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ABSTRACf 

The idea - and the name - of genetic algorithms (GAs) originates from biology. Applying 

certain biological principles (crossover, survival of the fittest) they form a robust tool kit to 

handle mathematical optimization problems. Many practical results have proved their 

usefulness, but still, there is no concise theory of GAs. This paper has a double objective: 

to work out an abstract concept of GAs and establish general convergence results. To reach 

the first goal we define a stochastic algorithm AGA that generalizes and unifies genetic 

algorithms and simulated annealing. For the second goal we model .the search process of 

AGA by a Markov chain and set up conditions that imply convergence with probability 1. 

Keywords: discrete optimization, genetic algorithm, simulated annealing, Markov chain. 
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o. INTRODUCTION 

Genetic algorithms were developed in the early and mid seventies [HoI75], and for 

about a decade they remained rather unobserved. In the last years, however, they are 

gaining interest, the research community of GAs is growing and carrying out promising 

investigations [GoI89]. An important reason for this increasing popularity is that GAs are 

general, with a wide range of applicability and g~ performance results [Gre85, Gre87, 

Gre89]. They even succeed on problems where no specialized methods score good [GoI89]. 

Nevertheless, most of the existing work is practical; little effort was done to investigate GAs 

theoretically. In this article we want to make a step towards a future theory of GAs. 

In nature the development of a certain population depends on two major factors: how 

individuals are born, and how they die. In simple terms, children are produced by 

recombining the parents' gen patterns, the new pattern (genotype) determines a new being. 

Dying of the individuals is due to their fitness, unfit elements cease existing. The 

mathp.rr.atical problem of having a search space S and an object fU/l>~ti()n f resembles the 

biolugical situation. To traverse the space in order to find a minimum of f requires 

generating and eliminating elements of S. In GAs the search space consists of tuples, new 

elements are produced by applying a certain crossover operation to the 'parent' tuples, 

elimination is depending on the object function value. The major -but often hidden- idea 

behind the use of GAs is that of inheritance. Roughly speaking one figures that 'strong' 

individuals get more children than 'weak' ones, and that the 'strength' of the parents is 

inherited by the children. This is the mechanism that is driving the system towards an 

optimum. The improvement of the individuals can be considered as adaptation for the 

population as a whole. This explains the basic approach and terminology of several works 

on GAs, see ego [Ho175, DeJ80]. 

In this paper we give a general description of genetic algorithms. We try to distinguish 

the most essential properties of GAs, and put them together into one general model. The 

result is an Abstract Genetic Algorithm (AGA). Interesting, although not unexpected, is that 

this universal algorithm unifies simulated annealing [Aar89] and traditional genetic 

algorithms. Strictly speaking, not only the classic GAs, but also any simulated annealing 

algorithm can be obtained as an instance of AGA. 
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The paper is organized as follows. In Chapter I we present the terminology and 

describe the Abstract Genetic Algorithm. In Chapter 2 we specify the Markov chain that 

can be associated with the search procedure of AGA. In Chapter 3 we establish 

convergence with probability I for this Markov chain. considering both the homogeneous 

and the inhomogeneous case. In Chapter 4 we interpret the general conditions of 

convergence and obtain conditions for the algorithm AGA. Finally we present some 

conclusions in Chapter 5. 
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1. AGA: AN ABSTRACf GENETIC ALGORITHM 

For our discussion we restrict the application domain of genetic algorithms to that of 

combinatorial optimization problems. In general. such a problem is a pair (S.f), where S is 

a finite set, the search s.pace or solution space, f E S -- IR is the object function. The aim is 

to find a (global) minimum or <wtimurn, that is an s E S, such that II t e S f(s)!> f(t). 

Notice that the finiteness of S implies that f has at least one maximum over S. 

The algorithm introduced below is a stochastic one, i.e. it is influenced by random 

variables. A deterministic instance can be easily obtained by keeping' the random variables 

constant. Another remarkable feature of the algorithm is that it belongs to the so called 

local search methods [Pap82, Joh88]. The meaning of the word 'local' is given by the 

notion 'a neighbourhood of an s E S'. We use this term in a way that does not coincide with 

the usual topological notion of neighbourhoods. Namely, here we only assume that every 

element s of S has exactly one non-trivial neighbourhood. Naturally, the whole space can 

be specified as the neighborhood of its elements. With this special instantiation we can 

relax locality and obtain a global (non-local) method. 

