

Abstract theory of planning

Citation for published version (APA):
Eiben, A. E. (1988). Abstract theory of planning. (Computing science notes; Vol. 8812). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/1988

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/e4bbe8cd-2d32-4a0d-9f39-8c7310f7e6e6

Abstract Theory of Planning

by

A.E. Eiben

88/12

June, 1988

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

ABSTRACf

ABSTRACf TIIEORY OF PLANNING

A. E. Eiben

Eindhoven University of Technology
Department of Mathematics and Computing Science
P. O. Box 513
5600 MB Eindhoven, The Netherlands

June 1988

A mathematical theory of planning is worked out in this paper. The terms 'planning

problem', 'plan', 'solution of a planning problem' etc. are often used in the fields of Artificial

Intelligence, Decision Suppon Systems and Operation Research. The meaning of these

terms, however, is rather intuitive. This article presents a general model of planning that

covers a wide range of 'planning problems'. Examples given at the end demonstrate that

this framework can also serve as a high level description language of different 'planning

type' tasks.

1

2

CONfENTS

o. Introduction 3
1. Theory 5

1.1 The planning problem. object level 5
1.2 The planning graph. reasoning level 12
1.3 Additional results 17

1.3.1 Concurrency 17

1.3.2 Transition between processes 18
2. Applications 20

2.1 The blocks-world 21
2.2 The job-shop 23
2.3 Routing 26

3. Summary 29
4. Index 31
5. References 32

O. INI'RODUCTION

The Eindhoven University of Technology is running a project that investigates

interactive planning systems. The goal is to develop a domain independent shell that, filled

in with knowledge, becomes a decision suppon system (DSS) on a cenain field. One of our

first questions was "What kind of problems should the DSS solve 7", and we realized that

'planning problem' was not a well defmed notion. Much of the literature on the subject is

restricted to a specific class of problems. Another difficulty is that conceptual and

representational issues are seldom kept apan. Constraints originating from the propenies of

the considered problem class and constraints arisen from the applied representation method

are not explicitly distinguished. These shoncomings initiated a study to work out a general

concept of describing and solving planning problems.

Investigating 'planning problems' one soon realizes that a large number of tasks can be

classified as such. These tasks lie in different fields, are described by different formalism,

solved by different methods, but they have something in common. The term 'planning

problem' is mostly associated with situations where cenain circumstances are given and one

needs to reach a desired state. The word 'plan' is used for a collection of activities. The

solution of such a problem is a plan that leads from the initial-, to the goal-configuration.

Well-known examples of this type are for instance the blocks-world. the job--shop. and

the routing problem. The ger.eraJ model that captures these problems is expected to have

multiple advantages :

1. In its structure the similarities between different problem classes are more

visible, likewise the essential differences are more distinguishable.

2. It provides a formalism for high level task specification. A planning problem can be

described in such a way that:

- "from above" it is clear enough, it is easy to see whether a specification

matches the intuitive interpretation of the problem;

- "from below" it is precise enough. it is possible to justify that an .actual

representation (matrices. Horn-clauses etc.) fits the specification.

3. Since it is a uniform framework to describe planning problems. it can be the

kernel of the DSS shell mentioned above.

3

The definitions of the first section establish our basic notions concerning planning

problems. Algorithmic aspects, representation and solution methods are not considered

here. Roughly speaking we model the world, that is we set up a framework to formulate

knowledge about what is to solve.

In § 1.2 there are general concepts discussing how to solve it. Filling in the frame

presented in § 1.1 we obtain a world description and a problem setting. Specifying the

entities introduced by § 1.2 leads to a solution method.

In § 1.3 we give a short overview about some questions related to the foregoing. We

unfold properties and assumptions which are not always valid in the real world, therefore

are not enclosed in the general theory. As we shall see, they might be of decisive

importance and formulizing them provides the ability to test them if needed.

In § 2 we describe three planning problems with the formalism developed in the first

chapter. This part illustrates the use of the theory and the easiness of representing different

types of problems in this uniform framework.

4

1. TIlEORY

Let us first display our intuitive view on planning problems. This illuminates our

preliminary assumptions, explains the motivations behind the definitions, and it also

determines the domain covered by our theory.

We see the world as a process that is, state transitions embedded in the time. Human

influence on the world can be carried out by actions that also take place in time. Applying

an action to a process yields a new process. Specifying the application conditions and the

effects of the possible actions fully determines the planning environment. Plans are simply

sets of actions without any further structure, their effect on processes is computed from the

effect of their constituents. Within a planning situation a task is given by an initial process

and a set of goal processes. A plan is a solution of such a task, if applied to the initial

process it leads to the goal set.

Pay attention to the definition of the planning graph; regardless to algorithmic details it

indicates our intended methodology: generating a solution by graph search.

1.1 TIlE PLANNING PROBLEM, OBJEcr LEVEL

DEFINITION 1.1.1 A plannine universe is an ordered triple: <S,A,T>, where

S is a set called the set of world states

A is a set called the set of actions

T is an ordered set called the set of time instances

Denoting time segments we shall use the following notational convention :

tT:= {t e Tit S t }

Tt:= {t e Tit < t }

Tt:=Ttu It} for any t,t e T.

DEFINITION 1.1.2 A process of a planning universe is a function f: T' -t S , where

T' \; T. The set of all processes of a planning universe U is denoted by F(U).

5

Intuitively a process stands for "The Flow of Nature". In our approach the basic

entities to represent the world are processes rather then states. In this way time is naturally

incorporated, it is easy to handle cases where the state of the world changes without outside

actions (see § 2.2). A process f can be seen as a film about the world, a certain state f(t}

in the range of f is the snapshot taken at the moment t. From mathematical point of view

a process is a parameterization of S by T'. If time does not play a role then constant

parameterization (where Jrng(f)1 = I) can be used. Assuming that processes with the same

range need not to be distinguished, all the processes having the range (s) can be identified

with the same state s. It is easy to see that the obtained structure is the equivalent of the

state based approach.

A process can be changed by actions that take place in time. The effect of an action is

described by a function e, the precise definition of which is presented later. The

interpretation of the formula e(f,(a,t» = g is that applying the action a at the time t the

former process f changes and the new process is g.

