

Process algebra for dynamic system modeling

Citation for published version (APA):
Baeten, J. C. M., Beek, van, D. A., & Rooda, J. E. (2006). Process algebra for dynamic system modeling.
(Computer science reports; Vol. 0603). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/280082cb-2beb-46a7-8407-bd8130e5c6dc

Process algebra for dynamic system modeling∗

J.C.M. Baeten1, D.A. van Beek2, J.E. Rooda2
1Department of Mathematics and Computer Science

2Department of Mechanical Engineering
Eindhoven University of Technology, P.O.Box 513

5600 MB Eindhoven, The Netherlands
{j.c.m.baeten,d.a.v.beek,j.e.rooda}@tue.nl

Abstract

Process algebra is the study of distributed or parallel systems by algebraic means. Originating
in computer science, process algebra has been extended in recent years to encompass not just
discrete event, reactive systems, but also continuously evolving phenomena, resulting in so-called
hybrid process algebras. A hybrid process algebra can be used for the specification, simulation,
control and verification of embedded systems in combinationwith their environment, and for any
dynamic system in general. As the vehicle of our exposition,we use the hybrid process algebraχ

(Chi). The syntax and semantics ofχ are discussed, and it is explained how equational reasoning
can simplify, among others, tool implementations for simulation and verification. Finally, a bottle
filling line example is introduced to illustrate system analysis by means of equational reasoning.

1 Introduction

1.1 Definition

Process algebra is the study of distributed or parallel systems by algebraicmeans. The word
‘process’ here refers tobehaviorof a system. A system is anything showing behavior, such as the
execution of a software system, the actions of a machine or even the actions of a human being.
Behavior is the total of events or actions that a system can perform, the order in which they can
be executed and maybe other aspects of this execution such as timing, probabilities, or continuous
aspects. Always, the focus is on certain aspects of behavior, disregarding other aspects, so an
abstraction or idealization of the ‘real’ behavior is considered. Instead of considering behavior,
we may consider anobservationof behavior, where an action is the chosen unit of observation. As
the origin of process algebra is in computer science, the actions are usuallythought to be discrete:
occurrence is at some moment in time, and different actions are separated intime. This is why a
process is sometimes also called adiscrete event system.

The word ‘algebra’ denotes that the approach in dealing with behavior is algebraic and ax-
iomatic. That is, methods and techniques of universal algebra are used.A process algebra can
be defined as any mathematical structure satisfying the axioms given for the basic operators. A
process is an element of a process algebra. By using the axioms, we can perform calculations
with processes. Often, though, process algebra goes beyond the strict bounds of universal algebra:
sometimes multiple sorts and/or binding of variables are used.

∗Invited chapter to CRC Handbook on Dynamic System Modeling, ed. Paul Fishwick.

1

The simplest model of behavior is to see behavior as an input/output function. A value or input
is given at the beginning of the process, and at some moment there is a valueas outcome or output.
This model was used to advantage as the simplest model of the behavior of a computer program
in computer science, from the start of the subject in the middle of the twentieth century. It was
instrumental in the development of (finite state)automata theory. In automata theory, a process
is modeled as an automaton. An automaton has a number ofstatesand a number oftransitions,
going from a state to a state. A transition denotes the execution of an (elementary) action, the
basic unit of behavior. Also, there is an initial state (sometimes, more than one)and a number of
final states. A behavior is a run, i.e. a path from initial state to final state. An important aspect
is when to consider two automata equal, expressed by a notion of equivalence. On automata,
the basic notion of equivalence is ‘language equivalence’, which considers equivalence in terms
of behavior, where a behavior is characterized by the set of executions from the initial state to a
final state. An algebra that allows equational reasoning about automata is the algebra of regular
expressions, see e.g. (Linz 2001).

Later on, this model was found to be lacking in several situations. Basically,what is missing
is the notion ofinteraction: during the execution from initial state to final state, a system may
interact with another system. This is needed in order to describe parallel ordistributed systems, or
so-calledreactivesystems. When dealing with interacting systems, the phraseconcurrency theory
is used. Thus, concurrency theory is the theory of interacting, paralleland/or distributed systems.
When referring to process algebra, we usually consider it as an approach to concurrency theory,
so that a process algebra usually (but not necessarily) has parallel composition as a basic operator.

Thus, a usable definition is that process algebra is the study of the behavior of parallel or
distributed systems by algebraic means. It offers means to describe orspecifysuch systems, and
thus it has means to specify parallel composition. Besides this, it can usually also specify alter-
native composition (choice) and sequential composition (sequencing). Moreover, it is possible to
reason about such systems using algebra, i.e. equational reasoning. By means of this equational
reasoning,verificationbecomes possible, i.e. it can be established that a system satisfies a certain
property.

What are these basic laws of process algebra? In this chapter, we do not present collections of
such laws explicitly. Rather, it is shown how calculations can proceed.

To repeat, it can be said that any mathematical structure with operators of theright number of
arguments satisfying the given basic laws is a process algebra. Often, these structures are formu-
lated in terms oftransition systems, where a transition system has a number of states (including
an initial state and a number of final states) and transitions between them. The notion of equiva-
lence studied is usually not language equivalence. Prominent among the equivalences studied is
the notion ofbisimulation. Often, the study of transition systems, ways to define them and equiv-
alences on them are also considered part of process algebra, even inthe case no equational theory
is present.

1.2 Calculation

One form of calculation is verification by means of automated methods (calledmodel checking,
see e.g. (Clarke, Grumberg, and Peled 2000)) that traverse all states of a transition system and
check that a certain property is true in each state. The drawback is that transition systems grow
very large very quickly (in fact, often they become infinite). For instance,a system having 10
interacting components, each of which has 10 states, has a total number of 10 000 000 000 states.
It is said that model checking techniques suffer from thestate explosionproblem.

At the other end, reasoning can take place in logic, using a form of deduction. Also here,

2

progress is made, and manytheorem provingtools exist (Bundy 1999). The drawback here is that
finding a proof needs user assistance (as the general problem is undecidable), which requires a lot
of knowledge about the system.

Equational reasoning on the basis of an algebraic theory takes the middle ground. On the one
hand, the next step in the procedure is usually clear, since it is more rewriting than equational
reasoning. Therefore, automation can be done in a straightforward way. On the other hand, rep-
resentations are compact and allow the presence of parameters, so that an infinite set of instances
can be verified at the same time.

1.3 History

Process algebra started in the late seventies of the twentieth century. At thatpoint, the only part
of concurrency theory that existed was the theory of Petri nets, as discussed in another chapter in
this volume.

The question was raised how to give semantics to programs containing a parallel composition
operator. It was found that this was difficult using the semantical methods used at that time. The
idea of a behavior as an input/output function needed to be abandoned. Aprogram could still
be modeled as an automaton, but the notion of language equivalence was nolonger appropriate.
This is because the interaction a process has between input and output influences the outcome,
disrupting functional behavior. Secondly, the notion ofglobal variables needed to be overcome.
Using global variables, a state of an automaton used as a model was given as a valuation of the
program variables, that is, a state was determined by the values of the variables. The independent
execution of parallel processes makes it difficult or impossible to determine the values of global
variables at a given moment. It turned out to be simpler to let each process have its own local
variables, and to denote exchange of information explicitly.

