

A general theory of genetic algorithms

Citation for published version (APA):
Aarts, E. H. L., Eiben, A. E., & Hee, van, K. M. (1989). A general theory of genetic algorithms. (Computing
science notes; Vol. 8908). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/bfe4613c-4c00-4b58-a8d0-8ac7090abcec

A general theory of genetic algorithms

by

E.H.L.Aarts, A.E.Eiben, K.M. van Hee

89/08

December, 1989

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
Editors: prof.dr.M.Rem

prof.dr.K.M. van Hee

A GENERAL THEORY OF GENETIC ALGORITHMS

October. 1989

E.H.L. AARTS t. *
t A.E.EffiEN

K.M. VAN HEE t

t Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513 5600 MB Eindhoven. The Netherlands

* Philips Research Laboratories
P.O. Box 80000 5600 JA Eindhoven. The Netherlands

•

ABSTRACf

The idea - and the name - of genetic algorithms (GAs) originates from biology. Applying

certain biological principles (crossover, survival of the fittest) they form a robust tool kit to

handle mathematical optimization problems. Many practical results have proved their

usefulness, but still, there is no concise theory of GAs. This paper has a double objective:

to work out an abstract concept of GAs and establish general convergence results. To reach

the first goal we define a stochastic algorithm AGA that generalizes and unifies genetic

algorithms and simulated annealing. For the second goal we model .the search process of

AGA by a Markov chain and set up conditions that imply convergence with probability 1.

Keywords: discrete optimization, genetic algorithm, simulated annealing, Markov chain.

-;., -, - ,-, - ~---------------------

1

!

o. INTRODUCTION

Genetic algorithms were developed in the early and mid seventies [HoI75], and for

about a decade they remained rather unobserved. In the last years, however, they are

gaining interest, the research community of GAs is growing and carrying out promising

investigations [GoI89]. An important reason for this increasing popularity is that GAs are

general, with a wide range of applicability and g~ performance results [Gre85, Gre87,

Gre89]. They even succeed on problems where no specialized methods score good [GoI89].

Nevertheless, most of the existing work is practical; little effort was done to investigate GAs

theoretically. In this article we want to make a step towards a future theory of GAs.

In nature the development of a certain population depends on two major factors: how

individuals are born, and how they die. In simple terms, children are produced by

recombining the parents' gen patterns, the new pattern (genotype) determines a new being.

Dying of the individuals is due to their fitness, unfit elements cease existing. The

mathp.rr.atical problem of having a search space S and an object fU/l>~ti()n f resembles the

biolugical situation. To traverse the space in order to find a minimum of f requires

generating and eliminating elements of S. In GAs the search space consists of tuples, new

elements are produced by applying a certain crossover operation to the 'parent' tuples,

elimination is depending on the object function value. The major -but often hidden- idea

behind the use of GAs is that of inheritance. Roughly speaking one figures that 'strong'

individuals get more children than 'weak' ones, and that the 'strength' of the parents is

inherited by the children. This is the mechanism that is driving the system towards an

optimum. The improvement of the individuals can be considered as adaptation for the

population as a whole. This explains the basic approach and terminology of several works

on GAs, see ego [Ho175, DeJ80].

In this paper we give a general description of genetic algorithms. We try to distinguish

the most essential properties of GAs, and put them together into one general model. The

result is an Abstract Genetic Algorithm (AGA). Interesting, although not unexpected, is that

this universal algorithm unifies simulated annealing [Aar89] and traditional genetic

algorithms. Strictly speaking, not only the classic GAs, but also any simulated annealing

algorithm can be obtained as an instance of AGA.

2

The paper is organized as follows. In Chapter I we present the terminology and

describe the Abstract Genetic Algorithm. In Chapter 2 we specify the Markov chain that

can be associated with the search procedure of AGA. In Chapter 3 we establish

convergence with probability I for this Markov chain. considering both the homogeneous

and the inhomogeneous case. In Chapter 4 we interpret the general conditions of

convergence and obtain conditions for the algorithm AGA. Finally we present some

conclusions in Chapter 5.

3

1. AGA: AN ABSTRACf GENETIC ALGORITHM

For our discussion we restrict the application domain of genetic algorithms to that of

combinatorial optimization problems. In general. such a problem is a pair (S.f), where S is

a finite set, the search s.pace or solution space, f E S -- IR is the object function. The aim is

to find a (global) minimum or <wtimurn, that is an s E S, such that II t e S f(s)!> f(t).

Notice that the finiteness of S implies that f has at least one maximum over S.

The algorithm introduced below is a stochastic one, i.e. it is influenced by random

variables. A deterministic instance can be easily obtained by keeping' the random variables

constant. Another remarkable feature of the algorithm is that it belongs to the so called

local search methods [Pap82, Joh88]. The meaning of the word 'local' is given by the

notion 'a neighbourhood of an s E S'. We use this term in a way that does not coincide with

the usual topological notion of neighbourhoods. Namely, here we only assume that every

element s of S has exactly one non-trivial neighbourhood. Naturally, the whole space can

be specified as the neighborhood of its elements. With this special instantiation we can

relax locality and obtain a global (non-local) method.