EXAMPLE 1 FALLING

S = (held, falling, broken)

A = (drop)

+ T = IRO
Let us take a process f, and an effect-function e as follows:

f(t} = held for every t > 0 and

{

falling
e(f,(drop,t»(t} =

broken

Another effect-function can be :

e(f,(drop,t»(t} = ! :::~ ing

broken

if t S t < t + falltime

if t+ falltime S t

ifOS<t<t

if t S t < t + fall time

if t + fall t ime St

foranyt>O, t~t.

This effect-function, unlike the previous one preserves the information about the "past".

Such a description resembles the so called qualitative or compton sense physics and

indeed, the case of the ball falling through a flame [Forbus, 84] can be described easily.

6

EXAMPLE 2

h-----

FALLING & HEATING

o
!

hr -----------------
FLAME

h2- - - - - - - - - - - - - - - - - -

Now the environment is built up as follows:

s = (heldat(h), faJlingat(h), fallingat (h) II heated, broken I h e [0,100] }

A = (drop)

Let h e (0,100] and fO(t) = heldat(h) for every t e T be the initial process. Our

knowledge about this world can be represented by the following effect function:

e(fO,(drop,t»(t) =

fallingat(h') t < t + reach flame

fall ingat(h') II heated

fall ingat(h')

broken

t + reachf 1 arne ~ t < t + leavefl arne

t + leavef 1 arne ~ t < t + fall time

t +falItime ~t

where the exact value of h', falltime, reachflame, leaveflarne can be calculated from

h, hI' h2' t by the well-know'l Newtonian laws of mechanics.

With such a detailed description we can formulate precise conditions (commands for a robot

arm) to rescue the falling object, ego :

rescuedh {=} catchat(time,pos) : pos e (O,h) II time = J 2(h - pos)
g

.
DEFINITION 1.1.3 An operation (interpreted as the execution of the action a at the

time t) is a pair (a,t) e A x T, and let ~ : A x T ---; T be the projection function, that

is time«a,t»:= t for any operation.

7

DEFINITION 1.1.4 The allowabilitv relation of a planning universe U is a relation

ALL C F(U) x (AxT). It defines two allowability functions:

0. : F(U) -; 1(AxT) ,where a(f):= { 0 e AxT I (f,o) e ALL)

a' : AxT -; 1(F(U», where 0.'(0):= { f e F(U) I (f,o) e ALL)

The elements of a(f) are called the allowable operations of f.

It is easy to see that any of the three of ALL, a., a' uniquely determines the other two.

Throughout this article the function 0. will be used.

Observe that the implication (a,t) E a(f) ~ t e dom(f) does not necessarily hold. One

could require it based on intuition, but it does not follow from the previous definitions, and

is not needed for the later properties.

DEFINITION 1.1.5 Let U = <S,A,T> be a planning universe. First we define nil as a

distinguished element of F(U), or say that we extend F(U) with nil. Then an effect-function

is a function e: F(U) x (AxT) -; F(U) such that:

- nil is an universal absorber (a, b,)

- the past of a pro.:ess can not be extended by an operation (c,)

- the past of a process can not be changed by an operation (d,)

that is for any f,g e F(U) and 0 = (a,t), (a,t) e AxT
a, e«nil,o» = nil

b, e«f,o» = nil if 0 f a(f)

c, e(f,o) = g ~ dom(g) () Tl c dom(f) () Tl

d, e(f,o) = g ~ f = g on dom(g) () Tl

Notice that in Example I the value of the effect-function was specified only for a

subset of its domain. In order to give an exact meaning to such an incomplete definition

we introduce a convention. We assume that in the undefined cases the value of the effect

function is nil. As a consequence, it is enough to determine the value of e for some

(f,o) e F(U) x (AxT). Due to the above convention it can be regarded as the definition of

the complete effect-function e.

DEFINITION 1.1.6 A Jilim is a set of operations. A plan P is called a section iff

V 01'02 e P time(ol) = time(02)' The function time can be extended for non empty

sections by time(p) := time(o), where 0 E P is arbitrary.

8

DEFINmON 1.1.7 P , ... ,P are called the ~ of the plan P iff
I n

a,

b,

c,

n
P= u P"

i=1 J

Vie (I, ... ,n) Pi is a section,

V ij E (l, ... ,n) [time(Pi) = time(Pj) ~ i = j J.

LEMMA 1.1.1 The slices of a plan are uniquely determined that is, for any plan P there

is one and only one set (PI""'Pn) satisfyinga,b,c of definition 1.1.7.

PROOF It is straightforward, observe that the slices of a plan P are the maximal sections

contained in P. I

If P has n slices then a numbering of them is a bijection from the set (I , ... ,n) onto the set

of slices of P. Obviously, the slices of a plan P can be numbered in many ways. We

distinguish one numbering.

DEFINmON 1.1.8 The natural numbering of a plan P is that numbering which satisfies

V ij e (l, .. ,n) [i < j (:} time (Pi) < time (Pj) J
The notation P = [p 1''''p nJ stands for a plan P with the slices P 1''''P n numbered by the

natural numbering.

PROPOsmON 1.1.1 For any plan P there is one and only one natural numbering.

PROOF By the lemma 1.1.1 we have that

3! set of slices ofP. say (PI ,Pn). This implies that

3! (tl' tn) \; T: Vie (l, .. ,n) [ti = time(Pi) J. Since T is ordered we also have that

3 ! permutation x of (I, ... n) : tx(l) < ... < tx(n),

It is easy to see that the bijection Vie (l ... ,n) x(i) f-+ Pi satisfies the definition of natural

numbering. I

Next we extend the effect-function from operations to plans. The major problem is to

determine the result of equitemporal operations. The effect of n operations can be

computed in n! different orders, which may lead to n! different results. If the

operations occur at the same time. then intuition does not help us to choose among the

different outcomes. Therefore we take each of them. that is a subset of FCU) instead of a

single process.

