in the far field region of every slot. This enables us to compute the array
radiated field by superposition of the slot pattern obtained in Section 7.2. On the basis of the
conclusions of Section 6.3, the slot aperture field are assumed all equal apart from a progressive
(complex) phase shift, associated to the mostly excited Bloch wave.

The application of the Poisson sum formula to the expression of the array radiated field converts
it into a summation of spatial harmonics, thus enabling a connection with the Bloch wave point
of view, developed in Chapter 6. Examples of computation of radiation fields of cables with
different slot spacings are perfectly explained in terms of the various operation modes introduced
in Section 4.5 : surface wave, mono radiation and multiradiation operation.

7.2 Radiation properties of a single slot

Let us start by computing the field radiated by a single slot. Using the model developed in Chap-
ter 2, we must determine the field generated by a magnetic current distribution J

m
, directed along

ϕ̂, placed on a metallic cylinder of radius ρ2.
The radial equivalent circuit of the structure is shown in Figure 7.1, where a voltage generator,
whose value is proportional to the Fourier transform of J

m
, is connected to a semi-infinite trans-

mission line, starting at ρ = ρ2. Recalling (2.71) and (2.72), we find that voltage and current at
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a generic section ρ are given by
Ã
V (ρ) =

Ã
P
v
(ρ, ρ2) ·

Ã
V (ρ2) =

Ã
P
V
(ρ, ρ2) · ◦v (7.1)

Ã
I(ρ) =

Ã
P
i
(ρ, ρ2) ·

Ã
I(ρ2) =

Ã
P
I
(ρ, ρ2) ·

Ã
Y (ρ2) · ◦v (7.2)

Inserting the explicit expressions of propagators and line admittance, we obtain the following

Figure 7.1: Equivalent radial circuit for the computation of the radiated field

expressions for the radiated fields:
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where J̃m(χ, n) is the double Fourier Transform of Jm(z, ϕ).
These expressions are valid for every point around the cable. In the applications, the observation
points lie always in the near field region of the complete array but in the far field region of the
single slots. Hence we will proceed to the asymptotic evaluation of these integrals, for k0R→∞.

Let us consider in detail the case of Ez. First, it is convenient to rewrite (7.4) using spherical
coordinates, see Figure 7.2:

r̂

ẑ

R̂

q

Figure 7.2: Spherical reference system for a single slot

Ez(R,ϕ, θ) =
1

4π2

∑

n

e−jnϕ
∫ +∞

−∞

H
(2)
n (τ R sin θ)

H
(2)
n (τρ2)

J̃m(χ, n) e−jχR cos θdχ (7.5)

In order to apply the Saddle Point Method, we must reduce this expression to the form

Ez(R,ϕ, θ) =
∑

n

e−jnϕ
∫ +∞

−∞

f(χ, θ)e−jk0Rq(χ)dχ (7.6)

to be evaluated for k0R → ∞. To eliminate the branch point singularity related to τ =
√

k20 − χ2, we apply the change of variable (see [8]) χ = k0 cosw, so that τ = k0 sinw. In
the new variable (7.5) becomes:

Ez(R,ϕ, θ) = −
k0
4π2
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H
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H
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where Γ is the path, in the complex w plane, shown in Figure 7.3. Recalling the large argument
expansion of the Hankel function, we see that it is convenient to multiply and divide by the factor
exp(−j k0R sinw sin θ):
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·
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Figure 7.3: Path Γ in the complex w plane

The function q(χ) of (7.6) is readily identified as q(w) = cos(θ − w). The saddle point, defined
by the condition

dq

dw
|w=ws

= 0

is ws = θ. The Steepest Descent Path (SDP) is the curve in the w plane passing through ws,
along which Im{q(w)} is constant. This means that along the SDP the last exponential in the
above equation is not oscillating but has the fastest (exponential) decay when moving away from
the saddle point ws. The explicit parameterization of the SDP curve, shown in Figure 7.4 is:

w(x) = x+ j log

(
1 + sin (x− θ)
cos (x− θ)

)

(7.9)

where x ∈ [θ − π/2, θ + π/2]. The integrand has a branch point in w = 0, but no singularities
between the original path Γ and the SDP, so that the contour deformation can be carried out
without changing the value of the integral. Figure 7.5 shows plots of the integrand evaluated
on the SDP, for various values of θ. The radius of the cable outer conductor is ρ2 = 3 cm, the
slot has a width s = 3 mm and an angular aperture α = 360◦, the frequency is f = 1 GHz.
The observation points lie in the plane ϕ = 0◦ on a circle of radius R = 1 m. We see that
the plots are very regular, except when θ is small. In these cases, the w = 0 singularity shows
up with a peak. Note that up to this point there is no approximation and the integral can be
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Figure 7.4: Γ and the SDP path

simply evaluated by numerical quadrature. If k0R À 1 and θ is not too close to 0 or π, it is
possible to derive an analytical expression according to the saddle point method. Indeed, the
Hankel function H (2)

n (k0R sin(w) sin θ) can be approximated by its asymptotic expression for
large argument, i.e.:

H(2)
n (x) ∼

√

2

π x
e−j(x−nπ/2−π/4) for xÀ n (7.10)

Substituting (7.10) in (7.7) we obtain:
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Applying the Saddle Point Method (see [8]), the far field expression of Ez is given by:

Ez(R,ϕ, θ) ≈ −
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4π R
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jne−jnϕ
J̃m(k0 cos θ, n)

H
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n (k0 ρ2 sin θ)

)

(7.12)

The accuracy of (7.12) is proved by a comparison, shown in Figure 7.6, with the results of the
numerical evaluation of the integral along the SDP. The figure shows a very good agreement be-
tween the two curves except for values of θ close to 0 or π, where the presence of further peaks
is not accounted for by the saddle point formula.
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Figure 7.5: Integrand function evaluated along the SDP for different values of θ

Using the same procedure as before, we obtain the far field expressions of the other components
of the radiated field:

Eρ(R,ϕ, θ) ≈ ψ(R)
∑

n J̃m(k0 cos θ, n)

(

2j cos θ
sin θ

jne−jnϕ

H
(2)
n (k0ρ2 sin θ)

+ −2j cos3(θ)

π k2
0ρ

2
2 sin θ

jnn2e−jnϕH
(2)
n (k0ρ2 sin θ)

[H
′(2)
n (k0ρ2 sin θ)]2

)

Eϕ(R,ϕ, θ) ≈ ψ(R) ·∑n−J̃m(k0 cos θ, n)
n e−jnϕ

π k0 sin θ

[

j

R ρ2H
′(2)
n (k0ρ2 sin (θ))

− (−1)n

R2 sin (θ)H
(2)
n (k0ρ2 sin (θ))

]

Hρ(R,ϕ, θ) ≈ ψ(R)
R

∑

n−2jn j
ne−jnϕ

ωµπ
H
(2)
n (k0 ρ2 sin θ)J̃m(k0 cos θ, n)

Hϕ(R,ϕ, θ) ≈ ψ(R)
∑

n J̃m(k0 cos θ, n)

(

− 2jωε
k0 sin θ

jne−jnϕ

πH
(2)
n (k0ρ2 sin θ)

+ 2j cos2(θ)

πωµk0ρ22 sin
3 θ

jnn2e−jnϕH
(2)
n (k0ρ2 sin θ)

[H
′(2)
n (k0ρ2 sin θ)]2

)

Hz(R,ϕ, θ) ≈ ψ(R)
∑

n J̃m(k0 cos θ, n)

(

− j
ωµR sin θ

jn n e−jnϕ

πH
′(2)
n (k0ρ2 sin θ)

)

(7.13)
where

ψ(R) =
e−jk0R

4π R
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Figure 7.6: Ez(θ) for R = 3 m. Comparison between the numerical integration along the SDP
(solid line) and the analytical approximation (Dashed line)

is the Helmholtz function. It is important to remark that the components Ez, Eρ and Hϕ decay
as 1/R, while Eϕ, H z and Hρ as 1/R2. This fact means that in the far field region the main field
components are E z, Eρ and Hϕ.
Figures 7.7 and 7.8 show that the analytical approximations are very close to the results of the
numerical integration. Let us now consider in detail the expressions (7.13). The component
Ez correctly approaches zero for θ close to 0, π, so that boundary conditions are satisfied. On
the contrary, the components Hϕ and Eρ are apparently unbounded in the same conditions. This
behavior is related to the assumption that the cylinder is infinite. At any rate, the singularities
are unreachable, because the observation points must always lie outside the cylinder. In the next
paragraph, it will be shown that if the cylinder is finite, these singularities disappear but still the
radiation pattern presents two maxima which tend to the end-fire direction when the length of
the cable is increased.
Let us specialize the above formulas for the case where the magnetic current distribution Jm
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Figure 7.7: Eρ(θ) for R = 3 m. Comparison between the numerical integration along the SDP
(solid line) and the analytical approximation (Dashed line)

does not depend on ϕ. Eqs. 7.12 and 7.13 reduce to:

Ez(R,ϕ, θ) ≈ ψ(R)
2jJ̃m(k0 cos θ)

πH
(2)
0 (k0 ρ2 sin θ)

Eρ(R,ϕ, θ) ≈ ψ(R)
2j cos θJ̃m(k0 cos θ)

π sin θ H
(2)
0 (k0ρ2 sin θ)

Hϕ(R,ϕ, θ) ≈ −ψ(R)
2jωε J̃m(k0 cos θ)

k0π sin θH
(2)
0 (k0ρ2 sin θ)

(7.14)

The total electric field

E = Ez ẑ + Eρρ̂
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Figure 7.8: Hϕ(θ) for R = 3 m. Comparison between the numerical integration along the SDP
(solid line) and the analytical approximation (Dashed line)

becomes in the spherical reference system:

E = ψ(R)

{

(R̂ cos θ − θ̂ sin θ)
(

2j
J̃m(k0 cos θ)

πH
(2)
0 (k0 ρ2 sin θ)

)

+

+ (R̂ sin θ + θ̂ cos θ)

(

2j cos θJ̃m(k0 cos θ)

π sin θ H
(2)
0 (k0ρ2 sin θ)

)}

=

=
e−jk0R

4π R

2j J̃m(k0 cos θ)

π sin θH
(2)
0 (k0ρ2 sin θ)

θ̂

i.e. the electric field is directed along θ̂ and is orthogonal to the magnetic field and to the ob-
servation direction. Moreover, the ratio of the absolute values of the electric and magnetic field
gives:

|E(R,ϕ, θ)|
|H(R,ϕ, θ)| =

k0
ωε

= Z0

i.e. the electric and magnetic fields satisfy the spherical wave impedance relation.
The same results hold for the general case, but the computational details are more involved.
Since the azimuthal dimension of the slots is small in comparison with the wavelength, the
radiated field can be expected to depend weakly on ϕ. As an example, Figure 7.9 shows the
radiation pattern of Hϕ versus ϕ for θ = π/2. The cylinder has a radius ρ2 = 8.8 mm and the
slot is such that ρ2α/λ0 = 1/10.
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Figure 7.9: Normalized radiation pattern of Hϕ (in dB) for θ = π/2. The slot is centered at
ϕ = 0 and ρ2α/λ0 = 0.1

7.3 Radiation from a slot on a finite length cylinder

In the preceding section the expressions of the field radiated by a magnetic current distribution
located on a infinite metallic cylinder have been obtained. It has been pointed out that those
formulas predict a radiated field that increases when the observation direction approaches the
end-fire direction. At first this result is surprising, but we have to realize that, in this configura-
tion, the metal cylinder plays the major role and not the slot. In order to show this point in greater
detail let us repeat the computation of the radiated field, but assuming that the length Lcyl of the
cylinder is large but finite. We introduce a surface Σ, flush with the metallic cylinder and apply
the Equivalence Theorem (see figure 7.10) to remove the conductor, introducing in its place an
equivalent electric current J

e

J
e
(ϕ, z) = ρ̂×H(ρ = ρ+2 , ϕ, z)

where H(ρ = ρ+2 , ϕ, z) is the magnetic field along the conductor, which can be computed by the
radial transmission line formalism:

H(ρ = ρ+2 , ϕ, z) = −
ϕ̂

4π2

{
∑

n

e−j nϕ
∫

<

Yext(χ, n)J̃m(χ, n) e−jχ zdχ

}

Since we want to explain the case of an infinite cylinder, we compute H(ρ = ρ+2 , ϕ, z) in the
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Figure 7.10: Application of the Equivalence Theorem

assumption that the cylinder is infinite and then we truncate the resulting current:

J
et
= −ẑ 1

4π2

{
∑

n

e−j nϕ
∫

<

Yext(χ, n)J̃m(χ, n) e−jχ zdχ

}

rect
(

z

Lcyl

)

(7.15)

Moreover, the effects of the cylinder bases will be neglected.
The field radiated by the electric and magnetic currents is computed by the radial line equivalent
circuit shown in figure 7.11. where Y (χ, n) and Y ext(χ, n) are the regular and centrifugal wave

I

Y

s

)(r
ext

Y

v

+

i ),( 2rr÷÷
ø

ö
çç
è

æ

I

V

P

P

)( 2r
ext

Y

r2r
r̂

0

0

Figure 7.11: Equivalent radial circuit

admittance computed in section 2.3, the generators ◦

v and
◦

i, in accordance with (2.12), have the
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form:

◦

v(χ, n) =

(

−J̃m(χ, n)
0

)

(7.16)

◦

i(χ, n) =

(

J̃et(χ, n)

0

)

(7.17)

where J̃m and J̃ et are the double Fourier transforms of Jm and J et.
From inspection of the circuit we obtain:

I(ρ) = −P
I
(ρ, ρ2)

(
Z + Zext

)−1 ·
(

◦

v + Z ·
◦

i
)

(7.18)

The ϕ component of the radiated magnetic field is obtained by inverse Fourier transform:

Hϕ(ρ, φ, z) =
1

4π2

∑

n

e−j nϕ
∫

<

e−jχ zP
I
(ρ, ρ2)

(
Z + Zext

)−1 ·
(

◦

v + Z
◦

i
)

dχ (7.19)

and similar expressions for the other field components. In view of (7.15) and (7.17), the explicit
expression of

◦

i(χ, n) is:

◦

i(χ, n) = −û
∑

n

e−j nϕ
∫

<

Y ext
uu (χ, n)J̃m(χ, n)

2 sin
Lcyl

2
(χ− χ)

(χ− χ) dχ (7.20)

where the convolution of the transforms can be recognized. Substituting in (7.19)we get:

Hϕ(ρ, φ, z) = −
1

4π2

∑

n

e−j nϕ
∫

<

H
′(2)
n (τρ)

H
′(2)
n (τ ρ2)

e−jχ z
(
Zuu + Zext

uu

)−1 ·
{

J̃ (χ, n) + Zuu(χ, n)

∫

<

Yext(χ, n)J̃(χ, n)
2 sin

Lcyl

2
(χ− χ)

(χ− χ) dχ

}

dχ (7.21)

The external integral can be approximated by the Saddle Point Method as shown in the preceding
section. The final expression is:

Hϕ(ρ, φ, z) = −ψ(R) ·
∑

n

e−j nϕ
2j

π

(
Zuu + Zext

uu

)−1
(k0 cos θ, n)

H
′(2)
n (k0 b sin θ)

· (7.22)

[

J̃m(k0 cos θ, n) + Z uu(k0 cos θ, n)

∫

<

Y ext
uu (χ, n)J̃m(χ, n)

2 sin
Lcyl

2
(k0 cos θ − χ)

k0 cos θ − χ
dχ

]

where ψ(R) is the Helmholtz function. The remaining integral is computed by extracting the
singular part in Y ext

uu and, subsequently, applying the Double Exponential transformation (more
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details can be found in paragraph 10.2).
Figure 7.12 shows a plot of Hϕ versus θ. The cable geometrical characteristics are: outer con-
ductor radius b = 8.8 mm, slot width s = 3 mm, α = 2π (complete slot), frequency f = 1 GHz
and cylinder length Lcyl = 10λ0. The pattern presents two maxima for θ = 22◦ and θ = 158◦,
but goes to zero when the observation point approaches the endfire direction. Figures 7.13, 7.14
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Figure 7.12: Normalized radiation pattern of Hϕ, in dB, for Lcyl = 10λ0

and 7.15 show the radiation patterns for cylinders of length Lcyl equal to 20λ0, 40λ0, 100λ0,
respectively. The maxima move to the end fire direction and the field presents an oscillatory
behavior, with a decreasing ripple when the length of the cable is increased.

