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Abstract 

Most geometric modelling systems employ a snrface representation 

for four-sided patches, such as bi-cubic B-splines, which is based on a 

matrix of N x M control points for integer N and M. The bound

ary is defined by the 2N + 2M - 4 outermost control points whereas 

the remaining M N - 2N - 2M + 4 control points indicate the shape 

of the interior part of the surface. This is in sharp contrast with con

ventional hand-drafting techniques for curved surfaces, where only the 

boundary is drawn as a set of curve segments joining in the corners, 

and the shape of the interior part is usually left unspecified. The bi

cubic Coons patches ([Boehm 84]) make up a representation scheme for 

such surfaces which is much more intuitive in this respect. Yet, bi

cubic Coons patches seem to be not widely used in geometric modelling 

when compared with B-spline techniques. In this paper, we suggest 

some causes for this apparent mismatch between intuition and COUlIDon 

CAGD-practice viz. difficulties of the interactive definition of boundary 

contours, the specification of cross-boundary derivatives, and a lack of 

control of the interior shape. Next, we propose remedies for all three 

types of problems. 
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1. Introduction 

In ([Boehm 84]), a distinction is made between finite and transfinite surface 

definitions. A finite surface definition requires a finite numher of parame

ters, usually in the form of (a rectangular arrangement of) control points, 

whereas a transfinite surface definition is parameterised in terms of continu

ous functions, generally comprising the contour curves. A typical example of 

the first class is the B-spline surface; the (hi-cubic) Coons patch represents 

the second class. In [Boehm 84], the transfinite surface definition receives a 

• Address: P.O.Box 513, 5600 MB, Eindhoven, The Netherlands. Email: 

wsinkvo@info.win.tue.nl, menno@iufo.win.tue.nl 

2 



negligible amount of attention compared to the finite surface definition, and 

the same seems to hold true for both general texts on computer graphics, 

current literature on CAGD, and implemented CAGD systems. 

Still, the use of continuous contours as defining geometric elements for a 

surface patch, omitting a graphical indication of the interior shape of the 

patch, is a much more intuitive match with the ancient tradition of free

hand sketching and drafting techniques than the control-points-based spec

ification of surfaces that lUI$ been enforced by the introduction of Bezier 

and B-spline representations. One may assume, therefore, that the task of 

designing complex curved surfaces when employing a design tool based on 

transfinite surface definitions, is less arduous than when employing a conven

tional control-points-based tool, provided that the same types of operations 

are supported. 

Currently, several difficulties are encountered when founding a CAGD envi

ronment on bi-cubic Coons patches: 

• an intuitive definition of 3-D contour curves, other than directly spec

ifying arrays of 3-D control points, is not straightforward. In 2-D, the 

problem is much easier, and most commercial interactive drawing sys

tems support a free-hand curve tool that takes an arbitrary chain of 

pixels as input and extracts an array of 2-D control points that de

fine a spline curve which approximates the input curve. Algorithms 

to extract 2-D control points from a 2-D chain curve are well known; 

an example is [Plass 83]. To specify 3-D contour curves in a similar 

fashion, however, we have to be able to input and manipulate chains of 

pixels that contain 3·D information, and to extract continuous curve 
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representations from these chains . 

• B-spline surfaces support a well-defined control over the cross boundary 

Cl-continuity for adjacent patches by imposing co-planarity constraints 

on subsets of the control points (the "stars" in the title of this paper). 

This is easily achieved with bi-cubic Coons patches as well, provided 

that, aside from the boundary contours, a full set of cross-boundary 

data is given with the same cardinality as the boundary contours. In 

other words, instead of four curves, the equivalent amount of infor

mation of eight curves should be specified. To put it yet differently, 

instead of a boundary representation of copper wire (fig. la), we need 

a boundary representation of four connected flat ribbons (fig. Ib; the 

"stripes" in the title of this paper). This is highly un-practical un

less the orientation of the ribbons can be automatically obtained, in 

such a way that aligned cross boundary derivatives in coincident con

tour curves guarantee matching cross boundary derivatives in any point 

along a shared contour curve (fig. Ic) . 