A PQpulation is a subset of S. We model birth and death of individuals by a generation 

and a reduction function respectively. The generation function, however, is composed from 

two other functions: a selection function to choose the parents. and a production function to 

make the offspring. We surpass the biological analogies by not restricting the number of 

parents to the usual two. 

Let N = lSI, a E IN such that a !> N. We assume that the successive populations are of the 

same cardinality a, and that a is much much smaller than N. Let 

Sa = { x\;8 : a = Ixl} the set of 'well sized' populations, and let 

S a+ = { x\;8 : a !> Ixl} the set of 'oversized' populations. 

P \; 1(8) stands for the set of possible parents, i.e. let P contain all those sets that are 

capable of producing offspring. The elements of P will be called parent---!!ets. 

To incorporate probabilities we introduce the sets A, B and C, and assume that the 

parameters ex, ~ and 'Y are chosen from A. B and C by independent random drawings. 

~ - - - -- "";'.',.". 
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REMARK I Observe what it means to have a randomly parameterized function 

f E X --; Y. Strictly speaking it requires a set of functions F!; X --; Y, a probability space 

(A,A,IP) and a random variable f E (A,A,IP) --; F. Then f(a) E X --; Y for any a E A, hence 

f uniquely determines another function g e (A,A,IP) x X --; Y and vice versa. With a bit 

sloppy notation one mostly does not distinguish g and f but "extends f E X --; Y by the 

parameter a E A" and denotes it as f E A x X --; Y. 

To specify our algorithm we need the following functions: 

A neighbourhood function N E S --; 1(S), such that for every s E S : 

N(s) "" 0 and N(s) "" (s). 

N(s) is the neighbourhood of s E S. AtE S is a neighbour of s E S, (s I> t) iff t E N(s). 

Notice that the relation I> >; S X S is not necessarily symmetric. 

A selection function f sEA x Sa --; 1(P), such that for every a E A, XES a : 

y E f/a,x) ~ y \; x, 

Y E fs(a,x) ~ y "" 0. 

A.production function fp E B x P --; 1(S), such that for every ~ E B and x E P: 

fp«(3,x) \ x "" 0, 

fp(~'x) ~ u N(s). 
SEX 

A reduction function fr E ex Sa+ --; Sa' such that for all Y E C, X E Sa+ : 

fr(y,x) ~ x. 

A stop function fst E D x 1(S) --; {true, false}, where d E D is an external parameter. (As 

for d, one can think, for instance, of the number of iterations as external parameter to 

influence terminating.) 

Notice that the locality of the search is due to the production function. The definition 

of fp states that all the children are from the neighbourhood, that is only the neighbourhood 

is explored in search for improvements. In the meanwhile, do not forget that N(s) = S is a 

correct definition, which frees us from being restricted to local search. 
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Let (S,f) be a combinatorial optimization problem, N be a neighbourhood function on S, and 

let fs' fp' fr' fst be a selction-, a production-, a reduction-, and a stop function, 

respectively. 

The Abstract genetic Algorithm (AGA) contains the following basic steps. 

O. Set the initial population x E Sa' 

1. Select parent-sets: Q = fs(a,x) 

2. Produce the children of the selected parent-sets: -y = U fp(~,q) 
q E Q 

3. Check the termination condition: 

H fst(d, x v y) then output a best element from x v y and stop, 

else -+ step 4, 

4. Reduce the extended population: x' = f/y, x v y) 

5. Let x = x' and -+ step 1. 

Notice that the selection fu,.~tio'l may choose more parent-sets, i.e. Ifs(a,x)1 > 1 can 

occur, and that the production operations in step 2 are independen.. This is thus the point 

where parallel execution can be involved. 

We claim that this model covers classical genetic algorithms and simulated annealing 

[Aar89]. To illustrate this let us consider two examples. 