It is interesting that this type of pattern can be qualitatively explained also in terms of a
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Figure 7.13: Normalized radiation pattern of Hϕ, in dB, for Lcyl = 20λ0

very simple model. The magnetic current ring, owing to k0b ¿ 1 is equivalent to an electric
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Figure 7.14: Normalized radiation pattern of Hϕ, in dB, for Lcyl = 40λ0

dipole parallel to the z axis. The electric current density J
et

can be roughly approximated with a
filamentary current on the axis I(z) = I0 exp(−jk0|z|) (the slot width s is neglected). The Hϕ

pattern produced by this current is

Hϕ(R, θ, ϕ) = −jψ(R)I0
k0Lcyl

2

{

e−j
k0Lcyl

2
sin2 θ

2 sinc
(
k0Lcyl
2π

sin2
θ

2

)

+

e−j
k0Lcyl

2
cos2 θ

2 sinc
(
k0Lcyl
2π

cos2
θ

2

)}

sin θ (7.23)

This pattern is shown in Fig. 7.16 for Lcyl = 10λ0. To this pattern, we should add that of the
equivalent electric dipole, corresponding to the slot. Since it is not easy to relate its moment to
I0 and its effect is negligible at endfire, where we want to focus our attention, we neglect it.
The pattern (7.23) consists of two sinc functions, one centered at θ = 0◦, the other at θ =

180◦.The effect of the latter is negligible in the neighborhood of θ = 0◦, provided k0Lcyl À 1.
The first zero, closest to endfire is given by

θz = 2arcsin

√

λ

Lcyl

and the fist maximum can be estimated by

θmax '
√

4λ

3Lcyl

This shows clearly that the maximum shifts to endfire for increasing Lcyl.

To conclude, Figure 7.17 shows a comparison betweenHϕ computed in the hypothesis of infinite
cylinder (i.e. by (7.13)) and using (7.23) for the case of Lcyl = 100λ0. Note that, apart from the
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Figure 7.15: Normalized radiation pattern of Hϕ, in dB, for Lcyl = 100λ0

oscillatory behavior, there is a very good agreement between the two curves, which confirms the
correctness of the (7.13).

7.4 The near field of a linear array

After discussing the radiation properties of a single slot, we are ready to find the field radiated
by the complete array. The observation point lies usually in the near field region of the array and
the radiated field will be found by superposition of the far field expressions (7.12 and 7.13) once
the magnetic current distribution on each slot is known.
Let us fix the origin of the global reference in that point of the axis that is in correspondence of
the center of the first slot. Analogously, the origin of the local reference of the q-th slot is in the
corresponding point on the axis. Then the values of Rq and θq for any point P = (ρ, ϕ, z) of
interest, needed in (7.13), are given by (see Figure 7.18):

Rq =
√

ρ2 + (z − Lq)2

θq = arctan

(
ρ

z − Lq

)
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Figure 7.16: Pattern of (7.23), in dB, for Lcyl = 10λ0

If we carry out this method, we obtain plots with characteristics that can vary widely when the
cable parameters are changed. In order to understand the underlying phenomena, we examine
the structure from the point of view of array theory.
Let us consider a LCX with Nslot slots, all equal and L-spaced. On the basis of the conclusions
reached in Chapter 6, it will be assumed that the magnetic current distribution is the same on all
the slots, apart for an amplitude coefficient xq that changes from slot to slot according to the law:

xq = x0 e−j kzq L (7.24)

where kz is a complex propagation constant whose real part is essentially that of the mostly
excited Bloch wave of the periodic structure, which is close to the TEM propagation constant in
the cable k0

√
εr1, and the imaginary part takes into account the possible dielectric and metallic

losses, as well as the radiation phenomenon. The equivalent magnetic current distribution J
m

,
then, has the form:

J
m
=

Nslot∑

q=1

xqu(z − q L, ϕ) ϕ̂

and the z component of the radiated electric field, for instance, is:

Ez(ρ, ϕ, z) =
∑

q

xq

{
∑

n

e−j nϕ

∫

<

e−jχ q LPV (ρ, ρ2;χ, n)ũ(χ, n)e−jχ zdχ
}

(7.25)
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Figure 7.17: Radiation patterns of a slot in an infinite cylinder and in a 100λ0 long cylinder

where Pv is the uu component of the voltage propagator, computed in paragraph 2.4 and u(z, ϕ)
is the shape function of the current on the slot, with transform ũ(χ, n). Combining (7.24) and
(7.25), we obtain:

Ez(ρ, ϕ, z) = x0
∑

q

e−j kzq L
{
∑

n

e−j nϕ·
∫

<

e−jχ q LPV (ρ, ρ2;χ, n)e−jχ zũ(χ, n)dχ
}

(7.26)

Multiplying by the factor e−j kzze+j kzze−j kzqLe+j kzqL, after some mathematical manipulations
we get:

Ez(ρ, ϕ, z) = x0e−j kzz
∑

q

{
∑

n

e−j nϕ·
∫

<

e−j(χ−kz)(z− q L)Pv(ρ, ρ2;χ, n)ũ(χ, n)dχ
}

(7.27)
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Figure 7.18: Computation of the field radiated by an array of slots

We let χ− kz = t:

Ez(ρ, ϕ, z) = x0e−j kzz
∑

q

{
∑

n

e−j nϕ·
∫

<

e−j t (z− q L)Pv(ρ, ρ2; t+ kz, n)ũ(t+ kz, n)dt

}

=

= x0e−j kzz
∑

n

e−j nϕ
∑

q

h(z − qL; ρ, n) (7.28)

where we have defined

h(z; ρ, n) =

∫

<

e−j t zPv(ρ, ρ2t+ kz, n)ũ(t+ kz, n)dt

Eq. 7.28 could be transformed by the use of the Poisson sum formula [34] if the array were
infinite. Since Nslot is generally very large, we neglect the end point effects and write:

∑

q

h(z − qL; ρ, n) = 1

L

∑

q

e−jq
2π
L h̃(−q2π

L
; ρ, n) (7.29)

where h̃(χ) is the Fourier Transform of h(z). Finally, we obtain:

Ez(ρ, ϕ, z) =
x0
L

e−j kzz
∑

q

e−2jπ z q/L

{
∑

n

e−j nϕPv(ρ, ρ2; kz − q
2π

L
, n)ũ(kz − q

2π

L
, n)

}

(7.30)
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If we compare this expression with (4.77), we recognize the quantity within braces above as the
spatial harmonics representation of a Bloch wave. We can immediately apply the results of the
discussion made in Section 4.5. Assuming εr1 < 9:

1. when

L <
λ0

1 +
√
εr1

no harmonic is in the visible range. The radiated field is expected to be low, since it is of
the surface wave type, with an exponential field decay along ρ;

2. when
λ0

1 +
√
εr1
≤ L <

2λ0

1 +
√
εr1

the “-1” harmonic alone is in the visible range. We expect a larger radiated field with
almost constant amplitude over the length of the array, apart from the exponential decay
related to the imaginary part of kz in (7.24); the decay along ρ is algebraic (1/

√
ρ);

3. when

L >
2λ0

1 +
√
εr1

More than one harmonic is in the visible range. The field decay is again 1/
√
ρ, so we

expect a relatively strong radiation with high ripple due to the interference of the radiating
harmonics

Of course these remarks apply to all field components.

To see in practice the validity of the preceding considerations, let us consider a one kilometer
long LCX with L-spaced identical slots. The inner and outer conductor radii are ρ1 = 10 mm
and ρ2 = 30 mm, the slot width and angular length are s = 3 mm and α = 180◦, the dielectric
permittivity is εr1 = 1.26, the frequency is f = 1 GHz. Moreover, we assume that the value
of kz in (7.24) is kz = k0

√
εr1 − 0.0001j. The radiated field, computed by direct summation of

the contributions of the various slots, having the excitation coefficients xq of (7.24), is explored
moving the observation point on a line parallel to the cable, at a distance ρ = 3 m, in front of the
semicircular slots.
First we assume that the spacing between the slots is L = 7.5 cm, i.e. less than λ0/(1+

√
εr1) =

14.7 cm, so that no space harmonic is radiating. Figure 7.19 shows a plot of the ratio between
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the amplitude of the Poynting vector of the radiated field and the incident power in the cable
(normalized to the cable cross section). Radiation is very weak as expected, apart from the array
ends. Obviously, this end point contribution could not be described by the model (7.30), because,
for the application of Poisson formula, the array was assumed of infinite extent. This behavior,
however, is typical of all surface wave antennas [30], pag. 302. Figure 7.20 shows that the
Poynting vector is parallel to the cable axis. In conclusion, the field is practically confined in the
neighborhood of the cable and the radiated power flows parallel to the cable, coherently with the
existence of a surface wave.
Next we assume that the slot spacing is L = 20 cm, i.e. such that the LCX is in the “Mono-
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Figure 7.19: Normalized Poynting vector amplitude (in dB) in the “Surface Wave” operation

Radiation Condition” (see Figures 7.21 and 7.22 ). In this case there is a very strong radiation
phenomenon, with a low ripple level, along the length of the slotted cable where the field decays
linearly, in dB scale, due to the imaginary part of kz. Along the unslotted region, instead, the
field has an extremely fast decay.
Moreover, the Poynting vector forms an angle of 116◦ with the cable axis that is in perfect
agreement with the analytical formula deduced at the end of Section 4.5.

Finally, we assume that the slot spacing is increased up to L = 37 cm, so as to be in the “Multi
Radiation operation”. The radiated field is as strong as before, as shown in Figure 7.23, but
with a high level ripple due to the interference between the two radiating harmonics. From the
preceding results it is clear that the “Mono-Radiation operation” represents the best choice from



176 Radiation Properties of Slotted Coaxial Cables

−200 0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

180

z [m]

 

 

Figure 7.20: Poynting vector direction in the “Surface Wave” operation. The angle is measured
with respect to the z axis.

the application point of view because the region around the cable is illuminated with a practically
uniform, relatively strong field. The problem in this structure is the efficiency: the slots are all
equal and are designed so that their radiated power is very small. In this way, the last slots radiate
a power with almost the same level as the first, but globally, the total radiated power is a small
fraction of the available one. In Chapter 8 where the design problems will be addressed, a high
efficiency solution will be proposed.
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Figure 7.21: Normalized Poynting vector amplitude (in dB) in the “Mono Radiation” operation
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Figure 7.22: Poynting vector direction in the “Mono Radiation” operation.
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Chapter 8

Design of Slotted Coaxial Cables

8.1 Introduction

In the preceding chapters, the analysis of LCX has been thoroughly discussed, in the present
chapter we will develop some design guidelines.

In Chapter 6 it has been shown that the properties of LCX can be described quite accurately by
the simple model of an array of slots where the excitation coefficients follow an exponential law,
see (6.5). It is necessary, at this point, to clarify the relationship between the decay constant
along the cable and the slot characteristics.
The preceding numerical and theoretical analysis has shown that the “Mono-Radiation condition”
represents the best choice in order to control the radiation properties of a LCX, since it allows
the generation of a quite uniform pattern, free from ripple. However, it has also been shown
that, if the slots are identical, the radiated field, measured on a line at fixed distance from the
cable, decreases exponentially as a function of z, with the same decay law as the slot excitation
coefficients. Two design options are open at this point.
The first one is based on the use of slots that radiate a very small fraction of the incident power.
In this way the radiated power level is almost constant over the cable length, but the antenna
efficiency is very low and most of the power is dissipated in the matched load at the end of the
cable.
Alternatively, more efficient slots are used, so that almost all the power incident on the array is
radiated. In this case the radiated power level is strongly non uniform and the contribution of the
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last slots is almost negligible.
Clearly, both options are unsatisfactory. In the present chapter, we will derive a suitable design
procedure in order to overcome the outlined problems. This goal is reached by an extensive use
of the tools developed in the preceding sections.

8.2 Determination of the decay constant

In Section 6.3 it was shown that a simple LCX model is that of an array of slots with complex
amplitude coefficients xq:

xq = x0 e−j (kRe−jk Im)q L (8.1)

The real parameter kRe is essentially the propagation constant of the mostly excited progressive
Bloch wave and then it is close to the TEM value k0

√
εr1. The imaginary parameter −jkIm

depends on the slot characteristics and describes the effect of the power leakage.
For the design of LCX, it would be useful to know the relationship between the decay constant
kIm and the geometrical and electrical parameters of the cable. The relationship

kIm = kIm

(
L

Lmin
,
ρ2α

λ

)

has been obtained numerically by best fitting on the data generated in a simulation exercise and
is displayed in the contour plots of Figures 8.1, 8.2 and 8.3, which refer to cables with different
numbers of slots. These data assume that the first higher order cable mode (TM10) is well below
cut-off. The horizontal axis shows the values of the slot spacing L/Lmin, normalized to the
minimum spacing that allows mono radiation operation

Lmin =
λ0

1 +
√
εr1

The electrical slot length bα/λ is shown on the vertical axis. These figures indicate that the
value of kIm is substantially independent of the number of apertures, at least if their number is
sufficiently large. It turns out to be also practically independent of the slots width s provided it
is much smaller than the wavelength.

The other parameter of interest for LCX is the array input reflection coefficient. This quantity
has been determined for the same cases as before and the results are shown in the contour plots
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Figure 8.1: The decay constant kIm for cables with 100 slots

of Figures 8.4, 8.5 and 8.6. Again, the figures show that the reflection coefficient is practically
independent of the number of slots, provided ρ2α/λ < 0.2.

Note that in the band of mono-radiation operation there is a region where the LCX presents a low
reflection coefficient (< −30dB). Moreover, it is interesting to note that close to L/Lmin = 1

and L/Lmin = 2 the curves of both kIm and S11 change abruptly. This fact is related to the first
and second harmonics of the series (7.30) that are at the cut-off exactly in those points. In the
literature on periodic structures, these are known as Wood’s anomalies [35].