9

DEFINITION 1.1.9 For a given U = <S,A,T>, a and e the extended effect=function

e' : 1{F(U) x 1I;AxT) ---; 1I;F(U)) is defined inductively:

a, e'(F,0) = F for any F!; F(U)

b, if f e F(U), P = (01' .. ,on) is a section then

e'«(f),P) = U (e(.. e(f,oi) ... , 0i »),

(. .) n
11,~·,ln

where Ii 1' .. ,in) ranges over the set of all permutations of (I , .. ,n).

c, if F!; F(U), P is a section then e'(F'p) = u e'({f), P)
feF

d, if F!; F(U), P = [P1''''p nl then e'(F'p) = e'(... e'(F, P I)"''p n)

For singletons we shall write e'(f,P) instead of e'«(f),P), likewise e'(F'p) = g stands for

e'(F,P) = (g).

Notice that the intuitive interpretation of time is hidden right here in using strictly the

natural numbering in point d. This establishes that the effect of the operations with

a smaller (earlier) assigned time instance precedes the effect of the ones with a larger (later)

time instance.

Due to defmition 1.1.5 the past of a process - related to a time instance t - can not be

changed by an operation which takes place at the moment t. The next statement extends the

past invariance property for plans in general.

PROPOSITION 1.1.2 (Past Invariance Lemma)

Let f,g e F(U), P = [P1' ... 'pnl a plan, ti = time (Pi) for every i e (I, ... ,n).

If e'(f,P) = g and g *" nil then f = g on dom(g) () Ttl

PROOF

(i) n = 1 (P is a section).

Let P = (01' .. ,ok)' By point d of definition 1.1.5 we have that

VI < m:S k [e(.. e(f,ol) ... ,orJ = g ~ e(.. e(f,ol) ... ,om_l) = g on dom(g) () Tlil.

Hence e(f,ol) = g on dom(g) () Tl
I
, thus again by definition 1.1.5 f = g dom(g) () :fll .

(ii) n > I
Applying the assertion of (i) we obtain that

V I < m :S n [e(.. e(f,P I) ... ,P m) = g ~ e(..e(f,P I) ... ,P m-I) = g on dom(g) () TIml.

This results e(f,P I) = g on dom(g) () TtZ ' which implies f = g dom(g) () Tll" I

10

DEFINITION 1.1.10 The triple <V,a,e> of a planning universe, an effect-function and

an allowability-function is given a special name, it is called a planninll situation.

A planninll problem is defined by a planning situation <V,a.e> and a pair <f,G>, where

f e FCU) is the initial Process, G!; F(V) is the Iloal set
The set G is often specified by a predicate over the processes, called the ~ predicate. A

plan P is a solution of the planning problem iff e'(f,P)!; G, (the result of applying the

plan P to f satisfies the goal predicate).

Defining a (partial) ordering on the set G the solutions can be compared, thus searching

for the (an) optimal solution is reasonable.

11

12 THE PLANNING GRAPH, REASONING LEVEL

As it was formerly said, in § 1.1 we discuss what is the problem to solve, and in § 1.2

we investigate the question of how to solve it. We shall follow the search space paradigm,

i.e. that a solution is reached by traversing a so called search space consisting of objects

being of the same type as the expected solution. The search space will be defined as

general as possible and we will point out what kind of restrictions are needed to specify a

cenain solution algorithm.

Usually a method to solve a given planning problem proceeds by modifying the planes)

generated so far. Manipulations as entities changing plans are strictly distinguished from

operations acting on processes. In our approach manipulating a plan P (a set of operations)

is carried out by computing the symmetric difference of P and another set of operations R.

This explains the following definition.

DEFINIT10N 1.2.1 A manipulation in the planning universe <S,A,T> is a set R ~ A x T.

The result of applying the manipulation R to the plan P is the plan P 11 R = (PUR) \ (ProR).

It is easy to see that the usual "add", "delete", "replace", etc. can be obtained by
choosing an appropriate set R.

DEFINIT10N 1.2.2 In the planning graph of a planning universe the nodes belong to .
plans the edges belong to plan manipulations. The edge labeled by R connects the nodes

labeled by P and Q iff P 11 R = Q.

PROPOsmON 12.1 For any planning universe the corresponding planning graph is a

complete connected graph without multiple joins.

PROOF We need to show that there is exactly one edge between any two nodes that is,

"P,R ~ A x T 3 ! Q ~ A x T : P 11 Q = R.

The existence is obvious, notice that Q = P 11 R will do.

To verify that there are no multiple joins we prove that no other Q is good. Let us suppose

that Q~AxT and PI1Q=R.

a, First observe that Q ~ PuR.

If Q \ (p u R) # 0 then (P 11 Q) \ (p u R) # 0, thus (p 11 Q) \ R # 0, which implies that

PI1Q#R.

12

b, 3x:xeQAxfP~R

From Q ~ PuR and x e Q A x f P ~ R we can conclude x e P ("\ Q ("\ R. This implies

x f (P u Q) \ (P ("\ Q), hence x f R, that contradicts x e P ("\ Q 11 R.

c, 3x:xfQAxeP~R

cI x f Q A x e R \ P ~ X f P u Q ~ X f (P U Q)\(P 11 Q) ~ x f R, that contradicts

x e R\P

c
2

x f Q A x e P \ R ~ X f P ("\ Q ~ X e (P V Q)\(P ("\ Q) ~ x e R, that contradicts

xeP\R

From band c it follows that Q \ (P ~ R) = 0 A (P ~ R) \ Q = 0, that is Q = P ~ R. I

The planning graph embodies the entire search space. The search for a solution can be

considered as traversing this graph. It may start at an arbitrary (not necessarily the empty)

node and should reach a node which belongs to a solution (if there exists any).

Dealing with such a successive node transition requires the usage of paths, that is composed

manipulations.

DEFINfTION 1.2.3 Let Q and R be manipulations in a planning universe. The

composition of Q and R (designated by QoR) is the manipulation Q ~ R.

PROPOsmON 1.2.2

For any plan P and manipulations MI and Mz, P (MI 0 Mz) = (P MI) Mz holds.

The manipulations with the composition form an Abelian group, where all the elements are

idempotent.

PROOF It is straightforward, it needs only elementary set theoretical properties. I

With these definitions the necessary notions of path, descendant nodes, ancestor nodes etc.

are rather obvious.

