EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Process algebra for dynamic system modeling

Citation for published version (APA):
Baeten, J. C. M., Beek, van, D. A., & Rooda, J. E. (2006). Process algebra for dynamic system modeling.
(Computer science reports; Vol. 0603). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/280082cb-2beb-46a7-8407-bd8130e5c6dc

Process algebra for dynamic system modéling

J.C.M. Baeteh D.A. van Beek, J.E. Rooda
IDepartment of Mathematics and Computer Science
2Department of Mechanical Engineering
Eindhoven University of Technology, P.O.Box 513
5600 MB Eindhoven, The Netherlands

{j.c.m.baeten,d.a.v.beek,j.e.rooda}@tue.nl

Abstract

Process algebra is the study of distributed or parallekesystby algebraic means. Originating
in computer science, process algebra has been extendedeint igears to encompass not just
discrete event, reactive systems, but also continuouslivieg phenomena, resulting in so-called
hybrid process algebras. A hybrid process algebra can lbfas¢he specification, simulation,
control and verification of embedded systems in combinatiith their environment, and for any
dynamic system in general. As the vehicle of our expositie@use the hybrid process algebra
(Chi). The syntax and semantics pfare discussed, and it is explained how equational reasoning
can simplify, among others, tool implementations for siatioin and verification. Finally, a bottle
filling line example is introduced to illustrate system asséd by means of equational reasoning.

1 Introduction

1.1 Definition

Process algebra is the study of distributed or parallel systems by algebeaics. The word
‘process’ here refers thehaviorof asystem A system is anything showing behavior, such as the
execution of a software system, the actions of a machine or even the adtiarfgiman being.
Behavior is the total of events or actions that a system can perform, teeiardrhich they can

be executed and maybe other aspects of this execution such as timindpilitiebaor continuous
aspects. Always, the focus is on certain aspects of behavior, didiegather aspects, so an
abstraction or idealization of the ‘real’ behavior is considered. Instéadrmsidering behavior,
we may consider aabservatiorof behavior, where an action is the chosen unit of observation. As
the origin of process algebra is in computer science, the actions are uhaaight to be discrete:
occurrence is at some moment in time, and different actions are separatad.imhis is why a
process is sometimes also callediscrete event system

The word ‘algebra’ denotes that the approach in dealing with behavidgébic and ax-
iomatic. That is, methods and techniques of universal algebra are BAsprbcess algebra can
be defined as any mathematical structure satisfying the axioms given foashedperators. A
process is an element of a process algebra. By using the axioms, werfamycalculations
with processes. Often, though, process algebra goes beyond thbatiicls of universal algebra:
sometimes multiple sorts and/or binding of variables are used.

*Invited chapter to CRC Handbook on Dynamic System Modeling, ed. Rsiahviek.

The simplest model of behavior is to see behavior as an input/output funéticaiue or input
is given at the beginning of the process, and at some moment there is asalucome or output.
This model was used to advantage as the simplest model of the behavioomwipater program
in computer science, from the start of the subject in the middle of the twentiethrge It was
instrumental in the development of (finite stageltomata theory In automata theory, a process
is modeled as an automaton. An automaton has a numlstateisand a number ofransitions
going from a state to a state. A transition denotes the execution of an (eleyeatdaon, the
basic unit of behavior. Also, there is an initial state (sometimes, more tharaodeg number of
final states. A behavior is a run, i.e. a path from initial state to final state. Aoriamt aspect
is when to consider two automata equal, expressed by a notion of equiwal€n automata,
the basic notion of equivalence is ‘language equivalence’, whichiderssequivalence in terms
of behavior, where a behavior is characterized by the set of exesutiom the initial state to a
final state. An algebra that allows equational reasoning about automataatgtbra of regular
expressions, see e.g. (Linz 2001).

Later on, this model was found to be lacking in several situations. BasiediBt is missing
is the notion ofinteraction during the execution from initial state to final state, a system may
interact with another system. This is heeded in order to describe paradflistiobuted systems, or
so-calledreactivesystems. When dealing with interacting systems, the plu@seurrency theory
is used. Thus, concurrency theory is the theory of interacting, pasaitibr distributed systems.
When referring to process algebra, we usually consider it as anagpto concurrency theory,
so that a process algebra usually (but not necessarily) has pacatipbsition as a basic operator.

Thus, a usable definition is that process algebra is the study of the bebéyarallel or
distributed systems by algebraic means. It offers means to descripeaifysuch systems, and
thus it has means to specify parallel composition. Besides this, it can uslsallgecify alter-
native composition (choice) and sequential composition (sequencinggdVvir, it is possible to
reason about such systems using algebra, i.e. equational reasogingeas of this equational
reasoningyerificationbecomes possible, i.e. it can be established that a system satisfies a certain
property.

What are these basic laws of process algebra? In this chapter, we pi@sent collections of
such laws explicitly. Rather, it is shown how calculations can proceed.

To repeat, it can be said that any mathematical structure with operatorsragghhaumber of
arguments satisfying the given basic laws is a process algebra. Oftea snectures are formu-
lated in terms otransition systemswvhere a transition system has a number of states (including
an initial state and a number of final states) and transitions between themofidwe of equiva-
lence studied is usually not language equivalence. Prominent amonguivaleqces studied is
the notion ofbisimulation Often, the study of transition systems, ways to define them and equiv-
alences on them are also considered part of process algebra, ¢lercase no equational theory
is present.

1.2 Calculation

One form of calculation is verification by means of automated methods (calbelk| checking
see e.g. (Clarke, Grumberg, and Peled 2000)) that traverse all statdsansition system and
check that a certain property is true in each state. The drawback is thsititra systems grow
very large very quickly (in fact, often they become infinite). For instamcesystem having 10
interacting components, each of which has 10 states, has a total numi@e@@d D00 000 states.
It is said that model checking techniques suffer fromdtage explosioproblem.

At the other end, reasoning can take place in logic, using a form of dieducAlso here,

progress is made, and matheorem provingools exist (Bundy 1999). The drawback here is that
finding a proof needs user assistance (as the general problem Edaize), which requires a lot
of knowledge about the system.

Equational reasoning on the basis of an algebraic theory takes the middiedgiOn the one
hand, the next step in the procedure is usually clear, since it is more rguttithm equational
reasoning. Therefore, automation can be done in a straightforward@athe other hand, rep-
resentations are compact and allow the presence of parameters, soitifatite set of instances
can be verified at the same time.

1.3 History

Process algebra started in the late seventies of the twentieth century. Abthitthe only part
of concurrency theory that existed was the theory of Petri nets, assdisd in another chapter in
this volume.

The question was raised how to give semantics to programs containinglelpamaposition
operator. It was found that this was difficult using the semantical metheet at that time. The
idea of a behavior as an input/output function needed to be abandongdogfam could still
be modeled as an automaton, but the notion of language equivalence \wagaoappropriate.
This is because the interaction a process has between input and outpemdet the outcome,
disrupting functional behavior. Secondly, the notiorgtdbal variables needed to be overcome.
Using global variables, a state of an automaton used as a model was gigeraliation of the
program variables, that is, a state was determined by the values of thielesriihe independent
execution of parallel processes makes it difficult or impossible to determénegatties of global
variables at a given moment. It turned out to be simpler to let each proegssits own local
variables, and to denote exchange of information explicitly.

