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A. Abstract

In this report we develop a theory of smooth stochastic processes, as

well as their generalization to generalized stochastic processes. Our point

of departure is De Bruijn's theory of generalized functions and the Wigner

distribution. We apply that framework to definitions and theorems concerning

smooth and generalized stochastic processes, and we present a theory of

linear transforms in the space of these processes. Furthermore we introduce

the notions of autocorrelation function and Wigner distribution of stochastic

processes (smooth or generalized).

The theory presented 1n this report serves mainly as a preparation for

a study of the phenomenon of noise. We devote a section (section 1.6) to the

relation between generalized stochastic processes and noise, and we announce

a few results of the theory of noise. Furthermore we shall briefly comment

on alternative approaches in existing literature.

The author intends to devote a later publication to a more elaborate

study on noise theory. This will not only discuss white, time stationary or

frequency stationary noise, but also non-stationary noise. In particular this

will contain a discussion on the simulation of noise by showers of noise

quanta over the time-frequency plane.

The present report further contains two appendices. The first one gives

a number of theorems concerning linear operators of the spaces of smooth and

generalized functions, preceded by a survey of the fundamental notions and

theorems of De Bruijn's theory that we use in this paper. The second appendix

gives a theorem about convergence in the space of smooth functions.

AMS Subject Classifications (1976): 46F05, 46FI0, 60G20, 60H05.
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B. Notation.

We use Church's lambda calculus notation, but instead of his A we have

I, as suggested by Freudenthal: if S is a set then putting ~ S in front of
XE

an expression (usually containing x) means to indicate the function with

domain S and with the function values given by the expression. We write Yx
instead of Y S' if it is clear from the context which set S is meant.

XE

In this paper the symbol R ~s used for the set of all real numbers, and

we use the symbol ~ for the set of all complex numbers. If z E ~ then Re z

(1m z) denotes the real (imaginary) part of z. The overhead bar is used for

complex conjugates. We shall write ~ ONO
) for the set of all positive

(non-negative) integers.

If AI, .•. ,An (n E~) are sets, then we denote by Al x ••• x An the set of

all n-tuples (al, ... ,an ) where a l E AI, ... ,an E An. In the case V = R, ~, ~

or ~O we write V
n instead of Vx ••• x V (n times).

If V is a set and f and g are mappings of V into ~, then we write

f(v) = O(g(v» (v E V) if there exists an M > 0 such that V V[lf(v) I $ Mlg(v)IJ.
VE

If (Q,A,P) is a a-finite measure space (i.e. Q is a set, A is a a-algebra

on Q containing Q itself, and P is a a-finite positive measure on (Q,A», then

£ (Q) denotes the set of all mappings of Q into ~ which are measurable (in ~ we

have the a-algebra of all Borel sets). In £(Q) we have an equivalence: f = g

if few) = g(w) a.e. (f E £(Q), g E £(Q». If I $ p $ 00, thea £p(Q) denotes the

set of all elements f of £(Q) for which

f Ifl P dP < 00

Q

(l $ p < 00)

esssupifl := sup{a E R I [few) I $ a(a.e.)} < 00 (p = 00).

In £ (Q) we have the p-norm II II (") (or II II if it is clear which set Q
p P," P

is meant) defined by

1

II f IIp,Q := ( II flP dP)P (f E £ (Q), I $ P < 00)
P

Q

II f lloo,Q := esssupifl (f E £ (Q»
00
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It 1S known that (£ (rt), II II) is a Banach space.p p

If I :'> P ~ 00, then we define q 1 if p = 00 q = 00 if p 1, and,
( 1

1 -1
if (note ~ q :'> 00).q = - -) 1 < P < 00 that always

. p
If 1 :'> P ~ 00 then we denote

(f E £ (rt), g E £ (rt»
p q

(or (f,g) if it is clear which set rt is meant).

Note that for 1 ~ p ~ 00, f E £ (rt), g E £ (rt) (Holder's inequality)
p q

II f II II gil •
p q

If P = 2, then ( , ) 1S an inner product, so £2(rt) is a Hilbert space.

If (rt,A,P) is a probability space ~.e. a measure space with pert) = 1)

we sometimes write for f E £t(rt)

E( f ) := J f dP •

rt

Note that in case of a probability space £ (rt) ~ £ (rt) if 1 ~ P ~ r:'> 00.
p r

n nIn the case rt = R (n E R), A 1S the class of Borel sets of R , and P

1S the Lebesgue measure we usually take p = 2 (unless otherwise stated), and

often we write [ ,J (or [ , J) in situations where ( , ) occurs already
n

with a different meaning.'
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O. Introduction.

0.1. In the theory of stochastic processes one usually (see [DJ, [pJ) works

with (a form of) the following

Definition. Let X and T be two non-empty sets, and let B be a a-algebra on X.

Let (n,A,p) be a probability space, and x a mapping of Txn into X such that

for every t E T and every A E B

{W E n I ~(t,w) E A} EA.

Then the seven-tuple (X,B,T,n,A,p,~) 1S called a stochastic process.

0.2. The stochastic processes of 0.1 are related to, but not equivalent to,

distributions of time series as introduced by Wiener [WJ. We can explain this

as follows. Let (n,h,p) be a probability space, and assume that to every WEn

there is given a measurable mapping 1;; of:R into «;. We then consider the
w

tuple (n,A,p,i;;). The functions 1;; (w E n) are Wiener's time series. The re
W

lated case where n is the set of all generalized functions and i;;F = F for every

generalized functionF will be considered in 1.6, where the tuple is calle<L..a-.--noise.

0.3. In this paper we shall mainly work with a definition of type 0.1. We take

X = T = ~, and for B we take the set of all Borel sets of ~. If the probability

space (n,A,p) is specified, then we just denote the stochastic process by

~ (note that YwEn ~(t,w) E £(n) for every t E ~).
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I. Smooth and generalized stochastic processes.

1.1. Smooth processes.

1.1.1. Let (n,A,p) be a probability space, and let I ~ P ~ 00.

1.1.2. Definition. Let x be a stochastic process ~n the sense of 0.3. If

(t E (C)

(f E £ (n»
q

(see appendix I, 0.2), then we call x a smooth stochastic process of order p.

The set of all smooth stochastic processes of order p is denoted by Sn . In
",p

S we have an equivalence:n,p

1.1.3. Theorem. Let x E Sn . There exist positive constants M, A and B such that
",p

Ilx(t) II ~ M exp(-nA(Re t)2 + 1TB(Im t)2)
- p

(t E Q;)

Proof. We use theorem 1.3 of appendix I. For every tEa: and f E £ (Q) we have
q

by Holder's inequality

II f II Iix(t) II •
q - p

So .~ fE£ (n)
q

for every t

(f,~(t» is a bounded linear functional of the Banach space £ (n)
q

E (C. Furthermore there exist for every f E £ (n) positive constants
q

M and A such that

(t E Q;)

(this follows from the fact that (~,f) E S). Application of theorem 1.3 of

appendix I yields: there exist positive constants M and A such that

I (f,x(t» I ~ Mllf II exp(-1TA(Re t)2 + 1TA- I (1m t)2)
- q

for every f E £ (n) and every t E Q;. This means by [ZJ, Ch.12, §50, theorem 2
q

that

Ilx(t) II ~ M exp(-nA(Re t)2 + nA-I(Im t)2)
- P

for every t E (C. 0
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1.1.4. Definition. If ~ E S~,2' then its autocorrelation functions Rx is defined by

R := Yet ) ~2 (x(t),x(s» .
~ ,S EILo - -

We often write R instead of R .
x

1.1.5. We list some properties of R.

(i) if tEn:, SEn:, then R(t,s) = R(s,t)

(ii) if ul' .•. ,an are complex numbers, and t
l

E n:, ... ,tn E (C (n E :N), then

0..0.. R(t.,t.) ~ O. This follows from the fact that
1 J 1 J

Z
l: 0..0.. (x(t.),x(t.» = Ill:. a~ ~(t) 112. '. ]. J - 1. - J ,.L ....1,J ....

(iii) if t E I(;,s E 1(;, then IR(t,s) I ~ 11~(t) liZ 1I~(s) liZ. This follows from

Holder's inequality.

1.1.6. Theorem. Let ~ P ~ 00, and let x E Sn , Y E Sn , then Y( ) ~Z (~(t),X(s» E SZ- ",p - ",q t,s Ell.

Proof. Let s E I(; be fixed. It follows from the definition of Sn that
",p

YtEI(; (~(t),X(s» 1.S an analytic function. This is also true for the function

YSEn: (~(t),X(s» ift E II: is fixed. Bya theorem of Hartogs ([BT], III, §4,

satz IS) the function Y(t,S)En:2 (~(t),X(s» is analytic in both variables.

We may complete the proof by showing that there exist positive numbers

M, A and B such that

for every tEl[, S E 1(;. This easily follows from theorem 1.1.3 and Holder's

inequality. 0

Corollary. If x Z
E S~,Z' then RES .

a. x(t.) In E:N,
1 - 1.

Remark. Suppose ~ 1.S a mapping of I(; x ~ into n: which satisfies x(t) E £2(~)

for every tEll: and Y(t,S)En:2 (~(t),~(s» E 52. Then x E S~,2.

n
For, if U is the closure in £ 2(~) of the set { L

i=I

(Xl E n:, ... ,an E 1[, tIE I(;, .•• ,tn E II:}, and f E £Z(~), then f is the sum of an
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f l in U and an f 2 in £2(~) which satisfies (f2 ,g) = ° (g E U). Now we may

prove the smoothness of (~,f) = (~,fI) by using theorem 1 of appendix 2.

Let nEE, and let 1 ~ P ~ 00. We can introduce ~n an obvious way the

notion of smooth stochastic process of order p of n variables, and the space

S~ . It is possible to prove theorem 1.1.3 and theorem 1. I.S for the n-dimen,G, P

sional case, and we can define in the case p = 2 an autocorrelation function

which turns out to be an element of S2n.

We conclude this section with some examples.

f in

(i) nLet nEE. If f E S , and

Sn by
~,p

1 ~ P ~ 00, then we can define the embedding f of

It is trivial that f E S~ .
'G, P

(ii) If x E S~,2'1. E S~,2' then ~ ® 1. := ~ «t,s) ,w)EIl:2x~(t,W)Y(s,w) is an
2

element of S~ 1.,
Smoothness of (~ ® 1.' f) for f E £oo(~) may be proved by us~ng the method of

the proof of theorem 1.1.5.

