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ABSTRACf 

ABSTRACf TIIEORY OF PLANNING 

A. E. Eiben 

Eindhoven University of Technology 
Department of Mathematics and Computing Science 
P. O. Box 513 
5600 MB Eindhoven, The Netherlands 

June 1988 

A mathematical theory of planning is worked out in this paper. The terms 'planning 

problem', 'plan', 'solution of a planning problem' etc. are often used in the fields of Artificial 

Intelligence, Decision Suppon Systems and Operation Research. The meaning of these 

terms, however, is rather intuitive. This article presents a general model of planning that 

covers a wide range of 'planning problems'. Examples given at the end demonstrate that 

this framework can also serve as a high level description language of different 'planning 

type' tasks. 
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O. INI'RODUCTION 

The Eindhoven University of Technology is running a project that investigates 

interactive planning systems. The goal is to develop a domain independent shell that, filled 

in with knowledge, becomes a decision suppon system (DSS) on a cenain field. One of our 

first questions was "What kind of problems should the DSS solve 7", and we realized that 

'planning problem' was not a well defmed notion. Much of the literature on the subject is 

restricted to a specific class of problems. Another difficulty is that conceptual and 

representational issues are seldom kept apan. Constraints originating from the propenies of 

the considered problem class and constraints arisen from the applied representation method 

are not explicitly distinguished. These shoncomings initiated a study to work out a general 

concept of describing and solving planning problems. 

Investigating 'planning problems' one soon realizes that a large number of tasks can be 

classified as such. These tasks lie in different fields, are described by different formalism, 

solved by different methods, but they have something in common. The term 'planning 

problem' is mostly associated with situations where cenain circumstances are given and one 

needs to reach a desired state. The word 'plan' is used for a collection of activities. The 

solution of such a problem is a plan that leads from the initial-, to the goal-configuration. 

Well-known examples of this type are for instance the blocks-world. the job--shop. and 

the routing problem. The ger.eraJ model that captures these problems is expected to have 

multiple advantages : 

1. In its structure the similarities between different problem classes are more 

visible, likewise the essential differences are more distinguishable. 

2. It provides a formalism for high level task specification. A planning problem can be 

described in such a way that: 

- "from above" it is clear enough, it is easy to see whether a specification 

matches the intuitive interpretation of the problem; 

- "from below" it is precise enough. it is possible to justify that an .actual 

representation (matrices. Horn-clauses etc.) fits the specification. 

3. Since it is a uniform framework to describe planning problems. it can be the 

kernel of the DSS shell mentioned above. 
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The definitions of the first section establish our basic notions concerning planning 

problems. Algorithmic aspects, representation and solution methods are not considered 

here. Roughly speaking we model the world, that is we set up a framework to formulate 

knowledge about what is to solve. 

In § 1.2 there are general concepts discussing how to solve it. Filling in the frame 

presented in § 1.1 we obtain a world description and a problem setting. Specifying the 

entities introduced by § 1.2 leads to a solution method. 

In § 1.3 we give a short overview about some questions related to the foregoing. We 

unfold properties and assumptions which are not always valid in the real world, therefore 

are not enclosed in the general theory. As we shall see, they might be of decisive 

importance and formulizing them provides the ability to test them if needed. 

In § 2 we describe three planning problems with the formalism developed in the first 

chapter. This part illustrates the use of the theory and the easiness of representing different 

types of problems in this uniform framework. 
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1. TIlEORY 

Let us first display our intuitive view on planning problems. This illuminates our 

preliminary assumptions, explains the motivations behind the definitions, and it also 

determines the domain covered by our theory. 

We see the world as a process that is, state transitions embedded in the time. Human 

influence on the world can be carried out by actions that also take place in time. Applying 

an action to a process yields a new process. Specifying the application conditions and the 

effects of the possible actions fully determines the planning environment. Plans are simply 

sets of actions without any further structure, their effect on processes is computed from the 

effect of their constituents. Within a planning situation a task is given by an initial process 

and a set of goal processes. A plan is a solution of such a task, if applied to the initial 

process it leads to the goal set. 

Pay attention to the definition of the planning graph; regardless to algorithmic details it 

indicates our intended methodology: generating a solution by graph search. 

1.1 TIlE PLANNING PROBLEM, OBJEcr LEVEL 

DEFINITION 1.1.1 A plannine universe is an ordered triple: <S,A,T>, where 

S is a set called the set of world states 

A is a set called the set of actions 

T is an ordered set called the set of time instances 

Denoting time segments we shall use the following notational convention : 

tT:= {t e Tit S t } 

Tt:= {t e Tit < t } 

Tt:=Ttu It} for any t,t e T. 

DEFINITION 1.1.2 A process of a planning universe is a function f: T' -t S , where 

T' \; T. The set of all processes of a planning universe U is denoted by F(U). 
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Intuitively a process stands for "The Flow of Nature". In our approach the basic 

entities to represent the world are processes rather then states. In this way time is naturally 

incorporated, it is easy to handle cases where the state of the world changes without outside 

actions (see § 2.2). A process f can be seen as a film about the world, a certain state f(t} 

in the range of f is the snapshot taken at the moment t. From mathematical point of view 

a process is a parameterization of S by T'. If time does not play a role then constant 

parameterization (where Jrng(f)1 = I) can be used. Assuming that processes with the same 

range need not to be distinguished, all the processes having the range (s) can be identified 

with the same state s. It is easy to see that the obtained structure is the equivalent of the 

state based approach. 

A process can be changed by actions that take place in time. The effect of an action is 

described by a function e, the precise definition of which is presented later. The 

interpretation of the formula e(f,(a,t» = g is that applying the action a at the time t the 

former process f changes and the new process is g. 