13

After making a satisfactory description of the planning problem the planner has to

decide about the solution method. While the problem formulation is quite determined by

the considered circumstances, there is a large flexibility in defining a reasonable search

algorithm. Nevertheless, there are some general steps to be performed in every case. In

order to specify a search algorithm one needs to tell which part of the graph will be

traversed and how will it be traversed. This means :

to prune the search space by

- making a restriction on the nodes of the graph,

- making a restriction on the edges of the graph,

to direct the search by

- specifying a search,trategy (how to move within the graph).

There is much known about search strategies, (see ego Pearl,84) thus let us have a closer

.look on the first issue. First of all let us make a trivial restriction about the edges. From

now on we consider only those edges that belong to a singleton (o) ~ A x T. Proposition

1.2.1 guarantees that we loose no power with this.

The restrictions on the considered nodes are often carried out by means of "feasible" plans.

How feasibility is defined is strongly task-dependent. It is mostly intended to express some

soft constraints, that is requirements set up by the user and not by the features of the

problem (hard constraints). Having seen many cases we have experienced that very often

the property defining feasible plans is descending, that is subplans of feasible plans are also

feasible. Accepting it as a general concept of feasibility we obtain the following definition:

DEFINITION 1.2.4 Let U be a planning universe, P the set of all plans in U, !p a

predicate over P. We say that !p is a f""ability iff !p is not universally false and !p is
descending, that is

3 P e II' [!p(P)] A V P,R e II' [!p(P) A R!: P =* !p(R)].

A plan P is called feasible (cp-feasible) iff !p(p) holds.

The properties discussed in 2.2 illustrate this matter particularly for the job shop problem.

The next proposition shows that restricting the search space to the feasible plans is safe in
general.

PROPOsmON 1.2.3 In any planning universe, for any feasibility

the empty plan is feasible

- any feasible plan (thus also the feasible solutions) can be reached from the empty plan

by a feasible path (where all the nodes are feasible).

PROOF It is straightforward from the definition of feasibility. I

14

15

A general method to restrict the edges taken into account can be based on the idea of

executability. We intend to call an edge to) I: A x T executable w.r.t. a process f, if

e(f, (o)) ,;,. nil, that is 0 E a(f) holds for the operation 0 E A x T. Extending a plan P by an

operation 0 and stepping further from the node P by the edge (o) is the same thing. The

process that can be assigned to a node P is e'(fO,P)' the result of applying P to the initial

process. During the search we want to consider only such extensions/steps that are

executable w.r.t. the actual e'(fO,P)' This explains the following definition. Observe that

feasibility can be defined within the terms of a planning universe <S,A,T>. To have

executability we need <S,A,T,a,e> and at least the initial process from the pair <fO,G>.

DEFINITION 1.2.5 Let <S,A,T,a,e> be a planning situation, fO E F(U), and let r denote

the planning graph of <S,A,T,a,e>. The set E of executable plans is defmed inductively.

Let E(l) := ((a) I a E a(fO))

(the executable plans containing one operation)

E(n) := (P u (a) I P E E(n-l), a E a(e'(fO,P») (l < n)

E := (0) u ~ E(i)
i=1

(the executable plans containing n operations)

(the set of executable plans).

The edges belonging to the elements of the set a(e'(fO,P» are called the eXecutable ediCs

w.r.t. the node P in r. The executable edges of the executable nodes make up the set of all

executable edee:; in r.

Roughly speaking, we can characterize executable plans as those ones which do not transfer
".

fO to nil. Executable edges preserve executability in the sense, that stepping away from an

executable node by an executable edge, leads to an executable node. This is why one could

require that the search considers only executable edges (manipulations).

A predicate expressing that a plan is executable, (!p(p) is true iff PEE) is not descending

in general. Still, we can state the analogue of Proposition 1.2.3.

".
Under the Good Allowability Assumption (see 1.3.2) PEE and e'(fO,P)';" nil are

equivalent.

PROPOsmON 1.2.4 Let <S,A,T,n,e>, <fO,G> be a planning problem, the set E as

defined in Definition 1.2.5. Then

the empty plan is executable

any executable plan can be reached from the empty plan by an executable path (where

all the edges are executable).

PROOF It is obvious from the definition of E. I

Hereby we have sketched two general principles to reduce the search space. The most

likely way of applying them is a combined usage. To prune the search space one defines a

feasibility and requires that the search should proceed by always taking executable edges

that lead to feasible nodes.

Viewing plans simply as objects which we can modify raises the straightforward question:

is the reasoning level of a planning situation a planning situation itself? The answer is yes.

Without the formal assertion one can figure a universe where :

the states are the plans of the original universe,

- the actions are the plan manipulations,

the effect function is defined to be conform with the effect of the manipulations.

This observation indicates that the structure <S, A, T, n, e> can be widely recognized I
applied.

IG

1.3 ADDmONAL RESULTS

Section 1.1 supplies the basic definitions to capture planning problems. Further study

has led to extensions and sophistications which are not discussed there. This section gives

an overview about two of the considered topics. A more extensive survey on the matter is

available at the author.

1.3.1 CONCURRENCY

17

The terms 'concurrency' or 'parallelism' are mostly applied to cases where more

activities, events occur at the same time. In our model a process assigns one state to a time

instance, all events are enclosed in the state. Looking at the inner side of a state may

display that the state constitutes of several pixels which represent parallel activities (see

§ 2.2). On the general level we do not bother about such details, as far as the world is

concerned, there is always one object (a state) present at any time instance. For this reason,

we use the word 'concurrency' when there are more actions to apply at the same time.

According to point d of definition 1.1.9 the order to compute the effect of different sections

is determined by their time precedence relations. For equitemporal operations we found no

general principle to determine the computing order. Due to point b the set of all possible

results was taken, hence le'(f,P)1 > 1 can occur. This yields ambiguity about the result of

applying a plan to a process. The uncertainty can not be excluded in general, but there are

(a lot of) examples where we have a much better case. This motivated the following

definitions.

A plan P is called commutative. if the set e'(f,P) in Definition 1.1.9 / b is a singleton.

This means that the result of the simultaneous operations is independent from the

computation order, that is uniquely determined.

In certain cases there is no need to know the exact result of a plan. It can be enough

that the set e'(f,P) surely satisfies some conditions, i.e. it is surely within a set H !: F(U).

In this case we say that P is safe w.r.L H.

Observe that recognizing these features in a concrete planning situation can make the

computation much easier.