(iii) If 1 ~ p ~ 00, and E > 0, and if (qk)kEE
O

is a sequence on £p(~) such

O(e-
kE

) (k E EO) then

(t E ~) ,

00

~ := ~(t W)E~X~ I qk(w)~k(t)
, k=O

defines an element of Sn . In order to prove this we note that the series,G, P
00

L: IIqkll l~k(t)1 is convergent for fixed t E ~ (see appendix 1,0.5 (iv)e»,
k=O P

so x(t) E £ (~) (t E ~). Furthermore we have for f E £ (~) by Lebesgue's theorem
- P q

on dominated convergence

00

I (qk,f)~k(t)
k=O

and (qk,f) = O(e-
kE

) (k E EO) by Holder's inequality.
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Now the smoothness of (~,f) follows from appendix I, 0.5 (iv)c). This means

that x E S~ . See 1.2.8 (iii) for a converse.
- oo,P

(iv) If I $ P $ r $ 00, then S~ J S~ • This may be proved by using twice
~G,p ~G,r

the fact that $ x ~ Y ~ 00 ~£ (~) J £ (~).
x y

(v) If I $ P $ 00, and x E Sn ,then x := ~( ) ~ ~x(t,w) E S~ •oG,p - t,w Eu.X~r,- oG,p

1.2. Theory of linear functionals and linear operators of S~ .
oG, P

1.2.1. Introduction.

Let (~,A,P) be a probability space, and let I ~ P ~ 00. The aim of this

section is to extend quasi-bounded linear functionals and quasi-bounded linear

operators of S to linear mappings of S~ into £ (~) and S~ respectively
~G,p p OG,p

(see appendix I, section 2). We first extend quasi-bounded linear functionals

of S, and then we reduce the extension of quasi-bounded linear operators of S

to the extension of quasi-bounded linear functionals of S.

1.2.2. First suppose that I < P ~ 00 (then I ~ q < 00). We have the following

Theorem. Let L be a quasi-bounded linear functional of S (see appendix 1, 2.1).

If x E Sn ,then there is exactly one g E £ (~) such that
00, p p

L(~,f) = (g,f) (f E £ (~))
q

Proof. Let x E Sn • It is easily seen that L(_x,f) depends linearly on
- oo,p

f E £q(~)' We show that ~fE£q(~) L(~,f) is a bounded linear functional of £q(~)'

Suppose that (f ) ,,"1\' is a sequence on £ (~) with II f II -+ O. It is not hard to
n nu, S q n q

prove from theorem 1.1.3 that (x,f ) -+ 0 (see appendix 1,0.9).
- n

By appendix I, 0.9 we can write (x,f ) = N ~ (n E E) with some positive a and
- n

S
a n

a sequence (~ ) ~, on S such that ~ -+ O. Now IL(x,f )1 = IL(N ~ ) I -+ 0 by thenn~,n - nan
definition of quasi-boundedness and by [B], theorem 23.2. This proves the

boundedness of YfEl (~)L(~,f).
q

From the fact that YfE£ (~)L(~,f) lS a bounded linear functional of £ (~),
q q

we conclude from [2J, Ch. 12, §50, Theorem 2 that there exists exactly one
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g E £ (Q) such that
p

L(~,f) = (f ,g) (f E£ (Q)) •
q

o

Remark (without proof). If (Q,A,P) is a probability space such that !2(~i) has

infinite dimension, and if L is a linear functional of S such that

YfE£2(Q)L(~,f) is a bounded linear functional for every x E SQ,2' then L 18

a quasi-bounded linear functional of S.

1.2.3. Now we consider the more delicate case p I.

Let ~ E SQ I' We prove the following,
Lemma. Let L be a quasi-bounded linear functional of S.

The ~etfunction YAEAL(~,A) is absolutely continuous and completely additive

(here we have written A for both the characteristic function of the set A and

the set A itself).

Proof. We have to show that

1) if A E A and peA) = 0, then L(~,A) = O.

2) if A, A E A (n E ~) , and A is disjoint un10n of the A ' s thenn n
00

L(~,A) = L L(x,A ).
n=l

- n

It is easy to prove 1): take an A E A with peA)

L(~,A) = O.

O. Now (~,A) 0, so

Now we prove 2). Let A, A E A (n E ~), and suppose that A 1S disjoint
n

union of the A's. For N E ~ we haven

L(x,A ) =- n

00

L(~, u
n=N+I

A ) •
n

00

We show that (~, u
n=N+I

every t E It

SA ) ~ O. It follows from Lebesgue's theorem that for
n

lim(~( t) ,
n~

00

u
n=N+I

A )
n

o ,

and furthermore we have for every t E It
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00

I (~( t) , u An) \ :s: II~ ( t) 111 •
n='N+l

We conclude from theorem 1.1.3 and theorem

00

of appendix 3 that

S
(~, u A) ~ O. From the fact that L ~s a quasi-bounded linear functional

n='N+ 1 n
00

of S we infer that L(~, u A) ~ 0 if N ~ 00 (see also the proof of theorem
n=N+1 n

1.2.2). Therefore

00

L
n=1

L(x,A )- n

N
lim I
N~ n=1

L(x,A )
- n o

1.2.4. Theorem. Let L be a quasi-bounded linear functional of S. If x E S~ l' then,
there is exactly one g E £l(Q) such that

(g,f) (f E £ (Q))
00

Proof. Let x E SQ l' We apply the Radon-Nikodym theorem (complex version, see,
[zJ, Ch. 11, §45, Theorem 3) to the set function ~AEAL(~,A) which is absolutely

continuous and completely additive. There exists agE £1(~) such that

L(~,A) = (g,A) (A E A) •

Now let f E £ (~). There is a sequence (fn)n~ of measurable functions of
00

m
the form L a.A. (m E :N, a. E 11:, A. E A) such that II f II :s: 11 f II

00'
and such that

i=l ~ ~ ~ ~ n 00

Sf n ~ f almost everywhere in Q. We can prove that (~,fn) ~ (~,f) ~n the same way

as we proved lemma 1.2.3. It follows that

L(x,f ) ~ L(x,f)- n -
(n ~ (0) •

1.2.5.

It is not hard to prove that L(x,f ) = (g,f ), and furthermore it ~s easy to see
- n n

that (g,fn ) ~ (g,f) (n ~ (0). This proves that L(~,f) = (g,f). The uniqueness of

g is trivial. 0

Let 1 :s: p :s: 00, let L be a quasi-bounded linear functional of S, let

x E Sn ,and let g be the unique £ (~) function of theorem 1.2.2 (if 1 :s: p :s: (0)
'G,p P

or of theorem 1.2.4 (if p = (0).

Definition. We define L x := g.
IF-
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Remark i. This definition ~s such that (L x,f)p- . L(~,f) for every f E £ (~).
q

Remark2Let I ~ P ~ r ~ 00 If x E Sn and x E Sn ,then L x = L x. This
- 06,P - ~G,r p- r-

follows from the fact that £ (~) is dense in £ (~), £ (~) is dense in £ (~),
00 poor

and from (L~,f) = L(~,f) = Lr(~,f) for every f E £oo(~). Therefore, we rather

write Lx instead of L x or L x. It is obvious that L is linear.
p- r-

Remark 3, If f E S, then we have L f = ~ n L f (see 1.1.8(i».
WE~G

1.2.6. Let ~ p ~ 00. We now describe the extension of a quasi-bounded linear

operator T of S to a linear mapping of Sn into Sn
~G,p ~G,p

Let t E ~, and consider the linear functional

According to appendix 1, 2.2 this functional ~s quasi-bounded. Let x E Sn .
~G, P

We define

Tx := Y( ) II" n(Ltx) (w) •- t,w E~X~G -

every f E £ (n) and t E ~ the equation
q

that {Tx,f) = ~ II"T(x,f)(t) E S for- tElli -T(~, f) (t)

Now we have (Tx)(t) E £ (~), and for
- p

«T~)(t),f) holds. This means

every f E £ (~). So Tx E Sn .
q - 06,P

Remark I. The definition of Tx ~s such that (T~,f) = T(~,f) for every f E £ (~).
q

Remark 2. If f E S, then we have T f = Y(t,W)E~X~(Tf)(t) (see I. 1.8(i».

Remark 3. If Tg = 0 for every g E S, then Tx = 0 for every x E S~,p. For, if

f E £ (~), then (Tx,f) = T(_x,f) O.
q -

1.2.7. We say a few things about the extension of linear functionals and linear

operators of Sn. All preceding theorems can be stated and proved (with the

proper modifications) for the n-dimensional case.

Theorem. Let T1 and T2 be quasi-bounded linear operators of S, and let TI and

T2 resp. TI ® T2 (see appendix I, 2.13) be extended according to 1.2.6 to linear
2

operator~ of S~,2 resp. S~,I If ~I E S~,2' ~2 E S~,2' then (T 1 ® T2)(~1 ® ~2) =
TI~I ® T2~2 (see 1.1.8(ii».
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Proof. It ~s sufficient to show that for every f E £ (Q)
00

Let f E £oo(Q), and note that by definition «T
I

0 T2)(~1 0 ~2),f)

(T I 0 T2)(~1 0 ~2,f). Furthermore we have for t E [, S E ~

and for u E [ we have

Now the theorem follows from appendix I, 2.13. o

1.2.8. We conclude this section with a number of examples.

The s.moothingoperators No. (a. > 0), the Fouriertransform F and its inverse

the shift operators Ta and ~ (a E

be extended to linear operators ofcan

(i)

F*, [, b E [), and the operators P and Q

S for I ~ p ~ 00, because theseQ,p
operators are quasi-bounded (see appendix 1, 2.10(iii». We have by [BJ,

8.2 and 1.2.6 remark 3 (FN - N F)x = 0, FN x = N Fx (a. > 0, I ~ P ~ 00, XES ).
a. a. - 0.- a. - - Q,P

* )By a similar argument we have FF x = x T T x = T ~x (a E [,b E [ , etc. for
-' a ~ a+~

X E Sn (I ~ p ~ 00).
- ~., p

(ii) If x E SQ,2' then we have for t E [, S E [

R_ (t,s) = T( Y T(y R(v,u» (s»(t)-LX u v

(see also 1.1.4 and 1.2.6). As examples we have

R = (T 0 T )R, ~ = (~ 0 R b)RT x a a . x -0 -
a-

for a E JR, b E JR (see appendix I, 2.13).

