

A reference architecture for adaptive hypermedia applications

Citation for published version (APA):
Wu, H. (2002). A reference architecture for adaptive hypermedia applications. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR559036

DOI:
10.6100/IR559036

Document status and date:
Published: 01/01/2002

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR559036
https://doi.org/10.6100/IR559036
https://research.tue.nl/en/publications/919f2b6e-288b-4db9-beab-fbcc94b8f307

A Reference Architecture

for

Adaptive Hypermedia Applications

Hongjing Wu

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Wu, Hongjing

A reference architecture for adaptive hypermedia applications / by Hongjing Wu.
Eindhoven: Technische Universiteit Eindhoven, 2002. Proefschrift.

ISBN 90-386-0572-2
NUR 983

Keywords: hypertext / hypermedia / databases / adaptive hypermedia
C.R. Subject Classification (1998): H.5.4, H.5.2, H.5.1, H.2.4, H.3.4

SIKS Dissertation Series No. 2002-13
The research reported in this dissertation has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.

Cover design: Jan-Willem Luiten
Printed by University Press Facilities, Eindhoven, the Netherlands.

Copyright c© 2002 by H. Wu, Eindhoven, the Netherlands.

All rights reserved. No part of this dissertation publication may be reproduced, stored
in retrieval systems, or transmitted in any form by any means, mechanical, photocopying,
recording, or otherwise, without written consent of the author.

A Reference Architecture

for

Adaptive Hypermedia Applications

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus, prof.dr. R.A. van Santen,
voor een commissie aangewezen door het College voor Promoties

in het openbaar te verdedigen
op vrijdag 8 november 2002 om 16.00 uur

door

Hongjing Wu

Geboren te Shanghai, China

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. P.M.E. De Bra
en
prof.dr. L. Hardman

Copromotor:
dr.ir. G.J.P.M. Houben

Preface

My research interest in adaptive hypermedia originates from a project on distance learning,
in 1998, when I visited the Computer Science Department of the University of Amsterdam.
There I met my supervisor, Prof. Dr. Paul De Bra, and found our common interest. He
quickly introduced me into the field of adaptive hypermedia by demonstrating his system
AHA!.

Devoting myself to this research for four years, I have learned much of the depth and
breadth of this research area and gained international research experience. During these
years of work with my colleagues, I very much enjoyed the many academic discussions as
well as discussions about the many interesting things in our world.

I finished this dissertation with the assistance of various people. I would like to thank
all of them here. First of all, I thank my father Zhaoji Wu and my mother Fengying Li,
they gave me enormous support for my study in my life. They helped me very much by
taking care of my daughter Xiaomeng Liu when I was in my first year of study here. It
allowed me more time to deal with the challenges in my life in a foreign country and the
new research at hand.

A debt of gratitude is owed to my supervisor Prof. Dr. Paul De Bra. He has guided and
helped me with his broad knowledge and great kindness during my research. He has an
open mind and a sharp eye for the value of ideas; this was especially important when faced
with the challenge of choosing between many possible research directions. I would like to
thank all the other committee members, specifically Prof. Dr. Lynda Hardman. She gave
me a different view on my dissertation, making it more readable and balanced. I would
like to thank my co-promoter, Dr. Ir. Geert-Jan Houben. He contributed much of his time
and effort when I was starting my research, and helped me to plan my research agenda
well.

Within our group, many colleagues kindly helped me in various ways. I would specifi-
cally extend my thanks to Dr. Ad Aerts for showing his enthusiasm towards my research,
and helping me clear out some clouds in the early stages of discussions about the behavior
of adaptive hypermedia systems, which is the second main part of my dissertation. His
voluntary review of my dissertation gave me many suggestions to make my dissertation
more balanced. I would also like to thank one of my previous colleagues, Dr. Jan Hidders,
for lending me his deep knowledge and understanding of databases, and for his kind help
in determining what rule language would be suitable for describing adaptation in adaptive
hypermedia systems.

v

vi PREFACE

Finally I would like to give special thanks to my husband M.Sc. Erik de Kort. We had
many inspiring discussions and he gave me his amazing dimensions of kind help during my
Ph.D. research.

Hongjing Wu

Eindhoven, September 2002

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions and Approaches . 2
1.3 Outline of the Dissertation . 3

2 From Hypertext to Adaptive Hypermedia 5
2.1 Hypertext . 5

2.1.1 Definition of hypertext . 5
2.1.2 History of hypertext . 8
2.1.3 Hypermedia . 13

2.2 Reference Models for Hypertext Systems 13
2.2.1 The HAM model . 14
2.2.2 The Dexter model for hypertext . 15

2.3 Adaptive Hypermedia Systems (AHS) . 19
2.3.1 AHS and adaptation . 19
2.3.2 History and application areas of AHS 21
2.3.3 Features used in AHS . 28
2.3.4 Methods and techniques used in AHS 30
2.3.5 The main parts of adaptive hypermedia applications 35
2.3.6 Examples of authoring adaptive hypermedia applications 36

2.4 Summary of the research background . 37

3 AHAM: Adaptive Hypermedia Application Model 39
3.1 Introduction . 39
3.2 The Domain Model (DM) . 41

3.2.1 Concepts . 41
3.2.2 Concept relationships . 44

3.3 The User Model (UM) . 47
3.3.1 The UM - an overlay of the DM . 47
3.3.2 Events influencing the UM . 49

3.4 The Adaptation Model (AM) . 50
3.4.1 The definition of adaptation rules 50
3.4.2 Adaptation rule examples . 52

vii

viii CONTENTS

3.5 Communication Between AHS . 55
3.6 Summary of AHAM . 56

4 AE: Adaptation Engine 57
4.1 Introduction . 58

4.1.1 System transactions . 60
4.1.2 Properties: termination and confluence 62

4.2 Requirements for the AE . 63
4.3 Review of Static Analysis in Active Databases 66

4.3.1 Event Condition Action (ECA) rules 66
4.3.2 Condition Action (CA) rules . 68

4.4 Defining AHAM-CA, a Rule Syntax for the AE 72
4.4.1 Definition of AHAM-CA rule language 72
4.4.2 Examples of AHAM-CA rules . 73
4.4.3 Other issues about the AHAM-CA language 76

4.5 The Semantics of AHAM-CA Rule Execution 78
4.5.1 Rule execution phases . 78
4.5.2 General constraints . 79
4.5.3 Instantiating rules . 80
4.5.4 Other issues about the semantics 81

4.6 Static Analysis of AHAM-CA Rules . 83
4.6.1 The Propagation Algorithm for AHS 84

4.7 Enforcement for AHAM-CA Rules . 86
4.7.1 Enforcement of termination . 86
4.7.2 Enforcement of confluence . 87

4.8 Constraints for AHAM-CA Rules . 88
4.8.1 Definition of terms . 89
4.8.2 Constraints . 91
4.8.3 Complexity of static analysis . 94

4.9 Summary of AE . 95

5 Validation of AHAM: InterBook 97
5.1 Introduction . 97
5.2 InterBook: Domain Model . 103

5.2.1 Concepts in the DM-InterBook . 105
5.2.2 Concept relationships in the DM-InterBook 107

5.3 InterBook: User Model . 108
5.3.1 Attributes for users’ features . 109
5.3.2 Attributes for system related features 109
5.3.3 Attributes for presentation specifications 110
5.3.4 Attributes for simulating events . 111

5.4 InterBook: Adaptation Model . 111
5.4.1 Adaptation rules in the IU phase 111

CONTENTS ix

5.4.2 Adaptation rules in the UU-pre phase 114
5.4.3 Adaptation rules in the GA phase 116
5.4.4 Adaptation rules in the UU-post phase 121

5.5 InterBook: Termination and Confluence 123
5.6 Summary of Validation 1 . 124

6 Validation of AHAM: the AHA! system 127
6.1 Introduction . 127
6.2 AHA!: Domain Model . 130
6.3 AHA!: User Model . 131
6.4 AHA!: Adaptation Model . 132

6.4.1 Adaptation rules in the IU phase 132
6.4.2 Adaptation rules in the UU-pre phase 134
6.4.3 Adaptation rules in the GA phase 139
6.4.4 Adaptation rules in the UU-post phase 140

6.5 AHA!: Termination and Confluence . 141
6.6 Summary of Validation 2 . 142

7 Concluding Remarks 145
7.1 Conclusions . 145
7.2 Future work . 147

Bibliography 149

List of figures 163

Index 165

Summary 169

Samenvatting 171

Curriculum Vitae 173

x CONTENTS

Chapter 1

Introduction

This chapter is focused on presenting the general research agenda. Section 1.1 describes
the motivation of my research. Section 1.2 defines the research questions and approaches.
Section 1.3 presents an outline of this dissertation.

1.1 Motivation

When an author (or an organization) creates an information source it is intended to serve
a large audience. The authoring process is thus always “one to many”. Users on the other
hand wish to receive exactly the information they need, presented in the way they want it.
They wish to experience an information source as if it were created “one to one”. In order
to create this experience while keeping a “one to many” authoring process we introduce
personalization. Different users have different interests. A personalized information source
will present different information to different users. Users also have different backgrounds
and knowledge, also resulting in the need for personalized information; they have different
preferences for the presentation, including a preference for different media, for the length
or difficulty level of a presentation, for presentation order, etc. The main goal of this
dissertation is to provide a conceptual framework for systems that provide personalized
information presentations, generated from a single information source.

Traditional text documents can only provide a linear organization of information. It is
impossible to change the presentation for different users at all. Once the text document has
been designed, it is received by all users in exactly the same form. Hypertext was proposed
by Vannevar Bush in 1945. Bush [Bush, 1945] proposed a (then) revolutionary way to access
information compared with traditional text documents. The title of this article “As We
May Think” suggests that users can organize information in the same way as they think.
Hypertext is an information structure in which documents are connected by hyperlinks.
Users can jump from one document to another document by following hyperlinks between
the documents. Hypertext provides users navigation freedom through an activity called
browsing. Users choose their own reading order among pages or documents. Hypertext
provides a non-linear organization of information. Nowadays we mostly use the term

1

2 CHAPTER 1. INTRODUCTION

hypermedia because we consider that the information may be presented in forms other
than just text. Throughout this dissertation we will use the two terms interchangeably.

Hypertext does not really provide personalized information. When a document needs
to be adjusted to a user’s knowledge level or to his or her background the system may offer
links to different versions of the information, but it cannot automatically guide the user to
the version that is most suited for him or her.

Another problem with hypertext is that the navigational freedom introduces navigation
and orientation problems, which traditional text does not have. In a book it is easy to know
where you are and what you read before thanks to the linear structure. In hypertext it is
difficult to remember what you read before because that is not an easily identifiable part
of the whole structure. Navigation and orientation thus requires considerable cognitive
overhead. When the hyperspace becomes huge, users easily get lost in the hyperspace
in the sense that they do not know where they are and where to go to get their desired
information. Users need personalized orientation and navigation support in hypertext.
The system “remembers” where the user is and can reorient him or her upon request.

Adaptive hypermedia keeps the navigation freedom of hypertext and provides personal-
ization through adaptive content and adaptive navigation support. (In this dissertation we
do not distinguish between “orientation” and “navigation” support.) Adaptive hypermedia
systems (AHS) have been under development for over ten years, in many different applica-
tion areas. Still, until now there was no standard reference model or architecture for AHS.
Many AHS offer very similar features, and the same ideas are repeatedly being invented.
It is difficult for people to understand and compare different AHS because they are all
described in very different ways. For a designer of an adaptive application it is difficult to
find out which AHS could provide the adaptation required for the given application. The
main goals of this dissertation are to provide a reference model or architecture for AHS,
to describe the functionality of an AHS at an abstract level, and to illustrate how an AHS
works, using the developed reference model. We validate our reference architecture, by
describing the functionality of two well-known existing AHS using the model.

1.2 Research Questions and Approaches

This dissertation provides answers to five research questions:

Question 1: How do hypertext systems (and applications) attempt to personalize the
information?
We will look back at the history of hypertext to investigate how hypertext systems solve
the personalization problem. We want to find out what limitations hypertext systems have
in providing personalization. We need to know what others have tried in order to overcome
the limitations in hypertext systems.

When we know what the problems of hypertext systems are, we can ask ourselves the
second question:

1.3. OUTLINE OF THE DISSERTATION 3

Question 2: How can adaptive hypermedia systems solve the problems of (non-adaptive)
hypermedia systems?
We will look at the history of adaptive hypermedia systems to learn what is the difference
between hypertext systems and adaptive hypermedia systems, and how AHS try to solve
the problems of hypertext systems.

We want to make AHS easy to understand and provide a way to compare the different
AHS. We therefore ask the third question:

Question 3: Can we describe the functionality of AHS at an abstract level? Can we
describe adaptive hypermedia systems as extensions to hypermedia systems in general?
We will investigate AHS to find out the main parts included in these systems, and how
these parts work together to provide adaptation. Then we can build an abstract conceptual
model for AHS. In order to make this a “reference model” we first look at reference models
for hypertext. Because AHS are hypertext systems, we do not need to repeat the same
work that others have already done for hypertext systems. We can then concentrate on
the issues related to personalization or adaptation.

A general, abstract model of AHS does not yet describe how adaptation is exactly
performed in AHS. It does not describe the behavioral semantics of AHS, because the
behavioral semantics of AHS are system or implementation dependent. To be able to
describe how AHS exactly work we ask ourselves the fourth question:

Question 4: Can we define behavioral semantics for AHS and analyze how AHS work
exactly?
We need to analyze the way in which AHS execute transactions in order to decide what our
main problems are. We expect (and will find this to be true in Chapter 4) that systems
that provide easy yet powerful ways for authors to describe the desired adaptation will
have certain “decidability” problems. We need to provide ways to solve these problems in
such a way that authors can avoid them with the help of system-tools and so that end-users
are never confronted with these problems.

Finally we want to validate that our model is indeed a reference model. Therefore we
ask the fifth question:

Question 5: Can we easily describe the adaptation functionality of some well known
existing AHS in our model?
We select two representative AHS, InterBook [Brusilovsky et al., 1996b] and AHA! [De Bra
et al., 2000] to validate our reference model.

1.3 Outline of the Dissertation

Chapter 2 answers research Question 1 and Question 2. It recalls the history of hyper-
text systems to show that navigation support was considered necessary already in early
hypertext systems to lower the cognitive overhead when users are browsing in a huge hy-
perspace. The chapter also introduces the Dexter reference model for hypertext systems.
The Dexter model contributed to hypertext research by its three layer structure and by

4 CHAPTER 1. INTRODUCTION

concentrating on the Storage Layer consisting of information nodes and a link structure.
Adaptive hypermedia systems (AHS) aim to improve the hypertext application by making
it personalized. They provide adaptive presentation and adaptive navigation support. We
give an overview of adaptive hypermedia systems by summarizing the old review and the
new review by Brusilovsky [Brusilovsky, 1996, 2001].

Chapter 3 answers research Question 3. It proposes a Dexter-based reference model for
Adaptive Hypermedia Applications: AHAM. AHAM describes adaptation of AHS at an
abstract level. It advocates a clear separation between a domain model (DM), user model
(UM) and adaptation model (AM) in an AHS. It is based on methods and techniques
commonly used in AHS, and intends to provide a reference model for AHS to facilitate
system designers to develop new AHS, authors to write their adaptive hypermedia (AH)
applications and users to use AHS. This chapter summarizes the advanced adaptation
features of AHAM.

Chapter 4 answers research Question 4. It describes design issues for a general-purpose
adaptation engine (AE). All adaptive hypermedia research projects focus on providing
adaptation. Most of them have very simple rules, so termination, confluence or other
behavioral aspects of AHS are very often neglected. Termination means that the system
provides an adaptation result in a finite number of steps, and confluence means the system
provides deterministic adaptation results. Termination and confluence have been well
studied in active databases. Based on the results from active databases, this chapter
focuses on a rule language, called AHAM-CA, and describes its termination and confluence
properties.

Chapter 5 and Chapter 6 answer research Question 5. To validate our reference archi-
tecture for adaptive hypermedia applications, Chapter 5 uses AHAM-CA to describe a well
known adaptive hypermedia system: InterBook, designed by Brusilovsky et al [Brusilovsky
et al., 1996b].

Chapter 6 uses AHAM-CA to describe another existing well known adaptive hyperme-
dia system: AHA!, designed by De Bra et al [De Bra et al., 2000], as another validation of
our reference architecture for adaptive hypermedia applications.

Finally, in Chapter 7, we give a summary of the main results and indicate some direc-
tions for future research.

Chapter 2

From Hypertext to Adaptive
Hypermedia

This chapter focuses on presenting the background of the research described in this dis-
sertation. Section 2.1 gives an overview of the starting background of the research by
introducing the initial area of interest: hypertext. Section 2.2 gives an overview of mod-
els used for hypertext, with an elaborate description of the well-known Dexter model for
hypertext. Section 2.3 describes the state of the art in adaptive hypertext systems. It
summarizes the main parts of adaptive hypermedia applications. Section 2.4 summarizes
the research background and discusses the answers to research questions 1 and 2 from
Chapter 1

2.1 Hypertext

In this section we first give a definition of hypertext , and then show some ideas on how
to solve navigation problems through a review of the history of (representative) hypertext
systems.

2.1.1 Definition of hypertext

Traditional text documents provide a conceptually linear organization of information. For
a growing number of applications, this is not sufficient. It is hard to determine the most
appropriate reading order for some conceptual information that does not have an intrinsic
sequential order, or for which there are several possible reading orders.

Hypertext is non-sequential by definition. There is no single order that determines the
sequence in which the text is to be read. It provides a means for readers to actively explore
rather than passively absorb a body of information. Hypertext consists of interlinked pieces
of text (or other types of information). Each unit of information is called a node. Whatever
the grain size of these nodes, each of them may have pointers to other units, and these
pointers are called links.

5

6 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

Figure 2.1 shows that the entire hypertext structure forms a network of nodes and
links. Readers move through this network in an activity called browsing or navigating ,
rather than just “reading”, to emphasize that users must actively determine the order in
which they read the nodes.

Figure 2.1: An example of hypertext structure

User interfaces of hypertext systems give users (limited) freedom to navigate through
the hyperspace. (Hyperspace is a term used for the structure formed by the nodes and
links.) Users only need to e. g. “click” on the links to go anywhere they want, and in the
meantime users get a hyperdocument instead of a plain text document. Hypertext systems
provide users a little or a large amount of navigational freedom, depending on how “rich”
the link structure is.

Hypertext systems, however, generate navigation and orientation problems especially
when the size of the hyperspace is very large. Users face the “lost in hyperspace” risk when
browsing without a navigation guide based on information domain knowledge. Secondly,
hypertext systems do not consider individuals. Users with different goals get the same
information, and the same user continues to get the same information when his/her goal
changes. Hypertext systems have inherent navigation and orientation problems when they
offer users freedom in navigation. To overcome these problems, hypertext systems often
provide navigation support tools to aid users. These navigation tools are so important
that Frank Halasz [Halasz, 1988] from Xerox PARC has put forward the view that a true
hypertext system should include an explicit representation of the network structure in its
user interface. But in many systems that network is only present inside the computer. At
any given time the user sees only the “current” node and links leading out of that node; it
is up to the user’s imagination to picture how the entire network is structured.

Very few hypertext systems provide a graphical representation of the entire hypertext
on a computer screen, because a hypertext typically contains a large number of nodes.
Halasz wanted to give the user a dynamic overview of the structure of this network in

2.1. HYPERTEXT 7

NoteCards [Halasz et al., 1987], which displayed the structure in detail only for the local
neighborhood surrounding the user’s current location. (When a complete overview of a
hypertext structure is given in which the local neighborhood is shown in detail and the
rest is graphically summarized in some way then this is called a “fish-eye view” [Furnas,
1986].)