1.3.2 TRANSmON BElWEEN PROCESSES

A process can be considered as an elementary object that is transformed into another

process by a plan. The definition of the transition relation is self-evident.

DEFINTI10N 1.3.1 Let <U,a,e> be a planning situation. The transition relation

on F(U) is defmed as follows:

for any f,g e F(U) f g iff 3 P (; AxT : e'(f,P) = g.

The relation is clearly reflexive since V f e F(U) [e'(f,0) = f] by definition. With some

surprise we realized that transitivity did not hold for ... in general. Investigating the cause of

this fact we found quite natural conditions to imply transitivity.

The following properties do not have universal validity in practice and they are independent

from the former definitions. Therefore we formulate them as assumptions which need to be

tested in each planning situation.

GOOD AlLOW ABll.ITY ASSUMPTION (OAA)

For all f e F(U) and 0 e AxT e(f,o) = nil ~ 0 f a(f).

The next two assumptions have a common underlying idea. Namely, that being in a world,

our knowledge about it is strongly based on the past. From within we can not distinguish

two processes which have the same history up to now. With other words, it is only the past

and the present that determine a situation, regardless to the future which would have come

without our interference. The two assumptions below formally express that

- the set of our possible actions, and

- the effect of the actions

is independent from the future.

DETERMINATIVE PAST ASSUMPTION 1 (DPA 1)

For any f,g e F(U) and t e T f t Tl=g t Tl ~ a(f) t t = a(g)t t.

The notation am t t stands for ((a,-t) e a(f) I t = t }.

18

DETERMINATIVE PAST ASSUMPTION 2 (DPA 2)

For any f.g e F(U) and section P ¢ fIJ : time(P) = t f t Tl = g t Tt ~ e'(f,P) = e·(g.P).

These assumptions are not fully independent since GAA & DPA 2 ~ DPA I can be

proved. The most interesting statement. however. is the following.

PROPOsmON 1.3.1 (Transitivity)

GAA and DPA 2 imply the transitivity of that is. if GAA and DPA 2 hold then

V f.g.h e F(U) V P.Q !:; AxT [e·(f.P) = g A e·(g.Q) = h ~ 3 R !:; AxT : e·(f.R) = h].

PROOF

Let us take f.g.h e F(U) and p.Q!:; A x T such that e'(f,P) = g and e·(g.Q) = h.

Let P = [P I' ... 'p n] • Q = [Q I.···.~] sliced and numbered by the natural numbering. We

define ti := time(Pi) • i = I •..• n and t i := time(Qi) • i = I •..• m.

(i) tl :s; tl
e'(f,P) = g ~ f = g on dom(g) ,., T1I by the past invariance lemma. so

f = g on dom(g) ,., TIl holds too. Then from DPA I we have that Q ~ a(f) and DPA 2

implies that e·(f.Q) = e'(g.Q) = h.

(ii) tl > tl
Let fO := f. f.:= e·(f. I'p·) for every i = I •...• n. Due to the past invariance lemma

1 1- 1

fi = g on T1j+l for all i = 1 •...• n-1. Let k be such that k = max (i I ti < 'tl I.
Then tk < tl :s; tk+1 and fk = g on Tlt+1 imply that fk = g on TIl. Applying DPA I

and DPA 2 we obtain that Q ~ a(fk) and e'(fk.Q) = h. Hence

e'(f'plu ... uPkuQ) = e'(e' .. (e'(f'pI) ... 'pk).Q) = e'(fk.Q) = h. that is for R = PI u ... u Pk u Q

e·(f.R) = h holds. I

The essential role of Determinative Past Assumptions can be demonstrated with an

example where we have no DPA 2 and the transitivity of ... does not hold. Since it is quite

a formal construction. we omit it now.

Mesarovic and Takahara [Mesarovic and Takahara. 75] discuss so called causality, and

within that 'past-determinacy' for general response systems.

19

•

20

2. APPUCATIONS

In this pan we describe three examples in the terms of the model worked out in the first

chapter. The emphasis is put on how to use the formalism as a high level description

language to specify planning problems. As for any description language there are two

important features :

a, "From above" : it is easy to read, simple entities are used to describe a task.

One can easily see whether the specification matches the intuitive interpretation of the

problem.

b, "From below" : it is strict enough. This makes it possible to justify that an

actual implementation (using matrices, Hom-clauses or whatsoever) fits the specification.

In the following examples the abstract entities like states, actions are built up from more

elementary objects. We use sets and formulas for this construction mainly to achieve the

goal stated in a, above. The richer structure on the skeleton <S,A,T,<X,e> enables us to

formulate special requirements and properties typical for the given task.

Due to definition 1.1.2 there is no restriction on the domain of processes in general. In

this chapter, however, all the processes have connected domains which are infmite in the

direction of the 'future'. Observe what such a condition means : from a certain time

instance there are no blind spots, nothing happens without us knowing about it. If the task

allows it, we always take !his assumption.

There are examples where the time does not playa role; it seems that time aspects can

be omitted from the problem description. The underlying assumption in such a case is that

no state transition happens without our actions. Expressing it explicitly : we only have

constant processes (or step-functions in a more elaborated case) which are transformed to

constant processes by the operations. This permits to identify processes with states and to

use time instances only to determine the order of the operations.

2.1. TIm BLOCKS-WORLD AS PLANNING PROBLEM

We consider the well-known blocks-world example (see ego [Nilsson,82]) with one

moving arm.

Formal description

After analyzing the blocks-world we decide to use

constant symbols to denote the objects present,

a binary predicate ON to describe relative positions of the objects,

a binary predicate MOVEONTO to describe the actions of the robot arm.

The world states are built up in the following way:

OBI := (a, b, c, table)

So:= (ON(x,y) I x e OBJ\(table}, y e OBI, x .. y }.

v !; So is termed sound iff

every block is standing on exactly one object and

the table is standing on no object and

only the table may carry more than one block and

no impossible configuration occurs.

Formally speaking it means that :

V x e OBJ\(table} 3! y e OBI (ON(x,y) e V) "

-,3 x e OBI (ON(table,x) e V) "

V x,y,z e OBI (ON(x,y) e V" ON(z,y) e V & x;Oz ~ y=table) "

the transitive closure of the relation ON is not reflexive.