EXAMPLE 1 Take a classical deterministic GA: a finite binary space, with crossover of 

two parents plus mutation of single elements to create children, and a pure survival of the 

fittest mechanism. The appropriate, although partial, instantiation of the algorithm AGA is 

then the following. 

k S = {O,I} (k E IN), a> 1 arbitrary, 

P = {{s} Is E S} v {{s,t} I s,t E S, s;t t}, 

V S E S : N(s) = S, 

{ 

c ross(s,t) if x = {s,t} 
f (~,x) = 
p mutes) ifx= Is} 

(crossover and mutation are as usual), 

f/y,y) = {sl E y, ... ,sa E y I V 1 $ i $ a V S E y\ {sl'" .,sa} : f(si) $ f(s)}. 

For the sake of convenience we leave out the funher details. I 
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EXAMPLE 2 With the following instantiation we obtain a classic simulated annealing 

algorithm. 

k S=IO,I) (kEJN), a=l, 

p= (Is) \SE S), 

fs(a,ls)) = I Is)), 

fp(~,ls)) = It) such that t E N(s), t * s, 

1 
[f(S) -c f(t)] 

It) if exp > y 
fly,ls,t)) = 

Is) otherwise 

where 0 < y < I is a random number, c is the control parameter. I 

To give a better view on the abstraction here, we summarize the differences and the 

similarities between AGA and the classic GAs. 

Similarities: 

I) A finite search space is traversed in search for a minimal object function value. 

2) The search is iterative, in each cycle of the iteration we have a set of canUidates, a 

popUlation. 

3) New candidates in the search space are generated by constructing them from the old 

ones. Parents are chosen, offspring are produced, the popUlation is extended. 

4) There is an elimination mechanism to abort unfit elements, and thus increasing the 

fitness of the population. 

Differences: 

1) The search space in AGA is simply a set, the representation of the individuals is not 

restricted to binary coding. 

2) Creation of children and mutation are unified by strongly generalizing the notion of 

'parent', namely by dropping the tradition of having two of them (one for mutation). 

3) The usual crossover mechanism for making offsprings is generalized to a production 

function. 

4) Also the elimination mechanism is left very free in AGA by requiring the minimum 

from the reduction function. 
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The algorithm AGA is creating populations successively. This results in a sequence of 

populations which we shall call evolution. For a precise and easy definition of this notion 

we define two new functions. 

The generation function fg E A x B x Sa --; },(S) is to create all the children 'in one go': 

fg<a,~,x) = U fp(~'Y). 
yE f s (a,x) 

The transition function ft E A x B x C x Sa --; Sa is to create the next population: 

fla,~,'Y,x) = f/'Y, x v fg(a,~,x». 

Now let us take an E A, ~n E B, 'Yn E C (n E IN) by independent random drawings and 

define the following sequence of populations: 

Xo E Sa 

xn+l = flan'~n,'Yn,xn) 

be the initial population, 

for n ~ o. 

The set (sometimes referred to as a sequence) (xn : n E IN) is the evolution. 

Ob"viously one wants that the algorithm converges, that is it is approaching an optimum 

through the iterative (life) cycli. With genetic terminology the following could be expected: 

for any initial population an optimal population (i.e. a one containing an optimum) will 

occur in the evolution. 

An interesting aspect is the need for divergence. Besides convergence, we want to 

avoid that the course of the algorithm gets stuck at some local minimum. This requires 

some 'diversification', which is carried out by the random parameters of the algorithm. 
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2. THE MARKOV CHAIN BEWNGING TO TIlE SEARCH 

Let (n,A,IP) be a probability space, and let us take a sequence of independent random 

variables Zn e n ---j A x B x C (n e IN). Then ft 0 Zn E n x Sa ---j Sa is the transition 

function in the n-th iteration of AGA. Denoting the projections of Zn(ro) as an = Zn(ro).l, 

~n = Zn(ro).2 and 'Yn = Zn(ro).3 we get back the former notation. 

The 'inside' of the transition mechanism is irrelevant for the followig investigations. 

Therefore we introduce the sequence of random variables Y n e n ---j (Sa ---j Sa)' n e IN. 

Our idea is that for each execution of AGA an ro e n is chosen by a random mechanism. 

