EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

The nested relational algebra : a tool to handle structured
information

Citation for published version (APA):
Houben, G. J. P. M., Paredaens, J., & Tahon, D. (1988). The nested relational algebra : a tool to handle
structured information. (Computing science notes; Vol. 8804). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1988

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/4d9f23bf-fdc0-45cf-903d-78d25270e1c3

The Nested Relational Algebra:
A Tool to handle Structured Information

by

G.J. Houben, J. Paredaens,
D. Tahon.

88/04

March 1988

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing Science Section of the Department
of Mathematics and Computing Science of Eindhoven University of Technol-
0gy.

Since many of these notes are preliminary versions or may be published else-
where, they have a limited distribution only and are not for review.

Copies of these notes are available from the author or the editor.

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.O. Box 513

5600 MB Eindhoven

The Netherlands

All rights reserved

editor: F.A). van Neerven

The Nested Relational Algebra :
A Tool to handle Structured Information

G.J. Houben, Univ. of Technology, Eindhoven, The Net}lerlands
J. Paredaens, University of Antwerp, Belgium
D. Tahon, University of Antwerp, Belgium

Introduction

In database theory, an algebra is a set of operators that express new relations in terms of one
or two operand relations. In this way queries can be defined. These queries handle structural
information. This information is the counterpart of the computable information, such as the
calculation of the sum of numbers or the detection of the larger of two values. The latter
information cannot be expressed in the algebra we use here.

A nested relation is a data structure that is used to represent structured information in a
database, It can be considered as a table whose entries can be atomic or nested relasions
themselves.

Thomas and Fisher [TF] introduced a model that allows nested relations. They also defined
an algebra of operators for it. Roth, Korth and Silberschatz [RKS)] defined a calculus-like
query language for the nested relational model. Since then different languages have been
introduced that are based on this model.

This paper illustrates the expressive power of the nested relational algebra. It demonstrates
that this algebra is a suitable model for the implementation of nested relational languages.
It also gives some examples of queries that cannot be expressed in the nested algebra.

In section 1 we give the formal definition of the nested algebra. Next we prove that the
operators of the algebra are independent. Section 3 till section 6 illustrate different classes
of operators, expressions and queries that are expressible in the algebra.

Finally, section 7 gives some examples of operators that handle structured information but
that cannot be expressed in the algebra.

1 Preliminaries

We define the relation schemes, the relation instances and the operators of the nested algebra.
We use almost the same definitions as in [PVG].
1.1 Relation scheme
An atiribute can be an identifier :
<attribute> — <identifier >

Such an attribute is called atomic and < identifier> is called the name of the attribute.

An atitrtbute can also have the form

< attribute > — < identifier >< scheme>

Such an attribute is called structured and < identifier> is called the name of the attribute.

< list of attributes> — <empty list> |
< non—empty list of attributes >

< non—empty list of attributes > — <atiribute> |
< attribute > <non—empty list of attributes >

A relgtion scheme or a scheme has the form
< scheme> — (< non—empty list of attributes>)

All identifiers in a scheme must be different.

Two attributes are called compatible if and only if they are both atomic or their schemes are
compatible. Two schemes are compatible if and only if their corresponding attributes are
compatible.

If @ is an attribute of the scheme of a structured attribute 8, we say that 8 is the parent
attribute of v,

We say that a structured attribute S is an ancestor of an attribute o, if 8 is the parent
attribute of « or if B is an ancestor of the parent attribute of a.

We say that an attribute occurs in a scheme if it is an attribute of that scheme or if it occurs
in the scheme of a structured attribute. We say that a list of attributes occurs in a scheme if
all its attributes are attributes of that scheme or if they occur in the scheme with the same
parent attribute.

The level of an identifier in a scheme is the number of bracket-pairs that surround the identifier
in the scheme. The level of an attribute is equal to the level of its name. The level of a list
of attributes is equal to the level of its attributes.

(A, B,C) is a scheme, all identifiers of which are at level 1. (A;, By, C1(D2, Ex(F3))) is a
scheme where the indices indicate the level of each identifier.

1.2 Instances of a Relation Scheme

Let (A) be the scheme (a3, ..., a,), where a; stands for an attribute, either atomic or struc-
tured. The set of instances of (1), denoted by Inst{{})), is the set

Inst((X)) = {s|s is a finite subset of values(a) va - - - bd values(ay)}

where values{A) is the set of the natural numbers if A is an atomic attribute and values{ A(}))
= Inst((A)) otherwise. The elements of an instance of (A) are called tuples over the scheme

().
Remark that for simplicity we assume that all atomic attributes have the same values-set.

<4,5,4> is a tuple of the instance

Lo S S
ool
o | Gy

and <1,3,{<5,{<2>}>,<3,{<2>,<4>,<5>}>}> is a tuple of the instance

1.3

Ap B C1(Da, Es(F3))

1 2 7
6{8

)
5{2

1 3 2]
3 { 4
5

Operators in the Nested Algebra

We define the operators in the nested algebra similar to the one introduced and used in
[HP], [PA), [PVG], [RKS], [S], [SPS], [VG], [HS], [OOM] and [TF]. The algebra consists of 8
operators which are called NA-operators, and which are defined as follows :

The union operator U : let 31,82 € Inst((A)). Then s; U sz is the set-theoretic union
of s; and s and is an instance of the scheme (A}).

The difference operator : let 31,82 € Inst({A)). Then s; — 33 is the set-theoretic
difference of s; and s and is an instance of the scheme ().

The join operator ba : let 33 € Inst((A1)) and sz € Inst{(A;z)), with (A1) and (A2)
schemes without common identifiers. Then s; va sy is the (standard) cartesian product
of s; and s and is an instance of the scheme (A, Az).

The renaming operator p : let s € Inst((A)), with (A) a scheme, having an attribute
with name A. Let B be an identifier not occurring in (A). Then p4_,p(s) is the
(standard) renaming of 4 by B in s and it is an instance of the scheme obtained from
(A) by replacing A with B.

The selection operator o : let s € Inst{(A)}, with (A\) a scheme, having two compatible
attributes « and 3. Then o,—g(s) is the subset of s consisting of all the tuples with
equal a and B components and it is an instance of the scheme ().

The projection operator = : let s € Inst((A)), with (A) a scheme, having attributes
ay,...,ar. Then 7, .. o, (8)is the (standard) projection on the attributes a; through
a; and it is an instance of the scheme (ay,...,ar). If ¢ is a tuple of s, we denote its
projection on ay,...,ap by t|a, .. a\-

The nest operator v : let s € Inst((})), with () the scheme (A, A2), where A3 is not
empty and let A be an identifier not occurring in (A). Then v;,, 4(s) is an instance of
the scheme (A1, A(A2)). X A1 is not empty, vy,; 4(s) is the set of the elements <#;,a>,
where £; is a tuple over (A1) and where a is the set of the elements ¢, such that
<t3,t > is in s. If Ay is empty, vy,;4(8) is the set that contains only one element,
namely s. Notice that in this definition we have made the notational simplification
that A; is an end sequence of A.

o The unnest operator u : let s € Inst((\)), with () the scheme (\;, A(A2)). Then i ,(s)
is an instance of the scheme (A;,A2) and g 4(s) is the set of elements < ¢;,¢2 > such
that there is an element < ¢;,a> in s with ¢ € a. Notice the notational simplification

that A()2) is an end sequence of A.

We will sometimes use the notation PAy,..,Ax—Bi,...,Ba as the abbreviation of p4, 5, ...
PA,—B, 30d Cu, ... ap=8,.6. s the abbreviation of ¢4,_p, ...04,—g,- We also write
attributes instead of attribute names or attribute names instead of attributes if possible.

Algebraic expressions of the nested algebra, called NA-ezpressions, are defined in the usual
way.

Let » be an instance of the first scheme above and s an instance of the second one :
op=g(vE;n(vc;E(r))) and up,(1c,(7c,(s))) are two NA-expressions.

We say that an operator on nested relations is NA-ezpressible if and only if there is an NA-
expression that is defined for the same operands as the operator and that, for every operand,
yields the same result as the operator. Furthermore, this expression may depend on the
schemes but not on the instances of the operands.

2 NA-operators are indepéndent

In this section, we will prove that the eight NA-operators, as defined in section 1, are in-
dependent. To prove this, it suffices that each operator is not expressible by the others.
Therefore, we describe for each operator a property that is violated by the operator, but that
is preserved by each of the seven other operators.

For most operators our assertion is rather obvious. In these cases we will restrict ourselves

to an informal proof.
Definition 2.1

We define the set of leaves of a scheme, as the set of all the atomic attributes that occur in
the scheme. So, if (A) is a scheme, we have :

SL((A)) = {A] A is an atomic attribute that occurs in (A)}
O

projection : Let us consider the number of leaves that occur in a scheme. Since the
projection is the only NA-operator which can lower this number, it is clear that the projection
cannot be expressed by the seven other operators.

Join : Analogous to the projection, the join operator is the only NA-operator which can
augment the number of leaves in a scheme. Consequently, the join operator cannot be removed
from the algebra without loss of expressibility.

In order to handle the nest and the unnest operators, we need to introduce some new defini-
tions.

Definition 2.2

We define the depth of a scheme and of its corresponding instance to be the maximum leve]
of all its identifiers.
Notation : DEP((A)) = DEP(s) if s € Inst((A)).

O

nest : The nest and the join are the only operators capable to increase the depth of its
argument(s). However, if only one instance s, having depth [, is available, it is obvious that
any expression, which does not make use of the nest operator, cannot create an instance out
of s, having a depth greater than I. So, the nest operator positively adds expressibility to
our nested algebra.

unnest : Let us consider the instance s such that :

s € Inst({A(A)))
DEP(s) = DEP((ANN)) = > 1

Suppose this is the only instance available. Using the unnest operator we can decrease the
depth of s to I — 1. Any NA-expression which does not use the unnest operator, would
result in an instance with a depth of at least [. Consequently, the unnest operator cannot be
expressed by the seven other operators.

renaming : Since “renaming” is the only operator that can rename atomic attributes, it
cannot be expressed by the seven other operators.