EXAMPLE 1 FALLING 

S = (held, falling, broken) 

A = (drop) 

+ T = IRO 
Let us take a process f, and an effect-function e as follows: 

f(t} = held for every t > 0 and 

{

falling 
e(f,(drop,t»(t} = 

broken 

Another effect-function can be : 

e(f,(drop,t»(t} = ! :::~ ing 

broken 

if t S t < t + falltime 

if t+ falltime S t 

ifOS<t<t 

if t S t < t + fall time 

if t + fall t ime St 

foranyt>O, t~t. 

This effect-function, unlike the previous one preserves the information about the "past". 

Such a description resembles the so called qualitative or compton sense physics and 

indeed, the case of the ball falling through a flame [Forbus, 84] can be described easily. 
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EXAMPLE 2 

h-----

FALLING & HEATING 

o 
! 

hr -----------------
FLAME 

h2- - - - - - - - - - - - - - - - - -

Now the environment is built up as follows: 

s = (heldat(h), faJlingat(h), fallingat (h) II heated, broken I h e [0,100] } 

A = (drop) 

Let h e (0,100] and fO(t) = heldat(h) for every t e T be the initial process. Our 

knowledge about this world can be represented by the following effect function: 

e(fO,(drop,t»(t) = 

fallingat(h') t < t + reach flame 

fall ingat(h') II heated 

fall ingat(h') 

broken 

t + reachf 1 arne ~ t < t + leavefl arne 

t + leavef 1 arne ~ t < t + fall time 

t +falItime ~t 

where the exact value of h', falltime, reachflame, leaveflarne can be calculated from 

h, hI' h2' t by the well-know'l Newtonian laws of mechanics. 

With such a detailed description we can formulate precise conditions (commands for a robot 

arm) to rescue the falling object, ego : 

rescuedh {=} catchat(time,pos) : pos e (O,h) II time = J 2(h - pos) 
g 

. 
DEFINITION 1.1.3 An operation (interpreted as the execution of the action a at the 

time t) is a pair (a,t) e A x T, and let ~ : A x T ---; T be the projection function, that 

is time«a,t»:= t for any operation. 
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DEFINITION 1.1.4 The allowabilitv relation of a planning universe U is a relation 

ALL C F(U) x (AxT). It defines two allowability functions: 

0. : F(U) -; 1(AxT) ,where a(f):= { 0 e AxT I (f,o) e ALL ) 

a' : AxT -; 1(F(U», where 0.'(0):= { f e F(U) I (f,o) e ALL ) 

The elements of a(f) are called the allowable operations of f. 

It is easy to see that any of the three of ALL, a., a' uniquely determines the other two. 

Throughout this article the function 0. will be used. 

Observe that the implication (a,t) E a(f) ~ t e dom(f) does not necessarily hold. One 

could require it based on intuition, but it does not follow from the previous definitions, and 

is not needed for the later properties. 

DEFINITION 1.1.5 Let U = <S,A,T> be a planning universe. First we define nil as a 

distinguished element of F(U), or say that we extend F(U) with nil. Then an effect-function 

is a function e: F(U) x (AxT) -; F(U) such that: 

- nil is an universal absorber (a, b,) 

- the past of a pro.:ess can not be extended by an operation (c,) 

- the past of a process can not be changed by an operation (d,) 

that is for any f,g e F(U) and 0 = (a,t), (a,t) e AxT 
a, e«nil,o» = nil 

b, e«f,o» = nil if 0 f a(f) 

c, e(f,o) = g ~ dom(g) () Tl c dom(f) () Tl 

d, e(f,o) = g ~ f = g on dom(g) () Tl 

Notice that in Example I the value of the effect-function was specified only for a 

subset of its domain. In order to give an exact meaning to such an incomplete definition 

we introduce a convention. We assume that in the undefined cases the value of the effect 

function is nil. As a consequence, it is enough to determine the value of e for some 

(f,o) e F(U) x (AxT). Due to the above convention it can be regarded as the definition of 

the complete effect-function e. 

DEFINITION 1.1.6 A Jilim is a set of operations. A plan P is called a section iff 

V 01'02 e P time(ol) = time(02)' The function time can be extended for non empty 

sections by time(p) := time(o), where 0 E P is arbitrary. 
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DEFINmON 1.1.7 P , ... ,P are called the ~ of the plan P iff 
I n 

a, 

b, 

c, 

n 
P= u P" 

i=1 J 

Vie (I, ... ,n) Pi is a section, 

V ij E (l, ... ,n) [time(Pi) = time(Pj) ~ i = j J. 

LEMMA 1.1.1 The slices of a plan are uniquely determined that is, for any plan P there 

is one and only one set (PI""'Pn) satisfyinga,b,c of definition 1.1.7. 

PROOF It is straightforward, observe that the slices of a plan P are the maximal sections 

contained in P. I 

If P has n slices then a numbering of them is a bijection from the set (I , ... ,n) onto the set 

of slices of P. Obviously, the slices of a plan P can be numbered in many ways. We 

distinguish one numbering. 

DEFINmON 1.1.8 The natural numbering of a plan P is that numbering which satisfies 

V ij e (l, .. ,n) [i < j (:} time (Pi) < time (Pj) J 
The notation P = [p 1''''p nJ stands for a plan P with the slices P 1''''P n numbered by the 

natural numbering. 

PROPOsmON 1.1.1 For any plan P there is one and only one natural numbering. 