Many definitions of hypertext exist. An interesting definition is based on the “look and
feel” of a hypertext user interface. It should make users feel that they can move freely
through the information, according to their own needs. A hypertext system should also
generate only a low overhead with respect to using the computer’s resources. This means
short response times so that the text is on the screen as soon as the user asks for it. Low
overhead also contributes to reducing the cognitive load on the user when navigating: users
do not have to spend their time wondering what the computer does or how to get it to do
what they want.

Graphical overviews and fast response times are not enough to guarantee low cogni-
tive overhead. We give an (informal) definition of hypertext that includes a higher-level
structure than just nodes and links, to enable the system to base its features for lowering
the cognitive overhead on more than just the navigational structure. We consider that the
information structure of a hypertext consists of two types of elements:

• a set of concepts , each representing a unit of information. A concept can be a page
or a composite concept that consists of other composite concepts or pages.

• a set of concept relationships , each connecting a series of concepts in some way.
Physical links (hyperlinks) between pages are a type of concept relationship. Other
types of relationships can be used to describe any kind of relationship among concepts.
The meaning of each type of concept relationships depends on authors and system
designers.

This informal definition is compatible with the formal definition used in the Dexter
model [Halasz and Schwartz, 1990] which is used extensively in this dissertation. It not
only covers the network of nodes and links as the Dexter model does, but also covers the
semantic network among concepts which will play an important role in providing content
adaptation and adaptive navigation support in adaptive hypermedia systems.

Many hypertext systems tried different ways to provide navigation support. Those
navigation support tools were limited because they did not use semantic relationships
between nodes, only navigational links. In fact there exist certain semantic relationships
between the nodes in many hypertext applications, but they have been simply dropped
from the definition of the system by only using links to represent a possible way leading out
from the nodes. Most hypertext applications either ignore the differences between types
of links or relationships, or simply assume a simple one-to-one mapping: semantic links in
the document are directly mapped to navigational hyperlinks in the presentation. Some
systems actually show different link types in different ways, but few systems allow the
definition of semantic relationships that are not tied to hyperlinks. Hypertext applications
may only make sense to users if they at least provide some navigation support, using the

8 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

semantics of the links between nodes, so that users can easily understand their navigation
environment. In that respect World Wide Web, at least in its initial form, uses a very
simple model. The only navigation support is that links to previously visited pages are
purple and links to still unread pages are blue. More recent Web standards have a richer
link model with link classes and at least the potential to provide better navigation support.

We believe that the semantics of different connections, called concept relationships, are
the key to providing navigation support in hypertext applications. From a user’s point of
view, the concept relationships give cognitive information in navigation support. From the
system’s point of view, the concept relationships can play an important role in generating
lower cognitive overhead by using them to automatically provide adaptation, adaptive
content (sometimes also called adaptive presentation) and adaptive navigation support.
We will see in the rest of this dissertation that concept relationships are one of the bases
for adaptation, making hypertext applications personalized.

2.1.2 History of hypertext

We look back to the history of hypertext and show different hypertext systems each using
their own way to deal with navigation and orientation problems. From a historical per-
spective hypertext research is strongly influenced by the three pioneers of the field: Bush,
Engelbart and Nelson. They described the ambitious goals of the field, Bush in 1945 and
the others in the early sixties. But hypertext systems have been actually developed and
commercially used since the late sixties. The Hypertext Editing System (designed by Ted
Nelson and Andy van Dam), a predecessor of Brown University’s Intermedia system, was
used in the late sixties to produce the documentation for the Apollo missions. In the eight-
ies, Intermedia was effectively used in an educational environment to teach a course on
cell biology and one on English literature. Engelbart’s Augment/NLS was marketed as a
commercial system by McDonnell Douglas. Carnegie-Mellon’s ZOG system was used as an
information management system on a nuclear-powered aircraft carrier and later developed
into a commercial system called KMS (Knowledge Management System [Akscyn et al.,
1988]). The year 1987 is the turning point in the history of hypertext in the sense that
several new hypertext systems were introduced, and that the first ACM Hypertext con-
ference was organized. Following is a list of representative hypertext systems from before
1987. (The information below is mostly gathered from [Nielsen, 1990] and from the on-line
course 2L690 at TU/e.)

• 1945 Vannevar Bush proposed Memex in his article “As We May Think” [Bush, 1945].
Memex was designed as a mechanical hypertext device that used microfilm. It was
never built.

• 1965 Ted Nelson introduced the Xanadu distributed system concept and coined the
term hypertext [Nelson, 1965]. (It took until 1999 to actually build Xanadu.)

• 1967 Andries van Dam developed the Hypertext Editing System at Brown Univer-
sity [van Dam, 1987], followed by the introduction of FRESS in 1968.

2.1. HYPERTEXT 9

• 1968 Doug Engelbart gave a demo of NLS, the oN Line System, as an experimen-
tal tool to store specifications, plans, designs, programs, documentation, reports,
etc. [Engelbart, 1963]

• 1975 A team at CMU, headed by Robertson, developed the ZOG system, which
later became KMS [Akscyn et al., 1988]. ZOG was designed to be used on standard
character terminals. Each segment of a ZOG database was called a frame, and
consisted of a title, a description, a line with standard ZOG commands, and a set
of menu items, called selections, leading to other frames. The structure was always
hierarchical, though some cross-reference links could be included. The purely text-
based interface with relatively small frames easily led to user-disorientation. Donald
McCracken and Robert Akscyn, two major developers of the ZOG system at CMU,
started the company Knowledge Systems in 1981, and produced KMS, the Knowledge
Management System. KMS used the same frame-based interface as ZOG, with the
same danger for disorientation. The developers claimed that the possibility for user
disorientation should be greatly reduced by the fact that you could move very quickly
among frames and thus become reoriented with very little effort. We know of no
empirical evidence for (or against) this claim. However, given our own experience
with Web browsing we believe that this claim is false; we believe that navigation and
orientation support is needed to avoid disorientation. If ZOG and KMS caused little
disorientation it was probably because the structures were normally hierarchical.

• 1978 A team at MIT, headed by Andrew Lippman, developed the Aspen Movie Map,
the first true example of a multimedia application including videodisk [Lippman,
1980]. The Aspen Movie Map was a surrogate travel application that allowed the
user to take a simulated “drive” through the city of Aspen on a computer screen. It
used two monitors for its interface. One provided users with an immersing view of the
city and made them feel as if they entered into the environment. The other monitor
was placed horizontally and provided users with a street map. The user could point
to a spot on the map and jump directly to it instead of having to navigate through the
streets. In this way the Aspen Movie Map provided both navigation and orientation
support.

• 1985 Janet Walker [Walker, 1987] developed the Symbolics Document Examiner,
claimed to be the first hypertext system used by “real” customers. The user-interface
was kept as simple as possible. A traditional hierarchical structure, using chapters
and sections, was chosen so users would recognize the book metaphor, and not have
to learn the network based navigation which is typical for hypertext. High resolution
displays were used in order to make reading from the screen as comfortable as reading
from paper. The user could add bookmarks, to make returning to specific items easier.
A survey among 24 users showed that almost all of them preferred the hypertext
version over the printed manual. Still, these users were all engineers, who might have
been more motivated to use high technology solutions than ordinary users would be.

10 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

• 1985 Several other hypertext systems were announced, including NoteCards [Halasz
et al., 1987] from Xerox, and Intermedia [Meyrowitz, 1986] from Brown University.
In NoteCards each node was a single notecard, which could contain an arbitrary
amount of information. As in Guide and Intermedia (see later), scrolling was used
to display different parts of the node. When following a link the destination node
could be displayed in a new window, possibly overlapping the old window. Users
could open as many windows as they wanted, thus generating a messy desktop.
Links were typed connections between cards. The type was a label chosen by the
creator of the link, and could indicate the kind of relation between the source and the
destination node. The browser card showed a graphical overview of the link structure
of the hyperdocument. The most advanced hypertext system developed at Brown
University is the Intermedia system. Intermedia offered two kinds of overviews, to
help the user find his or her way through a large document:

– Overview nodes: these nodes displayed a fixed part of the document’s structure.
They can best be compared to a menu-like node, showing which major compo-
nents were reachable from this node. A good example of an overview node would
be the table of contents of this dissertation. Overview nodes were constructed
manually using a special drawing package. Any layout was possible, but by
convention the name of the central topic was put in the middle, surrounded by
the related parts of the document.

– The web view: this was an automatically constructed graphical overview of the
link-structure of the entire hyperdocument.

• 1986 OWL introduced Guide for the Macintosh, the first widely available hypertext
system, based on the Unix Guide system [Brown, 1987], developed by Peter Brown at
the University of Kent. Most hypertext systems use pagination when following a link,
meaning that the currently displayed node is replaced by the destination of a link.
In Guide the main link-mechanism was based on replacement, meaning that when
following a link the current node would break open, making room for the destination
node. The anchor of the link was replaced by the contents of the destination node.
One could close the destination node, which means that it was once again replaced by
the text of the anchor. Replacement means that the structure of the hyperdocument
must be strictly hierarchical. Each time the user “followed” a link the source node of
the link remained a visible context in which the destination node was shown. This
should have been very effective as orientation support, but it limited the possible
presentations. In addition to replacement anchors, Guide supported pop-ups for
small annotations, and so called jumps, which behaved like the follow-link operation
in most hypertext systems. (They cause the current node to be replaced completely
by the destination node.) The jumps provided a way to create non-hierarchical links,
albeit without the orientation support offered by the replacement link mechanism.

• 1987 Apple started delivering HyperCard [Wesley, 1989] for free with every Macin-
tosh. HyperCard was, however, not originally designed to be a hypertext system,

2.1. HYPERTEXT 11

according to its designer, Bill Atkinson. It was intended as a tool for developing
prototypes of user-interfaces. Typically all cards in a HyperCard stack have a button
to go to the next card and to the previous card. This lets you page through the stack.
Stacks are therefore mostly useful to provide a paging mechanism for nodes that are
too large to fit onto a single card. However, in general there need not be a linear
order in which to read the cards. The stack is atypical for hypertext applications, be-
cause it suggests a linear structure, while hypertext promotes the use of much richer
structures. Creating hypertext using HyperCard is more like programming than like
authoring. Therefore, despite the fact that HyperCard was (and is) free, many hy-
pertext documents have been developed using the more recent commercial hypertext
system Storyspace which is available for both the Macintosh and the IBM-PC with
Windows.

In 1987 the the first ACM Conference on Hypertext was held. Since around that time
the new developments are too numerous to name all of them. World Wide Web, invented
by Tim Berners Lee at CERN in 1989, demonstrated at the ACM Hypertext Conference
in 1991, and made popular by Marc Andreessen and Eric Bina from NCSA in 1992 by
means of the Mosaic for X browser, has really pushed hypertext into the mass market.
Unfortunately it has brought a very limited hypertext system to the mass market, with a
very simple link structure. (Initially there were no typed links, and the only navigation
support was that the blue links became purple when they led to a previously visited page.)

In the ACM Hypertext’91 conference proceedings Wright [Wright, 1991] discussed some
issues in the evaluation of hypertext applications. She stated that, when evaluating hy-
pertext, navigation support needed to be included. She addressed reducing cognitive over-
head in navigation as being an important issue for hypertext to be useful. We give a
brief overview of navigation support (aiming to lower cognitive overhead) in the hypertext
systems published at ACM Hypertext Conferences since 1990.

• 1990: Bruza [Bruza, 1990] used hyperindices as a means for supporting effective
search in hypertext. He showed how the hyperindex can be constructed using the
structural properties of index expressions. These hyperindices are hypertexts them-
selves, but consisting of concepts, not pages. From concepts the user could navigate
to associated pages and back through operations called beam down and beam up.
Wilson [Wilson, 1990] showed the need to automate the conversion of traditional
legal documents into an integrated hypertext database. He discussed the types of
links the system uses to cater for: 1. linear and hierarchical structure; 2. directed
graphs; 3. annotational or associative links; 4. index or concept links. He illustrated
that these links can create different virtual structures for the document collection
to give flexibility of access and navigation. DeYoung [DeYoung, 1990] showed an
idea to identify the different underlying structure of the ways specific sets of data are
related, and then to use the structure to provide navigation support.

• 1991: Lai and Manber [Lai and Manber, 1991] showed an additional tool to naviga-
tion: flying. The variability of the links and structure that they provided enabled

12 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

flexible flipping in many different orders controlled by the reader. The key to any
flipping was speed. The goal was not to digest the contents of the pages (like in ZOG
and KMS), but rather to gain some insight to features such as organization, size,
depth, level, detail and so on. Flying could also be used to move fast from one place
to another in the hypertext following a certain order for traversal.

• 1992: Quint and Vatton [Quint and Vatton, 1992] provided two-level navigation
in the Grif system, a structured document editor based on the generic structure
concept. It combined elements of hypertext and structured documents. The notion
of logical structure encompassed both hierarchical structures (as is usual in structured
documents) and non-hierarchical links (as is usual in hypertext).

• 1993: Noik [Noik, 1993] addressed the importance to provide an overview for global
context while users go to local details in Fisheye views. A Fisheye view displays
information at several levels of abstraction simultaneously.
Chang [Chang, 1993] stated disorientation in hypertext could be reduced by limiting
the number of links, and by attaching attributes to links that could be used to group,
sort and filter them. Links, however, still could be overwhelming if they did not reflect
the experiences and biases of the user even if links could be organized and filtered.
Chang proposed a user-centered approach for automatic link generation by exploiting
existing hierarchical hyperdocument structures, or the pattern of user-created links
in HeiNet.

• 1994: Simon and Erdmann [Simon and Erdmann, 1994] provided responsive manuals
to the current situation in SIROG. A responsive manual consists of a “standard”
hypertext-based operational manual and a task description. It monitored the chang-
ing situation and based on this was able to point to relevant information.
Mukherjea et al. [Mukherjea et al., 1994] talked about clustering related nodes of
an overview diagram to reduce its complexity and size. This was because although
overview diagrams are useful for helping the user to navigate in a hypertext system,
for any real-world system these become too complicated and large to be really use-
ful. Since the nodes could be related to each other in different ways, depending on
the situation different clustered views would be useful. They provided navigational
views based on these abstract views. They proposed a 3-dimensional approach for
visualizing these abstracted views. But they did not have a user model to store the
user needs or goals; their system interactively asked for clustering conditions to select
related nodes in the overview diagram.

• 1996: Weiss [Weiss et al., 1996] described in HyPursuit a hierarchical network search
engine that clustered hypertext documents to structure a given information space for
browsing and search activities. HyPursuit’s abstract functions summarized cluster
contents to support scalable query processing. Its content-link clustering algorithm
was based on the semantic information embedded in hyperlink structures and docu-
ment contents.

2.2. REFERENCE MODELS FOR HYPERTEXT SYSTEMS 13

2.1.3 Hypermedia

Hypermedia is a combination of “hypertext” and “multimedia”. In [van Ossenbruggen,
2001] Jacco van Ossenbruggen gives a clear description of three types of hypermedia systems
according to different aspects in different combinations.

In the first group, hypermedia system means “multiple media hypertext”. These sys-
tems are developed as hypertext systems, they are based on the node/link model of hyper-
text, and are extended to handle media data types. The addition of multimedia in these
systems does not change the underlying data and process models. Researchers in this area
often use the terms “hypertext” and “hypermedia” as being interchangeable. For example,
for the Dexter model this combination can be easily explained: the addition of new media
types in Dexter’s Within-Component Layer does not affect the basic hypertext data struc-
tures modeled by the Storage Layer , nor does it affect the navigation-based interaction
process modeled by the Runtime Layer . This dissertation focuses on providing adaptation
in hypermedia systems that fit in this group.

In the second group, hypermedia systems provide “interlinked multimedia”. They have
their roots in multimedia rather than hypertext. They are multimedia systems, and are ex-
tended to provide navigation-based interaction in addition to the more traditional—VCR-
style—interaction mechanism. These systems support the specification of synchronization
constraints on their constituent media items, and have built-in support for defining multi-
media layout. Linking facilities in these systems are not as sophisticated as those provided
by their hypertext counterparts, because the hypertext node/link model is subordinate to
the spatio-temporal composition model.

In the third group, hypermedia systems are a full integration of hypertext and multime-
dia. These system are described as “non-linear multimedia”, but not yet widely supported.

From now on we use the term hypermedia systems to represent the combination that
fits in the first group.

2.2 Reference Models for Hypertext Systems

A hypertext system is a complex piece of software, consisting of several parts which serve
a very different purpose. Campbell and Goodman proposed a division of a hypertext
application [Campbell and Goodman, 1988] in the following way:

• the Presentation Level or user interface

• the Hypertext Abstract Machine, serving nodes and links

• the Database level, providing efficient storage and network access

Such a separation of concerns forms the basis of all reference models for hypertext.
A reference model for hypertext systems describes the possible conceptual elements and

the functionality of hypertext systems, in an abstract (implementation independent) way.
There are several reference models for hypertext systems. We name five models that are
sometimes refered to in literature:

14 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

• The HAM or Hypertext Abstract Machine, as described by Campbell and Good-
man [Campbell and Goodman, 1988].

• The Trellis model, a reference model by Furuta and Stotts [Furuta and Stotts, 1990].

• The Dexter model, a reference model by Halasz and Schwartz [Halasz and Schwartz,
1990], written in the specification language Z [Spivey, 1989].

• A Formal Model by B. Lange, a reference model written in the specification language
VDM [Lange, 1990].

• The Tower Model, a more general object-oriented model by De Bra, Houben and
Kornatzky [De Bra et al., 1992].

In this dissertation we are going to base our model on the Dexter model, because it was
formalized [Spivey, 1989; van Ossenbruggen, 2001] and even implemented [Grønbæk and
Trigg, 1994]. However, to give an impression of the similarity and/or difference between
our chosen model and other models we first briefly introduce the HAM model, which was
the first reference model and inspired the other models.

2.2.1 The HAM model

In 1987, Brad Campbell and Joseph M. Goodman published HAM [Campbell and Good-
man, 1988], at the first Conference on Hypertext. It was a milestone in the development
of hypertext as a research field, because it was the first attempt to define a reference
model, an abstract model in which actual hypertext systems could be expressed. Instead
of presenting HAM model as a reference model, Campbell and Goodman presented it as
an abstract machine.

“The HAM is a transaction-based server for a hypertext storage system. The server is
designed to handle multiple users in a networked environment. The storage system consists
of a collection of contexts, nodes, links, and attributes that make up a hypertext graph.
The versatility of the HAM can be illustrated by showing how Guide Buttons, Intermedia
Webs, and NoteCard FileBoxes can be implemented using its storage model.”

Campbell was one of the developers of a HAM system at Tektronix. The work was
inspired by the Neptune system of Delisle and Schwartz [Delisle and Schwartz, 1986].
Although the HAM system was used by several groups in and outside Tektronix it never
became a commercial product. Because the HAM was a very powerful system, describing
its properties provides a way to compare features of different hypertext systems.

The definition of the HAM consists of a description of the HAM objects and of the
operations that can be applied to them. Since 1987 hypertext systems have been developed
that offer richer structures and features than those envisioned by the designers of the HAM.
This has led to newer reference models, presented at a workshop of the National Institute
of Standards and Technology in 1990, and to the definition of the Tower Model in 1992.

2.2. REFERENCE MODELS FOR HYPERTEXT SYSTEMS 15

Like most reference models, the HAM does not describe the hypertext system com-
pletely. The HAM sits in between the file system and the user interface. Campbell and
Goodman envisioned the graphical representation given in Figure 2.2.