(iii) Let I ~ P ~ 00, and let F E S*. The linear

is quasi-bounded ([BJ, 22.1). So it is possible

denote LF~ =: [~,FJ (~ E SQ,p)'

functional LF := YfEs[f,FJ

to extend LF to Sn . We
.. ,p
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If f E S, XES ,then we denote [x,f] := [x,emb(f)] (see appendix I, 0.7).. - n,p --
Now we may prove the converse of 1.1.8(iii): if x E Sn ,then there is an

- ,p -k£
£ > ° and a sequence (qk\E:N

O
in.£p(n) such that Ilqkllp = O(e ) (k E :NO) and

00

x = \ q ,I, For, if _x E S then there exist by appendix 1, 0.5 (iii) andl. k'f'k' n p
k=O ",

theorem 1.1.3 constants £ > 0, M> 0, A> 0, B > 0 such that for every

f E.£ (rl) there is exactly one g E S such thatq

2 2
(~,f) = N g, Iget) I s Mllf II exp(-nA(Re t) + nB(Im t) )

£ q

Now we find that for some M' > 0

(t E: ([) •

-k£
e

lt follows from [2J, Ch. 12, §'50, Theorem 2 that

-k£
II [x,t/Jk] II = O(e )- p (k E :NO) •

Furthermore, we have for f E.£ (rl) by appendix I, O.5(iv) d) and e)
q

00 00 00

(here we used Lebesgue's theorem on dominated convergence). This proves that
00

x = L [~,t/JkJt/Jk' It is not hard to show that there is at most one sequence
k=O

-k£
(qk)kE:N

O
on .£ p (n) such that II qk lip = O(e ) (k EO :NO) for some E: > 0, and such

00

that x = \ q t/J
L . k k'

k=O

(iv) If 1 s P s 00, X EO Srl ' and T 1.S a quasi-bounded linear operator S, then. ,p
00

Tx = l. [~,t/JkJT1jJk' The proof of this fact is similar to that of I.2.8(iii) .
k=O

See also appendix, I.2.IO(iv).

(v) Inverse smoothing theorem. Let I s p s 00. lt is not hard to prove that for

every ~. E Srl and every a > 0 there is at most one x.. E S such that x = N,p n,p ax..
(see [B], IO.l(i». If follows from 1.2.8(iii) and (iv) that for every x EO S- rl,p
there is an a > 0 and ax.. E S such that x = N y.rl,p a-
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i.3. Generalized stochastic processes.

1.3.1. Let (Q,A,P) be a probability space, and let i $ P $ 00.

Definition. A generalized stochastic process of order p is a mapping X of

then

the positive real numbers into S~ such that N XQ = X Q for every a > 0,
~6, P a-IJ -a+ IJ

13 > O. The class of all generalized stochastic processes of order p is
* * *S~ we have an equivalence: if X E S~ ,Y E Sn ,
~6,P - ",p ",p

are equal (~ !) if X = Y for every a > O.
-a -a

*denoted by S~ . In
~6, P

we say that X and Y

If f E ~q(Q), then it is easy to verify that

*for every X E SQ '
- * ,p

(X ,f) E N (S ) for- a

f E £ (Q)
q

every ~ E

(see appendix i,

*SQ ,f E £ (Q),
,p q

0.7). As a consequence we have

a > O.

*1.3.2. Definition. If X E SQ 2' then its autocorrelation function ~ is defined by,

We often write R instead of ~.

i.3.3. Theorem. If X E S~ 2' then R E S2 (see appendix i, 0.10).,

Proof. Let X E S~,2' It 1S easily seen that R
a

E S2 for every a > 0 (see l.i.6.

corollary). If a > 0, 13 > 0, t E ~, S E ~, then we have by 1.2.8(ii) (using

R
13

(u,v) = R
13

(v,u) for u ER, v ER, see l.i.S(i»

Ra+
13
(t,s) = Na(~u N

a
(1v RS(v,u»(s»(t) = (Na ,2 R

13
)(t,s)

(see appendix i, O.iO and 2.13). So R Q = N 2RQ
a+1J a, IJ

(a > 0, S > 0) • D

1.3.4. In an obvious way we can define generalized stochastic processes of order

p of n (n E~) variables (class Sn* ). It is also possible to define the auto
Q,P

correlation function of an element of Sn* . Theorem 1.3.3 remains valid for
Sl,p

the n-dimensional case.

1.3.5. We give some examples.

(i) If 1 ::0; p . n*
$ 00, and n E ~O' then we can def1ne for F E S its embedding 1n
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n*S byr2,p

~ n'.'
It is easily seen from 1.2.6 remark 2 and definition 1.3.1 that F E S~ .

'G, P

(ii) Let! E

Now X 0 Y E

y E S~ 2' and define X 0 Y := ~ 0 X 0 Y'G, - - a> -a -a

This follows from 1.1.8(ii) and 1.2.7 since

(see 1.1.8(ii.».

for a > 0, ~ > 0 (see also appendix I, 2.13).

(iii) Let ] ~ p ~ 00, and let (qk)kdN be a sequence on £ (r2) which satisfies
° p

VE>OC\\ qk lip = O(e
KE

) (k E :NO) J. It follows from 1.1.8 (iii), 1.2.8 (iv) and

00

appendix 1, O.5(iv)a) that ~ 0 L qkN ~k E S~ . See also 1.4.6(iii) for a
a> k=O a lG,P

converse.

(iv) If 00, then S* ~ S~ . This follows from 1.1 .8(iv).
r2,p 'G,r

(v) Let 1 ~ p ~ 00, and let XES Define
r2,p

emb(x) := ~ 0 N x •- a> a,-

*It is trivial that emb(~) E S~
'G, P

*].4. Theory of linear functionals and linear operators of S~ •
'G, P

1.4.1. Introduction. Let (~,A,P) be a probability space, and let I ~ P ~ 00 In this

linear functionals and linear

We restrict ourselves to continuous linear functionals of

section we shall extend a certain class of

f * 1" " *operators 0 S to 1near mapp1ngs of S~
'G, P

into £ (r2) and
p

* .SQ respect1vely.
,p

* ( "S see append1x I,

3.6), and to linear operators of S* which are extensions of linear operators

of S with an adjoint (see appendix 1, section 3). We shall not give many details

of the proofs of the theorems in this section, because they have much in common

with those in section 1.2.
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1.4.2. Theorem. Let L be a continuous linear functional of S*, let 1 ~ P ~ 00, and

*let X E Sn • There exists exactly one g E £ (Q) such that (see 1.3.1)
~.,p P

L<.~,f) = (g,f) (f E £ (Q»
q

Proof. In the case 1 < P ~ 00 we can use the fact that for every sequence

(f ) _....1 on £ (Q) with \I f \I -+ 0n n~, q n q

s*
(X,f ) -+ 0 •
- n

From this it follows (continuity of L) that

is a bounded linear functional of £ (Q). The remaining part of the proof ~s
q

similar to the second part of the proof of theorem 1.2.2.

If P = 1 we use the fact that for f,f E £ (Q) (n E ~), which aren 00

uniformly bounded in II II, and which satisfy f -+ f almost everywhere in Q,
s* 00 n

(X,f) -+ (X,f). Now we can make use of the continuity of L. The remaining- n -
part of the proof is similar to the proofs of lemma 1.2.3 and theorem 1.2.4. D

1.4.3. Let 1 ~ P ~ 00, let L be a continuous linear functional of S*, let

*X E Sn ,and let g be the (unique) £ (Q) function of theorem 1.4.2.
",p P

Definition. We define L X := g.
p

Remark 1. This definition is such that (L X,f)
P

L(!,f) for every f E £ (Q).
q

Remark 2. Let 1 ~ P ~ r ~ 00. If XES and XES ,then L X = L X (this
- Q,p Q,r p- r-

follows as in 1.2.5 remark 2). Therefore we rather write LX instead of L X
p-

or L X. It ~s obvious that L is linear.r-

Remark 3. If F E S*, then LF = Y n LF (see 1.3.5(i».
WE ..

1.4.4. Let 1 ~ P ~ 00, and let T be a linear operator of S with an adjoint. This

T is by appendix 3.2 * of a1, remark 1 and 3.3 extendable to S by means

family (Ya)a>O of linear mappings of N (s*) into S such that
a
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I. Y N f = N Tf (a > 0, f E S)a a a
*2. Y +SN SF = NSY N F (a > 0, (3 > 0, F E S )a a+ a a

S* *
3. F * (n E :N) , Y Y N F ~ 0E S F + 0 ~ TFn n n a>O a a n

* *4. [TF,g] = [F,T g] (F E S , g E S) .
For every a > 0 and every t E ~

is a continuous linear functional

extendable to a linear mapping of

t E ~ (1.4.3).

*Let X E S~ . We define
",p

of S* (this follows

S; into £ (~) for
,p p

from 3). So L ist,a
every a > 0 and every

*Theorem. TX E S~ •
",p

Proof. We have to establish two things:

a) (TX) E S~ for every a > O.
- a ",P

b) Na(TX) = (TX) a for every a > 0, S > 0 .
I-' - a. - a+1-'

We prove a) by taking an f E £ (~), and find for t E ~ and a > 0 (see
q

1.4.3 remark 1)

«TX) (t),f) = (L t X,f) = L (X,f) = (T(X,f» (t) ,- a , a- t , a - - a

and (T(X,f» E S. This proves that (TX) E S~ . It also proves that
- a - a "'P

«TX) ,f) = (T(X,f» for f E £ (~), a > O.
- a a q

We now prove b). Let a > 0, S >

NS«T!) a' £)

= (T(X,f» a- a+1-'

0, f E £ (~). We find by 1.2.6 remark 1
q

NS(T(!,f) a

«TX) a,f).- a+1-'

(TX) a (a > 0, S > 0).- a+1J o
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Remark I. The definition of TX is such that (T!,f) = T(!,f) for every

f E £ (~). It 1S obvious that T is linear.
q

Remark 2. If F E S*, then we have TF = r 0 r( ) II' ,,(TF) (t) (see 1.3.5(i».a> t,w E~X" a

Remark 3. Let a > O. We can also extend the linear operator Y to a linear
Ci.

mapping of N (S~ ), this is the set {X I X E S~ }, into Sn by the method
a ",p ----iX - ~G,p ~G,p

of 1.2.6 and 1.4.4. We have Y N X = (TX) and Y (X ,f) = (Y X ,f) for f E £ (0,).
a a- - a a ----iX a----iX q

Remark 4. If Tf = 0 for every f E S, then (appendix I, 3.2 remark 3) TF = 0

* *for every F E S From this it follows that TX = 0 for every! E Sn ,because
~G, P

(TX,g) = T(X,g) = 0 for every g E £ (~).
- - q

1.4.5. We make a few remarks about the extension of linear operators and linear

functionals of Sn*. All preceding theorems can be proved for the n-dimensional

case.

linear operators of S with an adjoint, and let TI
appendix I, 3.IZ) be extended according to 1.4.4

Z* * *
resp. Sn I' If !I E S~ z' !Z E S~ 2' thenali, , ,

T2!Z (see 1.3.5(ii».