After some preliminary work by others, three main process algebra theweresdeveloped.
These are CCS (Calculus of Communicating Systems) by Robin Milner (Milng®;18lilner
1989), CSP (Communicating Sequential Processes) by Tony Hoaree(#19885), and ACP (Al-
gebra of Communicating Processes) by Jan Bergstra and Jan Willem BéofBergstra and Klop
1984; Baeten and Weijland 1990).

Comparing these best-known process algebras CCS, CSP and ACa&n s&there is a con-
siderable amount of work and applications realized in all three of them. trséimse, there seem
to be no fundamental differences between the theories with respect tartpe of applications.
Historically, CCS was the first with a complete theory. Different from the rotive, CSP has a
least distinguishing equational theory. More than the other two, ACP empela$fie algebraic
aspect: there is an equational theory with a range of semantical models. A&lBohas a more
general communication scheme: in CCS, communication is combined with abstract@aP,
there is also a restricted communication scheme.

The language we consider in this chapter is most closely related to the A@FaappOver the
years, other process algebras were developed, and many extemsrensalized. Most interesting
for this volume is the extension to hybrid systems.

1.4 Hybrid systems

Process algebra started out in computer science, and is especially ¢reaescribing discrete
event systems such as computer programs and software systems. Witbuwireggmportance
of embedded systems, which are software systems that are integrated inciieenar device
that they control, it was considered to use process algebra also to mmtleté@son about the

controlled physical environment of the software. However, specifisatid physical systems not
only require discrete-event models, but also differential algebraiatems, leading to hybrid
models.

Inrecent years, several attempts were made to incorporate sucksasfeprocess algebra. In
this chapter, we report on one of these, based og th@guage. Other hybrid process algebras are
HyPA (Cuijpers and Reniers 2005), process algebra for hybridegstC P (Bergstra and Mid-
delburg 2005), and thg-Calculus (Rounds and Song 2003). The history ofitfermalism dates
back quite some time. It was originally mainly used as a modeling and simulation Fmnfua
discrete-event systems. The first simulator (Naumoski and Alberts ¥@883uccessfully applied
to a large number of industrial cases, such as integrated circuit mamidgglants, breweries,
and process industry plants (van Beek, van den Ham, and Rooda 2@®2) the hybrid language
and simulator were developedilsian 1999; van Beek and Rooda 2000). Recentlyytlenguage
has been completely redesigned. The result is a hybrid process algi#thieaformal semantics
as defined in (van Beek, Man, Reniers, Rooda, and Schiffelers)2006is chapter informally
defines the most important elements of the syntax and semantics pfdfozess algebra. It also
extends the formal definitions of (van Beek, Man, Reniers, RoodaSahifelers 2006) with a
more user friendly syntax, including the specification of data types.

2 Syntax and informal semantics of they process algebra

2.1 Model syntax

In this section, the syntax gf models is defined using a Backes-Naur (BNF) like notation. The
symbol| defines choice, notatiofZ }* denotes a sequence of zero or matg, and notatior{ Z }°
definesZ as being optional. A model is of the following form:

Xmodel ::= model id(Dy) = [D= p]

whereid is an identifier that represents the name of the model3ndenotes the model param-
eters as defined below. The model parameter declaration may be also be EurfitgrmoreD
denotes the declaration of variables and/or channels of the model. Thisftgipelaration is also
used to declare the local variables and channels of scope operataity, b denotes a statement,
also known as process term. The scope operator and stat@raeatoth defined in Section 2.2.
To simplify the syntax definitions, we assume the declarationPparot to be empty. The syntax
of the declaration®,, andD is:

Dm:= val S{,S* | Dm, Dm value parameter declaration
D ::= chan S{, S}* channel declaration
| (var |cont |alg) IS{,IS}* variable declaration
| D,D
S:= id{, id}*:t declaration without initialization
IS:= id{,id}*:t=e| S declaration with optional initialization

Here,t denotes the type of a variable or chanreetjenotes an initialization expression, aidd
denotes an identifier. An executable model instantiation for a model decansstel M (val x; :
t1,..., Xn : ty) is Obtained byM (c4, . . ., C,), wherec; denotes a value for the corresponding model
parametek;. The following items can be declared Dt

e Channels, such as ithan h : real, close: void, which declares a communication chanhgl
that communicates values of tygal, and a synchronization chanmébse(no data exchange).

e Discrete variables, such asvar k, n : int, vset: real = 1.0. This declares two uninitialized
variablesk, n of type int (integer), and a variablge that has an initial value 1.0. The values
of discrete variables remain constant when model time progresses.

e Continuous variables, such asisnt x : real = 1.0. Continuous variables are the only variables
for which dotted variables (derivatives) can be used in models. Tdorerethe declaration
cont X : real = 1.0 implies thatx and its dotted versioRr, can both be used in the model. The
values of continuous variables may change according to a continuoctiofuiof time when
model time progresses. The values of continuous variables are fuesteicted by delay
predicates (defined in the next section), that may occur in the form @reiftial algebraic
equations.

e Algebraic variables, such as g vy, z : real. These variables behave in a similar way as
continuous variables. The differences are that algebraic variablesihage according to
a discontinuous function of time, and algebraic variables are not allowedctor as dotted
variables.

Besides the variables mentioned in the model defined above, the existathespoédefined
reserved global variabléme which denotes the current time, the value of which is initially zero,
is assumed. This variable cannot be declared. It can only be usedrgssins in statemenfs

2.2 Statement syntax

Statements can be divided in two classes: the atomic statements, that refire semallest state-
ment units; and the compound statements, that are constructed from oneeofatemic) state-
ments by means of operators. The syntax of the atgnstatements, is as follows:

Patom ::= SKip non-delayable internal action
| X:=e non-delayable (multi-)assignment
| {X}:r>l, non-delayable action predicate
| h??x | h?? non-delayable receive
| hlle | h!! non-delayable send
| [skip] delayable internal action
| [x:=¢€] delayable (multi-)assignment
| X} :r >4 delayable action predicate
| hle | h! delayable send
| h?x | h? delayable receive
| Ad delay
| u delay predicate,

wherex ande denote comma separated variabtes. . ., X, and expressions,, ..., ,, respec-

tively, forn > 1,r denotes a predicate (boolean condition) as defined in Section R.dehotes

an action labelh denotes a channel, amdddenotes an expression of type real. Delay predicate
u denotes a predicate over variables (including the varidbie) and dotted continuous variables
(derivatives). Delay predicates may occur in the form of different@gélaraic equations, such as

X =Y, Y =n, orin the form of a constraint or invariant, suchasg- 1. The comma in delay
predicates denotes conjunction. Eug, u, meansu; A Uy. Also, bothe; < X < e andx € [ey, &]

can be used instead ef < X, X < &, and likewise for strict inequalities and open intervals. Note
that the non-delayable send statemdnte andh! can also be written agh !! €] and[h!!], and
likewise for the delayable receive statements.