PROOF By the lemma 1.1.1 we have that 

3! set of slices ofP. say (PI .... ,Pn). This implies that 

3! (tl' .... tn ) \; T: Vie (l, .. ,n) [ti = time(Pi) J. Since T is ordered we also have that 

3 ! permutation x of (I, ... n) : tx(l) < ... < tx(n), 

It is easy to see that the bijection Vie (l ... ,n) x(i) f-+ Pi satisfies the definition of natural 

numbering. I 

Next we extend the effect-function from operations to plans. The major problem is to 

determine the result of equitemporal operations. The effect of n operations can be 

computed in n! different orders, which may lead to n! different results. If the 

operations occur at the same time. then intuition does not help us to choose among the 

different outcomes. Therefore we take each of them. that is a subset of FCU) instead of a 

single process. 
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DEFINITION 1.1.9 For a given U = <S,A,T>, a and e the extended effect=function 

e' : 1{F(U) x 1I;AxT) ---; 1I;F(U)) is defined inductively: 

a, e'(F,0) = F for any F!; F(U) 

b, if f e F(U), P = (01' .. ,on) is a section then 

e'«(f),P) = U (e( .. e(f,oi ) ... , 0i »), 

( . . ) n 
11,~·,ln 

where Ii 1' .. ,in ) ranges over the set of all permutations of (I , .. ,n). 

c, if F!; F(U), P is a section then e'(F'p) = u e'({f), P) 
feF 

d, if F!; F(U), P = [P1''''p nl then e'(F'p) = e'( ... e'(F, P I)"''p n) 

For singletons we shall write e'(f,P) instead of e'«(f),P), likewise e'(F'p) = g stands for 

e'(F,P) = (g). 

Notice that the intuitive interpretation of time is hidden right here in using strictly the 

natural numbering in point d. This establishes that the effect of the operations with 

a smaller (earlier) assigned time instance precedes the effect of the ones with a larger (later) 

time instance. 

Due to defmition 1.1.5 the past of a process - related to a time instance t - can not be 

changed by an operation which takes place at the moment t. The next statement extends the 

past invariance property for plans in general. 

PROPOSITION 1.1.2 (Past Invariance Lemma) 

Let f,g e F(U), P = [P1' ... 'pnl a plan, ti = time (Pi) for every i e (I, ... ,n). 

If e'(f,P) = g and g *" nil then f = g on dom(g) () Ttl 

PROOF 

(i) n = 1 (P is a section). 

Let P = (01' .. ,ok)' By point d of definition 1.1.5 we have that 

VI < m:S k [e( .. e(f,ol) ... ,orJ = g ~ e( .. e(f,ol) ... ,om_l) = g on dom(g) () Tlil. 

Hence e(f,ol) = g on dom(g) () Tl
I
, thus again by definition 1.1.5 f = g dom(g) () :fll . 

(ii) n > I 
Applying the assertion of (i) we obtain that 

V I < m :S n [e( .. e(f,P I ) ... ,P m) = g ~ e(..e(f,P I ) ... ,P m-I) = g on dom(g) () TIml. 

This results e(f,P I) = g on dom(g) () TtZ ' which implies f = g dom(g) () Tll" I 
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DEFINITION 1.1.10 The triple <V,a,e> of a planning universe, an effect-function and 

an allowability-function is given a special name, it is called a planninll situation. 

A planninll problem is defined by a planning situation <V,a.e> and a pair <f,G>, where 

f e FCU) is the initial Process, G!; F(V) is the Iloal set 
The set G is often specified by a predicate over the processes, called the ~ predicate. A 

plan P is a solution of the planning problem iff e'(f,P)!; G, (the result of applying the 

plan P to f satisfies the goal predicate). 

Defining a (partial) ordering on the set G the solutions can be compared, thus searching 

for the (an) optimal solution is reasonable. 
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12 THE PLANNING GRAPH, REASONING LEVEL 

As it was formerly said, in § 1.1 we discuss what is the problem to solve, and in § 1.2 

we investigate the question of how to solve it. We shall follow the search space paradigm, 

i.e. that a solution is reached by traversing a so called search space consisting of objects 

being of the same type as the expected solution. The search space will be defined as 

general as possible and we will point out what kind of restrictions are needed to specify a 

cenain solution algorithm. 

Usually a method to solve a given planning problem proceeds by modifying the planes) 

generated so far. Manipulations as entities changing plans are strictly distinguished from 

operations acting on processes. In our approach manipulating a plan P (a set of operations) 

is carried out by computing the symmetric difference of P and another set of operations R. 

This explains the following definition. 

DEFINIT10N 1.2.1 A manipulation in the planning universe <S,A,T> is a set R ~ A x T. 

The result of applying the manipulation R to the plan P is the plan P 11 R = (PUR) \ (ProR). 

It is easy to see that the usual "add", "delete", "replace", etc. can be obtained by 
choosing an appropriate set R. 

DEFINIT10N 1.2.2 In the planning graph of a planning universe the nodes belong to . 
plans the edges belong to plan manipulations. The edge labeled by R connects the nodes 

labeled by P and Q iff P 11 R = Q. 

PROPOsmON 12.1 For any planning universe the corresponding planning graph is a 

complete connected graph without multiple joins. 

PROOF We need to show that there is exactly one edge between any two nodes that is, 

"P,R ~ A x T 3 ! Q ~ A x T : P 11 Q = R. 

The existence is obvious, notice that Q = P 11 R will do. 

To verify that there are no multiple joins we prove that no other Q is good. Let us suppose 

that Q~AxT and PI1Q=R. 

a, First observe that Q ~ PuR. 

If Q \ (p u R) # 0 then (P 11 Q) \ (p u R) # 0, thus (p 11 Q) \ R # 0, which implies that 

PI1Q#R. 