Theorem. Let TI and T
Z

be

and TZ resp. TI 0 TZ (see

1 . *to 1near operators of S~ Z,
(T I 0 TZ)(!I 0 !Z) = TI!I 0

* *Proof. Let!1 E S~ z' !Z E S~ Z' and let T1 resp. TZ be extendable by means, ,
of (Y 1) >0 resp. (Y 2) 0 (see appendix I, 3.2 remark I). According toa, a a, a>
appendix I, 3.1Z we have to show that for a > 0

(1) (2)
Y IN XI 0 Y ZN!2 = (Y lY ZN 2)(!1 0 !Z) •a, CJ;- a, a a, a, a,

Note that Na,Z(!1 0 !2) = Na!1 0 Na!2 (see 1.3.5(ii».

The remaining part of the proof is similar to the proof of theorem 1.2.7. 0

1.4.6. We conclude this section with a number of examples.

E (1;), and the operators P and Q can

for 1 ~ p ~ 00, because the operators

We have by 1.4.4 remark 4 and [B], 8.2

~ P ~ 00, ! E Sn ). By a similar
~G, P

T ~X (a E IL, bElL), etc. for
a+u-

N (a > 0). Fourier transform F and its inverse F*,
a
~ (a E

(i) The smoothing operators

the shift operators T and
a

be extended to linear operators of

IL, b

S*
~,p

have adjoints (see appendix I, 3.9(i».

(FN - N F)x= 0, FN X = N FX (a > 0, Ia a - a-a -
*argument we can prove FF X X, T T~X =

- a u-

XES (1 ~ P ~ 00).
~,p
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(ii) Let T be a linear operator of S with an adjoint, and let T be extended

according to 1.4.4 to a linear operator of S;,2. Suppose that T is extendable
*by means of the family (Y) 0 (see appendix I, 3.2 remark). If X E Sn 2' then

a a> •• ,

«TX) (t),(TX) (8» = Y (~ Y (~ R (v,u»(s»(t)
- a - a a u a v a

for a > 0, t E ~, S E ~, where R is the autoco~relation function of X

(see 1.3.2). It is not hard to prove this (see also 1.4.5). As special cases

we have (after some calculation)

(a E :R, b E JR.) •

Here R
Ta

! (R~) denotes the autocorrelation function of Ta! (~). See also

1.2.8(ii).

(iii) Let 1 ~ p ~ 00, and let g E S. Define L := ~F S*[F,gJ. This L is ag E g
continuous linear functional of S*, so it is possible (1.4.3) to extend L

g
to a linear mapping of S~ into £ (Q). We denote L X =: [X,gJ (X E S; ) .

•• ,p p * g- - - ,p
We now prove the converse of 1.3.5(iii): if XES , then there is exactly

Q,p
one sequence (qk)k8N on £ (Q) such that

a p

00

*For, if X E Sn , and € > 0, then (by appendix I, a.5(i) and O.5(iv)a»
oo,p

and for t E ~, f E £ (Q) we have
q

IN (X,f)(t)I ~ Ilx (t) II Ilfl\
€- -€ p q

We conclude that there ~s an M > a such that

By [ZJ, Ch. 12, §50, Theorem 2 it now follows that
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Vkc:N [II [!, lj!k] lip ::::; M ekE] •
0

This proves

V£>0 [II [!, lj!k] lip O(ek£) (k E :NO)] .
Now it is not hard to show that

00

V [X =0.>0 ~

and that there exists at most one sequence (qk)k6N
o

properties (see also 1.2.8(iii».

on £ (~) with the assigned
p

Remark. It is also possible to prove this theorem by making direct use of

1.2.8(iii).

(iv) Let T be a linear operator of S with an adjoint. We have

[T!, g] = * * if f E £ (~),[!,T gJ for! E SQ,p ( 1 ::::; P ::::; (0) and g E S. For, q
then we have by definition 1. 4. 4 and appendix 1 , 3.2

[(T!,f),g] = [T(!,f),g]

* *[(!,f),T gJ = ([!,T g],f)

(v) It is an easy exercise to prove that for X E S~ , g E S
",p

00

As an example we have [X,o (t)] = X (t) for a. > 0 and t E ~ (see appendix 1,
- a. -a.

0.7).

1.5. The Wigner distribution for smooth and generalized stochastic processes.

1.5.1. Let (Q,A,P) be a probability space.

Definition. Let x E SQ,2' Y E S~,2' The Wignerdistribution V(~'Y) of x

and y is defined by
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(see 1.1.8(ii) and (v), and appendix 1,3.12; see also [B], 16).

2
Note that V(~~.l) E S~,l

We list some properties of V(~,.l) (x E Sn,2' .l E S~,2)'

(i) For a E lR, b E lR we have

Proof. Note that for a E lR and b E lR

TR..v=TR.v.
a bd- a - t>"-

For f E £ (n) we have (see 1.2.7)
00

(2) -
=(ra/2~Tb/2)F ;;(~~l.,f),

2because the latter relation holds on S .

In the same way we may prove that for a E R, b E lR

(ii) We have for t E ~, A E ~

V(F~, Fl.)(t,A) = V(~'l.)(-A,t) .

This follows in the same way as the relations in (i).

(iii) Furthermore ~e have (the proofs are similar to the proof of (i»

o

V(N x, N y)
a- ();"-

(a > 0) •

1.5.3. Theorem. If x E S~,2' then E(V(~,~» F(2)Z R (see 1.1.4).
U



1.6. Application to the theory of noise.

* *1.5.4. Definition. Let X E S~,2' Y E S~,2' We define the Wigner distribution

V(!,!) of ! and! by

1.5.5. Theorem. If ! E S~ 2' then ~ 0 (V(X ,X )) =
~G, a> -a -a

function of !, see 1.3.2).

F(2)Z R (R ~s the autocorrelation
u

In this section we give a definition of noise, and we mention a number

of results (the proofs of these results are to appear in a subsequent paper).

Furthermore we shall briefly comment on existing literature on this subject.

* *Definition. (Compare 0.2.) Let A be the smallest a-algebra on S such that

~FES*[F,fJ is measurable for every f E S. If p* is a probability measure on

(S* A*) h h . 1 (* * *) . ., , t en t e tr~p e S,A,P ~s called a no~se.

E(V(x X)) = F(2)L_R .
-a'-a ~u a
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v (!,!) := ~ 0 VeX ,y.) .
a> -a -a

Remark. Note that R is completely determined by F(2)~R, for

F(2) ZuR = 0 ~ R = 0..

F(2)LR = N F(2)LR. 0
U a 0.,2 -u

According to the proof of [BJ, theorem 16.1 and [BJ,19 example (i) (the theorem
nstated there also holds for linear operators of S (n E ~)), we have

Proof. By theorem 1.5.3 we have for a > 0

2*Note that V(!,!) E S~ 1 by 1.5.2(iii).,

Proof. This follows directly from the definition of v(~,~) and from 1.2.6. 0

1.6.2.

1.6.1.

1.6.3. The concepts of noise and generalized stochastic processes are related
. h f 11 . (* * *) . . (.~n teo ow~ng sense. Let 1 ~ P ~ 00. If S,A,P ~s a p-no~se ~.e.

f ~ 0 ~ II~F S*[F,f JII + 0 for every sequence (f ) _~ on S), thenn E n p n n~,
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X := Ya>O Y(t,F)E[XS*Fa(t) is a generalized stochastic process of order p

. h b" (* * *) ( )W1t proba 1llty space S ,A,P see 1.3.1 . It can be proved that the

stochastic vectors ([!,fIJ, ... ,[!,fnJ) (see I.4.6(iii» and

~FES*([F,fIJ, ..• ,[F,fnJ) are equally distributed for every n E ~ and every

set {fI, •.. f n} of S. We call! the associated generalized stochastic process.

On the other hand, if (Q,A,P) is a probability space, then it can be proved
* * *that to every X E Sn there exists exactly one probability measure on (8 ,A )
.', P

such that the stochastic vectors ([!,fIJ, ... ,C!,fnJ) and

YFES*([F,fIJ, •.. ,[F,fnJ) are equally distributed for every n E ~ and every

set {fI, ... ,fn } of S.

* * *If (S ,A ,P ) 1S a p-noise (I ~ P ~ 00), and if we have on S a linear

operator T with an adjoint, then it can be shown that there exists exactly

one probability measure P; on (S*,A*) such that YFES*([F,fIJ, ... ,CF,fn])

(in p;-sense) and ~FES*(CTF,fIJ, ... ,[TF,fnJ) (in P*-sense) are equally

distributed for every n E ~ and every set {fI, ... ,f } of S. Furthermore
* * * n

(S ,A ,PT) is a p-noise, and (if! denotes the generalized stochastic process
. . (* * * .assoc1ated w1th S,A,P» T! (see 1.4.4) is the generalized stochast1c

. . (* * *)process assoc1ated w1th S ,A 'PT .

We give the following definitions of white noise.

D f " I f (* * *) . IJ ( J)e 1n1ton . I S,A,P 1S a noise such that I FES * [F,fIJ, ... ,[F,fn 1S

normally distributed with zero mean and if the variance-covariance matrix 1S

diag(I, •.• ,I) for every orthonormal set {fI, ... ,f
n

} in S, then the noise

is called ideal white noise.

Definition 2. If (S*,A*,P*) is a noise such that E(YFES*[F,gJ) = 0,

E(YFES*[F,g][F,hJ) = [h,g] for every g E 8, h E S, then the noise is called

second order white n01se.

Definition I appears to be more restrictive than definition 2. Suppose
* * *that (8 ,A ,P ) 1S a 2-noise (see 1.6.3), and denote its associated generalized

stochastic process with!. It is possible to prove that the noise is second

order white

is given by

noise if and only if the autocorrelation function R of X (see 1.3.2)

Y 0 Yet ) ~2[O (t),o (8)J, or equivalently, the averaged Wignera> , s Ell. a a
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distribution Ya>OE(V(!a'!a» of ! (see 1.5.6) is given by emb(Y(t'A)E~2 2-~) 
(see appendix I, 0.7 and 0.10). 

Another interesting concept 1n noise theory is the concept of stationarity • 

Definition I. A noise (S*,A*,P*) is called strict sense time stationary if 

YFES*([TaF,f\], ••• ,[TaF,fn]) and YFES*([F,f\], .•• ,CF,fn ]) are equally 

distributed for every a E R, n EN and f) E S, •.. ,fn E S. 

Remark. Compare this definition with [D], Ch. II, §8(a). 

Definition 2. If (S*,A*,P*) is a 2-noise such that 

E([T X,fJ) - E([X,fJ), E([T X,fJ[T X,gJ) = E([X,fJ ,g) a- - a- a- -

for every a E R, f E S, g E S, then the noise is called wide sense time 

stationary (! denotes the associated generalized stochastic process). 

Remark I. Compare this definition with [DJ, Ch. II, §8(b). 