• The problem of a localised addition of details in the interior of curved 

surfaces based on control points has been solved by Dave Forsey's intro

duction of hierarchically defined B-spline patches ([Forsey 88]). Since 

bi-cubic Coons patches lack any specification of interior detail, a similar 

device should be available for bi-cu bic Coons patches. 

This paper is organised as follows: 

In section 2, the mathematical framework for representing bi-cubic Coons 

patches is summarised. A solution to the problem of free-hand editing is 
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addressed in section 3. It is based on a so called weaving operation on chain

code curves to construct 3-D curves from 2-D connected chains of pixels 

(section 3.1) and an algorithm for extracting a control point representation 

from a chain-code curve based on a relaxation technique (section 3.2). 

Section 4 discusses the automatic extraction from cross-boundary derivatives 

for boundary cllrves. A method for adding interior detail to bi-cubic Coons 

patches, analogous to Forsey's method, is discussed in section 5, and our 

conclusions are summarised in section 6. 

2. Bi-cubic Coons patches. 

An example of a tI'ansfinite curved surface representation is the bi-linearly 

blended Coons patch. It takes a, input four curves and produces a curved 

surface bounded by these curves. Let the four boundary curves be given 

by f(O,s),f(r,O),f(l,s), and f(T, 1). The patch is then given as a function 

fer,s). Adjacent patches are in general not Gl, even if the corresponding 

boundary curves are. Gl continuity may be provided, however, if a surface is 

modelled by bi-cubic blending instead of bi-linear blending. In that case the 

interpolation functions are Hermite polynomials instead of linear functions 

([Boehm 84]). This scheme takes as additional input the cross-boundary 

derivatives fr(0,8)'/.(r,0),fr(1,8), and f.(r,l) and the dual-twist deriva

tives in the four corners of the modelled surface fr.(O, 0), fr.(O, 1), fr.(l, 0), 

and fr.(l,l). See [Enderle 84], [Yamaguchi 88], and [Boehm 84] for the 

mathematical definition of the bi-cubic Coons patch. 

3. An intuitive specification technique for boundary curves. 

In section 2 Coons patches were seen to take four mutually adjacent bound

ary curves as input, rather than a collection of control points. In turn, these 
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boundary curves of course might be specified a.~ an array of 3-D control 

points, but this clearly wouldn't do justice to the property of transfinity, 

characteristic of Coons patches_ Instead, a method should be employed 

which supports freehand input to represent any arbitrary 3-D curve_ It 

should be realised, however, that every type of in put device (mouse, joystick, 

track ball, scanner) samples the input trajectories with a finite resolution 

only. So instead of "arbitrary curves", we have to be able to deal with "arbi

trary curves on a 3-D grid" (so called discrete curves). We propose a method 

to do so, based on weaving (merging) two planar projections of the discrete 

curve. The idea of weaving is explained further in section 3.1. Next, in 

order to render the Coons patch, or perform other manipulations, we have 

to evaluate the boundary curves for arbitrary values of their parameters. 

U sing the discrete curve representation for evaluation would cause discreti

sation artifacts (aliasing), and therefore the internal curve representation 

rather should be continuous. In section 3.2 we discuss an algorithm to fit a 

piecewise 3-D cubic spline curve to a 3-D discrete curve which automatically 

finds the connection points for the spline segments. 

3.1. Weaving disc .... ete cu .... ves. 

Suppose that first the X - Y projection, P, of the discrete 3-D curve C is 

drawn. Without loss of generality we assume the point (0,0,0) as the starting 

point of C, and hence P starts in (0,0). The curve P consists of a series of 

adjacent grid positions Pi, Pi E Z2. We adopt a four-connected metric, so 

IPi+1'X - Pi.xl = 0 or IPi+1'Y - Pj.yl = 0 for 0 ::; i < IPI- 1, where !PI 
is the number of points in P. Every vector Pi+l - Pi can be represented 

by a code, Pi, from {0,2,4,6}, where 0 sta.nds for the vector (1,O), 2 for 

(0,1),4 for (-1,0) and 6 for (0, -1). The list of codes Pi is denoted by P; 
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o $ i < Ipl. This coding scheme is taken from Freeman ([H.Freeman 61aJ; 

see also [H.Freeman 61b], [H.Freeman 69]). Let Pe = PIPI-l represent the 

endpoint of P. Furthermore, we assume that the curve is monotonous in the 

positive X-direction, so no 4-codes occur in p. (A non-monotonous curve 

always can be broken down into monotonous segments). 