Then for every n e IN Y nero) e Sa -l Sa stands for the (already deterministic) n-th 

transition function. In its most general form the evolution is a sequence Xn(ro) (n e IN): 

XO(ro) = x, x e Sa is arbitrarily fixed, that is IP[XO(ro) = x] = 1, 

Xn+ 1 (ro) = Y n(ro)(Xn(ro» for n ~ O. 

To provide an easier reading of the formulae we often leave out the symbol ro from thP 

notation, i.e. we abbreviatt: Y nero) by Y n and Xn(ro) by Xn. In such cases Y n stands 

for Y n e Sa ---j Sa' and IP[Xn e B] means IP[ ('.!) e n I Xn(ro) e B I ], where B e 1'(Sa)' 

Notice that we obtain different evolutions for different initial popUlations. Therefore 

we use a notation that indicates the dependence on the initial population: 

{Xn : n e INlx denotes the evolution with IP[XO = x] = 1 and 

IP x[ .. Xn .. ] stands for IP[ .. Xn .. I XO= x]. 

The assumption about the independence of the Zn's naturally 'inherits' for the Y n's, i.e. the 

following is assumed for every n e IN and Bi ~ Sa ---j Sa (05; i 5; n); 

n 
IP[Y e B II Y 1 e BI"' . II YO e B_1 = II IP[Y. e B.]. n n n- n- V'.=o 1 1 

1-

The next statement expresses a rewriting rule that will be applied in the following. 

LEMMA 1 

Proof 

IP [X = y I X 1 = z] = IP [Y l(z) = y] x n n- x n- \f n ~ I, \f x,y,z e Sa' 

It is trivial, we only remark that the independence of the Y n's is necessary. I 
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The fact that the way of producing the offspring does not change from generation to 

generation can be formulated by assuming that the Y n's have the same distribution. 

Due to the definition Xn(CO) is an element of Sa for each co E Q. Therefore we can consider 

Xn not only as an abbreviation of Xn(co) but also as a random variable Xn: Q -I Sa' On 

this basis the question whether the evolution {Xn : n E INlx is a Markov chain is a 

reasonable one. 

LEMMA 2 {X: n E INlx is a Markov chain, and if the Y 's have the same distribution n " n 
then the chain is homogeneous. 

Proof 

Let n > 0, xi E Sa (i = I, ... ,n+ 1). Then by the independence and Lemma 1 we get 

JP[Xn+I = xn+l I Xn = xn /I ... /\ Xo = x] = 

JP[Y n(xn) = xn+l I Y n-I (xn_ I) = xn /I ... /\ Y o<x) = Xl J = 

JP[Y n(xn) = xn+ 1 J = 

IP[Xn+ 1 = xn+ 1 I Xn = xnJ, which proves the Markov property. 

1£ the Y n 's have the same distribution then 

IP(Xm = y I Xm_ I = z] = IP[Xn = y I Xn_ l = z] 

is self~vident for any y,z E Sa and m,n E IN. I 

Notice that homogeneity does not hold for simulated annealing in general. The 

changing value of the control parameter leads to a changing distribution of fr and hence the 

distribution of the transition function is not steady either. We return to this question in 

Chapter 4. 
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3. CONVERGENCE RESULTS 

In this section we establish convergence in a broad sense, taking the Markov chain as a 

basis. First we want to express formally that the algorithm tends to an optimum. Observe 

that the search space is simply a set without any norm or distance measure. Therefore we 

can not expect convergence criteria saying that Xn (n -; co) is 'getting close' to an optimum. 

What remains is to require that Xn contains an optimum, or rather, that the chance of 

containing an optimum is growing to 1. 

* Let S := {s e Sis is an optimum of fl. 

DEFINTI10N 1 An s e Sis accessible by {Xn : n e IN}x if II' x[3 n e IN: s e Xn] > O. 

* DEFINTI10N 2 {Xn : n e IN}x surely reaches an optimum if II' x[3 n e IN: Xn n S * 0] = 1. 

LEMMA 3 "II' x" and "3" commute, that is for every 1\ E Sa 

::; n e IN II' [s eX] > 0 ¢=} II' [3 n e IN : seX ] > 0 for any s e S. x n x n 
Proof 

Let us take an arbitrary s e S and introduce An = {co E n I S E Xn(CO)} as an abbreviation. 