8.3 Design of uniformly radiating LCX

To identify a design strategy that can lead to LCX that radiate uniformly over their length the
highest possible fraction of the incident power, it is useful to introduce a simplified model, based
on the full wave results discussed in the preceding sections.
For this purpose, we neglect the TEM power reflected from the slots and recall from Section 6.2
the definition of slot radiation efficiency ηsq , with q = 1, . . . , Nslot as the ratio between the power
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Figure 8.2: The decay constant kIm for cables with 150 slots

P rad
q radiated by the q-th slot and the power P inc

q incident on it. For simplicity, we assume first
that the cable is lossless.

The equations of the model, illustrated in Figure 8.7, are

P rad
q = ηsqP

inc
q (8.2)

P T
q = P inc

q (1− ηsq) (8.3)

P inc
(q+1) = P T

q (8.4)

for q = 1, . . . , Nslot

Assuming that all the slot efficiencies are given, the total radiated power is

P rad =

Nslot∑

q=1

P rad
q =

Nslot∑

q=1

ηsqP
inc
q (8.5)

The incident power on the q-th slot, if the reflected power is neglected, is given by

P inc
q = (1− ηs(q−1))P inc

(q−1) = P inc
1

q−1
∏

r=1

(1− ηsr) (8.6)
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Figure 8.3: The decay constant kIm for cables with 200 slots

where P inc
1 is the power incident on the array. Substituting

P rad = P inc
1

Nslot∑

q=1

ηsq

q−1
∏

r=1

(1− ηsr) (8.7)

If all the slots are equal, i.e. ηsq = ηs, for q = 1, . . . , Nslot, the preceding formula can be evaluated
in closed form:

P rad = P inc
1 ηs

Nslot∑

q=1

(1− ηs)q−1 = P inc
1 ηs

(1− ηs)Nslot − 1

(1− ηs)− 1

= P inc
1

(
1− (1− ηs)Nslot

)
(8.8)

and the power dissipated on the matched load, placed after the Nslot-th slot, is

P load = P inc
1 (1− ηs)Nslot (8.9)

We can define an array efficiency ηa as:

ηa =
P rad

P inc
1

(8.10)

Hence, array efficiency and slot efficiency are related by

ηa =
(
1− (1− ηs)Nslot

)
(8.11)
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Figure 8.4: Array input reflection coefficient S 11dB for for cables with 100 slots

Moreover, the power radiated by the q-th slot is

P rad
q = P inc

1 ηs(1− ηs)q−1 q = 1, 2, . . . , Nslot (8.12)

Hence, the array radiation is obviously non uniform and we can define a taper T :

T =
P rad
1

P rad
Nslot

= (1− ηs)(1−Nslot) (8.13)

Both the total radiated power and the taper depend on the slot efficiency ηs, which can be elimi-
nated between the two,

P rad = P inc
1

[

1− (1− ηs)
T

]

' P inc
1

(

1− 1

T

)

(8.14)

where we have taken into account the usual smallness of the slot efficiency ηs. This equation
shows clearly that radiation uniformity and antenna efficiency are contrasting requirements.
A pictorial view of two opposite designs is shown in Figures 8.8 and 8.9, which refers to a cable
with Nslot = 1000 slots. In the former case the slots are small and ηs = 1/1000 and the taper
is 4.34dB but only 63% of the available power is radiated. In the latter ηs = 4.64/1000, which
guarantees a high array efficiency (99%), but the taper increases to 20 dB.

If a high array efficiency is desired, together with a low taper, the slots must be different one from
the other, with sizes increasing from the input toward the output in order to compensate for the
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Figure 8.5: Array input reflection coefficient S 11dB for for cables with 150 slots

power already radiated by the preceding slots. This idea can be formalized as follows. Assume
the goal of a certain array efficiency ηa, for generality not necessarily equal to one. The total
radiated power is then P rad = P inc

1 ηa and if this is to be uniformly radiated, P rad
q = P rad/Nslot.

The radiation efficiency of the q-th slot ηsq is then given by

ηsq =
P rad
q

P inc
q

=
P rad

Nslot

P inc
1 − P rad q−1

Nslot

=
ηa

Nslot − ηa(q − 1)
q = 1, 2, . . . , Nslot (8.15)

The efficiency of the last slot (the largest one) is then

ηsNslot
=

ηa

Nslot(1− ηa) + ηa
=

1

1 +Nslot
1−ηa

ηa

=
1

1 +Nslot
P load

P rad

(8.16)

Clearly, ηsNslot
= 1 if no power has to be dissipated in the matched load (ηa = 1). This require-

ment is impossible to satisfy, since it was shown in Section 6.2 that the maximum slot efficiency
is about 0.5. For various reasons, there could be in general an upper bound ηsmax on the slot
efficiencies. In this case, the preceding equation gives the minimum power on the load:

P load
min

P rad
=

1

Nslot

(
1

ηsmax
− 1

)

(8.17)

In (8.16) we used the fact that
P load

P rad
=

1− ηa
ηa

(8.18)
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Figure 8.6: Array input reflection coefficient S 11dB for for cables with 200 slots
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From the preceding two equations we get the maximum array efficiency ηamax compatible with
the bound on the slot efficiency:

ηamax =
1

1 +
P load
min

P rad

=
1

1 + 1
Nslot

(
1

ηsmax
− 1
) (8.19)

The various slot efficiencies are then obtained by (8.15).

In practice the ohmic losses in a long cable cannot be neglected. We want now to see what
changes in the above discussion arise because of this. Assume first that all the slot efficiencies
are given.
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Figure 8.8: Case 1: LCX with 1000 small slots: slot efficiency ηs = 1.0 · 10−3, array efficiency
ηa = 0.63, taper T = 4.34dB

The equations of the model (8.5) become:

P rad
q = ηsqP

inc
q (8.20)

P T
q = P inc

q (1− ηsq) (8.21)

P inc
(q+1) = P T

q exp(−2αL) = P T
q E (8.22)

for q = 1, . . . , Nslot

where all ohmic losses are accounted for by the exponential (denoted by E, for brevity) through
an equivalent attenuation constant. This expression is justified by the smallness of the regressive
wave, discussed in Section 6.4.
Combining (8.5) with (8.23) we obtain the total power radiated by the array:

P rad = P inc
1

Nslot∑

q=1

ηsqE
q−1

q−1
∏

r=1

(1− ηsr) (8.23)

The power dissipated in the matched load is

P load = P inc
Nslot

(1− ηsNslot
) = P inc

1 ENslot−1

Nslot−1∏

r=1

(1− ηsr) (8.24)

If all the slots are equal, i.e. ηsq = ηs, for q = 1, . . . , Nslot, (8.23) can be computed in closed
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Figure 8.9: Case 2: LCX with 1000 large slots: slot efficiency ηs = 4.64 · 10−3, array efficiency
ηa = 0.99, taper T = 20dB

form:
P rad = P inc

1

[
1− (1− ηs)NslotENslot

] 1

E + 1−E
ηs

(8.25)

while the power radiated from the q-th slot is:

P rad
q = P inc

1 ηsEq−1(1− ηs)q−1 q = 1 , 2, . . . , Nslot (8.26)

As in the lossless case, the array radiation is obviously non uniform and the taper T is given by:

T =
P rad
1

P rad
Nslot

=
(1− ηs)(1−Nslot)

ENslot−1
(8.27)

The total radiated power is related to the taper T by an equation more complicated than (8.14):

P rad = P inc
1

[

1− E(1− ηs)
T

]
1

E + (1− E)/ηs
(8.28)

However, since in general 1− E ' 2αL¿ ηs, it is still true that

ηa '
(

1− 1

T

)

(8.29)

Let us now turn to the design problem, where again the goal is that of obtaining a uniform
radiation from each slot of the array, i.e. P rad

q = P rad/Nslot for q = 1, ..., Nslot where P rad is the
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total radiated power.
Let ηa the desired array efficiency; in this case its maximum value is strictly less than 1, because
of the power dissipation. The total radiated power is then P rad = P inc

1 ηa and that radiated by
each slot P rad

q = P rad/Nslot. The radiation efficiency of the q-th slot ηsq is as usual defined by

ηs =
P rad
q

P inc
q

To use this equation, we need the incident power on the q-th slot. This is given recursively by

P inc
q = (P inc

q−1 − P rad
q )E for q = 2, . . . , Nslot

from which

P inc
q = P inc

1 Eq−1 − P radE
Eq−1 − 1

E − 1
(8.30)

Hence the efficiencies of the various slots turn out to be given by

ηsq =
P rad/Nslot

P inc
1 Eq−1 − P rad

Nslot

Eq−1−1
E−1

E
(8.31)

Let us compute the power dissipated in the matched load, after the last slot:

P load = P inc
Nslot
− P rad

Nslot
(8.32)

Using (8.30),

P load

P inc
1

= ENslot−1 − ηa

Nslot

ENslot − 1

E − 1
(8.33)

If we enforce P load = 0, we find the maximum array efficiency ηopt, compatible with the given
cable loss:

ηopt = Nslot
ENslot−1(E − 1)

ENslot − 1
(8.34)

Owing to the generally very small loss, this expression can be simplified:

ηopt ' 1− Nslot − 1

2
(1− E) +

(Nslot − 1)(Nslot − 5)

12
(1− E)2 (8.35)

In general, the efficiency of the last slot is, from (8.31):

ηsNslot
=

ηa

NslotENslot−1 − ηaE ENslot−1
−1

E−1

(8.36)
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If we set ηa = ηopt, trying to exploit to the maximum degree the available power, we obtain
obviously the impossible result ηsNslot

= 1.
In practice the slot efficiency is bounded by ηsmax and the last equation yields the corresponding
maximum array efficiency

ηamax =
Nslot η

s
maxE

Nslot−1

1 + E ηsmax
ENslot−1

−1
E−1

(8.37)

With this value of array efficiency, recalling (8.33), we can compute the power dissipated in this
case in the matched load:

P load

P inc
1

=
ENslot(1− ηsmax)
1 + E ηsmax

ENslot−1
E−1

(8.38)

The power dissipated in the cable, because of ohmic losses, is obtained by difference:

P diss

P inc
1

= 1− P rad

P inc
1

− P load

P inc
1

= (8.39)

= 1− ENslot−1 − ηa
[

1− 1

Nslot

ENslot − 1

E − 1

]

(8.40)

where (8.33) has been used. An approximate expression of this equation is clearer:

P diss

P inc
1

' 1− ENslot−1 − ηaNslot − 1

2
(1− E) (8.41)

This equation shows clearly that the dissipated power in the cable decreases monotonically when
the array efficiency is increased. The power dissipated in the matched load has the same behavior.
In conclusion, the design starts from the value of the maximum slot efficiency ηsmax that we decide
to use. With this value we compute the array efficiency ηa with (8.37) and finally the various slot
efficiencies by the following equation, derived from (8.31):

ηsq =
ηa

NslotEq−1 − ηamaxE Eq−1−1
E−1

(8.42)

In this way the slot efficiencies increase progressively from the first, ηs1 = ηa/Nslot, to the last
one ηsNslot

= ηsmax in order to compensate for both the radiated and the dissipated power.
To complete the design, the slot size should be determined. The function

ηsq = f

(
ρ2 α

λ

)

(8.43)
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was derived numerically in section 6.2 in the case of an isolated slot. For this application, to
take approximately the multiple interactions into account, we have characterized the slot in its
operating environment, i.e. in a periodic array, in order to determine the relation

ηsq = f

(
bρ2 α

λ
,
L

Lmin

)

(8.44)

In particular, a 100 slot LCX has been simulated and the function f has then been computed
by averaging the properties of the central 20 slots. Due to the fact that the slots radiate a small
amount of power, it is not surprising that the result is not too different from that of Figure 6.9.

In conclusion, the design is carried out in two steps. First, the slot spacing L is selected, so
that the array is in the mono-radiation condition and the S11 value is sufficiently low. Then the
maximum slot efficiency ηsmax is selected and the various radiation efficiencies ηsq are computed
according to (8.42). The slot sizes are finally obtained by numerical inversion of the function f .
Note that the simple model, used in this section, is progressively less valid as the ηsq value in-
creases, since the slot reflection coefficient can no longer be neglected, as Figure 6.10 shows.
This consideration is to be taken into account in the selection of the maximum slot efficiency
ηsmax.

As an example, let us consider the design of a LCX with a length of 100 meters, which should
produce a uniform field in the frequency range which corresponds to the first GSM band (i.e.
890 MHz-960 MHz). The cable characteristics are: inner and outer conductor radii ρ1 = 12 mm,
ρ2 = 30 mm, dielectric permittivity ε r1 = 1.26, equivalent loss tangent tan δ = 10−4, slot width
and spacing s = 3 mm and L = 20 cm. The maximum slot radiation efficiency has been fixed at
ηsmax = 0.45.
The slot size distribution is shown in Figure 8.10. The array of 500 slots has been simulated by
the HFIE technique: the reflection and transmission coefficients in the band and the radiated field
as a function of z at ρ = 3 m for the lower, higher and center frequency are shown in Figures 8.11
and 8.12. It can be noted that the usual decay of the radiated power has been even overbalanced,
so that radiation is stronger at the array end than at the input. The reason is that the simple model
used in this section is no longer applicable near the array end, where slots are too large. The
dissipated is about 13% of the input incident power, while the TEM power at the end of the array
is less than 4%.
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Figure 8.10: Angular slot size distribution. The radiation slot efficiencies range from 0.0018 to
0.45

It is evident that, from a manufacturing point of view, a cable with continuously varying slot size
may be very expensive. A possible solution is to use a staircase approximation of the angular slot
size distribution, as shown in Figure 8.13 where groups of 50 identical slots have been used. The
electromagnetic response, in terms of reflection and transmission coefficients and the radiated
field, of this last structure is shown in Figures 8.14 and 8.15, the power loss is still about 13%
of the input incident power while the TEM power at the end of the array is now about 18% in
the frequency band. The main effect of this kind approximation is represented by an increase of
the power dissipated in the matched load at the end of the array. Moreover, the radiation pattern
shows peaks near the array end that were not present in Figure 8.12. These peaks appear at the
junctions between different cable sections. It has to be remarked that in both cases, however,
not all the power is radiated by the array. This fact is due also to the higher order effects that
could not be taken into account in the simplified model. In general, if necessary, an optimization
procedure could be adopted on the final structure in order to minimize the power dissipated in
the matched load at the end of the cable.
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Figure 8.13: Angular slot size distributions, continuous curve and its staircase approximation
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Figure 8.14: Reflection and Transmission coefficients (in dB) of the array where the slot dimen-
sions are constant in sub-groups of 50 elements
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Chapter 9

Ring Cavity Filters

9.1 Introduction

Stop band filters are commonly used in antenna systems to isolate receivers from the signals pro-
duced by transmitters, internal or external to the system, operating in adjacent frequency bands.
Generally, in high power or low noise applications, such filters are built by means of rectangu-
lar waveguides, loaded by stubs or resonant irises [36]. These structures are very effective both
from the electrical and the manufacturing point of view, but do not allow double polarization
operation. If this is required, square or circular waveguides can be used instead of rectangular
ones.