12 



b, 3x:xeQAxfP~R 

From Q ~ PuR and x e Q A x f P ~ R we can conclude x e P ("\ Q ("\ R. This implies 

x f (P u Q) \ (P ("\ Q), hence x f R, that contradicts x e P ("\ Q 11 R. 

c, 3x:xfQAxeP~R 

cI x f Q A x e R \ P ~ X f P u Q ~ X f (P U Q)\(P 11 Q) ~ x f R, that contradicts 

x e R\P 

c
2 

x f Q A x e P \ R ~ X f P ("\ Q ~ X e (P V Q)\(P ("\ Q) ~ x e R, that contradicts 

xeP\R 

From band c it follows that Q \ (P ~ R) = 0 A (P ~ R) \ Q = 0, that is Q = P ~ R. I 

The planning graph embodies the entire search space. The search for a solution can be 

considered as traversing this graph. It may start at an arbitrary (not necessarily the empty) 

node and should reach a node which belongs to a solution (if there exists any). 

Dealing with such a successive node transition requires the usage of paths, that is composed 

manipulations. 

DEFINfTION 1.2.3 Let Q and R be manipulations in a planning universe. The 

composition of Q and R (designated by QoR) is the manipulation Q ~ R. 

PROPOsmON 1.2.2 

For any plan P and manipulations MI and Mz, P (MI 0 Mz) = (P MI) Mz holds. 

The manipulations with the composition form an Abelian group, where all the elements are 

idempotent. 

PROOF It is straightforward, it needs only elementary set theoretical properties. I 

With these definitions the necessary notions of path, descendant nodes, ancestor nodes etc. 

are rather obvious. 

13 

After making a satisfactory description of the planning problem the planner has to 

decide about the solution method. While the problem formulation is quite determined by 

the considered circumstances, there is a large flexibility in defining a reasonable search 

algorithm. Nevertheless, there are some general steps to be performed in every case. In 

order to specify a search algorithm one needs to tell which part of the graph will be 

traversed and how will it be traversed. This means : 



to prune the search space by 

- making a restriction on the nodes of the graph, 

- making a restriction on the edges of the graph, 

to direct the search by 

- specifying a search,trategy (how to move within the graph). 

There is much known about search strategies, (see ego Pearl,84) thus let us have a closer 

.look on the first issue. First of all let us make a trivial restriction about the edges. From 

now on we consider only those edges that belong to a singleton (o) ~ A x T. Proposition 

1.2.1 guarantees that we loose no power with this. 

The restrictions on the considered nodes are often carried out by means of "feasible" plans. 

How feasibility is defined is strongly task-dependent. It is mostly intended to express some 

soft constraints, that is requirements set up by the user and not by the features of the 

problem (hard constraints). Having seen many cases we have experienced that very often 

the property defining feasible plans is descending, that is subplans of feasible plans are also 

feasible. Accepting it as a general concept of feasibility we obtain the following definition: 

DEFINITION 1.2.4 Let U be a planning universe, P the set of all plans in U, !p a 

predicate over P. We say that !p is a f""ability iff !p is not universally false and !p is 
descending, that is 

3 P e II' [ !p(P)] A V P,R e II' [!p(P) A R!: P =* !p(R)]. 

A plan P is called feasible (cp-feasible) iff !p(p) holds. 

The properties discussed in 2.2 illustrate this matter particularly for the job shop problem. 

The next proposition shows that restricting the search space to the feasible plans is safe in 
general. 

PROPOsmON 1.2.3 In any planning universe, for any feasibility 

the empty plan is feasible 

- any feasible plan (thus also the feasible solutions) can be reached from the empty plan 

by a feasible path (where all the nodes are feasible). 

PROOF It is straightforward from the definition of feasibility. I 

14 
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A general method to restrict the edges taken into account can be based on the idea of 

executability. We intend to call an edge to) I: A x T executable w.r.t. a process f, if 

e(f, (o)) ,;,. nil, that is 0 E a(f) holds for the operation 0 E A x T. Extending a plan P by an 

operation 0 and stepping further from the node P by the edge (o) is the same thing. The 

process that can be assigned to a node P is e'(fO,P)' the result of applying P to the initial 

process. During the search we want to consider only such extensions/steps that are 

executable w.r.t. the actual e'(fO,P)' This explains the following definition. Observe that 

feasibility can be defined within the terms of a planning universe <S,A,T>. To have 

executability we need <S,A,T,a,e> and at least the initial process from the pair <fO,G>. 

DEFINITION 1.2.5 Let <S,A,T,a,e> be a planning situation, fO E F(U), and let r denote 

the planning graph of <S,A,T,a,e>. The set E of executable plans is defmed inductively. 

Let E(l) := ( (a) I a E a(fO) ) 

(the executable plans containing one operation) 

E(n) := ( P u (a) I P E E(n-l), a E a( e'(fO,P») (l < n) 

E := (0) u ~ E(i) 
i=1 

(the executable plans containing n operations) 

(the set of executable plans). 

The edges belonging to the elements of the set a(e'(fO,P» are called the eXecutable ediCs 

w.r.t. the node P in r. The executable edges of the executable nodes make up the set of all 

executable edee:; in r. 

Roughly speaking, we can characterize executable plans as those ones which do not transfer 
". 

fO to nil. Executable edges preserve executability in the sense, that stepping away from an 

executable node by an executable edge, leads to an executable node. This is why one could 

require that the search considers only executable edges (manipulations). 

A predicate expressing that a plan is executable, (!p(p) is true iff PEE) is not descending 

in general. Still, we can state the analogue of Proposition 1.2.3. 