USER INTERFACE

APPLICATION TOOLS

HYPERTEXT
ABSTRACT
MACHINE

HOST FILE SYSTEMS

Figure 2.2: HAM reference model

Figure 2.2 clearly indicates that the HAM is a lower level machine, tied closely to
the storage (file) system, while having a looser connection to the applications and user
interfaces. It is also clear that the HAM is only part of this architecture and not the whole
system.

2.2.2 The Dexter model for hypertext

Janet Walker and John Leggett organized two workshops on hypertext. The first one
was held in October 1988, at the Dexter Inn in New Hampshire. The discussions at
these workshops were mostly about the major existing hypertext systems like Augment,
Concordia/Document Examiner, Hypercard, Hyperties, Intermedia, KMS, Neptune/HAM,
NoteCards and others. Many leading hypertext developers attended these workshops,
including Rob Akscyn, Doug Engelbart, Steve Feiner, Frank Halasz, John Leggett, Don
McCracken, Norm Meyrowitz, Tim Oren, Amy Pearl, Catherine Plaisant, Mayer Schwartz,
Randy Trigg, Janet Walker and Bill Wieland. The result was a paper, written by Halasz
and Schwartz, describing the Dexter reference model for hypertext [Halasz and Schwartz,
1990].

The Dexter hypertext reference model is an attempt to capture, both formally and
informally, the important abstractions found in a wide range of existing and future hyper-
text systems. The goal of the model is to provide a principled basis for comparing systems
as well as for developing interchange and interoperability standards. The model has been
formally specified in the language Z [Spivey, 1989]. Later Jacco van Ossenbruggen [van
Ossenbruggen, 2001] gave an Object-Z description of Dexter model which is more precise,
more straightforward, and more compact.

16 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

The Dexter model is divided into three layers (see Figure 2.3): Runtime Layer, Storage
Layer, and Within-Component Layer. The Within-Component Layer is introduced to
isolate the other layers from all data and media-specific details. The elaboration of the
Within-Component Layer is considered beyond the scope of the model. The two remaining
layers can be said to represent two alternative views on what the important characteristics
of a hypertext system are.

The first view focuses on the underlying data structure used to model hyperlinks, and
is reflected on the middle layer of the model, the storage layer. This layer describes a
hypertext as a networked data structure of nodes and links, the essence of hypertext. It
uses “components” to cover both nodes and links.

The second view stresses the importance of the unique, associative user interface and
behavior of a hypertext system. This view is reflected in the third layer of the model, the
runtime layer. This layer describes mechanisms for supporting the user’s interaction with
the hypertext.

Run-time Layer
Presentation of the hypertext; user

interaction; dynamics

Presentation Specifications

Storage Layer
a database containing a network of

nodes and links

Anchoring

Within-Component Layer
the content structure inside the nodes

Figure 2.3: The Dexter reference model for hypermedia systems

The notion of anchoring is introduced to describe the main mechanism between the
within-component layer and the storage layer. Anchoring is used to be able to address
locations or items within components, without knowledge of their inner structure. This
extra level of indirection allows a description of hyperlinks that is independent of the
structure of the media items at the end points of the link.

The notion of presentation specifications is used to describe the interface mechanism
between runtime layer and storage layer. It tells how a component is to be presented to the
user. Since presentation specifications are typically application and/or media dependent,
Dexter makes no attempt to model their internal structure. Only the aspects that are
needed to bridge the gap between storage layer and runtime layer are described.

The emphasis of the Dexter reference model for hypertext systems is on the storage

2.2. REFERENCE MODELS FOR HYPERTEXT SYSTEMS 17

layer, the anchoring, and the presentation specification. Below we give a definition of these
parts of the model.

The Storage Layer focuses on the mechanism that enables the data-containing com-
ponents to be interconnected by link components. Figure 2.4 depicts the three types of
components of the Dexter model: atoms, links, and composites.

anchors:
attributes:
presentSpec:

specifiers:

specififiers: #1001
anchorSpec: #1
presenSpec:
direction: FROM

specififiers: #1002
anchorSpec: #2
presenSpec:
direction: TO

anchors: ID Value
 #1
 #2 ...

attributes:
presentSpec:

content:

anchors: ID Value
 #1 ...
 #2

attributes:
presentSpec:

children:
 Atom #1005

 Atom #1006

Link #1003

Composite #1002Atom #1001

Figure 2.4: Dexter linking from an atomic to a composite component

Atomic components are primitive in the model. Their content is part of the within-
component layer and thus not described in the model. Composite components are recursive
structures made out of other components. The “containment” relationship between com-
ponents is restricted to be a directed acyclic graph (DAG), which means a component may
be a subcomponent of multiple components, but no component may contain itself either
directly or indirectly. The link component models relations between components. Links
contain a sequence of endpoint specifiers , each of which refers to (a part of) a component
in the hypertext. A system can support unary, binary or arbitrary arity links.

The addressing of components involves a two-step process. A resolver function maps
a given component specification to the unique identifier (Uid) of the component, and an
accessor function maps a given Uid to the component itself. The explicit use of these two
functions intends to address the issue of support for search and query facilities, and the
issue of support for virtual structures, as advocated by Halasz [Halasz, 1988].

In the Dexter model a hypertext is modeled as a set of atomic, link and composite
components with an associated accessor and resolver function. We define the concepts of
the Dexter model more formally below.

18 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

Definition 2.1 A component is a pair < uid, cinfo >, where uid is a globally unique
identifier for the component, cinfo represents “component info” and consists of:

• a set of attribute-value pairs

• a sequence of anchors

• a presentation specification

Attributes can be of any type and used for any purpose. They are not elaborated further.
We also do not describe the details of presentation specifications. We distinguish two types
of components: atomic and composite.

An atomic component is a component for which the anchor values and possibly some
attribute values belong to the within-component layer. (This means that we cannot describe
their internal structure in the model.)

A composite component is a component where the anchor values are the unique identi-
fiers of other components (that we refer to as subcomponents).

Definition 2.2 An anchor is a pair < aid, avalue >, where aid is a unique identifier for
the anchor within the scope of its component and avalue is an arbitrary value that specifies
some location, region, item or substructure of a component. Anchor values of atomic
components belong to the within-component layer and are not elaborated in Dexter. Anchor
values of composite components are uid-aid pairs, where the uid identifies a subcomponent
of the composite and the aid identifies an anchor within that subcomponent.

The notion of anchoring is regarded as one of the major contributions of the Dexter
model. The anchor identifier aid is media-independent, all anchors need to be explicitly
present at the level of the storage layer, links can only refer to anchors by means of the
anchor identifier. The associated anchor value represents the role of the anchor in the
within-component layer, and is typically media-specific. It is interpretable only by the
end-user application, and not by the “hypertext engine”. This indirection isolates the link
from the lower level details needed to interpret the anchor value.

Definition 2.3 A specifier is a 4-tuple < uid, aid, dir, pre > where uid is the unique iden-
tifier of a component, aid is the identifier of an anchor, dir is a direction (which is FROM,
TO, BIDIRECT or NONE), and pre is a presentation specification.

Definition 2.4 A link is a component < uid, ss, cinfo > where uid is a unique identifier,
ss is a sequence of specifiers, and cinfo is the component information. A component’s
information consists of:

• a set of attribute-value pairs

• a sequence of anchors

• a presentation specification

2.3. ADAPTIVE HYPERMEDIA SYSTEMS (AHS) 19

Note that the endpoints of a link are contained in a sequence of specifiers. The sequence
of anchors of a link allow links to become endpoints of other links themselves. In this
dissertation we will not consider links that have other links as endpoints and thus we do
not need the sequence of anchors as part of a link component.

More details about the Dexter reference model will be given (as needed) in the next
chapter where we describe our reference model for adaptive hypermedia.

2.3 Adaptive Hypermedia Systems (AHS)

Adaptive hypermedia is a relatively new direction of research on the crossroad of hyper-
media and user modeling. Adaptive hypermedia systems (AHS) maintain a user model to
store a user’s “features”, and use these features to provide adaptive content and adaptive
navigation support.

Adaptive hypermedia can be traced back to the early 1990s. Peter Brusilovsky gave an
overview of adaptive hypermedia systems, methods and techniques in 1996 [Brusilovsky,
1996]. The year 1996 can be considered a turning point in adaptive hypermedia. Before this
time, research in this area was performed by a few isolated teams. Most systems that were
developed were not Web-based. After 1996 adaptive hypermedia has gone through a period
of rapid growth and fast adoption of Web technology. Brusilovsky gave a new version of the
overview of adaptive hypermedia systems in 2001 [Brusilovsky, 2001]. This section gives a
review of existing adaptive hypermedia systems by summarizing the old review and the new
review in [Brusilovsky, 1996, 2001]. It shows which different types of adaptive hypermedia
systems were developed in the short history of this research field, which features of users are
used in adaptation, and which methods and techniques are used to achieve the adaptation
goals. We summarize the three main parts that most adaptive hypermedia applications
have, and these parts are described in more detail in the description of the reference model
in the next chapter. Finally we give two examples of different ways of authoring adaptive
hypermedia applications for InterBook and AHA!. An important goal of our reference
architecture for adaptive hypermedia applications is to represent adaptive applications in
such a way that it becomes possible to separate the authoring from the system design.
When new systems will be developed following our architecture they will support powerful
adaptation strategies through a very simple authoring process.

2.3.1 AHS and adaptation

Hypermedia systems in general, and Web-based systems in particular, are becoming in-
creasingly popular as tools for user-driven access to information. The goal of adaptive
hypermedia research is to improve the usability of hypermedia applications by making
them personalized. An AHS builds a model of the goals, preferences and knowledge of
each individual user. It uses this model to adapt the application to the needs of the user.
The user modeling necessary for the adaptation is based on observing the user’s behavior.
Most often that behavior will be browsing. An AHS thus works “in the background”,

20 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

without asking the user for specific input on his or her goals, preferences or knowledge. In
addition AHS also support the adaptation when users explicitly set their features in the
user model (for instance through a form), but this is not the main concern here because it
is relatively simple to realize.

Definition of adaptive hypermedia systems

To clarify the goal of this research, we recall the following definition from Brusilovsky
[Brusilovsky, 1996]:

By adaptive hypermedia systems we mean all hypertext and hypermedia sys-
tems which reflect some features of the user in the user model and apply this
model to adapt various visible aspects of the system to the user. In other words,
the system should satisfy three criteria: it should be a hypertext or hypermedia
system; it should have a user model; it should be able to adapt the hypermedia
using this model.

Identified dimensions for adaptation

To review adaptive hypermedia systems we follow the identified dimensions described
in [Dieterich et al., 1993] which are typical for the analysis of adaptive systems in gen-
eral. These dimensions are the basis for the classification of adaptive hypermedia methods
and techniques.

• The first dimension considered is where adaptive hypermedia systems can be useful.
The review identifies several application areas for AHS (Table 2.1) and for each area it
points out the problems which can be partly solved by applying adaptive hypermedia
techniques (Section 2.3.2).

• The second dimension is what to adapt to. It consists of two categories.
User characteristics: what features of the user are used as a source of the adaptation,
i. e. to what features of the user can the system adapt its behavior. Brusilovsky’s
review identifies several user features that are considered important by existing AHS
and discusses the common ways to represent them.
Environment: adaptation to the user’s environment. This is a new kind of adaptation
that was brought on by web-based systems. It considers adaptation to the equipment
(computer, PDA, cellphone) and the network (from high-speed fixed connection down
to low speed modem connection) (Section 2.3.3).

• The third dimension is what can be adapted by a particular technique. Which fea-
tures of the system can be different for different users. Along this dimension the
reviews [Brusilovsky, 1996, 2001] identify seven ways to adapt hypermedia. They
can be divided into two essentially different groups - content adaptation and link
adaptation. Brusilovsky calls these different ways to adapt hypermedia technologies
of adaptation (Section 2.3.4).

2.3. ADAPTIVE HYPERMEDIA SYSTEMS (AHS) 21

• The fourth dimension is the adaptation goals achieved by different methods and
techniques: why these methods and techniques are applied, and which problem of
the users they can solve. The adaptation goals are dependent on the application goal
in some range of application areas. The adaptation goals are considered in parallel
with our review of relevant adaptation methods and the techniques that implement
these methods (Section 2.3.4).

2.3.2 History and application areas of AHS

As we stated previously, AHS started around 1990. 1996 is a turning point in their de-
velopment. Before 1996 all systems had been built to explore some new methods. Since
1996 the introduction of the Web has had a great impact on hypermedia in general. Many
adaptive hypermedia systems have become mature, partly because the Web provided an
easy development and application platform. Some systems provide complete frameworks
including authoring tools. We will describe AHS in these two periods of time.

Before 1996: Brusilovsky gave an overview of adaptive hypermedia systems in 1996.
He classified existing AHS into six groups according to their application areas: (Table 2.1).
They are educational hypermedia systems, on-line information systems, on-line help sys-
tems, information retrieval hypermedia, institutional hypermedia, and systems for man-
aging personalized views in an information space. The first two of these areas were most
popular, the next two were reasonably populated being represented by 5-6 systems each
and the last two were the least investigated being represented by 1-2 pioneer systems each.
All hypermedia systems from before 1996 are similar in the sense that they offer a “brows-
ing” environment. They keep user features in a user model that is constructed by following
the user’s browsing behavior, and use that model as the basis for adaptation.

The most popular area for adaptive hypermedia (AH) research is educational hyperme-
dia systems. Its specific features are as follows. It has a relatively small information space
representing a particular course or section of learning material on a particular subject. The
goal of the student is usually to learn all the learning material or a reasonable part of it.
The hypermedia form supports student-driven acquisition of the learning material. The
most important user feature in this area is user knowledge of the subject being studied.
The adaptive hypermedia techniques can be useful to provide different content to different
users and to the same user at different knowledge stages. It can be useful to suggest how
to navigate through the hyperspace.

Another popular application for AH is the area of various on-line information systems
and on-line documentation and encyclopedias. The goal of these systems is to provide
reference access to information (rather than a systematic introduction as in educational
hypermedia) for the users with a different knowledge level of the subject. The informa-
tion space in these systems can range from small to very large. The user’s knowledge,
background and goal play an important role to provide help in finding relevant pieces of
information. User goals can be provided by the users [Höök et al., 1996] or inferred by the
system [Micarelli and Sciarrone, 1996; Höök et al., 1996].

22 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

Educational Hypermedia Systems

Anatom-Tutor [Beaumont, 1994], C-Book [Kay and Kummerfeld, 1994a,b],
<Clibbon> [Clibbon, 1995], ELM-ART [Brusilovsky et al., 1996a,c],
ISIS-Tutor [Brusilovsky and Pesin, 1994, 1995], ITEM/PG [Brusilovsky et al., 1993;
Brusilovsky and Zyryanov, 1993], HyperTutor [Perez et al., 1995; Perez, 1995], Land Use
Tutor [Kushniruk and Wang, 1994], Manuel Excel [de La Passardiere and Dufresne,
1992], SHIVA [Zeiliger, 1993], SYPROS [Gonschorek and Herzog, 1995],
ELM-PE [Brusilovsky and Weber, 1996], Hypadapter [Böcker et al., 1990; Hohl et al.,
1996], HYPERCASE [Micarelli and Sciarrone, 1996]

On-line Information Systems

Hypadapter [Böcker et al., 1990; Hohl et al., 1996], HYPERCASE [Micarelli and
Sciarrone, 1996], KN-AHS [Kobsa et al., 1994], MetaDoc [Boyle and Encarnacion, 1994],
PUSH [Höök et al., 1996], HYPERFLEX [Kaplan et al., 1993], CID [Boy, 1991],
Adaptive HyperMan [Mathe and Chen, 1994]

On-line Help Systems

EPIAIM [de Rosis et al., 1993], HyPLAN [Fox et al., 1993], Lisp-Ctritic [Fischer et al.,
1990], ORIMUHS [Encarnacao, 1995], WING-MIT [Kim, 1995], SYPROS [Gonschorek
and Herzog, 1995]

Information Retrieval Hypermedia

CID [Boy, 1991], DHS [Shibata and Katsumoto, 1993; Katsumoto et al., 1994, 1996],
Adaptive HyperMan [Mathe and Chen, 1994], HYPERFLEX [Kaplan et al., 1993],
WebWatcher [Armstrong et al., 1995]

Institutional Hypermedia

Hynecosum [Vassileva, 1994, 1996]

Personalized Views

Basar [Thomas, 1995; Thomas and Fischer, 1996], Information Islands [Waterworth,
1994]

Table 2.1: Classification of AHS according to their application areas

2.3. ADAPTIVE HYPERMEDIA SYSTEMS (AHS) 23

On-line help systems are very close to on-line information systems. These systems
serve on-line information about computer applications, such as a spreadsheet, programming
environment, or expert system, to help users to use the systems. Like on-line information
systems, they serve different information to different users. They are different from on-line
information systems in the sense that they are not independent from their application
systems and their information space is reasonably small. At the same time, the problem
of helping users to find relevant pieces of information is not too difficult because the
information space is not large and the system knows the context from which the user
called for on-line help (context-sensitive help). So the context of work is a reliable source
to offer the most relevant help items [Encarnacao, 1995; Grunst, 1993; Kim, 1995].

Information retrieval (IR) hypermedia systems form a new class of IR systems which
combine traditional information retrieval techniques with a hypertext-link-based access
from the index terms to documents. The systems provide the possibility of browsing the
information space using similarity links between documents [Agosti et al., 1995; Helmes
et al., 1995]. They may use browsing instead of constructing a proper formal query to
find the required documents. They are different from on-line information systems. Firstly,
they have a very large information space and the hyperspace can not be constructed “by
hand” as in on-line information systems. Secondly, their users are more often professionals
in different areas who use the system in their everyday work with different IR goals. An
existing adaptive IR system [Kok, 1991] shows some ways to help the user in pure IR
settings. Adaptive IR hypermedia systems can offer some additional help by limiting the
navigation choices [Boy, 1991; Mathe and Chen, 1996], and by suggesting the most relevant
links to follow [Kaplan et al., 1993; Katsumoto et al., 1996; Mathe and Chen, 1996].

Another area of application for adaptive hypermedia is institutional information sys-
tems which serve on-line all the information required to support the work of some institu-
tion, for example a hospital [Vassileva, 1996]. It is work-oriented in the sense that most
users only need to access a specific area of the information space relevant to their work.
This is significantly different from search-oriented IR hypermedia and on-line information
systems where the “working area” of a user is the entire information space. These kinds of
systems need assistance in organizing a more convenient personalized access to their work
area [Vassileva, 1996]. Similar to educational hypermedia, these systems try to help new
users to avoid getting lost even in their (relatively small) professional subarea.

The last of the application areas consists of systems for managing personalized views in
information spaces such as Information Islands [Waterworth, 1994] and Basar [Thomas,
1995]. By defining their personalized views on the entire hyperspace, users protect them-
selves from the complexity of the overall hyperspace. Each view can be devoted to one
of the goals, background or interests related with the work of the user [Thomas, 1995;
Brusilovsky and Eklund, 1998]. Similar to institutional hypermedia users of these systems
need a convenient access to a subset of an information space for everyday work. Person-
alized views in world-wide information spaces require permanent management because of
the dynamic character of the information space.