Remark 2. In case of a 2-noise it can be proved that strict sense time 

stationary noise is also wide sense time stationary noise. 

Remark 3. We can give analogous definitions for frequency stationary n01se 

(then we have ~ (b E R) instead of Ta (a E R». 

Wide sense stationarity properties of a noise have interesting conse

quences for the autocorrelation function R and the averaged Wigner distri

bution V of the generalized stochastic process associated with the noise. 

We mention in particular 

(i) If the noise is wide sense time stationary, then we have for every 

a E R (see appendix 1, 3.12) 

V • 

(ii) If the noise is wide sense frequency stationary, then we have for 

every b E R (see appendix 1, 3.12) 
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On the other hand, if we have T 0 T R = R for every a € R (or,a a
equivalently, T(I)V = V for every a E R), then the noise is wide sense

a
time stationary. A similar thing can be said for case (ii).

One of the most interesting results of the theory of n01se (which

may be proved from 1.6.4 and 1.6.5(i) and (ii» is that noise is second

order white noise if and only if it is wide sense time and frequency

stationary noise. Up to now we were not able to prove an analogous theorem

for the case of ideal white n01se.

We now devote attention to related theories in existing literature.

We first consider an approach which starts from a definition of type 0.1

(see e.g. [D] or [PJ). Let (~,A,P) be a probability space, and suppose that

to every t E R we have a complex valued measurable function ~(t) defined

on ~.We may regard this as a stochastic process in the sense of definition

0.1. It is often supposed that the process satisfies certain stationarity

conditions, e.g. strict sense time stationarity (i.e. the distribution of

(~(tl+a),.•. ,~(tn+a» is independant of a E R for every n E~,

t l E R, ... ,tn E R) or wide sense time stationarity (in this case ~(t) is

supposed to be a~ element of £2(~) for every t E R, and E(~(t+a)~(s+a»

E(~(t)~(s» for every t E R, s E R, a E R).

If ~(t) E £2(~) for every t E ~, then its autocorrelation function R

1S defined by R := Y(t,S)8R2E(~(t)~(s». Compare this definition with 1.1.4

and 1.3.2.

Suppose that the process 1S wide sense time stationary (in the sense

mentioned above), and specialize R to a function of the form Y(t,s)dR2R(t-S).

If R E £I OR), then the spectrum S of the process is defined to be the Fourier

transform of R. We may compare the spectrum with the averaged Wigner distri

bution of the process by remarking that, 1nthe time stationary case, the

averaged Wigner distribution is, roughly spoken, the tensor product of the

constant function and the spectrum (see 1.6.5(i».

A few remarks about white noise. In literature on physical applications

of the theory of stochastic processes, some authors (e.g. [PJ) define white

noise as a wide sense time stationary process with the 6-function as auto

correlation function. This coincides with what we called second order white
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* * *This 1S in accordance with the results of our theory: if (8 ,A ,P ) 1S

for almost every 6 E [O,IJ. Wiener also studies Brownian motion (his defi

nition of Brownian motion is essentially the same as the one used in [DJ).

We mention one of Wiener's results in particular: if x is a Brownian motion

~(t + T,B)dt

T

f
-T

1
, I
1m 2T

T+oo
~(-r ,a)~(O,a)da

I

f
a

process, and if f and g are sufficiently smooth real valued functions defined

on the rea1s, then

1 00 00 00

f f
r

f( f(t)d~(t,a»( I g(s)d~(s,a) )da f(t)g(t)dt .
J

a -00 -00 _00

We encounter ideal white n01se when dealing with Brownian motion. In

our theory we may define Brownian notion as a noise with an ideal white

derivative (see 1.6.3). In [D] Brownian motion is defined as a process ~

for which (~(tl) - ~(t2), ... ,~(tn_l) - ~(tn» is normally distributed with

zero mean and variance-covariance matrix diag(t2 - t 1,.. ·,tn - tn-I) for

every t l E R, •.• ,tn E R, t 1 ~ ~ tn' It is possible to prove the equi-

valence of both definitions.

n01se. Others use the following definition: white noise 1S wide sense time

stationary process with a "flat" spectrum (1. e. the spectrum 1S a constant

function). This means that, in our terminology, the averaged Wigner distri

bution of the process is constant. Now 1.6.4 expresses the equivalence of

both definitions.

We finally consider the theory of Wiener (see [W]). Wiener defines a

stochastic process as a set of measurable real valued functions YtdR~(t,a)

(a E {a, I]) for which Y
adO

I ]~( t ,a) is measurable for every t E R (Wiener,
used the word "time series" instead of stochastic process). Note that this

definition has features in common with both definition 0.1 and definition 0.2.

It is furthermore supposed that II (~(O,a»2da < 00. Wiener mainly considers

processes which satisfy the so cg11ed ergodic hypothesis (i.e. a strong kind

of strict sense time stationarity). Under this hypothesis it is possible to

define the autocorrelation function (and the spectrum) of the process from

the observation of a single time function YtdR~(t,a):



- 27 -

Brownian motion, and if X denotes the generalized stochastic process
. . (* * *assoc1.ated wl.th S,II.,P), then (according to 1.6.3 and 1.6.4 and our

definition of Brownian motion) E([P!,f][P!,g]) = [g,f] for every f E S,
00

g E S. Integrals of the type f f(t)d!(t) are often called Wiener inte-
-00

grals, and the word stochastic integrals 1.S used for integrals like
00

f !(t)d!(t) (here both X and Yare stochastic processes). We believe that
-co

it is possible to develop a theory of stochastic integrals with the formalism

of section 1.2.
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*Appendix 1. Linear operators and linear functionals of Sand S .

Summary.

In this appendix we prove a number of theorems concerning linear

operators and linear functionals of the set of ordinary (i.e. no~ 'stochastic)

*smooth functions (class S) and the set of generalized functions (class S ).

Several of these are used in the main text of this report.

First of all we give a survey of the main definitions and theorems of

De Bruijn's theory which are used in this report. Next we introduce a class

of linear operators of S, the quasi-bounded linear operators, which can be

characterized in various ways. The second subject studied in this appendix

*is the extension of linear operators of S to linear operators of S . We

shall show that an extended operator preserves convergence in S if and only

if it has an adjoint (relative to the inner product of S). Incidentally we

prove that every continuous linear functional of S* can be represented as an

element of S. We shall mainly deal with operators acting on functions of a

single complex variable, but many results can be generalized straightforward

ly to the higher dimensional case.

For notational conventions we refer to the notations section of this

report (section B).
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O. Introduction.

0.1. We give a short survey of the fundamental notions and theorems of

De Bruijn's theory as far as relevant for this report. A detailed treatment

can be found in [BJ.

0.2. If A and B are positive numbers we denote by SA B the class of analytic,
functions f of one complex variable for which there exists a positive number

M such that

2 2If(t)1 ~ M exp(-nA(Re t) + nB(lm t) ) (t E 0;) •

The set of smooth functions of one complex variable is defined by

S:= U U SA B. See [BJ, (2.1).
A>O B>O '

0.3. In S we take the usual ~nner product and norm:

00

[f ,gJ := f f(x)g(x)dx
-00

(f E S, g E S) ,

!
II f II := ([ f ,f]) 2 (f E S) •

0.4. We consider a semigroup (N) 0 of linear operators of S (the smoothing
a a>

operators). The N 's satisfy N 13 = N N (a > 0, 13 > 0), where the product ~s
a a+ a 13

the usual composition of mappings. These operators are defined as integral

operators:

f
-00

00

K (z,t)f(t)dt
a

(f E S, a > 0) ,

where the kernel K (a > 0) is given by
a

K := ~( t) ",2 (sinha)-~ exp( .-n
h

«z2 + t 2)cosha - 2zt)) .
a Z, EILo s~n a

See [BJ, section 3, 4, 5 and 6.

+In fact these operators can be defined on the larger space S consisting

of all complex valued functions defined on the reals with the property that
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for every E: > °
x

J If(t)ldt

-x

2O(exp(E:x » (x Z 0) •

+1 ~ P ~ 00. For f E S , a > °we have

+See [B], section 20. It is easily seen that £ OR) c S for every p with
p

f
-00

00

K (z,t)f(t)dt ,
a

and this is a smooth function. So N maps S+ into S (a > 0).
a

0.5. We summarize a number of properties of the (N) o.
a a>

(i) [N f,gJ = [f,N gJ for a > 0, f E S, g E S ([BJ, 6.5).
a a

(ii) For every a > 0 and every p (1 ~ P ~ 00) there are positive constants

Cap' A and B such that for every f E £pOR)

I (N f) (t) I ~ C II f II exp(-'ITA(Re t)2 + 'ITB(Im t)2)
a ap p

(this is a slight generalization of [BJ, 6.3).

(t E «:)

(iii) If f E S and a > 0, then there is at most one g E S satisfying f = N g.
a

In addition if f E S, then there exists an a > ° and agE S such that

f = N g. If furthermore f E S, and the positive numbers M, A and B are sucha
that

(t E «:) ,

(t E «:) •

then we can find an a > 0, C > 0, A' > 0, B' > O,only depending on A and B,

such that for the g E S with f = N g
a

2 2Ig(t)1 ~ MC exp(-rrA'(Re t) + rrB'(Im t) )

See [BJ, 10.1.

(iv) We denote by ~k (k E ~O) the Hermite functions (see [BJ, 27.6.3). For

every k E ~O we have ~k E S. The set {~k IkE ~O} forms a complete orthonormal

set in £2 OR) (see e.g. [KJ, 21.4). We list some properties of ~k (k E ~O).

For proofs and comments: see [BJ,27.6.3.



00

and f< 00 ,

00

(z E «:, t E «:) .

(f E S) •

(k E :NO) •

(k E :NO) •

~s a sequence of complex numbers satisfying

00

-00

00

L
n=a

Ff := ~ZE([

[f ,I, J a(e-kE )''I'k =

N f =a

K (z,t) =
a
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in the sense of £2 OR). We have for such an f

On the other hand, if (ck)k8N
a

c) If f E S, then there exists an E > a such that

kEe) For every t E ([ we have VE>O [*k(t) = a(e ) (k E :NO)J.

This follows from a.5(ii) and a.S(iv) a).

For some properties of F we refer to [BJ, section 8 and 9.

-kE \
ck = a(e ) for some E > 0, then the function L ck*k ~s an element of S.

k=a

b) If a > 0, then

a) The *k are eigenfunctions of Na for every a > 0:

(ii) The Fourier transform F

(this is an easy consequence of a.5(ii) and a.5(iv) a». From this it ~s not

hard to prove that liN f II :0; e-~all f II (see also [BJ, 6.2), and that
a

lim II N f - f /I = a for f E £ 2 OR) •
a-l-a a

0.6. We give a number of examples of linear operators of S.

(i) The smoothing operators N (a > 0).
a
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(iii) The shift operators Ta and ~ (a E ~, b E ~)

(f E S) ,

(f E S) •

The operator P

Pf := YtE~
f' (t)
2ni

The operator Q

Qf := YtE~ t f(t)

(f E S) •

(f E S) .