The syntax of the compoungd statements is as follows:

P:=Paom atomic
p; p sequential composition
b—p guard operator
pl p alternative composition
pll p parallel composition

|

|

|

|

| =p loop statement

| b > p while statement

| [[D: p] variable and channel scope operator

| id(e) process instantiation

| Pr recursion scope operator,
whereb denotes a predicate over variables. To simplify the semantigsrabdels, the use of
continuous or algebraic variables in guards is restricted. In particumguaardso in b — u,
b — Ad, andb — |[D :: p] are not allowed to change while delaying, which is ensured by
using only discrete variables in such guards. For delay predigatestead ofo — u, whereb
contains continuous variablds= u can be used. Here> denotes logical implication, arz= u
is therefore also a (delay) predicate. Note that in the formal semanticddtihy as defined in
(van Beek, Man, Reniers, Rooda, and Schiffelers 2006) therearestrictions on the use of
continuous or algebraic variables in the guards.

The operators are listed in descending order of their binding strengtiiasd:

(x, >, =1L 0,0

The operators inside the braces have equal binding strength. Forlexamp- 1; y := X |
X:=2; y:=2xmeans(x := 1; y:=X) [(x := 2; y:= 2x). Parentheses may be used to
group statements. To avoid confusion, parenthesis are obligatory iteemative composition
and parallel composition are used together. Bpg] q || r is not allowed and should either be
writtenas(p [q) || r,orasp [(| r).

The recursion scope operator statemgfnimay appear in two forms:

pri= [R{R*: X1
| [R{ Ry = p™l,

whereX denotes a recursion variable, and recursion definlRas defined as:
R:= {mode}® X = (p*),

where statements™ consist of statemenits to which recursion variableX are added:
pru=p | X | pt]p" | pp*

The syntax enforces any recursion variailéo occur only at the end of a sequential compo-
sition. An additional restriction is that each recursion scope operator lmeusbmplete’. This
means that in the two forms of the recursion scope operator

[mode X1 = (p{), ..., mode Xn = (pf) = X« 1 and

[mode X1 = (py), ..., mode Xn = (p{) = prq 1,

all occurrences of free recursion variablegjn (1 < i < n+ 1) must be defined in the recursion
scope operator itselfujf‘:llfreerva(pj+) C {X1, ..., Xn}, where freerva(rpj*) is a function that
returns the set of free (unbound) occurrences of recursionblasian pj+. Furthermore, the recur-
sion variablesXy, . .., X, may occur only at the ‘top level’ ip;*, that is, not nested in other scope
operators. These restrictions enforce structured use of recursibnone recursion variabl;

with corresponding statemepf™ can be executed at the same time, the first statement to be ex-
ecuted isp, ;, and termination of any of the statememsterminates the scope operator itself.
This structured use of recursion simplifies analysig ohodels, it simplifies the translation to the
normal form as discussed in Section 3, and it simplifies tool suppoyt.for

Although recursion variables cannot be placed in parallel directly, tesarséon scope opera-
tors can occur in parallel, as in:

[mode X1 = (p1) = Xy || || [[mode Xz = (p2) = Xz |,

where the two recursion variabl&s and X, can of course have the same name, without changing
the meaning of the model.

2.3 Semantical framework

In this chapter, the meaning (semantics) of anodel is informally defined in terms of delay
behavior and action behavior, based on the formal semantics as ptesefvan Beek, Man, Re-

niers, Rooda, and Schiffelers 2006). Delay behavior involves pas$time, where the semantics
defines for each variable how its value changes as a function of time. Amtwawvior is instanta-

neous: time does not progress, and the semantics defines for eatievérgarelation between its
value before and after the action.

Atomic statements can be disabled or enabled. Actions and delays are demahibyd atomic
statements, with one exception only: an enabled guarded statbrrenp with a guard that is
false can do any delay. Atomic statements terminate by doing an action. Thayteevinate by
doing a delay. A statement that terminates becomes disabled by doing so.

Compound statements combine (sub-)statements by means of operatorspefaimrode-
fines the relation between enabling, disabling and termination of the comptatathent and its
sub-statements. Enabling or disabling a compound statement is defined in feznabbng or
disabling its sub-statements. Enabling a compound statement implies enablingmore®f its
sub-statements. E.g. enabling a sequential composition . ; p, implies enabling the first state-
ment p;, whereas enabling a parallel compositipn| ... | pn implies enabling all statements
P1...Pn-

Execution of ay modelM, defined agnodel M(Dg) = |[D1 :: po]|, takes place by executing
a sequence of delays and actions in the following way:

e At the start, statemer, is enabled.

e Any enabled skip statement, assignment statement or action predicate ltk=layaon-
delayable) can do an action.

e An enabled pair of a send and a receive statement on the same chanragktiptaced in
parallel can simultaneously do a send and a receive action, followed bygainination. The
result, in terms of values of variables, of simultaneous execution of a sateasrnent i !! e
or h!e) and a receive statemerit ??x or h ?x) is comparable to the (distributed) execution

7

of a multi-assignment := e. E.g. execution of the communication actionhihl || h ?x is
comparable to execution of the assignment 1.

e The model can do delays only when and for as long as:

— All enabled statements can delay. The delayable versions of the skip statermen
signment, action predicate, and send and receive statements can adlegyélue non-
delayable versions can never delay). A delay statemehtan delay for as long as its
internal timer is not expired (see Section 2.4.3), and the set of all enaélag predi-
cates can delay for as long as they have a solution. Such a solution deénedues of
the variables as a function of time for the period of the delay.

Note that the set of enabled statements may change while delaying. The feeathis is
the guarded statemelmt—> p, because the value of the guard can change while delaying,
due to changes in the values of the continuous or algebraic variables.

— No parallel pair of a send and a receive statement on the same channablsd:or
becomes enabled. This is because, by default, channglsiia urgent: communication
or synchronization cannot be postponed by delaying.

e When different actions and/or delays are possible, any of these adroben. This is referred
to as nondeterministic choice. Note that delays may always be shorter thamagi@um
possible length.

The values of the discrete and continuous variables are stored in membeyvalues of
the algebraic variables are not stored. This means that the starting pd¢ivé whjectory of the
discrete and continuous variables equals their last value stored in ment@stadrting point of
the trajectory of the algebraic variables can be any value that is allowea entbled equations.

In models of physical systems, the delay behavior of the continuous agloraig variables is
usually uniquely determined: there is usually only one solution of the setadfles differential
algebraic equations. Multiple delays / solutions can be caused by upegfisd systems of
equations, where there are less equations than variables, or by dediggpes that allow multiple
solutions, such as ‘true’ ot € [0, 1].

The action behavior of the discrete, continuous and algebraic variatdssaiows:

e The discrete and continuous variables do not change as a result ofsagtitess the change
is explicitly specified, for example by means of an assignment, or by regedviralue via a
channel.

e The algebraic variables do not have a memory. Therefore, their vatuia gainciple change
arbitrarily in actions. In most models, their value is defined by delay predicate

2.4 Semantics of atomic statements
2.4.1 Skip, multi-assignment and action predicate

An enabled skip statement can do an internal action, and then terminates.