Observe that sound sets belong to possible configurations.

Then the ¢anninr Ul!jverse U consists of :

S := (V!; So I V is sound)

A := (MOVEONTO(x,y) I x e OBJ\(table}, y e OBI}
+ T:= IRO •

21

Concerning the time we take the two assumptions mentioned before. Fonnally we restrict

ourselves to the set F:= (f e F(U) I dom(f) is a ray and rng(f) is a singleton }.

(H !; IR~ is a ray iff V x e H V y e IR~ (x S y ~ y e H)

Hencefonh we make no distinction between processes with the same range, we identify

them all with the same state. Therefore we refer to processes as states.

The conditions of putting a block x on the object y are natural :

x is not already on y and

no object is standing on x and

no object is standing on y or y is the table.

The qI[owab1e qperations of a cenain f e Fare:

(MOVEONTO(x,y),t) e a(f) C=} t e dom(f) "

ON(x,y) f f "

-.3 z e OBI (ON(z,x) e f) "

(-.3 z e OBI (ON(z,y) e f) V (y = table).

The t:ffE1 of an operation (MOVEONTO(x,y),t) e a(f) on the process f e F is as follows:

e(f,(MOVEONTO(x,y),t» := (f\(ON(x,z»)) u (ON(x,y)} on tT,

where z is the (only) element of OBI such that ON(x,z) e f.

PROPOsmON 2.1.1

22

IT V !; So is a sound set (a state) and a e a(V), then V' = e(V,a) is also a sound subset of

so' that is allowable operations transform states to states. I

To express that there is one arm to move blocks we do not allow plans with more actions at

the same time, that is we define a feasibility :

<pep) iff p!; AxT and all the sections of P are singletons

and consider only the feasible plans. It is easy to see that

- <p is descending (subplans of a feasible plan are also feasible),

- every feasible plan is commutative (the result of the plan is unique on any process).

A plannjnr problem can be specified by the previously defined U,a,e and a pair <f,O>, ego :

f:= (ON(c,a), ON(a,table), ON(b,table)}

0:= (f e F I ON(c,table) e f }.

The general definition of a solution can also be restricted by demanding that a solution is

feasible. Notice that this does not require that all the plans generated during the search are

also feasible.

It can be shown that and OAA and DPA2 holds with respect to F and H, hence we have the

transitivity of the -+ relation by Proposition 1.3.1.

23

2.2 1HE JOBSHOP AS PLANNING PROBLEM

We take a simple model as an example. Giving it further structure more sophisticated cases

can be described as well. Suppose there is a finite number of all different machines (set M)

and all different jobs (set 1). Furthermore we have:

24

a precedence relation on the jobs, that is a partial ordering : pre I: J x J,
a relation able I: M x J that shows which jobs can be performed by which machines,

a function d: M x J --oj R~ that indicates the duration of the performance of a job on

a machine.

The task is to complete all the jobs before a certain deadline.

Formal description

The symbols we will use are :

different constant symbols to denote the machines and the jobs,

PRE, a binary predicate to denote the relation pre,

ABLE, a binary predicate to denote the relation able,

dur, a function symbol for the function d,

BUSY, a binary predicate to tell that a machine is working on a job,

READY, a unary predicate to indicate that a job is completed,

BEGIN, a binary predicate denoting the action of beginning a job on a machine.

Let M = (ml, ... ,mk) and J = (jl' ... jn) be disjoint fmite sets standing for the machines

and the jobs respectively.

The world ",U'S are constructed as follows:

So:= (BUSY(x,y) I x EM, Y E J } u (READY(y) lYE J }.

v I: So is called sound iff

- a machine is doing at most one job at a time and

- a job is being done at most on one machine at a time and

- ready jobs are not being performed,

that is

V x e M V y,z E 1 [BUSY(x,y) e V A BUSY(x,z) e V =* Y = z] A

V x,y E M V Z E 1 [BUSY(x,z) E v A BUSY(y,z) E v =* x = y] A

V y E 1 [READY(y) E v =* -a x E M (BUSY(x,y) E V)].

The intention is clear, world states are to be the possible snapshots during the job

perfonning process. The situation at a time instance, however, is not fully determined by

the ongoing activities. Jobs completed earlier are influencing the situation as well. Hence,

a choice needs to be made whether checking the history before decisions, or defining a

representative of the relevant aspects of the history and completing the snapshots with it.

We have chosen the second possibility, this explains the role of 'READY'.

The p/gMjnr universe U consists of :

S := (V I: So I V is sound)

A := (BEGIN(x,y) I x E M, y E J }
+

T :=110'
We assume that we always see what is happening and that ready jobs remain ready forever,

that is, we restrict ourselves to

F := (f e F(U) I dom(l) is a ray and Vye J [(t E T I READY(y) E f(t) } is a ray or 0] }

(H I: R~ is a ray iff V x e H V y e R~ (x S; y ~ Y E H)

The conditions to begin a job j on a machine mare:

- m has the ability to perform j,

- j is not ready yet,

- all the predecessors of j are ready,

- no other job requires m while performing j,

- no other machine wants to begin j while being performed on m.

Formally we defme the a1lowabiljty futu:tjon a: F --t P(AxT) as follows:

V x E M V Y E 1 V t E dom(l)

(BEGIN(x,y),t) E a(t) ~ ABLE(x,y) A

READY(y) E f(t) A

V Z E J [PRE(z,y) =* READY(z) E f(t)] A

-a z E M -a 't E [t,t+dur(x,y» : BUSY(z,y) E f('t) A

-a Z E J -a 't E [t,t+dur(x,y» : BUSY(x,z) E f('t).

25

26

Notice that the last two conditions refer to the future of the time instance L This causes

that the first Determinative Past Assumption does not hold in this planning situation.

The effecl-function e: F x (AxT) --+ F is:

t < t

e(f,(BEGIN(x,y),t»(t):= f(t) v (BUSY(x,y») t S t < t+dur(x,y) !
f(t)

[f(t) v (READY(y»)] \ (BUSY(Zt ,y») t+dur(x,y) S t

where (BEGIN(x,y),t) E a(t) and Zt is the (only) machine from M that is (might be) busy

with y at the time t.