Next the X - Z projection, Q, is drawn. The codes qi to represent vectors 

Qi+l - Qi are {O, y, 4, h}, where 0 and 4 have the same meaning as for p, y 

stands for "yon" (the positive Z-direction), and h stands for "hither" (the 

negative Z-direction). Again, no 4-codes occur. Q's starting point is also 

(0,0), but in general, !PI # IQI, but since P and Q denote projections of 

the same 3-D curve, Pe.x = Qe.x; Qe is Q's end point. Because the chains 

are hand-drawn, the latter may not hold; this means that Q (or P) has 

to be preprocessed: it has to be stretched (if Qe.x < Pe.x) or squeezed (if 

Qe.x > Pe.x). The technique of weaving, to be introduced below, can be 

used to squeeze or stretch chain-code curves. 

In order to reconstruct C from P and Q, we observe that every O-code in c 

(Le. the chain-code of C) projects onto a O-code in p and a O-code in q. This 

means that p and q have the same amount of D-codes. When constructing 

c from p and q, care should be taken to have the O-codes synchronised. To 

compute c, the following steps should be taken: 

• For an all-zero fragment in p which corresponds to an all-zero fragment 

in q of equal length, say I, an all-zero fragment of length I in c is 

generated . 

• For a fragment om (Le., m zeroes) in p which corresponds to a fragment 

onqoqlQ2 ...• qk_l in Q, qi # 0 and n < m, the fragment onQoQlq2 .... Qk_lom-n 
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is generated, and similarly with the roles of p and q interchanged . 

• For a non-zero fragment, say Iv in p, which corresponds to a non-zero 

fragment, Iq in q, a fragment of length Ilpl + Ifql has to be output 

which contains all codes from Iv and all codes from fq in a uniformly 

distributed order. We refer to the latter combined fragment as Ipw fq, 
and the so-called weaving opera.tor W is explained below. 

An algorithm which meets with these observations is the following (chain

codes are supposed to terminate with a special non-zero dummy code, EOG): 

chain_code construct_c(p,q) 

chain_code p ,q; 

{ 

int i=O,j=O; 

chain_code c=empty,f_q,f_p; 

while(i<length(p) I I j<length(q)) { 

1* attempt to create an all-zero fragment *1 

while(p[i]=='O' && q[j]=='O'){c=c+'O'; i++; j++;} 

1* p[i]!='O' II q[j]!='O' 

* start non-zero fragment *1 

f_q=f_p=empty; 

while(p[i]!='O' tt p[i]!=EOC) f_p=f_p+p[i++]; 
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while(q[j]!='O' && q[j]!=EOC) f_q=f_q+q[j++]; 

1* weave the non-Zero fragments f_p and f_q *1 

} 

return c; 

} 

To introduce the concept of weaving, we start by assuming that Ifpl = If.l. 

Then an obvious choice for the cha.in-code fp w fq would be 

fpw fq = fpofqofplfnfP2fq2fP3fn ... f pl!pl-1 f ql!,!-1' 

that is, take codes from cha.ins fl' and fq alternatively. In the general case, 

however, we have to deal with cha.in-codes of different lengths. Suppose 

Ifpl > If.l· Then we have to take a code from fq less frequently than 

a code from fp. We may regard it as distributing the codes from fq, as 

uniformly as possible, over the codes from fp. This problem is equivalent 

to interpolating a, linear function over a set of equidistant argument values. 

Now Bresenham's algorithm is a convenient device to do this interpolation. 

We take a four-connected version of Bresenham's algorithm to produce a 

cha.in-code b of the line segment from (0,0) to (lfpl, Ifql). For instance, in 

the case Ifpl = 2If.l, this chain-code is (spaces have been added for improved 

readability) 

b=020 020 020020020 020 020 020 020 ...... 

and if we take a code from tv every time we encounter a 0 in b aJld a code 

from fq when we encounter a 2 in b, we get the desired distribution. So 
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in general, the distribution of 0-5 and 2-s in a four connected Bresenham 

line from (0,0) to (lf.l, If,ll to guide the selection of codes from f. and f" 
gives us the most uniform distribution of codes as possible (see fig. 2 for an 

example). 