An enabledmulti-assignmenstatemenix, := e, for n > 1 can do an internal action that
changes the values of the variabigs. . ., X, in one step to the values of expressiens. . ., €,
respectively, and then terminates. Fo& 1, this gives a normal assignment= e.

The action predicatéx} : r > |, is a kind of generalized assignment statement, consisting of
a set of variable$x}, a predicate over variables and™ superscripted variables, and an action

8

labell,. The values of the variables of st} are allowed to change so that their new values
satisfy the predicate. A ‘ ~’ superscripted variable, such &5 refers to the value of the variable
immediately before execution of the action predicate. E.g. a multi assignmgnt= y, X, that
swaps the values of andy, can be written as action predicatix, y} : X =y, y =X~ > 1,
wheret denotes the predefined internal action.

2.4.2 Delay predicate

An enableddelay predicate wan perform delays but no actions. Delay predicates restrict the
allowed trajectories of the variables while delaying in such a way that atteaelpoint during

the delay the delay predicate holds (its value must be true), when all varidedotted variables

in the predicate are replaced by their current value.

Delay predicates also restrict the action behaviotyafmodels, because the enabled delay
predicate must also hold before and after each action. In fact, the dradgdey predicates of a
model must hold at all times. This is referred to as the ‘consistent equatizansies’.

The relation between the trajectory of a continuous varialadad the trajectory of its ‘deriva-
tive’ X is given by the Caratheodory solution concexpft) = x(0) + jg X(s)ds. This allows a
non-smooth (but continuous) trajectory for a differential variable in Hsed¢hat the trajectory of
its ‘derivative’ is non-smooth or even discontinuous, as in, for exanmpbelel M() = |[cont y :
real = 0.0:: y = stefitime — 1)]|, where stefx) equals 0 fox < 0 and 1 forx > 0.

2.4.3 Delay statement

A delay statementd behaves as a local timer. The timer can either delay, or it can terminate by
means of an action. It can be activated in two ways:

o If the valuec of expressiord is bigger than zero when the timer is enabled for the very first
time, or when itis re-enabled after having been disabled, the timer canstamg (delaying)
from the valuec. After having delayed for a total af time-units, the timer has expired. An
expired timer cannot delay anymore; it can only terminate by means of an.action

o If the valuec of expressiord is zero when the timer is enabled for the very first time, or when
it is re-enabled after having been disabled, the timer can immediately expiteranidate by
means of an action.

The total period of time, that must pass before the timer expires, can be split up into separated
delays, that may be interleaved by actions of other statements in a paratiettcas long as the
timer (delay statement) stays enabled. When the timer / delay statement is disad@adbling
it causes re-evaluation of expressibwhen the timer starts running again. Note that the value
can change each time the timer is re-enabled. E.gchr?d; Ad) || x(h!1; h!2), the first delay
of the timer is 1, the second delay is 2, and then the cycle is repeated.

2.5 Semantics of compound statements
2.5.1 Sequential composition

In asequential composition,p. . .; p, (n > 1), only one statemeng;, 1 <i < n, can be enabled at
the same time. Enabling a sequential composipen . . ; p, implies enabling its first statement
p:. When statemenp; (1 <i < n — 1) terminates (and is therefore also disabled), the next

statementp;, 1 becomes enabled. The sequential composition terminates upon termination of its
last statemenpy.

2.5.2 Guard operator

Enabling of a guarded statement enables its gbar@ehavior of a guarded statemdnt> p
depends on the value of the gudrd

e Statemenp is enabled while the value of the guard is true. Execution of thedosbnby p
disables the guard. Thus, after this first action, the value of the guaoirss irrelevant.

e Statemenfp is disabled while the value of the guard is false. The guarded statdmentp
can, in principle, do any delay while the value of the guard is false; onlyesstdrt point and
end point of such a delay, the value of the guard may be true.

When a guarded statement occurs in parallel with another statement, ibin- p, the value
of the guard can change due to actions of statemgenthich may cause statemeptto change
from being disabled to enabled or vice versa. B.g= falsg (Al; b := true| b — skip)

When inqg || b — p, the guardb contains continuous or algebraic variables, gntbntains
one or more enabled delay predicates, the value of the guard may chaimgeaidelay, causing
statemenp to change from being disabled to enabled or vice versax&gl | X > 1 — x :=0.

2.5.3 Alternative composition

Enablingpy || ... | pn enables the statemengs, ..., pn. Execution of an action by any one of
the statement®; ... p, disables the other statements. In this way, execution of the first action
makes a choice. When one of the statemgnis. ., p, terminates, the alternative composition
p1[... [pnalsoterminates.

2.5.4 Parallelism

Enablingp: || ... || pn enables the statemengs, ..., p.. When a statemernp, 1 <i < n,
executes an action, the other statements remain enabled. The parallel tompxns| ... || pn
terminates when the statememis . . ., p, have all terminated.

Informally, we often refer to the statememnis ..., p, occurring inpy || ... || pn as parallel

processes. Parallel processes interact by means of shared wadable means of synchronous
point-to-point communication or synchronization via a channel. Communicatignsrthe send-
ing of values of one or more expressions by one parallel process Wiarmel to another parallel
process, where the received values are stored in variables. Incaséues are sent and received,
we refer to synchronization instead of communication.

2.5.5 Loop and while statement
Loop statemenk p represents the infinite repetition of statem@ntWhenxp is enabled,p is
enabled. Termination gb results in re-enabling apb.

The while statemeri — p can be interpreted as “whitedo p”. Enabling ofb = pwhen

b is true enables (after an internal action), and enablinglof-> p whenb is false, leads to
immediate termination (by means of an internal action).

10

2.5.6 Variable and channel scope operator

A variable and channel scope operator may introduce new variablegancthannels. Enabling of
a variable and channel scope statenjebt :: p]|, where the local declaration p&bt introduces
new variables and or channels according to the specificatidd iof Section 2.1, performs the
variable initializations specified iD and enables statemept Termination ofp terminates the
scope statemeriit D :: p J|. Any occurrence of a variable or channelprthat is declared irb
refers to that local variable or channel and not to any more global ré¢icia of the variable or
channel with the same name, if such a more global declaration should exist.

2.5.7 Recursion scope operator and recursion variable

StatemeniX denotes a recursion variable (identifier) that is defined and used imssi@t scope
operator statement of the fornX; = (py), ..., Xn = (p) = Xi Jor [Xo = (pf), ..., Xn =
(pi) = p;;l 1, where the keywordhode may be added.

The meaning of recursion scope operators satisfying the restrictiomedéfi Section 2.2, is
as follows. Enabling the recursion scope opertd = (p;), ..., Xn = (pf) = Xi J or|[Xy =
(P7)s -y Xn=(P) = pi4 1, enables the statemeXt or py, ,, respectively. When a recursion
variable X; is enabled (or disabled), its defining statemenis enabled (or disabled) instead.
When a defining statemept (1 < i < n) terminates, the recursion scope operator terminates.

2.5.8 Process definition and instantiation

To simplify the explanation, process instantiatimh{e) is rewritten in a more specific form
id(Xn, Zm, hi, &), whereid denotes a process namg denotes the continuous variablgs. . ., X,

Zm denotes the algebraic variables . . ., zy,, h) denotes the channdhs, ..., h;, ande, denotes
the expressiona, .. ., &. Process instantiation enables (re)-use of a process definition. Agsroc
definition is specified once, but it can be instantiated many times, usually widretiff parame-
ters.