Brusilovsky pointed out that the six application areas are not mutually exclusive. Some
of them are “pairwise” similar and share the same problems. These pairs are: IR hyper-

24 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

media and on-line information systems, on-line information/help systems and educational
hypermedia, educational hypermedia and institutional hypermedia, institutional hyperme-
dia and information space management systems. Also, the difference between neighboring
areas is not always clear-cut and some systems belong to both areas, for example, Hyp-
adapter [Hohl et al., 1996] and HYPERCASE [Micarelli and Sciarrone, 1996] share features
of educational hypermedia and on-line information systems, and HYPERFLEX [Kaplan
et al., 1993] shares features of on-line information systems and IR hypermedia.

New applications ELM-ART [Weber and Specht, 1997],
Medtec [Eliot et al., 1997], AST [Specht et al.,
1997], ADI [Schoch et al., 1998],
Hy-SOM [Kayama and Okamoto, 1999],
AHM [Pilar da Silva, 1998], CHEOPS [Negro
et al., 1998], PATH [Hockemeyer et al., 1998],
TANGOW [Carro et al., 1999], Arthur [Gilbert
and Han, 1999], PAKMAS [Süßet al., 1999],
CAMELEON [Laroussi and Benahmed, 1998]

New frameworks InterBook [Brusilovsky et al., 1998],
KBS-Hyperbook [Henze et al., 1999],
AHA! [De Bra and Calvi, 1998b],
SKILL [Neumann and Zirvas, 1998],
Multibook [Steinacker et al., 1999], ACE [Specht
and Opermann, 1998], ART-Web [Weber, 1999],
MetaLinks [Murray et al., 1998]

Table 2.2: AHS in education after 1996

After 1996: Since 1996 these areas have been expanding at different paces. Educational
hypermedia and on-line information systems are now established leaders. They account
for about two thirds of the research efforts in adaptive hypermedia. Information retrieval
(IR) hypermedia is challenging the leaders. The traditional scope of IR hypermedia was
extended and now includes also systems for managing personalized views. On-line help sys-
tems and institutional hypermedia have received almost no attention in the last few years.
One possible reason is that these kinds of systems are still in the process of transition from
stand-alone hypermedia to Web-based hypermedia: stand alone versions of these systems
are not attracting adaptive hypermedia researchers anymore and Web-based versions are
not yet mature. We summarize the new extensions in the first three areas below from
Brusilovsky’s new review of adaptive hypermedia [Brusilovsky, 2001].

2.3. ADAPTIVE HYPERMEDIA SYSTEMS (AHS) 25

Classic on-line
information systems

SWAN [Garlatti et al., 1999], ECRAN
Total [Geldof, 1998], ELFI [Schwab et al., 2000]

Electronic
encyclopedias

PEBA-II [Milosavljevic, 1997; Hirashima et al.,
1998; Signore et al., 1997]

Information kiosks AVANTI [Fink et al., 1998]

Virtual museums ILEX [Oberlander et al., 1998],
Power [Milosavljevic and Oberlander, 1998],
Marble Museum [Paterno and Mancini, 1999],
SAGRES [Bertoletti and da Rocha Costa, 1999]

Handheld guides HYPERAUDIO [Not et al., 1998],
HIPS [Oppermann and Specht, 1999]

E-commerce systems SETA [Ardissono and Goy, 1999],
TELLIM [Milosavljevic and Oberlander, 1998;
Joerding, 1999]

Performance support
systems

ADAPTS [Brusilovsky and Cooper, 1999],
MMA [Francisco-Revilla and Shipman, 2000;
de Carolis et al., 1998]

Table 2.3: AHS serving on-line information after 1996

All the early educational hypermedia systems were essentially lab systems, built to
explore some new methods that used adaptivity in the educational context. Since 1996
the introduction of the Web has impacted both the number and the type of systems being
developed. The choice of the Web as a platform has become a standard. Several more

26 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

recent systems provide complete frameworks and even authoring tools. This indicates the
maturity of adaptive hypermedia and a response to a Web-provoked demand for user-
adaptive distance education courses. Among these systems, some are extended versions
of old systems, some are newly developed systems. Table 2.2 shows new educational
applications and new complete frameworks.

Since 1996 the area of on-line information systems grew into many subgroups (see
Table 2.3). These are “classic” online information systems, electronic encyclopedias, infor-
mation kiosks, virtual museums, handheld guides, e-commerce systems, and performance
support systems. Along with “classic” on-line information systems, these systems provide
specialization by taking into account a specific type of user activity in a particular appli-
cation area to provide better adaptivity and special kinds of adaptive behavior. Electronic
encyclopedias and information kiosks remain very close to classic on-line information sys-
tems. However, they enhance these by providing some specialized enhancements that are
not possible in generic systems by tracing user browsing. For example, an encyclopedia
can trace user knowledge about different objects (for example, animals) described in the
encyclopedia and provide adaptive comparisons [Milosavljevic, 1997]. Or it can trace user
browsing, deduce his or her interest and offer a list of most relevant articles [Hirashima
et al., 1998].

Virtual museums and handheld guides retain some similarity with traditional informa-
tion systems and have the same structured hyperspace of objects in their core. The unique
feature of these systems is the ability to provide adaptive guided tours in this hyperspace,
and to support the user’s exploration of a virtual or real museum with context-adapted
narration. Such handheld guides can trace and support user navigation both in the physical
museum space and in a virtual hyperspace.

E-commerce systems and performance support systems have diverged quite far from
classic on-line information systems. While a hyperspace of information items still con-
stitutes a major part of these systems, browsing of the information space is not a major
activity, but is a byproduct of the major activity (such as performing a particular job or
shopping for goods). The better these systems work, the less browsing should be required.
These systems have information about the context of the user’s work and the structure
of the user’s goal. This results in a higher level of precision in user modeling, and in a
superior level of adaptation.

From the large number of adaptive IR hypermedia systems developed to date, we can
distinguish four groups; search-oriented systems, browsing-oriented systems, systems for
managing personalized views, and information services (see Table 2.4).

Search-oriented systems provide a list of links to documents that satisfy the user’s
current information request by taking into account not only the set of words specifying
the current request but also a long-term/and short-term model of users’ interests and
preferences.

Browsing-oriented systems support their users in the process of search-driven browsing.
As in other types of adaptive hypermedia systems this is done through standard adaptive
navigation support technologies. Adaptive guidance systems mark one or more links on
the current page that are most relevant to the user’s goal. Adaptive annotation systems

2.3. ADAPTIVE HYPERMEDIA SYSTEMS (AHS) 27

attach various visual cues to the links on the current page in order to help the user select
the most relevant one. Adaptive recommendation systems attempt to deduce the user’s
goals and interests from his or her browsing activity, and build a list of suggested links to
nodes that usually cannot be reached directly from the current page, but are most relevant
to that user.

Search oriented adaptive IR hypermedia systems

Classic IR in web context SmartGuide [Gates et al., 1998]

Search Filters Syskill and Webert [Pazzani et al., 1996; Marinilli
et al., 1999]

Browsing oriented adaptive IR hypermedia systems

Adaptive Guidance WebWatcher [Joachims et al., 1997], Personal
WebWatcher [Mladenic, 1996]

Adaptive Annotation Syskill and Webert [Pazzani et al., 1996],
IfWeb [Asnicar and Tasso, 1997]

Adaptive
Recommendation/Closed Corpus

SiteIF [Stefani and Strapparava, 1999],
PEBA-II [Hirashima et al., 1998, 1999]

Adaptive
Recommendation/Open Corpus

SurfLen [Fu et al., 2000], Letizia [Lieberman, 1995],
IfWeb [Asnicar and Tasso, 1997]

Systems for managing personalized views

Adaptive Bookmark Systems WebTagger [Keller et al., 1997],
PowerBookmarks [Li et al., 1999], Siteseer [Rucker
and Polanco, 1997]

Information services

Search Services FAB [Balabanovic and Shoham, 1997],
PEA [Montebello et al., 1998], Edited AH [Höök
et al., 1997; Newell, 1997]

Filtering Services ELFI [Schwab et al., 2000], AIS [Billsus et al., 2000]

Table 2.4: AHS related to IR problems in 1996-2001

Systems for managing personalized views belong to the IR universe and can be con-
sidered complementary to classic IR hypermedia systems. While IR systems help users
to locate relevant information nodes, personal view management systems aim to organize

28 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

this information in some way. In the context of the Web, MyYahoo or MyNetscape and
bookmark organizers are personalized site views. The majority of personalized sites and
bookmark organizers are adaptable but not adaptive. There are few adaptive bookmark-
ing systems such as WebTagger [Keller et al., 1997], PowerBookmarks [Li et al., 1999] and
Siteseer [Rucker and Polanco, 1997].

The new class of IR hypermedia systems, Web-based information services work by
collecting a common pool of documents from an open corpus hyperspace over a long period
of time. They work with a community of users, and have the opportunity to learn about
both the pool of users and the pool of documents. In doing so, they can provide different
kinds of user support with the same adaptation engine by applying both content-based
and clique-based (collaborative) technologies. Information services are typically built using
agent-based technology. Information services have the potential to provide all the known
types of IR hypermedia services from search to managing personalized views.

2.3.3 Features used in AHS

In adaptive hypermedia systems before 1996, the adaptation was based on taking into
account various characteristics of their users represented in the user model. Currently the
situation is different. A number of adaptive Web-based systems are able to adapt to some-
thing other than user characteristics. Kobsa et al. proposed distinguishing adaptation to
user data, usage data, and environment data. User data comprise the traditional adapta-
tion target, encapsulated by various characteristics of the users. Usage data comprise data
about user interaction with the systems that can not be resolved to user characteristics
(but still can be used to make adaptation decisions). Environment data comprise aspects
of the users’ environment that are not related to the users themselves.

User’s characteristics: What user features can be taken into account when providing
adaptation? Brusilovsky identified five features used by many existing adaptive hyperme-
dia systems: knowledge, goals, background, hyperspace experience, preferences, and two
newer features: interests and individual traits.

• Knowledge: A user’s knowledge of the subject represented in the information space
appears to be the most important feature of the user for existing adaptive hypermedia
systems. It is used by about one third of all adaptation systems. It is a variable for
a particular user. This means that an adaptive hypermedia system that relies on
the user’s knowledge has to recognize the changes in the user’s knowledge state and
update the user model accordingly.

The user’s knowledge of the subject is most often represented by an overlay model
(Hypadapter [Böcker et al., 1990; Hohl et al., 1996], EPIAIM [de Rosis et al., 1993],
KN-AHS [Kobsa et al., 1994], ITEM/PG [Brusilovsky et al., 1993; Brusilovsky
and Zyryanov, 1993], ISIS-Tutor [Brusilovsky and Pesin, 1994, 1995], ELM-ART
[Brusilovsky et al., 1996a,c], SHIVA [Zeiliger, 1993], HyperTutor [Perez et al., 1995;
Perez, 1995]) which is based on the structural model of the subject domain. Generally,

2.3. ADAPTIVE HYPERMEDIA SYSTEMS (AHS) 29

the structural model is represented as a network which represents the structure of
the subject domain. An overlay model represents an individual user’s knowledge as
an “overlay” of the domain model. For each domain concept, an individual overlay
model stores an estimate of the user’s knowledge level for some concept. Overlay
models are powerful and flexible, they can represent a user’s knowledge of individual
topics. They were originally developed in the area of intelligent tutoring systems and
student modeling [Greer and McCalla, 1991]. But the overlay model has the problem
of initialization. Another simpler user model, the stereotype user model is often used
to initialize the user model. A stereotype user model distinguishes several typical or
“stereotype” users which have preset values for the domain overlay.

• Goals: A user’s goal or task is a feature related to the context of a user’s work with
the hypermedia system rather than with the user as an individual. It tells what the
user wants to achieve by using the hypermedia system. In application systems, a
user’s goal is a work goal; in information retrieval systems, a user’s goal is a search
goal; in educational systems, a user’s goal is a problem solving or learning goal.

• Background and experience: A user’s background describes all the information
related to the user’s previous relevant experience outside the subject of the hyperme-
dia system. For example, the user’s profession, experience of work in related areas,
and the user’s point of view and perspective. The user’s experience in the given hy-
permedia means how familiar the user is with the structure of the information space
(not its contents) and how easy the user navigates in it. These two user features are
usually modeled by a stereotype user model.

• Preferences: Preferences are user features describing that a user can prefer some
types of nodes and links over others. They can indicate e. g. preferred colors, learning
or navigation styles, etc.

• Interests: The user’s interests have been adopted in web IR hypermedia systems
that attempt to model the user’s long-term interests, and use these in parallel with
the user’s short-term search goal in order to improve the information filtering and rec-
ommendations. This feature is also becoming popular in various online information
systems.

• Individual traits: The user’s individual traits is a group name for user features
that together define a user as an individual. They are similar to user background
in that they are stable features of a user, but different in the sense that they are
extracted not by a simple interview, but by specially designed psychological tests.

Environment: Adaptation to the user’s environment is a new kind of adaptation that was
brought on by Web-based systems. Adaptation decisions may depend on the user’s location
and the user platform. Simple adaptation to the platform, such as hardware, software and
network bandwidth, usually involves selecting the type of material and media (e. g. still
image vs. movie) to present the content [Joerding, 1999]. This direction of adaptation will

30 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

provoke new interesting techniques. Adaptation to the user’s location becomes useful for
many on-line information systems. SWAN [Garlatti et al., 1999] demonstrates a successful
use of user location for information filtering in a marine information system. The current
research in this area shows a number of interesting adaptation techniques that take into
account user location, direction of sight and movements [Not et al., 1998; Oppermann and
Specht, 1999].

2.3.4 Methods and techniques used in AHS

Following Brusilovsky [Brusilovsky, 1996, 2001] we distinguish between high level methods
for adaptive hypermedia support and lower level techniques that are used to realize or im-
plement that support. By a method we mean a notion of adaptation that can be presented
at the conceptual level. A technique is then a way to implement a specific method. Tech-
niques operate on actual information content and on the presentation of hypertext links.
It may be possible to implement the same method through different techniques and to use
the same technique for different methods. In this section we present different methods and
techniques for adaptive presentation, and for adaptive navigation support.

Adaptive presentation

It may be desirable to present information on a certain topic in different ways, depending
on the user’s (fore)knowledge, goals, preferences or other characteristic properties. For
example, a user with experience in the domain can be shown more specific, more detailed
information, while a novice receives additional (and maybe introductory) explanations. In
a hypermedia system the content of a “page” may not only be text, but it may also contain
various items of other media types. We must remark however that the current generation
of AHS only offers adaptive presentation for text, and just media selection for multimedia
items.

Adaptive presentation methods: In [Brusilovsky, 1996] three main adaptive presenta-
tion methods are considered:

• additional, prerequisite, and comparative explanations

• explanation variants

• sorting

The most popular method appears to be the additional explanations . Its goal is to pro-
vide additional information, explanations, illustrations, examples, etc., to those users who
appear to need or want them. At the same time the system hides such explanations from
users who do not want them, for instance because of a mismatch in level of difficulty, or
because they prefer terse and basic information only. Prerequisite explanations are to some
extent a special case: an explanation is added because the system decides that without

2.3. ADAPTIVE HYPERMEDIA SYSTEMS (AHS) 31

this explanation the user will (or may) not understand the remainder of the page. The
method prerequisite explanations is thus used to compensate for the lack of prerequisite
knowledge. The method comparative explanations is used when there is information about
other concepts that are similar to the one described in the “current” page (or dissimilar
in a specific way, or otherwise related in some “interesting” way). Showing this additional
information about how the current topic relates to these other concepts only makes sense
when these other concepts are known to the user.

The method explanation variants is used in cases where all users need roughly the same
information (or explanation), but they need a different presentation of it. Some variants
may be more or less verbose, and may use or avoid specific technical terms for instance,
and some may even use a different media type.

The method sorting refers to situations where the information about the concept the
user wishes to study consists of more or less independent fragments that can be presented
in any order. The AHS can sort these fragments from most to least relevant, depending
on the user’s background and knowledge.

Adaptive presentation techniques: We concentrate on techniques in what is called
“canned text” adaptation. (This in contrast with adaptation by “generating” natural lan-
guage or by filtering text using natural language understanding.) There are five kinds of
techniques to implement the above mentioned methods:

• inserting/removing fragments

• altering fragments

• stretchtext

• sorting fragments

• dimming fragments

Inserting/removing fragments is equal to the term “conditional text” in the 1996 re-
view. With it all available information about a concept is divided into several fragments of
text (or multimedia content). With each fragment a (Boolean) condition is associated on
elements of the user model. When displaying a page about the concept, the system only
presents the fragments for which the condition is true. This is the lowest-level technique,
but also the most flexible one. It can be used to “simulate” the four other techniques.
With conditional text it is easy to implement the methods of additional, prerequisite and
comparative explanations. However, because it is such a low-level technique writing condi-
tional text makes authoring look like programming. The method of sorting cannot easily
be implemented using this technique. Inserting/removing fragments is the technique used
in the current AHA! system [De Bra and Calvi, 1998a].

Altering fragments is similar to the old term “fragment variants”. With it one can easily
implement explanation variants. The AHS stores several variants of the same information
fragment, and selects the variant to display based on the user model. On one information

32 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

page there may be many fragments, each with several variants. The author needs to
keep an overview of all possible combinations of fragment variants the system may select
and present on one page. Altering fragments covers the old terms “page variants” and
“frame-based techniques”, because the fragment is the whole page in page variants, and
the fragment is defined more fine-grained in frame-based techniques.

The Guide hypertext system [Brown, 1987] offered replacement links. Clicking on
a word or phrase would open up a content fragment (paragraph) on that term. Parts
could be opened and closed as desired. The technique of stretchtext is very similar. But
while in Guide all fragments would initially be closed, in stretchtext the AHS determines
which fragments to open (or stretch) when displaying a page. Stretchtext is useful for
implementing additional, prerequisite or comparative explanations, but less for explanation
variants and not at all for sorting.

Sorting fragments is similar to the old term “sorting” as an adaptive presentation
method. It is more suitable to call it a technique of adaptive presentation. With sorting
fragments the goal is to present the same information items to all users, and to order them
from most relevant to least relevant or according to some other criterion, which not only
depends on an explicit goal (such as a search request) but also on a user’s background and
foreknowledge.

Dimming fragments is a way to dim, shade or deemphasize (in some way) a fragment to
indicate that it is not (or at least less) relevant for the user [Hothi and Hall, 1998]. As an
adaptation technique it is new but it is a common (non-adaptive) technique for “sidebars”
in magazines.

Adaptive navigation support

The basic idea with adaptive navigation support is to adapt the rich link structure in such
a way that the user is guided towards interesting, relevant information, and kept away
from non-relevant information. Adaptive navigation support tries to simplify the rich link
structure to reduce orientation problems, while maintaining a lot of navigation freedom,
which is typical of hypermedia systems.

Adaptive navigation support methods: Brusilovsky [Brusilovsky, 1996] mentions five
adaptive navigation support methods:

• global guidance

• local guidance

• global orientation support

• local orientation support

• managing personalized views

2.3. ADAPTIVE HYPERMEDIA SYSTEMS (AHS) 33

Guidance can be provided in hypermedia applications where users have some goal in
terms of information they want (they need information which is contained in one or several
pages somewhere in the hyperspace) and where browsing is the preferred or only way to
find the required information. Global guidance means that the system suggests navigation
paths on a global scale. This is especially useful in educational hypermedia. When a user
wishes to learn about a certain topic, the system may suggest a set of pages to read, along
with an indication of a desired or at least meaningful reading order. Local guidance means
that the system suggests the next step to take, for instance through a “next” or “continue”
button.