In the sequel, the meaning of pwq is such that the process of selecting 

codes from p and q is controlled by the O-s and 2-s from a four-connected 

Bresenham line from (0,0) to (Ipl, Iql). 

We observe that the case where Qe.x cF Pe.x can also be solved using weav

ing: let s be the chain 4(Q··x-P •. x) in the case Qe.x > Pe.x or O(P··x-Q •. x) in 

the case Q •. x < Pe.x, then we first replace q by qws. 

A more complete treatment of (non-uniform) weaving can be found in ([vdW91]). 

There, also techniques for" cleaning up" chain-codes are discussed, such as 

annihilation of pairs of opposite codes (e.g. replacing the fragment x04y by 

xy). In ([Wetering 93]), the problem of editing free-form curves ba.~ed on 

weaving is discussed. 

3.2. From a discrete curve to a piecewise cubic spline representa

tion 

We will first convert the discrete curve C to a poly-line by displacing its 

vertices, using a rela.xation technique, in order to smoothen it; next we fit 

cubic Bezier segments to well-chosen subsequent segments of the poly-line. 

Although we illustrate the technique with a 2-D example, we use it for 3-D 

curves. 

Consider the poly-lines in fig. 3. Clearly, fig. 3b is smoother than 3a, but 

there is still a close resemblance between the two poly-lines: 3a may be 

regarded as a discretised version of 3b. Indeed, every vertex in 3b is not 
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removed outside a unit square, centered around the corresponding vertex 

in 3a. Confining the vertices to unit squares removes quantisation noise 

(aliasing); using a slightly larger square (say, with size 1.1 or 1.2) gives 

better results since other high-frequency noise then is removed as well. So 

we can employ a smoothing algorithm to displace vertices, provided that the 

vertices are constrained to these squares. A smoothing strategy is readily 

obtained by stating that for C.-1 , C., C'+1 three subsequent vertices from 

the poly-line to be smoothed, IC;- c, 1 ~C'±l I should be minimised. This can 

be achieved by displacing C; over a vector -C. + C, ,~C'+l, but this affects 

the centroid of the three points. Rather, we should set for the displacement 

vectors 0.-1, Ii., O'H for the three C's: 

O. = ~(-C. + C, 1 ~C'+l ), 

0.-1 = -:} 0., 

0.+1 = 310 •. 

Since all interior vertices (all vertices except numbers 0, 1, ICI - 2, and 

ICI- 1) are engaged in three triples (C.- 1 , C., C.+d as above, three o's are 

computed for all interior vertices. For vertices nr. 0 and ICI- 1 we find one 

0, and for nrs. 1 and ICI - 2 we have two o's. After computation of all o's 
for the original poly-line,. the Ii's for each vertex are added and the vertex 

is displaced by the resultant vector. In ([v093]) it is shown that repeated 

application of this adjustment converges to a configuration where the vertices 

are on a discrete cubic curve, provided that all vertices are allowed to move 

freely, i.e. the vertices are not constrained to the unit squares as explained 

above. In case they are, some vertices will be affected by this constraint (to 

be called k-vertices), whereas others aren't. Now we observe that the non-k-
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vertices, between two subsequent k-vertices, are again allowed to move freely 

during the relaxation process, and hence, after convergence, they will lie on a 

discrete cubic curve segment, whereas adjacent discrete cubic curve segments 

join in adjacent k-vertices. So the k-vertices will denote the locations of the 

extreme control points of the resulting cubic Bezier segments. For each 

Bezier segment, the remaining two control points are easily fitted to the 

intermediate non-k-vertices, thereby taking C 1 continuity into account by 

demanding subsequent sequences of three control points, as in fig. 4, to be 

co-linear. 

This completes the conversion from a discrete curve representation for the 

hand-drawn curve to a piecewise cubic curve; when implementing the re

laxation technique, a multi-grid method should be employed to increase the 

convergence speed (i.e., first convergence should be achieved on a. resolution, 

say, a factor of 32 less than the final resolution; next a factor of 16 less, next 

8, and so on). 