". 
Under the Good Allowability Assumption (see 1.3.2) PEE and e'(fO,P)';" nil are 

equivalent. 



PROPOsmON 1.2.4 Let <S,A,T,n,e>, <fO,G> be a planning problem, the set E as 

defined in Definition 1.2.5. Then 

the empty plan is executable 

any executable plan can be reached from the empty plan by an executable path (where 

all the edges are executable). 

PROOF It is obvious from the definition of E. I 

Hereby we have sketched two general principles to reduce the search space. The most 

likely way of applying them is a combined usage. To prune the search space one defines a 

feasibility and requires that the search should proceed by always taking executable edges 

that lead to feasible nodes. 

Viewing plans simply as objects which we can modify raises the straightforward question: 

is the reasoning level of a planning situation a planning situation itself? The answer is yes. 

Without the formal assertion one can figure a universe where : 

the states are the plans of the original universe, 

- the actions are the plan manipulations, 

the effect function is defined to be conform with the effect of the manipulations. 

This observation indicates that the structure <S, A, T, n, e> can be widely recognized I 
applied. 
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1.3 ADDmONAL RESULTS 

Section 1.1 supplies the basic definitions to capture planning problems. Further study 

has led to extensions and sophistications which are not discussed there. This section gives 

an overview about two of the considered topics. A more extensive survey on the matter is 

available at the author. 

1.3.1 CONCURRENCY 

17 

The terms 'concurrency' or 'parallelism' are mostly applied to cases where more 

activities, events occur at the same time. In our model a process assigns one state to a time 

instance, all events are enclosed in the state. Looking at the inner side of a state may 

display that the state constitutes of several pixels which represent parallel activities (see 

§ 2.2). On the general level we do not bother about such details, as far as the world is 

concerned, there is always one object (a state) present at any time instance. For this reason, 

we use the word 'concurrency' when there are more actions to apply at the same time. 

According to point d of definition 1.1.9 the order to compute the effect of different sections 

is determined by their time precedence relations. For equitemporal operations we found no 

general principle to determine the computing order. Due to point b the set of all possible 

results was taken, hence le'(f,P)1 > 1 can occur. This yields ambiguity about the result of 

applying a plan to a process. The uncertainty can not be excluded in general, but there are 

(a lot of) examples where we have a much better case. This motivated the following 

definitions. 

A plan P is called commutative. if the set e'(f,P) in Definition 1.1.9 / b is a singleton. 

This means that the result of the simultaneous operations is independent from the 

computation order, that is uniquely determined. 

In certain cases there is no need to know the exact result of a plan. It can be enough 

that the set e'(f,P) surely satisfies some conditions, i.e. it is surely within a set H !: F(U). 

In this case we say that P is safe w.r.L H. 

Observe that recognizing these features in a concrete planning situation can make the 

computation much easier. 



1.3.2 TRANSmON BElWEEN PROCESSES 

A process can be considered as an elementary object that is transformed into another 

process by a plan. The definition of the transition relation is self-evident. 

DEFINTI10N 1.3.1 Let <U,a,e> be a planning situation. The transition relation .... 

on F(U) is defmed as follows: 

for any f,g e F(U) f .... g iff 3 P (; AxT : e'(f,P) = g. 

The relation .... is clearly reflexive since V f e F(U) [e'(f,0) = f] by definition. With some 

surprise we realized that transitivity did not hold for ... in general. Investigating the cause of 

this fact we found quite natural conditions to imply transitivity. 

The following properties do not have universal validity in practice and they are independent 

from the former definitions. Therefore we formulate them as assumptions which need to be 

tested in each planning situation. 

GOOD AlLOW ABll.ITY ASSUMPTION (OAA) 

For all f e F(U) and 0 e AxT e(f,o) = nil ~ 0 f a(f). 

The next two assumptions have a common underlying idea. Namely, that being in a world, 

our knowledge about it is strongly based on the past. From within we can not distinguish 

two processes which have the same history up to now. With other words, it is only the past 

and the present that determine a situation, regardless to the future which would have come 

without our interference. The two assumptions below formally express that 

- the set of our possible actions, and 

- the effect of the actions 

is independent from the future. 

DETERMINATIVE PAST ASSUMPTION 1 (DPA 1) 

For any f,g e F(U) and t e T f t Tl=g t Tl ~ a(f) t t = a(g)t t. 

The notation am t t stands for ( (a,-t) e a(f) I t = t }. 
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DETERMINATIVE PAST ASSUMPTION 2 (DPA 2) 

For any f.g e F(U) and section P ¢ fIJ : time(P) = t f t Tl = g t Tt ~ e'(f,P) = e·(g.P). 

These assumptions are not fully independent since GAA & DPA 2 ~ DPA I can be 

proved. The most interesting statement. however. is the following. 

PROPOsmON 1.3.1 (Transitivity) 

GAA and DPA 2 imply the transitivity of .... that is. if GAA and DPA 2 hold then 

V f.g.h e F(U) V P.Q !:; AxT [e·(f.P) = g A e·(g.Q) = h ~ 3 R !:; AxT : e·(f.R) = h ]. 

PROOF 

Let us take f.g.h e F(U) and p.Q!:; A x T such that e'(f,P) = g and e·(g.Q) = h. 

Let P = [P I' ... 'p n] • Q = [Q I.···.~] sliced and numbered by the natural numbering. We 

define ti := time(Pi) • i = I •..• n and t i := time(Qi) • i = I •..• m. 