After some preliminary work by others, three main process algebra theorieswere developed.
These are CCS (Calculus of Communicating Systems) by Robin Milner (Milner 1980; Milner
1989), CSP (Communicating Sequential Processes) by Tony Hoare (Hoare 1985), and ACP (Al-
gebra of Communicating Processes) by Jan Bergstra and Jan Willem Klop, see (Bergstra and Klop
1984; Baeten and Weijland 1990).

Comparing these best-known process algebras CCS, CSP and ACP, we can say there is a con-
siderable amount of work and applications realized in all three of them. In that sense, there seem
to be no fundamental differences between the theories with respect to the range of applications.
Historically, CCS was the first with a complete theory. Different from the other two, CSP has a
least distinguishing equational theory. More than the other two, ACP emphasizes the algebraic
aspect: there is an equational theory with a range of semantical models. Also, ACP has a more
general communication scheme: in CCS, communication is combined with abstraction, in CSP,
there is also a restricted communication scheme.

The language we consider in this chapter is most closely related to the ACP approach. Over the
years, other process algebras were developed, and many extensionswere realized. Most interesting
for this volume is the extension to hybrid systems.

1.4 Hybrid systems

Process algebra started out in computer science, and is especially geared to describing discrete
event systems such as computer programs and software systems. With the growing importance
of embedded systems, which are software systems that are integrated in the machine or device
that they control, it was considered to use process algebra also to model and reason about the

3

controlled physical environment of the software. However, specifications of physical systems not
only require discrete-event models, but also differential algebraic equations, leading to hybrid
models.

In recent years, several attempts were made to incorporate such aspects into process algebra. In
this chapter, we report on one of these, based on theχ language. Other hybrid process algebras are
HyPA (Cuijpers and Reniers 2005), process algebra for hybrid systems ACPsrt

hs (Bergstra and Mid-
delburg 2005), and theφ-Calculus (Rounds and Song 2003). The history of theχ formalism dates
back quite some time. It was originally mainly used as a modeling and simulation language for
discrete-event systems. The first simulator (Naumoski and Alberts 1998)was successfully applied
to a large number of industrial cases, such as integrated circuit manufacturing plants, breweries,
and process industry plants (van Beek, van den Ham, and Rooda 2002). Later, the hybrid language
and simulator were developed (Fábían 1999; van Beek and Rooda 2000). Recently, theχ language
has been completely redesigned. The result is a hybrid process algebrawith a formal semantics
as defined in (van Beek, Man, Reniers, Rooda, and Schiffelers 2006). This chapter informally
defines the most important elements of the syntax and semantics of theχ process algebra. It also
extends the formal definitions of (van Beek, Man, Reniers, Rooda, andSchiffelers 2006) with a
more user friendly syntax, including the specification of data types.

2 Syntax and informal semantics of theχ process algebra

2.1 Model syntax

In this section, the syntax ofχ models is defined using a Backes-Naur (BNF) like notation. The
symbol| defines choice, notation{Z}∗ denotes a sequence of zero or moreZ’s, and notation{Z}0

definesZ as being optional. Aχ model is of the following form:

χmodel ::= model id(Dm) = |[D :: p]|

whereid is an identifier that represents the name of the model, andDm denotes the model param-
eters as defined below. The model parameter declaration may be also be empty. Furthermore,D
denotes the declaration of variables and/or channels of the model. This typeof declaration is also
used to declare the local variables and channels of scope operators. Finally, p denotes a statement,
also known as process term. The scope operator and statementp are both defined in Section 2.2.
To simplify the syntax definitions, we assume the declaration partD not to be empty. The syntax
of the declarationsDm andD is:

Dm ::= val S {, S}∗ | Dm, Dm value parameter declaration

D ::= chan S {, S}∗ channel declaration
| (var | cont | alg) IS {, IS}∗ variable declaration
| D, D

S ::= id {, id}∗ : t declaration without initialization

IS ::= id {, id}∗ : t = e | S declaration with optional initialization

Here, t denotes the type of a variable or channel,e denotes an initialization expression, andid
denotes an identifier. An executable model instantiation for a model declaredasmodel M(val x1 :

t1, . . . , xn : tn) is obtained byM(c1, . . . ,cn), whereci denotes a value for the corresponding model
parameterxi . The following items can be declared inD:

4

• Channels, such as inchan h : real, close: void, which declares a communication channelh,
that communicates values of typereal, and a synchronization channelclose(no data exchange).

• Discrete variables, such as invar k, n : int, vset : real = 1.0. This declares two uninitialized
variablesk, n of type int (integer), and a variablevset that has an initial value 1.0. The values
of discrete variables remain constant when model time progresses.

• Continuous variables, such as incont x : real = 1.0. Continuous variables are the only variables
for which dotted variables (derivatives) can be used in models. Therefore, the declaration
cont x : real = 1.0 implies thatx and its dotted versioṅx, can both be used in the model. The
values of continuous variables may change according to a continuous function of time when
model time progresses. The values of continuous variables are further restricted by delay
predicates (defined in the next section), that may occur in the form of differential algebraic
equations.

• Algebraic variables, such as inalg y, z : real. These variables behave in a similar way as
continuous variables. The differences are that algebraic variables maychange according to
a discontinuous function of time, and algebraic variables are not allowed to occur as dotted
variables.

Besides the variables mentioned in the model defined above, the existence ofthe predefined
reserved global variabletime which denotes the current time, the value of which is initially zero,
is assumed. This variable cannot be declared. It can only be used in expressions in statementsp.

2.2 Statement syntax

Statements can be divided in two classes: the atomic statements, that representthe smallest state-
ment units; and the compound statements, that are constructed from one or more (atomic) state-
ments by means of operators. The syntax of the atomicχ statements, is as follows:

patom ::= skip non-delayable internal action
| x := e non-delayable (multi-)assignment
| {x} : r ≫ la non-delayable action predicate
| h ??x | h?? non-delayable receive
| h !! e | h!! non-delayable send
| [skip] delayable internal action
| [x := e] delayable (multi-)assignment
| [{x} : r ≫ la] delayable action predicate
| h ! e | h! delayable send
| h ?x | h? delayable receive
| 1d delay
| u delay predicate,

wherex ande denote comma separated variablesx1, . . . , xn and expressionse1, . . . , en, respec-
tively, for n ≥ 1, r denotes a predicate (boolean condition) as defined in Section 2.4.1,la denotes
an action label,h denotes a channel, andd denotes an expression of type real. Delay predicate
u denotes a predicate over variables (including the variabletime) and dotted continuous variables
(derivatives). Delay predicates may occur in the form of differential algebraic equations, such as
ẋ = y, y = n, or in the form of a constraint or invariant, such asx ≥ 1. The comma in delay
predicates denotes conjunction. E.g.u1,u2 meansu1 ∧ u2. Also, bothe1 ≤ ẋ ≤ e2 andẋ ∈ [e1,e2]

5

can be used instead ofe1 ≤ ẋ, ẋ ≤ e2, and likewise for strict inequalities and open intervals. Note
that the non-delayable send statementsh ! e andh! can also be written as[h !! e] and [h!!], and
likewise for the delayable receive statements.