A circular waveguide configuration, which may be preferable for reasons of connection com-
patibility with a round horn antenna, may be realized with radial stubs. Figure 9.1 shows the
longitudinal section of a cylindrical waveguide with a single radial stub. The typical frequency
response of a stub loaded guide, shown in Figure 9.2, is characterized by the presence of a couple
of zeros, one in S11, the other in S21. This behavior is not difficult to explain. The fundamental
mode equivalent circuit of the stub, seen as a double step discontinuity, is depicted in Figure
9.3, where S

A
and S

B
are the scattering matrices of the two steps. This is also the equivalent

circuit of a Fabry-Perot interferometer and it is well known that its reflection coefficient is zero
whenever the Round-Trip-Phase-Shift (RTPS) is an integer multiple of 2π:

RTPS = ∠SA11 + ∠S
B
11 − 2 k z s = 2πn
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Figure 9.1: Standard stub in circular waveguide

with k z denoting the TE 11 propagation constant.
On the other hand, from a transverse point of view, the stub is seen as a shorted line, which
transforms a short into a virtual open circuit when its length is about λ/4, owing to the not
complete equivalence between radial and uniform waveguides. The open circuit blocks the TE11
longitudinal currents, giving rise to the transmission zero.
The same effect can be obtained if the stub height is increased by multiples of λ/2, with a
consequent narrowing of the transmission stop-band, sometimes a desirable effect. However, in
this case, the transverse size of the device can become excessive and a possible solution to reduce
it, is shown in Figure 9.4). It has been proved numerically that in this way the transverse size of
the device can be reduced by 30%.
A drawback of both the standard stub and of the “mushroom” stub is that it is not possible to
control independently the position of the two zeros. This flexibility requires a further degree of
freedom, which can be offered by the asymmetric structure of Figure 9.5. By changing the offset
L between the cap and the stem of the “mushroom”, the desired result is obtained.
In the next section we compute the Generalized scattering matrix of this asymmetric cavity.

9.2 Analysis of the asymmetric ring cavity

In this section, the integral equation technique, discussed in Chapter 3, will be applied to con-
struct a S-matrix model of the asymmetric mushroom stub of Figure 9.5. The cap (region “3”)
is coupled to the circular waveguide (region “1”) by means of a radial waveguide (stem, region
“2”), whose width is s. The radii of the circular waveguide and of the cylindrical cavity are de-
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Figure 9.2: Frequency response of a stub loaded waveguide

noted by ρ1, ρ2 and ρ3, respectively. Let t be the length of the cavity and L the offset between
the symmetry planes of the cap and of the stem. The incident magnetic field is H inc

1 , propagating
in the main waveguide. This scattering problem is solved by the domain decomposition method
in way similar to that used in the analysis of leaky coaxial cables. Here we will employ the
superscripts “1”, “2” and “3” to refer to the three different regions.
Applying the Equivalence Theorem, the two apertures are closed by perfect electric conduc-
tors and two couples of current distributions (±J

m,ρ1
) and (±J

m,ρ2
), are placed in ρ = ρ±1 and

ρ = ρ±2 , as shown in Figure 9.6. If we denote by E ρ1
and E ρ2

the electric fields in the apertures
in ρ = ρ1 and ρ = ρ2, they are given by:

J
m,ρ1

(ρ, ϕ, z) =
(
E ρ1

(ρ, ϕ, z)× (−ρ̂)
) δ(ρ− ρ1)

ρ
(9.1)

J
m,ρ2

(ρ, ϕ, z) =
(
E ρ2

(ρ, ϕ, z)× (−ρ̂)
) δ(ρ− ρ2)

ρ
(9.2)

By enforcing the tangential magnetic field continuity in the slots, we obtain the HFIE of the
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Figure 9.4: From a standard stub to a symmetrical “mushroom” stub

problem, in the form of a system of coupled integral equations:







H inc
1 (ρ1, ϕ, z) +Hscat

1 {Jm,ρ1}(ρ1, ϕ, z) = Hscat
2 {−J

m,ρ1
, J

m,ρ2
}(a, ϕ, z)

for ρ = ρ1, ϕ ∈ [0, 2π] and z ∈ [−s/2, s/2]
(9.3)







Hscat
2 {−J

m,ρ1
, J

m,ρ1
}(ρ2, ϕ, z) = Hscat

3 {−J
m,ρ2
}(ρ2, ϕ, z)

for ρ = ρ2, ϕ ∈ [0, 2π] and z ∈ [−s/2, s/2]
(9.4)

To make (9.3) and (9.4) explicit, we need to determine the relations between the magnetic current
distributions and the scattered fields. The radial transmission line theory can be very helpful for
this purpose. By adopting this radial point of view, the structure can be viewed as a thick iris,
which couples two radial guides, one of which starts at ρ = 0 (the main waveguide) and the other
(the cavity) is shorted. In practice, we have two step discontinuities between three different radial
waveguides. The radial guides differ in their size: one has infinite cross section (1) the other two
are finite. The equivalent radial circuit is shown in Figure 9.7. Here ◦

v 1 ρ1(χ, n),
◦

v 2 ρ1(m,n),
◦

v 2 ρ2(m,n) and ◦

v 3 ρ2(m,n) are the voltage generators representing the magnetic currents. The
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ẑ

t

inc

H

inc

Ĥ
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Figure 9.5: Longitudinal section of the circular waveguide loaded by an asymmetrical “mush-
room” stub

first argument refers the longitudinal direction and is continuous for the guide “1” but discrete
for the guides “2” and “3”; the second refers to the ϕ̂ direction and is the same that characterizes
the incident field, since the aperture is complete. The matrix Y

1
is the input admittance at ρ = ρ1

(for the regular wave) of a line starting at ρ = 0, Y
3

is the input admittance of the shorted radial
line representing the cylindrical cavity. Y

cc
is the short circuit admittance matrix of the line

between ρ = a and ρ = ρ2, representing the thick iris. Its elements are 2 × 2 matrices in the
usual u, v basis. The current generator

◦

I
inc

is the Fourier transform of the incident magnetic field
in ρ = ρ−1 . Finally the vector currents represent the scattered magnetic field in the radial domain.
By inspection of the circuit we deduce :

I 1 ρ1 =
◦

I
inc

1 − Y 1
· ◦v 1 ρ1 (9.5)

I 2 ρ1 = Y
cc
| 1,1 · ◦v 2 ρ1 + Y

cc
| 1,2 · ◦v 2 ρ2 (9.6)

I 2 ρ2 = Y
cc
| 2,1 · ◦v 2 ρ1 + Y

cc
| 2,2 · ◦v 2 ρ2 (9.7)

I 3 ρ2 = −Y
3
· ◦v 3 ρ2 (9.8)

Using the formalism developed in Chapter 2, we take the suitable inverse Fourier transforms of
the preceding relations in order to make explicit the scattered terms in (9.3)and (9.4). In vector
form one obtains:

H inc(ρ1, ϕ, z)× ρ̂+
∑

n

∫

<

BT ·K
∞
(z, ϕ) · Y 1(ρ1, χ, n) ·

◦

v 1 ρ1(χ, n) dχ =

=
∑

n,m

BT ·K
s
(z, ϕ) · [Y

cc
| 1,1 · ◦v 2 ρ1 + Y

cc
| 1,2 · ◦v 2 ρ2 ](m,n) (9.9)
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Figure 9.6: Application of the equivalence theorem to derive the system of coupled integral
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∑

n,m

BT ·K
s
(z, ϕ)·[Y

cc
| 2,1 · ◦v 2 ρ1 + Y

cc
| 2,2 · ◦v 2 ρ2 ] =

∑

n,m

BT · K
t
(z − L,ϕ)·Y

3
· ◦v 3 ρ2 (9.10)

where B = ûẑ + v̂ϕ̂ and K
∞

, K
s

and K
t

are the kernels introduced in Section 2.8 :

K
∞
(z, ϕ;χ, n) =

ej nϕej χ z

4π2
· (ϕ̂ϕ̂+ ẑẑ) (9.11)

K
s
(z, ϕ; m,n) =

ej nϕ

π s εm
·
[

sin
(mπ z

s
+
mπ

2

)

ϕ̂ϕ̂+ cos
(mπ z

s
+
mπ

2

)

ẑẑ
]

(9.12)

K
t
(z, ϕ; m,n) =

ej nϕ

π t εm
·
[

sin
(mπ z

t
+
mπ

2

)

ϕ̂ϕ̂+ cos
(mπ z

t
+
mπ

2

)

ẑẑ
]

(9.13)

The subscripts s and t denote the kernels referring to the second and third radial waveguides,
respectively.

Let us consider a general multimode field in the circular waveguide incident on the slot from the
left and from the right. Using the same formalism as in Chapter 3, the tangential magnetic field
on the wall can be expressed as:

H inc
tg (ρ1, z, ϕ) = Ȟ

inc

tg (ρ1, z, ϕ) + Ĥ
inc

tg (ρ1, z, ϕ) (9.14)
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Figure 9.7: Equivalent radial circuit of the circular waveguide loaded by an asymmetrical “mush-
room” stub

with

Ȟ
inc

tg (ρ1, z, ϕ) =
∑

i

Y∞ iV̌
inc
i (z1)e−j kz i(z−z1)ȟ

tg

i (a)e
j m(i)ϕ (9.15)

Ĥ
inc

tg (a, z, ϕ) = −
∑

i

Y∞ iV̂
inc
i (z2)ej kz i(z−z2)ĥ

tg

i (a)e
j m(i)ϕ (9.16)

and

ȟ
tg

i (ρ1) = hϕi(ρ1)ϕ̂+ hzi(ρ1)ẑ (9.17)

ĥ
tg

i (ρ1) = hϕi(ρ1)ϕ̂− hzi(ρ1)ẑ (9.18)

where kz i, Y∞ i, are the propagation constant and modal admittance of the i-th mode of the
circular waveguide. V̌ inc

i (z1) and V̂ inc
i (z2) are incident voltages on the left (z = z1) and on the

right (z = z2) reference planes of the structure. The relation between the magnetic currents and
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voltage generators can be written as:

◦

v 1 ρ1(χ, n) =

∫

<

∫ 2π

0

B ·K
∞
(ϕ, z; χ, n) · J

m,ρ1
(ϕ, z)× ρ̂ dϕ d z (9.19)

◦

v 2 ρ1(m,n) =

∫

<

∫ 2π

0

B ·K
s
(ϕ, z; m, n) · J

m,ρ1
(ϕ, z)× ρ̂ dϕ d z (9.20)

◦

v 2 ρ2(m,n) =

∫

<

∫ 2π

0

B ·K
s
(ϕ, z; m, n) · J

m,ρ2
(ϕ, z)× ρ̂ dϕ d z (9.21)

◦

v 3 ρ2(m,n) =

∫

<

∫ 2π

0

B ·K
t
(ϕ, z + L; m, n) · J

m,ρ2
(ϕ, z)× ρ̂ dϕ d z (9.22)

The various admittances can be computed relatively easily employing the radial line transmission
theory, see Section 2.6.

As it has been done in the analysis of LCX, it is convenient to solve the HFIE directly in the
spectral domain. We introduce a set {u c(z, ϕ)} of vector basis functions in order to expand the
unknown magnetic current distributions, i.e.:

J
mρ1

(z, ϕ) =

Nf∑

c=1

x cu c(z, ϕ) (9.23)

J
mρ2

(z, ϕ) =

Nf∑

c=1

y cu c(z, ϕ) (9.24)

and the equivalent voltage generators get the form:

◦

v 1 ρ1(χ, n) = B ·
Nf∑

c=1

x cũ c(χ, n) (9.25)

◦

v 2 ρ1(m,n) = B ·
∑

c

x c úc(m,n)

◦

v 2 ρ2(m,n) = B ·
∑

c

y c úc(m,n)

◦

v 3 ρ2(m,n) = B ·
∑

c

y c ùc(m,n) (9.26)
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where:

ũc(χ, n) =

∫

<

∫ 2π

0

K
∞
(ϕ, z; χ, n) · u c(z, ϕ)dϕ d z (9.27)

úc(m,n) =

∫

<

∫ 2π

0

K
s
(ϕ, z; m, n) · u c(z, ϕ)dϕ d z (9.28)

ùc(m,n) =

∫

<

∫ 2π

0

K
t
(ϕ, z − L; m, n) · u c(z, ϕ)dϕ d z (9.29)

Note that ú c and ù c can be obtained as suitable combinations of the even and odd parts of the
Fourier transform of u c.
Applying the Galerkin version of the Method of Moments, we project (9.9) and (9.10) on u r(z, ϕ),
r = 1, . . . , N f , obtaining:

< H inc × ρ̂, u r > =
∑

c

xc
∑

n

∫ +∞

−∞

ũ∗r(χ, n) ·B T · Y tot(χ, n) ·B · ũ c(χ, n)dχ+

+
∑

c

x c
∑

n,m

ú∗r(m,n) ·BT · Y
cc
| 11(m,n) ·B · ú c(m,n) +

+
∑

c

y c
∑

n,m

ú∗r(m,n) ·BT · Y
cc
| 12(m,n) ·B · ú c(m,n) (9.30)

0 =
∑

c

x c
∑

n,m

ú∗r(m,n) ·BT · Y
cc
| 21(m,n) ·B · ú c(m,n) +

+
∑

c

y c
∑

n,m

ú∗r(m,n) ·BT · Y
cc
| 22(m,n) ·B · ú c(m,n) +

+
∑

c

y c
∑

n,m

ù∗r(m,n) ·BT · Y
3
(m,n) ·B · ù c(m,n) (9.31)

It is convenient to write this linear system in matrix form:

A ·
(

x

y

)

=

[(

B̌

0

)

+

(

B̂

0

)]

⇒






x

y




 = A−1











B̌

0




+






B̂

0









 =






Č
x

Ĉ
x

Č
y

Ĉ
y




 ·






V̌
inc

V̂
inc




 (9.32)

The matrices C have size N f × N i.
The right hand side shows explicitly the contributions of the field incident from the left and from
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the right. Due to the fact that the three regions are completely separated by perfect conductor
walls, the admittance moment matrix can be decomposed into the sum of a diagonal matrix
relative to the terminal cavities (in the transverse view, the cylindrical waveguide is a cavity) and
a full matrix relative to the connecting guide:

A =






Awg 0

0 A cav




+






A conn

11
A conn

12

A conn

21
A conn

22




 (9.33)

where:

Awg| r,c =
∑

n

∫ +∞

−∞

ũ∗r(χ, n) ·B T · Y
1
(χ, n) ·B · ũ c(χ, n)dχ (9.34)

A conn

11
| r,c =

∑

n,m

ú∗r(m,n) ·BT · Y
cc
| 11(m,n) ·B · ú c(m,n) (9.35)

A conn

12
| r,c =

∑

n,m

ú∗r(m,n) ·BT · Y
cc
| 12(m,n) ·B · ú c(m,n) (9.36)

A conn

21
| r,c =

∑

n,m

ú∗r(m,n) ·BT · Y
cc
| 21(m,n) ·B · ú c(m,n) (9.37)

A conn

22
| r,c =

∑

n,m

ú∗r(m,n) ·BT · Y
cc
| 22(m,n) ·B · ú c(m,n) (9.38)

A cav| r,c =
∑

n,m

ù∗r(m,n) ·BT · Y
3
(m,n) ·B · ù c(m,n) (9.39)

Adopting the same formalism as in the Chapter 2, the two terms on the right hand side of (9.32)
can be written as:

B̌ = U−+ · ȟ · Y
∞
·D

1
· V̌ inc

(9.40)

B̂ = U−+ · ĥ · Y
∞
·D−1

2
· V̂ inc

(9.41)

The amplitudes of all the incident modes (TE and TM) have been grouped in the vectors V̌
inc

and V̂
inc

.