==* 
3 n e IN : II' x[An] > 0 implies II' x[Ak] > 0 for a certain k e IN. Notice that 

Ak ' (co en 13 n e IN: s e Xn(co)} holds for any keN, hence we have 

o < II' x[Ak] ~ II' x[3 n e IN : s e Xn]. 

i= 

Let BO = AO' Bn+l = An+l \ (An V .• V AO) for n > O. These Bi's are disjoint and 

{co E n 13 n e IN : seX (co)} = V B. holds obviously. 
n ielN 1 

Then we have 

o < II' x[3 n e IN : s e Xn] = II' [BO] + ... + II' [B.] + .. , which implies x x 1 

o < II' x[Bk] for a certain k e IN. But then also 

o < II' x[s e Xk] thus 

o < 3 n e IN : II' x[s e Xn]. I 
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DEFINITION 3 The chain (Xn : n E lN}x is monotone if 

'In E IN: minI f(s) 1 s E Xn+I } Smin{ f(s) 1 s E Xn}. 

REMARK 2 Observe that 
,.. 

VSoptES VnEIN:soptEXn ==? soptEXn+1 
,.. ,.. 

V n E IN : Xn () S oF 0 ==? Xn+ I () S oF 0 

LEMMA 4 If {Xn : n E IN} x is monotone then 

the following assertions are equivalent: 

a) {Xn : n E IN} x surely reaches an optimum, 

* b) II' x[1 im Xn () S oF 0] = I, 
n ... " 

* c) lim II' x[Xn () S oF 0] = 1. 
n ..... 

Proof 
,.. 

is not necessarily true, but 

!lIP " 
~ 

holds for monotone chains. 

and "I im" commute, consequently 
n ... oo 

Notice th::t if An = (ro E Q 1 Xn(ro) () S oF 01 and {Xn : n E IN] is mc::otane then the sets 

AI' ... ,An, ... form a monotone sequence due to the above rematk. The existence and the 

equality of I im II' x[An] and II' x[l im An] for monotone sequences is a known result of 
n~oo n--+OCI 

elementary measure theory. This implies the equivalence of (b) and (c). 

The equivalence of (a) and (b) is straightforwatd if we consider that I im An = v A. I 
n->.. nelN n 

The next theorem is the most general convergence result. The main idea underlying the 

proof is to have upper bounds on the probability of taking the wrong way, i.e. transitions 

that do not reach any optimum. 

DEFINITION 4 For x e Sa the set of all popUlations that can occur in (Xn : n E /N}x is 
.. 

{x} = {Y E Sa 13 n E /N : II'[Xn = yl Xo = x] > OJ. Furthermore, if U ~ Sa then 
.. .. 
U = v {x}. 

XEU 
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TIIEOREM 1 Let U I::: Sa and let the following hold 

a) (Xn : n E INjx is monotone for every x E U, 

00 

b) nk E IN and Ek E (0,1] (k E IN) are such that nk -+ 00 (k -; <X» and n Ek = 0, and 
k=O .. '" V' Y E U : IP[X n S = 0 I X = y] ~ Ek holds for every k E IN. 

nk+1 nk 

Then {Xn : n E \Njx surely reaches an optimum for every x E U. 

Proof 

'" Choose an arbitrary x E U such that x n S = 0. Due to the monotony and Lemma 4 it is 

'" sufficient if we justify lim IP x[Xn n S * 0] = 1. 
n...;oo .. 

Let us define Po = 1 and Pk = IP[Xnt S = 0 I Xo = x] (k > 0). 