(i) tl :s; tl 
e'(f,P) = g ~ f = g on dom(g) ,., T1I by the past invariance lemma. so 

f = g on dom(g) ,., TIl holds too. Then from DPA I we have that Q ~ a(f) and DPA 2 

implies that e·(f.Q) = e'(g.Q) = h. 

(ii) tl > tl 
Let fO := f. f.:= e·(f. I'p·) for every i = I •...• n. Due to the past invariance lemma 

1 1- 1 

fi = g on T1j+l for all i = 1 •...• n-1. Let k be such that k = max ( i I ti < 'tl I. 
Then tk < tl :s; tk+1 and fk = g on Tlt+1 imply that fk = g on TIl. Applying DPA I 

and DPA 2 we obtain that Q ~ a(fk) and e'(fk.Q) = h. Hence 

e'(f'plu ... uPkuQ) = e'(e' .. (e'(f'pI) ... 'pk).Q) = e'(fk.Q) = h. that is for R = PI u ... u Pk u Q 

e·(f.R) = h holds. I 

The essential role of Determinative Past Assumptions can be demonstrated with an 

example where we have no DPA 2 and the transitivity of ... does not hold. Since it is quite 

a formal construction. we omit it now. 

Mesarovic and Takahara [Mesarovic and Takahara. 75] discuss so called causality, and 

within that 'past-determinacy' for general response systems. 
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2. APPUCATIONS 

In this pan we describe three examples in the terms of the model worked out in the first 

chapter. The emphasis is put on how to use the formalism as a high level description 

language to specify planning problems. As for any description language there are two 

important features : 

a, "From above" : it is easy to read, simple entities are used to describe a task. 

One can easily see whether the specification matches the intuitive interpretation of the 

problem. 

b, "From below" : it is strict enough. This makes it possible to justify that an 

actual implementation (using matrices, Hom-clauses or whatsoever) fits the specification. 

In the following examples the abstract entities like states, actions are built up from more 

elementary objects. We use sets and formulas for this construction mainly to achieve the 

goal stated in a, above. The richer structure on the skeleton <S,A,T,<X,e> enables us to 

formulate special requirements and properties typical for the given task. 

Due to definition 1.1.2 there is no restriction on the domain of processes in general. In 

this chapter, however, all the processes have connected domains which are infmite in the 

direction of the 'future'. Observe what such a condition means : from a certain time 

instance there are no blind spots, nothing happens without us knowing about it. If the task 

allows it, we always take !his assumption. 

There are examples where the time does not playa role; it seems that time aspects can 

be omitted from the problem description. The underlying assumption in such a case is that 

no state transition happens without our actions. Expressing it explicitly : we only have 

constant processes (or step-functions in a more elaborated case) which are transformed to 

constant processes by the operations. This permits to identify processes with states and to 

use time instances only to determine the order of the operations. 



2.1. TIm BLOCKS-WORLD AS PLANNING PROBLEM 

We consider the well-known blocks-world example (see ego [Nilsson,82]) with one 

moving arm. 

Formal description 

After analyzing the blocks-world we decide to use 

constant symbols to denote the objects present, 

a binary predicate ON to describe relative positions of the objects, 

a binary predicate MOVEONTO to describe the actions of the robot arm. 

The world states are built up in the following way: 

OBI := (a, b, c, table) 

So:= ( ON(x,y) I x e OBJ\(table}, y e OBI, x .. y }. 

v !; So is termed sound iff 

every block is standing on exactly one object and 

the table is standing on no object and 

only the table may carry more than one block and 

no impossible configuration occurs. 

Formally speaking it means that : 

V x e OBJ\( table} 3! y e OBI ( ON(x,y) e V) " 

-,3 x e OBI ( ON(table,x) e V) " 

V x,y,z e OBI (ON(x,y) e V" ON(z,y) e V & x;Oz ~ y=table) " 

the transitive closure of the relation ON is not reflexive. 

Observe that sound sets belong to possible configurations. 

Then the ¢anninr Ul!jverse U consists of : 

S := ( V!; So I V is sound ) 

A := ( MOVEONTO(x,y) I x e OBJ\(table}, y e OBI} 
+ T:= IRO • 
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Concerning the time we take the two assumptions mentioned before. Fonnally we restrict 

ourselves to the set F:= ( f e F(U) I dom(f) is a ray and rng(f) is a singleton }. 

(H !; IR~ is a ray iff V x e H V y e IR~ (x S y ~ y e H) 

Hencefonh we make no distinction between processes with the same range, we identify 

them all with the same state. Therefore we refer to processes as states. 

The conditions of putting a block x on the object y are natural : 

x is not already on y and 

no object is standing on x and 

no object is standing on y or y is the table. 

The qI[owab1e qperations of a cenain f e Fare: 

(MOVEONTO(x,y),t) e a(f) C=} t e dom(f) " 

ON(x,y) f f " 

-.3 z e OBI (ON(z,x) e f) " 

(-.3 z e OBI (ON(z,y) e f) V (y = table). 

The t:ffE1 of an operation (MOVEONTO(x,y),t) e a(f) on the process f e F is as follows: 

e(f,(MOVEONTO(x,y),t» := (f\(ON(x,z»)) u (ON(x,y)} on tT, 

where z is the (only) element of OBI such that ON(x,z) e f. 

PROPOsmON 2.1.1 
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IT V !; So is a sound set (a state) and a e a(V), then V' = e(V,a) is also a sound subset of 

so' that is allowable operations transform states to states. I 

To express that there is one arm to move blocks we do not allow plans with more actions at 

the same time, that is we define a feasibility : 

<pep) iff p!; AxT and all the sections of P are singletons 

and consider only the feasible plans. It is easy to see that 

- <p is descending (subplans of a feasible plan are also feasible), 

- every feasible plan is commutative (the result of the plan is unique on any process). 