For properties of these operators, see [B], section 11.

0.7. A generalized function F ~s a mapping of the set of positive real

numbers into S such that

(a > 0, S > 0) .

*The set of all generalized functions is denoted by S . Instead of F we
a

*of ten write N F (F E S , a > 0).
a

If f E S+ (see 0.4) then its standard embedding in S* ~s defined by

emb(f) := YON f
a> a

(this is a combination of [B], 17.2 and [B], 20.2).

If F E S*, g E S we can define the inner product [F,g]: write g = N ha
with some a > 0, h E S (see 0.5(iii». Now [F,g] := [F ,h] (this depends

a
only on F and g: see [B], section 18).

*If F E S , then we have for every € > 0

00

F
€

=

and, on the other hand, if (ck)k8N ~s a sequence of complex numbers satisfying
o
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ke:
ck = O(e ) (k E ~O) for every e: > 0, then

00

Ya>O L ckNal/Jk
k=O

*defines an element of S (see [B], 27.6.3). As an important exallitle of a

generalized function we have the delta function at the point t, defined by

oCt) := Y Y K (z t) - Y Y I e-(n+Dal/J (z)l/J (t) .
a>O ZE~ a ' - a>O ZE~ n=O n n

For a > 0, t E ~ we have [F,o (t")]
a

F E S* and g E S, then

00

[F,g] = L [F,l/Jk][l/Jk,g] .
k=O

F (t) (F E S*). More generally: if
a

*If a > 0 then N (S ) := {F
a a

F E S*}. Obviously N (S*) c S.
a

0.8. Let T be a linear operator of S, and suppose that there exists a family

(Ya)a>O of linear mappings of Na(S*) into S such that

I) Y N F = NaY N F ,a+B a+B ~ a a

2) YN f = N Tf
a a a

*for every a > 0, is > 0, F E S , f E S. Then we call T extendable by means of

(Y) 0 (see [B], (19.3) and (19.4». It is possible to define a lineara a>
operator I on S* such that I(emb(f» = emb(Tf) (f E S). This T is defined by

IF := Y Y N Fa>O a a

(see [B], 19.2).

(F E s*)

0.9. Convergence *l.n Sand S .

If (fn)nEfl is a on S, then we write f S
0 if there are positivesequence +n

numbers A and B such that

f (t)exp(nA(Re t)2 - nB(Im t)2) + 0
n

uniformly in t E ~. If f,f E S (n E ~), then we write f ~ f if fn n n
S

- f + O.
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If f E S (n
n

(g ) _~ on S such
n n~.

23. I .

S
E E), f ~ 0, then there exists an ~ > 0 and a sequencen
that f = N g , g ~ O. For the proof we refer to [B],n ~ n n

S* S
~ 0 if N F ~ 0 for

~ n
S*

if F - F ~ O. For
n

*S , then we write F
n
S*
~ F

If (F ) is a sequence onnndI

*every ~ > O. If F,F E S (n E E), then we write F
n n

more details see [B], section 24.

O. )O. We devote attention to smooth and generalized functions of n complex

variables (n E E). The space Sn (see [B], section 7) is defined as the set

of all complex valued functions f of n complex variables which are analytic

in all variables, and for which there exist positive numbers M, A and B

such that

n
If(t 1,··. ,tn) I $; M exp(-1TA I

k=l
(Re t )2 + 1TB

k

n 2I (1m t k) )
k=l

As an example of a smooth function of n variables we have

f
1

0 .•. 0 f
n

where f) E S, ..• ,fn E S.

The smoothing operators N (~ > 0) are defined as integral operators
~,n

with kernels (see [B], section 7)

(~ > 0) .

We have N Q
~+jJ ,n = N N for ~ > 0, (3 > O.

~,n (3,n

The inner product and norm in Sn is defined by

[f,g]:= f f(x)g(x)dx
JRn

n n(f E S , g E S ) ,

1
IIfll := ([f,fJ)2 n

(f E S ) •
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of a Banach space.

As an example of a generalized function of n variables we have

for

+ k )
n )

n
for k = (kl, ... ,kn) E EO)' and that

-E:(k + •••
which satisfies ck = a(e 1

some s > 0 the function k~n Ck1)Jk.n 1S an element

a

: = ~ a (F 1) @... 181 (F) ,
a> a n a

II Tf IIw

:= ~~g II f Ilv •liT II

F
1

@ ••• @ F
n

by

f .= L [f, 1)Jk Jl/JkkENn ,n,n
a

It is possible to give all preceding definitions and theorems (with

the proper modifications) for Sn and Sn* (see e.g. [BJ, section 7, section

21, 27.4.1 and 27.26. I). As an example we mention that for every f E Sn

If V and Ware normed linear spaces. and T is a linear operator,we say

II Tf IIw
that T is bounded if sup 1S finite. In this case the norm of T is defined

f~a II f IIV

* *where F 1 E S , ••• ,Fn E S •

of Sn. We have a similar result for generalized functions of n variables

(see also 0.7).

every multi-sequence (ck)kENn on 0:
o

n
(k = (kl, ...•kn) E EO) for

A generalized function F of n variables 1S a mapping of the positive

real numbers into Sn such that N FQ = F Q for every a > 0, B > 0 (see
a,n I-' a+1-'

[BJ, section 21). The set of all generalized functions of n variables is

denoted by Sn*.

(here 1)Jk,n denotes 1)Jk @ ••• @ l/Jk
1 n

I. Linear operators and linear functionals; A theorem about linear functionals

I. Let V and W be linear spaces. A linear operator is a linear mapping of

V into W. If W = 0:, we speak of a linear functional instead of linear operator.

I~ W= V, we say linear operator of V.



statements are

of bounded linear functionals of B such that

V 3 3 V [ILfl s M]fEB a>O M>O LEA
a

( i)

collection A
a

c A
a2

(a 1 > 0, a2 > 0). Then the followinga l < a 2 => A
a

l
equivalent:

( ii) 3 3 V V [ILfl s Mllfll]a>O M>O fEB LEA
a

We now suppose (i), and we shall show that

Proof. It is easily seen that (ii) => (i): if N > 0 and B > 0 are such that

ILfl s Nil f II for every fEB, LEAS' then we can take a = Band M = Nil f II in

(i) •

yields a contradiction. To every n E ~ we can then find an fEB and an
n

LEAl/such that IL f I > nil f II. Note that L is a bounded linear functionaln n n n n n
of B for every n E~, and that (L f) _~ is a bounded sequence for every fEB.

n n<::..l.'
It follows therefore from the Banach-Steinhaus theorem that there is an M > 0

such that IL f 1 s MIl f II for every n E ~ and every fEB. Contradiction. 0
n
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then the following statements are equivalent:

Theorem. Let (B,II II) be a Banach space. Suppose that for every a > 0 there ~s

given a

If V is a linear space with an inner product [ , ], and T
I

and T2
are linear operators of V, then we say that T

I
and T2 are adjoint operators

if [T 1f,g] = [f,T2g] for every f E V, g E V. It is easy to see that for

every linear operator T of V there is at most one adjoint operator, which

(if it exists) is denoted by T*.

3. We use theorem 1.2 in the following form: If {Lt I t E T} is a set of

bounded linear functionals of a Banach space B, and if for every a > 0 there

is a mapping g of TintoR such thata

2. Many results of this report are based on the following
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(a > 0) .

1 (a > 0, t E T).

VtE [ [~fEs(Tf)(t) is a quasi-bounded linear functional of SJ.

V [Y [Tf,gJ is a quasi-bounded linear functional of SJ.gES fES

type IV. For (~ ) 8N on S we have ~
S Severy sequence -+ 0 ~ T~ -+ O.n n n n

type V. For every a > o there exists as> o and a bounded linear operator

T1 of S such that TN NeT 1.Cl.

type VI. For every a > 0 the linear operator TN ~s bounded.
a

type VII. For every a > 0 the linear operator TN has an adjoint.
a

type III. For every sequence (~n)n8N on S we have ~n ~ 0 ~ T~n is pointwise

bounded.

The most important result of this section is that all these types define

the same class of linear operators of S which we shall call the set of quasi

bounded linear operators.

type II.

Let T be a linear operator of S. We introduce the following types

type I.

then

Definition. A linear functional L of S is called quasi-bounded if LNa ~s a

bounded linear functional of S for every a > O.

This follows from 1.3 by taking g (t)
a

As a special case of 1.3 we have the Banach-Steinhaus theorem: if B

~s a Banach space, and {L
t

I t E T} is a set of bounded linear functionals

of B such that

This follows directly from theorem 1.2 by taking

. Quasi-bounded linear operators of S.



Suppose the contrary. Then there is a sequence (g ) _~ on S such that
n nc.J.'

Ilg \I -+ 0 and I (TN g )(t)1 >n (n E ".N). It follows from [B], theorem 23.2
n San

that N g -+ 0, and this means that «TN g )(t» _~ is a bounded sequence.
a n CI. n nc.J.'

Contradiction. 0

I

o

~I-.....-.'3~--VII

a) V ~ IV

b) IV ~ I

c) I ~ V .

) . ( ) S d'a Suppose that T ~s of type V, and let ~ E S n E".N ,~ -+ O. Accor ~ngn n

Proof. It is sufficient to prove that

III

Proof. Trivial .

VI
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Theorem. If T is a linear operator of S of type IV, then T ~s of type III.

Proof. Suppose T ~s of type III, and let t E ~. We have to show that for

a > 0 there is a C > 0 such that
a

We shall prove successively that III ~ I, IV ~ Ill, I ~ IV ~ V,

V ~ VI, VI ~ II, II ~ V, II ~ VII.

Figure.

• Theorem. Let T be a linear operator of S. T is of type I if and only if T

is of type IV. T is of type I if and only if T is of type V.

. Theorem. If T is a linear operator of S of type III, then T is of type I.
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(t E ~) •

(t E ~)

(A > 0) ,

Z 2Iget) I ~ Mil f II e exp(-nA' (Re t) + nB' (1m t) )

2 -} 2
I (TN f)(t)1 ~ M exp(-nA(Re t) + nA (1m t) )

a

w 2 -} 2
gA := ItE~ exp(-nA(Re t) + nA (1m t) )

and we find that there is an M > °and an A > 0 such that

2 -} 2I (TN f) (t) I ~Mll f II exp(-nA(Re t) + nA (1m t) )a

We now prove V. Note that S c £2 OR). According to 0.5(iii) there exist

numbers S > 0, e > 0, A' > 0, ,B ' > ° such that for every f E S there is

exactly one g E S with TNaf = Neg and

f or every f E £ 2 OR), t E ~.