A PQpulation is a subset of S. We model birth and death of individuals by a generation

and a reduction function respectively. The generation function, however, is composed from

two other functions: a selection function to choose the parents. and a production function to

make the offspring. We surpass the biological analogies by not restricting the number of

parents to the usual two.

Let N = lSI, a E IN such that a !> N. We assume that the successive populations are of the

same cardinality a, and that a is much much smaller than N. Let

Sa = { x\;8 : a = Ixl} the set of 'well sized' populations, and let

S a+ = { x\;8 : a !> Ixl} the set of 'oversized' populations.

P \; 1(8) stands for the set of possible parents, i.e. let P contain all those sets that are

capable of producing offspring. The elements of P will be called parent---!!ets.

To incorporate probabilities we introduce the sets A, B and C, and assume that the

parameters ex, ~ and 'Y are chosen from A. B and C by independent random drawings.

~ - - - -- "";'.',.".

4

•

REMARK I Observe what it means to have a randomly parameterized function

f E X --; Y. Strictly speaking it requires a set of functions F!; X --; Y, a probability space

(A,A,IP) and a random variable f E (A,A,IP) --; F. Then f(a) E X --; Y for any a E A, hence

f uniquely determines another function g e (A,A,IP) x X --; Y and vice versa. With a bit

sloppy notation one mostly does not distinguish g and f but "extends f E X --; Y by the

parameter a E A" and denotes it as f E A x X --; Y.

To specify our algorithm we need the following functions:

A neighbourhood function N E S --; 1(S), such that for every s E S :

N(s) "" 0 and N(s) "" (s).

N(s) is the neighbourhood of s E S. AtE S is a neighbour of s E S, (s I> t) iff t E N(s).

Notice that the relation I> >; S X S is not necessarily symmetric.

A selection function f sEA x Sa --; 1(P), such that for every a E A, XES a :

y E f/a,x) ~ y \; x,

Y E fs(a,x) ~ y "" 0.

A.production function fp E B x P --; 1(S), such that for every ~ E B and x E P:

fp«(3,x) \ x "" 0,

fp(~'x) ~ u N(s).
SEX

A reduction function fr E ex Sa+ --; Sa' such that for all Y E C, X E Sa+ :

fr(y,x) ~ x.

A stop function fst E D x 1(S) --; {true, false}, where d E D is an external parameter. (As

for d, one can think, for instance, of the number of iterations as external parameter to

influence terminating.)

Notice that the locality of the search is due to the production function. The definition

of fp states that all the children are from the neighbourhood, that is only the neighbourhood

is explored in search for improvements. In the meanwhile, do not forget that N(s) = S is a

correct definition, which frees us from being restricted to local search.

5

Let (S,f) be a combinatorial optimization problem, N be a neighbourhood function on S, and

let fs' fp' fr' fst be a selction-, a production-, a reduction-, and a stop function,

respectively.

The Abstract genetic Algorithm (AGA) contains the following basic steps.

O. Set the initial population x E Sa'

1. Select parent-sets: Q = fs(a,x)

2. Produce the children of the selected parent-sets: -y = U fp(~,q)
q E Q

3. Check the termination condition:

H fst(d, x v y) then output a best element from x v y and stop,

else -+ step 4,

4. Reduce the extended population: x' = f/y, x v y)

5. Let x = x' and -+ step 1.

Notice that the selection fu,.~tio'l may choose more parent-sets, i.e. Ifs(a,x)1 > 1 can

occur, and that the production operations in step 2 are independen.. This is thus the point

where parallel execution can be involved.

We claim that this model covers classical genetic algorithms and simulated annealing

[Aar89]. To illustrate this let us consider two examples.

EXAMPLE 1 Take a classical deterministic GA: a finite binary space, with crossover of

two parents plus mutation of single elements to create children, and a pure survival of the

fittest mechanism. The appropriate, although partial, instantiation of the algorithm AGA is

then the following.

k S = {O,I} (k E IN), a> 1 arbitrary,

P = {{s} Is E S} v {{s,t} I s,t E S, s;t t},

V S E S : N(s) = S,

{

c ross(s,t) if x = {s,t}
f (~,x) =
p mutes) ifx= Is}

(crossover and mutation are as usual),

f/y,y) = {sl E y, ... ,sa E y I V 1 $ i $ a V S E y\ {sl'" .,sa} : f(si) $ f(s)}.

For the sake of convenience we leave out the funher details. I

6

EXAMPLE 2 With the following instantiation we obtain a classic simulated annealing

algorithm.

k S=IO,I) (kEJN), a=l,

p= (Is) \SE S),

fs(a,ls)) = I Is)),

fp(~,ls)) = It) such that t E N(s), t * s,

1
[f(S) -c f(t)]

It) if exp > y
fly,ls,t)) =

Is) otherwise

where 0 < y < I is a random number, c is the control parameter. I

To give a better view on the abstraction here, we summarize the differences and the

similarities between AGA and the classic GAs.

Similarities:

I) A finite search space is traversed in search for a minimal object function value.

2) The search is iterative, in each cycle of the iteration we have a set of canUidates, a

popUlation.