Once the linear system is solved, we can derive the scattering matrix of the device. The scattered
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voltages are computed as shown in Section 3.3 and the result is:

V̌
scat

=
1

2
D
1
· ĥ∗ ·W · U−−T · x (9.42)

V̂
scat

= −1

2
D−1
2
· ȟ∗ ·W · U−−T · x (9.43)

where the dyadic W is defined by

W = ϕ̂ϕ̂+

(
k∗z
kz

)

ẑẑ

Hence, on introducing power waves as usual, the scattering matrix of the cavity has the following
submatrices:

S
11

= Y 1/2
∞
M̌ · Č

x
· Y −1/2

∞

S
12

= Y 1/2
∞
M̌ · Ĉ

x
· Y −1/2

∞
+D

S
21

= Y 1/2
∞
M̂ · Č

x
· Y −1/2

∞
+D

S
22

= Y 1/2
∞
M̂ · Ĉ

x
· Y −1/2

∞

where the N i × N i matrix D represents the direct contribution of the incident voltages:

D = D−1
2
·D

1

with D
1
, D

2
defined in Eqs. (3.19) and (3.20) and the N i × N f matrices M̌ , M̂ are the matrix

operators that relate the coefficients of the magnetic current J
m,a

to the scattered waves. Their
expressions are:

M̌ =
1

2
D
1
· ȟ∗ ·W · U−−T

M̂ = −1

2
D−1
2
· ĥ∗ ·W · U−−T

It is to be noted that the scattered waves in the circular waveguide depend explicitly on J
m,ρ1

only, because the opening between regions “1” and “2” is closed with a perfect conductor. How-
ever, the value of J

m,ρ1
depends on J

m,ρ2
, so that the presence of region “3” is indirectly taken

into account.
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It can be proved that, if the metallic and dielectric losses are neglected, the scattering matrix,
relative to the above cut off modes in the the cylindrical waveguide is unitary. This is an algebraic
property, independent of the number of expansion functions and of number of terms in the series
defining the moment matrix. Moreover, the scattering matrix is symmetric, because the structure
is reciprocal and the mode functions are real.
The filter consists generally of Nslot cavities. Its response can be easily computed as usual, by
defining the accessible modes in the cylindrical waveguide and using the cascading algorithm.
The elements of the moment matrix have been computed using special numerical techniques, the
computation details are reported in paragraphs 10.6 and 10.7.

9.3 Expansion functions

Due to the rectangular shape of the apertures, on which the equivalent magnetic currents are
defined, it is convenient to employ entire domain basis functions. Moreover, the slot is angularly
complete, so that the discontinuity couples only the modes of the circular waveguide which have
the same azimuthal index of the incident field. In the frequency range under consideration, the
only mode above cut off is the fundamental one, i.e. the TE 11, hence only the TE and TM mode
with second index equal to one are excited. In order to construct an efficient code, we decided to
use basis functions that satisfy the Meixner edge conditions [24]:

un(z, ϕ) = φn(z) cosϕ ϕ̂+ ζn(z) sinϕ ẑ (9.44)

with

φn(z) = C1/6n

(
2z

s

)[

1−
(
2z

s

)2
]−1/3

ζn(z) = C7/6n

(
2z

s

)[

1−
(
2z

s

)2
]2/3

where Cα
n(z) are the Gegenbauer polynomials of degree n, [10]. Some of these functions are

plotted in Figures 9.8 and 9.9. The functions φ n(z) diverge at the domain limits as |z±s/2|−1/3
and are useful to expand a current component parallel to the 90◦ edge. On the contrary, ζ n(z)
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Figure 9.8: Plot of φn(z) for n = 0, 1, 2, 3 with s = 2

vanish as |z± s/2|2/3 and are appropriate to represent the current component normal to the edge.
The Fourier transform of these functions can be evaluated in closed form as [37]:

φ̃n(χ) =
(π s

2

) (χ s

2

)− 1
6
Jn+ 1

6

(χ s

2

)

ζ̃n(χ) =
(π s

2

) (χ s

2

)− 7
6
Jn+ 7

6

(χ s

2

)

Since φn(z) and ζn(z) are even (odd) real functions for even (odd) n, their Fourier transforms
are real even (imaginary odd) functions, respectively.
Some of these transforms are plotted in Figures 9.10 and 9.11.

9.4 Convergence study

In order to study the convergence of the numerical scheme that has been developed, let us con-
sider a single cavity. The geometrical and electric characteristics of the structure are: cylindrical
waveguide radius ρ1 = 7.7 cm, cavity inner wall radius ρ2 = 10 cm, cavity outer wall radius
ρ3 = 12 cm, aperture width s = 2 cm, cavity length t = 3 cm, asymmetry length L = 0 and
frequency f = 1.4 GHz. In Figure 9.12 and 9.13 the fundamental mode reflection and transmis-
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Figure 9.9: Plot of ζn(z) for n = 0, 1, 2, 3 with s = 2

sion coefficients (in dB) versus the number of expansion functionsN f are shown. From the plots
we note that three basis functions are sufficient to guarantee a good accuracy. Finally, Figures
9.14 and 9.15 show a comparison between the frequency response of the structure computed by
the integral equation technique presented here and CST Microwave Studio. The two curves are
practically indistinguishable, but the computation times are widely different.

9.5 Design of ring cavity filters

The method described in the preceding sections will be used now to analyze both symmetric and
asymmetric stubs.
Let us define h = ρ3−ρ1, d = ρ2−ρ1 and λ0RX and λ0TX the wavelengths corresponding to the
zeros of the reflection and transmission coefficients, respectively. Figure 9.16 shows a contour
line representation of the parameters ρ1/λ0RX = f(h/ρ1, t/ρ1) and ρ1/λ0RX = g(h/ρ1, t/ρ1) of
the stub for the case s = ρ1/3 and d = ρ1/3. The maps are very general, because they depend
only slightly on s/ρ1 and d/ρ1. These plots, as well as that of Figure 9.17 show clearly the strict
relation existing between the frequencies of the these two zeros.
An asymmetrical configuration (i.e. L 6= 0) allows instead the independent control of the posi-

tion of these zeros. As an example, the frequency behavior of a single stub for different values of
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Figure 9.10: Plot of φ̃n(χ). The functions are real for n = 0, 2, . . . and pure imaginary for
n = 1, 3, . . .

the offset L is shown in Figure 9.18. The geometrical characteristics are ρ1 = 5.2 mm, s = 0.4ρ1,
t = 1.8ρ1, d = 0.2ρ1 and h = 0.43ρ1. We see that a variation of the offset L induces a small
change in the position of the reflection zero and a large change in that of the transmission zero.
Hence, by a proper choice of h/ρ1, t/ρ1, and L/ρ1, we obtained the flexibility required by the
design.
By cascading a number of stubs, higher order filters can be realized. Moreover, this type of cav-
ity allows some interesting configurations, as that shown in Figure 9.19, where different kinds of
stubs are used: in this way a three cavity filter has the same total length as a two cavity one.
As a first design example, let us consider a dual polarization filter with the following specifica-

tions: X-Ku operating band, pass band centered at 9.7 GHz± 8% with a return loss greater than
35dB and stop band centered at 15.45 GHz± 1.8% with attenuation greater than 30dB.
A 5-stub configuration has been chosen and the geometry is shown in Figure 9.20, whereas the
corresponding frequency response is in Figure 9.21. The design is carried out by choosing the
frequencies of the reflection and transmission zeros of the various stubs. Since the stubs are very
weakly coupled, the designer has a good control on the electromagnetic characteristics of the
device. Then, the various dimensions have been obtained using the design maps. The frequency
behavior of each stub is shown in Figure 9.22: the filter is symmetric, thus there are only three
different stubs. Note that the transverse occupation has been reduced by 25% with respect to the
use of straight stubs.
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Figure 9.11: Plot of ζ̃n(χ). The functions are real for n = 0, 2, . . . and pure imaginary for
n = 1, 3, . . .

As another design example of a dual polarization filter, let us assume the following specifications:
return loss greater than 25 dB at 1.55 GHz±10% and isolation greater than 40 dB at 2 GHz, with
minimum longitudinal and radial dimensions. The geometry of the filter is shown in Figure 9.23
and the corresponding frequency response in Figure 9.24. Note that all the specifications have
been satisfied using a four-asymmetric-stub configuration.
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Figure 9.12: Cavity reflection and transmission coefficients versus the number of basis functions
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Figure 9.13: Relative error of the cavity reflection and transmission coefficients versus the num-
ber of basis functions
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Figure 9.14: Reflection coefficient versus frequency. Comparison between integral equation
technique (solid line) and CST Microwave studio (dashed line)
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Figure 9.15: Transmission coefficient versus frequency. Comparison between integral equation
technique (solid line) and CST Microwave studio (dashed line)
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Figure 9.16: Contours of ρ1/λ0RX (left) and ρ1/λ0TX (right) in the plane of the parameters h/ρ1
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Figure 9.19: Compact filter configuration with various kinds of stubs
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Figure 9.20: Stub geometry for the pass-band filter
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Figure 9.21: Frequency Response of the filter of Figure 9.20
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Figure 9.22: Reflection coefficient of the filter of Figure 9.20 and of the individual stubs
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Figure 9.23: Geometry of the cells for the stop band filter
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Figure 9.24: Frequency Response of the structure of Figure 9.23



Chapter 10

Numerical Issues

10.1 Introduction

The solution of the integral equations related to the analysis of LCX and ring cavity filters, and
the discretization of the slot scattering operator require the computation of series of integrals
where the integrand functions are combination of Bessel and Hankel functions. Owing to the
presence of poles and ranch cuts, the application of standard integration routines is not possible
or not efficient. For this reason we have developed special numerical schemes that are briefly
described in the present chapter.

10.2 Double exponential transforms

In order to describe the method, we start with the general idea. Suppose that the following
integral is to be evaluated:

I =

∫ 1

−1

f(x)dx (10.1)

Use the change of variable x = ϕ(t), such that ϕ(−1) = −∞ and ϕ(1) =∞:

I =

∫
∞

−∞

f(ϕ(t))ϕ′(t)dt (10.2)
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Applying the trapezoidal formula to (10.2) we obtain:

I = h
∞∑

k=−∞

f(ϕ(kh))ϕ′(kh) +O

(

exp(−2π d

h
)

)

(10.3)

where d is the distance from the real t axis of the closest singularity of ϕ(t)ϕ′(t). The formula
(10.3) is quite efficient if one employs as ϕ(t) that one proposed by H.Takahasi and M.Mori
( [39]):

x = ϕ(t) = tanh(
π

2
sinh(t)) (10.4)

In the actual computation the infinite summation (10.3) must be truncated in such a way that
the order of the truncation error is equal to that of the discretization error O (exp(−2π d/h)).
Operating in this way, the following quadrature formula results:

I = h

N∑

k=−N

f(ϕ(kh))ϕ′(kh) +O

(

exp(− CN

logN
)

)

(10.5)

where 2N + 1 function evaluations are required. Since the integrand in (10.2) has a double ex-
ponential decay, (10.5) is called double exponential (DE) formula. It is optimal in the sense that
no quadrature formula can be obtained by variable transformation with a smaller error [39].

Let us now consider the application of the preceding idea in a particular case that occurs in the
computation of the projection integrals.
Let us consider the following integral:

I =

∫
∞

0

f(x)dx (10.6)

where the integrand is such that

f(nµ+ θ) = 0 for large integers n (10.7)

where µ and θ are some constants. This means that f(x) has an infinite number of zeros with
spacing µ for large x.
By the variable transformation:







x =Mϕ(t)

lim
t→−∞

ϕ(t) = 0

lim
t→∞

ϕ(t) =∞
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where M is some large positive constant to be defined later, (10.6) becomes:

I =

∫
∞

−∞

f(Mϕ(t))Mϕ′(t)dt (10.8)

The application of the trapezoidal rule, with the constant shift θ/M of the nodes, leads to:

I =Mh

∞∑

k=−∞

f(Mϕ(nh+ θ/M))ϕ′(nh+ θ/M) (10.9)

we choose ϕ(t) such that:






lim
t→∞

ϕ(t)

t
= 1

lim
t→−∞

ϕ′(t) = 0
(10.10)

then the argument of f(x) in 10.9 approaches Mnh + θ when n → ∞. Applying on t a mesh
size h such that Mh = µ, for large n we obtain:

f(Mϕ(nh+ θ/M)) ' f(Mnh+ θ) = f(nµ+ θ) = 0 (10.11)

then we can truncate the summation Ih at some moderate positive n if ϕ(t) approaches t rapidly
enough. For large negative n we can truncate the summation because of the second of (10.10).
A typical and useful transformation for this kind of integrals is given by:

ϕ(t) =
t

1− exp(−K sinh(t))
(10.12)

where K is some positive constant. The derivative is given by:

ϕ′(t) =
1− (1 +Kt cosh(t)) exp(−K sinh t)

(1− exp(−K sinh t))2
(10.13)

and the functions ϕ(t) and ϕ′(t) have the following behavior:

ϕ(t) =







|t| exp(−1/2K exp |t|) ' 0 t→ −∞

1
K

t→ 0

t+ t exp(−1/2K exp |t|) ' t t→ +∞

(10.14)

ϕ′(t) =







1
2
K|t| exp |t| exp(−1/2K exp |t|) ' 0 t→ −∞

1
2

t→ 0

1 t→ +∞

(10.15)
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In other words, the derivative ϕ′(t) approaches zero double exponentially as t→ −∞, while the
function ϕ(t) itself approaches t double exponentially as t→ +∞. Note that using this method
it is really important to be careful in the numerical evaluation of ϕ(t) and ϕ′(t) in the neighbor-
hood of t = 0 since the numerical accuracy can be compromised by the loss of significant digits.