4. A method for computing cross boundary (cb) and dual twist 

(dt) derivatives. 

We state the following requirements, to be met by our method: 

1. If boundary curves of adjacent patches are C1 , the patches must border 

in a Gl manner. 

2. If a rotation sweep surface exists, compliant with the boundary curves, 

in the sense that two opposite curves are circular arcs whereas the other 

two curves are congruent, then the computed cb and dt-derivatives are 

compliant with this surface. Examples of such a configuration are 

depicted in fig.-s 5a, 5b, and .Jc. 
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3. If the curves all lie in a common plane, then the derivatives must be 

parallel to this plane. 

4. If the curves are subjected to a./fine transformations the derivatives 

must be transformed accordingly. 

We observe that the directions of the cb-derivatives are the only factors 

affecting G t borders of adjacent patches. Therefore, requirement 1 can be 

seen to be equivalent to: 

• The direction of the cb-derivatives, e.g. f.(r,O), must be uniquely 

determined by the curve itself U(,', 0)) and the tangents of the curves 

incident to its endpoints Us (0, 0) and fs(1,O)) . 

• The direction of the cb-derivatives in any point of a boundary curve 

must be independent of the length of the cb-derivatives in the corners of 

the boundary. So we make sure that only the normalised cb-derivatives 

in the corners of the curves are used when determining the direction 

of the cb derivatives. 

The method can now be split. into three parts: computation of the direction 

of the cb-derivatives, computation of the lengths of the cb-derivatives, and 

computation of the dt-derivatives. 

4.1. Computation of the direction of cb-derivatives 

Let f(t) be a boundary curve alld eo alld el are the normalised cb-derivatives 

in frO) and f(l), respectively. In case the boundary curves are complia.nt 

with a rotation sweep surface of which f(t) is a circular sweep-arc segment, 
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the lines 10 (through eo) and 11 (through el) intersect, and the intersection 

point 9 is the apex of the circular conel, described through f(t). So in this 

case, feb(t) should be a unit vector originating in f(t), directed along the 

line f( t) - g. In other words, the cb-derivatives are on a conic mantle with 

9 as apex, which passes through f(t). Now for a general configuration, we 

propose to define a generalisation of the point g, such that again feb(t) can 

be defined as the unit vector, originating in f(t), directed along f(t) - g. 

A naive generalisation for 9 is the midpoint of the shortest straight line 

segment which connects 10 and II, but then feb(O) i' eo and feb(l) i' el· 

Instead of a point g, however, we can the shortest line segment, get), with 

g(O) on 10 and g(1) on I}, thus get) is perpendicular on both 10 and h. This 

gives feb(t) the direction f(t) - g( t), so the cb-derivatives are on a generalised 

conic mantle with g(t),O :S t :S 1 as a ridge (apex-line) (see fig. 6). Note 

that, if 10 and '11 intersect, g(t),O:S t :S 1 again reduces to one point. 

Some precautions must be taken: 

• The cb-derivative has direction either f(t)- get) or get) - f(t); a choice 

between the two is not a priori clear; 

• g(O) and frO) may coincide, and similar for g(l) and f(l); 

• if eo and el are parallel, g CaJlllot be computed directly. 

A complete treatment of these issues is outside the scope of this paper; see 

[Verhoeven 92] for a more detailed account of the computation of get) and 

the direction of the cb-derivati ves. 

1 If eo and el are parallel, this apex lies in infinity and a cylinder results. 
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4.2. Computation of the length of cb derivatives 

Whereas the directions of the cb·derivatives have to depend solely on f( t) 

and eo and el from sect. 4.1., their lengths may depend on other parts of 

the boundary input as well, e.g. the boundary curve opposite from f(t), 

J. (t) I . I . tl f t t' f If,,(tl! say opp . n partlcu ar, III Ie case 0 ro a IOn sweep sur aces, If(t) fopp(t)1 

should be constant (see fig. 7). For the cb-derivatives from the input curves, 

however, feb(O) and feb(1), it is not necessarily true that If(OV"j::!!(O)1 = 
I!(H'1~;(lW So a somewhat weakerformulation to compute Ifeb(t)1 is, again 

using linear interpolation: 

Ifeb(t)1 IfcbeO)1 . (1 _ t) + Ifeb(l)1 t 
If(O) - fo",,(O)1 If(1) - fopp(l)1 If(t) - fopp(t)1 

Intuitively, this formula states that the length of a feb(t) (ef. the speed) 

increases if the distance between opposite sides of the face increases. 