Orientation support means that the system presents an overview of the whole (link)
structure of the hyperspace (global orientation support), or of a part thereof (local orien-
tation support). The system also indicates the position of the user (of the “current” page)
in this structure. When the orientation support is adaptive it means that the structure
which is shown indicates relevant parts to go to, parts that were visited before, and parts
that are (still) to be avoided. Global orientation support is sometimes offered through a
kind of “table of contents” column, frame or (sitemap) page in Web-based presentations.
Local orientation support shows a small part thereof, like one or two (link) levels up or
down from the “current” page.

Another way to protect users from the complexity of the overall hyperspace is to let
them organize personalized (goal-oriented) views . Each view may be a list of links to all
pages or sub-parts of the whole hyperspace that are relevant for a particular working goal.
Classic hypermedia systems and modern WWW browsers suggest bookmarks and hotlists
as a way to make personalized views. More advanced systems suggest some more high-level
adaptability mechanisms based on metaphors [Waterworth, 1994] and user models [Vas-
sileva, 1996]. Basar [Thomas, 1995] is an example of a system that provides adaptive
management of personalized views. Basar uses intelligent agents to collect and maintain
an actual set of links relevant to one of the user’s goals. We have not found any general-
ization of existing techniques for managing personalized views.

Adaptive navigation support techniques: We use the new review of hypermedia of
Brusilovsky [Brusilovsky, 2001] to describe adaptive navigation support techniques. The
the new and the old review differ in two aspects. The first aspect is that the new overview
has generalized “link hiding”, “link disabling”, and “link removal” to a more general tech-
nology called “link hiding”. The second aspect is that it adds a new technology “link
generation”. Below we give a detailed description of these techniques for adaptive naviga-
tion support:

• direct guidance

• link sorting

• link hiding

– link hiding

34 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

– link removal

– link disabling

• link annotation

• link generation

• map adaptation

Direct guidance means that the “best next” node for the user to visit is shown. It is an
obvious choice to implement local guidance. The destination of this link is determined by
the AHS, based on the user’s goal and other elements from the user model. It is not like
a static “next page” button.

The basic idea of adaptive link sorting is to sort all the links on a particular page
according to the user model and to some goal-oriented criteria: the more towards the top
of the page, the more relevant the link is. Adaptive sorting can be used for global guidance:
all links from the node are sorted according to their relevance according to the global goal.
Sorting is typical for information retrieval systems. However, the “teach me” feature of
InterBook [Brusilovsky et al., 1996b] for instance illustrates that sorting can be used in an
educational AHS as well.

With the technique of link hiding the navigation space is simplified by hiding links to
“non-relevant” pages. With contextual links (links occurring as “hot words” or “anchors”
within the text) hiding can be realized by changing the color of the anchors to that of
normal text. For non-contextual links this technique is not very helpful. (In a list, for
instance, items are clearly visible, whether in a typical link color or not.) In an index
or map hiding can only be achieved by making the anchors transparent (or giving them
the “background color”). However, this looks more like link removal than like hiding (see
below).

The basic idea of link removal [De Bra and Calvi, 1998a] is that link anchors for
undesired links (non-relevant or not yet ready to be read) are removed. This technique
works well for non-contextual links, as in lists or maps, but cannot be used in running text,
because the words that make up the link anchor can in general not be omitted from the
sentence in which they appear.

The link disabling [De Bra and Calvi, 1998a] technique is based on the idea that the
“link functionality” of a link is removed. This technique is not usable by itself. The
disabled links must be either hidden or annotated so that the user does not expect the
links to work.

The idea of the adaptive link annotation is to augment the link with some form of
comment that tells the user more about the current state of the pages to which the an-
notated links refer. It is more powerful than hiding (as hiding is in essence also a form
of annotation), but it does not reduce the cognitive overhead as much as hiding does.
(The navigation space is not simplified by showing fewer links.) Link annotation informs
the user about the current “state” of the pages the links point to. We have found three
methods for deciding how to annotate links:

2.3. ADAPTIVE HYPERMEDIA SYSTEMS (AHS) 35

• The annotation may indicate the relevance of a link. Colors may be used to distin-
guish for instance “highly relevant”, “somewhat relevant”, “non-relevant”.

• The annotation may indicate whether the user already knows the concepts described
in the page a link points to. Several degrees of knowledge may be distinguished, for
instance “not known”, “known”, “well known”.

• The annotation may also indicate whether a user is able to understand the infor-
mation contained in the destination page (“ready to be read” vs. “not ready to be
read”).

All three types of annotation can be used simultaneously (provided that the system is
able to distinguish many link types in a visual way). For instance, links to non-relevant
pages may be hidden, while links to relevant pages are colored differently depending on
whether the user is “not ready to read” them, “ready to read them for the first time”, or
“has already read” them.

Recommender systems introduced a new kind of adaptive navigation support, to gen-
erate new, not-authored links for a page. Link generation includes three cases: discovering
new useful links between documents and adding them permanently to the set of existing
links; generating links for similarity-based navigation between items; and dynamic recom-
mendation of relevant links.

Map adaptation is mentioned by Brusilovsky [Brusilovsky, 1996] as a separate tech-
nique, in which the content and presentation of a map of the link structure of the hyper-
space is adapted. But in fact, the adaptation to the map can be seen as a combination of
link removal operations, annotations and (maybe two-dimensional) sorting.

2.3.5 The main parts of adaptive hypermedia applications

Most adaptive hypermedia applications can be described as consisting of the three parts
below. (This is just a conceptual view and does not imply that the systems actually have
a separate representation for each of these parts.)

• An information domain contains the information content of the application. With
“content” we mean not only the information items (fragments, pages) but also the
relationships between these items. Every piece of content belongs in this part. So
all “explanation variants”, all versions of pages, etc. This part is an extension to the
traditional view of hypertext consisting of nodes and links.

• A user profile for each user represents user features that are relevant to the adap-
tation, e. g. the user’s preferences, knowledge, goals, navigation history and possibly
other relevant aspects that are used to provide personalized adaptations. Part of this
profile relates to the information domain and part relates only to the user and his or
her environment. This part was described in Section 2.3.3.

36 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

• An adaptation description consists of a description of how to maintain the user profile
by observing the user’s (browsing) behavior, and how to generate adaptation. It uses
the information from the information domain and the user profile. This part was
described in Section 2.3.4

In the next chapter we will use this three part description of AHS as the basis for a reference
model for adaptive hypermedia applications.

2.3.6 Examples of authoring adaptive hypermedia applications

Authoring an adaptive hypermedia application involves creating the three main parts men-
tioned in the previous subsection. Different systems take a different approach towards
authoring. For example InterBook [Brusilovsky et al., 1996b] requires authors to create
annotated MS Word files. Each word file defines a page for a section of the textbook. Each
page contains a description of the information content and relationships between pages.
The author connects pages to concepts, meaning that the user will learn about a concept
when reading a page. The author also defines which concepts are prerequisites for which
other concepts. InterBook creates and maintains a user profile as an overlay model. In-
terBook also performs all adaptation automatically in a fixed way, as we shall describe in
Chapter 5. For InterBook an author thus creates only the information domain.

AHA! [De Bra et al., 2000] requires authors to create annotated HTML or XML files
for the information pages. The conceptual structure must be defined in a separate XML
file. This file also defines how the system will update the user profile, based on the user’s
browsing behavior. Another XML file defines the (prerequisite) requirements that deter-
mine when pages are “recommended”. Inside the information pages the author must add
conditions for fragments. AHA! has some predefined behavior, but the author has to cre-
ate not only the information domain but also most of the user profile and the adaptation
description (and both the user profile update part and the adaptation generation part).
However, from the above description one can already see that the three parts are not clearly
separated in AHA!. The structure of the user profile is defined together with the definition
of how the profile is updated. Also, the information pages are mixed with adaptation rules
for the conditional inclusion of fragments.

The authoring processes for InterBook and for AHA! illustrate shortcomings in current
AHS and show how authoring should be improved in the future. Authoring should be made
easy in the sense that the author should be able to describe adaptation in a simple way. On
the other hand an author should also have the opportunity to define how the user profile
is updated and how the adaptation is performed. In InterBook the authoring is easy, but
the system behavior is all “hardcoded”, so an author cannot change how the adaptation
is performed. In AHA! an author can define how the user profile is updated and how
adaptation decisions should be made by the system. But authoring is complicated, mostly
because the descriptions of the information domain, the user profile and the adaptation
are mixed instead of clearly separated.

2.4. SUMMARY OF THE RESEARCH BACKGROUND 37

2.4 Summary of the research background

Hypertext systems provide navigational freedom: users can read pages in many different
orders. When using a hypertext application users may experience personalization because
they can follow any link they want. However, the personalization is only “perceived” and
not real. Traditional hypertext systems use a “one size fits all” approach: they do not
take individual users’ features into account. So in answer to research question 1 we can
state that hypertext systems do not offer any personalization, even though it may appear
to users like they do. Hypertext systems suffer from inherent navigation and orientation
problems. Many hypertext systems try to solve the problem by providing some navigation
support based on the conceptual structure of the information.

In answer to research question 2 we have seen that adaptive hypermedia systems ap-
proach navigation and orientation problems by providing adaptive content and adaptive
navigation support. These systems maintain a user model to trace the users’ browsing be-
havior. AHS can make hypertext more useful and usable in the sense that they personalize
the information according to users’ needs. AHS are being used in many application areas,
but the majority is currently targeting educational applications. We realize that we have
not fully answered research question 2. We have shown how adaptive hypermedia systems
try to solve the problems of (non-adaptive) hypermedia systems, but we have not shown
that these attempts actually work.

Adaptive hypermedia applications can be described as consisting of three main parts:
information domain, user profile, and adaptation description. We will use this approach
in the reference model that we describe in the next chapter. Different adaptive hyperme-
dia systems may require authors to create these three parts in different ways, sometimes
complicating the authoring task by mixing these three parts. The reference model we
developed and describe in this dissertation advocates the clear separation of these parts
in order to provide rich adaptation flexibility to authors in an architecture that is easy to
understand and to use.

38 CHAPTER 2. FROM HYPERTEXT TO ADAPTIVE HYPERMEDIA

Chapter 3

AHAM: Adaptive Hypermedia
Application Model

This chapter presents the Adaptive Hypermedia Application Model (in short AHAM)
which describes the adaptation functionality of AHS at an abstract level. AHAM is an
extension of the Dexter reference model [Halasz and Schwartz, 1990] for hypermedia ap-
plications. AHAM advocates a clear separation of three parts of an adaptive application:
(a) the information domain (b) a representation of the user and how the user “relates to”
the information content, and (c) a description of how the AHS adapts the information
(presentation and navigation) to the user. We call these three parts the domain model
(DM), user model (UM), and adaptation model (AM) in AHAM. The AHAM model was
first introduced in [De Bra et al., 1999].

Section 3.1 introduces the overall structure of AHAM. Section 3.2 describes the domain
model which consists of a set of concepts and concept relationships. The DM supports
different “levels” of concepts, from very general abstract concepts to more specific and
concrete concepts that correspond to a single Web page, and even to smaller information
fragments such as a paragraph or sentence. Section 3.3 describes the user model as a
fine-grained overlay of the DM. The UM also captures other user features that are used in
adaptation. Section 3.4 describes the adaptation model which consists of a set of rules to
describe how to update the UM and how to generate adaptive presentation specifications.
Section 3.5 describes the communication between different adaptive hypermedia systems
by including information exchange functions in AHAM. When different AHS can import
each other’s user models (of the same users) they have more information to base their
adaptation on. Section 3.6 summarizes features of AHAM.

3.1 Introduction

After studying the current generation of AHS in Chapter 2, we are now going to design
a general reference model for adaptive hypermedia systems, called AHAM for Adaptive
Hypermedia Application Model. AHAM is an extension of the Dexter reference model for

39

40 CHAPTER 3. AHAM: ADAPTIVE HYPERMEDIA APPLICATION MODEL

hypermedia systems. AHAM should cover the three main parts (Section 2.3.5) of adaptive
hypermedia applications. We define three sub-models, the domain model (DM), the user
model (UM), and the adaptation model (AM) to describe the three parts, the information
domain, the user profiles, and the adaptation description. We pay particular attention to
the issue of how to make authoring easier when we discuss the requirements to design these
sub-models of AHAM.

The first aim of AHAM is to be a reference model for AHS. This means that it should be
possible to describe the structure and functionality of existing (and hopefully also future)
AHS in the model. A secondary aspect of a reference model is that the descriptions of
different AHS may enable us to compare different AHS and possibly even to define a
translation of an adaptive hypermedia application from one system to another. Because
we already have studied and described a reference model for hypermedia systems we first
look at the Dexter model to see whether we can use it to describe AHS. Our choice for the
Dexter model is motivated by the facts that Dexter is a well-known reference model for
hypermedia systems, that it has been used as a standard for many years, and that it has
been formalized and even implemented. Should the Dexter model (as we demonstrate) not
be able to express the full functionality of AHS we can then try to extend it. Extending
the Dexter model not only gives us a reference model for AHS but also shows that AHS can
be described as extensions to hypermedia systems in general (thereby answering research
question 3).

In the Dexter reference model, as described in Chapter 2, the Storage Layer de-
scribes the information domain at an abstract level. (The concrete content is imple-
mentation dependent and hidden in the Within-Component Layer.) The Storage and
Within-Component Layers treat hypertext as an essentially passive data structure [Halasz
and Schwartz, 1990]. They do not story any user-specific information. Everything relating
to accessing and presenting the information to the user belongs in the Run-time Layer.
This layer offers a session entity to keep track of the interaction between the user and the
system. Session information however is not stored permanently. It therefore cannot be
used to represent the persistent (and constantly updated) user profile and the adaptation
based on that. We can thus conclude that the Dexter model cannot be used directly to
represent AHS. It cannot describe any personalization and adaptation to a persistent user
profile.

As argued in Chapter 2 an AHS needs to store persistent information about a user
in order to be able to perform adaptation. This information cannot be represented in
the Dexter model. Therefore we extend the Dexter model by including a user profile
and adaptation in the Storage Layer, without throwing away the structures and functions
Dexter already offers. We can use Dexter for the basic hypertext functionality and focus
our description on the extensions for adaptation.

As shown in Figure 3.1, AHAM focuses on the Storage Layer and uses the anchoring
and the presentation specifications as an interface to the Within-Component Layer and
the Run-time Layer. In AHAM the Storage Layer consists of three parts: a domain model
(DM), which describes the information domain, a user model (UM), which describes user
features used in adaptation, and an adaptation model (AM), which describes the adaptation

3.2. THE DOMAIN MODEL (DM) 41

strategies. With the help of the user model and the domain model, the adaptation model
specifies how to update the user model and how to generate adaptation. We will describe
the details of each sub-model of AHAM in the following sections.

The “T” structure of the Storage Layer, shown in Figure 3.1 stems from the boundaries
and interaction between the different sub-models. The AM generates the presentation
specifications so it sits right below that layer. Adaptation rules use the structure of the
information domain and the user profile to decide how to perform the adaptation. It thus
sits between the DM and the UM. All connections between the actual information content
(in the Within-Component Layer) and the submodels of the Storage Layer use connection
points specified in the Anchoring layer.

Run-time Layer

Presentation Specifications

Adaptation Model

Anchoring

Within-Component Layer

Domain
Model

User
Model

Storage Layer

Figure 3.1: The AHAM model

3.2 The Domain Model (DM)

In the Dexter model, the central notion of the Storage Layer is the component. This notion
covers both nodes and links. In adaptive hypermedia we extend the term component to
concept component , or just concept . Instead of link components, AHAM uses concept
relationships .

3.2.1 Concepts

In the Dexter model, the component may represent a very small amount of information or
a very large amount of information for a user to read. Users simply receive what is defined
in the nodes, which are considered “atomic” from the point of view of the Storage Layer.
Dexter also considers composite components, but few systems at that time used them. For
adaptive applications two requirements change this situation:

42 CHAPTER 3. AHAM: ADAPTIVE HYPERMEDIA APPLICATION MODEL

• Several adaptive presentation techniques deal with (small) parts of a node or page:
inserting/removing fragments, altering fragments, stretchtext and fragment sorting
(see Section 2.3.4). In order to be able to describe these techniques at an abstract
level in the DM, we consider pages as composites consisting of fragments .

• AHS often use the notion of prerequisites , e. g. for prerequisite explanations (see
Section 2.3.4). In order to decide whether a user has sufficient prerequisite knowledge
the system may have to consider whether the user has already read a number of
pages about the same topic. To make it easy to define such prerequisites we need
the ability to combine pages into larger conceptual units, which we call concepts.
(Without concepts an author would have to include all the pages of a concept in a
description of a prerequisite.)

Because of the above reasons we introduce three levels in the DM. We introduce a page
component to capture the amount of information that is presented to a user at any one
time. For a larger amount of information, an abstract composite component is used (or
simply abstract concept or just concept if there is no confusion). A composite component
consists of a number of pages and/or other (smaller) composite components. A page can
consist of a number of smaller items that can be included or left out, but that cannot be
changed by the AHS. They are “opaque” to the AHS. We call them atomic concepts or
fragments. (We use these terms interchangeably in the sequel.)

The structure formed by fragments, pages and abstract concepts must form a hierarchy.
Figure 3.2 illustrates a part of an example concept hierarchy. In this figure we see the three
levels of concepts: at the lowest level, we have the fragments (that cannot be changed by
the AHS). At the middle level, we have pages which are the units of information presented
to the user for each interaction. Pages are bundled into abstract concepts and in the
same way we can build higher level abstract concepts. We use the constraint that the
composition structure must be a directed acyclic graph (DAG). Thus, no component may
contain itself as a subcomponent (directly or indirectly). Also, every atomic concept must
be included in some page (possibly more than one).

Figure 3.2: An example of a concept hierarchy

3.2. THE DOMAIN MODEL (DM) 43

After this informal introduction we now define the AHAM model in a semi-formal way.

Definition 3.1 A concept component (or concept for short) is an abstract representation
of an information item from the application domain. A concept is a pair < uid, cinfo >,
where uid is a globally unique (object) identifier for the concept, and cinfo is the component
information. A component’s information consists of:

• a set of attribute-value pairs

• a sequence of anchors

• a presentation specification

The structure of attribute values and anchors are described below. The presentation spec-
ifications are not described in detail in AHAM. (They are also not described in detail in
the Dexter model.)

The Dexter model distinguishes atomic from composite components. AHAM does the
same for concepts.

Definition 3.2 An atomic concept component corresponds to a fragment of information.
It is primitive in the model. Its anchor values and possibly some attribute values belong to
the Within-Component Layer. They are not described in AHAM (or Dexter).
A composite concept component has a children attribute, which (has a value that) is a
sequence of concepts. It has a constructor attribute, which indicates the “structure” of the
composite, and which indicates “how much” of the composite each subcomponent represents.
We distinguish two kinds of composite concepts:

• An abstract composite concept has only children that are composites themselves.

• A page composite concept has only children that are atomic concepts (i. e. fragments).

The composite concept component hierarchy must be a directed acyclic graph, i. e. no com-
ponent can be a subcomponent of itself, either directly or indirectly. Also, in AHAM every
atomic (fragment) concept is required to be a subcomponent of at least one page concept.

Note that composites that have composite as well as atomic children can be simulated by
introducing extra intermediary composites. The restriction in our definition simplifies the
implementation of resolver and accessor functions that translate uid’s to components in
order to allow their presentation. The resolver function can be specified in the adaptation
model. The accessor function is part of the adaptation engine of the AHS. (The adaptation
engine is an implementation of the adaptation functionality of AHS and is described in
Chapter 4.)

It may seem that there is no information content. However, the content is an attribute
of fragments, belonging to the Within-Component Layer. Also, information is accessed as

44 CHAPTER 3. AHAM: ADAPTIVE HYPERMEDIA APPLICATION MODEL

pages, constructed out of fragments. We require each fragment to be contained in at least
one page because otherwise there is no way to access that fragment’s information.