The next operator we will handle is “difference”, for which an additional definition is required.
Definition 2.3

Let (A) = (a1,...,a%) be a scheme, a and b atomic values.
Then we say that an instance s € Insi(())) is clean with respect to the ordered pair (a,b)
over scheme (), if and only if

1. Vt € s,Va; atomnic attribute : t|o,=a = 3t' € s :t'|o;= band
Vid it |a;=tla

2. Vt € 3,Vay structured attribute with scheme (X') : t|q, is clean with respect to (e, b)
over scheme (')

a

difference : It is easy to check that the operators 7, U, p, b4, v, u, and o produce clean
instances with respect to (a,b), when applied on clean instances with respect to the same
pair. Now, let us consider the instances s = {a,b} and s' = {6} € Inst{((A)) which are both
clean with respect to (a,) over (4). Clearly, s — s’ = {a} is not clean with respect to (a,b),
which proves the independency of the difference operator.

Definition 2.4

Let (A) be a scheme. We define the function ADOM such that ADOM(A,s) is the set of
all atomic values of the atomic attribute A occurring in 5. We call ADOM(A, s) the active
domain of attribute 4 in instance s.
’ a

union : Let (A} = (A4;, A2) be a scheme with 4; and A atomic attributes and s € Inst((1))
defined by : s = {<1,2>}. So, ADOM(Ay,s) = {1} and ADOM(A,,s) = {2}. With the
aid of the union operator we can create an instance s’ with both 1 and 2 as value of one
attribute, say As.

8' = pa, 2 4,(74,(8)) U paz s a5(ma,(3)).

So s' is the instance of scheme (A;) equal to {<1>,<2>},
Hence, the result is an instance with an active domain that is larger than the original active
domains. This is not possible without using the union operator. Consequently, the union
operator cannot be expressed by the seven other operators.

The last operator we will have to deal with is the selection operator.
Definition 2.5

Let (A) be a scheme, s € Inst((A))} and @ a set of atomic values.

We define :
§ is strict complete with respect to §

—
8 = sg with s = {| ¢ tuple over the scheme of s and
VA atomic attributes of the scheme of s : t|4€ # and
Ya structured attributes of the scheme of s : t|, is strict complete
with respect to 8}

s is complete with respect to
=
8 is strict complete with respect to#ors =0

]
The following are examples of complete instances with respect to {a,b}:
A 4 A B A B(C) A(B)
a a a T a1
a {5} {3}
b a b b { a }
b a b
b b
selection : The reader is invited to check that the operators =, U, —, p, ba, v, and u produce

complete instances with respect to #, when applied on complete instances with respect to 4.
That this does not hold for the selection is illustrated by the following example :

Let 3 be the instance

S - S
o~ R oo Ry

It holds that s is complete with respect to {a,b}, but o 4 5(s) is not complete
with respect to {a,b} !

As a consequence, using the selection operator allows us to express manipulations that are
not expressible without it.

3 Expressibility of NA-operators at all levels

In this section we will first define the application of an NA-operator at a higher level and
then we will prove that such an application is NA-expressible.

3.1 Definitions

The attributes occurring in the definitions of the NA-operators are called the parameter
attributes of the NA-operators.

If the unary NA-operators (o, n, p,v,) are applied according to their definitions, then we
say that they are applied at level 1, because all parameter attributes are attributes at level
1. Since there appear no attributes in the definitions of the binary NA-operators {U, —,),
we will say that they are applied at level 0.

Suppose k£ > 1, s € Inst((A)). Let A(Az) and B(\;) be compatible structured attributes at
level k of a list A; occurring in A, and let C{A4) be a structured attribute compatible with
A(A2) {and hence with B(Az)) and which has no identifiers in common with A.

Then we say that we apply the union A U B (resp. difference A — B) at level & on instance
s , denoted by [C(A4) := AU B](s) (resp. [C(A4) := A — B](s)), if :

o [C(A4) := AU B](s) (resp. [C(A4) := A — B](s)) is an instance of the scheme obtained
out of (A} by adding to A; the new attribute C'(A4)

o [C(A4) := AU B](s) (resp. [C(M4) := A — B|(s)) equals the instance obtained by
adding to each tuple, of every Ay-value in s , the C(Ag)-value that is the union (resp.
difference) of the A(A;)-value and the B(A3)-value.

In the same way, we can define the application of the join at level £ > 1 :

Suppose s € Inst((A)). Let A(A2) and B(A3) be structured attributes at level k& of a list A;
occurring in A, and let C(A4) be an attribute such that (A4) is compatible with (A2, A3) and
such that C(A4) has no identifiers in common with A.

Then we say that we apply the join A oa B at level k£ on instance s , denoted by [C()\yg) :=
A va Bj(s), if:

¢ [C(Ay) := A pa B](s) is an instance of the scheme obtained by adding to A; the new
attribute C(X4)

o [C(A4) := A b« B](s) equals the instance obtained by adding to each tuple of every
Aj-value in s, the C'(A4)-value that is the cartesian product of the A(Az)-value and the
B(As)-value. ‘

Suppose k > 2, s € Inst((\)) and let a and B be compatible attributes at level k£ in (1)
having the same parent attribute Z(\'),

Then we say that we apply the selection o = 8 at level k on s, denoted by g,=p(s), if :
o 0o=g(s) is an instance of the scheme (A)

e 0,=p(s) equals the instance obtained by replacing each Z(X')-value in s by the value
that is the selection @ = 3 of the Z(X')-value.

In the same way, the other unary NA-operators are applied at level & > 2,
We will confine ourselves to the notations :
® Tay e, (8) with a;,, ..., a;, attributes at level k, having the same parent attribute

e pa_.p(s) with A the name of an attribute at level k¥ and B an identifier not occurring
in the scheme of s

o vyc(s) with A a list of attributes at level k and C an identifier not occuring in the
scheme of s

o uc(s) with C the name of a structured attribute at level k

Hence, the notations for the unary operators applied at level %k, do not differ from those
at level 1. Note that in the application of the binary operators, we add a new structured
attribute on level k, but in the application of the unary operators, we substitute a structured
attribute on level k.

The following examples demonstrate for an instance s, what the resulting scheme looks like,
‘when an NA-operator is applied at a higher level on the instance s.
Suppose s E Inst((A1 , B1 (Cg (D3), Eq, Fz(Ga)), H (Ig , Jz))) then

o the union Cy U F; (an application at level 2), [K3(Ls) := Ca U F3)(s), is an instance of
the scheme

(A1, B1(Ca(D3), Bz, F2(G3), K2(L3)), Hi(L2, J2))

e the join By v« H; (an application at level 1), [M1{N2(03), P2, Q2(R3), 52, T2) := By v«
H;](s), is an instance of the scheme

(A1, B1(C2(Ds), E2, F2(Gs)), H1(12, J2), M1(N2(03), P2, Q2(R3), 52, T2))

e the projection wp, (an application at level 2), 7, (s), is an instance of the scheme

(A1, BI(F2(G3))’H1 (12, J2))

3.2 The copy operator and the empty operator

In section 3.3 we will show that every application of an NA-operator at level & > 1, is
NA-expressible. To this end we will frequently need an operator (copy) which duplicates an
attribute.

Definition 3.1

Suppose s € Inst((A)). Let a be an attribute of A and let B be an attribute compatible with
a such that all identifiers occurring in 8 do not oceur in A.

Then we define copy,_,(s) such that :
® copYs—.a(4) is an instance of the scheme (A, §)
® copy,—.s(8) is the instance obtained by adding to each tuple £ of s the value ¢|g, with
tig= tla-
We say that copy is applied at level 1 since « is an attribute of A at level 1.

Theorem 3.1 The application of copy at level 1 is NA-expressible.

Proof
Suppose 3 € Inst({A)). Let & be an attribute of A and let 8 be an attribute compatible with
a such that all identifiers occurring in 8 do not occur in A.

Then copy,_.p(s) equals g4—pg(s 4 po_.g(Tals))).

Definition 3.2

Suppose & > 2 and s € Inst((A)). Let Z(A1) be a structured attribute occurring in A at level
k —1, let « be an attribute of A\; and let § be an attribute compatible with a such that all
identifiers occurring in 8 do not occur in A.

Then we say that we apply copy @ — f at level k on instance s, denoted copye—.g(s), if :
® copy,—p(s) is an instance of the scheme obtained by replacing in (A) the attribute

o copys—p(3) is the instance obtained by replacing each tuple ¢ over Z(A;) in s, by the
tuple t' over Z(Ay, 8), with t'|), =t and t'|g= t}a.

a
Another kind of operator we will frequently need, is the empty operator, which creates an
instance with the empty set as its only tuple.
Definition 3.3

Let (A) be a scheme, s € Inst({(A)) and A an identifier that does not occur in (A).
Then the scheme of emp4(s) is (A(A)), and emp4(s) = {<0>}.

O
Theorem 3.2 The emp operator is NA-expressible.
Proof
Suppose s € Inst((A}} and A an identifier not occurring in A.
Then emp4(s) equals vy, 4(s — 3).
0

3.3 How to express an NA-operator at level £ ?

In this section we will show how the application of each NA-operator at level £ > 1 can
be expressed. We will introduce an induction technique which can be used for all eight
NA-operators and which assumes that the application at level 1 is NA-expressible for each
NA-operator.

3.3.1 The NA-operators at level 1

We only have to prove NA-expressibility at level 1 for the binary operators, since the appli-
cation of the unary operators at level 1 corresponds to the definitions of section 1.

Lemma 3.1 The application of the union operator at level 1 is NA-expressible,

Proof

We show for a specific example how the application of the union at level 1 can be expressed
in the nested algebra. This example can be generalized in a natural way.

Let {A) = (A, B(E),C(F)) be a scheme with A, E and F atomic attributes and let s €
Inst((A)).

We want to produce the instance s' = [D(G) := B U C](s).

From s we construct :

8 = COP'.'IB(E)-—»D(G)(")
32 = copye(Fy—p(G)(3
33 = 81U 82

34 = op=c{s3)
§5 = 83 — 84

Now s5 only holds tuples, which have at least one of the values of B(E) or C(F) not empty.
Therefore we can unnest the D(G)-attribute without loosing the A-value.