Then 

Pk+l = ~ IP[X nS'" =01X =y]. !l[X =yIXO=x] ~ k.", nk+1 Ok Ok 
ynS =0 

~ L", ~·IPLXn~yIXO"'x] 
ynS =0 k 

This implies that 

k 
Pk+ 1 ~ . n ~. PO· 

1=0 
Hence 

Notice that the monotony of {Xn : n E \ll}x implies the monotony of the sequence 

'" IP x[Xn () S = 0] (n E IN), and then from Ok -+ <X> we have that 

'" ~ I im II' [X n S = 0] = 0, 
k-+oo x Ok 

consequently 

'" I im II' x[Xn () S * 0] = 1 
n-+<x> 

holds. I 
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COROLLARY 1 Let the following conditions be satisfied: 

a) (Xn : n E IN) x is monotone for every x E Sa' 

b) nk e IN and ~ e (0,1] (k e IN) are such that nk -; 00 (k -; 00) and fl ~ = 0, and 
k=O 

. * 'V xeS : IP[X () S = 0 I X = x] ::; Ek holds for every k e IN. 
a nk+l nk 

Then for every x e Sa (Xn : n e IN) x surely reaches an optimum. I 

The following is our general convergence theorem for genetic algorithms. 

THEOREM 2 Let xeS a and the following conditions be satisfied:· 

a) (Xn : n e IN) x is monotone, and 

b) (Xn : n e IN) x is homogeneous, and 
.. 

c) for every ye (x) there exists at least one accessible optimum. 

Then (Xn : n E lN}x surely reaches an optimum. 

Proof 

We take U = (x) and construct a sequence 110, nr, ... , and a sequence EO' EI, ... so that 

they satisfy condition (b) of Theorem 1. 

* Let m = min (n e IN I IP[X () S "# 0 I Xo = y] > OJ, the minimum number of steps y n 
required to find an optimum with positive chance when taking y as initial population . 

.. 
According to (c), for every y e (xl 

* II' y[3 n e IN: Sopt E Xn] > 0 holds for a cenain Sopt e S . Then by Lemma 3 we have 
.. 

3 n e IN : II' y[soPt e Xn] > 0 which implies that for every y e {xl my is finite. 
.. .. 

Then m = max {my lye (xl I is finite because Sa is finite, thus (xl is finite. Hence 

.. * 'V y E {xl: IP[Xm () S "# 0 I Xo = y] > 0 holds by the monotony (Remark 2), and thus 

(i) 

* Introducing the abbreviation Py = IP[Xm () S = 01 Xo = y] we can define 
.. .. .. 

p = max (Py lye (xl), where p < 1 since (xl is finite and 'V y e {xl: Py < 1 by (i). 

Now we have that 

.. * 'V y e {xl: IP[Xm () S = 0 I Xo = y] ::; p, and p < 1. 
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Let us define nk = m - k and €k = P (k E IN) and observe that nk -;" (k -; ,,) holds, and 

" 
so does [] €k = 0 since p < l. 

k=O 
What remains is to show that 

~ * 't/y E (x) : !P[X () S =01 X = y] S €k for every k ~ 0_ 
nk+l nk 

~ 

By the homogeneity we have that for every y E (x) 

* * !P[Xm_(k+l)()S =0IXm _k =y] = !P[Xm()S =0IXO =y] S P holds_ 

This proves (ii), and hereby also the proof of the theorem is complete_ I 

(ii) 

IS 



4. APPLICATION OF 1HE CONVERGENCE RESULTS 

In this section we apply the convergence results obtained for Markov chains. For 

simulated annealing Theorem 2 can be applied only if the control parameter is fixed, thus 

the corresponding Markov chain is homogeneous. For inhomogeneous cases we can make 
... 

use of Theorem I. Namely, IP[Xn () S = 0 I Xo = x] can be computed as a function of the 

16 

control parameter ck' then the conditions about nk and ~ impose conditions on ck. Since. 

many convergence theorems are known for SA [Aar89], but -to our best knowledge- none 

is for GA, we shall only investigate the second case in the present paper. Nevertheless, we 

remark that in order to have monotony in an SA algorithm one should slightly modify it. 

Without changing its characteristic acceptance mechanism, an SA can be extended to a = 2, 

such that the second element s' is 'the best seen so far'. 

DEFINITION 5 The reduction function fr : C x Sa+ -j Sa is conservative if it always 

keeps the best f value, that is Mx () fly.x) '" 0 for every xeS a+ and '{ e C, 

where Mx = { sex I 'V t ex: f(s) ;5; f(,)} contains the minima of x. 