3) New candidates in the search space are generated by constructing them from the old

ones. Parents are chosen, offspring are produced, the popUlation is extended.

4) There is an elimination mechanism to abort unfit elements, and thus increasing the

fitness of the population.

Differences:

1) The search space in AGA is simply a set, the representation of the individuals is not

restricted to binary coding.

2) Creation of children and mutation are unified by strongly generalizing the notion of

'parent', namely by dropping the tradition of having two of them (one for mutation).

3) The usual crossover mechanism for making offsprings is generalized to a production

function.

4) Also the elimination mechanism is left very free in AGA by requiring the minimum

from the reduction function.

7

The algorithm AGA is creating populations successively. This results in a sequence of

populations which we shall call evolution. For a precise and easy definition of this notion

we define two new functions.

The generation function fg E A x B x Sa --; },(S) is to create all the children 'in one go':

fg<a,~,x) = U fp(~'Y).
yE f s (a,x)

The transition function ft E A x B x C x Sa --; Sa is to create the next population:

fla,~,'Y,x) = f/'Y, x v fg(a,~,x».

Now let us take an E A, ~n E B, 'Yn E C (n E IN) by independent random drawings and

define the following sequence of populations:

Xo E Sa

xn+l = flan'~n,'Yn,xn)

be the initial population,

for n ~ o.

The set (sometimes referred to as a sequence) (xn : n E IN) is the evolution.

Ob"viously one wants that the algorithm converges, that is it is approaching an optimum

through the iterative (life) cycli. With genetic terminology the following could be expected:

for any initial population an optimal population (i.e. a one containing an optimum) will

occur in the evolution.

An interesting aspect is the need for divergence. Besides convergence, we want to

avoid that the course of the algorithm gets stuck at some local minimum. This requires

some 'diversification', which is carried out by the random parameters of the algorithm.

8

•

2. THE MARKOV CHAIN BEWNGING TO TIlE SEARCH

Let (n,A,IP) be a probability space, and let us take a sequence of independent random

variables Zn e n ---j A x B x C (n e IN). Then ft 0 Zn E n x Sa ---j Sa is the transition

function in the n-th iteration of AGA. Denoting the projections of Zn(ro) as an = Zn(ro).l,

~n = Zn(ro).2 and 'Yn = Zn(ro).3 we get back the former notation.

The 'inside' of the transition mechanism is irrelevant for the followig investigations.

Therefore we introduce the sequence of random variables Y n e n ---j (Sa ---j Sa)' n e IN.

Our idea is that for each execution of AGA an ro e n is chosen by a random mechanism.

Then for every n e IN Y nero) e Sa -l Sa stands for the (already deterministic) n-th

transition function. In its most general form the evolution is a sequence Xn(ro) (n e IN):

XO(ro) = x, x e Sa is arbitrarily fixed, that is IP[XO(ro) = x] = 1,

Xn+ 1 (ro) = Y n(ro)(Xn(ro» for n ~ O.

To provide an easier reading of the formulae we often leave out the symbol ro from thP

notation, i.e. we abbreviatt: Y nero) by Y n and Xn(ro) by Xn. In such cases Y n stands

for Y n e Sa ---j Sa' and IP[Xn e B] means IP[('.!) e n I Xn(ro) e B I], where B e 1'(Sa)'

Notice that we obtain different evolutions for different initial popUlations. Therefore

we use a notation that indicates the dependence on the initial population:

{Xn : n e INlx denotes the evolution with IP[XO = x] = 1 and

IP x[.. Xn ..] stands for IP[.. Xn .. I XO= x].

The assumption about the independence of the Zn's naturally 'inherits' for the Y n's, i.e. the

following is assumed for every n e IN and Bi ~ Sa ---j Sa (05; i 5; n);

n
IP[Y e B II Y 1 e BI"' . II YO e B_1 = II IP[Y. e B.]. n n n- n- V'.=o 1 1

1-

The next statement expresses a rewriting rule that will be applied in the following.

LEMMA 1

Proof

IP [X = y I X 1 = z] = IP [Y l(z) = y] x n n- x n- \f n ~ I, \f x,y,z e Sa'

It is trivial, we only remark that the independence of the Y n's is necessary. I

9

The fact that the way of producing the offspring does not change from generation to

generation can be formulated by assuming that the Y n's have the same distribution.

Due to the definition Xn(CO) is an element of Sa for each co E Q. Therefore we can consider

Xn not only as an abbreviation of Xn(co) but also as a random variable Xn: Q -I Sa' On

this basis the question whether the evolution {Xn : n E INlx is a Markov chain is a

reasonable one.

LEMMA 2 {X: n E INlx is a Markov chain, and if the Y 's have the same distribution n " n
then the chain is homogeneous.

Proof

Let n > 0, xi E Sa (i = I, ... ,n+ 1). Then by the independence and Lemma 1 we get

JP[Xn+I = xn+l I Xn = xn /I ... /\ Xo = x] =

JP[Y n(xn) = xn+l I Y n-I (xn_ I) = xn /I ... /\ Y o<x) = Xl J =

JP[Y n(xn) = xn+ 1 J =

IP[Xn+ 1 = xn+ 1 I Xn = xnJ, which proves the Markov property.