8g = #D(-‘-‘s)

If we nest the G-attribute again, we obtain as D(G)-values, the sets that are the union of the
corresponding B(E}- and C(F)-value.

s = vg;D(s6)
Now we only have to unite s7 and s4.
8 =87 U sy

It is obvious that sg now equals s'.
0

Note : As one can see in the proof above, tuples that have the empty set as value of a
structured attribute, require a special treatment. If not, these tuples would disappear after
unnesting the structured attribute. A special treatment is needed for all operators at higher
levels,

10

Lemma 3.2 The application of the difference at level 1 is NA-expressible.

Proof

As for the union operator, we will here too prove the expressibility by means of a specific
example that can easily be generalized.

Let (A) = (A, B(E), C(F)) be a scheme with A, ¥ and F atomic attributes. Let s € Inst((A)).
We want to produce the instance s' = [D(G) := B — C|(s).

Consider the following sequence of expressions :

31 = up(coryp(E)—D(G)(4))
s2 = puplcopye(ry—pe) ()
83 = 31 — 382

s4 = vg;p(s3)

34 only contains tuples that do not have the empty set as value of B(E), since those tuples
have disappeared in the first unnest and should therefore be treated differently.

85 = 7a,B,0(83)
8g =8 — 85

3¢ is the instance which contains the tuples that have the empty set as B(F)-value. We have
to add those tuples with an empty D{G)-value.

87 = empp(rg(ss))
$g = 8¢ D4 87
8g = 84 U 83

Now sy equals s'.

Lemma 3.3 The application of the join at level 1 is NA-expressible.

Proof
Let (A) = (4, B(E), C(F)) be ascheme with 4, F and F atomic attributes. Let s € Inst((A)).
We want to produce the instance s' = [D(G, H) := B v C(s).

Consider the following sequence of expressions :

s1 = pp (copyp(E)—B'(c)(%))

s2 = por(copyo(ry—cr(m(9))

83 = PA,B(E),C(F)— A", B'(E"),c'(F)(1)
84 = 83 P4 382

85 = 04,B,c=4",8",c'(34)

36 = TA,B,C,G,H(S5)

87 = vg,m;D(%6)

37 only contains tuples that do not have the empty set as value of B(E) or C(F), since such
tuples have disappeared in the unnests. Therefore, we have to treat those tuples in another
way.

sg = 38— 7y B,c(87)

11

Now 33 is the instance containing the tuples that have the empty set as B(F)- or C(F)-value.
We must add these tuples with an empty DG, H)-value.

39 = sg baempp(pp(7p(s7)))
819 = 87 89

Now 815 equals s'.

3.3.2 The NA-operators at level £ > 1

For the union operator, we will now give the proof of the induction step from k — 1 to k. The
reader is invited to check the proof for the other seven operators.

Theorem 3.3 The application of the union at level k > 1 is expressible.

Proof

The application of the union at level 1 is expressible as shown in lemma 3.1.

induction hypothesis : The application of the union at level ¥ — 1 is expressible.

Suppose s € Inst{(A)). Let A(A;) and B(A2) be compatible structured attributes occurring
in A at level k , having the same parent attribute Z(A3). Let Y(A4) be the ancestor of A(A1)
(and hence of B()3)) at level 1 (if £ = 2 then Y (A4) equals Z(A3)).

We want to produce the instance [C(As) := A U B](s).

Suppose Ag is the list obtained out of A4 by adding to As the new attribute C{A5) and suppose
Az is the list obtained by replacing in A, the list Ay by As.

We can obtain the instance [C(A5) := AU B](s) by :

51 = copYy(a) =¥ (3,)(%)

33 = py(s1)

s3 = [C(Xs) := AU B](sz) (this is an application at-level k — 1 1)
$4 = Vag;y(s3)

85 = Tx,(84)

ss only contains tuples that do not have the empty set as Y (Xg)-value, since those tuples
have disappeared unnesting Y{(As}.

S = pAi—-ﬁA;(empY'(Tr.Aq(‘s?)))
87 = 8 B4 Sg
38 = ma(oy=y*(37))

Now, sg contains the tuples of s with the empty set as Y (A4)-value. We have to add these
tuples with the empty set as Y (Ag)-value.

39 = Ta,(Py(a)—vr(a,)(38) >a empy (my,(s3)))
310 = 385U 39

Now s319 equals [C(A5) := AU B)(s).
a

We will demonstrate how the scheme of an instance is transformed in each step of the tech-
nique on a particular example.

12

Suppose s € Inst((A1, B1(C2(D3), E2, F2(G3)))) and we want to produce the instance s19 =
[Hz(Ig) =Ch U Fz](S)

Then the schemes of the succeeding instances s,3;,...,819 are as follows :

instance scheme
s (A1, B1(C2(Ds), Bz, F2(G3)))
51 (A1, B1(C2(D3), Bz, F2(Gs)), B{(Ca(Dy), B3, F3(G3)))
s2 (A1, Ca(Ds3), E2, F2(Gs), B1(C3(Dy), B3, F3(G3)))
83 (41,C2(Ds), B2, Fa(Gs), B1(C3(D3), By, F3(G3)), Ha(1s))
s4 (A1, B1(Ca(Ds), Eq, F2(Gs), Ha(13)), B1(C3(D5), By, F5(G3)))
35 (A1, B1(C2(Ds), Ez, F2(Gs), Hz(I3)))
" %6 (B1(C2(D3), B3, F3(G3)))
87 (A1, B1(C2(D3), B3, F2(Gs)), B1(C3(D3), B3, F5(Gy)))
38 (A1, B1(C2(Ds), Bz, F2(Gs)))
39 (A1, B1(C2(D3), Eq, F2(G3), H2(13)))
310 (A1, B1(C2(D3), Bz, F2(Gs), Ha(13)))

4 General selections and dependencies

In this section we will first prove that, besides the eguality selection &« = £, many other
selections are NA-expressible. Next, we will show that functional and join dependencies are
NA-expressible.

4.1 Other selections

Definition 4.1
Let (A) = (a1,...,an) be a scheme, i, € {1,...,n}, ¢ # j, and 3 € Inst(()\)).
» X o; and a; are compatible attributes then we define the not-equal selection

aﬂi#a,-(s) ={z€s|z|a;# 3'“;‘}

¢ If a; is a structured attribute, then we define the {not- Jempty selection

To;=p(3) = {2 € s| z|a;= 0}
Oa;20(3) = {z € 3| z|a;# 0}
o If a; is a structured attribute A;(B;) such that B; and a; = A; are compatible, then
we define the (not-Jelement selection
°'A.-€a,-(3) = { T e 3 I 3',4‘-6 z!a,‘}
O'A,‘Gaj(‘g) = { z€s| ’—'|A.~§f z’cx,‘}

o If a; and o are compatible structured attributes, then we define the (not-)subset
selection

13

Ta;ca;(8) = {2 €3] z|a;C 2o, }

0'05(230:,'(3) ={z€es|z|la.l ‘510:,'}
Since the attributes occurring in the definitions are attributes at level 1, we say that these
selections are applied at level 1. We can extend the definition to attributes at level ¥ > 1
(having the same parent attribute), such that we can apply these selections at level k.

a

Theorem 4.1 The applications of the selections not-equal, (not-)empty, (not-)element and
(not-)subset at level 1 are NA-expressible.

Proof
Let (A) = (a1,...,an) be a scheme, ,7 € {1,...,n}, i # 7, s € Inst{(A)), and A; the name
of ;. In the following, we assume that the conditions on the attributes a; and a; as stated

in definition 4.1, are fulfilled.
The following equalities hold :

o Ta;#4;(8) =35~ 0a=4,(3)

» 04,=0(s) = Ta(o 4= a7 (lof = i — afl(copya, a1(s))))
o oa;x0(s) =3 — 04,20(3)

» 74,e4,(8) = ma(oa,=B; (ray(copy a5~ a8, (9))))
¢ 0a,¢4;(8) =3~ 0a,c4,(5)

o g4,ca;(8) = maloar=a(le; = i — aj](s)))

. O'A'.ZAJ.(S) =38—04,c4;(8)
|

Theorem 4.2 The applications of the selections introduced in this section at level k > 1 are
NA-expressible,

Proof

A similar induction technique is used as in the proof of theorem 3.3.

Let s € Inst((A)), and let Y (A1) be an attribute of A such that Y1) is the ancestor at level
1 of the attributes in the selection. Suppose the attributes in the selection are attributes
oceurring in (A) at level k.

Consider the following sequence of expressions :

81 = copy Y()q)«—»Y'(A’I)(S)

82 = py(s1)

s3 is obtained from sz by applying the selection at level & — 1
84 = VA1;Y(33)

35 = ma(s4)

36 = px, -, (empyr(ma,(33)))

$7 = 8 bd ¢

sg = ma(oy=y(s7))

s9 = 85 U sg

Now sy equals the instance obtained by applying the selection.

14

4.2 Dependencies

We want to introduce an operator which checks whether or not a specific dependency holds
in a given instance s # 0. Since we only consider operators which have (a) relation(s) as
argument(s) and a relation as result, we will define an operator which takes s as its argument,
and with result s if the depenaency holds in s, and result the empty instance over the scheme
of s, if the dependency does not hold in s.

4.2.1 Functional dependency
Definition 4.2

Let 5 € Inst(()\)), A1, Az, Az, Mg, As and Ag attribute lists such that A = Az, A, Ay =
A5)A21A|.’o-
Then we say that the functional dependency Ay — Az holds in s, if and only if

Vti,t2 € 8t t1fa,=t2la, = ti]a,= t2 A,

Since A; and A, are lists of attributes at level 1, we call it a functional dependency at level 1.
[

Note : It is obvious that if Ay is the empty list, the functional dependency Ay — A holds
in every instance s. :

We will now prove that it is possible in the nested algebra, to check whether or not a given
functional dependency (at level 1) holds in a given instance s. As mentioned above, we will
do this by defining an operator F D, such that FDjy, _,,,(s) = s if the functional dependency
A1 = Az holds in s, and F D, _,;,(s) = 0, 1 if the functional dependency does not hold in
s,

Theorem 4.3 The functional dependencies at level 1 are NA-expressible.

Proof

Let s € Inst((A)), A1, Az, Az, A4, A5 and Ag attribute lists such that A = A3,A;,M4 =
‘\S’A2a)‘6-

If Az is the empty list then FDy .5 (s) = s.