Dexter’s notion of “composition” does not have any associated semantics. Dexter does
not model the effect of a composite on link traversal, nor does it explicitly model the
presentation specification of composites. To address the adaptation in the presence of
composites we extend the Dexter model by introducing two functions in the adaptation
model, the page selector and page adaptation generator . They are part of the Dexter
model’s accessor function.

Definition 3.3 When a user accesses an abstract concept the concept’s page selector se-
lects one or more subcomponents to present. A selected subcomponent may itself still be an
abstract component. The “selection” process is therefore repeated until all subcomponents
are page concepts. A page constructor describes how the presentation specification of a page
is generated. In AHAM we only describe the page adaptation generation that generates
adaptation attributes for the presentation specification of the component.

In AHAM we treat adaptation attributes just like normal attributes of a component. In
the rule language described later we will for instance write F.pres := “show” to indicate
that a fragment F should be shown. Page selectors, page constructors and adaptation
generators can all be described in the adaptation model.

3.2.2 Concept relationships

Some AHS use relationships between concepts to provide effective adaptive content and
navigation support. (An example are prerequisite relationships in educational applica-
tions.) Concept relationships exist in almost every application information domain. AHAM
tries to provide a framework to allow the description of any concept relationship in order
to let the systems use this information to provide effective or more sensible adaptation
automatically.

In the Dexter model, a component is either an atom, a composite or a link. Links
represent relationships between components. While the term link suggests that these rela-
tionships are used for navigation, the model does not require that. In Dexter, the Storage
and Within-Component Layers treat hypertext as an essentially passive data structure, so
it does not require links to have the dynamic property that they can be used for navigation.

In order to represent semantic (non-navigational) relationships between concepts within
the Dexter framework we define concept relationships as link components. They can be
used for any type of relationship between components (concepts). As shown in definition 2.4
the Dexter model also allows links of which (some) endpoints are links. We do not consider
such relationships, mostly because we know of no existing AHS that offers this feature.

In AHAM, as well as in the Dexter model, the sequence of anchors of a concept compo-
nent provides a way for links to be attached to a specific part of a component (in a media
or implementation independent way):

3.2. THE DOMAIN MODEL (DM) 45

Definition 3.4 An anchor is a pair <aid, avalue>, where aid is a unique (object) identifier
for the anchor within the scope of its component and avalue is an arbitrary value that
specifies some location, region, item or substructure within a concept component. Anchor
values of atomic components belong to the within-component layer and are not elaborated
in AHAM (or Dexter). Anchor values of composite components are uid-aid pairs, where
the uid identifies a subcomponent of the composite and the aid identifies an anchor within
that subcomponent.

Concept relationships in AHAM, just as links in the Dexter model, consist of a list of
components. These components however are not given as a unique identifier, but rather
as a specifier that needs to be resolved to an identifier (or a set of identifiers). In AHAM,
unique identifiers are used as specifiers, but these are not (always) the identifiers of the
“real” endpoint of a link or the element in a concept relationship. When the endpoint
or element is a composite concept component, it needs to be “resolved” by traversing the
composite hierarchy down to the page level. This is what the page selector does that we
described earlier.

Definition 3.5 A specifier is a tuple <uid, aid, dir, pres> where uid is the uid of a concept
component, aid is the id of an anchor, dir is a direction (which is FROM, TO, BIDIRECT
or NONE), and pres is a presentation specification.

At first sight, it appears that there are no “computable” specifiers. However, the com-
putable part is hidden in the page selector (corresponding to the Dexter model’s resolver
function) that must translate the uid of an abstract concept to the uid of one or more
pages to be presented.

Definition 3.6 A concept relationship component is a component <uid, ss, cinfo> where
uid is the identifier of the relationship component, ss is a sequence of (two or more) spec-
ifiers and cinfo is the component information which consists of:

• a set of attribute-value pairs; this set must include an attribute-value pair to indicate
the type of the relationship.

• a sequence of anchors (not used in AHAM)

• a presentation specification

A common type of relationship is the link, which corresponds to link components in
the Dexter model and which are used for navigation. However, in AHAM we consider
other types of relationships as well that play a role in the adaptation. Figure 3.3 shows a
small example of a set of concepts and concept relationships. In this example we assume
the type link to represent navigational links between concepts, e. g. a concept C1 has
a link to concept C2. We also assume two other types of concept relationships. The
type “prerequisite” describes a certain desirable reading order between concepts. When a
concept C1 is a prerequisite for C2 it means that the user should read C1 before reading C2.

46 CHAPTER 3. AHAM: ADAPTIVE HYPERMEDIA APPLICATION MODEL

It does not imply that there must be a (direct navigational) link from C1 to C2. It only
means that the system must somehow take into account that “visiting” C2 is not desired
before C1 has been “visited”.

Figure 3.3: An example of concept relationships among concepts

Note that a graph presentation like Figure 3.3 only works for binary concept relation-
ships (such as simple links, some prerequisites and inhibitors). AHAM allows relation-
ships between a (longer) sequence of concepts, in order to be able to describe features
like guard fields in Storyspace [Bernstein et al., 1991] and “requirement” relationships in
AHA! [De Bra and Calvi, 1998c].

In AHAM authors or system designers can (in theory) define arbitrarily many types
of relationships. In fact, one can even imagine an AHS without links (as in spatial hy-
pertext [Marshall and Shipman, 1995]). A relationship typed “inhibit” can describe an
unusual type of desirable reading order: C4 “inhibits” C1 means that after visiting C4 it is
no longer desirable to visit concept C1. In Section 3.4 we show that one way to make the
“desirability” of a link destination clear to the user is to use different presentations of link
anchors, e. g. by giving them a different color.

In actual AHS there is usually a fixed set of concept relationship types. This may
limit the use of the AHS to a certain kind of applications. For authors who only need the
existing types of relationships the creation of applications is easy. But when a different type
of relationship is needed authors may have to play “tricks” with the available types to create
the adaptation they want. We will see examples of this in Chapter 6 where we describe how
to perform certain adaptation in the AHA! system [De Bra et al., 2000]. New developments
in AHA! include the ability to define concept relationship types. Unfortunately usability
experiments have not yet been performed at the time of writing this dissertation.

3.3. THE USER MODEL (UM) 47

Definition 3.7 The atomic concept components, page concept components, composite con-
cept components and concept relationship components together form the domain model
(DM) of an adaptive hypermedia application.

The domain model shows the combination of concepts and concept relationships. The
concept hierarchy describes the structure of concepts at many different levels, allowing
authors to describe adaptation using concepts at any level. By using concept relationships
between concepts, authors can describe adaptation based on semantic relationships, and
not just on navigational links.

3.3 The User Model (UM)

Adaptive hypermedia systems distinguish themselves from other hypermedia systems by
maintaining a (permanent and continuously updated) user model (UM). As explained in
Section 3.1 that the UM is part of the Storage Layer because it needs to be persistent
accross session boundaries (so it cannot be in the Run-time Layer) and it needs to be
described in detail (so it cannot be in the Within-Component Layer). In Section 3.3.1 we
describe the structure of the UM. In Section 3.3.2 we explain how user model updates are
triggered. User modeling in AHAM was first published about in [Wu et al., 1999b].

3.3.1 The UM - an overlay of the DM

Most AHS store a user’s knowledge about or interest in concepts. Some AHS also want
to store a user’s preferences, such as a preferred media type (text, audio, video), a desired
verbosity level (terse, medium, verbose), link annotation type (hiding, annotation, and if
so, using which color scheme); and a user’s background information, such as experience in
the use of adaptive hypermedia systems, possible disabilities, age, education, etc. Other
systems may want store information about a user’s environment. In summary, AHS should
be able to adapt to three types of information:

• stable personal characteristics of the user, such as interests, background, learning
style, etc.

• aspects of the user’s environment, including place, time, used equipment (computer,
PDA, phone) and network

• the relation between the user and the concepts in the domain model, such as knowl-
edge about or interest in each concept

In this dissertation we are mostly interested in the part of the user model that deals with
the third aspect: how the user relates to the domain model when browsing the hyperspace.
We therefore build the UM as an overlay model of the DM. For each concept in the DM,
the UM stores attributes values about the concept. The UM is fine-grained, based on the
DM being well-structured at many different concept levels (from high level concepts down

48 CHAPTER 3. AHAM: ADAPTIVE HYPERMEDIA APPLICATION MODEL

to fragments). It is the author’s responsibility to define concepts at the appropriate level
of abstraction and concreteness for their applications.

Of course one could simulate personal characteristics and environmental factors through
“pseudo concepts”. Doing so would enable AHAM to also describe AHS that take these
other aspects into account, albeit in an artificial way.

Definition 3.8 An AHS associates a number of user-model attributes with each concept
component of the domain model. This user model (UM) is a set of < uid, uinfo > pairs,
where uid is the unique identifier of a DM concept and uinfo is a set of attribute-value
pairs. An AHS maintains a UM (instance) for each user.

We often use an alternative view of the UM, in which we consider the UM to be a
(sparse) table. The columns of the table are first the uid of a concept, and then all the
attributes that appear in uinfo for some concept. The rows of the table contain first the
uid of a concept and then the UM attribute values for that concept. (There may be holes
in that table because the uinfo for concepts may contain different attributes for different
concepts.

AHAM does not require the presence of specific attributes in the user model. However,
many AHS store at least the following two attributes, and maybe also the third:

• The knowledge (or knowledge value) indicates how much the user knows about the
concept. The concept-value pairs together form an overlay model, which represents
the “knowledge” of the user. Some AHS use a “Boolean user model” [De Bra and
Calvi, 1997, 1998c], meaning that for each concept the user either knows or does not
know the concept (according to the system). Other AHS use either a small set of
knowledge values [Brusilovsky et al., 1996a,b], such as “not known”, “learned”, “well
learned” and “well known”, or even a large set, such as a percentage or a (real) value
between 0 and 1 [Pilar da Silva, 1998].

• The read attribute indicates whether the user has read something (a fragment, a page
or a set of pages) about the concept. In Web-based systems the read attribute is
used to generate a different presentation for anchors of links to pages that have been
read than for links to unread pages. (By default, in most browsers the difference is
a purple vs. blue color for the anchor text or image border.) The read attribute may
have Boolean values in some AHS while it may be a list of access times in other AHS.

• A less common attribute is ready (or ready to read), sometimes also referred to as
desirable or recommended. It indicates whether the user is ready to read about
this concept. (In a learning application this would mean that sufficient prerequisite
knowledge has been acquired.) If this attribute exists in the user model it can be used
to ensure that recommended pages (or fragments) always remain accessible. If the
AHS calculates the desirability on the fly (as many do) pages may lose their “ready-
to-read” status and sometimes even become inaccessible. (In a learning application
this is probably not desired system behavior, but in an adventure game for instance
this could be common.)

3.3. THE USER MODEL (UM) 49

Table 3.1 shows an example of a user model (instance). In the example, HTML and
HTTP are subconcepts of the composite WWW. By learning everything about HTML (but
still nothing about HTTP) the composite WWW already becomes “learned”. It is thus
possible to already have learned something about a concept while “read” is still false. It
is even possible that there is no page for the concept WWW, and that it thus can only be
learned by reading about subconcepts. In that case “read” is “undefined”.

uid (name) knowledge read ready

intro well learned true true
Xanadu learned true true
KMS not known false true
HTML well known true true
HTTP not known false true
WWW learned – –

Table 3.1: Example user model instance

The “table” in Table 3.1 is only a conceptual representation. Actual implementations
of AHS may implement this structure in a different way. The AHA! system [De Bra and
Calvi, 1997, 1998c] for instance uses a logfile (separate for every user) in which the time
is logged at which a user requests a page, and also the time when a user leaves the page.
Also, an AHS may implement just one user model table for all users together, by adding
a uid attribute.

While most AHS to date provide a fixed set of attributes, future AHS allow authors to
“invent” new attributes. For the AHAM model this makes no difference. From now on we
shall use the notation C.attr as a convenient way to denote the value for the attribute attr
of the concept with uid C for the “current” user. When Xanadu.read is true, it means the
user has read the page about concept Xanadu. (We assume the AHS distinguishes users
in a way that does not require us to include the user id in our notation.)

3.3.2 Events influencing the UM

The main source of input for an AHS is the browsing behavior of the user. However,
as we saw previously, the system may wish to store aspects of the user or the user’s
environment. While some of this information may also be deduced from the browsing
behavior, other parts of information must be gathered through a forms-based interface.
Likewise, reliable information about the user’s knowledge cannot be obtained from just
observing the browsing. In AHAM we assume that the inputs for updating the UM are
“events”. The model does not constrain the number of types of events to take into account.
Four such event types that we frequently find in AHS are following:

50 CHAPTER 3. AHAM: ADAPTIVE HYPERMEDIA APPLICATION MODEL

1. The user follows a link to a (different) page.

2. The user performs a test (typically in learning applications).

3. Information (about the user) is imported from an external system, possibly also an
AHS.

4. A user preference is (explicitly) set or declared by the user (through a form).

Besides observing the browsing behavior, the application can change the user features
based on information that is explicitly imported from the environment. (A server may for
instance receive information about the browser’s window size in a request, or may measure
data transfer rates.)

These four different kinds of changes, or events, lead to four kinds of “rules” for updating
the user model. Every system includes rules for events of type 1. The system can be made
more author centered by including rules for events of types 2 and 3, while the application
can become more user centered by including rules for events of type 4. It is also possible
to choose a combination that suits the application. In this dissertation we focus on rules
for event type 1, meaning that we focus on the access to pages.

3.4 The Adaptation Model (AM)

In AHAM the basis for adaptive functionality can be found in the adaptation model (AM).
The AM defines how the user model is updated and adaptation is done by using information
from the domain model and the user model and the interaction of the user. These tasks are
performed by an adaptation engine that we describe in the next chapter. There are different
ways to express the functionality of the adaptation model. We choose the mechanism of a
language of rules to express the adaptation strategies at an abstract level. In Chapter 4
we describe the interpreter for these rules.

3.4.1 The definition of adaptation rules

Adaptation can be specified in a structured way or in an ad-hoc way. With structured, or
generic, we mean that we associate a certain adaptation behavior with concept relation-
ships (or other structures) that exist in the domain model. In InterBook [Brusilovsky et al.,
1996b] for instance the annotation of link anchors (with green, white or red balls) depends
on the user’s knowledge and the defined prerequisite relationships. (See Chapter 5 for
details.) In AHAM we can also allow authors to write adaptation rules that are specific for
some given concepts (irrespective of the existence of relationships between these concepts).
In the AHA! system [De Bra and Calvi, 1997, 1998c], for instance, all adaptation rules
are specific (i. e. tied to concrete concepts and/or pages). If we allow generic and specific
adaptation rules it becomes possible that a generic rule and a specific rule contradict each
other. In this case, it is normal to let the specific rule take precedence over the generic
one.

3.4. THE ADAPTATION MODEL (AM) 51

Rules in an AHS can perform one of the following three functions: initialization of
the user model (IU), updating the user model (UU), and generation of the adaptation
(GA). In the definition below we split the user model updates in two parts: one (UU-pre)
performed before generating the adaptation and one (UU-post) performed after generating
the adaptation. The reason for having different execution phases to update the user model
in the definition is that one may wish to first do some adaptation based on the “current”
state of the user model (after executing the rules in UU-pre) and later update the user
model to a new state after generating the presentation of the page(s) that result from
following a link. (This second set of updates are defined by the rules in UU-post.)

Definition 3.9 A generic adaptation rule is a tuple <R, PH, PR> where R is a rule
(triggered by some event), PH is the execution phase of the rule and PR is a Boolean
propagate field, which indicates whether this rule may trigger other rules. The rule R
changes user-model attributes or adaptation attributes of concept variables. The phase PH
of a rule can have the value IU, UU-pre, GA or UU-post. The phase IU is executed during
initialization of the user model; the phase UU-pre is executed before the generation of the
page(s); the phase GA performs adaptation and generates the page(s); UU-post is executed
after the page generation.

Definition 3.10 A specific adaptation rule is a tuple <R, SC, PH, PR> where R is a
rule (triggered by some event), SC is a set of concept components used in the rule, PH is
the phase and PR is the Boolean “propagate” field. The rule changes user-model attributes
or adaptation attributes of the specific concepts of SC.

An AHS may have predefined or built-in generic adaptation rules. If these rules suffice
there is no need for a language in which authors can write new rules. InterBook [Brusilovsky
et al., 1996b] for instance has only built-in (generic) rules. In case a system offers built-in
rules and author-defined rules it is clear that author-defined rules must take precedence
over predefined rules.

Because we create the UM as an overlay model of the DM each UM concept should
correspond to a concept in the DM. User model attributes are different from domain model
attributes and different from adaptation attributes. When we choose the attribute names in
such a way that there is no overlap between UM attributes, DM attributes and adaptation
attributes we can simplify the syntax of the rule language by not including a mechanism to
associate an attribute with the UM, DM or presentation specifications. (In example rules
we shall often use pres as the name for an adaptation attribute.) Although the definition
does not place any constraints on the use of attributes in rules in any of the phases, we
will normally update UM attributes in the UU-pre and UU-post phases and adaptation
attributes in the GA phase.

Definition 3.11 The adaptation model (AM) of an AHS is the set of generic and specific
adaptation rules.

52 CHAPTER 3. AHAM: ADAPTIVE HYPERMEDIA APPLICATION MODEL

The separation of the AM from the UM and DM makes it is easy to focus on each design
and authoring issue separately when designing an AHS. The creation of generic adaptation
rules can be done by a system designer, while the creation of the concept relationships
used by these rules can be done by an author who creates the content (information) of the
application. This separation is very clear in InterBook for instance. In the AHA! system
no such separation exists, meaning that the author of the information space must also be
capable of writing adaptation rules.

3.4.2 Adaptation rule examples

To give readers of this dissertation a clearer idea what adaptation rules are, and how they
work, we give a few examples of typical generic and specific rules, using an intuitive syntax.
(In Chapter 4 we formally define a different syntax.) For the application of these rules we
assume that the AHS is displaying one or more pages and that the user “clicks” on a link
anchor. This activates the FollowLink operation from the Dexter model’s Run-time Layer,
which in turn results in a call to a resolver function for the specifier corresponding to the
link anchor (on the current page). In AHAM the resolver must translate the given specifier
to the uid of a composite concept component that corresponds to a page, or to a set of such
uid’s. It may require several recursive calls to the resolver to go from a high-level abstract
concept down to the page level. Which pages are selected depends on the domain model
(that defines the hierarchy and structure of composites as well as concept relationships
that may indicate a preferred reading order) and on the user model (that states what the
user’s knowledge about different concepts is). For each selected page an accessor function
is called, according to the Dexter model, which returns the (page) concept component that
corresponds to the resolved uid. The adaptation rules in AHAM are “triggered” through
this accessor function.

Example 3.1 The following generic rule expresses that when a page is accessed the read
user-model attribute for the corresponding concept is set to true in the UU-post phase:

< access(C) ⇒ C.read := true, UU-post, true >

The rule also says that it will trigger other rules that have read on their left-hand side.

An interesting point here is the choice of the execution phase for this rule. It is likely
that the presentation of links to a page depends on the “read” status of that page. If the
“read” attribute is updated in the UU-pre phase and the page contains a link to itself then
that link will be presented as a link to an already visited page. If the rule is executed in
the UU-post phase then the link will be presented as a link to a page that was not yet
read. It is thus possible to express both system behaviors in AHAM, but of course any
given system will exhibit only one behavior, which in this case depends on the execution
phase of the rule.