1£ the Y n 's have the same distribution then

IP(Xm = y I Xm_ I = z] = IP[Xn = y I Xn_ l = z]

is self~vident for any y,z E Sa and m,n E IN. I

Notice that homogeneity does not hold for simulated annealing in general. The

changing value of the control parameter leads to a changing distribution of fr and hence the

distribution of the transition function is not steady either. We return to this question in

Chapter 4.

10

3. CONVERGENCE RESULTS

In this section we establish convergence in a broad sense, taking the Markov chain as a

basis. First we want to express formally that the algorithm tends to an optimum. Observe

that the search space is simply a set without any norm or distance measure. Therefore we

can not expect convergence criteria saying that Xn (n -; co) is 'getting close' to an optimum.

What remains is to require that Xn contains an optimum, or rather, that the chance of

containing an optimum is growing to 1.

* Let S := {s e Sis is an optimum of fl.

DEFINTI10N 1 An s e Sis accessible by {Xn : n e IN}x if II' x[3 n e IN: s e Xn] > O.

* DEFINTI10N 2 {Xn : n e IN}x surely reaches an optimum if II' x[3 n e IN: Xn n S * 0] = 1.

LEMMA 3 "II' x" and "3" commute, that is for every 1\ E Sa

::; n e IN II' [s eX] > 0 ¢=} II' [3 n e IN : seX] > 0 for any s e S. x n x n
Proof

Let us take an arbitrary s e S and introduce An = {co E n I S E Xn(CO)} as an abbreviation.

==*
3 n e IN : II' x[An] > 0 implies II' x[Ak] > 0 for a certain k e IN. Notice that

Ak ' (co en 13 n e IN: s e Xn(co)} holds for any keN, hence we have

o < II' x[Ak] ~ II' x[3 n e IN : s e Xn].

i=

Let BO = AO' Bn+l = An+l \ (An V .• V AO) for n > O. These Bi's are disjoint and

{co E n 13 n e IN : seX (co)} = V B. holds obviously.
n ielN 1

Then we have

o < II' x[3 n e IN : s e Xn] = II' [BO] + ... + II' [B.] + .. , which implies x x 1

o < II' x[Bk] for a certain k e IN. But then also

o < II' x[s e Xk] thus

o < 3 n e IN : II' x[s e Xn]. I

11

DEFINITION 3 The chain (Xn : n E lN}x is monotone if

'In E IN: minI f(s) 1 s E Xn+I } Smin{ f(s) 1 s E Xn}.

REMARK 2 Observe that
,..

VSoptES VnEIN:soptEXn ==? soptEXn+1
,.. ,..

V n E IN : Xn () S oF 0 ==? Xn+ I () S oF 0

LEMMA 4 If {Xn : n E IN} x is monotone then

the following assertions are equivalent:

a) {Xn : n E IN} x surely reaches an optimum,

* b) II' x[1 im Xn () S oF 0] = I,
n ... "

* c) lim II' x[Xn () S oF 0] = 1.
n

Proof
,..

is not necessarily true, but

!lIP "
~

holds for monotone chains.

and "I im" commute, consequently
n ... oo

Notice th::t if An = (ro E Q 1 Xn(ro) () S oF 01 and {Xn : n E IN] is mc::otane then the sets

AI' ... ,An, ... form a monotone sequence due to the above rematk. The existence and the

equality of I im II' x[An] and II' x[l im An] for monotone sequences is a known result of
n~oo n--+OCI

elementary measure theory. This implies the equivalence of (b) and (c).

The equivalence of (a) and (b) is straightforwatd if we consider that I im An = v A. I
n->.. nelN n

The next theorem is the most general convergence result. The main idea underlying the

proof is to have upper bounds on the probability of taking the wrong way, i.e. transitions

that do not reach any optimum.

DEFINITION 4 For x e Sa the set of all popUlations that can occur in (Xn : n E /N}x is
..

{x} = {Y E Sa 13 n E /N : II'[Xn = yl Xo = x] > OJ. Furthermore, if U ~ Sa then
.. ..
U = v {x}.

XEU

12

TIIEOREM 1 Let U I::: Sa and let the following hold

a) (Xn : n E INjx is monotone for every x E U,

00

b) nk E IN and Ek E (0,1] (k E IN) are such that nk -+ 00 (k -; <X» and n Ek = 0, and
k=O .. '" V' Y E U : IP[X n S = 0 I X = y] ~ Ek holds for every k E IN.

nk+1 nk

Then {Xn : n E \Njx surely reaches an optimum for every x E U.

Proof

'" Choose an arbitrary x E U such that x n S = 0. Due to the monotony and Lemma 4 it is

'" sufficient if we justify lim IP x[Xn n S * 0] = 1.
n...;oo ..

Let us define Po = 1 and Pk = IP[Xnt S = 0 I Xo = x] (k > 0).