A plannjnr problem can be specified by the previously defined U,a,e and a pair <f,O>, ego : 

f:= (ON(c,a), ON(a,table), ON(b,table)} 

0:= ( f e F I ON(c,table) e f }. 

The general definition of a solution can also be restricted by demanding that a solution is 

feasible. Notice that this does not require that all the plans generated during the search are 

also feasible. 

It can be shown that and OAA and DPA2 holds with respect to F and H, hence we have the 

transitivity of the -+ relation by Proposition 1.3.1. 
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2.2 1HE JOBSHOP AS PLANNING PROBLEM 

We take a simple model as an example. Giving it further structure more sophisticated cases 

can be described as well. Suppose there is a finite number of all different machines (set M) 

and all different jobs (set 1). Furthermore we have: 

24 

a precedence relation on the jobs, that is a partial ordering : pre I: J x J, 
a relation able I: M x J that shows which jobs can be performed by which machines, 

a function d: M x J --oj R~ that indicates the duration of the performance of a job on 

a machine. 

The task is to complete all the jobs before a certain deadline. 

Formal description 

The symbols we will use are : 

different constant symbols to denote the machines and the jobs, 

PRE, a binary predicate to denote the relation pre, 

ABLE, a binary predicate to denote the relation able, 

dur, a function symbol for the function d, 

BUSY, a binary predicate to tell that a machine is working on a job, 

READY, a unary predicate to indicate that a job is completed, 

BEGIN, a binary predicate denoting the action of beginning a job on a machine. 

Let M = (ml, ... ,mk) and J = (jl' ... jn) be disjoint fmite sets standing for the machines 

and the jobs respectively. 

The world ",U'S are constructed as follows: 

So:= ( BUSY(x,y) I x EM, Y E J } u (READY(y) lYE J }. 

v I: So is called sound iff 

- a machine is doing at most one job at a time and 

- a job is being done at most on one machine at a time and 

- ready jobs are not being performed, 



that is 

V x e M V y,z E 1 [ BUSY(x,y) e V A BUSY(x,z) e V =* Y = z] A 

V x,y E M V Z E 1 [ BUSY(x,z) E v A BUSY(y,z) E v =* x = y] A 

V y E 1 [ READY(y) E v =* -a x E M ( BUSY(x,y) E V)]. 

The intention is clear, world states are to be the possible snapshots during the job 

perfonning process. The situation at a time instance, however, is not fully determined by 

the ongoing activities. Jobs completed earlier are influencing the situation as well. Hence, 

a choice needs to be made whether checking the history before decisions, or defining a 

representative of the relevant aspects of the history and completing the snapshots with it. 

We have chosen the second possibility, this explains the role of 'READY'. 

The p/gMjnr universe U consists of : 

S := ( V I: So I V is sound ) 

A := ( BEGIN(x,y) I x E M, y E J } 
+ 

T :=110' 
We assume that we always see what is happening and that ready jobs remain ready forever, 

that is, we restrict ourselves to 

F := (f e F(U) I dom(l) is a ray and Vye J [( t E T I READY(y) E f(t) } is a ray or 0] } 

(H I: R~ is a ray iff V x e H V y e R~ (x S; y ~ Y E H) 

The conditions to begin a job j on a machine mare: 

- m has the ability to perform j, 

- j is not ready yet, 

- all the predecessors of j are ready, 

- no other job requires m while performing j, 

- no other machine wants to begin j while being performed on m. 

Formally we defme the a1lowabiljty futu:tjon a: F --t P(AxT) as follows: 

V x E M V Y E 1 V t E dom(l) 

(BEGIN(x,y),t) E a(t) ~ ABLE(x,y) A 

READY(y) E f(t) A 

V Z E J [ PRE(z,y) =* READY(z) E f(t)] A 

-a z E M -a 't E [t,t+dur(x,y» : BUSY(z,y) E f('t) A 

-a Z E J -a 't E [t,t+dur(x,y» : BUSY(x,z) E f('t). 
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Notice that the last two conditions refer to the future of the time instance L This causes 

that the first Determinative Past Assumption does not hold in this planning situation. 

The effecl-function e: F x (AxT) --+ F is: 

t < t 

e(f,(BEGIN(x,y),t»(t):= f(t) v (BUSY(x,y») t S t < t+dur(x,y) ! 
f(t) 

[f(t) v (READY(y»)] \ (BUSY(Zt ,y») t+dur(x,y) S t 

where (BEGIN(x,y),t) E a(t) and Zt is the (only) machine from M that is (might be) busy 

with y at the time t. 

PRorosmoN 2.2.1 

Let Y c: So a sound set (a state), a E a(Y), then every Y' e rng(e(V,a» is sound too. 

Furthermore, if Y E F then Y' E F, that is allowable operations preserve the validity of our 

assumption. I 

A typical planning problt:m can be determined by : 

fO(t) := (lJ for all t E T 

G := ( f E F I II Y E J (READY(y) E f(t» if t > deadline), deadline E T. 

Reasonable properties to require about plans generated during the search, are for instance : 

a, if the job j is scheduled in the plan P then every predecessor of j (II i E J : PRE(ij» 

is also scheduled and is already finished when j begins. 

b, if the job j is scheduled in the plan P then every predecessor of j which is also 

scheduled must be already finished when j begins. 

It is easy to see that the first one is not descending. The second propeny inherits to 

subplans due to the following statement. 