The syntax of the compoundχ statements is as follows:

p ::= patom atomic
| p; p sequential composition
| b → p guard operator
| p 8 p alternative composition
| p ‖ p parallel composition
| ∗p loop statement

| b
∗

→ p while statement
| |[D :: p]| variable and channel scope operator
| id(e) process instantiation
| pR recursion scope operator,

whereb denotes a predicate over variables. To simplify the semantics ofχ models, the use of
continuous or algebraic variables in guards is restricted. In particular, the guardsb in b → u,
b → 1d, andb → |[D :: p]| are not allowed to change while delaying, which is ensured by
using only discrete variables in such guards. For delay predicateu, instead ofb → u, whereb
contains continuous variables,b ⇒ u can be used. Here⇒ denotes logical implication, andb ⇒ u
is therefore also a (delay) predicate. Note that in the formal semantics of hybrid χ as defined in
(van Beek, Man, Reniers, Rooda, and Schiffelers 2006) there are no restrictions on the use of
continuous or algebraic variables in the guards.

The operators are listed in descending order of their binding strength as follows:

{∗,
∗

→ , → }, ; , {‖ , 8}.

The operators inside the braces have equal binding strength. For example, x := 1; y := x 8
x := 2; y := 2x means(x := 1; y := x) 8 (x := 2; y := 2x). Parentheses may be used to
group statements. To avoid confusion, parenthesis are obligatory when alternative composition
and parallel composition are used together. E.g.p 8 q ‖ r is not allowed and should either be
written as(p 8 q) ‖ r , or asp 8 (q ‖ r).

The recursion scope operator statementpR may appear in two forms:

pR ::= |[R {, R}∗ :: X]|

| |[R {, R}∗ :: p+]|,

whereX denotes a recursion variable, and recursion definitionR is defined as:

R ::= {mode}0 X = (p+),

where statementsp+ consist of statementsp to which recursion variablesX are added:

p+ ::= p | p; X | p+ 8 p+ | p; p+

The syntax enforces any recursion variableX to occur only at the end of a sequential compo-
sition. An additional restriction is that each recursion scope operator mustbe ‘complete’. This
means that in the two forms of the recursion scope operator

|[mode X1 = (p+
1), . . . ,mode Xn = (p+

n) :: Xk]| and

6

|[mode X1 = (p+
1), . . . ,mode Xn = (p+

n) :: p+
n+1]|,

all occurrences of free recursion variables inp+
i (1 ≤ i ≤ n + 1) must be defined in the recursion

scope operator itself:∪n+1
j =1 freervar(p+

j) ⊆ {X1, . . . , Xn}, where freervar(p+
j) is a function that

returns the set of free (unbound) occurrences of recursion variables inp+
j . Furthermore, the recur-

sion variablesX1, . . . , Xn may occur only at the ‘top level’ inp+
i , that is, not nested in other scope

operators. These restrictions enforce structured use of recursion:only one recursion variableXi

with corresponding statementp+
i can be executed at the same time, the first statement to be ex-

ecuted isp+
n+1, and termination of any of the statementspi terminates the scope operator itself.

This structured use of recursion simplifies analysis ofχ models, it simplifies the translation to the
normal form as discussed in Section 3, and it simplifies tool support forχ .

Although recursion variables cannot be placed in parallel directly, two recursion scope opera-
tors can occur in parallel, as in:

|[mode X1 = (p1) :: X1]| ‖ |[mode X2 = (p2) :: X2]|,

where the two recursion variablesX1 andX2 can of course have the same name, without changing
the meaning of the model.

2.3 Semantical framework

In this chapter, the meaning (semantics) of aχ model is informally defined in terms of delay
behavior and action behavior, based on the formal semantics as presented in (van Beek, Man, Re-
niers, Rooda, and Schiffelers 2006). Delay behavior involves passing of time, where the semantics
defines for each variable how its value changes as a function of time. Actionbehavior is instanta-
neous: time does not progress, and the semantics defines for each variable the relation between its
value before and after the action.

Atomic statements can be disabled or enabled. Actions and delays are done byenabled atomic
statements, with one exception only: an enabled guarded statementb → p with a guard that is
false can do any delay. Atomic statements terminate by doing an action. They never terminate by
doing a delay. A statement that terminates becomes disabled by doing so.

Compound statements combine (sub-)statements by means of operators. The operator de-
fines the relation between enabling, disabling and termination of the compound statement and its
sub-statements. Enabling or disabling a compound statement is defined in terms of enabling or
disabling its sub-statements. Enabling a compound statement implies enabling one or more of its
sub-statements. E.g. enabling a sequential compositionp1; . . . ; pn implies enabling the first state-
ment p1, whereas enabling a parallel compositionp1 ‖ . . . ‖ pn implies enabling all statements
p1 . . . pn.

Execution of aχ modelM , defined asmodel M(D0) = |[D1 :: p0]|, takes place by executing
a sequence of delays and actions in the following way:

• At the start, statementp0 is enabled.

• Any enabled skip statement, assignment statement or action predicate (delayable or non-
delayable) can do an action.

• An enabled pair of a send and a receive statement on the same channel that are placed in
parallel can simultaneously do a send and a receive action, followed by joint termination. The
result, in terms of values of variables, of simultaneous execution of a send statement (h !! e
or h ! e) and a receive statement (h ??x or h ?x) is comparable to the (distributed) execution

7

of a multi-assignmentx := e. E.g. execution of the communication action inh ! 1 ‖ h ?x is
comparable to execution of the assignmentx := 1.

• The model can do delays only when and for as long as:

– All enabled statements can delay. The delayable versions of the skip statement, as-
signment, action predicate, and send and receive statements can always delay (the non-
delayable versions can never delay). A delay statement1d can delay for as long as its
internal timer is not expired (see Section 2.4.3), and the set of all enabled delay predi-
cates can delay for as long as they have a solution. Such a solution definesthe values of
the variables as a function of time for the period of the delay.

Note that the set of enabled statements may change while delaying. The reason for this is
the guarded statementb → p, because the value of the guard can change while delaying,
due to changes in the values of the continuous or algebraic variables.

– No parallel pair of a send and a receive statement on the same channel is enabled or
becomes enabled. This is because, by default, channels inχ are urgent: communication
or synchronization cannot be postponed by delaying.

• When different actions and/or delays are possible, any of these can bechosen. This is referred
to as nondeterministic choice. Note that delays may always be shorter than themaximum
possible length.

The values of the discrete and continuous variables are stored in memory. The values of
the algebraic variables are not stored. This means that the starting point ofthe trajectory of the
discrete and continuous variables equals their last value stored in memory. The starting point of
the trajectory of the algebraic variables can be any value that is allowed by the enabled equations.

In models of physical systems, the delay behavior of the continuous and algebraic variables is
usually uniquely determined: there is usually only one solution of the set of enabled differential
algebraic equations. Multiple delays / solutions can be caused by under-specified systems of
equations, where there are less equations than variables, or by delay predicates that allow multiple
solutions, such as ‘true’ oṙx ∈ [0, 1].

The action behavior of the discrete, continuous and algebraic variables isas follows:

• The discrete and continuous variables do not change as a result of actions unless the change
is explicitly specified, for example by means of an assignment, or by receiving a value via a
channel.

• The algebraic variables do not have a memory. Therefore, their value can in principle change
arbitrarily in actions. In most models, their value is defined by delay predicates.

2.4 Semantics of atomic statements

2.4.1 Skip, multi-assignment and action predicate

An enabled skip statement can do an internal action, and then terminates.

An enabledmulti-assignmentstatementxn := en for n ≥ 1 can do an internal action that
changes the values of the variablesx1, . . . , xn in one step to the values of expressionse1, . . . , en,
respectively, and then terminates. Forn = 1, this gives a normal assignmentx := e.