Then

Pk+l = ~ IP[X nS'" =01X =y]. !l[X =yIXO=x] ~ k.", nk+1 Ok Ok
ynS =0

~ L", ~·IPLXn~yIXO"'x]
ynS =0 k

This implies that

k
Pk+ 1 ~ . n ~. PO·

1=0
Hence

Notice that the monotony of {Xn : n E \ll}x implies the monotony of the sequence

'" IP x[Xn () S = 0] (n E IN), and then from Ok -+ <X> we have that

'" ~ I im II' [X n S = 0] = 0,
k-+oo x Ok

consequently

'" I im II' x[Xn () S * 0] = 1
n-+<x>

holds. I

13

COROLLARY 1 Let the following conditions be satisfied:

a) (Xn : n E IN) x is monotone for every x E Sa'

b) nk e IN and ~ e (0,1] (k e IN) are such that nk -; 00 (k -; 00) and fl ~ = 0, and
k=O

. * 'V xeS : IP[X () S = 0 I X = x] ::; Ek holds for every k e IN.
a nk+l nk

Then for every x e Sa (Xn : n e IN) x surely reaches an optimum. I

The following is our general convergence theorem for genetic algorithms.

THEOREM 2 Let xeS a and the following conditions be satisfied:·

a) (Xn : n e IN) x is monotone, and

b) (Xn : n e IN) x is homogeneous, and
..

c) for every ye (x) there exists at least one accessible optimum.

Then (Xn : n E lN}x surely reaches an optimum.

Proof

We take U = (x) and construct a sequence 110, nr, ... , and a sequence EO' EI, ... so that

they satisfy condition (b) of Theorem 1.

* Let m = min (n e IN I IP[X () S "# 0 I Xo = y] > OJ, the minimum number of steps y n
required to find an optimum with positive chance when taking y as initial population .

..
According to (c), for every y e (xl

* II' y[3 n e IN: Sopt E Xn] > 0 holds for a cenain Sopt e S . Then by Lemma 3 we have
..

3 n e IN : II' y[soPt e Xn] > 0 which implies that for every y e {xl my is finite.
.. ..

Then m = max {my lye (xl I is finite because Sa is finite, thus (xl is finite. Hence

.. * 'V y E {xl: IP[Xm () S "# 0 I Xo = y] > 0 holds by the monotony (Remark 2), and thus

(i)

* Introducing the abbreviation Py = IP[Xm () S = 01 Xo = y] we can define
..

p = max (Py lye (xl), where p < 1 since (xl is finite and 'V y e {xl: Py < 1 by (i).

Now we have that

.. * 'V y e {xl: IP[Xm () S = 0 I Xo = y] ::; p, and p < 1.

14

Let us define nk = m - k and €k = P (k E IN) and observe that nk -;" (k -; ,,) holds, and

"
so does [] €k = 0 since p < l.

k=O
What remains is to show that

~ * 't/y E (x) : !P[X () S =01 X = y] S €k for every k ~ 0_
nk+l nk

~

By the homogeneity we have that for every y E (x)

* * !P[Xm_(k+l)()S =0IXm _k =y] = !P[Xm()S =0IXO =y] S P holds_

This proves (ii), and hereby also the proof of the theorem is complete_ I

(ii)

IS

4. APPLICATION OF 1HE CONVERGENCE RESULTS

In this section we apply the convergence results obtained for Markov chains. For

simulated annealing Theorem 2 can be applied only if the control parameter is fixed, thus

the corresponding Markov chain is homogeneous. For inhomogeneous cases we can make
...

use of Theorem I. Namely, IP[Xn () S = 0 I Xo = x] can be computed as a function of the

16

control parameter ck' then the conditions about nk and ~ impose conditions on ck. Since.

many convergence theorems are known for SA [Aar89], but -to our best knowledge- none

is for GA, we shall only investigate the second case in the present paper. Nevertheless, we

remark that in order to have monotony in an SA algorithm one should slightly modify it.

Without changing its characteristic acceptance mechanism, an SA can be extended to a = 2,

such that the second element s' is 'the best seen so far'.

DEFINITION 5 The reduction function fr : C x Sa+ -j Sa is conservative if it always

keeps the best f value, that is Mx () fly.x) '" 0 for every xeS a+ and '{ e C,

where Mx = { sex I 'V t ex: f(s) ;5; f(,)} contains the minima of x.

LEMMA 5 Let {Xn : n e IN} x be the evolution created by AGA. If the reduction function

is conservative then {X : n E IN} is monotone. n x
Proof

Notice that for any arbitrary y \;; S and '(E C

minI f(s) I SEX} ~ minI f(s) I SEX V y} ~ minI f(s) I s e fi'{,x v y)} due to the

conservativity of fro Hence by

Xn+l = f/'{n' Xnv fg(an'~n.xn» we have that
min(f(s) Is E Xn+1} ;5; min(f(s) I S E Xn}· I

Next we put up cenain restrictions on the functions of AGA such that together they

imply the conditions of Theorem 2.

i) Neighbourhood function

Ifse S'VtE S:SHt,

where H stands for the transitive closure of relation 'neighbour-<lf' I>!;; S X S.

ii) Selection function

((s) Is E S) !;: P and

V x E Sa V t EX: 11'[(t) E fs(a,x) I > O.

iii) Production function

V s E S V t E N(s) : 11'[t E fp(~' (s})] > O.

iv) Reduction function

V x E Sa+ V SEX: 11'[s E f/f,X)] > O.