Let us assume A; is a non-empty list.

Consider the following expressions :

81 = pa—ni(8)

82 = 8§ bd 81

33 = UA,:A;(Sz)
84 — O‘,\z#x (33)
85 = TI'A'(SJ

3 = spa(s; — 35)

s7 = [if mx = par—a(mar) then my else my — ma)(ss) 2

Then s7 equals FDy, _,, ().

1@ is a notation for the empty instance over scheme (A)
*In section 5 we will prove that such a selective expression is NA-expressible.

15

Definition 4.3

Let k > 1 and s € Inst((A)), A(N') a structured attribute occurring in A at level k — 1, and
let MY, A%, A4, A}, Af and Aj be attribute lists such that X' = Xj, A, Ay = A%, 2%,)%,
Then we say that the functional dependency A| — X, at level k holds in s, if and only if the
functional dependency holds for each A(\')-value s' of s.

O

Note : Again, it is obvious that if A is the empty list, the functional dependency A} — A}
holds in every instance s.

Clearly, the following theorem holds :

Theorem 4.4 The functional dependencies at level k > 1 are expressible.

4.2.2 Join dependency

Definition 4.4

Let 31 € Inst((A1)) and 82 € Insi((Az)) with Ay = a1,...,a%,@41,...,a; and Ay =
Qltly-- 2 QL Q41+« ,&m. Then sy ba, 82 is the (standard) natural join of 31 and sz and it
is an instance of the scheme (ay,...,ak,...,q1,...,am). Notice that, in this definition, we
have made a notational simplification with respect to the ordering of the attribute lists.

|

Theorem 4.5 The natural join is NA-ezpressible.

Proof

Suppose 31 and s3 are as in definition 4.4. Then we have :
81 bdn 32 = Wr.xg,...,ak,...,ag,...,am(a'a;‘.H,...,a;=a}‘+1,...,a1 (81 pa Pa,,+1,...,a;—oa;‘+1,...,a;(32)))
O

Note : The definition and the proof can easily be extended to the application at level k,
with k at least 1.

Definition 4.5

Let s € Inst((A)), A1,...,A; non-empty lists of attributes of A such that each attribute of A
is also an attribute of at least one A; (7€ {1,...,1}). Then we say that the join dependency
Aq b2 pd A; holds in s, if and only if

s = (7m2,(8)) o9n - - an (mr,(3)).

Since Ay,...,\; are lists of attributes at level 1, we call it a join dependency at level 1.
O

Note : The case that { = 1 is trivial because this would cause A; to be equal to A (resp.
A"}. In the following we will assume [> 2.

16

We will now prove that it is possible in the nested algebra to check whether or not a given
join dependency at level 1 holds in a given instance s. In analogy with the functional depen-
dency, we will do this by defining an operator JD, such that JDj,;q...0qn,(8) = 9 if the join
dependency Ay pa -+ a Ap holds in 3, and JDj pg...00n, (8) = 9 if the join dependency does
not hold in s.

Theorem 4.8 The join dependencies at level 1 are NA-expressible.

Proof

Let s € Inst({(A)), A1,...,Ar non-empty lists of attributes of A such that each attribute of A
is also an attribute of at least one X; (i€ {1,...,I}).

Consider the following expressions :

81 = (mx,(8)) bdn - - b (mx,(5))
83 = 84 px_x(81)
s3 = [if #x = par—a(mar) then 7 else my — 73](s2)

Then 33 equals J Dy, pq. 003, ().

Definition 4.6

Let £ > 1 and s € Inst((}A)), 4()\') a structured attribute occurring in A at level k£ — 1,
A1,...,A; non-empty lists of attributes of A' such that each attribute of X is also an attribute
of at least one A; (i€ {1,...,!}).

Then we say that the join dependency A1 < -+~ pa A at level k holds in s if and only if the
join dependency holds for each A(X')-value s’ of s.

0
Note : Again, the case that I = 1 is trivial and hereafter we will assume [> 2.
Clearly, the following theorem holds :
Theorem 4.7 The join dependencies at level k > 1 are NA-ezxpressible.

0

5 Selective Expressions

In this section we consider the selective expressions, i.e. we will give the formal definition
and we consider the NA-expressibility.

The application of & selective expression on some instance s results either in the application of
some NA-expression Fy on 8 or in the application of some NA-expression E4 on 3, depending
on the evaluation of some condition C on 8. Such a selective expression is written as

[if C then E; else Ej).

The motivation for studying the selective expression originates from the definition of the
least fix point ({fp) operator [CH]. If we claim that an NA-operator corresponds to a single
statement (in the context of programming), then the notion of the ! fp operator corresponds
to that of the repetitive statement. Intuitively the selective expression corresponds to the
selective statement. Since in [GVG] it is proved that the { fp operator is not NA-expressible,
it is interesting to verify whether the selective expression is NA-expressible.

17

Definition 5.1

If E and E' are N A-expressions, then £ = 0,E = E',E C E' and E € E' are basic if-
conditions. The application of a basic {fcondition € on an instance s results in a boolean
value, that is recursively defined by :

o the application of E = @ on s, with £ an NA-expression, results in E(s) = @

e the application of E¢E’ on s with ¢ € (=,C) and F and E' NA-expressions such that
the schemes of E(s) and E’(s) are the same, results in E(s)}¢E'(s);

e the application of £ € E' on s with E and E' NA-expressions such that if the scheme
of E(s) equals (1) then the scheme of E'(s) equals (A())), results in E(s) € E'(s).

If-conditions are composed of basic if-conditions using A,V and -. The application of an
if-condition € on an instance s is a boolean value, that is recursively defined by :

e if C is a hasic if-condition, then the application of C is already defined;
o the application of C' A C" results in C'(s) A C'(s);
o the application of C' v C" results in C'{s) v C"(s);
o the application of = C' results in - C'(s).
4
Examples of basic if-conditions, that can be applied on instances of the scheme (A, B, C, D,
E(F)), are
74,80 =¥
74U pp_ A(TE) = T4;

wa,B,c(04=8) € pPD~c(7a,B D(‘TA D)
74 € pr_a(7E).

Definition 5.2

Let C be an if-condition and E; and E» NA-expressions such that for an instance s, E;(s)
and F(s) have the same scheme. Then [if C then E; else E3] is called a selective ezpression
and its application on an instance s is recursively defined by :

. E if ¢ 1ds,
[if C then E, else E;](s} = { E;E:g if —-((Z's()ailc})mlfis.

O

Two examples of selective expressions, applicable to instances of the scheme (A, B, C, D),

are :] _
[if 74 = pB—a(7B)
then o 4=p(74 B.c) else ppc(74,B,D);

lif 74 = ppalmg) A ~(09c=p =0}
then o a=p(vc;e(7a,B,¢)) else pp—c(vD,e(74,8,D))]

18

Another example, applicable to instances of the scheme (4, B(C), D), is :

[if 74 € pc—~a(rc{uB)) A 7D = 7p(04=D)
then 74 g else pp_.a{7p,B)]-

So, a selective expression specifies two expressions, one of which is evaluated dependent on
the evaluation of the if-condition. The next theorem considers the NA-expressibility of these

expressions.
Theorem 5.1 Every selective expression is NA-expressible,

Proof

In order to prove that for every selective expression an equivalent NA-expression can be
constructed, we first show that for selective expressions of the kind

[lf E = § then E] else Ez]

an equivalent NA-expression can be constructed. Subsequently we show that other selective
expressions can be reduced to selective expressions of the above kind.

Let E,E', E; and E; be NA-expressions.
Consider the selective expression
[If EF= 0 then E]_ alse Ez].

If A is the scheme obtained by applying E: or E,, and E’ is a renaming of F such that the
sch‘eme obtained by applying E' has no attributes in common with A, then the expression is
equivalent with

(i) (El - WA(EI > E’)) U 'H'A(Ez =] E’).

Note that A and the renaming depend on the scheme of the instance on which the selective
expression is applied.

The equivalence is due to the fact that, if £ = @ holds, then E' = @, hence ny(E; >« E') =0
(for 1 = 1,2) and so the expression (i) equals E;. On the other hand, if E # 9, then E' # 9,
hence 7\ (E; ba E') = E; and so the expression (i) equals E,.

The following equivalences prove that basic if-conditions of another kind can be reduced to
the kind E = @ :

E=FE=(E-EYJ(F-E)=0

ECE =(E-E")=0

EcFE = V)\;A(E) C E',

where A(A) is the scheme obtained by applying E'.

Il

The following equivalences show that selective expressions with non-basic if-conditions are

19

NA-expressible : (let C and C' be if-conditions and F; and E, be NA-expressions)
[if C A C’' then E; else Ez]

[if C then E else E]
with E = [if C' then E; else E;];

[if C v C' then E; else E;

[if C then E; else E]
with E = {if C' then E else E;];

[if =C then E; else E;]

[if C then E, else E;).

This clearly proves that every selective expression is NA-expressible.
a

In the above definition of selective expressions the NA-expressions in selective expressions
are applied at level 1. Therefore we say that these selective expressions are applied at level
1. Now we extend the definition in such a way that application at any level is possible.

Definition 5.3

Let E be a selective expression. Let s be an instance of scheme (1), let A(\') be a structured
attribute at level £ — 1 in (A) with & at least 2. If F is such that for all A(A)-values v in
s E(v) is well-defined, E(s) is defined to be the instance obtained from s by replacing each
A(X)-value v in s by E(v).
We call this the application of E at level k.

O

Note that in the definition we describe how the instance is changed, but, of course, the scheme

must be changed correspondingly.
An example of an application of a selective expression at level 2 of scheme (4, B(C(D), E(F),

G,H),I)is:

[if r¢c € pe—clpr—D(7E))

then 7g else pg_,qo(71r)].
Again we can prove by induction that the application of selective expressions at level k, & at
least 2, is NA-expressible.

Theorem 5.2 Every application of a selective ezpression at level k, for k at least 2, is NA-
expressible.

Proof
We do not give the full proof here, but only an outline of it. First an equivalent expression
is constructed for the application of a selective expression at level 2.