4.3. Computation of the dt-derivatives 

Two different methods can be used to determine dt·derivatives: either, dif

ferentiate f, to "8, or differentiate f, to r. In general, these two possibilities 

do not yield the Same result and there is no way to determine which of the 

two approaches is best for wl,ich cases. The simplest symmetric solution is to 

average both expressions. A complete derivation is given in [Verhoeven 92J. 

5. Adding detail to bi-cubic Coons patches. 

In order to solve the problem of adding detail to B-spline patches, Forsey 

([Forsey 88]) suggested to allow the user to control the location of control 

points that are generated during recursive subdivision of the B-spline patch. 

If we assume bi-cubic Coons patches to arise from a subdivision process, we 

can apply a similar technique to add detail here. 
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The most natural subdivision scheme. for B-spline patches is to generate 4 

sub-patches for each iteration. So in case of a bi-cubic B-spline patch we 

start with 16 control points, and after one subdivision we have 4 sets of 16 

control points. The user may decide to edit zero or more of these sets, and 

similar for their recursive descendants. 

The similar procedure for bi-cubic Coons patches is as follows. Let f(r,O), 

fer, 1), f(0,8), and f(l, s) and their derivatives define the patch fer, 8), for 

o :s: r :s: 1, 0 :s; 8 :s: 1. This patch ca·n he thought of to be composed from 

two sub-patches, say defined by 

f( r, 0), f( r, 1/2), f( 0, 8), f( 1, s), for 0 :s: r :s: 1, 0 :s; 8 :s; 1/2; 

and 

fer, 1/2), fer, 1), fro, 8), f(1,s), for 0 :s: ,. :s: 1, 1/2 :s: 8 :s; 1, 

provided all s-derivatives are scaled with a factor 2. In this sense, we may 

say that we split the patch in two sub-patches in the 8-direction. Joining 

these two sub-patches gives the original patch f( T, 8), so in this case we have 

added no detail. But we may wish to modify the curve f( r, 1/2), in a similar 

way as we may modify some of the control points that occur during the 

subdivision process in Forsey's method. As an additional degree of freedom, 

we may even decide to split the original patch for a value of 8 different from 

1/2; also, we may split the patch iu the r-direction instead. Fig. 8 shows 

some stages of the process of designing a mask using this technique. We 

summarise the main characteristics of this method: 

• In Forsey's method, only those control points are edited that contrihute 

to shape details that differ from the original shape of the patch. Here, 
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only those curves are drawn that add shape details that differ from the 

original shape of the patch . 

• In Forsey's method, each subdivision takes place in four sub-patches 

according to the standard B-spline subdivision scheme, so a regular 

quadtree arises in parameter space. In our method, a binary tree results 

that is not necessarily regular (see fig. 9) . 

• In order to render the patches, they should be converted into a. polygon 

mesh. To avoid cracks, the (non-)regular binary tree of bi-cubic Coons 

patches is completed into a regular mesh (see fig. 10). Given the tree 

structure, this conversion can take place automatically. 