Recall that Zn E n -; A x B x C (n E IN) are the independent'random variables that

provide us the parameters an' ~n and Yn for fs' fp and fr in the n-th cycle of AGA. If

we assume that these Zn's have the same distribution for every n E IN then the Markov chain

belonging to the search process of AGA is homogeneous by Lemma 2.

For an easier application of the conditions (ii) - (iv) we make another (technical)

restriction on the sets A, Band C. In the sequel we assume that the following holds:

v) A, Band C are countable sets, with positive probability for all their members, i.e.

Va E A : 1I'[(ro I Z(ro)J = a)] > 0, etc.

Observe that if (v) holds then the above conditions imply:

ii') Vx E Sa V SEX 3 a E A : (s) E fs<a,x) A 1I'[(ro I Z(ro).! = a)] > O.

iii') V S E S V t E N(s) 3 ~ E B : t E V~,(s)) A 1I'[(ro I Z(ro).2 =~)] > O.

iv') V X E Sa+ V SEX 3 YE C : s E f/y,x) A 1I'[(ro I Z(ro).3 = y)] > O.

lHEOREM 3 Let us assume that the drawings Zn's have the same distribution. Let the

conditions (i), (ii), (iii), (iv), (v) hold; furthermore let the reduction function be

conservative. Then for any initial population AGA finds an optimum with probability I.

Proof

The proof goes via Theorem 2, we show that its conditions (a), (b) and (c) hold for any

x E Sa' Let x E Sa be arbitrary and (Xn : n E IN) x be the evolution created by AGA.

a) The reduction function is conservative and therefore (Xn : n E IN) x is monotone by

LemmaS.

b) (Xn : n E IN}x is a homogeneous Markov chain, due to the condition on the Zn's.

17

c) We show even more than necessary. namely we prove

* If y E Sa If SoptE S : lPyl3 n E IN: SoptE Xn1 >0.

* Let Sopt E S and So E Y arbitrary. By (i) we have that So H Sopt holds. From the

definition of H it follows that there exists an n E IN and a sequence SI' ...• sn from S. such

that Sopt = sn and So ~ Sl A sl ~ s2 A ." A sn_l~ sn'

Then we have

IP ylsoPt E X,J ~ IP y[SI E XI II ... A sn_1 E Xn-I A sn E Xnl =
IP y[SI E ft(ZI,y) A s2 E ft(Zz.ft(ZI'Y» II ... A sn E ft(Zn ft(ZI.y) ...)l =

L IP y[SI E ft(zl'Y) II ... A sn E ft(zn.· .. flzl.Y) .. ·) -A ZI = zl II ... A Zn = zn1 =
zl' .. ,zn

L IP Y [ZI = zl A ... A Zn = zn1 =
(zl' ..• zn)EH

where

n
H = I (zl zn) E (A x B x C) I Sl E ft(zl'Y) II ... A sn E ft(zn flzl.Y) ...)}.

(*)

Tf H '" 0 then (*) is positive by (v) which proves IP y[sopt E Xn1 > O. To show H '" 0 is

thllS sufficient to prove the theorem. Hence we need to construct a sequence zl' ...• zn

such that for any i (0 < i $ n) Sj E flz j ft(zl'Y)"') holds.

Let w E Sa' SEW. t E N(s) arbitrary. Then

there exists a zl E A such that Is} E fS(zl.w) by ii·.

there exists a z2 E B such that t E f
p

(z2.ls}) by iii'. thus

t E fg(zl.z2.w) holds too.

there exists a z3 E C such that v E f
r
(z3.w v f

g
(zl.z2.w» by iv·. and hence

t E ft(z.w) holds for Z = (zl,z2.z3) E (A x B x C).

Iterating this construction method for w = y. s = So and t = Sl' then for w = flzl,y), s = Sl'

t = s2 etc. we obtain the desired sequence (zl zn) E (A x B x C)n such that

sl E flzl,y) A ... II sn E ft(zn' ... flzl.y) ...) holds.

This verifies that H '" 0 and completes the proof of the theorem. I

The requirements on N can be relaxed at the cost of a further restriction of the

reduction function.

18

weak i) 3 s e S 'tJ t e S : s H t, and let cr be such an element, i.e 'tJ t e S : cr H t.

DEFINITION 6 Let cr E S be as in (weak i). Then the reduction function is <J=:ilreserving

if 'tJ XES + 'tJ Y E C : cr ex==} cr E f (Y,x). a r

LEMMA 6 Let XES a' If cr E x and the reduction function is cr-preserving, then
..

'tJ y E {x} : cr E y.

The proof is trivial. I

TIIEOREM 4 Let us assume that the drawings Zn's have the same. distribution. Let the

conditions (weak i), (ii), (iii), (iv), (v) hold; furthennore let the reduction function be

conservati ve and cr-preserving. Then for any initial population which contains (T the

algorithm AGA finds an optimum with probability 1.

Proof

Again, the proof is based on Theorem 2. Let x E Sa

be the evolution created by AGA.

such that cr E x, and {Xn : n E IN)
x

The conditions (a) ~!ld (b) of Theorem 2 hold by the same reasoning as in Theorem J ..