Then the same method, as used earlier, is used to construct, from an equivalent expression
E' for the application of a selective expression E at level k, an NA-expression E" equivalent

20

with the application of F at level & — 1, for k at least 2,
O

After extending the definition to allow for application at higher levels, we can generalize the
notion even further such that application at multiple levels is possible.

Intuitively, application at multiple levels means that the expressions used in the condition of
some selective expression do not need to be at the same level as the then- and else-expression.
So, if the then- and else-expression manipulate some attribute value v at level &, then the
expressions in the condition do not need to manipulate the same value v, but they are allowed
to manipulate an attribute value v/, as long as this value v' is uniquely corresponding to v.
This implies that v and v’ must be values of attributes a and &' such that the parent attribute
of a' is an ancestor attribute of a.

First we define the argument attribute of an NA-expression.

Definition 5.4

If 4 is an NA-operator with parameter attributes that are attributes of the list of an attribute
X(A), then the argument attribute of 1, denoted by AA(¥), equals X. (If the parameter
attributes are attributes at level 1, then AA(%) equals R; think of R as the imaginary parent
attribute of the attributes at level 1.} If E is an NA-expression, then AA(E) is defined to
be the attribute a at the highest level such that for each NA-operator 4 in F, it holds that
either « is an ancestor of AA(¥) or a equals AA(%) (so all the parameter attributes in E

must be descendants of a).
O

Consider the scheme (A(B{(C(D, E(F(G,H),I),J(K),L),M(N),0),P),Q) and the expres-
sion Ezp, which is equal to

ra(vp,g;x(0g=m([Y = Cra M}(ug)))).
Then AA(Ezp) = A.

So, the argument attribute is the attribute at the highest level, such that the expression
manipulates only the value of this attribute. In the above example the argument attribute
can not be at a higher level than A, since the unnest has parameter attribute B. On the
other hand, the value of R is manipulated, but, since A is the attribute at the highest level
for which the value is manipulated and we want to be as specific as possible, we say that A
is the argument attribute of Fzp.

Definition 5.5

A selective ezpression [if C then E; else E; | can be dpplied at multiple levels, if for every
NA-expression F in C it holds that the parent attribute of AA(E) is an ancestor attribute

of AA(E;) or AA(E) equals R.

The application on an instance s is defined to be the application on every AA(E;)-value v of
either E; or E;, dependent of the evaluation of C'. Since for every expression F in C there
is a unique AA(E)-value corresponding with v, we can define C(v) in the same way as in the
original definition, the only exception being that here every expression E is applied to the
unique AA(E)-value corresponding to v.

21

The AA(E)-value corresponding to v is the value v’ such that v' is the AA(E)-component of
the tuple of which the a-value contains v, where we suppose that a is the ancestor of AA(E:}

with the same parent as AA(F). If AA(F) equals R, then v' is the whole instance.
O

Consider for example the scheme (A(B(C(D, E), F(G, H)),I,J(K))). For a selective expres-
sion where the then-expression has parameter attributes D and E, as in op_g (so C-values
are manipulated), the expressions of the condition must manipulate values of C, F, B, I, J

or R.

A well-defined selective expression for the above scheme is
if 7€ J A op=g = F thenep=g else cp—g(pp E—E,D)]

Here the argument attribute of the then-expression is C, and with every C-value there are
uniquely eorresponding I-, J-, C- and F-values.

Note that it is reasonable to require that for every basic if-condition E = E', EC E' or E
€ E' it must hold that AA(E) and AA(E') are in the same list.

Since we can reduce the application of selective expressions at multiple levels to the applica-
tion at one (higher) level, we have the following theorem.

Theorem 5.3 The application of selective ezpressions at multiple levels is NA-ezpressible.

Proof

We do not give the full proof here. However, it is obvious that such a selective expression
is equivalent to a selective expression, with a basic if-condition (¢f. the proof of the NA-
expressablility of selective expressions with non-basic if-conditions). This implies that this
selective expression is such that the then- and else-expressions manipulate a value v at level
k, say, and the condition manipulates a value ¢ at level I, with [at most k. It is clear that the
expression at level k is equivalent to somme expression at level [, such that the manipulation of
v is in fact the manipulation of some value v" at level I, and therefore the selective expression

is a selective expression applied at level [.
[

6 Assignment Expressions

The notation used for the application of binary operators at level 1 does only allow for
the application of one operation at a time. In this section we will generalize this, allowing

expressions like
[G(H):= AUu=F],

which can be applied to instances of the scheme (A(B),C(D, E, F)). In such an expression
we specify a new attribute based on an NA-expression, which relates attributes at level 1.

Definition 6.1

A level-1-expression is either a binary NA-operator applied on two level-1-expressions {using
infix-notation) or an NA-expression with an argument attribute at level 1.

The application of a level-1-expression E on a tuple ¢ of an instance s of scheme (A} is defined
by :

22

o if E is an NA-expression f, with argument attribute a at level 1, then E(t) = f(t(a});
(N.B.if f = a, then E(2) = t(a))

o if E equals E'¢E", with E' and E" level-1-expressions and ¢ a binary NA-operator,
then E(t) = E'(t)¢E"(t).

Let E be a level-1-expression and s an instance of scheme (A). Suppose for a tuple ¢ of s, E(t)
is a tuple over the attribute X', and A" is compatible with A, but does not contain identifiers

from A.
Then [X' := E] is called an assignment ezpression (at level 1) and its application on s is an

instance of scheme (A, A") defined by :

M= Els)={¢t|3tes:{'(A) =t At (\") = E@1)}.

- 0
Consider for example the scheme (A(B),C(D, E), F(G, H)) and the level-1-expression F
(AUurp)og=H.
If ¢ is a tuple over this scheme, then
B(t) = ((A(B)) UH(C(D))) = 06— ({F(G, H))).
If 3 is an instance of this scheme, then |
[4'(B', 6", H') := E(s)

is such that each tuple ¢ in s is augmented with an attribute A'(B',G', H') whose value
equals E(%).

Theorem 6.1 Fvery assignment ezpression 18 NA-ezpressible.

Proof

Let s be an instance of scheme (A} and [\ := E] an assignment expression (at level 1 of (A)).
We will construct an equivalent expression for (X' := E](3).

If the expression E equals E'¢E", with ¢ a binary operator, then

N = Bl(s) = max(IX 1= Agal(Dha = B'](De = BI))(s),
for proper A; and A,.
If the expression E equals a, with a an attribute at level 1, then

[A == E](s) = copya—a(s).

If the expression E equals f, with f an NA-operator with an argument attribute o at level
1, then

[A":= E(s) = g(copya—r)(s),

23

where g is an NA-expression equivalent with f, such that each identifier from o« is replaced
by the corresponding one from M.

If the expression E equals f(f'), with f an NA-operator and f' an NA-expression with
argument attribute «, then

[A":= E](s) = g(N' := £])(s),

where ¢ is an NA-expression equivalent with f, such that each identifier from « is replaced

by the corresponding one from A'.
O

It will be obvious how we can generalize the definition of assignment expression to allow for
application at any level, analogous to definition 5.3.

Definition 6.2

Let E be an assignment expression. Let s be an instance of scheme (A), let A(X') be a
structured attribute at level X — 1 in (A) with & at least 2. If E is such that for all A(X')-
values v in s E(v) is well-defined, E(s) is defined to be the instance obtained from s by
replacing each A(A')-value v in s by E(v).
We call this the application of E at level k.

|

Note that in the definition we describe how the instance is changed, but, of course, the scheme
must be changed correspondingly.

Analogous to Theorem 5.2 it is possible to prove by induction that the application at any
level is NA-expressible.

Theorem 6.2 Every application of an assignment ezpression at level k, with k at least 1, is
NA-expressible.

O
So, for example, the application at level 2 on an instance of the scheme (A(B, C(D), E(F(G),

H),I) of
[CY(D') := CuUmg(vF)]

results in an instance of the scheme (A(B,C(D), E(F(G), H),C'(D")), I).
From the expressibility of assignment expressions at any level we can also deduce that we

can write assignment expressions within assignment expressions, since for every assignment
expression an equivalent NA-expression exists.

As we have extended the definition of selective expressions to allow for application at multiple
levels, we can also do this for assignment expressions. This means that for all the NA-
expressions in a level-1-expression the argument attributes do not need to be at the same
level. For example, we want to be able to apply ~

[C'(D') = Cranp]

24

on instances of the scheme (A(B, C(D)), E(F, G)), resulting in well-defined instances of the
scheme (A(B,C(D),C'(D")), E(F,G)).

For the definition of the application at multiple levels it is required that the attributes, that are
manipulated by the NA-expressions within the level-1-expression, are uniquely corresponding.
This means that one of the NA-expressions manipulates values of an attribute, & say, and the
other NA-expressions manipulate a’-values such that the parent attribute of o' is an ancestor
attribute of a.

Definition 6.3

An assignment expression (A := E] can be applied at multiple levels, if there exists an NA-
expression Ey in E such that for every NA-expression E; in F it holds that the parent
attribute of AA(E,) is an ancestor attribute of AA(Ep) or AA(F,) equals R (N.B. AA(E,) #
).)

Let P be the parent attribute of AA(Ey) and s an instance. Then the application on s
is defined by adding to every tuple t in every P-value v of s the A-value v', where v’ is
obtained by applying first all the NA-expressions to the values of their argument attribute,
that is uniquely corresponding to the value of {(AA4(Ey)), and then applying all the binary

operators to these values.
O

Of course, the way in which attribute values correspond uniquely is the same as in definition
5.5, where the application of selective expressions at multiple levels was defined.

Theorem 6.3 The application of assignment expressions at multiple levels is NA-expressible.

Proof

As in the proof of theorem 5.3 it is possible to construct for every NA-expression within the
level-1-expression an equivalent expression such that all the NA-expressions are expressions
at the same level, k say, thus having an assignment expression at level k.

O

7 Operations that are not NA-expressible

In this final section we define a number of operations on nested relations for which we prove
that they are not NA-expressible. Hence, additional operators or functions are needed in the
nested algebra for implementing these operations.

Basically we prove that

o the operation that selects the sets with the greatest cardinality out of a number of
given sets is not NA-expressible

¢ the operation that gives all the pairs of connected nodes in an undirected graph is not
NA-expressible

From these two results we deduce a number of interesting operations that are not NA-
expressible. The proof technique that we propose can be used to proof the “non-NA-
expressibility” of many other operations.