PRorosmoN 2.2.1

Let Y c: So a sound set (a state), a E a(Y), then every Y' e rng(e(V,a» is sound too.

Furthermore, if Y E F then Y' E F, that is allowable operations preserve the validity of our

assumption. I

A typical planning problt:m can be determined by :

fO(t) := (lJ for all t E T

G := (f E F I II Y E J (READY(y) E f(t» if t > deadline), deadline E T.

Reasonable properties to require about plans generated during the search, are for instance :

a, if the job j is scheduled in the plan P then every predecessor of j (II i E J : PRE(ij»

is also scheduled and is already finished when j begins.

b, if the job j is scheduled in the plan P then every predecessor of j which is also

scheduled must be already finished when j begins.

It is easy to see that the first one is not descending. The second propeny inherits to

subplans due to the following statement.

PRorosmoN 2.2.2

Let 'P(P) ~ P c: AxT " II x,y EMil u,v E] II t,t e T

[BEGIN(x,u),t) e P "PRE(u,v) " (BEGIN(y,v),t) E P =* t+dur(x,~) < tl.
Then 'P(P) " P' c: P =* 'P(P').

PROOF

It is enough to show that deleting one element of P does not falsify 'P. I

2.3 ROlITlNG AS PLANNING PROBLEM

The task in consideration is a basic version of several routing problems. There are n

locations to visit in such a way, that no location is visited twice and the end position is the

same as the beginning position.

Formal description

Constant symbols will denote the locations,

CONN, a binary predicate indicates whether two locations are connected or not,

AT, a unary predicate points out our position,ie. the location where we are,
SEEN, a unary predicate is to mark locations that have already been visited,

TO, a binary predicate is to represent the action of changing position.

The world states are constructed from the following entities:

OBI:= (cl, ... ,cn)

27

So:= (AT(x) I x e OBI} u (SEEN(x) I x e OBI}

A set V !; So is called sound iff we are at most at one location at a time, that is :

Yx,ye OBI(AT(x)e V A AT(x)e V=}x=y)

The constituents of the plaaBi«r !U!jyerse U are :
S ;= (V!; So I V is sound)

A := (TO(x,y) I x,y e OBI}
+ T ;= IRO.

As before, we consider only the processes that belong to the set

F ;= (f e F(U) I dom(f) is a ray & mg(f) is a singleton }.

Without loosing expressive power we can identify the processes with their range, and refer

to them as states.

The a1lowqbility functjon is : for every f e F, t e dom(f)

(TO(x,y),t) e a(f) <=* AT(x) E f II SEEN(y) f f II CONN(x,y).

The effect-function is defined as follows : if (TO(x,y),t) e a(f) then

e(f,(TO(x,y),t» := (f\ (AT(x») u (AT(y), SEEN(y)) on tT.

Let us have a look on the role of 'SEEN'. If we use constant processes only, then the

information about the past is lost after each transition. Hence, - unlike 'READY' in 2.2 -

the predicate 'SEEN' is not only a labour-saving invention, but a crucial information carrier.

Notice that a design decision was taken that says, that a location becomes seen when

arriving to it. We gain an easy way to express the requirement of returning to the beginning

position.

PROPOSmON 2.3.1

Let V (; So a sound set (a state), a E a(V), then V' = e(V,a) is sound too.

Furthermore, if V E F then V' E F. I

A typicalg1anning problem for this task is specified by :

fO := (AT(c l)) and
G := (f E F I V X E OBJ (SEEN(x) e f))

28

Notice that the defining formula of G says nothing about visiting the locations only once

and about returning to the beginning position. Proposition 2.3.2 states that no plan can lead

to G without satisfying these requirements.

PROPOSmON 2.3.2

Let E be the set of executable plans as in Definition 1.2.5.

Vfe G [AT(cl) e f] and

V PeE [e'(fO,P) e G ~ «V x e OBJ 3! y e OBJ 3! t e T : (TO(x,y),t) e P) II

(V x e OBJ 3! ye OBJ 3! t e T: (TO(y,x),t) E P))]. I

29

3. SUMMARY

A model of planning problems has been presented in this paper. Due to this model a

planning situation is determined by the five-tuple <S,A,T,a,e>. Within a planning

situation the pair of fO and G specifies a planning problem. A fundamental choice in the

model construction is the use of processes. In this way time is naturally inCOIpOrated, it is

easy to describe cases where the state of the world changes without outside actions. As to

interpret human acts we use operations, i.e. an action coupled with a time instance. The

presence of the time component causes that plans need no structure, they are sets of

operations. As a consequence, modifying a plan is simple and unconstrained; this leaves us

rather free when choosing search strategy.

The structure represented by <S,A,T,a.e> can be considered as a framework. We

believe that this frame carries all the relevant aspects of a planning situation in general.

Instantiating these five variables we obtain a full domain description, specifying fO and G

determines a task to solve. The second chapter demonstrated that indeed, the model can be

used as a high level description language. The examples were not too sophisticated,

therefore the descriptions were not too complex. Despite of the fact that 'real-life' problems

yield more difficult specifications we are convinced that systematic work pays off.

The formalism used in these examples is that of usual mathematics, requiring only

elementary set theoretical and logical background. This language must be familiar to all

those who work as knowledge engineers. The clarity mentioned in the introduction is with

respect to this people.

To place the results of this paper in a wider context let us have a look on further work.

To achieve the interactive planning system shell, the following steps need to be performed :

I, Making a model of the problems in consideration.

2, Choosing a representation form that is suitable to describe the abstract entities of

the model.

3, Choosing solution method{s) appropriate to the representation language IIRd the

problem class covered by the model.

4, Implementation, that is design of the system, functional, technical specification

and the programming.

A major aim along our project is to keep modeling. representational. algorithmic and

implementational aspects apart. This helps to have a clear view about the features of the

system in every phase of the development. Keeping a track on the decisions taken we can

trace back to the cause of a cenain feature. and change it if needed.

This article considers the first step of the four mentioned above. Obviously the second and

the third phase are strongl y connected. they will be investigated in parallel. It is remarkable

that point 4 covers more than one fourth of the whole work. It will be better articulated as

the investigation proceeds and its details become more visible.

Further results will be reported in the same series : Computing Science NOleS, Eindhoven

University of Technology. the Netherlands.