.. * c) We show that 'tJ y E {x} 'tJ SoptE S : lPy[3 n E IN: SoptE Xn1 >0.

.. * Let y E {x) and Sopt E S be arbitrary. Due to cr E x and Lemma 6 we have that cr E y.

Hence for So E y we can take cr, and then weak i implies that So H sop t .

The rest of the proof is identical to that of Theorem 3. I

19

5. CONCLUSIONS

In this paper we discussed a general theory of genetic algorithms. At the beginning we

formulated two objectives:

1) to set up an abstract model of genetic algorithms, such that any special GA at hand is

an instance of the model,

2) to achieve convergence results at a general level, such that these results are applicable

at any special instance.

We claim that the fust objective was reached by the Abstract Genetic Algorithm

(AGA), that is AGA represents the set of all GAs. More precisely, we think that there is no

algorithm which would be generally recognized as a genetic one, but is not an instance of

AGA.

Furthermore, AGA generalizes simulated annealing, in the sense that the latter is an

instance of AGA, where populations of size I (or 2 for the extended case) are used in

combination with a special acceptance / reduction mechanism.

As to the second objective, :: :!u:r.ber of convergence theorems have been proved.

Theorem 1 is general, it implies convergence with probability 1, if th~re is a bound on the

probability of fruitless branches in the search. As a special case WI! have Theorem 2 for

homogeneous Markov chains. Theorem 3 and Theorem 4 are further specializations of the

above. They tell what kind of selection, production and reduction functions can guarantee

that a GA finds an optimum with probability 1. These results can also be applied to

simulated annealing. Since the changing value of the control parameter leads to

inhomogeneity in the Markov chain, it is Theorem 1 that we can use. Further analysis is

needed to disclose dependence on the control parameter to such an extent that we can

deduce constraints for ck which imply convergence.

20

LITERATIJRE

Aar89 Aans, E.H.L., and Korst, J., Simulated Annealing and Boltzmann Machines,

J. Wiley and Sons, 1989.

DeJ80 De Jong, K.A., Adaptive System Design: A Genetic Approach, IEEE Trans. on

Sys.,Man & Cybern. SMC-1O,9 566-574, Sept. 1980.

Hol75 Holland, 1.H., Adaptation in Natural and Artificial Systems, Univ. of Michigan

Press, Ann Arbor, 1975.

Gol89 Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley, Reading MA, 1989.

Gre85 Grefenstette, J.1" ed., Proceedings of the International Conference on Genetic

Algorithms, Lawrence Erlbaum Associate". Filisdale, N.J., 1985.

Gre87 Grefenstette, J.J., ed., Proceedings of the Second International Conference on

Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, N.J., 1987.

Gre89 Grefenstette, J.J., ed., Proceedings of the Third International Conference on

Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, N.J., 1989.

Joh88 Johnson, D.S., Papadimitriou, C.H. and Yannakakis, M., How Easy Is Local

Search?, Journal of Computer and System Sciences 37, 79-100 (1988).

Pap82 Papadimitriou, C.H. and Steiglitz, K., Combinatorial Optimization: Algorithms

and Complexity, Prentice -Hall, Englewood Cliffs, N.J., 1982.

21

In this series appeared :

No. Author(s) Title
85/01 RH. Mak: The formal specification and

derivation of CMOS-circuits

85/02 W.M.C.J. van Overveld On arithmetic operations with
M-out-of-N-codes

85/03 W.J.M. Lemmens Use of a computer for evaluation
of flow films

85/04 T. Verhoeff Delay insensitive directed trace structures satisfy
H.M.L.J.Schols the foam rubber wrapper postulate

86/01 R Koymans Specifying message passing and
real-time systems

86/02 G.A. Bussing ELISA, A language for formal
K.M. van Hee specifications of information
M. Voorhoeve systems

86/03 Rob Hoogerwoord Some reflections on the implementation
of trace structures

86/04 GJ. Houben The partition of an information
J. Paredaens system in several parallel systems
K.M. van Hee

86/05 Jan L.G. Dietz A framework for the conceptual
Kees M. van Hee modeling of discrete dynamic systems

86/06 Tom Verhoeff Nondeterminism and divergence
created by concealment in CSP

86/07 R Gerth On proving communication
L. Shira closedness of distributed layers

86/08 R Koymans Compositional semantics for
RK. Shyamasundar real-time distributed
W.P. de Roever computing (Inf.&Control 1987)
R Gerth
S. Arun Kumar

86/09 C. Huizing Full abstraction of a real-time
R Gerth denotational semantics for an
W.P. de Roever OCCAM-like language

86/10 J. Hooman A compositional proof theory
for real-time distributed
message passing

86/11 W.P. de Roever Questions to Robin Milner - A
responder's commentary (IFIP86)

86/12 A. Boucher A timed failures model for
R. Gerth extended communicating processes