25

Definition 7.1

A scheme is called flat if and only if all its attributes are atomic, i.e. if and only if all its
identifiers have level 1.
An NA-expression is called flat if and only if every attribute of every relation that occurs in
the expression is atomic and if the nest operator does not occur in the expression.

O

Definition 7.2

Consider the scheme {A(B)) and an instance s of this scheme.

The operator Mazc that selects those tuples from s, for which their only component has the
greatest cardinality, is called the mazimal-cardinality operator.

The scheme of Mazc(s) is (A(B)).

O
Example :
A(B) A(B)
1 (3)
2 4
3 Y5 (
'3 3 3 L 6 J
4 (1)
4 5 (4
\ 6 7 5
(1) [6)
) 4
5 (Maze(s)
[6)
{1}
s
Definition 7.3
We will use the following notation [p, ¢] for the instance over the scheme (A,B)
LPSQ]: {(a!_l)l —PSGS _2}U{(a!1) I 2S aSQ}
O
Definition 7.4
In the sequel, p and ¢ are two given different positive integers.
The calculus expression {(a1,...,an) | f(a1,...,an)} is called a derivable calculus expression

(dce) i
1. f is a disjunction of disjuncts

2. every disjunct is false or is a conjunction of factors

26

3. every factor is a term or its negation
4. every term has the form

(a) ai = aj
(b) fai] =1
{(c) aixa; >0

5. every non false disjunct has for every i,1 < 7 < n, the factor |a;| = 1 or ~(Ja;{ = 1)

The variables a; range over —p,...,—1,1,...,¢. The semantics of a dee is clear.
|

Lemma 7.1 If a disjunct satisfies one of the following conditions, it is equivalent with false.

1. 34,1 < i< n: ~(a; = a;) is a factor
2. 3,1 < i< n:~(a;xa; > 0) is a factor
3. 34,1 <1< n: both |a;] = 1 and ~(|ai| = 1) are factors

O

If a disjunct satisfies one of the conditions of lemma 7.1, we will substitute it by false in the
sequel.

Lemma 7.2 If a disjunct contains a; = a;, for some 4,1 < i € n, it is equivalent {o the
disjunct without this factor. If a disjunct contains a; xa; > 0, for some {,1 £ 1 < n, it is
equivalent to the disjunct without this factor.

a

If a disjunct satisfies one of the conditions of lemma 7.2, we will delete the corresponding
factor in the sequel.

Lemma 7.3 [p,¢] = {(a1,a2) | ¢1 *a2 > 0 A |az| = 1 A =(|ay| = 1)}.
O
Lemma 7.4 If the flat expressions E, and E» have only one operand, [p,gq], and if they

are both ezpressible by dce’s, then their union, join and difference are expressible by dce’s.
Furthermore, their selections and renamings are expressible by dee’s.

Proof

Let El)(}[P!Q]) = {(al’“'van) l fl(al"":aﬂ-)} and E'z([p,q]) = {(all---vaﬂ) l f2(al'
e

Eiu Ez([p,q]) = {(al, . ,an) I fl(al, wee ,an) A" fg(al, v ,an)}
E1—Ex([p,q]) = {(a1,...,an) | f(a1,...,an)} where f(ay,...,a,) is a disjunction equivalent
with f1(at...,an) A ~(f2(a1,.. - ran).

Let ES([PaQ]) = {(bl'-'nbm) |f3(blsabm)}

27

E; va Es([p,q]) = {{a1,.--,8n,01,...,bm) | f(a1,...,en,b1,...,0m)}, where f(a;,...,an,
bi,...,bpy) is a disjunction equivalent with fy(a;,...,an) A fa(b1,...,bm), and ay,...,aqn,
by,...,bpn all different.

oi=i(E1){([p.q]) = {(a1,...,an) | f(a1,...,an)}, where f(ay,...,an) is a disjunction equiv-

alent with fi(a1,...,a,) A a; = a;.
a

Lemma 7.5 If the flat expression E has only one operand, [p,q), and if it is expressible by
dce’s, then its projections are expressible by dce’s, for p and q great enough.

Proof
We start with E{([p,q]) = {(e1,...,a8x) | f(a1,...,a,)}. We will construct a dee that repre-
sents one of its projections. Consider the projection on (az, ... ,@r). a1 is the only attribute

that is projected-out. Clearly, every projection can be written as a sequence of projections
where only one attribute is projected-out. Therefore, our result will be general. Suppose also
that f has only one disjunct. Otherwise we apply the construction to every disjunct of f.

The projection is expressed by {(az,...,a,) | a1 : f(a1,...,an)}. We will eliminate the
existential quantor.
1. If f is false, the projection is expressed by {(asz,...,an) | false}.

2. Suppose that f contains some factors a; = a;. For each a;, take all the factors of f that
contain a;, substitute a; by a;, add these new factors to f. Delete then all factors aq =
a;. Let f' be the resulting function. Clearly, {(e2,...,an)} | a1 : f(a1,82,...,2n)}
can be written as {(az,...,an) | f'(az2,...,an)}, which is a dce.

3. Suppose that f does not contain any factor of the form a; = a;. We calculate the
closure of f, notated f, by applying the following rules recursively :
o ifa; = a; inf, then add a; = a;
o if 2(a; =a;)in f, then add -(a; = a;)
¢ ifa;xa; > 0in f, then add aj xa; > 0
o if =(a; xa; > 0} in f, then add —(a; xa; > 0)
e ifa; =a;in f, then add a; *a; >0
o ifa; =ajand a; =a; in f, then add a; = a;
» ifa; = a; and —(e; = ar) in f, then add =(a; = ag)
o ifa;=a;and [e;|=1in f, then add laj| =1
s ifa; = a; and ~|e;] = 1} in f, then add ~(la;| = 1)
e ifa; =ajand a;xax >0 in f, then add a; xar > 0
e if a; = a; and ~(a; *a > 0) in f, then add —(aj xax > 0)
o if |a;| = 1 and ~([a;] = 1) in £, then add —(a; = a;)
o ifa;*a; > 0and a; xay > 0in f, then add a;j xa; > 0
o ifa;*a; > 0 and ~(a; xa; > 0) in f, then add ~(a; *xax > 0)
o if ~(a;xa; >0)in f, then add -(a; = aj)

28

if ~(a; xa; > 0) and —(a; g, > 0) in f, then add aj;xag >0
if |a;l = 1 and |e;| = 1 and ~(e; = a;) in £, then add ~(a; *xaj; > 0)
if ja;| = 1 and e;} = 1 and a; xa; > 0 in £, then add a; = a;

if [a;| = 1 and |a;| = 1 and ~(a; xa; > 0) and ~(a; = a;) and ~(a; = a¢) in £,

then add —~(fax| = 1)

Next, we delete all the factors that contain a;. Let f' be the resulting function. It is
obvious that if f(ay,a3,...,a,) holds, also f'(az,...,a,) will hold. We have to prove:

If f'(az,...,an) holds, then there exists a value a; such that f(a;,az,...,an)
holds.

(a) Suppose |a;| =1 in f and a; *a; > 0 in f for some i.
~Take t(a1) =1 if (a;) > 0 and t(a1) = -1 if ¢(a;) < 0.
Then there cannot be a contradiction, since if this were the case, the choice for
the value of t(a;) would contradict one of the factors of the disjunct :

—(a1 = ;) in f and t(a;) = #(a;).

But then —(|a;] = 1) and {t(a;)] = 1 hold.

There is an aj, such that a; = a¢; in f and =(t(a;) = t(a;)) holds.

But a; = a) is not possible.

There is an aj, such that =(a; = a1) in f and #(a;) = t(e1) holds.

But then we must have Ja;| = 1in f, hence —(a1 xa; > 0) and ~{a;xa; > 0)
and t(a;) xt(a;) > 0.

a1l =1 in f and =(|t(a1)| = 1).

This is impossible.

~(laz] = 1) in £ and J¢(a1)] = 1.

This is impossible,

There is an a;, such that a; *a; > 0 in f and —(#(a;) *#(a;} > 0) holds.
But then a; xa; > 0 in f and ~(t(aj) xt(a;) > 0).

There is an a;, such that =(a; *a; > 0) in and t(a;) *t(a;) > 0 holds.
But then ~(a; xa; > 0) in f and t(a;) x#(a;) > 0.

(b) Suppose |a;| =1 in f and —(a; *a; > 0) in f for some .
Take t(a1) = 1 if t(a;) < 0 and #{a1) = ~1 if ¢{(a;) > 0.
Then there cannot be a contradiction, since in that case the choice for the value
of t(a;1) would contradict one of the factors of the disjunct :

=(a; = a;) in f and t(a;) = t(a;).

This is impossible.)

There is an aj, such that a; = a; in f and =(¢(a;) = t(a1)) holds.
But a; = a1 is not possible.

There is an aj, such that ~(a; = a1) in f and #(a;) = #(a1) holds.
But then we must have Jaj] = 1 in £, hence ~(a1 xa; > 0) and a; xa; > 0
and -(t(a;) xt(a;) > 0).

la;l = 1in f and ~(|t(a;)] = 1).

This is impossible.

=(la1| = 1) in f and [t(a;)] = 1.

This is impossible.