The action predicate{x} : r ≫ la is a kind of generalized assignment statement, consisting of
a set of variables{x}, a predicater over variables and ‘−’ superscripted variables, and an action

8

label la. The values of the variables of set{x} are allowed to change so that their new values
satisfy the predicater . A ‘ −’ superscripted variable, such asx− refers to the value of the variable
immediately before execution of the action predicate. E.g. a multi assignmentx, y := y, x, that
swaps the values ofx and y, can be written as action predicate:{x, y} : x = y−, y = x− ≫ τ ,
whereτ denotes the predefined internal action.

2.4.2 Delay predicate

An enableddelay predicate ucan perform delays but no actions. Delay predicates restrict the
allowed trajectories of the variables while delaying in such a way that at eachtime point during
the delay the delay predicate holds (its value must be true), when all variables and dotted variables
in the predicate are replaced by their current value.

Delay predicates also restrict the action behavior ofχ models, because the enabled delay
predicate must also hold before and after each action. In fact, the enabled delay predicates of aχ
model must hold at all times. This is referred to as the ‘consistent equation semantics’.

The relation between the trajectory of a continuous variablex and the trajectory of its ‘deriva-
tive’ ẋ is given by the Caratheodory solution concept:x(t) = x(0) +

∫ t
0 ẋ(s)ds. This allows a

non-smooth (but continuous) trajectory for a differential variable in the case that the trajectory of
its ‘derivative’ is non-smooth or even discontinuous, as in, for example,model M() = |[cont y :

real = 0.0 :: ẏ = step(time − 1)]|, where step(x) equals 0 forx ≤ 0 and 1 forx > 0.

2.4.3 Delay statement

A delay statement1d behaves as a local timer. The timer can either delay, or it can terminate by
means of an action. It can be activated in two ways:

• If the valuec of expressiond is bigger than zero when the timer is enabled for the very first
time, or when it is re-enabled after having been disabled, the timer can start running (delaying)
from the valuec. After having delayed for a total ofc time-units, the timer has expired. An
expired timer cannot delay anymore; it can only terminate by means of an action.

• If the valuec of expressiond is zero when the timer is enabled for the very first time, or when
it is re-enabled after having been disabled, the timer can immediately expire andterminate by
means of an action.

The total period of timec, that must pass before the timer expires, can be split up into separated
delays, that may be interleaved by actions of other statements in a parallel context, as long as the
timer (delay statement) stays enabled. When the timer / delay statement is disabled,re-enabling
it causes re-evaluation of expressiond when the timer starts running again. Note that the valuec
can change each time the timer is re-enabled. E.g. in∗(h ?d; 1d) ‖ ∗(h ! 1; h ! 2), the first delay
of the timer is 1, the second delay is 2, and then the cycle is repeated.

2.5 Semantics of compound statements

2.5.1 Sequential composition

In asequential composition p1; . . . ; pn (n ≥ 1), only one statementpi , 1≤ i ≤ n, can be enabled at
the same time. Enabling a sequential compositionp1; . . . ; pn implies enabling its first statement
p1. When statementpi (1 ≤ i ≤ n − 1) terminates (and is therefore also disabled), the next

9

statementpi+1 becomes enabled. The sequential composition terminates upon termination of its
last statementpn.

2.5.2 Guard operator

Enabling of a guarded statement enables its guardb. Behavior of a guarded statementb → p
depends on the value of the guardb:

• Statementp is enabled while the value of the guard is true. Execution of the firstactionby p
disables the guard. Thus, after this first action, the value of the guard becomes irrelevant.

• Statementp is disabled while the value of the guard is false. The guarded statementb → p
can, in principle, do any delay while the value of the guard is false; only at the start point and
end point of such a delay, the value of the guard may be true.

When a guarded statement occurs in parallel with another statement, as inq ‖ b → p, the value
of the guard can change due to actions of statementq, which may cause statementp to change
from being disabled to enabled or vice versa. E.g.b := false; (11; b := true‖ b → skip)

When inq ‖ b → p, the guardb contains continuous or algebraic variables, andq contains
one or more enabled delay predicates, the value of the guard may change during a delay, causing
statementp to change from being disabled to enabled or vice versa. E.g.ẋ = 1 ‖ x ≥ 1 → x := 0.

2.5.3 Alternative composition

Enablingp1 8 . . . 8 pn enables the statementsp1, . . . , pn. Execution of an action by any one of
the statementsp1 . . . pn disables the other statements. In this way, execution of the first action
makes a choice. When one of the statementsp1, . . . , pn terminates, the alternative composition
p1 8 . . . 8 pn also terminates.

2.5.4 Parallelism

Enabling p1 ‖ . . . ‖ pn enables the statementsp1, . . . , pn. When a statementpi , 1 ≤ i ≤ n,
executes an action, the other statements remain enabled. The parallel composition p1 ‖ . . . ‖ pn

terminates when the statementsp1, . . . , pn have all terminated.

Informally, we often refer to the statementsp1, . . . , pn occurring inp1 ‖ . . . ‖ pn as parallel
processes. Parallel processes interact by means of shared variables or by means of synchronous
point-to-point communication or synchronization via a channel. Communication inχ is the send-
ing of values of one or more expressions by one parallel process via a channel to another parallel
process, where the received values are stored in variables. In caseno values are sent and received,
we refer to synchronization instead of communication.

2.5.5 Loop and while statement

Loop statement∗p represents the infinite repetition of statementp. When∗p is enabled,p is
enabled. Termination ofp results in re-enabling ofp.

The while statementb
∗

→ p can be interpreted as “whileb do p”. Enabling ofb
∗

→ p when
b is true enablesp (after an internal action), and enabling ofb

∗
→ p whenb is false, leads to

immediate termination (by means of an internal action).

10

2.5.6 Variable and channel scope operator

A variable and channel scope operator may introduce new variables andnew channels. Enabling of
a variable and channel scope statement|[D :: p]|, where the local declaration partD introduces
new variables and or channels according to the specification ofD in Section 2.1, performs the
variable initializations specified inD and enables statementp. Termination ofp terminates the
scope statement|[D :: p]|. Any occurrence of a variable or channel inp that is declared inD
refers to that local variable or channel and not to any more global declaration of the variable or
channel with the same name, if such a more global declaration should exist.

2.5.7 Recursion scope operator and recursion variable

StatementX denotes a recursion variable (identifier) that is defined and used in a recursion scope
operator statement of the form|[X1 = (p+

1), . . . , Xn = (p+
n) :: Xi]| or |[X1 = (p+

1), . . . , Xn =

(p+
n) :: p+

n+1]|, where the keywordmode may be added.

The meaning of recursion scope operators satisfying the restrictions defined in Section 2.2, is
as follows. Enabling the recursion scope operator|[X1 = (p+

1), . . . , Xn = (p+
n) :: Xi]| or |[X1 =

(p+
1), . . . , Xn = (p+

n) :: p+
n+1]|, enables the statementXi or p+

n+1, respectively. When a recursion
variable Xi is enabled (or disabled), its defining statementpi is enabled (or disabled) instead.
When a defining statementpi (1 ≤ i ≤ n) terminates, the recursion scope operator terminates.

2.5.8 Process definition and instantiation

To simplify the explanation, process instantiationid(e) is rewritten in a more specific form
id(xn,zm,hl ,ek), whereid denotes a process name,xn denotes the continuous variablesx1, . . . , xn,
zm denotes the algebraic variablesz1, . . . , zm, hl denotes the channelsh1, . . . , hl , andek denotes
the expressionse1, . . . ,ek. Process instantiation enables (re)-use of a process definition. A process
definition is specified once, but it can be instantiated many times, usually with different parame-
ters.