W.P. de Roever

87/16 H.M.M. ten Eikelder
I.C.F. Wilmont

87/17 K.M. van Hee
G.-I.Houben
lL.G. Dietz

87/18 C.W.A.M. van Overveld

87/19 A.J.Seebregts

87/20 G.J. Houben
J. Paredaens

87/21 R. Gerth
M. Codish
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff

88/02 K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

88/03 T. Verhoeff

88/04 G.I. Houben
J.Paredaens
D.Tahon

88/05 K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

88/06 H.M.J.L. Schols

88/07 C. Huizing
R. Gerth
W.P. de Roever

88/08 K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

88/09 A.T.M. Aerts
K.M. van Hee

88/10 lC. Ebergen
.,'\

88/ll G.J. Houben
J.Paredaens

Normal forms for a class of formulas

Modelling of discrete dynamic systems
framework and examples

An integer algorithm for rendering curved
surfaces

Optimalisering van file allocatie in
gedistribueerde database systemen

The R2 -Algebra: An extension of an
algebra for nested relations

Fully abstract denotational semantics
for concurrent PROLOG

A Parallel Program That Generates the
Mobius Sequence

Executable Specification for Information
Systems

Settling a Question about Pythagorean Triples

The Nested Relational Algebra: A Tool to Handle
Structured Information

Executable Specifications for Information Systems

Notes on Delay-Insensitive Communication

Modelling Statecharts behaviour in a fully
abstract way

A Formal model for System Specification

A Tutorial for Data Modelling

A Formal Approach to Designing Delay Insensitive
Circuits

A graphical interface formalism: specifying nested
relational databases

86/13 R Gerth
W.P. de Roever

86/14 R Koymans

87/01 R. Gerth

87/02 Simon I. Klaver
Chris F.M. Verberne

87/03 G.I. Houben
J.Paredaens

87/04 T.Verhoeff

87/05 R.Kuiper

87/06 R.Koymans

87/07 RKoymans

87/08 H.M.J.L. Schols

87/09 J. Kalisvaart
L.R.A. Kessener
W.I.M. Lemmens
M.L.P. van Lierop
F.I. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff

87/11 P.Lemmens

87/12 K.M. van Hee and
A.Lapinski

87/13 I.C.S.P. van der Woude

87/14 I. Hooman

87/15 C. Huizing
R Gerth

Proving monitors revisited: a
ftrst step towards verifying
object oriented systems (Fund.
Informatica IX-4)

Specifying passing systems
requires extending temporal logic

On the existence of sound and
complete axiomatizations of
the monitor concept

Federatieve Databases

A formal approach to distributed
information systems

Delay-insensitive codes -
An overview

Enforcing non-determinism via
linear time temporal logic speciftcation.

Temporele logica speciftcatie van message
passing en real-time systemen (in Dutch)

Specifying message passing and real-time
systems with real-time temporal logic

The maximum number of states after
projection

Language extensions to study structures
for raster graphics

Three families of maximally nondeter-
ministic automata

Eldorado ins and outs
Speciftcations of a data base management
toolkit according to the functional model

OR and AI approaches to decision support
systems

Playing with patterns
searching for strings

A compositional proof system for an occam-
like real-time language

A compositional semantics for statecharts

(~I L/
,'- -'

88/12 A.E. Eiben Abstract theory of planning

88/13 A. Bijlsma A unified approach to sequences, bags, and trees

88/14 H.M.M. ten Eikelder Language theory of a lambda-calculus with
RH. Mak recursive types

88/15 R Bos An introduction to the category theoretic solution
C. Hemerik of recursive domain equations

88/16 C.Hemerik Bottom-up tree acceptors
J.P.Katoen

88/17 K.M. van Hee Executable specifications for discrete event
G.J. Houben systems
LJ. Somers
M. Voorhoeve

88/18 K.M. van Hee Discrete event systems: concepts and basic
P.M.P. Rambags results

88/19 D.K. Hammer Fasering en documentatie in software engineering.
K.M. van Hee

88/20 K.M. van Hee EXSPECf, the functional part
L. Somers
M. V oorhoeve

89/1 E.Zs.Lepoeter-Molnar Reconstruction of a 3-D surface from its normal
vectors

89/2 RH. Mak A systolic design for dynamic programming
P.Struik

89/3 H.M.M. Ten Eikelder Some category theoretical properties related to
C. Hemerik a model for a polymorphic lambda-calculus

89/4 J.Zwiers Compositionality and modularity in process
W.P. de Roever specification and design: A trace-state based

approach

89/5 Wei Chen Networks of Communicating Processes and their
T.Verhoeff (De-)Composition
J.T.Udding

89/6 T.Verhoeff Characterizations of Delay-Insensitive Communicati-
on Protocols

89n P.Struik A systematic design of a paralell program for
Dirichlet convolution

89/8 E.H.L.Aarts A general theory of genetic algorithms
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee Discrete event systems: Dynamic versus static
P.M.P. Rambags topology

89/10 S.Ramesh

89/11 S.Ramesh

A new efficient implementation of CSP with
output guards

Algebraic specification and implementation
of infinite processes

	Abstract
	0. Introduction
	1. AGA: An abstract genetic algorithm
	2. The Markov chain belonging to the search
	3. Convergence results
	4. Application of the convergence result
	5. Conclusions
	Literature