29

o There is an a;, such that ajxa; > 0 in f and ~(t{a;) xt(a;) > 0) holds.
But then we have ~(a; xa; > 0} in f and t(a;) »t(a;) > 0.
o There is an a;, such that ~{a; xa; > 0) in f and t({a;) *t(a;) > 0 holds.
But then we have a; xa; > 0 in f and =(¢(a;) ~¢t(a;) > 0).
(c) Suppose |a;{ =1 in f and there is no a; *a; > 0 nor —(e1 *a; > 0) in f.
Take t{a;) = 1.
Then there cannot be a contradiction, since in that case the choice for the value
of t(a;) would contradict one of the factors of the disjunct :
e {a; = a;) in f and #(a;) = 1 holds.
But then we would have |a;| = 1, hence —{ay »a; > 0) and t{a1) xt(a;) > 0.
(d) Suppose —(jaif = 1) in f and a; xa; > 0 in f for some i.
Take for #(a;) a new value with the same sign as #(a;).
~Then there cannot be a contradiction, since in that case the choice for the value

of t(a1) would contradict one of the factors of the disjunct :
o o(a; = a;) in f and t(a;) = t(a;).
This is irnpossible.
¢ There is an aj, such that a; = a; in f.
This is impossible.
o There is an a;, such that ~(a; = a;) in f and t(a;) = #(a;) holds.
This is impossible.
¢ loil =1 in f and —([t(a1)| = 1).
This is impossible.
o =(laa| =1)in f and |t(a;)} = 1.
This is impossible.
o There is an aj, such that a; xa; > 0 in f and —(t(a;) ¢(a1) > 0) holds.
But then we have a; xa; > 0 in f and ~(%(a;) x#(a;} > 0).
o There is an aj, such that —(a; xa; > 0) in f and #(a;) »t(a;) > 0 holds.
But then we have ~(a; xa; > 0) in f and t(a;) t(a;) > 0.
(e) Suppose =(Ja;| = 1) in f and ~(a1 *a; > 0) in f for some .
Take for ¢(a;) a new value with the opposite sign as #(a;).
Then there cannot be a contradiction, since in that case the choice for the value

of {{a;) would contradict one of the factors of the disjunct :

o ~{a; = a;) in f and t(a) = t{a;).
This is impossible.

o There is an aj, such that a; = e in f and ~(¢(a;) = ¢(a1)) holds.
This is impossible.

o There is an a;, such that ~(a; = a1) in f and t(a;) = ¢(a;) holds.
This is impossible.

¢ |a1] =1in f and =(|t(a1)] = 1).
This is impossible.

e =(Jay| =1) in f and [t(a;)| = L.
This is impossible.

e There is an a;, such that a; xa; > 0 in f and =(t(a;) *t(a;) > 0) holds.
But then we have ~(a; xa; > 0) in f and t(a;) xt(a;) > 0.

30

o There is an a;, such that =(a; *a; > 0) in f and #(a;) x t(a;) > 0 holds.
But then we have a; xa; > 0 in f and =(¢(a;) »t(a;) > 0).
(f) Suppose =([a;| = 1) in f and there is no a; xa; > 0 nor ~(a; xa; > 0) in £

Take for t(a1) a new value.
Then there cannot be a contradlctlon since in that case the choice for the value

of t(a1) would contradict one of the factors of the disjunct :
¢ =(a; = a;) in f and t(a;) = t(a;) holds.
This is impossible.
0

Theorem 7.1 For every expression E in the flat algebra with one operand of scheme (A(B)),
it holds that there is a dee {(a1,...,a,}] f(@1,...,ax)} such that for p and g great enough

E(lp,q])) = {(a1,.--,en) | f(a1,...,a)}

f is independent from p and q.

Proof

The proof is a direct consequence of lemma 7.4 and lemma 7.5.
O

Theorem 7.2 Let M be an operator such that M(p,gl)={a| —p<a<-2}ifp>qand
M(lp,q)) ={a|2<a<q}ifp< g M is not expressible in the flat algebra.

Proof

If M would be expressible by the flat algebra we know from theorem 7.1 that M([p,q]) =
{a]f(a)}.

Since this is a dce, there are only four possible values for M([p,q]) : 0, { 1,1}, {a| —p <

a< — 201'2<a.<q} {a] -p<a<gq, a# 0}
|

Theorem 7.3 Mazc is not NA-expressible.

Proof

If Mazc would be NA-expressible, then M would be expressible by the flat algebra. Indeed,
we start with [p, ¢]. We nest the first attribute and project on the first attribute. We apply
Mazc to the result and we unnest. This gives an expression in the nested algebra that

expresses M. By [PVG], there is also an equivalent expression in the flat algebra.
O

The second operator that is proved not to be NA-expressible, is the operation that gives all
the pairs of connected nodes in an undirected graph.

Deflnition 7.5

Consider an instance s of the scheme (A4, B) such that <a,0>€ s <=><b,a>€ s.
The operator P¢ is defined by

Pc(s)={(e,d)| Feo,c1,...,ck witheg =¢, ¢ = d,
(<ci—1,ci>€E sorei—1 =¢;)fori=1,...,k}

31

The scheme of Pc(s) is (4, B).
Pg is called the path connectivity.

Example :

(= R R R N N
< N BT N R A

= L L R Y N R - I I I R e
L= RS B S S, N O e X N L Rl v]

Pc(s)
Theorem 7.4 Pg is not NA-expressible.

Proof

This proof is rather analogous to the proof of the previous result.
We present a brief outline.

Consider the instance
Pl={<a,b> | —p<a<sp —p<b<pa#0,b#0, ((a=b—-1)or(a=1b+1))}

We first will prove that the result of every flat expression with operand [p] can be expressed
as {(a1,...,an) | f(a1,...,an)} where every a; ranges over —p,—p+1,...,-2,-1,1,2,...,p
and where

1. fis a disjunction of disjuncts

2. every disjunct is false or is a conjunction of factors
3. every factor is a term or its negation

4. a term has the form

e ag;—a;j=kF

o a; =k
e g;=p—k
® a.;:—p-—k

where k is a constant (pos. or neg.)

32

{We substitute a disjunct by false if necessary.)

Clearly [p] = {(a1,a2) | (a1 — a2 = 1} V (az — @1 = 1)}. Furthermore, the application of the
union, the difference, the join, the selection and the renaming do not create problems.

As to the projection, suppose that
E([p]) = {(a1,..-,8a) | f(a1,...,an)}

where f has only one disjunct, and consider 74, . a, (E([p])).
There are 4 cases.

1. If a; — a; = k is a factor, then add to f

e AiZi-(ai=p—7) ifk>0
O\Ag___k_*_lﬂ(a,'z-—p—-—j) fk<0
s ~(a; = —k)

and replace every ai by a; + k.

2. If 1 does not hold and a; — a; = & is a factor, then add to f

o Af23 =(ai= —p~(-7)) if k>0
o Alokyr-(ai=p- (=) ifk<o
] ""‘I(az = k)

and replace every a3 by a; — k.

3.If1and 2donot hold and ay = kora; = p—k or ay = —p — k is a factor, then
substitute a; by its value.

4. If all terms that contain a; are negative, delete them.

So, every expression E in the flat algebra with one operand [p], can be expressed as {(ay,...,
an) | f(a1,...,an)} with f independent from p.

Finally, we have to prove that
Po(lp) = {(a,8) | (0<a<p, 0<b<p)V(-p<a<0, —p<b<O)}

is not expressible in the way above. If it were, then there exists a disjunct without positive
terms. Take p greater than the greatest constant in this disjunct. The tuple < —p,p> fulfils

but does not belong to Pg([p]), which contradicts.
Hence P is not expressible in the flat algebra and hence, by [PVG], it is not NA-expressible.
0

Definition 7.6

Consider an instance s of the scheme (A(B)). The operator Minc that selects the tuples of
s that have the smallest cardinality, is called the minimal cerdinality operator. The scheme
of Mine(s) is (A(B)).

Consider an instance s of the scheme (A(B),C(D)). The parameterized operator C5} o
selects the tuples < a,b > of s with card(e) — card(d) < p. The scheme of CSi,C is

33

(A(B),C(D)).
Consider an instance s of the scheme (A(B),C(D)). The parameterized operator CGﬁ_o

selects the tuples < a,b > of s with card(a) — card(b) > p. The scheme of CG} ; is
(A(B),C(D)).

Consider an instance s of the scheme (A(B},C(D),E(F)). The parameterized operator
CS% o i selects the tuples <a,b,c> of s with card(a) — card(b) < card(c) + p. The scheme
of CS%, o p is (A(B),C(D), E(F)).

Consider an instance s of the scheme (A(B),C(D),E(F)). The parameterized operator
C’G’i'c, g selects the tuples < a,b,c> of s with card(a) — card(b) > card(c) + p. The scheme

of CG?_ . g is (A(B),C(D), E(F)).
a

Theorem 7.5 Minc, and the parameterized operations CSi’c, CGi‘c, CSi,C,E and
C’G’;1 c,E Ore not NA-ezpressible.

Proof

1. This is cbvious for Minc.

2. Let ngl,o be NA-expressible and let s be an instance over the scheme (A(B)).

ra(ocr=cn(ve;er(CS%,0(3 > pacB)—c(D)(9))) > varmcn(pa By—ar(Bm(3))
would be an expression for Mine.
3. If G‘Sﬁ.c were NA-expressible, there would be an expression for C Sg,c.

4. If CSfl,G,E were NA-expressible and s were an instance of (A(B),C{D)) then
74,0{CS] o g(s bamg([E(F):= C - C(s))))
would be a parameterized expression for C'S fI,C'

5. Clearly we have an analogous proof for CGﬁ,C and C Gi'o’ B

Definition 7.7

Consider an instance s of the scheme (A, B). The operator T is defined by

To(s) = {(e,d)| Feo,...,cp witheg =¢, g = d,
((cim1,6i) € s0re;y =¢;)fori=1,...,k}

T is called the transitive closure. The scheme of T¢(s) is (A, B) .
Consider an instance s of the scheme (B(C)). The operator S¢ is defined by

Sc(s) = {{c,d) | Teo,...,cp withcp =¢, ¢z = d,
(cic1Nei)#0,ci_1€s,¢i€sfori=1,...,k}

34

Sc is called the set connectivity. The scheme of Sc(s) is (B(C), B'(C")).
Consider instances r and s of the schemes (B(C)) and (E, F) respectively. The operator Sto
is defined by

Sto(r,8) = {(¢,d)| Feo,...,ck(c=co, d= ¢k, co,...,c €T,
Vi= 1!"')k (a(eivfi) €s8le;Eci and fi ecl))}

Stc is called the set iransitive connectivity. The scheme of Stg(r,s) is (B{C), B'(C")).
Consider an instance s of the scheme { B(C)). The operator Sac is defined by

Sac(s) = {(c,d})| T co,...,ck{e=co, d=cy, cg,-..,ck €3,
(i1 Cejore;_1 D) fori= 1,...,k}

Sac is called the set alternating connectivity. The scheme of Sag(s) is (B(C), B'(C")).
- 0

Theorem 7.6 The operators To, Sa, Ste and Sag are not NA-ezpressible.