The meaning of process instantiation

id(xn, zm, hl , ek)

with corresponding process definition

proc id(cont x′
n : tc, alg z′

m : ta, chan h′
l {!|?}

0 : th, val vk : tv) = |[D :: p]|

is obtained by the syntactical substitution of the process instantiation by

|[D, var vk : tv = wk :: p]| [xn, zm, hl , ek/x′
n, z′

m, h′
l , wk],

where notationt... denotes a data type, andh′
l {!|?}

0 denotes the channelsh′
1{!|?}

0, . . . , h′
l {!|?}

0,
where each channel is optionally postfixed with! or ?. The meaning ofh! or h? in the formal
parameter list is that the use of channelh in p is limited to sending (h!.. or h!!..) or receiving (h?..
or h??..), respectively. Notationr [b1, . . . ,bi /a1, . . . ,ai] denotes the statement obtained fromr by
syntactic substitution of the free occurrences of the variables/channelsa1, . . . ,ai in r by b1, . . . ,bi ,
respectively. Free variables (or channels) inr are variables (or channels) that are not declared in
r .

The substitution replaces the process instantiationid(xn, zm,hl ,ek) by the process body|[D ::

p]|, whereafter the value parametersvk are added to the local declarationsD as discrete variables

11

that are initialized to the values of the new variableswk. Finally, the (free) variablesx′
n, z′

m, wk

and the (free) channelsh′
l occurring in the body are substituted byxn, zm, ek, hl , respectively.

If substitution would cause new bindings, the local variable or local channel that a variable or
channel fromxn, zm, ek, or hl would become bound to, is renamed into a fresh variable or fresh
channel before the substitution takes place. In Section 3.3, substitution of process instantiations is
illustrated by means of an example.

2.6 Assembly line example

An assembly processA assembles three different parts that are supplied by three suppliersG.
The order at which the parts are supplied is unknown, but each part should be received by the
assembly process as soon as possible. When all three parts have been received, assembly may
start. Assembly takestA units of time. When the products have been assembled, they are sent to
an exit processE. Figure 1 shows the iconic model of the assembly line, which is modeled as a
discrete-event system. For theχ model of the assembly line, first two types are declared. The type

G

G A E

G

a

b

c

d

Figure 1: Iconic model of an assembly line.

‘part’, representing a part as a natural number, and the type ‘assy’, representing an assembled unit
as a 3-tuple of parts:

type part = nat

, assy= (part, part, part)

Theχ model consists of parallel instantiations of the three generator processesG, the assembly
processA and the exit processE:

model AssemblyLine(val t0, t1, t2 : real, tA : real) =

|[chan a, b, c : part, d : assy
:: G(a, 0, t0) ‖ G(b, 1, t1) ‖ G(c, 2, t2) ‖ A(a, b, c, d, tA) ‖ E(d)

]|

Each generatorG sends a partn everyt time units:

proc G(chan a! : part, val n : nat, t : real) = |[∗(a!n; 1t)]|

The assembly process receives the parts by means of the parallel composition (a?x ‖ b?y ‖ c?z).
This ensures that each part is received as soon as possible. The parallel composition terminates
when all parts have been received.

12

proc A(chan a?, b?, c? : part, d! : assy, val t : real) =

|[var x, y, z : part
:: ∗((a ?x ‖ b?y ‖ c?z) ; 1t ; d !(x, y, z))

]|

The exit process is simply:

proc E(chan a? : assy) = |[var x : assy:: ∗ a ?x]|

3 Algebraic reasoning and verification

3.1 Introduction

Theχ process algebra has strong support for modular composition by allowing unrestricted com-
bination of operators such as sequential and parallel composition, by providing statements for
scoping, by providing process definition and instantiation, and by providing different interaction
mechanisms, namely synchronous communication and shared variables.

The fact that theχ process algebra is such a rich language potentially complicates the develop-
ment of tools forχ , since the implementations have to deal with all possible combinations of theχ

atomic statements and the operators that are defined on them. This is where the process algebraic
approach of equational reasoning, that allows rewriting models to a simpler form, is essential.

To illustrate the required implementation efforts, consider the following implementations that
are developed: a Python implementation for rapid prototyping; a C implementation for fast model
execution; and an implementation based on the MATLAB Simulink S-functions (The MathWorks,
Inc 2005), where aχ model is translated to an S-function block. Furthermore, there is an imple-
mentation for real-time control (Hofkamp 2001). In (Bortnik, Trčka, Wijs, Luttik, van de Mortel-
Fronczak, Baeten, Fokkink, and Rooda 2005) it has been shown thatdifferent model checkers
each have their own strengths and weaknesses. Therefore, for verification, translations to several
tools are defined. In particular, for hybrid models a translation to the hybridI/O automaton based
PHAver (Frehse 2005) model checker is defined. For timed models the following translations are
defined: (1) a translation to the action-based process algebraµCRL (Groote 1997), used as input
language for the verification tool CADP (Fernandez, Garavel, Kerbrat, Mounier, Mateescu, and
Sighireanu 1996); (2) a translation to PROMELA, a state-based, imperative language, used as in-
put language for the verification tool SPIN (Holzmann 2003); and (3) a translation to the timed
automaton based input language of the UPPAAL (Larsen, Pettersson, and Yi 1997) verification
tool. In future, for verification of hybrid models, additional translations maybe considered to
tools such as HYTECH (Alur, Henzinger, and Ho 1996), or one of the many other hybrid model
checkers.

Instead of defining the implementations mentioned above on the fullχ language as defined in
Section 2, the process algebraic approach of equational reasoning makes it possible to transform
χ models in a series of steps to a (much simpler) normal form, and to define the implementations
on the normal form. The originalχ model and its normal form are bisimilar, which ensures that
relevant model properties are preserved. The normal form has strong syntactical restrictions, no
parallel composition operator, and is quite similar to a hybrid automaton. Currently, correctness
proofs are developed, and in the near future, implementations will be redesigned based on the
normal form.

The steps to the normal form are as follows. First of all, the process instantiations are elimi-
nated, by replacing them by their defining bodies, and replacing the formalparameters by actual
variables. Next, parallel composition is eliminated by using laws of process algebra, in particular

13

a so-calledexpansion law(not given here). An example of a process algebra law inχ specifying
that the guard distributes over alternative composition isb → (p 8 q) = b → p 8 b → q. Finally,
the normal form may be simplified further, taking advantage of the fact that itno longer contains
parallel composition. Note that it is possible to construct models for which the normal form cannot
be (easily) generated. These exceptions are not discussed in this chapter, since they do not restrict
translation to the normal form for practical purposes.

The syntax for the normal form inχ is given by a model with on the outer level a global
variable and channel declarationD, as defined in Section 2.1, on the inner level a local variable
and channel declarationD, and one recursion scope operator statement. To simplify the syntax
definitions, we assume the declaration parts not to be empty.

χnorm ::= model id(Dm) = |[D :: |[D :: |[Rnorm :: X]|]|]|,

with recursion definitionsRnorm according to the normal form defined as:

Rnorm ::= X = (pnorm) recursion definition
| X = (u y pnorm) recursion definition with initialization
| R, R multiple recursion definitions

The signal emission operatoru y p, defined in (van Beek, Man, Reniers, Rooda, and Schif-
felers 2006), is required only when a variable scope operator is used that initializes algebraic
variables. The global and local variable and channel declarations differ only with respect to the
visibility of the declared variables and channels in the transition system. Globallydeclared vari-
ables and channels are visible, locally declared variables and channels are not, due to abstraction.