The meaning of process instantiation

id(Xn, Zm, hr, &)
with corresponding process definition

proc id(cont X/, : tc, alg Z,, : ta, chan h/{!|?}° : ty, val v :ty) = [D= p]
is obtained by the syntactical substitution of the process instantiation by

[D,var vk : ty =Wy p 1l [Xn, Zm, hi, &/X'n, Zp,, Dy, Wi,

where notatiort_ denotes a data type, amg!|?}° denotes the channelg{!|?}°, ..., h/{!|?}°,
where each channel is optionally postfixed withr ?. The meaning ofi! or h? in the formal
parameter list is that the use of chanhéh p is limited to sending{!.. or h!!..) or receiving b?..
orh??.), respectively. Notation[b,, ..., b /a,, ..., 8] denotes the statement obtained frotry
syntactic substitution of the free occurrences of the variables/chamnels, g inr byb, ..., b,
respectively. Free variables (or channels) iare variables (or channels) that are not declared in
r.

The substitution replaces the process instantiatléxy, zy, hy, &) by the process body D :
p 1, whereafter the value parametegsare added to the local declaratioRsas discrete variables

11

that are initialized to the values of the new variablgs Finally, the (free) variables'y,, Z'y, Wk

and the (free) channels, occurring in the body are substituted Ry, z., &, h;, respectively.

If substitution would cause new bindings, the local variable or local oblattvat a variable or
channel fromx,, zm, &, or h; would become bound to, is renamed into a fresh variable or fresh
channel before the substitution takes place. In Section 3.3, substitutiooaafgs instantiations is
illustrated by means of an example.

2.6 Assembly line example

An assembly procesé assembles three different parts that are supplied by three sup@liers
The order at which the parts are supplied is unknown, but each pautdsbe received by the
assembly process as soon as possible. When all three parts haveebeigad, assembly may
start. Assembly taketa units of time. When the products have been assembled, they are sent to
an exit proces&. Figure 1 shows the iconic model of the assembly line, which is modeled as a
discrete-event system. For thhanodel of the assembly line, first two types are declared. The type

(== ()

c

Figure 1: Iconic model of an assembly line.

‘part’, representing a part as a natural number, and the type ,asgyesenting an assembled unit
as a 3-tuple of parts:

type part = nat
., assy= (part part par

The x model consists of parallel instantiations of the three generator proc8ssbe assembly
processA and the exit procesk:

model AssemblyLin@al tg, t1, to : real, ta : real) =

[chan a, b, c: part d:assy

5 G(@,0,to) | Gb, 1, 1)) || G(c,2,tp) || A@@, b, c,d, ta) || E(d)
I

Each generatoB sends a pant everyt time units:
proc G(chan a! : part, val n: nat, t:real) = |[*(aln; At)]

The assembly process receives the parts by means of the parallel dtionp@s?x || b?y || c?2).
This ensures that each part is received as soon as possible. Hfielgamposition terminates
when all parts have been received.

12

proc A(chan a?, b?, c?: part, d! : assy valt : real) =
[var X, y, z: part

sx((a?x||b?y|c?z); At; dI(X,y,2))

1

The exit process is simply:

proc E(chan a?:assy = |[var X : assy:: xa?X ||

3 Algebraic reasoning and verification

3.1 Introduction

The x process algebra has strong support for modular composition by allowiegtiicted com-
bination of operators such as sequential and parallel composition, bidimg statements for
scoping, by providing process definition and instantiation, and by prayidiffierent interaction
mechanisms, namely synchronous communication and shared variables.

The fact that the process algebra is such a rich language potentially complicates the develop-
ment of tools fory, since the implementations have to deal with all possible combinations gf the
atomic statements and the operators that are defined on them. This is whenec#ss@algebraic
approach of equational reasoning, that allows rewriting models to a singpiar iis essential.

To illustrate the required implementation efforts, consider the following implemengatitat
are developed: a Python implementation for rapid prototyping; a C implementatifast model
execution; and an implementation based on the MATLAB Simulink S-functions TdthWorks,
Inc 2005), where & model is translated to an S-function block. Furthermore, there is an imple-
mentation for real-time control (Hofkamp 2001). In (Bortnik¢ka, Wijs, Luttik, van de Mortel-
Fronczak, Baeten, Fokkink, and Rooda 2005) it has been showiffexent model checkers
each have their own strengths and weaknesses. Therefore, ifaratiem, translations to several
tools are defined. In particular, for hybrid models a translation to the hyti@idutomaton based
PHAver (Frehse 2005) model checker is defined. For timed models theviiodjdranslations are
defined: (1) a translation to the action-based process algebRi (Groote 1997), used as input
language for the verification tool CADP (Fernandez, Garavel, Kerbtaunier, Mateescu, and
Sighireanu 1996); (2) a translation to PROMELA, a state-based, impefatiguage, used as in-
put language for the verification tool SPIN (Holzmann 2003); and (3aastation to the timed
automaton based input language of the UPPAAL (Larsen, Petterssiry,i 4997) verification
tool. In future, for verification of hybrid models, additional translations rbayconsidered to
tools such as MTECH (Alur, Henzinger, and Ho 1996), or one of the many other hybrid model
checkers.

Instead of defining the implementations mentioned above on the fathguage as defined in
Section 2, the process algebraic approach of equational reasonimg ihakssible to transform
x models in a series of steps to a (much simpler) normal form, and to define the inmpéeiores
on the normal form. The origingt model and its normal form are bisimilar, which ensures that
relevant model properties are preserved. The normal form hagystgariactical restrictions, no
parallel composition operator, and is quite similar to a hybrid automaton. Glyrreorrectness
proofs are developed, and in the near future, implementations will beigedesbased on the
normal form.

The steps to the normal form are as follows. First of all, the process tiatans are elimi-
nated, by replacing them by their defining bodies, and replacing the fgranaimeters by actual
variables. Next, parallel composition is eliminated by using laws of procesbragin particular

13

a so-callecexpansion lawnot given here). An example of a process algebra lay 8pecifying
that the guard distributes over alternative compositidnis (p | q) = b— p [b— q. Finally,
the normal form may be simplified further, taking advantage of the fact thatlibnger contains
parallel composition. Note that it is possible to construct models for whichdimaal form cannot
be (easily) generated. These exceptions are not discussed in thisrchaqze they do not restrict
translation to the normal form for practical purposes.

The syntax for the normal form i is given by a model with on the outer level a global
variable and channel declarati@ as defined in Section 2.1, on the inner level a local variable
and channel declaratioD, and one recursion scope operator statement. To simplify the syntax
definitions, we assume the declaration parts not to be empty.

Xnorm = model id(Dy) = [D= [D = [Ryorm: X 111,

with recursion definitiongR,om according to the normal form defined as:

Rnorm ::= X = (Pnorm) recursion definition
| X=(Uunm prorm) recursion definition with initialization
| R R multiple recursion definitions

The signal emission operatar~ p, defined in (van Beek, Man, Reniers, Rooda, and Schif-
felers 2006), is required only when a variable scope operator is usédnitializes algebraic
variables. The global and local variable and channel declaratiores difiy with respect to the
visibility of the declared variables and channels in the transition system. Glatedigred vari-
ables and channels are visible, locally declared variables and chammaelstadue to abstraction.