6. Summary; discussion 

When comparing finite and transfinite methods for surface modelling, it 

turns out that transfinite methods correspond more closely to traditional 

drafting practice; still, they are used less frequently. Among other things, 

this could be caused by difficulties in defining 3-D curves in an intuitive man

ner, difficulties in specifying cross boundary derivatives, and/or difficulties 

in specifying interior shape detail. Provided these difficulties are adequately 

solved, bi-cubic Coons patches may form a suitable alternative for control 

points-based patches. To evaluate their merits, we ran two tests. First, we 

attempted to model a humanoid face using little user input according to 

the strategy of fig. 8. Fig. 11 shows 3-D poly-line approximations to the 

contours for a 6-step design session. The associated solid rendered masks 

are depicted in colour plate I. It turns out that the definition of just 11 

curves, which is few enough to keep the wire frame representation from get

ting cluttered, suffices to produce a recognisable final rendered result. As 

17 



a second test, we compare the canonical Bezier patch representation of the 

Utah teapot with a representation of the same model in terms of bi-cubic 

Coons patches. In fig. 12, the lower left object is a poly-line representation 

of the control polygons of the Bezier patches of the original teapot. To get a 

fair comparison we have omitted the internal 4 control points for each patch 

in the model, and only the 12 boundary control points are used. We observe 

that the control polygons form a rather crude approximation of the smooth 

shapes of the teapot; especially the spout and the handle are difficult to 

recognise. The lower right image in fig. 12 is the set of contour curves, used 

to define bi-cubic Coons patches modelling the same object. These curves 

were obtained by sampling the cubic Bezier curves that form the borders 

of the bi-cubic °Bezier patches in the original model. In the wire frame, the 

shape of the teapot is much easier recognised whereas in the solid rendering 

in colour plate II hardly any visible differences between the two tea pots 

show up. As an additional bonus, the specification in terms of contours 

rather than control points allows us to apply subtle local deformations: ob

serve the bulging handle, the perturbed spout and the shape details in the 

lid and the upper rim in the topmost version of the teapot in fig. 12 and 

colour plate II. 
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Fig. 1 a: boundary specification with 
four curves. 

Fig. 1b: boundary specification with 
four curves plus cross boundary 
derivatives . 

. ,' 

Fig. 1 c: two adjacent patches with 
a differentiable network of boundary 
curves. Top: matching cross boundary 
derivatives. Bottom: non-matching 
cross boundary derivatives. 



V 
/' 

[7 

/ 
(0,0) 

b=0202002020 

c=CCCCCC 

d=OOOO 

cWd=COCOCCOCOC 

/ 
./ 

/' 

(lcI,ldl)=(6,4) 

Fig. 2 
Weaving chains c (codes CC ... ) 
and d (codes 00 ... ) takes place 
using the distribution of codes 0 
and 2 in the Bresenham chain, b, 
of the line from (0,0) to (lcl,ldl). 
A O-code forces the next element 
from c, a 2-code the next element 
from d. 



Fig. 3 
upper left (3a) the original polyline, 
obtained from freehand input on a 
discrete grid. 

upper right(3b) the polyline after 
smoothing;vertices don't move outside 
the boxes centered round the original 
positions. 

lower left (3c)vertices that end up on 
the boxes' boundaries are called k-vertices; 
they form the extremes of the Bezier
segments that will represent the input 
curve (open points). 

Fig. 4 
Bezier spline segments are connected 
in a C1 -fashion by adjusting the 
non-extreme control points (A,B) to 
be co-linear with the corresponding 
extreme (C). 



Fig. 5 
some examples of rotationally symmetric 
configurations of boundary curves. 
upper left (5a) cilinder mantle 
upper right (5b) hemisphere (2 pieces) 
lower left (5c) composite surface with 
negative curvature. 



I(t) 

Fig. 6 
The direction of the cross boundary 
derivative in the point f(t) is f(t)-g(t) 
where g(t) is a point on the straight 
line segment from g(O) to g(1); 
the points g(O) and g(1) are the 
closest pair on the lines 10 and 11. 
The lines 10 and 11 are directed 
along the cross boundary derivatives 
in f(O) and f(1). 

Fig. 7 
The length of the cross 
boundary derivative in point f(t) 
should be proportional to the 
distance between f(t) and the 
corresponding point on the 
opposite curve, lopp (t). 
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Fig. 8 
a. patch, defined by the outermost 
contour curves. . 
b. subdivision along the s=0.5 curve 
c. modified s=0.5 curve 
d. second subdivision of both sub
patches along the r=0.6 curve 
e. modified r=0.6 curves 
f. result after 6 more subdivisions 
and modifications. 

The subdivisions in parameter 
space are shown in the lower right 
diagrams. 

Fig. 9 
a. A regular quadtree in parameter space results 
from Forsey's recursive subdivision scheme. 
b. Subdividing bicubic Coons patches allows a 
non-regular binary tree structure in parameters space. 

Fig. 10 
To avoid the crack problem, the non-regular binary 
tree structure can be completed to form a (non-regular) 
rectangular grid topology. Inset: each Coons patch is converted 
into a polygon mesh before rendering. 
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