The normalized statementspnorm, used to define the recursion variablesX, may consist of
undelayable normalized atomic statementspna. Such an normalized atomic statement may be
prefixed by a guardb, and/or it may be made delayable (e.g.b → pna and[pna]). Delay predicates
u, that may be guarded, are also allowed. Sequential composition is allowed only in the form of
such (guarded, and/or delayable) atomic statements followed by a recursion variable. Finally, all
of these statements may be part of alternative composition:

pnorm ::= pnga (guarded) atomic action
| u | b → u (guarded) delay predicate
| pnga; X atomic action followed by recursion variable
| pnorm 8 pnorm alternative composition,

where the normalized guarded atomic action statementspnga are defined by:

pnga ::= pna non-delayable atomic action statement
| b → pna guarded non-delayable atomic action statement
| [pna] delayable atomic action statement
| b → [pna] guarded delayable atomic action statement

and the normalized atomic action statementspna are defined by:

pna ::= {x} : r ≫ la action predicate
| {x} : r ≫ h synchronization via channelh
| {x} : r ≫ h(e) communication via channelh

14

In the bottle filling example discussed in the following sections, the skip statement isnot rewritten
to {} : true≫ τ in the normalizedχ models in Section 3.4, for better readability. Also, statement
h is used in these models as an abbreviation of{} : true ≫ h. The synchronization statement
{x} : r ≫ h and communication statement{x} : r ≫ h(e) are required because of the fact that
there is no parallel composition in the normalized form. The parallel compositionh!! ‖ h?? is
normalized to{} : true≫ h, andh !!e‖ h ??x is normalized to{x} : x = e− ≫ h(e). The statement
{} : true ≫ h is comparable to the skip statement, and the statement{x} : x = e− ≫ h(e) is
comparable to the multi-assignment statementx := e. The effect on the values of the variables
is the same. There is only a small difference with respect to the occurrenceof channelh in the
transition system. As an example consider the statement(h !!0‖ h??x); 11 which is first rewritten
as(h !! 0 ‖ h ??x); |[var t : real = time + 1 :: time ≥ t → skip]| and then normalized to

|[var t : real

:: |[X0 = ({x, t} : x = 0, t = time + 1 ≫ h(0); X1)

, X1 = (time ≥ t → skip)

:: X0

]|

]|

The normal form makes it easy to analyze system behavior and it simplifies tool implementa-
tions in the following way. When a model is defined as

model M(val x : t) =

|[D0

:: |[D1

:: |[X1 = (pnorm1), . . . , Xn = (pnormn) :: Xi]|

]|

]|,

M(c) defines a particular model instantiation. At each point of execution of this model instan-
tiation, exactly one recursion variableXi is enabled, so that the set of all possible next steps is
determined by the termpnormi only. In addition, the termpnormi defines for each action the re-
cursion variable (if any) that is enabled after execution of the action. Process definition, process
instantiation, parallel composition, send and receive statements, the loop statement, while do state-
ment, and delay statement are no longer present. Also scoping has been eliminated, apart from
one top level variable and channel scope operator, and one top level recursion scope operator.

Note that it is also possible to partly normalize a model. For instance, top level parallelism
could be kept intact. In this way, the statementp1 ‖ . . . ‖ pn could be normalized to

|[D
:: |[X11 = (pnorm11), . . . , X1k = (pnorm1k) :: X1i]|

‖ . . .

‖ |[Xn1 = (pnormn1), . . . , Xnm = (pnormnm) :: Xnj]|

]|

For simulation, normalization can be further simplified. A simulation executes only one trace
out of the many traces that may be allowed by the model. Therefore, a considerable reduction in
the number of recursion definitions of a ‘normal form’ for simulation is possible. The use of the
normal form is further illustrated in the next sections by means of an example.

15

3.2 Bottle filling line example

Figure 2 shows a bottle filling line consisting of a storage tank that is continuously filled with a
flow Qin, a conveyor belt that supplies empty bottles, and a valve that is opened when an empty
bottle is below the filling nozzle, and is closed when the bottle is full. When a bottle has been
filled, the conveyor starts moving to put the next bottle under the filling nozzle,which takes one
unit of time. When the storage tank is not empty, the bottle filling flowQ equalsQset. When the
storage tank is empty, the bottle filling flow equals the flowQin. The system should operate in
such a way that overflow of the tank does not occur. Furthermore, it is preferred that the tank does
not get empty when filling a bottle. We assumeQin < Qset.

VT

Q

VB

Qin

Figure 2: Filling Line

Tank

Conveyor

open bQ close

Figure 3: Iconic model of the filling line.

Figure 3 shows an iconic representation of the model of the filling line. It consists of the
processesTankandConveyorthat interact by means of the channelsopenandclose, and shared
variable Q. The model is defined below. It has two parameters: the initial volumeVT0 of the
storage tank, and the valueQin of the flow that is used to fill the storage tank. The constantsQset,
VTmax, andVBmax define the maximum value of the bottle filling flowQ, the maximum volume
of the storage tank, and the filling volume of the bottles, respectively. The model FillingLine
consists of the algebraic variableQ, the channelsopenandclose, and the parallel composition of
the process instantiations for the tank and the conveyor.

const Qset : real = 3.0
, VTmax : real = 20.0
, VBmax : real = 10.0

model FillingLine(val VT0, Qin : real) =

|[alg Q : real, chan open, close: void
:: Tank(Q, open, close, VT0, Qin) ‖ Conveyor(Q, open, close)
]|

The tank process has a local continuous variableVT that is initialized toVT0. Its process body
is a recursion scope consisting of three modes: closed, opened, and openedempty that correspond

16

to the valve being open, the valve being closed, and the valve being openedwhile the storage
tank is empty. In the mode opened, the storage tank is usually not empty. When the storage tank
is empty in mode opened, the delayable skip statement[skip] may be executed causing the next
mode to be openedempty. Due to the consistent equation semantics, the skip statement can be
executed only if the delay predicate in the next mode openedempty holds. Thismeans, among
others, thatVT = 0.0 must hold. Therefore, the transition to mode openedempty can be taken only
when the storage tank is empty.

proc Tank(alg Q : real, chan open?, close? : void, val VT0, Qin : real) =

|[cont VT : real = VT0

:: |[mode closed=

(V̇T = Qin , Q = 0.0, VT ≤ VTmax 8 open?; opened)

, mode opened=
(V̇T = Qin − Q, Q = Qset, 0.0 ≤ VT ≤ VTmax

8 [skip]; openedempty
8 close?; closed
)

, mode openedempty=
(VT = 0.0, Q = Qin 8 close?; closed)

:: closed
]|

]|

ProcessConveyorsupplies an empty bottle in 1 unit of time (VB := 0.0; 11.0). Then it
synchronizes with the storage tank process by means of the send statementopen!, and it proceeds
in mode filling. When the bottle is filled in mode filling (VB ≥ VBmax), the process synchronizes
with the storage tank to close the valve and returns to mode moving. The initial modeis moving.

proc Conveyor(alg Q : real, chan open!, close! : void) =

|[cont VB : real = 0.0
:: |[mode moving= (VB := 0.0; 11.0; open!; filling)

, mode filling = (VB ≥ VBmax → close!; moving)

:: moving
]|

‖ V̇B = Q
]|

Figure 4 shows the result of a simulation run of the modelFillingLine(5.0,1.5), that is with model
parametersVT0 = 5.0 andQin = 1.5.