If we define T}f := g, then it is easily seen that T} 1S a linear operator

of S. It also follows that T} is bounded. This proves that T is of type V. IJ

I (TN f) (t) I ~ ell f IIa

is a bounded linear functional of the Banach space £2 OR) for every t E ~.

Furthermore we can find for every f E £2 OR) positive numbers M and A such that

b) Suppose that T is of type IV. It follows from 2.2 and 2.3 that T 1S of

type I.

c) Finally suppose that T is of type I, and let a > O. For every t E ~ we

can find a e > 0 such that

(this follows from the fact that TNaf E S for f E £ZOR». We apply theorem

}.3 by taking

such that TN = NQT}. We find T~ = TN r = NQT}rn , and by
a ~S nan ~

conclude that T~ 7 O. This proves that T is of type IV.n

Sto 0.9 we can find a > 0 and rES such that ~ = N r ,r 7 O. Since Tn nan n
is of type V, there exists as> 0 and a bounded linear operator T1 of S

[B], 23.2 we

(this follows from 0.5(iv)d». Therefore



o

o

(f E S) •

(f E S)

(£ > 0) ,

I [TN f, gJ I $ II TN II II f II II g IIa a

and find that there exist numbers M > 0 and £ > 0 such that

- £Now take B- 2, and define T1 by
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According to 0.5(iv)c) T1 maps S into S, and it is easy to see that T1 ~s

linear and bounded. Furthermore it follows from 0.5(iv)d) that

We apply theorem 1.3 by taking

is a bounded linear functional of .cz(R) (this follows from 0.5(iv)d)). Here

1)ik is the k-th Hermite function (see 0.5(iv)). From the fact that TNaf E S

(f E .cZOR)) we conclude by 0.5(iv)c) that for every f E .cZ(R) there is an

M > 0 and an £ > 0 such that

This implies that T is of type II.

Proof. Suppose T is a linear operator of type II. For a > 0, kEnO

YfE.cz(R) [TNaf,1)ik J

Proof. Let T be a linear operator of type VI. If a > 0, g E S, then we have

by the boundedness of TN
a

0.5(iv)d)).

Proof. This follows from the boundedness of the N for every a > 0 (see
a

• Theorem. If T is a linear operator of S of type II, then T is of type V.

• Theorem. If T is a linear operator of S of type VI, then T is of type II.

• Theorem. If T is a linear operator of S of type V, then T ~s of type VI.
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o

(f E S) ,

(f E S) ,

*~ II f II II (TN ) g II
a

TN f
a

(f E S)

(f E S) •[f ,F ]
g

00

00

[Tf,g]

Tf := ~O L [f'~n]
n=O

~fES [Tf,g]

I[TN f,gJI = l[f,(TN )*gJI
a a

Now we suppose that T is of type II. If g E S, then

~s quasi-bounded, but does not have an adjoint operator.

We give a number of examples

g E S

[TN f,g] = [f,N F ] ,
a a g

and this means that TN has an adjoint, viz. ~ S N F , so T is of type VII. 0a gE a g

is a quasi-bounded linear functional, and, according to [B], 22.2, there is

*exactly one F E S such that
g

It is easy to see that F depends linearly on g. Now we have for a > 0, f E S,
g

(i) If T is a linear operator of S with an adjoint T*, then TN and N T* are
a a

adjoint operators (a > 0), so T is quasi-bounded. The converse is not true;

e.g. the linear operator T defined by

and this means that T ~s of type II.

Theorem. If T is a linear operator of S, then T is of type II if and only if

T is of type VII.

Proof. First suppose T ~s a linear operator of type VII. We have for g E S,

a > 0
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(ii) If T is a linear operator of S which is bounded, then T is quasi

bounded, for TN is bounded (a > 0). The converse is not true; e.g. the
a

linear operator T defined by

(f E S)

1S quasi-bounded, but not bounded.

(iii) The operators N ,F,T (a E ~), ~ (b E ~), P,Q (see 0.6) are quasi-a a -b

bounded. In fact it is not easy to find examples of linear operators of

S which are not quasi-bounded. We can give an example in a way similar to

[BJ, 27.22.

(iv) If f E S, and T is a quasi-bounded linear operator of S, then

n S n S
L [f'~kJ~k ~ f. Therefore we have L [f'~kJT~k ~ Tf.

k=O k=O

• Theorem. If TI, ... ,Tm (m E~) are quasi-bounded linear operators of S, and

g is a polynomial in m variables, then g(TI, ..• ,T
m

) is quasi-bounded.

Proof. The theorem follows from the fact that finite sums and products of
S

quasi-bounded operators are quasi-bounded operators: if ~n ~ 0, and T1 and

T2 are quasi-bounded linear operators, and a
l
,a2 E ~, then

S S
(alT l + a2T2)~n ~ 0, TIT2~n ~ O. 0

. Theorem. If T (n E R) are quasi-bounded linear operators, and if for every
n

g E S the sequence (T g) _~ converges pointwise to an element Tg E S, then
n n~.

T is a quasi-bounded linear operator of S.

Proof. For every n E ~ and every t E ~

Y S (T g)(t)gE n

is a quasi-bounded linear functional of S. By [BJ, 22.2 there exists to

*every n E ~ and every t E ~ an F E S such that (T g)(t) = [g,F J forn,t n n,t
g E S.

Take a fixed t E [, and note that



00 00

(I)
prove that T 1S

2
[f,~ ~ ~ JT~ ~ ~ is an S -convergent

n m n m
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00 00

L L
n=O m=O

Y(ZI,Z2)E[Z T(Y tE[ f(t,zZ»(zl)·

S2. Furthermore it is not hard to

N zg with some E > 0, g E SZ, note that
E,

n-+oo
lim [g,F tJ = (Tg)(t)n,

So it follows that

2maps S (linearly) into

series: write f

It 1S not hard to prove that

for n E ~O' m E ~O' use the fact that there is as> 0 and a bounded linear

operator TI of S such that

[f,~ ~ ~ JT~ ~ ~ = [g,~ ~ ~ JTN ~ ~ N Wn m n m n mEn E m

00 00

T(Y tE[ f(t,zZ»(zl) = n~o m~o [f'~n ~ ~mJ(T~n)(zl)~m(z2) .

the series I I [f,~ ~ ~ J~ (z2)~ is S-convergent (this follows from
n=O m=O n m m n

the fact that ~m(z2) O(emE ) for every E > 0, see O.5(iv)e) and c». There

fore we have according to 2.10(iv) for zl E [

TN ~ = NQTl~
E n fJ n

and apply O.5(ii).

We make a few remarks about linear operators of Sn. It 1S not difficult

to generalize the preceding definitions and theorems to the n-dimensional

case. For the sake of elegance we restrict ourselves to the case n = 2.

We give an important class of examples of quasi-bounded linear operators of

S2.

for every g E S. This means by [BJ, 24.4 that the sequence (F t) _~ isn, n~,

S*-convergent. Denote its S*-limit by Ft. It follows that (Tg)(t) = [g,FtJ,

so, again by [BJ, 22.2, Y s (Tg)(t) is a quasi-bounded linear functionalgE
of S. This proves that T is a quasi-bounded linear operator of S. 0

(i) Let T be a quasi-bounded linear operator of S. If f E S2, z2 E [, then



(see [B J, (7. I) ) .

e g)

2on S .

2
(f E S ) •

(N E :N) •

This follows from the fact that T(l)

[f,$ e $ JT$ e $n m n m

In the same way we may prove that the linear operator T(2) defin2d by

T(2) := ~f S2 ~( ) a;2 T(~ a; f(zl,t»(z2)E zl,z2 E tE

[BJ, section 7).
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If TI and T2 are quasi-bounded linear operators of S, then, according

to theorem 2.11, Til)T~2) is a quasi-bounded linear operator of S2, and

2is a quasi-bounded linear operator of S .

Note that it follows from T(I)T(2)(f e g) = T f e T g = T(2)T(I)(f
1 2 1 2 2 1

for f E S, g E S (see 0.10), and from (*) that T(I)T(2) = T(2)T(1)
1 2 2 1

We often write T1 e T2 instead of Ti1)T~2). We call TI e T
2

the tensor product

of TI and T2• As an example we have N = N e N for £ > 0 (see 0.10 and
£,2 £ £

is limit in the sense of 2.12 of the quasi-bounded operators

2a quasi-bounded linear operator of S

2(ii) As another example of a quasi-bounded linear operator of S we mention
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Proof. Let F E S*, and consider the linear functional

(F E s*, g E S) •

(f E S) ,

*(F E S , g E S)

(g E S) •

[TF,g] = [F,T*g]

*[T g,F] = [g,G]

T(emb(f» = emb(Tf)

It is easy to verify that G depends linearly on F. Now we define TF G.

From the definition of T it readily follows that

According to [B], 22.2 there 1S exactly one G E S* such that

v *I [T g,F]gES

We conclude the proof by showing that T(emb(f» = emb(Tf) for f E S.
~ * *This is very easy: [T(emb(f»,g] = [emb(f),T g] = [f,T g] = [Tf,g]

= [emb(Tf),g] for every g E S (see [B], 18.1). This proves that

T(emb(f» = emb(Tf). 0

Remark I. This theorem fits in with [B], section 19 1n the following sense.

It is possible to prove that Y defined by
a

From the fact that T* is quasi-bounded (see 2.IO(i» we infer that for

every a > 0 there exists a e > 0 and a bounded linear operator TI of S

*such that T N
a

= NeT
I

. It easily follows that the linear functional in (*)

1S quasi-bounded.

In this section we prove some theorems concern1ng linear operators

*and functionals of S . Although the theorems are (with the proper modifi-

cations) valid for linear operators and functionals of Sn* (n E ~), we

only give the proofs for the one-dimensional case.

*• Theorem. If T is a linear operator of S with an adjoint T , then it 1S

*possible to extend T to a linear operator T of S such that

*• Some theorems about linear operators and linear functionals of S .



(n ~j,)

(F ) _....T.
n nu..