Proof

1. If Tc were NA-expressible, Po would also be.

2. If 5o were NA-expressible, Py would be by

s1 = Sc(pe(ry—B(c)(*E([E(F)} := C U D|(»4;c(vB;D(copya,B—4',5:(5)))))))
Pg(s) = po,cr—a,B(kp (rB(31)))

3. If St; were NA-expressible, S would be by

Sc(s) = Ste(s, pe,c'—E,F(9c=c'(1B(3) >4 poc—c 1B(9))))
4. If Sac were NA-expressible, Po would be by

81 = va,c(ve;p(copya, B ar, 2 (3)))

32 = pE(Fy—B(c)(TE([E(F) := C U D|(s1)))

s3 = (pp(my-B(C)*D(81)} U (pc(ay—B(O)(Fo(s1)))
Po(s) = po,c'—a,B(8p(pc(Sac(s2 U s3))))

8 Conclusion

This paper illustrates the expressive power of the nested relational algebra. It demonstrates
that this algebra is a suitable model for the implementation of nested relational languages.
It can also be used for implementing other models, such as complex objects, and even object
oriented databases.

The nested relational model seems to be more appropriate to model information since the
structure of a scheme reflects the structure of the information. On the other hand the nested
relational model seems to be more complicated than the traditional flat relational model, in
the sense that expressing queries is far more straightforward in the latter than in the former.

35

In the near future we have to look for simpler primitives. We also have to define a simple
nested calculus that is equivalent with the algebra, and in which the queries are expressed in
a more natural way than in the algebra.

Both the calculus and the algebra have to be generalized with aggregate functions, recursion,
methods, etc.

We thus hope to gain a better insight in the development of an orthogonal and elegant query
and database language that represents the structure of the information in a more direct and
natural way than actual relational languages do.

References

[CH] A.K. Chandra, D. Harel, Structure and Complexity of Relational Queries, Journal
of Systems and Computers Sciences 25, pp. 99-128, 1985.

[GVG] M. Gyssens, D. Van Gucht, The Powerset Operator as an Algebraic Tool for Under-
standing Least Fixpoint Semantics in the Context of Nested Relations, Technical
Report no. 233, Indiana University, Bloomington, October 1987.

[HP] G.J. Houben, J. Paredaens, The R2-Algebra : Extension of an Algebra for Nested
Relations, Tech.Rep. CSN 87/20, Tech. University Eindhoven, 1987,

[HS] R. Hull, J. Su, On the Expressive Power of Database Queries with Intermediate
Types, ACM SIGACT-SIGMOD-SIGART Symposium on Priciples of Database
Systems, pp. 39-51, 1988,

[OOM] G. Ozsoyoglu, Z.M. Ozoyoglu, V. Matos, Extending Relational Algebra and Rela-
tional Calculus with Set-Valued Attributes and Aggregate Functions, ACM TODS,
12, 4, pp. 566-592, 1987.

[PA] P. Pistor, F. Andersen, Designing a Generalized NF? Model with an SQL-Type
Language Interface, Proc 12th VLDB, Kyoto, pp. 278-288, 1986,

[PVG] J. Paredaens, D. Van Gucht, Possibilities and Limitations of using flat operators
in Nested Algebra Expressions, ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp. 29-38, 1988.

[RKS] M.A. Roth, H.F. Korth, A. Silberschatz, Theory of Non-First-Normal-Form Rela-

[SPS]

[SS]

tional Databases, Tech. Rep. TR-84-36 (Revised January 1986), University of Texas,
Austin, 1984, -

M.H. Scholl, Theoretical Foundation of Algebraic Optimization Utilizing Unnor-
malized Relations, Proc. 1st ICDT, Rome, Italy, Sept. 1986, in Lecture Notes in
Computer Science, 243, G. Ausiello and P. Atzeni, eds. Springer-Verlag, pp. 380-396,
1987.

M.H. Scholi, H.-B. Paul, H.-J. Schek, Supporting Flat Relations by a Nested Rela-
tional Kernel, 13th VLDB, Brighton, 1987.

H.-J. Schek, M.H. Scholl, The Relational Model with relation-valued attributes,
information Systems, Vol. 11, 2, pp. 137-147, 1986.

36

[TF]

[VG]

S.J. Thomas, P.C. Fisher, Nested Relational Structures, Advanced in Computing
Research III, The Theory of Databases, P.C. Kanellakis, ed., JAI Press, pp. 269-307,
1986.

D. Van Gucht, On the Expressive Power of the Extended Relational Algebra for the
Unnormalized Relational Model, ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp. 302-312, 1987.

37

In this series appeared :

No. Author(s)
85/01 R.H., Mak

85/02 W.M.C.J. van Overveld
85/03 W.JLM. Lemmens

85/04 T. Verhoeff
H.M.J.L. Schols

86/01 R. Koymans

86/02 G.A. Bussing
K.M. van Hee
M. Voorhoeve

86/03 Rob Hoogerwoord

86/04 G.]. Houben
J. Paredaens
K.M. van Hee

86/05 Jan L.G. Dietz
Kees M., van Hee

86/06 Tom Verhoeff

86/07 R.Gerth
L. Shira

86/08 R. Koymans
R.K. Shyamasundar
W.P. de Roever

R. Gerth
S. Arun Kumar

86/09 C. Huizing
R. Gerth
W.P. de Roever

86/10 J. Hooman

86/11 W.P. de Roever

86/12 A. Boucher
R. Gerth

Title
The formal specification and
derivation of CMQS-circuits

On arithmetic operations with
M-out-of-N-codes

Use of a computer for evaluation
of flow films ‘

Delay insensitive directed frace
structures satisfy the foam
rubber wrapper postulate

Specifying message passing and
real-time systems

ELISA, A language for formal
specifications of information
systems

Some reflections on the implementation
of trace structures

The partition of an information
system in several parallel systems

A framework for the conceptual
modeling of discrete dynamic systems

Nondeterminism and divergence
created by concealment in CSP

On proving communication
closedness of distributed layers

Compositional semantics for
real-time distributed
computing {Inf.&Control 1987)

Full abstraction of a real-time
denotational semantics for an
OCCAM-like language

A compositional proof theory
for real-time distributed
message passing

Questions to Robin Milner - A
responder’s commentary (IF1P86)

A timed failures model for
extended communicating processes

86/13

86/14

87/01
87/02

87/03
87/04
87/05
87/06
87107
87/08

87/09

87/10

87/11

87/12
87/13

87/14

R. Gerth
W.P. de Roever

R. Koymans

R. Gerth

Simon J. Klaver
Chris F.M. Verberne

G.J. Houben
J.Paredaens

T.Verhoeff
R.Kuiper
R.Koymans
R.Koymans
H.M.JI.L. Schols

J. Kalisvaart

L.R.A, Kessener

W.J.M. Lemmens
M.L.P, van Lierop

F.J. Peters

H.M.M. van de Wetering
T.

Verhoeff

P.Lemmens

K.M. van Hee and
A.Lapinski

J.C.S.P. van der Woude

J. Hooman

Proving monitors revisited: a
first step towards verifying
ohject oriented systems (Fund.
Informatica IX-4)

Specifying passing systems
requires extending temporal logic

On the existence of sound and
complete axiomatizations of
the monitor concept

Federatieve Databases

A formal approach to distri-
buted information systems

Delay-insensitive codes -
An overview

Enforcing non-determinism via
linear time temporal logic specification.

Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems with real-time temporal logic.

The maximum nuinber of states after
projection.

Language extensions {o study structures

-for raster graphics.

Three families of maximally nondeter-
ministic automata.

Eldorado ins and outs.
Specifications of a data base management-
toolkit according to the functional model.

OR and Al approaches to decision support
systems.

Playing with patterns,
searching for strings.

A compositional proof system for an occam-
like real-time Janguage |

87/15

87/16

87/17

87/18
87/19
87120

87/21

88/01

88/02

88/03
88/04

88/05

88/06
88/07

88/08

88/09

C. Huizing
R. Gerth
W.P. de Roever

H.M.M. ten Eikelder

J.C.F. Wilmont

K.M. van Hee
G.-J.Houben
J.L.G. Dietz

C.W.AM, van Overveld

A.J.Seebregts

G.J. Houben
J. Paredaens

R. Gerth

M. Codish

Y. Lichtenstein
E. Shapiro

T. Verhoeff

K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

T. Verhoeff

G.J. Houben
J.Paredaens
D.Tahon

K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

H.M.J.L. Schols

C. Huizing
R. Gerth
W.P. de Roever

K.M. van Hee
G.J. Houben
L.J. Somers
M. VYoorhoeve

A.T.M. Aerts
K.M. van Hee

A compositional semantics for statecharts

Normal forms for a class of formulas

Modelling of discrete dynamic systems
framework and examples

An integer algorithm for rendering curved
surfaces

Optimalisering van file allocatie in
gedistribueerde database systemen

The R2 -Algebra: An extension of an
algebra for nested relations

Fully abstract denotational semantics
for concurrent PROLOG

A Parallel Program That Generates the
Mobius Sequence

Executable Specification for Information
Systems

Settling a Question about Pythagorean Triples
The Nested Relational Algebra: A Tool to handle
Structured Information

Executable Specifications for Information Systems

Notes on Delay-Insensitive Communication
Modelling Statecharts behaviour in a fully
abstract way

A Formal model for System Specification

A Tutorial for Data Modelling

88/10 J.C. Ebergen ‘A Formal Approach to Designing Delay Insensitive
Circuits

	Introduction
	1. Preliminaries
	1.1 Relation scheme
	1.2 Instances of a Relation Scheme
	1.3 Operators in the Nested Algebra
	2. NA-operators are independent
	3. Expressibility of NA-operators at all levels
	3.1 Definitions
	3.2 The copy operator and the empty operator
	3.3 How to express an NA-operator at level k ?
	3.3.1 The NA-operators at level 1
	3.3.2 The NA-operators at level k > 1
	4. General selections and dependencies
	4.1 Other selections
	4.2 Dependencies
	4.2.1 Functional dependency
	4.2.2 Join dependency
	5. Selective Expressions
	6. Assignment Expressions
	7. Operations that are not NA-expressible
	8. Conclusion
	References