3.3 Elimination of process instantiation

Elimination of the process instantiations for theTankandConveyorprocesses, as defined in Sec-
tion 2.5.8, leads to the following model:

model FillingLine(val VT0, Qin : real) =

|[alg Q : real, chan open, close: void
:: |[cont VT : real = VL

T0
, var VL

T0 : real = VT0, QL
in : real = Qin

:: |[mode closed=

17

VT

VB

Q

time

14121086420

12

10

8

6

4

2

0

Figure 4: Simulation results of modelFillingLine.

(V̇T = QL
in , Q = 0.0, VT ≤ VTmax 8 open?; opened)

, mode opened=
(V̇T = QL

in − Q, Q = Qset, 0.0 ≤ VT ≤ VTmax

8 [skip]; openedempty
8 close?; closed
)

, mode openedempty=
(VT = 0.0, Q = QL

in 8 close?; closed)

:: closed
]|

]|

‖ |[cont VB : real = 0.0
:: |[mode moving= (VB := 0.0; 11.0; open!; filling)

, mode filling = (VB ≥ VBmax → close!; moving)

:: moving
]|

‖ V̇B = Q
]|

]|

To avoid naming conflicts between the formal parametersVT0 and Qin declared in the process
definition for processTank, and the actual argumentsVT0 and Qin in the process instantiation
Tank(Q, open, close, VT0, Qin), the newly defined local discrete variables that are used to hold the
values of the last two parameters of the process instantiation, are renamed toVL

T0 andQL
in.

3.4 Elimination of parallel composition

Elimination of parallel composition and translation to the normal form as discussed in Section 3.1
leads to the model:

18

model FillingLine(val VT0, Qin : real) =

|[alg Q : real, chan open, close: void
:: |[cont VT : real = VL

T0, VB : real = 0.0
, var t : real, VL

T0 : real = VT0, QL
in : real = Qin

:: |[moving closed=

(V̇T = QL
in , Q = 0.0, VT ≤ VTmax, V̇B = Q

8 {VB, time} : VB = 0.0, t = time + 1.0 ≫ τ ; moving0 closed
)

, moving0 closed=

(V̇T = QL
in , Q = 0.0, VT ≤ VTmax, V̇B = Q

8 time ≥ t → skip; moving1 closed
)

, moving1 closed=

(V̇T = QL
in , Q = 0.0, VT ≤ VTmax, V̇B = Q

8 open; filling opened
)

, filling opened=
(V̇T = QL

in − Q, Q = Qset, 0.0 ≤ VT ≤ VTmax, V̇B = Q
8 [skip]; filling openedempty
8 VB ≥ VBmax → close; moving closed
)

, filling openedempty=
(VT = 0.0, Q = QL

in , V̇B = Q
8 VB ≥ VBmax → close; moving closed
)

:: moving closed
]|

]|

]|

3.5 Substitution of constants and additional elimination

The model below is the result of substitution of the globally defined constants by their values.
Furthermore, the discrete variablesQL

in andVL
T0, that were introduced by elimination of the process

instantiations, are eliminated. Also, the presence of the undelayable statements{VB, time} : VB =

0.0, t = time + 1.0 ≫ τ andopenin modes movingclosed and moving1 closed, respectively,
allows elimination of the differential equations in these modes.

Most hybrid automaton based model checkers, such as PHAver (Frehse 2005) and HYTECH

(Henzinger, Ho, and Wong-Toi 1995), do not (yet) have urgent transitions that can be combined
with guards. Therefore, the urgency in the guarded statements is removedby making the state-
ments that are guarded delayable, and adding the closed negation of the guard as an additional
delay predicate (invariant). E.g.time ≥ t → skip is rewritten astime ≤ t 8 time ≥ t → [skip].

model FillingLine(val VT0, Qin : real) =

|[alg Q : real, chan open, close: void
:: |[cont VT : real = VT0, VB : real = 0.0

, var t : real

:: |[moving closed=

(VT ≤ 20.0, Q = 0.0

19

8 {VB, time} : VB = 0.0, t = time + 1.0 ≫ τ ; moving0 closed
)

, moving0 closed=

(V̇T = Qin , Q = 0.0, VT ≤ 20.0, V̇B = 0.0, time ≤ t
8 time ≥ t → [skip]; moving1 closed
)

, moving1 closed=

(VT ≤ 20.0, Q = 0.0
8 open; filling opened
)

, filling opened=
(V̇T = Qin − 3.0, Q = 3.0, 0.0 ≤ VT ≤ 20.0, V̇B = 3.0, VB ≤ 10.0
8 [skip]; filling openedempty
8 VB ≥ 10.0 → [close]; moving closed
)

, filling openedempty=
(VT = 0.0, Q = Qin , V̇B = Q, VB ≤ 10.0
8 VB ≥ 10.0 → [close]; moving closed
)

:: moving closed
]|

]|

]|

Figure 5 shows a graphical representation of the model. By means of straightforward mathe-
matical analysis of the model, it can be shown that overflow never occurs ifQin ≤ 30/13.

3.6 Tool based verification

As a final step, for the purpose of tool-based verification, the model is translated to the input lan-
guage of the hybrid IO automaton based tool PHAVer (Frehse 2005). Since most hybrid automata,
including PHAVer, do not know the concept of an algebraic variable, first the algebraic variables
are eliminated from theχ model. Because of the consistent equation semantics ofχ , as defined in
(van Beek, Man, Reniers, Rooda, and Schiffelers 2006), each occurrence of an algebraic variable
in the model can simply be replaced by the right hand side of its defining equation. The urgency
due to unguarded undelayable statements is in principle translated by definingthe corresponding
flow clause as false. The resulting PHAVer model follows below. Note that an additional variablex
is introduced and all derivatives need to be defined in all locations, because of the current inability
of PHAVer to define false as flow clause.

automaton filling_line

state_var: Vt,Vb,t,time,x;

parameter: Vt0,Qin;

synclabs : open,close,tau;

loc moving_closed:

while Vt <= 20 & x==0 wait {x==1 & Vb==0 & Vt==0 & t==0 & time==1};

when true sync tau do {Vt’==Vt & Vb’==0 & t’==time+1 & time’==time & x’==0}

goto moving0_closed;

loc moving0_closed:

while Vt <= 20 & time <= t wait {Vb==0 & t==0 & time==1 & Vt==30/13};

when time >= t sync tau do {Vt’==Vt & Vb’==Vb & t’==t & time’==time & x’==0}

goto moving1_closed;

20

moving closed

VT ≤ 20

Q = 0

˙time = 1

V̇B = Qin

filling openedempty

VT = 0

Q = Qin

VB ≤ 10

˙time = 1

V̇B = 0

V̇T = Qin

moving0 closed

VT ≤ 20

Q = 0

time ≤ t

moving1 closed

VT ≤ 20

Q = 0

˙time = 1

V̇B = 3

V̇T = Qin − 3

filling opened

0 ≤ VT ≤ 20

Q = 3

VB ≤ 10

time = 0

VT = VT0

VB = 0

{VB, t} : VB = 0, t = time + 1 ≫ τ

time ≥ t →

[skip]

open

[skip]

V
B
≥

10
→

[close]

VB ≥ 10 →

[close]

Figure 5: Graphical representation of the normalizedχ model.