The normalized statemeni®om, used to define the recursion variablés may consist of
undelayable normalized atomic statemepts Such an normalized atomic statement may be
prefixed by a guart), and/or it may be made delayable (dog=> pnaand[pnal). Delay predicates
u, that may be guarded, are also allowed. Sequential composition is alloweih ahe form of
such (guarded, and/or delayable) atomic statements followed by a recuasiable. Finally, all
of these statements may be part of alternative composition:

Prorm ::= Pnga (guarded) atomic action
|u|l b—u (guarded) delay predicate
| Pngas X atomic action followed by recursion variable
|

Prorm | Prorm alternative compositign

where the normalized guarded atomic action statemggtsare defined by:

Pnga = Pna non-delayable atomic action statement
| b— Pna guarded non-delayable atomic action statement
| [Pnal delayable atomic action statement

| b— [Pnal guarded delayable atomic action statement

and the normalized atomic action statemgmisare defined by:

= {X}:r>1l, action predicate
| {X}:r>h synchronization via channhl
| {x}:r > h(e communication via channél

Pna ::

14

In the bottle filling example discussed in the following sections, the skip statemeasttriewritten

to {} : true > t in the normalized¢ models in Section 3.4, for better readability. Also, statement
h is used in these models as an abbreviatio}aftrue > h. The synchronization statement
{x} : r > h and communication statemefd} : r > h(e) are required because of the fact that
there is no parallel composition in the normalized form. The parallel compodgitioh h?? is
normalized td} : true>> h, andh!!'e || h??x is normalized tdx} : X = €~ > h(e). The statement
{} : true > h is comparable to the skip statement, and the statefpgntx = e~ > h(e) is
comparable to the multi-assignment statement e. The effect on the values of the variables
is the same. There is only a small difference with respect to the occuroérmtennelh in the
transition system. As an example consider the statethef || h ??2x); A1 which is first rewritten
as(h!'0 || h??x); |[vart : real =time 4+ 1: time >t — skip]| and then normalized to

[vart : real

[Xo=({X,t}: x=0,t =time+ 1> h(0); X;)
, Xy = (time >t — skip)
= Xo
1

1

The normal form makes it easy to analyze system behavior and it simplifiestiolementa-
tions in the following way. When a model is defined as

model M(val X : t) =

IL Do

2|l D
2 Xy = (pnorml), o Xp = (pnorrrh) 2 Xl
I

]|’

M (c) defines a particular model instantiation. At each point of execution of thishostan-
tiation, exactly one recursion variab}§ is enabled, so that the set of all possible next steps is
determined by the ternp,ommy oOnly. In addition, the termpnom, defines for each action the re-
cursion variable (if any) that is enabled after execution of the actionceBsodefinition, process
instantiation, parallel composition, send and receive statements, the loopestatevhile do state-
ment, and delay statement are no longer present. Also scoping has beemtelimapart from
one top level variable and channel scope operator, and one topdeuesion scope operator.

Note that it is also possible to partly normalize a model. For instance, top lexadlgiam
could be kept intact. In this way, the statement| ... || pn could be normalized to

[D

2 X = (pnormll), o, X = (pnormlk) 2 Xqi
Il Xn1 = (Prorm)s - -+ » Xnm = (Pnormym) an 1l
1

For simulation, normalization can be further simplified. A simulation executes o@yrace
out of the many traces that may be allowed by the model. Therefore, a ecaisliel reduction in
the number of recursion definitions of a ‘normal form’ for simulation is pdssifhe use of the
normal form is further illustrated in the next sections by means of an example.

15

3.2 Bottle filling line example

Figure 2 shows a bottle filling line consisting of a storage tank that is contihubllesd with a
flow Qi,, a conveyor belt that supplies empty bottles, and a valve that is openedamheEmpty
bottle is below the filling nozzle, and is closed when the bottle is full. When a botddéan
filled, the conveyor starts moving to put the next bottle under the filling norieh takes one
unit of time. When the storage tank is not empty, the bottle filling fewqualsQse. When the
storage tank is empty, the bottle filling flow equals the flQy. The system should operate in
such a way that overflow of the tank does not occur. Furthermore,riéfenped that the tank does
not get empty when filling a bottle. We assu®g < Qset

Qin

o

Vr
| Q
N ¢ open close
Figure 2: Filling Line Figure 3: Iconic model of the filling line.

Figure 3 shows an iconic representation of the model of the filling line. Isists1of the
processeJankand Conveyorthat interact by means of the channefsenandclose and shared
variable Q. The model is defined below. It has two parameters: the initial vol\fgeof the
storage tank, and the val@g, of the flow that is used to fill the storage tank. The const@hs
Vmax andVemax define the maximum value of the bottle filling flo@, the maximum volume
of the storage tank, and the filling volume of the bottles, respectively. ThesinfdlingLine
consists of the algebraic variabfg the channelspenandclose and the parallel composition of
the process instantiations for the tank and the conveyor.

const Qget: real = 3.0
, Vrmax : real = 20.0
, VBmax : real = 10.0

model FillingLine(val Vg, Qi : real) =

[alg Q : real, chan open close: void

:: Tank Q, open close Vg, Qin) || ConveyotQ, open close
I

The tank process has a local continuous variaklénhat is initialized toVyg. Its process body
is a recursion scope consisting of three modes: closed, opened, emed@mnpty that correspond

16

to the valve being open, the valve being closed, and the valve being opénriledthe storage

tank is empty. In the mode opened, the storage tank is usually not empty. Whstotage tank

is empty in mode opened, the delayable skip staterfslip] may be executed causing the next
mode to be openedempty. Due to the consistent equation semantics, the skiestatan be
executed only if the delay predicate in the next mode openedempty holds m&hiss, among
others, thaW/r = 0.0 must hold. Therefore, the transition to mode openedempty can be taken only
when the storage tank is empty.

proc Tankalg Q : real, chan oper?, close? : void, val Vg, Qi : real) =
[cont Vt : real = Vg
= [mode closed=
(Vr = Qin, Q =0.0, V5 < Vrmax [| Oper?; opened)
, mode opened=
(Vr=0Qin—Q, Q= Qset, 0.0 <Vr =< Vrmax
] [skip]; openedempty
| close?; closed
)
, mode openedempty=
(Vr =0.0, Q = Qi [close?; closed)
:: closed
I
Il

ProcessConveyorsupplies an empty bottle in 1 unit of tim&g := 0.0; A1.0). Then it
synchronizes with the storage tank process by means of the send stabpextrand it proceeds
in mode filling. When the bottle is filled in mode fillin/§ > Vemax), the process synchronizes
with the storage tank to close the valve and returns to mode moving. The initialimoding.

proc Conveyotalg Q : real, chan open, closeé : void) =

[cont Vg : real = 0.0

|l mode moving= (Vg := 0.0; A1.0; oper; filling)
, mode filling = (Vg > Vamax — closé€; moving)
:: moving
]

Ve =Q

1

Figure 4 shows the result of a simulation run of the madlihgLine (5.0, 1.5), that is with model
parameter§ o = 5.0 andQj, = 1.5.