3.4. THE ADAPTATION MODEL (AM) 53

Example 3.2 The following rule expresses that when a page is “ready-to-read” and is
accessed, the knowledge value of the corresponding concept becomes “well learned” in the
UU-pre phase. This is similar to the behavior of InterBook [Brusilovsky et al., 1996b].

< access(C) and C.ready = true

⇒ C.knowledge := “well learned”, UU-pre, true >

In this example the phase was chosen to be UU-pre because this is the behavior of
InterBook and many other AHS. This choice is counterintuitive at first glance but illustrates
a shortcoming of Web-based AHS, or any AHS that does not change the presentation of a
page while the user is reading it: the presentation of a page is adapted to the knowledge
the user will have after reading the page. This behavior is motivated by the need to present
as “relevant” the anchors for links to pages that only become relevant after reading the
page (i. e. for which this page was the last missing piece of prerequisite knowledge). By
having two phases in the AHAM model it becomes possible to describe the behavior of
future AHS that will register the new knowledge after the page has been generated and
presented, and that will be able to then change the presentation accordingly.

Example 3.3 The following rule illustrates how a prerequisite relationship works: this
generic rule states that a prerequisite relationship between two concepts is satisfied when
the prerequisite concept is at least “well learned”. For simplicity we assume that when
CR is a concept relationship, the uid of the i-th specifier is CR.ss[i].uid, the knowledge
value of the concept in the user model is CR.ss[i].uid.knowledge, the relationship type is
CR.cinfo.type, the direction of the i-th specifier is represented CR.cinfo.dir[i], etc. We also
assume that knowledge values can be compared using > and ≥, where higher values mean
more knowledge.

< CR.cinfo.type = “Prerequisite” and CR.cinfo.dir[1] = “FROM”
and CR.cinfo.dir[2] = “TO” and CR.ss.length = 2 and

CR.ss[1].uid.knowledge ≥ “well learned”
⇒ CR.ss[2].uid.ready := true, UU-pre, true >

Note that this rule only “works” if it is triggered. Example 3.2 shows that from an “access”
event a change to the knowledge is generated, which propagates as a new event. So if the
knowledge value of CR.ss[1] has changed because of an “access” event, that change triggers
the rule given in this example.

Note that a completely “correct” syntax would be more complicated because of the
complex nature of relationships and specifiers in the Dexter model (and thus also in AHAM)
and because we would need to discriminate between attributes of concepts in the domain
model and in the user model.

We now turn to examples that deal with the presentation aspect of an AHS. In the
Dexter model, and also in AHAM, the link between the Storage Layer and the Run-time
Layer is formed by presentation specifications, which are not described in detail. We give
a few examples of how adaptation rules are used to generate an adaptation attribute of the
presentation specifications.

54 CHAPTER 3. AHAM: ADAPTIVE HYPERMEDIA APPLICATION MODEL

Example 3.4 For atomic concepts (i. e. fragments) we assume there is an adaptation
attribute pres (of the presentation specification) that is a two-valued (almost Boolean) field,
which is either show or hide. When a page is being accessed, the following rules set the
visibility for fragments that belong to a “page” concept, depending on their “ready-to-read”
state.

< access(C) and F ∈ C.children and F.ready = true

⇒ F.pres := “show”, GA, false >

< access(C) and F ∈ C.children and F.ready = false

⇒ F.pres := “hide”, GA, false >

Here we again simplified things, by assuming that we can treat C.children as if they were
a set, whereas it really is a sequence.
This adaptation attribute is used by the adaptation engine of the AHS to include only those
fragments in a page that are “ready-to-read”.

Note that the update to the adaptation attribute is not propagated: the presentation
specification is passed on to the implementation-specific part of the AHS that is not part
of the AHAM model. (Thus, an attribute of the presentation specification is set by an
adaptation rule, but not read by other rules.) However, there may be other rules that are
triggered by the “access” event, for instance a rule executed in the UU-post phase that
will set the read attribute of the fragments to true.

Example 3.5 The following rules set the adaptation attribute pres of a specifier that de-
notes a link (source) anchor depending on whether the destination of the link is considered
relevant (“ready-to-read”) and whether the destination has been read before. For simplicity
we consider a link with just one source and one destination.

< CR.type = “Link” and CR.cinfo.dir[1] = “FROM” and

CR.cinfo.dir[2] = “TO” and CR.ss[2].uid.ready = true

and CR.ss[2].uid.read = false

⇒ CR.ss[1].pres := “good”, GA, false >

< CR.type = “Link” and CR.cinfo.dir[1] = “FROM” and

CR.cinfo.dir[2] = “TO” and CR.ss[2].uid.ready = true

and CR.ss[2].uid.read = true

⇒ CR.ss[1].pres := “neutral”, GA, false >

< CR.type = “Link” and CR.cinfo.dir[1] = “FROM” and

CR.cinfo.dir[2] = “TO” and CR.ss[2].uid.ready = false

⇒ CR.ss[1].pres := “bad”, GA, false >

These rules say that links to previously unread but “ready-to-read” pages are “good”, links
to previously read and “ready-to-read” pages are “neutral” and links to pages that are
not “ready-to-read” are “bad”. In the AHA! system [De Bra and Calvi, 1997, 1998c]
this results in the link anchors being colored blue, purple or black respectively. In ELM-
ART [Brusilovsky et al., 1996a] and InterBook [Brusilovsky et al., 1996b] the links would
be annotated with a green, white or red ball.

3.5. COMMUNICATION BETWEEN AHS 55

3.5 Communication Between AHS

The Dexter model assumes that all “history information” is limited to a single brows-
ing or authoring session. It even states that when closing a session by default, pending
changes to instantiations are not saved [Halasz and Schwartz, 1994]. In AHAM we ex-
plicitly model a permanent user model, thus taking into account that a user’s interaction
with a hypermedia information source may span several sessions. It is possible to ex-
tend the user model to include a representation of the evolution of the user’s state of
mind throughout his or her interaction with several different adaptive hypermedia ap-
plications. The exchange of user models is one of the areas for which the IEEE Learning
Technology Standards Committee (LTSC) (P1484) is currently developing a standard. (See
http://grouper.ieee.org/groups/ltsc/.)

Modeling the exchange of user model information in AHAM is as simple as adding two
events, in addition to the “access” event:

• An AHS may offer an externally accessible function:

GetValue(user, auth, cuid, attr)

where user identifies a user, auth is a system-dependent authorization, cuid is a
unique concept identifier, and attr is an attribute of the user model. The function
returns a value (of the appropriate type) for that attribute. The caller of the function
needs to know which data type to expect.

Here it is convenient that the Dexter model, and thus also AHAM, requires that the
unique identifiers for all components are globally unique, not just within a hypermedia
application but unique within the entire universe of discourse.

• An AHS may offer an externally accessible procedure:

SetValue(user, auth, cuid, attr, value)

where user identifies a user, auth is a system-dependent authorization, cuid is
a unique concept identifier, attr is an attribute of the user model and value is
the new value for this attribute. This procedure (or void function) updates the user
model.

Authorization is needed for obvious reasons: not every external application can be allowed
to read and/or update arbitrary user models.

It may seem that it is very inconvenient to have these functions take or return values of
specific data types, which may be different in every AHS. It is possible to translate many
(but not nearly all) data types to a “standard” one, such as real (floating point) numbers
between 0 and 1. However, the biggest problem in the communication between systems is
not the technical data conversion but the semantic conversion. In order for an application
to use the “knowledge value” for a concept C, which is imported from a different AHS,

56 CHAPTER 3. AHAM: ADAPTIVE HYPERMEDIA APPLICATION MODEL

(the author of) that application must know what the concept C means in terms of its own
concepts, and it must know what the “knowledge value” means. If a system that uses
values between 0 and 1 wishes to retrieve a knowledge value from another system that
returns “well learned”, the system needs to be able to interpret which of its own values
has the same meaning as “well learned” in the other system. Even when two systems use
knowledge values between 0 and 1 the identity may not be the most appropriate conversion
of knowledge values.

An immediate application of the functions GetValue and SetValue is in the communi-
cation with semi-external applications such as an evaluation tool that uses multiple-choice
tests, or an initial questionnaire that is used to initialize a user model and to set preferences.

3.6 Summary of AHAM

AHAM provides a general framework to describe the adaptation functionality of AHS at
an abstract level. We built AHAM as an extension of the Dexter model for hypermedia
applications because we want to focus on solving adaptation problems and use the other
functions from the Dexter model as much as possible. AHAM provides the answer to
research question 3: we can describe the functionality of AHS at an abstract level, and at
the same time describe it as an extension to hypermedia systems in general.

AHAM strongly advocates a clear separation of the DM, UM, and AM in future AHS
design. AHAM has following properties:

• It decomposes the design problem in functionally different parts so that the role of
each part and the relationships between the parts are made explicit. This also enables
people with different skills to develop an adaptive hypermedia application together.

• It makes adaptation in AHS easy to understand, independent of the information
content and structure of a concrete application.

• It guides the development of future flexible AHS in the sense that it becomes possible
to write different adaptation rules for the same information domain. It also enables
the exchange of information about users and users’ knowledge captured in the user
model by different adaptive hypermedia applications.

• It supports advanced adaptation by using fine-grained concepts (fragments), high-
level abstract concepts, and concept relationships in the DM.

• It allows the contol over the adaptation to be more user-centered or more system-
centered by choosing different types of user attributes in the UM.

• It provides a framework to compare the adaptation functionality of different AHS.

Chapter 4

AE: Adaptation Engine

AHAM, as described in the previous chapter, describes the structure of an adaptive hy-
permedia application. It describes the behavior of the AHS at an abstract level through
adaptation rules. In order to know completely how the AHS behaves we also need to study
the interpreter for these rules. This part of the AHS is called the adaptation engine (AE).
In this chapter we study how an AE works and what its properties are.

This chapter consists of two parts. The first part describes the design considerations
for a general-purpose AE. Section 4.1 describes the tasks performed by a (general purpose)
AE, at a high level as well as at the level of individual rule executions. It also defines some
desirable properties of an AE. Section 4.2 describes requirements for a general purpose
AE. It stresses the goal to make authoring easier in future AHS. We only consider an AE
that uses a rule-based adaptation model (AM) as described in the previous chapter. This
does not imply that we can only describe the behavior of AHS that use such a rule-based
adaptation engine. The rule-language is only a way to describe the behavior of the system,
not a requirement for its implementation. In Chapters 5 and 6 we describe InterBook and
AHA!. InterBook does not use a rule-based adaptive engine as described in this chapter.
AHA! uses a limited kind of rule engine. Nonetheless we can describe the behavior of
InterBook and AHA! using the AHAM model.

It is always difficult to predict the “final results” in rule-based systems, because the
rule execution may run into an infinite loop (called termination problem), or generate
unpredictable results (called confluence problem). Problems with termination have been
encountered in the AHA! 1.0 system. Recovering from an infinite loop meant “killing”
and restarting the server each time. An ad-hoc solution was implemented but this could
not guarantee confluence. In the newer AHA! 2.0 implementation, termination remains
a problem and may be “solved” by introducing an arbitrary limit on the number of rule
instances that can be executed, until an accurate prediction of infinite loops at authoring
time becomes possible.

Termination and confluence are thus two important properties of (trigger-based) rule
systems. In the second part of this chapter we first review how the issues of termination
and confluence are dealt with in the research area of active databases. Section 4.3 thereby
focuses on static analysis of trigger-based rules in active databases. This means that the

57

58 CHAPTER 4. AE: ADAPTATION ENGINE

analysis is done at authoring time, when the adaptive application is being defined, and not
at run-time, when a user is browsing through the adaptive information space. The most
common type of rule is called Event Condition Action rules or ECA rules. We observe that
the sufficient conditions for termination and confluence we find in literature in general are
too strict to be useful. The active database literature also discusses rules without triggering
events. They are called Condition Action rules or CA rules. The static analysis of CA
rules leads to the identification of sufficient conditions for termination and confluence that
are less conservative (i. e. that are closer to being also necessary conditions). We will use
CA rules for AHS for two reasons: they are easier for authors (because only two parts have
to be specified instead of three) and an authoring tool can more accurately warn authors
when there are potential problems with the defined set of rules. Section 4.4 defines a syntax
of rules for AHS, called AHAM-CA rules. Section 4.5 describes how rules work together
to update the UM and to generate the adaptation. Section 4.6 proposes a way to use the
active database research results to perform static analysis for AHS. By using the specific
knowledge about AHS (which are a “special kind of” active database system) we obtain an
analysis method that is less conservative than the static analysis for active database [Baralis
and Widom, 2000]. This research was reported on in [Wu et al., 2001]. Section 4.7 defines
a few possible ways (or “tricks”) to enforce the termination and confluence during the rule
execution for the case that termination and confluence are not guaranteed by the static
analysis. To lower the complexity of performing the static analysis, or to eliminate the
analysis altogether, Section 4.8 proposes some constraints on AHAM-CA rules and proves
that a certain set of constraints together guarantees termination and confluence. This
result is useful because algorithms for checking these constraints are more efficient (have
lower time complexity) than those for checking the sufficient conditions in general.

4.1 Introduction

An adaptive hypermedia application consists of not only the structures defined by AHAM
but also “contains” an adaptation engine (AE). AHAM describes the adaptation function-
ality at an abstract conceptual level, and the AE describes the adaptation functionality at
a (still abstract) implementation level.

Definition 4.1 The AM specifies the relationships between the UM and the DM, in par-
ticular how user access of the DM (via its presentation in hypermedia) changes the values
within the UM. The adaptation engine AE executes the rules specified within the AM. It
is thus an interpreter for the adaptation rules in the AM.

The examples presented in Section 3.4 illustrate how an adaptation engine of an AHS
can use adaptation rules to generate presentation specifications. In the examples this
generation is very simple (setting the visibility of a fragment or the class of a link anchor).
In general, however, the adaptation engine may have more difficult tasks, e. g. when the
presentation of a page requires fragments to not only be selected but also sorted. Some
tasks of the engine are of an administrative kind, for instance registering new users or

4.1. INTRODUCTION 59

handling forms input when users change preferences, knowledge or interest settings or
when students complete a multiple-choice test in an adaptive course. We look at only one
type of task of the adaptation engine: dealing with a user’s (access) request for a specifier
S. (Typically such a request is the result of following a hyperlink.) The AE then, in
principle, performs the following steps:

1. The AE initializes the user model (UM) by assigning default values to all attributes of
all concepts that are used in the adaptation rules but that are not stored permanently
in the UM. Having default values reduces the number of rules that must be defined.
For instance, if ready is used in some rules, we can set the ready attribute for all
concepts to true by default, and then only have rules to set it to false when needed.
Defaults also reduce the number of rule executions because it does not require a rule
to set a default value.

2. The AE retrieves the user’s stored user model (UM). The run-time layer ensures, by
using “sessions”, that the identity of the user is known. All stored attributes of all
concepts are retrieved. This, together with the previous step, ensures that the UM
is ready for use (with everything initialized). An AE may use a cache to avoid this
expensive retrieval operation, but this does not matter for our conceptual view of the
AE’s actions.

3. The AE resolves the specifier S to a page concept C by applying adaptation rules that
are aimed at determining a “desired” page(s) for specifier S, depending on the UM.
These rules may use prerequisite, inhibitor and other similar concept relationships.

4. The AE starts executing the rules associated with access(C) as the trigger. (We
explain access(C) later.) All triggered rules from the UU-pre phase are executed
first, to perform UM updates before generating the presentation specifications.

5. The AE then does whatever is necessary to actually present the page(s). This is the
“GA” phase. A page (or set of pages) is built, using the presentation specifications.
Fragments are selected and possibly sorted, for each page to be presented. This
action crosses the boundary between the “storage layer / presentation specifications”
and the run-time layer. In a Web-based system this would also be the boundary
between server and browser. The adaptation engine generates an HTML page and
sends it to the browser.

6. Next all triggered rules from the UU-post phase are executed. These rules cannot
change the presentation specification anymore in a meaningful way, because the pre-
sentation is already generated and handed over to the run-time layer. However, it
may be useful to change certain values in the UM to influence the next transaction,
e. g. to reset some default values for the next transaction or to ensure that next time
the same concept is accessed its presentation is different.

7. The updated values for persistent attributes of UM concepts are committed (or saved
in that user model).

60 CHAPTER 4. AE: ADAPTATION ENGINE

Some adaptation engines only have a UU-pre phase. The UU-post phase is an additional
possibility to update the user model after the page generation. In the systems we describe
later (InterBook [Brusilovsky et al., 1996b] and AHA! [De Bra and Calvi, 1997, 1998c]) we
will show how the UU-post phase is used to “prepare” the adaptation engine for the next
event. Many current AHS are Web-based. When the user “clicks” on a link a CGI-script
or a servlet generates and adapts the requested page. Any processing that can be done
before the user’s request arrives helps speed up the processing of events generated by the
user. The UU-post phase lets the engine work while the user is reading a page.

Many AHS show not only the content of “accessed” concepts, but also add some infor-
mation related to the concept, e. g. navigation support. This is convenient for modeling
AHS that divide the display (or browser window) into different parts, each showing dif-
ferent aspects of the adaptive hypermedia application. A “kiosk” system and a course
text realized in AHA! [De Bra and Calvi, 1998c] for instance use an adaptive table of
contents frame and an information frame. (See http://wwwis.win.tue.nl/IShype/ and
http://wwwis.win.tue.nl/2R350/.) Applications of InterBook [Brusilovsky et al., 1996b]
also include frames that show outcome concepts or that are prerequisites for the “current”
page. Each time a link is followed all frames need to be updated.

Now that we have introduced all the components that make up an adaptive hypermedia
application we can give the following definition:

Definition 4.2 An adaptive hypermedia application is a 4-tuple < DM,UM,AM,AE >
where DM is a domain model, UM is a user model, AM is an adaptation model, and AE
is an adaptation engine.

4.1.1 System transactions

In an adaptive hypermedia application the DM and AM are static, but the UM is updated
by the AE according to the rules defined in the AM. This section describes how an AHS
works using “triggered rules”. However, this does not imply that only rule and trigger based
AHS’s can be described in AHAM. Triggers and rules are just our means for describing
the system behavior. When an external event occurs it triggers some rule(s) in the system.
The execution of these rules changes the “state of the UM”. Such state changes can be
triggers for other rules. We first described a transaction-based view on the adaptation
engine in [Wu et al., 2000].

An event in the system means that something outside the system triggers the system
to change its state. The user or external programs can only observe the following:

UMs
event
−→ UMf

We call this a system transaction. UMs and UMf are two states of the system. UMs

is the start-state and UMf is the final-state. Usually these states will differ in at least
one attribute value so that one can tell from looking at the UM that the transaction took
place. A transaction is the smallest observable action performed by the system. The
term corresponds to the term transaction in databases. “Inside” the AHS, but invisible to

4.1. INTRODUCTION 61

any external observer (user or program) the transaction may be realized by sequentially
executing a number of rules:

UMs
R1−→ UM2

R2−→ · · · UMi
Ri−→ · · ·

Rm−→ UMf

Here Ri is a specific rule or an instance of a generic rule (meaning that the concept
variables in the generic rule have been instantiated by concrete concepts from the DM), i
is in [1 . . . m], m must be finite. Thus, internally, the system applies a finite sequence of
rule instances to arrive at UMf . Each step in this transaction is called a transition. When
an event occurs, it triggers the rules that deal with that event. These rules will change
some values in the UM, and these changes will trigger (or “propagate to”) other rules. The
order in which rules are applied is called the execution order .