LEMMA 5 Let {Xn : n e IN} x be the evolution created by AGA. If the reduction function 

is conservative then {X : n E IN} is monotone. n x 
Proof 

Notice that for any arbitrary y \;; S and '( E C 

minI f(s) I SEX} ~ minI f(s) I SEX V y} ~ minI f(s) I s e fi'{,x v y)} due to the 

conservativity of fro Hence by 

Xn+l = f/'{n' Xnv fg(an'~n.xn» we have that 
min(f(s) Is E Xn+1} ;5; min(f(s) I S E Xn}· I 

Next we put up cenain restrictions on the functions of AGA such that together they 

imply the conditions of Theorem 2. 

i) Neighbourhood function 

Ifse S'VtE S:SHt, 

where H stands for the transitive closure of relation 'neighbour-<lf' I>!;; S X S. 



ii) Selection function 

( (s) Is E S ) !;: P and 

V x E Sa V t EX: 11'[ (t) E fs(a,x) I > O. 

iii) Production function 

V s E S V t E N(s) : 11'[ t E fp(~' (s}) ] > O. 

iv) Reduction function 

V x E Sa+ V SEX: 11'[ s E f/f,X) ] > O. 

Recall that Zn E n -; A x B x C (n E IN) are the independent'random variables that 

provide us the parameters an' ~n and Yn for fs' fp and fr in the n-th cycle of AGA. If 

we assume that these Zn's have the same distribution for every n E IN then the Markov chain 

belonging to the search process of AGA is homogeneous by Lemma 2. 

For an easier application of the conditions (ii) - (iv) we make another (technical) 

restriction on the sets A, Band C. In the sequel we assume that the following holds: 

v) A, Band C are countable sets, with positive probability for all their members, i.e. 

Va E A : 1I'[(ro I Z(ro)J = a)] > 0, etc. 

Observe that if (v) holds then the above conditions imply: 

ii') Vx E Sa V SEX 3 a E A : (s) E fs<a,x) A 1I'[(ro I Z(ro).! = a)] > O. 

iii') V S E S V t E N(s) 3 ~ E B : t E V~,(s)) A 1I'[(ro I Z(ro).2 =~)] > O. 

iv') V X E Sa+ V SEX 3 YE C : s E f/y,x) A 1I'[(ro I Z(ro).3 = y)] > O. 

lHEOREM 3 Let us assume that the drawings Zn's have the same distribution. Let the 

conditions (i), (ii), (iii), (iv), (v) hold; furthermore let the reduction function be 

conservative. Then for any initial population AGA finds an optimum with probability I. 

Proof 

The proof goes via Theorem 2, we show that its conditions (a), (b) and (c) hold for any 

x E Sa' Let x E Sa be arbitrary and (Xn : n E IN) x be the evolution created by AGA. 

a) The reduction function is conservative and therefore (Xn : n E IN) x is monotone by 

LemmaS. 

b) (Xn : n E IN}x is a homogeneous Markov chain, due to the condition on the Zn's. 

17 



c) We show even more than necessary. namely we prove 

* If y E Sa If SoptE S : lPyl3 n E IN: SoptE Xn1 >0. 

* Let Sopt E S and So E Y arbitrary. By (i) we have that So H Sopt holds. From the 

definition of H it follows that there exists an n E IN and a sequence SI' ...• sn from S. such 

that Sopt = sn and So ~ Sl A sl ~ s2 A ." A sn_l~ sn' 

Then we have 

IP ylsoPt E X,J ~ IP y[SI E XI II ... A sn_1 E Xn-I A sn E Xnl = 
IP y[SI E ft(ZI,y) A s2 E ft(Zz.ft(ZI'Y» II ... A sn E ft(Zn .... ft(ZI.y) ... )l = 

L IP y[SI E ft(zl'Y) II ... A sn E ft(zn.· .. flzl.Y) .. ·) -A ZI = zl II ... A Zn = zn1 = 
zl' .. ,zn 

L IP Y [ZI = zl A ... A Zn = zn1 = 
(zl' ..• zn)EH 

where 

n 
H = I (zl ..... zn) E (A x B x C) I Sl E ft(zl'Y) II ... A sn E ft(zn .... flzl.Y) ... )}. 