3.3 Elimination of process instantiation

Elimination of the process instantiations for fh@enkandConveyormrocesses, as defined in Sec-
tion 2.5.8, leads to the following model:

model FillingLine(val Vg, Qin : real) =

[alg Q : real, chan open close: void

= |[cont Vi : real = VT'-0
, var VT'-0 : real = Vg,
= [mode closed=

L. — 0O
in - real = Qip

17

Figure 4: Simulation results of modEillingLine.

(Vr=QL, Q=0.0, Vr < Vimax || Oper?; opened)

n?
, mode opened=
(VT = :}1 —Q, Q= Qset, 0.0 < V1 < Vrmax
[[skip]; openedempty
[close?; closed
)
, mode openedempty=
(Vr =0.0,Q = QL [close; closed)
:: closed
1
Il
Il [cont Vg :real =0.0

[mode moving= (Vg := 0.0; A1.0; open; filling)
, mode filling = (Vg > Vgmax — closé; moving)
> moving
1
Ve =Q
1
Il

To avoid naming conflicts between the formal parametégsand Qi, declared in the process
definition for processlank and the actual argument4 and Qj, in the process instantiation
Tank Q, open close Vo, Qin), the newly defined local discrete variables that are used to hold the
values of the last two parameters of the process instantiation, are renamgdatud Q..

3.4 Elimination of parallel composition

Elimination of parallel composition and translation to the normal form as disduissgection 3.1
leads to the model:

18

model FillingLine(val Vg, Qi : real) =
[alg Q : real, chan open close: void
i | cont Vi : real = Vi, Vg :real = 0.0
, var t : real, VT'-0 : real = Vo, Q!;] : real = Qin
| movingclosed: .
(Vr=QkL, Q=00, Vr < Vrmax, Ve = Q
[{Vs, time} : Vg = 0.0, t = time + 1.0 > 7; moving_closed
)
, moving_closed= -
(VT = Q:}.v Q = O-O’ VT = VTmax’ VB = Q
[| time >t — skip; moving;_closed
)
, moving _closed=
(VT = :ﬁv Q = O'Ov VT = VTmax, VB = Q
[| open filling _opened
)
, filling _opened=
(Vr=0QL - Q, Q= Qser, 0.0 <Vr < Vrmax, Ve = Q
[[skipl; filling_openedempty
| V& > Vemax — close movingclosed
)
, filling _openedempty-= _
(Vr=00, Q=Qp. Ve=Q
| V& > Vgmax — close movingclosed
)

:: movingclosed

1

3.5 Substitution of constants and additional elimination

The model below is the result of substitution of the globally defined constantiseir values.
Furthermore, the discrete variabl@s, andV.5, that were introduced by elimination of the process
instantiations, are eliminated. Also, the presence of the undelayable stat¢ignisie} : Vg =
0.0, t = time + 1.0 > t andopenin modes movingclosed and movingclosed, respectively,
allows elimination of the differential equations in these modes.

Most hybrid automaton based model checkers, such as PHAver é2808) and MTECH
(Henzinger, Ho, and Wong-Toi 1995), do not (yet) have urgemsiteons that can be combined
with guards. Therefore, the urgency in the guarded statements is rempvadking the state-
ments that are guarded delayable, and adding the closed negation ofatideaguan additional
delay predicate (invariant). E.¢ime >t — skip is rewritten asime <t [| time >t — [skip].

model FillingLine(val Vo, Qi : real) =
[alg Q : real, chan open close: void
= |[cont Vt : real = Vqg, Vg :real = 0.0
, vart : real
|l moving.closed=
(Vr<200, Q=00

19

[{Vs, time} : Vg = 0.0, t =time 4+ 1.0 > 7; moving_closed
)

, movir)g),closedz _
(Vr=Qin, Q=00, Vy <200, Vg =0.0, time <t
| time >t — [skip]; moving _closed
)

, moving _closed=
(Vr <200, Q=00
| open filling .opened
)

, filling _opened=
(Vr=Qin—30, Q=30, 0.0 <V <200, Vg =3.0, Vg <100
| [skip); filling_openedempty
| Vs > 10.0 — [closd; movingclosed
)

, filling _openedempty=
(Vr=00, Q=Qpn, Ve =Q, Vg <100
| Vs > 10.0 — [closd; moving.closed
)

:: moving_closed

1

1
I

Figure 5 shows a graphical representation of the model. By means ohstoavgard mathe-
matical analysis of the model, it can be shown that overflow never occQxg & 30/13.

3.6 Tool based verification

As a final step, for the purpose of tool-based verification, the modelrislated to the input lan-
guage of the hybrid 10 automaton based tool PHAVer (Frehse 2005)e &iost hybrid automata,
including PHAVer, do not know the concept of an algebraic variablgt, fire algebraic variables
are eliminated from thg model. Because of the consistent equation semantigsaf defined in
(van Beek, Man, Reniers, Rooda, and Schiffelers 2006), eaahrrecce of an algebraic variable
in the model can simply be replaced by the right hand side of its defining egudtie urgency
due to unguarded undelayable statements is in principle translated by défieiogrresponding
flow clause as false. The resulting PHAVer model follows below. Note thatiditional variable

is introduced and all derivatives need to be defined in all locationsubecz the current inability
of PHAVer to define false as flow clause.

automaton filling_line
state_var: Vt,Vb,t,time,x;
parameter: Vt0,Qin;
synclabs : open,close,tau;
loc moving_closed:
while Vt <= 20 & x==0 wait {x==1 & Vb==0 & Vt==0 & t==0 & time==1};
when true sync tau do {Vt’==Vt & Vb’==0 & t’==time+l & time’==time & x’==0}
goto movingO_closed;
loc movingO_closed:
while Vt <= 20 & time <= t wait {Vb==0 & t==0 & time==1 & Vt==30/13};
when time >= t sync tau do {Vt’==Vt & Vb’==Vb & t’==t & time’==time & x’==0}
goto movingl_closed;

20

time =0 time = 1

VT = V10 Ve — O
Vg =0 moving_closed i B= Qg t
5 Vr < 20 illing -openedempty

Q=0 Vr=0

Q= Qin

Vg <10

{Vg,t}: Vg =0, t =time+1> <

[skip]

time=1 time=1

VB =0 VB =3
VT = Qin moving; _closed VT = Qi - 3
movingg_closed VT <20 filling _opened
Vi <20 time>1— Q=0 0<Vr <20
Q=0 [Sklp] Q=3
time <t

Vg < 10

Figure 5: Graphical representation of the normalizethodel.