loc moving1_closed:

while Vt <= 20 & x==0 wait {x==1 & Vb==0 & Vt==0 & t==0 & time==1};

when true sync open do {Vt’==Vt & Vb’==Vb & t’==t & time’==time}

goto filling_opened;

loc filling_opened:

while Vt >= 0 & Vt <= 20 & Vb <= 10 wait {Vb==3 & t==0 & time==1 & Vt==30/13-3};

when Vt==0 sync tau do {Vt’==Vt & Vb’==Vb & t’==t & time’==time}

goto filling_openedempty;

when Vb >= 10 sync close do {Vt’==Vt & Vb’==Vb & t’==t & time’==time & x’==0}

goto moving_closed;

loc filling_openedempty:

while Vt == 0 & Vb <= 10 wait {Vb==30/13 & t==0 & time==1};

when Vb >= 10 sync close do {Vt’==Vt & Vb’==Vb & t’==t & time’==time & x’==0}

goto moving_closed;

initially moving_closed & t==0 & Vt == Vt0 & Vb==0 & x==0;

end

The following properties were derived: ifQin = 30/13 and 0≤ VT0 ≤ VTmax−30/13, overflow
does not occur, and the storage tank does not become empty when filling a bottle. The volume of
the storage tank then remains in the regionVT0 ≤ VT ≤ VT0 + 30/13. If Qin > 30/13, eventually
overflow occurs. IfQin < 30/13, the container becomes empty every time a bottle is filled. In
this small example, these properties can also be derived by means of straightforward mathematical
analysis of theχ models of Section 3.4 or 3.5.

21

4 Conclusions

Process algebra originated in the domain of theoretical computer science, where it was designed
for the purpose of reasoning about the behavior of concurrent discrete-event systems. Recently,
process algebra theory has been extended to include also continuous-timesystems, and combined
discrete-event / continuous-time, or hybrid systems. Theχ process algebra, that has been used
as an example in this chapter, illustrates that process algebra is not only suited to verification,
but also very well suited to high level modeling and simulation of complex dynamical systems.
The compositional semantics of a process algebra facilitates modular composition of processes
and statements using not only parallel composition, but also sequential composition, and in fact
any kind of combination of statements by means of the process algebra operators. The equational
reasoning, that is characteristic of process algebra, allows rewriting ofcomplex specifications to a
straightforward normal form, where parallel composition has been eliminated. For theχ process
algebra, the normal form is very similar to a hybrid automaton, and thus simplifiesthe use and
development of tools for simulation and verification.

Acknowledgments

The authors thank Albert Hofkamp for providing the main functionality of theχ toolset, and for
many helpful comments on drafts of this text. They thank Rolf Theunissen forhis preparative work
on the bottle filling example, and for analysis of the properties of the resulting hybrid automaton
using PHAVer. Finally, they thank Ramon Schiffelers for enabling hybrid simulation ofχ models.

References

Alur, R., T. A. Henzinger, and P. H. Ho (1996). Automatic symbolic verification of embedded
systems.IEEE Transactions on Software Engineering 22(3), 181–201.

Baeten, J. C. M. and W. P. Weijland (1990).Process Algebra, Volume 18 ofCambridge Tracts in
Theoretical Computer Science. Cambridge, United Kingdom: Cambridge University Press.

Bergstra, J. A. and J. W. Klop (1984). Process algebra for synchronous communication.Infor-
mation and Control 60(1/3), 109–137.

Bergstra, J. A. and C. A. Middelburg (2005). Process algebra for hybrid systems.Theoretical
Computer Science 335(2/3), 215–280.

Bortnik, E. M., N. Třcka, A. J. Wijs, B. Luttik, J. M. van de Mortel-Fronczak, J. C. M. Baeten,
W. J. Fokkink, and J. E. Rooda (2005). Analyzing a Chi model of a turntable system using
Spin, CADP and Uppaal.Journal of Logic and Algebraic Programming 65(2), 51–104.

Bundy, A. (1999). A survey of automated deduction. In M. Wooldridge and M. Veloso (Eds.),
Artificial Intelligence Today. Recent Trends and Developments, Volume 1600 ofLecture
Notes in Computer Science, pp. 153–174. Springer Verlag.

Clarke, E. M., O. Grumberg, and D. A. Peled (2000).Model Checking. MIT Press.

Cuijpers, P. J. L. and M. A. Reniers (2005). Hybrid process algebra. Journal of Logic and
Algebraic Programming 62(2), 191–245.

Fábían, G. (1999).A Language and Simulator for Hybrid Systems. Ph. D. thesis, Eindhoven
University of Technology.

22

Fernandez, J. C., H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu,and M. Sighireanu (1996).
CADP - a protocol validation and verification toolbox. InProceedings 8th Conference on
Computer Aided Verification (CAV’96), Volume 1102 ofLecture Notes in Computer Sci-
ence, pp. 437–440.

Frehse, G. (2005). PHAVer: Algorithmic verification of hybrid systems past HyTech. In
M. Morari and L. Thiele (Eds.),Hybrid Systems: Computation and Control, 8th Inter-
national Workshop, Volume 3414 ofLecture Notes in Computer Science, pp. 258–273.
Springer-Verlag.

Groote, J. F. (1997). The syntax and semantics of timedµCRL. Technical Report SEN-R9709,
CWI, The Netherlands.

Henzinger, T. A., P.-H. Ho, and H. Wong-Toi (1995). A user guide to HYTECH. In First Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
TACAS, Lecture Notes in Computer Science 1019, pp. 41–71. Springer Verlag.

Hoare, C. A. R. (1985).Communicating Sequential Processes. Englewood-Cliffs: Prentice-
Hall.

Hofkamp, A. T. (2001).Reactive machine control, a simulation approach usingχ . Ph. D. thesis,
Eindhoven University of Technology.

Holzmann, G. J. (2003).The SPIN Model Checker: Primer and Reference Manual. Boston:
Addison Wesley Professional.

Larsen, K. G., P. Pettersson, and W. Yi (1997). UPPAAL in a Nutshell.Int. Journal on Software
Tools for Technology Transfer 1(1–2), 134–152.

Linz, P. (2001).An Introduction to Formal Languages and Automata. Jones and Bartlett.

Milner, R. (1980).A Calculus of Communicating Systems, Volume 92 ofLecture Notes in Com-
puter Science. Springer-Verlag.

Milner, R. (1989).Communication and Concurrency. Prentice Hall.

Naumoski, G. and W. Alberts (1998).A Discrete-Event Simulator for Systems Engineering. Ph.
D. thesis, Eindhoven University of Technology.

Rounds, W. C. and H. Song (2003). Theφ-Calculus: A language for distributed control of
reconfigurable embedded systems. In O. Maler and A. Pnueli (Eds.),Hybrid Systems :
Computation and Control, 6th International Workshop, Lecture Notes in Computer Science
2623, pp. 435–449. Springer-Verlag.

The MathWorks, Inc (2005).Writing S-functions, version 6. http://www.mathworks.com.

van Beek, D. A., K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. H. Schiffelers (2006).
Syntax and consistent equation semantics of hybrid Chi.Journal of Logic and Algebraic
Programming. to appear.

van Beek, D. A. and J. E. Rooda (2000). Languages and applicationsin hybrid modelling and
simulation: Positioning of Chi.Control Engineering Practice 8(1), 81–91.

van Beek, D. A., A. van den Ham, and J. E. Rooda (2002). Modelling andcontrol of process
industry batch production systems. In15th Triennial World Congress of the International
Federation of Automatic Control, Barcelona. CD-ROM.

23