(*) 

Tf H '" 0 then (*) is positive by (v) which proves IP y[sopt E Xn1 > O. To show H '" 0 is 

thllS sufficient to prove the theorem. Hence we need to construct a sequence zl' ...• zn 

such that for any i (0 < i $ n) Sj E flz j .... ft(zl'Y)"') holds. 

Let w E Sa' SEW. t E N(s) arbitrary. Then 

there exists a zl E A such that Is} E fS(zl.w) by ii·. 

there exists a z2 E B such that t E f
p

(z2.ls}) by iii'. thus 

t E fg(zl.z2.w) holds too. 

there exists a z3 E C such that v E f
r
(z3.w v f

g
(zl.z2.w» by iv·. and hence 

t E ft(z.w) holds for Z = (zl,z2.z3) E (A x B x C). 

Iterating this construction method for w = y. s = So and t = Sl' then for w = flzl,y), s = Sl' 

t = s2 etc. we obtain the desired sequence (zl ..... zn) E (A x B x C)n such that 

sl E flzl,y) A ... II sn E ft(zn' ... flzl.y) ... ) holds. 

This verifies that H '" 0 and completes the proof of the theorem. I 

The requirements on N can be relaxed at the cost of a further restriction of the 

reduction function. 

18 



weak i) 3 s e S 'tJ t e S : s H t, and let cr be such an element, i.e 'tJ t e S : cr H t. 

DEFINITION 6 Let cr E S be as in (weak i). Then the reduction function is <J=:ilreserving 

if 'tJ XES + 'tJ Y E C : cr ex==} cr E f (Y,x). a r 

LEMMA 6 Let XES a' If cr E x and the reduction function is cr-preserving, then 
.. 

'tJ y E {x} : cr E y. 

The proof is trivial. I 

TIIEOREM 4 Let us assume that the drawings Zn's have the same. distribution. Let the 

conditions (weak i), (ii), (iii), (iv), (v) hold; furthennore let the reduction function be 

conservati ve and cr-preserving. Then for any initial population which contains (T the 

algorithm AGA finds an optimum with probability 1. 

Proof 

Again, the proof is based on Theorem 2. Let x E Sa 

be the evolution created by AGA. 

such that cr E x, and {Xn : n E IN) 
x 

The conditions (a) ~!ld (b) of Theorem 2 hold by the same reasoning as in Theorem J .. 

.. * c) We show that 'tJ y E {x} 'tJ SoptE S : lPy[3 n E IN: SoptE Xn1 >0. 

.. * Let y E {x) and Sopt E S be arbitrary. Due to cr E x and Lemma 6 we have that cr E y. 

Hence for So E y we can take cr, and then weak i implies that So H sop t . 

The rest of the proof is identical to that of Theorem 3. I 
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5. CONCLUSIONS 

In this paper we discussed a general theory of genetic algorithms. At the beginning we 

formulated two objectives: 

1) to set up an abstract model of genetic algorithms, such that any special GA at hand is 

an instance of the model, 

2) to achieve convergence results at a general level, such that these results are applicable 

at any special instance. 

We claim that the fust objective was reached by the Abstract Genetic Algorithm 

(AGA), that is AGA represents the set of all GAs. More precisely, we think that there is no 

algorithm which would be generally recognized as a genetic one, but is not an instance of 

AGA. 

Furthermore, AGA generalizes simulated annealing, in the sense that the latter is an 

instance of AGA, where populations of size I (or 2 for the extended case) are used in 

combination with a special acceptance / reduction mechanism. 

As to the second objective, :: :!u:r.ber of convergence theorems have been proved. 

Theorem 1 is general, it implies convergence with probability 1, if th~re is a bound on the 

probability of fruitless branches in the search. As a special case WI! have Theorem 2 for 

homogeneous Markov chains. Theorem 3 and Theorem 4 are further specializations of the 

above. They tell what kind of selection, production and reduction functions can guarantee 

that a GA finds an optimum with probability 1. These results can also be applied to 

simulated annealing. Since the changing value of the control parameter leads to 

inhomogeneity in the Markov chain, it is Theorem 1 that we can use. Further analysis is 

needed to disclose dependence on the control parameter to such an extent that we can 

deduce constraints for ck which imply convergence. 
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