Let us consider now the application of the Double Exponential formula to the computation of
the projection integrals considered in this work, such as a generic element of the sub-matrix A rc,
see section 3.5. If weighted Chebyshev polynomials are employed as basis functions, the generic
projection integral takes the following form:
∫
∞

A

Yuu(χ, n)f̃r(χ)f̃c(χ)dχ =
(sπ

2

)2

(−1)r(j)r+c
∫
∞

A

Yuu(χ, n)J
∗

r (sχ/2)Jc(sχ/2)dχ(10.16)

Since the Bessel functions Jr(x) for xÀ r present an oscillating behavior as a cosine, the D.E.
can be employed. In Figures 10.1 and 10.2, the logarithm of the absolute value of Yuu(χ, n =

0)|f1(χ, n = 0)|2 for χ ∈ [2k0, 100k0) and the integrand function after the DE transformation
are shown using K = 5. The geometrical characteristics of the LCX are: inner conductor radius
a = 6 mm, outer conductor radius b = 15 mm, slot width s = 3mm and frequency f = 1 GHz.
Note that the elements of (10.9) decay double exponentially to zero and the only the terms which
belong to the interval [−100, 0] give a significant contribution. With similar manipulations one

20 40 60 80 100 120 140 160 180 200
−14

−13

−12

−11

−10

−9

−8

χ/k
0

Figure 10.1: Integrand function in the χ variable before the DE transformation

can successfully employ the DE transformation to the computation of the elements uv,vu and
vv.
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Figure 10.2: Integrand function in the t variable after the DE transformation

10.3 Computation of the projection integrals for the HFIE

The computation of the elements of the moment matrix represents the core of the integral equa-
tion technique and, at the same time, the main limitation to its practical application for the anal-
ysis of real LCX.
Let us start by considering the expression of a generic element of the moment matrix, as given
in Section 3.5:

A r,c =
∑

n

∫ +∞

−∞

ũ∗t(r)(χ, n; sq(r), αq(r))Y
tot
uu (χ, n)ũt(c)(χ, n; sq(c), αq(c)) e−j χ(Lq(c)−Lq(r)) dχ =

=
Nmax∑

n=−Nmax

∫

<

G̃(χ, n) e−j χLdχ (10.17)

where G̃(χ, n) is a generic function (which assumes different expressions, depending on the basis
functions used and on the type of components uu, vu, uv or vv involved) and L is the distance
between the centers of two slots. Since the slots in the standard LCX are thin in comparison with
the wavelength and oriented along ϕ̂, we will discuss in detail the case of the uu component of
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the admittance

Y int
uu =−

jωε1
τ1

Jn(τ1ρ1)Y
′
n(τ1ρ2)− J ′n(τ1ρ2)Yn(τ1ρ1)

Jn(τ1ρ1)Yn(τ1ρ2)− Jn(τρ2)Yn(τ1ρ1)
+

jχ2n2

ωµ0ρ22τ
3
1

J ′n(τ1ρ1)Yn(τ1ρ2)− Jn(τ1ρ2)Y ′n(τ1ρ1)
J ′n(τρ1)Y

′
n(τ1ρ2)− J ′n(τ1ρ2)Y ′n(τ1ρ1)

Y ext
uu =

jωε0
τ

H
′(2)
n (τρ2)

H
(2)
n (τρ2)

− jχ2n2

ωµτ 3ρ22

H
(2)
n (τρ2)

H
′(2)
n (τρ2)

These expressions apply in the case the dielectric cover is absent. Since each element of the
moment matrix is given by a series of integrals, it is convenient to analyze the behavior of the
integrand as a function of the n variable. In section 2.7 it has been shown that Y tot

uu (χ, n) is an
even function of the two variables χ and n. Moreover, if all the slots are centered in ϕ = 0 and
a TEM incident field is considered, for symmetry reasons only the basis functions even in ϕ are
excited, which gives rise to a function G(χ, n) even in n so that the series (10.17) can be reduced
as:

Nmax∑

n=−Nmax

∫

<

G̃(χ, n) e−j χLdχ =

∫

<

G̃(χ, 0) e−j χLdχ+ 2
Nmax∑

n=1

∫

<

G̃(χ, n) e−j χLdχ (10.18)

In order to identify the best numerical strategy for an accurate and fast evaluation of the integrals,
let us examine the properties of G(χ, n). The function G(χ, n) has poles and branch point
singularities in the complex plane χ. Hence, its definition is complete when appropriate branch
cuts are specified. From the general modal theory [8], we know that the poles are related to the
guided modes of the structure, while the branch cuts are associated to the radiated modes. The
global structure, i.e. coaxial cable and the region around it, supports two different sets of guided
modes: the modes of the coaxial cable and those of the open waveguide consisting of the cable
outer conductor, the dielectric cover and free space (see Figure 10.3). Let us consider where these

r̂r̂ 2r
e 0r

e

Figure 10.3: Coaxial cable with dielectric cover

singularities are in the complex χ plane under the assumption the dielectric media are lossless.
In this case the poles which correspond to below cut-off (cable) modes are on the imaginary axis,
while the poles related to the above cut off modes of the coaxial cable and of the open waveguide
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belong to the intervals [−k0
√
ε r1, k0

√
ε r1] and [−k0

√
ε r2, k0

√
ε r2], respectively, where εr2 is

the relative dielectric permittivity of the cover. A pictorial view of the preceding considerations
is shown in Figure 10.4 where the dashed lines represent the branch cuts, while the dot points
represent the poles. Branch lines have been chosen that guarantee=τ2 < 0 on the entire top sheet
of the Riemann surface, [8]. If the dielectric media are not ideal, then the situation is modified

10 r
k e

}Re{c

}Im{c
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k e10 r

k e- 0k-

20 r
k e-

Figure 10.4: Complex plane χ with poles and branch cuts if the media are lossless

as plotted in Figure 10.5.
Apparently, G(χ, n) is not an analytical function due to the presence of the complex conjugate
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k e
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0k-

20 r
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Figure 10.5: Complex plane χ with poles and branch cuts in the general case

operator applied to the test function. Actually, since the ur(z, ϕ) are real, the complex conjugate
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Figure 10.6: Complex plane χ with poles and branch cuts in the case the dielectric cover is
neglected

of the Fourier transform, ũ∗r(χ, n) can be manipulated as follows:

ũ∗r(χ, n) =

(∫ +∞

−∞

∫ 2π

0

ur(z, n) e+j zχ e+j nϕd z dϕ
)∗

=

∫ +∞

−∞

∫ 2π

0

u∗r(z, n) e−j zχ e−j nϕd z dϕ = ũr(−χ,−n) (10.19)

If weighted Chebyshev polynomials are employed and the slots are centered in ϕ equal to zero,
it is possible to prove that

ũr(−χ,−n) = (−1)rũr(χ, n) (10.20)

Finally, the function G(χ, n) can be written as:

G(χ, n) = (−1)r ũ c(χ, n)Y tot(χ, n)ũ r(χ, n) (10.21)

(10.22)

and the integrand function is clearly analytical. This property will be employed for the compu-
tation of the mutual coupling projection integrals.
Since the function G(χ, n) consists of the sum of two terms (Y tot = Y int+Y ext) it is convenient
to consider them separately. Hence, we write:

∫ +∞

−∞

G(χ, n)e−jχLdχ =

∫ +∞

−∞

Gint(χ, n)e−jχLdχ+

∫ +∞

−∞

Gext(χ, n)e−jχLdχ

where:

Gint(χ, n) = ũ c(χ, n)Y int(χ, n)ũ
∗

r(χ, n)

Gext(χ, n) = ũ c(χ, n)Y ext(χ, n)ũ
∗

r(χ, n)
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10.3.1 case 1: Self-Coupling and internal contribution

As just discussed, the integrand function in this case presents only poles in the complex plane
whose position corresponds to the propagation constants of the modes of the coaxial cable. Since
the basis functions have finite support, their transform are entire functions and the Jordan’s
Lemma can not be applied. Note that the kernel Yint(χ, n) is an even function in the variable
χ, as it has been pointed out in the first chapter. The Fourier Transforms of the basis functions
are, instead, even or odd; for symmetry, half of the integrals are zero. The non zero ones can be
reduced as:

∫
∞

−∞

ũr(χ, n)Yint(χ, n) ũc(χ, n) dχ = 2

∫
∞

0

ũr(χ, n)Yint(χ, n) ũc(χ, n) dχ (10.23)

In the following, the dielectric losses are neglected, the extension to the general case is obtained
by analytic continuation.
Using the small argument expansion of Bessel functions of the first and second kind for χ →
k0
√
εe1 (i.e. τ 1 → 0) the function Y int has the following asymptotic behavior:

Y int(χ ' k0
√
εr1, n) ∝







1

k0
√
εr1 − χ

if n=0

O(k0
√
εr1 − χ) if n > 0

(10.24)

where O() is the Landau symbol.
From the preceding formula it is clear that the singularity in χ = k0

√
εr1 is present only for

n = 0. The computation of the integral requires an analytical extraction of this pole. The other
poles, which lie on the imaginary axis, have an effect on the quadrature techniques if they are not
too far from the integration path. For this purpose, it is convenient to subdivide the integration
domain in the following way:

∫
∞

0

dχ =

∫ 2k1

0

dχ+

∫
∞

2k1

dχ (10.25)

The first element of (10.25) is computed by an analytical extraction, if n = 0, and the difference
by the trapezoidal rule. For n 6= 0, a trapezoidal scheme is directly employed. On the other hand,
the second term of (10.25) has been evaluated using the DE technique (see section 10.2 for more
details).
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10.3.2 case 2: Mutual Coupling and internal contribution

Since real LCX are composed by thousands of slots, the parameter L in (10.17) can be greater
than hundreds of wavelengths, in absolute value. Due to the exponential term, the integrand
function is highly oscillating and any standard numerical scheme is bound to fail. Even if a
direct application of the double exponential transform is still possible, it is more convenient to
deform the integration path as shown in Figure 10.7 and apply the Cauchy Theorem. Using the

10 r
k e

}Re{c

}Im{c

10 r
k e-

s
G

Figure 10.7: Deformation of the integration path for the application of Cauchy theorem

notation shown in figure, we have:
∫
∞

−∞

dχ+

∫

Γs

= ± 2jπ
∑

q

Res{χq} (10.26)

where Res represents the residue of the q-th pole and the sign on the second term of (10.26)
depends on the sign of L.
The integral on the semicircular arc gives no contribution because |L| > s (we are computing
the mutual coupling term) and the exponential exp(−jχL) counterbalances the divergence of the
expansion functions transforms. Then:

∫
∞

∞

dχ = ± 2jπ
∑

q

Res{χq} (10.27)

Clearly, these residues decrease exponentially because the corresponding poles (apart the TEM
one) are on the imaginary axis; in the standard operating mode, only the first one or two poles,
for the azimuthal index n less than three or four, give a significant contribution. This fact can be
easily explained considering that only the subset, which is composed by the accessible modes,
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gives a significant contribution.
The exact position of the poles can be found solving the following non linear equations:

Jn(τ a)Yn(τ b)− Jn(τ b)Yn(τ a) = 0 for the TM modes

J ′n(τ a)Y
′

n(τ b)− J ′n(τ b)Y ′n(τ a) = 0 for the TE modes

whose solution are listed ( [10]) for different couples of the radii (a, b).

10.3.3 case 3: Self Coupling and external contribution

In this case, the singularities of the integrand are branch points. The associated cuts, physically,
correspond to the continuous spectrum of the radiated modes. The effect of the branch cuts on
the quadrature scheme is present for any value of n, but requires a particular attention if n is
equal to zero and one since the integrand function diverges for χ = k0. Indeed, the expansion of
Y ext for χ ' k0 (i.e. τ ' 0) obtained substituting the series expansion of H (2)

n (x) and H ′(2)
n (x)

for x→ 0:

Y ext(χ, n) ∝







jY 0
2ρ2(k 0 − χ)

1
jπ

2
+ γ e + log

(

b/2
√

2k0(k0 − χ)
) for n=0

γ e − log 2 + log b
√

2k0(k0 − χ) for n=1

O(k0 − χ) for n > 1

(10.28)

where γe is the Euler constant. Figures 10.8, 10.9, 10.10, and 10.11, show plots of the exter-
nal admittance Yext(χ, n) and the differences with respect to its approximate expressions for
n = 0, 1.

Note that the asymptotic expression of Y ext(χ, n) for n = 0 presents a spurious pole in
χp = kL, with kL = k0 + 2e−2γe/(k0ρ22), which sets a limit on the use of that formula.
For this reason the integration path has been divided in two parts:

∫
∞

0

dχ =

∫ χ1

0

dχ+

∫
∞

χ1

dχ (10.29)

where the value of χ1 depends on n.
If n = 0, χ1 is chosen as the midpoint between k0 and χp. Then the asymptotic behavior is
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Figure 10.8: Real and imaginary part of Y ext(χ, n) for n = 0

extracted and computed analytically, the remaining part is evaluated by the trapezoidal rule,
while the second term of (10.29) is treated using the Double Exponential technique.
If n = 1, we choose χ1 = 2k0 and the same scheme as before. Finally for n > 2 the entire
integral is computed by the DE technique.
Note that the corresponding series converges with 50− 60 terms, approximatively.
If the dielectric cover is taken into account, some poles, corresponding to the guided modes of
the external waveguide, can lie in the range χ ∈ [k0, k0

√
εr2]. In this case, it is convenient to

deform the integration path as shown in Figure 10.12. In this way the singularities can be avoided
and the integrand function is smooth. This integral can be efficiently computed using the FFT
algorithm.

10.3.4 case 4: Mutual Coupling and external contribution

In this case from a direct application of the Cauchy Theorem one obtains (see Figure 10.13):

∫
∞

−∞

=

∫

Γ1

+

∫

Γc

+

∫

Γ2

+2πj
∑

q

Res{χq} (10.30)
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Figure 10.9: Real and imaginary part of the difference between Y ext(χ, n) and its approximate
expression in the case n = 0

since the terms
∫

Γv1
dχ and

∫

Γv2
dχ are equal to zero because of Jordan’s Lemma. Γc is a semi

circle of infinitesimal radius around χ = k0 and the integral on it is evaluated analytically.
Then we should compute numerically the integrals along

∫

Γ1
and

∫

Γ2
where the integrand is

oscillating. In order to avoid this problem, it is convenient to deform the branch cuts as shown
in Figure 10.14. On this path, the function decays rapidly without oscillations. In this case,
however, =τ2 > 0 in the subregion A, which then belongs to the so called “improper sheet” of
the Riemann surface on which the integrand is defined. The poles in this region are known in
literature as “leaky waves”. A useful parameterization of Γ1, Γc and Γ2 is:

Γ1 : χ = k0 −R− j u with u ∈ (−∞, 0]
Γc : χ = k0 −R e−j θ with θ ∈ [0, π]

Γ2 : χ = k0 +R− j u with u ∈ [0,−∞)

It can be proved that the term
∫

Γc
dχ tends to zero for R→ 0 while the terms

∫

Γ1
dχ and

∫

Γ2
dχ

can be combined in:
∫

Γ1

+

∫

Γ2

=

∫
∞

0

e−u

u

(

4ωε2
π ρ2

1

τ 2H
(1)
n (ρ2τ)H

(2)
n (bτ)

+

+
4n2(k2 − ju/Ls)2

ωµ ρ32πτ
4

1

H
′(1)
n (bτ)H

′(2)
n (ρ2τ)

)

ũ c(k0 − ju/L, n)ũ r(k0 − ju/L, n)d u (10.31)
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Figure 10.10: Real and imaginary part of Y ext(χ, n) for n = 1

where τ =
√

k20 − (k0 − ju/L)2 with the imaginary part that is positive or equal to zero and
u ∈ [0,∞).
The preceding integrand is singular for u = 0 and requires an analytical extraction of the singu-
larity. The remaining part can be computed using a gaussian-Laguerre quadrature scheme with
few nodes since, along the new path, the integrand function is not oscillating.
The computation of the residue terms in (10.30) requires the computation of the complex poles
related to the leaky waves. If the dielectric cover is neglected, the position of these zeros can
easily found as complex zeros of the Hankel functions H (2)

n and H ′(2)
n that are reported in [10],

for example. In the other case a numerical routine becomes necessary and the problem can be-
come quite cpu time consuming since the number of these poles for any value of n is not known
a priori. On the other hand, this problem can be avoided, considering that the contribution of
these leaky waves decays exponentially in relation to the imaginary part of the pole. Moreover,
our final purpose is to compute the integral and not the position of the leaky waves: hence, we
can define a suitable rectangle in the region A and compute the corresponding contour integral.
This rectangle has to be chosen so that the leaky wave poles existing outside of it can be safely
neglected because their contribution is negligible. Applying the Cauchy Theorem:

∮

γ

= −2jπΣRes (10.32)
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Figure 10.11: Real and imaginary part of the difference between Y ext(χ, n) and its approximate
expression in the case n = 1. Note that the singularity has been extracted

where γ =
⋃q=4
q=1 γq and has the following parameterization:

γ1 : χ = j x for x ∈ [−kI , 0]
γ2 : χ = x for x ∈ [0, k0]

γ3 : χ = k0 + j x for x ∈ [0,−kI ]
γ4 : χ = x− j kI for x ∈ [k0, 0]

The integrand function is not oscillatory along γ3 and the integral can be computed by trapezoidal
rules, while along γ2, γ3 and γ4 it is convenient to employ the FFT algorithm.