(TFn) nE""';\'

[.J

*(F E S ) •

*(F E S )

*(F E S , a > 0, f3 > 0) ,

(f E S, a > 0) ,

(F E S*)

00

Y N f = N Tf
a a a

TF = ~ 0 Y N Fa> a a

Y N F :=
a a

S* *
Proof. Suppose F ~ O. If g E S, then we have [TF ,g] = [F ,T g] ~ a

n n n
according to the "only if" part of [B], 24.4 applied to the sequence

But, according to the "if" part of [B], 24.4 applied to the sequence
S*

this means that TF ~ O.
n

Remark. If T is a linear operator of S, then there is at most one extension
. *of T to a linear, convergence preserv1ng operator of S , for which

T(emb(f» = emb(Tf) (f E S). For, if T} and T2 satisfy both the conditions

mentioned, then both T}F and T
2
F is the S*-limit of the sequence

Remark 3. There is just one linear operator V of S* which satisfies

* *V(emb(g» = emb(Tg) and [VF,g] = [F,T g] for every g E S, F E S . From

this it follows that
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Remark 4. If T}, ... ,Tm are linear operators with an adjoint, and g 1S a

polynomial in m variables, then g(T1, .•. ,Tm) has an adjoint.

Remark 2. When dealing with a linear operator T with an adjoint,we work

exclusively with the extension of T as described in theorem 3.2, which

is again denoted by T.

maps N (S*) linearly into S for a > 0 (use the theorems of section 2 ofa
this appendix). This (Y) 0 satisfies the relations (see also 0.8)a a>

S*
• Theorem. Let T be a linear operator of S with an adjoint. If F ~ 0, then

nS*TF ~ O.
n
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3.4. Suppose that T is a linear operator of S which is extended to a

linear operator of S* such that T(emb(f» = emb(Tf) for f E S. In 3.8

we prove: if T preserves convergence in S*, then T has an adjoint. In

order to show this, we prove a general result about linear functiona1s

of S*, which states that every continuous linear functional of S* is re

presentable as an element of S.

3.5. Lemma. Let (ak)k8N be a sequence on ~ which satisfies

for every sequence

an E: > 0 such that

(k -+ 00)

kE:O(e ) (k En)]. Then there is

(i -+ 00) such that la
k

. 1

by ~

Proof. Suppose the contrary. There exis t s a sequence (0.). _~T' 6. > 0 (i E :N) ,
~ ~=, ~

o. -I- 0 (i -+ 00) and a sequence of indices (k.)._....r' k. E:IN (i En), k. t 00
~ ~ ~t:.L, ~ ~-k.i$.

~ ~

(i En). If we define the sequence (bk)keN

= e
k.o.
~ ~

(i E:IN) ,

O(ekE:) (k E:IN) for every E: > 0, but lim akb
k

~ O. Contradiction. 0
k-+oo

3.6. Definition. A linear functional L of S* is called continuous if F,F E S*
n

S*
(n = 1,2, ..• ), F -+ F ~ LF -+ LF (n -+ 00).

n n

3.7. Theorem. A linear functional L of S* is continuous if and only if there

exists agE S such that L(F) = [F,g] for F E S*. Such a g is uniquely

determined (if it exists).

*Proof. If there is agE S such that L(F) = [F,g] (F E S ), then it easily

follows from [B], 24.4 that L is continuous.

Now suppose that L is a continuous linear functional of S*. It is not

*hard to prove that there is at most one g E S such that L(F) = [F,g] (F E S ).
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(L(emb(~k»)k8N • If (ck)k8N is a
o 0

S*
(k E :NO) for every £ > 0, then ck emb(~k) -~ 0)

(k -+ 00). By lemma 3.5 we know that there is

kt:sequence satisfying c
k

= O(e )

and therefore ck L(emb(~k» -+ 0

an e > 0 such that

In order to show the existence of agE S such that L(F) = [F,g]
*(F E S ), we consider the sequence

We define g E S (see 0~5(iv)c» by

00

*If F E S , then we have (according to 0.7)

00
[F,g] L(F) ,

because o

Remark. The g of theorem 3.7 1S g1ven by

See also [B], 22.2.

3.8. Theorem. If T is a linear operator of S which is extended to a linear

of * = emb (Tf) (f E S) and such that S*operator S such that T(emb(f» F En
* *

(n E :N) , F S o ~ TF S
then T has an adjoint.-+ -+ 0,n n

Proof. Let g E S, and consider the linear functional

YFES* [TF,g]

* *of S . This linear functional satisfies ([BJ, 24.4) F)F E S (n = 1,2, ... ),
n

S*
F -+ F ~ [TF ,g] -+ [TF,gJ. According to theorem 3.7 there is exactly onen n
gl E S such that [TF)gJ = [F)glJ for every F E S*. It is easily seen that
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this gl depends linearly on g. Furthermore we have for f E S, g E S (see

[BJ, 18.1)

[emb(Tf),gJ = [T(emb(f»,gJ

= [emb(f),gIJ = [f,gl] .

. . * * ..So ~f we def~ne T g := gl' then T and T are ajJo~nt operators. o

Remark. It is possible to prove the following theorem. If T is a linear

operator of S* which satisfies F E S*, F ~*O => \I 0\1 '" [(TF ) (t) is boundedJ,
* S* S* n n ex> tE~ n ex

then F E S , F + 0 => TF + O. The only available proof of this theorem isn n n
a bit tricky.

3.9. We give a few examples.

(i) The operators N ,F,T (a E a:),
ex a

are extendable to linear operators

to these operators

3.2, remark 1.

~ (b E a:), P,Q have adjoints, so they

of S*. The families (Y) 0 corresponding
ex ex>

(by [BJ, section 19) are the same as the one obtained via

(ii) IfT is a linear operator of S with an adjoint, then

N *
L [F,1jJk]emb(T1jJk) §. TF

k=O

because

N *
Y [F,1jJk]emb(1jJk) §. F

k=O

and, if ex > 0, we have (see 3.2, remark 1)

Y N F
ex ex

= (TF) =
ex

00

3 0 . n* ( ) h h.1 . We make a few remarks about l~near operators of S n E ~ • T e t eorems

proved in section 3 are (with the proper modifications) valid for the n-dimen-

sional case. We restrict ourselves for the sake of elegance to the case n = 2.

3. 11• *We want to study tensor products of linear operators of S as in 2.13,
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but first we prove a 

Lemma. If T is a linear operator of S with an adjoint, then for every a > 0 

there exists a 8 > 0, M > 0, A > 0, B > 0 such that 

for every k E ~O' Z E ~. 

Proof. Let a > 0, and write a = 0 + y with some 0 > 0, y > O. Since T* is 

quasi-bounded (2.lO(i» there exists as> 0 and a bounded linear operator 

* Tl of S such that T ~y = NaT l . Now 

for every k E ~O' .g E S. It follows that there is an M > 0 such that 

The proof is easily completed by using N 
a o 

3.12. If T is a linear operator of 5 with an adjoint T*, then T(l) (considered 

as a linear operator of s2, see 2.13) has an adjoint, viz. (T(I)* = (T*)(l). 

This may be proved by applying Fubini's theorem to the integrals 

00 00 

f f 
(1) 

(T f) (zl ,z2)g(Zj ,z2)dz 1dzZ 
-00 -00 

and 

00 00 

f f 
* (1) 

f(zl,z2)«T) g)(zl,z2)dz1dz Z 
-00 -00 

for f E 52, g E s2. So T(l) is extendable to a linear operator of S2* 

(theorem 3.2). 

Let (Y) 0 be the family of linear operators which extends T to a 
a a> 

linear operator of S* (see 3.2, remark I). We claim that 

------~--
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2*(F E S ) ,

2*for F E S and a >

where

:= ~ 2
(zl,z2)EQ;

O.

Y (~ ~ F (t,z2»(zl)a tEll> a

In order to prove this, we fix an a > 0 and an F E 52*, and we note

that (by 3.9(ii»

00 00

I 1.
m=O n=O

[F,W 0 ~ IN T~ 0 N ~ •m n a man

Take a zl E a; and a Z2 E a;. We find

00 00

00 00

I [J. [F,~ 0 ~ J(N ~ )(z2)J(N T~ )(zl)
m=O n=O m nan a m

(by lemma 3.11 the double series is absolutely convergent). Note that

00

L [F,~ 0 ~ J(N ~ )(z2) = O(ems)
n=O m nan

for every s > 0 (this follows from lemma 3.11 and 0.7). Again us~ng 3.9(ii)

yields

00 00

Y (I [I [F,~ 0 ~ J(N ~ )(z2)JN ~ ) ,
a m=O n=O m nan a m

and (*) follows for

00 00

L [L [F,~ ® ~ J(N ~ )(z2)JN ~ .
m=O n=O m nan a m

After this (perhaps boring) analysis we can prove the following

Theorem. Let Tl and T2 be two linear operators of S with an adjoint, which

are extendable by means of the families (Y 1) 0 and(Y 2) O. We havea, a> a, a> .
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( 2*)F E 5 ,

( 52*)F E

F
n

2*(F E 5 ,n E:N) •
n

Proof. Follows from the foregoing.

2*Examples. (i) If F E 5 ,then F is differentiable in both variables (see

[B], 19, example (iv», and p(l)p(2)F = p(2)p(I)F.

(ii) Zu (see 2.13(ii» is a self-adjoint linear operator of 52. For a E R
2*and F E 5 we have

(I)
ZuTa/12 ~ Ta /12 F = Ta ZUF ,

2since this relation holds on 5 (see also 3.2, remark 3).

(iii) If F I E S*, F2 E S*, and TI and T2 are linear operators of S with an

adjoint, then (T I ~ T2)(F 1 ~ F
2

) = T]F
I
~ T

2
F

2
.

D
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Appendix 2. A theorem on S-convergence.

1. Theorem. Let ~ E S (n E ~), and suppose that M, A and B are positive
n

numbers such that

2 2
l~n(z)1 ~ M exp(-~A(Re z) + ~B(Im z) )

SIf ~ + 0 pointwise, then ~ + O.
n n

(z E a:, n E:N) •

Proof. Suppose ~ + 0 pointwise. We first prove that for every R > 0
n

lim ~ (z) = 0nn+oo

uniformly in I zl ~ R: Note that for R > 0

J
1

~ (t)
< _I_ I

I~n(t) 1
ICJln(z)I = 1 21T i

n dtl
It-zj Idtl ~

t-z - 21T
Itl=2R Itl=2R

< _1_
- 21TR J

Itl=2R

h (t)1 Idtl + 0
n

by Lebesgue's theorem on dominated convergence.

Now let E > 0, and let R > 0 such that

I~ (z) 1 ~ E exp(-!1TA(Re z)2 + 21TB(Im z)2)
n

for Izi ~ R. We can find a number N E ~ such that

2 . 2
n > N ~ I~ (z) 1 ~ E exp(-!rrA(Re z) + 2rrB(Im z) )

n

for Izi ~

that

R (we use the fact that ~ (z) + 0 uniformly in I z 1 ~ R). This proves
n

2 2
I~ (z) 1 ~ E exp(-!rrA(Re z) + 21TB(Im z) )

n

for every z E a: if n > N. o
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