30

4. INDEX

action

a1lowability relation, function

allowable operation

commutative plan

composition of manipulations

effect function

executable edges, - plan

extended effect -function

feasibility

feasible plan

goal predicate, - set

initial process

manipulation

natural numbering

nil

operation

plan

planning graph

planning problem

planning situation

planning universe

process

safe plan

section

slice

solution

world state

time instance

time function

transition relation

Pagenr.

5

8

8

17

l3

8

15

10

14

14

11

11

12

9
8

7

8

12

11

11

5

5
17

8

9
11-

5

5

7

18

31

5. REFERENCES

Forbus, K. D., Qualitative Process Theory, Artificial Intelligence 24 (1984) 85-168.

Mesarovic, M. D. and Takahara, Y., General Systems Theory: Mathematical Foundations,
Academic Press, 1975.

Nilsson, N. 1., Principles of Artificial Intelligence, Springer-Verlag, 1982.

Pearl, J., Heuristics, Intelligent Search Strategies for Computer Problem Solving,
Addison-Wesley, 1984.

32

In this series appeared:

No. Author(s) Title
85/01 R.H.Mak The formal specification and

derivation of CMOS-circuits

85/02 W.M.C.J. van Overveld On arithmetic operations with
M-out-of-N-codes

85/03 W.J.M. Lemmens Use of a computer for evaluation
of flow films

85/04 T. Verhoeff Delay insensitive directed trace
H.M.J.L. Schols structures satisfy the foam

rubber wrapper postulate

86/01 R. Koymans Specifying message passing and
real-time systems

86/02 G .A. Bussing ELISA, A language for formal
K.M. van Hee specifications of information
M. Voorhoeve systems

86/03 Rob Hoogerwoord Some reflections on the implementation
of trace structures

86/04 G.J. Houben The partition of an information
J. Paredaens system in several parallel systems
K.M. van Hee

86/05 Jan L.G. Dietz A framework for the conceptual
Kees M. van Hee modeling of discrete dynamic systems

86/06 Tom Verhoeff Nondeterminism and diverEence
created by concealment in SP

86/07 R. Gerth On proving communication
L. Shira c10sedness of distributed layers

86/08 R. Koymans Compositional semantics for
R.K. Shyamasundar real·time distributed
W.P. de Roever computing (Inf.&ControI1987)
R. Gerth
S. Arun Kumar

86/09 C. Huizing Full abstraction of a real-time
R. Gerth denotational semantics for an
W.P. de Roever OCCAM·like language

86/10 J. Hooman A compositional proof theory
for real·time distributed
message passing

86/11 W.P. de Roever Questions to Robin Milner - A
responder's commentary (lFIP86)

86/12 A. Boucher A timed failures model for
R. Gerth extended communicating processes

86/13 R. Gerth Proving monitors revisited: a
W.P. de Roever first step towards verifying

object oriented systems (Fund.
Informatica IX-4)

86/14 R. Koymans Specifying passing systems
requires extending temporal logic

87/01 R. Gerth On the existence of sound and
complete axiomatizations of
the monitor concept

87/02 Simon J. Klaver Federatieve Databases
Chris F .M. Verberne

87/03 G.J. Houben A formal approach to distri-
J.Paredaens buted information systems

87104 T.Verhoeff Delay·insensitive codes -
An overview

87/05 R.Kuiper Enforcing non-determinism via
linear time temporal logic specification.

87106 R.Koymans Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

87/07 R.Koymans Specifying message passing and real-time
systems with real-time temporal logic.

87/08 H.M.J.L. Schols The maximum number of states after
projection.

87109 J. Kalisvaart Language extensions to study structures
L.R.A. Kessener for raster graphics.
W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87110 T.Verhoeff Three families of maximally nondeter-
ministic automata.

87/11 P.Lemmens Eldorado ins and outs.
Specifications of a data base management
toolkit according to the functional model.

87/12 K.M. van Hee and OR and AI approaches to decision support
A.Lapinski systems.

87/13 J.C.S.P. van der Woude Playing with patterns,
searching for strings.

87/14 J. Hooman A compositional proof system for an occam-
like real-time language

87/15 C. Huizing A compositional semantics for statecharts
R. Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder Normal forms for a class of formulas
J.C.F. Wilmont

87/17 K.M. van Hee Modelling of discrete dynamic systems
G.-J.Houben framework and examples
J.L.G. Dietz

87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved
surfaces

87/19 A.J.Seebregts Optimalisering van file allocatie in
gedistribueerde database systemen

87/20 G.J.Houben The R2 -Algebra: An extension of an
J. Paredaens algebra for nested relations

87/21 R. Gerth Fully abstract denotational semantics
M. Codish for concurrent PROLOG
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the
Mobius Sequence

88/02 K.M. van Hee Executable Specification for Information
G.J. Houben Systems
L.J. Somers
M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples

88/04 G.J. Houben The Nested Relational Algebra: A Tool to handle
J.Paredaens Structured Information
D.Tahon

88105 K.M. van Hee
G.J. Houben

Executable Specifications for Information Systems

L.J. Somers
M. Voorhoeve

88/06 H.M.J.L. Schols Notes on Delay-Insensitive Communication

88/07 C. Huizing Modelling Statecharts behaviour in a fully
R. Gerth abstract way
W.P. de Roever

88108 K.M. van Hee
G.J. Houben

A Formal model for System Specification

L.j. Somers
M. Voorhoeve

88/09 A.T.M. Aerts A Tutorial for Data Modelling
K.M. van Hee

88/10 J.C. Ebergen A Formal Approach to Designing Delay Insensitive
Circuits

88111 G.J. Houben A graphical interface formalism: specifying nested
J.Paredaens relational databases

88112 A.E. Eiben Abstract theory of plannin&

88113 A. Bijlsma A unified approach to sequences, bags, and trees

	Abstract
	Contents
	0. Introduction
	1. Theory
	1.1 The planning problem, object level
	1.2 The planning graph, reasoning level
	1.3 Additional results
	1.3.1 Concurrency
	1.3.2 Transition between processes
	2. Applications
	2.1 The blocks-world as planning problem
	2.2 The jobshop as planning problem
	2.3 Routing as planning problem
	3. Summary
	4. Index
	5. References