10.4 Behavior of the Series of Integrals in HFIE solution

When the angular width α of the slots is small, the number of integrals to compute becomes really
large. This fact is based on the observation made in section 3.6 that convergence is reached if
the number of azimuthal harmonics taken into account is N = 2Nmax + 1 = 1 + 2d50/αe.
Even if a quite sophisticated scheme to speed up the computation of the projection integrals has
been developed, numerical problems can be expected when Bessel functions of quite high order



234 Numerical Issues

}Re{c

}Im{c

0k

A
G

02k

Figure 10.12: Deformed path in order to avoid the poles related to the guided waves in the
external waveguide

have to be computed, in particular for the computation of Yint, which is given as a ratio of two
differences. On the other hand if we study the dependence of the series terms on the azimuthal
order n, we see that the behavior is very regular. This facts suggests an analysis of the qualitative
behavior n of the integrand functions. Let us start considering the generic element related to
Auu:

∫ +∞

−∞

Y tot
uu (χ, n)f̃c(χ) f̃

∗

r (χ)dχ (10.33)

It can be shown that the asymptotic behavior of the integrand is (see paragraph 2.7):

Y tot
uu (χ, n) ≈







n

(
jωε0
τ2
− jωε1

τ1
+

jχ2

ωµ ρ22τ
3
1

− jχ2

ωµ ρ22τ
3
2

)

when |τ ρ2| ¿ n

jω(ε1 + ε0)

χ
− n2 2j

χωµ ρ22
when |τ b| À n

(10.34)

Then one can assume that the general behavior of (10.33) is:
∫ +∞

−∞

dχ ≈ A+B n+ C n2 (10.35)

where A, B and C are some constants to be computed using a least square method. In order to
verify the preceding results, Figure 10.16 )(left) shows a comparison between (10.33) and the
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(10.35), for a LCX whose geometrical and electric characteristics are: inner conductor radius
ρ1 = 3.4 mm, outer conductor radius ρ2 = 8.8 mm, slot width s = 3 mm, frequency f = 1 GHz,
dielectric permittivity εr1 = 1.26. The values of A, B and C have been estimated by a minimum
least square routine on the integral values for n ∈ [40, 50]. There is a very good agreement
between the two curves and the relative error (Fig. 10.16 (right)) is less than 1%. Let us now
consider the elements related to Auv:

∫ +∞

−∞

Y tot
uv (χ, n)g̃c(χ) f̃

∗

r (χ)dχ (10.36)

In this case, it can be shown that the asymptotic behavior of the total admittance is (see Section
2.7):

Y tot
uv (χ, n) ≈







jχ

µω a

∞∑

q=1

Cq
nq−1

when |τ ρ2| ¿ n

j n

χω b
when |τ ρ2| À n

(10.37)

where Cq are constants whose expression is quite complicate. Then one can suppose that the
general behavior of (10.36) is:

∫ +∞

−∞

dχ ≈
∞∑

q=−1

dq
nq−1

(10.38)
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Figure 10.14: New integration path around the modified branch cut

where the coefficients dq can be computed using the least square method. Usually, the series in
(10.38) can be truncated with three term. The exact integrals (10.36) and their approximations
(10.38) are shown in Figure 10.17 (left) for LCX whose geometrical and electric characteristics
are the same as before. The values of {dq} have been computed on the basis of the values for
n ∈ [40, 50]. The agreement is very good and the relative error (reported in Figure 10.17 (right))
is less than 2%. Identical considerations hold for the element vu. Finally, let us consider the
elements related to Avv:

∫ +∞

−∞

Y tot
vv (χ, n)g̃c(χ) g̃

∗

r(χ)dχ (10.39)

The asymptotic behavior of the integrand is (see section 2.7):

Y tot
vv (χ, n) ≈







j bτ 2

µω n
when |τ ρ2| ¿ n

τ

ω µ
when |τ ρ2| À n

(10.40)

Then, one can suppose that the general behavior of (10.39) is:
∫ +∞

−∞

dχ ≈ A+
B

n
(10.41)

where A and B are two constants to be computed using the least square method. The integrals
(10.39) and their approximations (10.41) are shown in Figure 10.39 for the same LCX as before.
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Figure 10.15: Modification of the integration path, to avoid the computation of leaky waves in
the case of dielectric covered cable

The values of A, and B have been computed by a least square routine on the basis of the values
for n ∈ [40, 50]. The agreement is again very good and the relative error (reported in Figure
10.18 (right)) is less than 1%. It has to be remarked that the use of a least square method in order
to compute the constants of the asymptotic expression is necessary since the equations (10.35),
(10.38) and (10.41) are to be interpreted as a tool for a qualitative confirmation of an intensive
numerical investigation. However they can be employed to prove that the series are convergent.
In fact, if one combines, for example, (10.35) and the asymptotic expression, for large argument
of the expansion functions, the asymptotic behavior of the elements of the series is:

A+B n+ C n2

n3
cos (nα/2− π/4− rπ/2) cos (nα/2− π/4− cπ/2) (10.42)

and it is well known that a series with such general term is convergent.
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Figure 10.16: Left: comparison between the exact elementsAuu and their approximation (10.35):
the two curves are superimposed; Right: Relative error of the approximation of Auu

10.5 Discretization of the slot scattering operator

The discretization of the scattering operator requires the computation of many integrals of func-
tions with integrable singularities in τ = 0 and τ = k0. Since two different sets of basis func-
tions, with different integration domain, have been employed for the discretization of the above
and below cut-off portion of the spectrum, it is convenient to consider separately the correspond-
ing integrals.
Before starting to show the technique, it is useful to recall the small argument asymptotic behav-
ior of the Hankel function H (1)

q (x):

H(1)
q (x) ∝







log x for q = 0

1

xq
for q > 0

(10.43)

Since the complete expressions of the integrand function are quite complicated, we will focus
our attention only on the divergent part.
The integrals related to a generic TM spectral composite mode, in the above cut off portion of
the spectrum, have an integrand function containing the factor:

1

(k0 − τ)1/2 τ 1/2H(1)
m (ρ2τ)

(10.44)



10.5 Discretization of the slot scattering operator 239

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

n

 

 
Exact
Approximated

20 30 40 50 60 70 80
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

n

 

 

Relative Error Elements

Figure 10.17: Left: comparison between the exact elementsAuv and their approximation (10.38):
the two curves are superimposed; Right: Relative error of the approximation of Auv

where m is the azimuthal mode index. In this case the integration domain is τ ∈ [0, k 0], then
combining (10.43) and (10.44) we see that the integrand function is singular in τ = 0 only if
m = 0 (i.e. for the TM0,τ modes), while it has a square root singularity for any value of m in
τ = k 0. Employing the theory of the improper integrals, we can assert that the integrals exists for
any value of m. In order to compute these integrals it is useful to exploit the following numerical
scheme. First, the integration domain is split in two parts:

∫ k0

0

dτ =

∫ k0/2

0

dτ +

∫ k0

k0/2

dτ (10.45)

The first integral can be easily computed using the variable transformation τ = xR. In the new
variable (10.44) becomes:

RxR/2−1

(k0 − xR)1/2H(1)
m (ρ2 xR)

(10.46)

with integration limits 0 and (k0/2)
1/R. From the (10.46) it is evident that if R > 2 the integrand

is no longer singular.
Analogously, for the second integral we employ the variable transformation x = k0 − xM and
obtain:

− M xM/2−1

√
k0 − xM H

(1)
m (b (k0 − xM))

(10.47)
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Figure 10.18: Left: comparison between the exact elementsAvv and their approximation (10.38):
the two curves are superimposed; Right: Relative error of the approximation of Avv

with integration limits 0 and (k0/2)
1/M . Again if M > 2, (10.47) is no longer singular along the

integration path.
After the change of variable both integrals can be computed by a gaussian Legendre quadrature
scheme since the other singularities have been moved far away from the integration path. More-
over, selecting M = R, the same nodes and weights can be used for the computation of the two
integrals. A fast convergence can be obtained for values of R not too large. On the other hand,
the number of nodes has to be chosen in relation with the order of the Chebyshev polynomials
used for the discretization of the scattering operator since the number of its oscillations has to
be taken into account. After an extensive numerical investigation, we decided to use R = 4

with the number of nodes equal to 4Nτ , where Nτ is the number of basis functions used for the
discretization of the scattering operator.

Let us now consider in detail the contribution to spectral TM composite modes from the below
cut-off portion of the spectrum (i.e. τ ∈ [k0,∞). The relevant part of the integrand function is:

e−Ldτ/2

√
k0 − τ

(10.48)

then the only singularity is represented by the square root divergent behavior in τ = k0. As
before, it is useful to subdivide the integration domain in two parts:

∫
∞

k0

dτ =

∫ 3k0/2

k0

dτ +

∫
∞

3k0/2

dτ (10.49)



10.6 Computation of the projection integrals for the ring cavity filter 241

The first integral can be computed as before using the variable transformation τ = k0 + xR. In
this way one can employ the same quadrature formula employed in the preceding case. In fact,
the upper limit (i.e. 3/2k0) has been chosen in order to use the same nodes and weights. The
second part of (10.49) can be evaluated by a gaussian Laguerre scheme after the variable trans-
formation τ = 3 k0/2 + 2v/Ld. Since the effect of the below cut off composite modes is quite
low, it has been numerically shown that 32 modes guarantee a satisfactory accuracy.
Let us now briefly consider the integrals involved in the TE composite modes. The only differ-
ence is that the integrand function is no longer singular in τ = 0 and τ = k0 since for TE modes

the azimuthal index m is different from zero and the admittance Y∞ =

√
k2
0−τ

2

ωµ
compensates the

square root singularity in τ = k0.

Let us now consider the integrals for the reconstruction of the radiated electromagnetic field
according to the method presented in Section 4.7. Again, it is useful to distinguish the two
cases of above- and below-cut-off continuous spectrum modes. It can be shown that the singular
portions of the integrands are

{

1/(τ 3/4H
(2)
n (τ ρ2)

√
k0 − τ) for TM modes

1/
√
k0 − τ for TE modes

for 0 < τ < k0 and
{

e−τ Ld/
√
k0 − τ for TM modes

e−τ Ld/(τ 3/4H
(2)
n (τ ρ2)) for TE modes

for τ > k0. From the preceding expressions it is evident that the same method shown for the
discretization of the scattering matrix can be successfully employed also for the computation of
the electromagnetic field. Moreover the same nodes and weights can be used ifR is chosen equal
to 4.

10.6 Computation of the projection integrals for the ring cav-
ity filter

In this section the numerical evaluation of the moment matrix of the ring cavity filter will be
discussed.
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Under the assumption that only the TE11 mode is above cut-off, the only singularities along the
integration path in the complex χ plane are the two poles

χp = ±kz11 = ±

√

k20εr −
(
χ′11
ρ1

)2

which correspond to the progressive and regressive waves of this mode. χ′11 is the first zero of
the derivative of the Bessel function J1(x). In the case of ring cavity filters, there are four types
of integrand functions, related to the various components uu, uv, vu, vv. The generic integral
has the form:

∫

<

Y (χ, n)ũ∗r(χ, n)ũc(χ, n)dχ (10.50)

Since the uu and vv admittance components are even and the uv and vu are odd and the Fourier
Transforms of the basis functions are either even or odd, several integrals are zero and for the
remaining ones

∫
∞

−∞

ũ∗r(χ, n)Y (χ, n) ũc(χ, n) dχ = 2

∫
∞

0

ũ∗r(χ, n)Y (χ, n) ũc(χ, n) dχ (10.51)

Finally, the evaluation of each integral has been done subdividing the integration domain in two
parts:

∫
∞

0

dχ =

∫ 2k1

0

dχ+

∫
∞

2k1

dχ (10.52)

where k1 = k0
√
εr.

The first integral has been computed by extracting the asymptotic expression for χ ≈ χp as in
Section 10.3, while the second integral has been evaluated employing the double exponential
technique.
The asymptotic expressions of the admittances for χ ≈ χp are:

Yuu(χ ≈ χp) =
jχp

ωµ ρ1χ2p

J1(χ
′
11)

(χ− χp)J ′′1 (χ′11)
(10.53)

Yuv(χ ≈ χp) = Yvu(χ ≈ χp) =
j

ωµ ρ21

J1(χ
′
11)

(χ− χp)J ′′1 (χ′11)
(10.54)

Yvv(χ ≈ χp) =
jχ′11

ωµ ρ31χp

J1(χ
′
11)

(χ− χp)J ′′1 (χ′11)
(10.55)

Hence, the first term of (10.52) can be computed as:
∫ 2k1

0

ũ∗r(χ, n)Yuu(χ) ũc(χ, n)dχ =
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=

(

−jπ + log

(
2k1 − χ′11

χ′11

))
jχp

ωµ ρ1χ
′2
11

J1(χ
′
11)

J ′′1 (χ
′
11)
ũc(χp, n)ũ

∗

r(χp) +

∫ 2k1

0

∆F uu
r,c (χ)dχ

∫ 2k1

0

ũ∗r(χ, n)Yvv(χ) ũc(χ, n)dχ =

=

(

−jπ + log

(
2k1 − χ′11

χ′11

))
jχ

′2
11

ωµρ31χp

J1(χ
′
11)

J ′′1 (χ
′
11)
ũc(χp, n)ũ

∗

r(χp) +

∫ 2k1

0

∆F vv
r,c(χ)dχ

∫ 2k1

0

ũ∗r(χ, n)Yuv(χ) ũc(χ, n)dχ =

=

(

−jπ + log

(
2k1 − χ′11

χ′11

))
j

ωµ ρ21

J1(χ
′
11)

J ′′1 (χ
′
11)
ũc(χp, n)ũ

∗

r(χp, n) +

∫ 2k1

0

∆F uv
r,c (χ)dχ

∫ 2k1

0

ũ∗r(χ, n)Yvu(χ) ũc(χ, n)dχ =

=

(

−jπ + log

(
2k1 − χ′11

χ′11

))
j

ωµ ρ21

J1(χ
′
11)

J ′′1 (χ
′
11)
ũc(χp, n)ũ

∗

r(χp, n) +

∫ 2k1

0

∆F vu
r,c (χ)dχ

where the elements ∆F xx
r,c (χ) are the difference between the exact integrand functions and their

asymptotic expressions. Note that the application of a gaussian quadrature technique does not
assure a rapid convergence since the effect of the extracted pole plagues that technique. For this
reason, these integrals have been computed using a trapezoidal scheme.