loc movingl_closed:
while Vt <= 20 & x==0 wait {x==1 & Vb==0 & Vt==0 & t==0 & time==1};
when true sync open do {Vt’==Vt & Vb’==Vb & t’==t & time’==time}
goto filling_opened;
loc filling_opened:
while Vt >= 0 & Vt <= 20 & Vb <= 10 wait {Vb==3 & t==0 & time==1 & Vt==30/13-3};
when Vt==0 sync tau do {Vt’==Vt & Vb’==Vb & t’==t & time’==time}
goto filling_openedempty;
when Vb >= 10 sync close do {Vt’==Vt & Vb’==Vb & t’==t & time’==time & x’==0}
goto moving_closed;
loc filling_openedempty:
while Vt == 0 & Vb <= 10 wait {Vb==30/13 & t==0 & time==1};
when Vb >= 10 sync close do {Vt’==Vt & Vb’==Vb & t’==t & time’==time & x’==03}
goto moving_closed;
initially moving_closed & t==0 & Vt == Vt0 & Vb==0 & x==0;
end

The following properties were derived: @i, = 30/13 and 0< V1o < Vrmax— 30/13, overflow
does not occur, and the storage tank does not become empty when fillingea Bhe volume of
the storage tank then remains in the regiga < Vr < Vqo + 30/13. If Qi > 30/13, eventually
overflow occurs. IfQj, < 30/13, the container becomes empty every time a bottle is filled. In
this small example, these properties can also be derived by means oftébraighd mathematical
analysis of ther models of Section 3.4 or 3.5.

21

4 Conclusions

Process algebra originated in the domain of theoretical computer scieheees Wwwas designed
for the purpose of reasoning about the behavior of concurrentetiisevent systems. Recently,
process algebra theory has been extended to include also continuosysieras, and combined
discrete-event / continuous-time, or hybrid systems. fh@ocess algebra, that has been used
as an example in this chapter, illustrates that process algebra is not only uiterification,
but also very well suited to high level modeling and simulation of complex dynamsystems.
The compositional semantics of a process algebra facilitates modular compafifioocesses
and statements using not only parallel compaosition, but also sequential siimpoand in fact
any kind of combination of statements by means of the process algebraavpeiide equational
reasoning, that is characteristic of process algebra, allows rewritiognoplex specifications to a
straightforward normal form, where parallel composition has been elimin&wdhe y process
algebra, the normal form is very similar to a hybrid automaton, and thus simphiesse and
development of tools for simulation and verification.

Acknowledgments

The authors thank Albert Hofkamp for providing the main functionality of thioolset, and for
many helpful comments on drafts of this text. They thank Rolf Theunissdnif@reparative work
on the bottle filling example, and for analysis of the properties of the resuljibgchautomaton
using PHAVer. Finally, they thank Ramon Schiffelers for enabling hyhirmutation of x models.

References

Alur, R., T. A. Henzinger, and P. H. Ho (1996). Automatic symbolic vertf@maof embedded
systemslEEE Transactions on Software Engineerind 22 181-201.

Baeten, J. C. M. and W. P. Weijland (199BJocess Algebravolume 18 ofCambridge Tracts in
Theoretical Computer Sciend8ambridge, United Kingdom: Cambridge University Press.

Bergstra, J. A. and J. W. Klop (1984). Process algebra for spnoius communicatiorinfor-
mation and Control 6(1/3), 109-137.

Bergstra, J. A. and C. A. Middelburg (2005). Process algebrayforith systemsTheoretical
Computer Science 38%3), 215-280.

Bortnik, E. M., N. T€ka, A. J. Wijs, B. Luttik, J. M. van de Mortel-Fronczak, J. C. M. Baeten
W. J. Fokkink, and J. E. Rooda (2005). Analyzing a Chi model of atalnie system using
Spin, CADP and Uppaallournal of Logic and Algebraic Programming @&, 51-104.

Bundy, A. (1999). A survey of automated deduction. In M. Wooldridge B. Veloso (Eds.),
Artificial Intelligence Today. Recent Trends and Developmevidkime 1600 ofLecture
Notes in Computer Sciengep. 153—-174. Springer Verlag.

Clarke, E. M., O. Grumberg, and D. A. Peled (200@ndel CheckingMIT Press.

Cuijpers, P. J. L. and M. A. Reniers (2005). Hybrid process algelmarnal of Logic and
Algebraic Programming 62), 191-245.

Fabian, G. (1999)A Language and Simulator for Hybrid Syster®&. D. thesis, Eindhoven
University of Technology.

22

Fernandez, J. C., H. Garavel, A. Kerbrat, L. Mounier, R. Mateesod M. Sighireanu (1996).
CADRP - a protocol validation and verification toolbox. Bioceedings 8th Conference on
Computer Aided Verification (CAV’96Yolume 1102 ofLecture Notes in Computer Sci-
ence pp. 437-440.

Frehse, G. (2005). PHAVer: Algorithmic verification of hybrid systemstpdyTech. In
M. Morari and L. Thiele (Eds.)Hybrid Systems: Computation and Control, 8th Inter-
national WorkshopVolume 3414 ofLecture Notes in Computer Sciengap. 258-273.
Springer-Verlag.

Groote, J. F. (1997). The syntax and semantics of tim€&L. Technical Report SEN-R9709,
CWI, The Netherlands.

Henzinger, T. A., P.-H. Ho, and H. Wong-Toi (1995). A user guide toTiHCH. In First Inter-
national Conference on Tools and Algorithms for the Construction and Aisaty Systems
TACAS Lecture Notes in Computer Science 1019, pp. 41-71. Springer Verlag.

Hoare, C. A. R. (1985)Communicating Sequential ProcessEaglewood-Cliffs: Prentice-
Hall.

Hofkamp, A. T. (2001)Reactive machine control, a simulation approach usin@h. D. thesis,
Eindhoven University of Technology.

Holzmann, G. J. (2003)fhe SPIN Model Checker: Primer and Reference ManBakton:
Addison Wesley Professional.

Larsen, K. G., P. Pettersson, and W. Yi (1997.AdAL in a NutshellInt. Journal on Software
Tools for Technology Transfe(1-2), 134-152.

Linz, P. (2001) An Introduction to Formal Languages and Automaltanes and Bartlett.

Milner, R. (1980) A Calculus of Communicating Systedslume 92 ofLecture Notes in Com-
puter ScienceSpringer-Verlag.

Milner, R. (1989).Communication and Concurrendyrentice Hall.

Naumoski, G. and W. Alberts (1998).Discrete-Event Simulator for Systems Engineeritiy
D. thesis, Eindhoven University of Technology.

Rounds, W. C. and H. Song (2003). TheCalculus: A language for distributed control of
reconfigurable embedded systems. In O. Maler and A. Pnueli (Bdgbrid Systems :
Computation and Control, 6th International Workshapcture Notes in Computer Science
2623, pp. 435-449. Springer-Verlag.

The MathWorks, Inc (2005)V/riting S-functions, version. &ittp://www.mathworks.com.

van Beek, D. A., K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. thiffelers (2006).
Syntax and consistent equation semantics of hybrid @hirnal of Logic and Algebraic
Programming to appear.

van Beek, D. A. and J. E. Rooda (2000). Languages and applicatidnybrid modelling and
simulation: Positioning of ChiControl Engineering Practice@@), 81-91.

van Beek, D. A, A. van den Ham, and J. E. Rooda (2002). Modellingcanttol of process
industry batch production systems.16th Triennial World Congress of the International
Federation of Automatic ContrpBarcelona. CD-ROM.

23