PRorosmoN 2.2.2 

Let 'P(P) ~ P c: AxT " II x,y EMil u,v E] II t,t e T 

[BEGIN(x,u),t) e P "PRE(u,v) " (BEGIN(y,v),t) E P =* t+dur(x,~) < tl. 
Then 'P(P) " P' c: P =* 'P(P'). 

PROOF 

It is enough to show that deleting one element of P does not falsify 'P. I 



2.3 ROlITlNG AS PLANNING PROBLEM 

The task in consideration is a basic version of several routing problems. There are n 

locations to visit in such a way, that no location is visited twice and the end position is the 

same as the beginning position. 

Formal description 

Constant symbols will denote the locations, 

CONN, a binary predicate indicates whether two locations are connected or not, 

AT, a unary predicate points out our position,ie. the location where we are, 
SEEN, a unary predicate is to mark locations that have already been visited, 

TO, a binary predicate is to represent the action of changing position. 

The world states are constructed from the following entities: 

OBI:= (cl, ... ,cn) 
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So:= ( AT(x) I x e OBI} u ( SEEN(x) I x e OBI} 

A set V !; So is called sound iff we are at most at one location at a time, that is : 

Yx,ye OBI(AT(x)e V A AT(x)e V=}x=y) 

The constituents of the plaaBi«r !U!jyerse U are : 
S ;= ( V!; So I V is sound ) 

A := ( TO(x,y) I x,y e OBI} 
+ T ;= IRO. 

As before, we consider only the processes that belong to the set 

F ;= ( f e F(U) I dom(f) is a ray & mg(f) is a singleton }. 

Without loosing expressive power we can identify the processes with their range, and refer 

to them as states. 



The a1lowqbility functjon is : for every f e F, t e dom(f) 

(TO(x,y),t) e a(f) <=* AT(x) E f II SEEN(y) f f II CONN(x,y). 

The effect-function is defined as follows : if (TO(x,y),t) e a(f) then 

e(f,(TO(x,y),t» := (f\ (AT(x») u (AT(y), SEEN(y)) on tT. 

Let us have a look on the role of 'SEEN'. If we use constant processes only, then the 

information about the past is lost after each transition. Hence, - unlike 'READY' in 2.2 -

the predicate 'SEEN' is not only a labour-saving invention, but a crucial information carrier. 

Notice that a design decision was taken that says, that a location becomes seen when 

arriving to it. We gain an easy way to express the requirement of returning to the beginning 

position. 

PROPOSmON 2.3.1 

Let V (; So a sound set (a state), a E a(V), then V' = e(V,a) is sound too. 

Furthermore, if V E F then V' E F. I 

A typicalg1anning problem for this task is specified by : 

fO := (AT(c l )) and 
G := ( f E F I V X E OBJ (SEEN(x) e f) ) 
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Notice that the defining formula of G says nothing about visiting the locations only once 

and about returning to the beginning position. Proposition 2.3.2 states that no plan can lead 

to G without satisfying these requirements. 

PROPOSmON 2.3.2 

Let E be the set of executable plans as in Definition 1.2.5. 

Vfe G [AT(cl ) e f] and 

V PeE [e'(fO,P) e G ~ «V x e OBJ 3! y e OBJ 3! t e T : (TO(x,y),t) e P) II 

(V x e OBJ 3! ye OBJ 3! t e T: (TO(y,x),t) E P))]. I 
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3. SUMMARY 

A model of planning problems has been presented in this paper. Due to this model a 

planning situation is determined by the five-tuple <S,A,T,a,e>. Within a planning 

situation the pair of fO and G specifies a planning problem. A fundamental choice in the 

model construction is the use of processes. In this way time is naturally inCOIpOrated, it is 

easy to describe cases where the state of the world changes without outside actions. As to 

interpret human acts we use operations, i.e. an action coupled with a time instance. The 

presence of the time component causes that plans need no structure, they are sets of 

operations. As a consequence, modifying a plan is simple and unconstrained; this leaves us 

rather free when choosing search strategy. 

The structure represented by <S,A,T,a.e> can be considered as a framework. We 

believe that this frame carries all the relevant aspects of a planning situation in general. 

Instantiating these five variables we obtain a full domain description, specifying fO and G 

determines a task to solve. The second chapter demonstrated that indeed, the model can be 

used as a high level description language. The examples were not too sophisticated, 

therefore the descriptions were not too complex. Despite of the fact that 'real-life' problems 

yield more difficult specifications we are convinced that systematic work pays off. 

The formalism used in these examples is that of usual mathematics, requiring only 

elementary set theoretical and logical background. This language must be familiar to all 

those who work as knowledge engineers. The clarity mentioned in the introduction is with 

respect to this people. 

To place the results of this paper in a wider context let us have a look on further work. 

To achieve the interactive planning system shell, the following steps need to be performed : 

I, Making a model of the problems in consideration. 

2, Choosing a representation form that is suitable to describe the abstract entities of 

the model. 

3, Choosing solution method{s) appropriate to the representation language IIRd the 

problem class covered by the model. 

4, Implementation, that is design of the system, functional, technical specification 

and the programming. 



A major aim along our project is to keep modeling. representational. algorithmic and 

implementational aspects apart. This helps to have a clear view about the features of the 

system in every phase of the development. Keeping a track on the decisions taken we can 

trace back to the cause of a cenain feature. and change it if needed. 

This article considers the first step of the four mentioned above. Obviously the second and 

the third phase are strongl y connected. they will be investigated in parallel. It is remarkable 

that point 4 covers more than one fourth of the whole work. It will be better articulated as 

the investigation proceeds and its details become more visible. 

Further results will be reported in the same series : Computing Science NOleS, Eindhoven 

University of Technology. the Netherlands. 
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