10.7 Behavior of the longitudinal series for the ring cavity fil-
ter

The series (9.39) can be accelerated employing the Kummer Method. For this purpose we need
to consider the large argument asymptotic expressions of the admittance Y cc(χ,± 1) and of the
Fourier transforms of the basis functions φ̃(χ) and ζ̃(χ). In particular, we retain the first two
terms of the asymptotic expansions. With some algebra, we have shown that the elements of
the series are asymptotically proportional to a combination of terms which decay as m−7/3,
m−10/3,m−13/3,m−16/3 andm−19/3. This fact implies that the asymptotic series can be computed
analytically in terms of the Zeta Riemann function. The difference series is easily evaluated by a
direct summation, since its elements converge to zero extremely fast.
As an example, let us consider the computation of the element

Aconnuu | 11 =
∑

m

ú∗1(m,±1) ·BT · Y
cc
| 11(m,±1) ·B · ú 1(m,±1) (10.56)
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The n summation contains only the indicated two terms, since the slot is complete and the
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Figure 10.19: log10 of the absolute values of the elements of the series (left) and of the difference
series (right)

incident field is TE11. The geometrical and electric characteristics of the structure are circular
waveguide radius a = 5.3 mm, ring cavity inner radius b = 8.8 mm, slot width s = 2 mm ,
frequency f = 20 GHz. Figure 10.19 (left) shows a plot of the absolute values of the elements
of the series while the elements of the difference series are shown in Figure 10.19 (right). Note
that after the 25th element the difference can be considered of the same order as double precision
round-off error, so that it can be neglected.



Chapter 11

Conclusions and Recommendations

The main theme in this thesis has been the use of circuit theory in the solution of guided wave
scattering problems. The term “guided wave” is actually to be interpreted, since also free space
can be viewed as a (peculiar) waveguide.
Propagation in usual rectilinear waveguides is often phrased in the language of transmission line
theory. It has been remarked that the theory of equivalent transmission lines is a way to give
physical insight into the mathematical method of separation of variables. This opens the way to
the use of non conventional equivalent transmission lines, such as the radial ones or the angular
ones.

In this thesis we focused on the concept of radial waveguide, a structure which has the radial
direction ρ̂ as propagation direction and is possibly bounded by metal plates parallel to the co-
ordinate planes. It is not possible in the present case to introduce vector mode functions as in
conventional waveguides, but the transmission line concept is introduced on a component basis.
From the conceptual point of view, it was useful to adopt a vector setting, so that TE and TM
wavefield components (with respect to ẑ) are treated at the same time.
Radial lines are peculiar, because they have an absolute origin and are neither shift invariant
nor reflection invariant. Nevertheless the usual circuit theory concepts can be applied, with ap-
propriate definition of impedances, propagators, scattering matrices, etc. As soon as we have
transmission line theory at our disposal, we can use it to solve scattering problems.

We have addressed two problems, the first concerning slotted coaxial cables, the second circular
waveguide filters, comprising ring cavities. They may seem very different at first sight, but have
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been attacked by the same method, i.e magnetic field integral equation. The kernel of that is the
Green’s function of the structure and the radial transmission line theory has been very helpful in
its construction. Actually, it is a spectral representation of the Green’s function which is directly
computed and it is convenient to carry out the numerical solution of the HFIE, by the method of
moments, directly in the spectral domain.

The advantage of this approach to the study of slotted coaxial cables is that not only does it allow
the computation of the radiated field, but also of the input reflection coefficient. The drawback
is that the numerical effort increases with the number of slots. Even if a very efficient code has
been developed, so that the simulation of cables with several hundreds of slots is feasible,it was
judged necessary to explore two other approaches.
The first one is strictly related to the periodic slot configuration of uniform LCX. Indeed, it is well
known that, in the study of periodic structures, the Bloch wave technique is the most appropriate
one. The difficulty here is that the outside of the cable is an open waveguide, characterized by
a continuous spectrum, so that the application of standard theory is not possible. In this work
we developed a method to discretize the continuous spectrum, based on the introduction of basis
functions for the expansion of the modal amplitudes. The results have been very satisfactory,
since beyond the numerical advantage in the case of large arrays, a conceptual framework was
obtained, which yielded design guidelines.
The third technique we have developed in this work is the extension to the cylindrical geometry
of the eigencurrent approach, originally introduced for in the analysis of large planar arrays.
This method is based on the computation of the approximate eigenvalues and eigenvectors of the
moment matrix of the entire array as a linear concatenation of the eigencurrents of a subarray of
the entire antenna. In this way it is possible to obtain the electromagnetic solution avoiding the
storage and inversion of large moment matrix.

As for the design, it is clear that the use of identical slots in a cable is not convenient since an
inevitable tapering of the radiated power appears. A design procedure has been developed that
allows the design of the slots in such a way that the radiated power level is quite uniform, despite
the cable radiation and ohmic losses.

Concerning the waveguide filter application, a particular type of coaxial cavity has been studied.
In the transverse setting, the coupling of the cavity to the main circular waveguide takes place
via a thick iris. This structure is characterized by a response with a transmission and a reflection
zero, whose positions can be adjusted by acting on the geometrical parameters of the cavity. In
this way, it was possible to design stop band filters working in double polarization.
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It is to be stressed that the application of the integral equation technique to the solution of scatter-
ing problems is fairly simple from a conceptual point of view, but its numerical implementation
in an efficient code is far from trivial and has required a major effort. In particular, the compu-
tation of the elements of the moment matrix requires the evaluation of series of infinite domain
integrals. The integrands have singularities, oscillatory behavior and slow decay at infinity. The
use of complex function theory and of specially developed integration schemes was essential for
the construction of a fast and reliable code.

Recommendations

We would like to conclude with some recommendations for the use of the analysis techniques
developed in this work and some indication of further work.
The transverse approach is the most convenient method when the slots are all different or resonant
in both directions. However, its limitation is clearly related to the number of slots of the array.
The longitudinal technique (i.e. the Bloch wave approach) is convenient when the slots are equal
and equally spaced and for the determination of the considerable parameters for the design of
LCX.
Finally the eigencurrent approach becomes particularly useful when the array is composed by
slots with irregular shapes and sub domain basis functions (as, for instance, RWG) are applied.
In this case the cpu time reduction is remarkable. On the other hand it is not so convenient when
the shape is regular and full domain basis functions can be used.

Ohmic losses in the cable have been described by means of an equivalent loss tangent, taking
approximately into account both dielectric and copper losses. A more accurate approach is that
of computing the copper losses by the method of [40]. In this way, also the power dissipated by
the reactive fields excited in the neighborhood of the discontinuities is accurately evaluated.

Another investigation deals with the reduction of the computation time. The array consists of
a multitude of slots, acting as scattering centers. A classical technique in this case is that of
evaluating the response of the system in the form of a multiple-scattering series representation.
In general, this approach can be impracticable, but we have shown that in the case of slotted
cables, the scattering of each slot is not so large. This leads us to expect that this method could
be convenient.
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We have shown that it is possible to design a non-uniformly slotted cable such that the radiated
power is fairly uniform along its length. In this case, Bloch wave theory, as it has been developed
in this thesis, is not applicable since the structure is not, strictly speaking, periodic. However,
the change in the slot size may be so small that it could be convenient to regard the array as a
slightly non uniform periodic structure and try to apply some sort of coupled mode theory to the
“local” Bloch waves. This extension could be very interesting in order to evaluate the sensitivity
of the structure to manufacturing tolerances.

Radial transmission line theory finds application also in other fields, such as that of conformal
arrays, both of slots and of patches, or in the construction of the complete spectrum (both discrete,
guided modes, and continuous, radiated modes) of layered optical fibres. The extension of the
eigencurrent approach to these 2−D and 3−D problems could be particularly useful but a deep
analysis on the eigenvalues behavior of the array increasing the number of elements is strongly
necessary and decisive.

As for the design of dual polarized ring loaded filters, it would be interesting to ascertain whether
and in which way the eigencurrent approach can be applied and how the eigencurrents are related
to the electromagnetic response of the single stub.

At the very end it is to be remarked that transmission line theory is by no means limited to
electromagnetic problems. These techniques have been used also in the study of elastic wave
propagation and the use of circuit concepts has been very helpful in the formulation of the solu-
tion method and in the interpretation of the results.
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Summary

The motivation for developing the computational electromagnetic methods presented in this the-
sis is to model the radiation of leaky slotted coaxial cables (LCXs), which are used as distributed
antennas in environments that are not readily accessible via conventional antenna substations,
and to model ring cavities that act as circular waveguide filters. We employ circuit-based elec-
tromagnetic wave theory in the solution of guided-wave scattering problems. Here the term
“guided wave” is actually to be interpreted loosely, since even free space can be viewed as a
waveguide.

Propagation in usual rectilinear waveguides is often phrased in literature in the language of trans-
mission line theory. The theory of equivalent transmission lines has been contrived as a way to
give physical insight into the mathematical method of separation of variables. This opens the
way to the use of unconventional equivalent transmission lines, such as radial or angular ones.

In this thesis we have focused on the concept of radial waveguide, a structure that has the radial
direction as the direction of propagation, and that is possibly bounded by metal plates parallel
to the coordinate surfaces. Unlike the traditional vector mode functions encountered in con-
ventional waveguides, the radial transmission line concept is introduced in a component basis.
Radial lines are peculiar, because they have an absolute origin and hence is not shift invariant.
Nevertheless, using a suitable vector formalism, the usual circuit theory concepts can be still
applied, including the definition of voltages and currents, impedances, propagators, scattering
matrices, etc.

The LCXs are standard coaxial cables from which, on the outer conductor, slots are cut in order
to induce energy exchange between the interior of the cable and the surrounding external domain.
These kinds of antennas are usually employed for indoor communications in places where the
traditional antenna systems fail or their application and installation are problematic, such as in
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subways and tunnels. They are also used for security reasons, e.g., in outstations and airports, in
order to confine the communications inside specific places. In particular, nowadays, there is an
increasing interest in the application of this technology in the GSM and UMTS frequency bands.

LCXs have been studied by several researchers in the past. The analysis techniques employed in
these studies produce solutions, to a varying degree of accuracy, for the particular problem of the
infinite periodically slotted cable. The problem of junctions between closed and slotted cables
has so far not been addressed. The periodically slotted LCXs considered in the literature suffers
from poor efficiency in terms of percentage of incident power used for the radiation. Indeed,
since the decay of the power inside the cable is exponential and the radiated field decays along
the cable length with the same law, the standard periodically slotted LCX requires a compromise
between an almost constant level of power along the slotted cable length and minimum power at
the end of the cable that is not employed for radiation. In the present thesis we have developed
accurate and efficient modeling techniques, enabling us to analyze both periodic and aperiodic
LCXs, as well as transitions between open and closed cables.

The second type of devices of interest is a particular category of stop-band filters commonly
used in antenna systems to isolate receivers from the signals produced by transmitters, internal
or external to the system, and operating in adjacent frequency bands. The structure that we have
analyzed presents advantages in terms of the radial and longitudinal dimensions, which allows
for the high level of integration that is often essential for space applications. Due to the resonance
behavior of the device, the commercial numerical codes require long computational times before
sufficiently accurate field solutions are obtained. Our dedicated modeling method is much more
efficient in attaining the required results, which has made it possible to produce several design
examples.

Our modeling techniques are based on the magnetic field integral equation. The associated kernel
is the Green’s function of the structure, which is been computed in the spectral domain, using ra-
dial transmission line theory. The solution of the corresponding integral equation is obtained, for
both problems, by the method of moments in the Galerkin form, using a suitable set of basis func-
tions. The computation of the moments requires particular care. We have developed dedicated
numerical techniques by which the numerical convergence is improved and the computation of
the integrals is accelerated considerably.

For LCXs, we have developed a design procedure based on tapering the geometrical dimensions
of the slots in order to obtain an uniform radiation and to maximize the radiated power. Since
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a typical LCX consists of thousands of slots, one approaches practical limitations of integral
equation techniques, as the dimension of the linear system resulting from the discretization of
the integral equation increases with the number of slots. For this reason, we have augmented our
approach to analyze LCXs in two alternative directions. One is based on the application of the
Bloch wave approach, the other comprises an extension, for the electromagnetic problem under
consideration, of the so-called eigencurrent approach, that was originally developed for linear
arrays of patches.

First, the Bloch wave approach is not standard in this case since the structure consists of two
different regions, one is closed (the interior of the coaxial cable) the other is open (the unbounded
exterior domain). We have employed a particular mathematical formalism to overcome this
problem, viz., we have solved the junction problem between an closed cable and a slotted one
using the mode matching technique. In the Bloch wave approach a LCX with any number of
slots, all equal and equally spaced, can efficiently be analyzed.

Second, the eigencurrent approach is a versatile two-step technique for modelling large com-
pound structures. The first step is to evaluate the eigenvalues and current eigenfunctions of the
integral operator associated with a single slot. Subsequently, the pertaining eigencurrents act as
global-domain basis functions for the slotted array. In the resulting equivalent linear system, the
interaction between the slots is adequately described in terms of very few of these eigencurrents.
We have applied this method for LCXs with slots of different geometric dimensions, and have
observed a substantial reduction of computation times.

For a LCX with a large but finite number of identical slots, it turns out that the dominant Bloch
wave is the same as the one excited in the semi-infinite case. When this so-called Forward wave
reaches the junction between the slotted and unslotted cable, it gives rise to several reflected
Bloch waves that, upon scattering at the first junction, couple only with the Forward wave. Fur-
ther, we have observed that all the regressive Bloch waves have globally a negligible effect on
the magnetic currents on the slots. Hence the field propagating in the slotted region of the finite
slotted cable is essentially a progressive wave.

As regards the radiation properties of an infinite LCX, a paradox arises. In practical LCX ap-
plications the receiver is always in the near-field region of the array, but in the far-field region
of the majority of the slots. This is related to the infinite length of a LCX. Application of the
Poisson sum formula to the expression for the radiated field emanating from a LCX converts
that expression into a linear superposition of spatial harmonics, in line with the Bloch-wave de-
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scription. As a consequence, cables with different slot spacings are perfectly explained in terms
of the various modes of operation resulting from the Bloch-wave description, i.e., surface-wave,
mono-radiation and multi-radiation operation.
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