Each rule has an (optional) condition (which is a Boolean expression). When a rule’s
condition changes from false to true, the rule becomes an active rule. The system only
executes active rules in the transaction. After execution of an active rule, that rule becomes
inactive (unless it performs an update that explicitly makes it active again). Different
execution models for rules have been proposed and studied [Widom and Ceri, 1996]. Two
extremes are when either all the active rules are executed simultaneously (in parallel), or
when all the active rules are collected in a queue (or stack or set) and executed sequentially.
In our study of properties of the AE we only consider the sequential execution model (and
we also talk about having a set or queue of active rules). Parallel execution would require
a conflict resolution mechanism to avoid executing rules in parallel that try to perform
conflicting updates. The execution of a rule may activate other rules (i. e. make inactive
rules become active). A rule may also activate itself. Because in our model rules are
taken from the queue of active rules and executed one by one it is possible that active
rules become inactive before they are “selected” for execution. Rules may thus miss their
“window of opportunity”. When a rule is selected for execution the AE first checks whether
the rule is still active. If the rule is found to be inactive it is discarded. If there are no
more active rules, then the transaction terminates .

As well as the termination of a transaction, the predictability of its final state is also
an issue. For the same user the system should provide the same result or have the same
final state in the same situation. We call this property confluence and define it in the next
section.

If the execution order of the rules does not affect the final state, we call the transaction
an order independent transaction (OIT). If the system can generate and perform only order
independent transactions it is always confluent if it terminates, because it can provide the
same final result for the user in the same situation. This is the ideal situation. In many
more complicated trigger-based systems confluence cannot be guaranteed.

If the execution order does affect the final state, we call this transaction an order
dependent transaction (ODT) . Order-dependence may arise when there is a choice as to
which rule to execute first. For instance, an event may activate more than one rule. In the
sequential procedure presented above, we select one rule and execute it. This will produce
a new (intermediate) state of the UM in which some rules may have become active and

62 CHAPTER 4. AE: ADAPTATION ENGINE

some active rules may have become inactive. When, for instance, two rules become active
that try to deactivate each other, the order in which the rules are put in the queue (or
in the set-interpretation the order in which the rules are taken from the set) determines
which of the two rules will be executed first. The second rule will not be executed because
the first rule’s execution makes it inactive. The final result may also depend on the order
in which subsequent updates of the same concept attribute take place. If two rules try to
set the same attribute of the same concept to a different value the rule that is executed
last determines the final value. To guarantee that an AE exhibits confluent behavior, we
have to resolve the order dependence.

4.1.2 Properties: termination and confluence

Termination and confluence are two important properties to judge the behavior of all kinds
of trigger-based rule systems, not just AHS. These two properties have been studied quite
thoroughly in the area of active databases. As the state change of the AHS can be seen
as the state change of the UM by applying a set of rules, and as the UM can be seen as
a (simple) database, we can draw a parallel with some terms and algorithms from active
databases [Baralis and Widom, 1994].

Definition 4.3 A rule execution state S is a pair (d,RA), where d is a database state and
RA ⊆ R is a set of active rules. (R is the complete set of rules.)

Definition 4.4 A rule execution sequence is a sequence σ consisting of rule execution
states linked by (executed) rules. A rule execution sequence is complete if the last state
is (d, ∅), i. e., the last state has no active rules. A rule execution sequence is valid if it
represents a correct execution sequence: only active rules are executed, and pairs of adjacent
states properly represent the effect of executing the corresponding rule; for details see [Aiken
et al., 1992; Baralis, 1994].

Definition 4.5 A rule set (or set of rules) R terminates if the rules cannot activate each
other indefinitely, or in other words if every valid rule sequence is finite.

Definition 4.6 A rule set R is confluent if, for every initial rule execution state S, every
valid and complete rule execution sequence beginning with S has the same final state.

There are two ways to achieve termination and confluence properties. One is called
detection, another is called enforcement [van de Voort, 1994].

Literature on detection of termination can be divided into two categories, one concerned
with decidability and the other with finding sufficient conditions. Whenever a property is
decidable then there exists a decision algorithm for its detection. Obviously, decidability
depends on the trigger definition language for which it is studied. Unfortunately termina-
tion and confluence are undecidable in general for any “interesting” language [Aiken et al.,
1992; Bailey, 1997]. Therefore, instead of trying to determine exactly whether a set of rules
defined by an author (or system designer) will or will not cause termination or confluence

4.2. REQUIREMENTS FOR THE AE 63

problems we try to find sufficient (but not necessary) conditions to guarantee that a set of
rules cannot cause these problems. Sufficient conditions for termination and confluence in
the context of active database systems are given in [Aiken et al., 1995; Baralis and Widom,
2000]. Rule execution in AHS is similar to the behavior of active databases, so we can
use static analysis results from the active database field and extend them for the specific
situation of AHS.

Termination and confluence are also studied in the context of term rewriting systems.
In [Karadimce and Urban, 1994] triggers are mapped to term rewriting systems in order
to be able to use termination and confluence results developed for term rewriting systems
in the analysis of triggers. The results for termination are based on the identification of
a decreasing function on the rewrite rules, and the results for confluence are based on the
analysis of critical overlaps between triggers. A term-rewriting system is an automaton.
The use of automata (where nodes are represented by states and links by transitions) is not
straightforward in the case of conditional links, because these lead to an explosion of the
required number of states. Therefore we do not use automata and term-rewriting system
to analyze triggers in AHS .

Once it is detected that the termination and confluence properties do not hold, en-
forcement of these properties during the execution becomes a relevant issue. Enforcement
can be static or dynamic. Static enforcement means that properties are enforced through
restrictions in the way rules can be specified or in the way rules can trigger each other. Dy-
namic enforcement means that properties are enforced by observing the trigger execution
process and intervening when the process goes wrong.

Static enforcement of termination can be achieved by defining a restrictive trigger def-
inition format that guarantees termination. At run time, termination can be enforced by
limiting the number of allowed trigger executions, as in [Paredaens et al., 1993]. Static
enforcement of confluence can be based on assigning priorities to triggers. If a total order
is defined, trigger execution is guaranteed to be confluent.

Static enforcement is not an elegant way to enforce termination and confluence in
general, because its result may be unpredictable or hard to understand. If the assigned
total order of priorities is not known (and understood) by the author the system may be
confluent but may not produce the results the author expects.

Dynamic enforcement used in [Zhou and Hsu, 1990] aborts the trigger execution when
the system detects triggers that cause conflicting updates. The result is equal to the no-
operation by aborting the trigger execution. As in databases, no externally observable
action takes place when the execution is aborted.

In this dissertation we concentrate on static analysis of rules. We give only a simple
strategy for dynamic enforcement.

4.2 Requirements for the AE

In AHAM we have decided to describe the adaptation using adaptation rules that are
executed by the adaptation engine (AE). In the previous section we already indicated that

64 CHAPTER 4. AE: ADAPTATION ENGINE

powerful rule systems may exhibit termination and confluence problems. Before turning to
the study of these problems we first describe the kind of adaptation rules and adaptation
engine we need in AHS.

Our design goals for future AHS are to create systems that allow the definition of
interesting adaptation strategies, are easy to use by authors, guarantee termination and
confluence properties (or detect termination and confluence problems) and are efficient (so
end-users do not have to wait for adapted pages to be generated). At the same time, AHAM
should be able to express the adaptation as it exists in current AHS. (This should not be
difficult because our goals for future AHS are much more ambitious than the functionality
offered by the current generation of AHS.) We briefly elaborate on these goals as follows:

• Adaptation strategies : An AHS should be able to perform adaptation based on the
user’s knowledge, interest, goals, learning style, background, environment, etc. In
AHAM we can represent each aspect for each concept of the DM by adding at-
tributes to the concepts in the UM. Adaptation rules can then use and update these
UM attributes. Adaptation rules can combine attribute values in any desired way
to generate presentation specifications. In order to achieve all this functionality it is
sufficient to have an adaptation rule language that allows events to trigger UM up-
dates to any attribute of any concept, and that allows such updates to trigger other
update rules. When we look back at the structure of the DM (Section 3.2) we see
that there is a concept hierarchy. In an educational application (like in [Brusilovsky
et al., 1996b] or [Pilar da Silva, 1998]) we need to be able to model that knowledge
about a page contributes to knowledge about a section in the course, and that knowl-
edge about a section contributes to knowledge about a chapter, and to the course as
a whole. While we could associate rules with every page access to define the knowl-
edge contribution to the page, section, chapter and course it is easier to do this in
steps and to let the knowledge updates propagate from page to section to chapter to
course. The “propagate” field in an adaptation rule (see Section 3.4) was introduced
with this propagation in mind.

• Ease of authoring : The adaptation that an AHS can perform may be partly built-in,
defined by a system designer, and partly defined by an author. In order to make
authoring as easy as possible all application independent adaptation rules should
be defined by a system designer, leaving only some application dependent rules to
the author. As an example, the AHS should provide built-in adaptation rules to
deal with knowledge propagation though the concept hierarchy, and to generate link
adaptation based on prerequisite relationships. The author can then concentrate on
defining the concept hierarchy and the prerequisite relationships without worrying
about the adaptation that results from these structures. System-defined rules will
almost always be generic adaptation rules. Authors may wish to write some specific
adaptation rules to create some uncommon adaptation linked to a few specific con-
cepts, thereby possibly overriding the adaptation defined by some generic rules. This
division of authoring tasks illustrates the need for generic and specific adaptation

4.2. REQUIREMENTS FOR THE AE 65

rules. Propagation of updates is not only needed for knowledge transfer through the
concept hierarchy, but also to create transitive behavior of prerequisite relationships.

• Performance: Performance is a frequently neglected aspect of adaptive hypermedia
applications. When the execution of the adaptation rules takes a long time, there will
be a very noticeable delay between the “click” on a link anchor and the appearance
of the link destination page. Indeed, all the rules in phases IU, UU-pre and GA (see
Definition 3.9) are executed before the page is sent to the user’s browser. The easiest
way to guarantee fast response times is to disable (or disallow) rule propagation.
However, propagation is needed according to the previous two design goals. As a
result we need to deal with the problems of termination and confluence. We also need
to ensure that, whichever measures we take to guarantee termination and confluence,
rule execution never takes a long time while the user is browsing. We consider the
following possibilities:

– Static Analysis : When the author creates the adaptive application an authoring
tool can analyze the defined DM, UM and AM to decide whether situations
(combinations of events and UM instances) are possible that cause the AE to run
into an infinite loop or that generate a result that depends on the rule execution
order. Section 4.3 describes how to detect that (conservatively chosen) sufficient
conditions for guaranteeing termination and confluence of active database rules
are satisfied. Section 4.6 does the same for rules in AHS.

– Enforcement : An AHS may allow propagation in a restrictive way such that
termination and confluence are guaranteed. The AHA! system for instance
guarantees termination by only allowing monotonic updates to be propagated.
It also ensures that the rule execution ends after a (relatively) small number
of steps, thus guaranteeing fast response times. Another design requirement is
that the enforcement should always be performed in such a way that no error
messages or no undesired system behavior is ever shown to the end-user of the
adaptive application. It should not be possible for end-users to “do anything
wrong” for which they are to blame. Section 4.7 deals with the issue of enforcing
termination and confluence.

– Constraints : Anomalous rule execution behavior is caused by a combination
of structures in the DM and propagation in AM. Infinite loops in rules with
propagation can often be avoided by placing constraints on DM structures. In
Section 4.8 we investigate how to guarantee termination and confluence through
constraints on DM and AM. Since these constraints must be verified during the
authoring process it is also important that this verification does not take a very
long time. (It does not have to be as efficient as checks during the end-user’s
browsing activity, though.)

66 CHAPTER 4. AE: ADAPTATION ENGINE

4.3 Review of Static Analysis in Active Databases

This section briefly reviews the static analysis of trigger-based rules in active databases. In
the literature we find two types of rule formalisms that seem useful to describe the behavior
of an adaptation engine: Event Condition Action (ECA) rules and Condition Action (CA)
rules. ECA and CA rules have been studied extensively in the context of active databases
in [Aiken et al., 1995; Baralis and Widom, 2000].

An ECA rule consists of three “independent” parts: an event, a condition and an
action. The semantics of an ECA rule is that when the event is triggered, the condition is
checked. If the condition holds, the action will be executed. ECA rules are general rules
to describe triggers. The conditions may be true (or false) independent of the cause of
the events. In [Aiken et al., 1995] a static analysis method for ECA is described. Static
analysis is performed on the definition of the rules and the database scheme. It does not
take into account the database instance. The static analysis for ECA rules, described
in [Aiken et al., 1995] is “conservative” in the sense that it takes into account the event(s)
that trigger a rule, but not the condition when analyzing the possible rule activation. This
seems logical because to determine whether the condition of a rule holds one needs to look
at the database instance which is not available at design time (when the static analysis is
performed). When there are cycles in the EA part of the rules (when only looking at evens
and actions) the static analysis will detect a potential termination problem. The fact that
cycles may be prevented by the conditions is ignored in this analysis.

A CA rule is much simpler than an ECA rule: it only consists of a condition and
a action. Whenever a rule’s condition becomes true, the rule’s action will be executed.
Hence, a CA rule is like an ECA rule where the fact that the condition becomes true
is the event that triggers the rule. In [Baralis and Widom, 2000] it is stated that many
practical applications of ECA rules have the property that a rule’s condition becomes true
exactly when that rule’s event occurs. Such rules are called quasi-CA and behave exactly
like CA rules. The static analysis for CA rules that is known to date [Baralis and Widom,
2000] is less conservative than for ECA rules. However, static analysis of CA rules is still
conservative in the sense that it is based only on the definition of the rules and the database
scheme. It does not use information on the database instance because that is unknown at
design time.

4.3.1 Event Condition Action (ECA) rules

The syntax of Event Condition Action (ECA) rules is partially described by the following
grammar:

<rule> ::= on <event>
if <condition>
then <action>

In order to determine the actual behavior of the system, we follow the execution model
used in [Aiken et al., 1995].

4.3. REVIEW OF STATIC ANALYSIS IN ACTIVE DATABASES 67

Compute the set of triggered rules;
Repeat until no more rule is triggered:

Select a triggered rule r;
If r’s condition is true
then execute r’s action (this may trigger more rules)

If more than one rule becomes active at the same time, the system first executes the rule
with highest priority. If there is no pre-assigned execution priority the system will choose
an active rule in some arbitrary way. This potentially causes confluence problems.

We summarize the results of static analysis of termination and confluence of ECA
rules [Ceri and Widom, 1990; Aiken et al., 1995].

Definition 4.7 The triggering graph (TGR) for a set R of EAC rules is constructed as
follows: the nodes in TGR represent all rules; the edges in TGR represent the Triggers
relationship. Rule ri triggers rule rj if the <action> of rule ri modifies an attribute that
appears in the <event> of rj. (rj is then an element of Triggers(ri).)

Theorem 4.1 If there are no cycles in TGR then the rule set R is guaranteed to terminate.

Note that this theorem is very conservative: it guarantees termination based only on the
events and the actions of rules, without considering the actual conditions of the rules. We
will see an improvement in the static analysis of termination of CA rules in Section 4.3.2.

Definition 4.8 Let Si (for arbitrary i) denote rule execution states (see Definition 4.3).
The execution graph (EG) for a given starting execution state S is constructed by adding
a node Sj and edge (Si, Sj) whenever from the execution state Si (already in the graph)
the state Sj can be reached by executing one of the active rules in Si. The execution graph
thus represents all possible rule executions (given a set of rules R and an initial execution
state).

Assume that rule execution terminates, i. e. all paths in the execution graph are finite.
We wish to determine if every possible execution order results in the same (final) database
state. Let Si, Sj denote execution states, let Si → Sj denote that there is an edge from Si

to Sj in the execution graph and let Si →→ Sj mean that there is a path of length 0 or
more from Si to Sj in that graph. From [Aiken et al., 1995] we learn that:

Lemma 4.1 (Path Confluence) Suppose that for any three states S, Si and Sj in an
arbitrary execution graph EG such that S →→ Si and S →→ Sj, there exists a fourth
state S ′ such that Si →→ S ′ and Sj →→ S ′. Then EG has at most one final state.

It is quite difficult in general to determine when the supposition of Lemma 4.1 holds,
since it is based on arbitrarily long paths. Aiken [Aiken et al., 1995] gives a somewhat
weaker condition that is easier to verify and implies the supposition of Lemma 4.1; it does,
however, add the requirement that rule processing is guaranteed to terminate.

68 CHAPTER 4. AE: ADAPTATION ENGINE

Lemma 4.2 (Edge Confluence) Suppose that for any three states S, Si and Sj in an
arbitrary execution graph EG such that S → Si and S → Sj, there exists a fourth state
S ′ such that Si →→ S ′ and Sj →→ S ′. Then for any three states S, Si and Sj in EG
such that S →→ Si and S →→ Sj, there exists a fourth state S ′ such that Si →→ S ′ and
Sj →→ S ′. Hence in this case EG has at most one final state.

It is still difficult to determine when the supposition of Lemma 4.2 holds. So Aiken [Aiken
et al., 1995] defines the following confluence requirement.

Definition 4.9 (Confluence Requirement) Consider a set of rules R and any pair of rules
ri, rj ∈ R. Let r ∈ Triggers(rm) represent rm can trigger r, P be the “priority relation”
for R. Let R1 ⊆ R and R2 ⊆ R be constructed as follows:

Initially R1 := {ri}; R2 := {rj};
Repeat until unchanged:

R1 := R1 ∪ {r ∈ R | r ∈ Triggers(r1) for some r1 ∈ R1

and r > r2 ∈ P for some r2 ∈ R2 and r 6= rj}
R2 := R2 ∪ {r ∈ R | r ∈ Triggers(r2) for some r2 ∈ R2

and r > r1 ∈ P for some r1 ∈ R1 and r 6= ri}
The confluence requirement says that for every pair of rules ri, rj ∈ R and for any r1 ∈ R1

and r2 ∈ R2, r1 and r2 must commute.

Theorem 4.2 Suppose the Confluence Requirement holds for R and there are no infinite
paths in any execution graph for R. Then every execution graph for R has exactly one final
state, i. e. the rules in R are confluent.

We can use ECA rules to describe the adaptation strategies for AHS, but this leads to a
very conservative estimate of what condition must be satisfied to guarantee termination
and confluence. Therefore we devote more attention to the study of Condition Action
rules.

4.3.2 Condition Action (CA) rules

When the events that trigger ECA rules are in fact database updates, the ECA rules
become equal to CA rules. Baralis and Widom [Baralis and Widom, 2000] proposed CA
rules instead of ECA rules to describe triggers. The important contribution in that paper
is that it provides a better static rule analysis for active database systems.

The syntax of a CA rule is defined as C → A, where:

• C states the rule’s condition as an expression in extended relational algebra.

• A states the rule’s action as a data modification operation on the same database.

4.3. REVIEW OF STATIC ANALYSIS IN ACTIVE DATABASES 69

The semantics associated with a CA rule is as follows:

Definition 4.10 The condition C of a rule C → A is true if and only if the result of the
expression C applied to the current database instance is not empty.
At any time we denote by Cnew the current state of C and by Cold the state of C the last
time the rule was evaluated during rule processing. Initially Cold = ∅.
A rule is active if Cnew − Cold 6= ∅.

This definition means that a rule r becomes active when (another) rule has produced new
tuples that satisfy r’s condition. The algorithm for the processing of a set of CA rules is:

Repeat until no rule is active:
Select an active rule C → A to execute; (for this rule Cnew − Cold 6= ∅)
Execute the active rule;
Replace Cold by Cnew (as it was before the execution)

The rule processing is an iterative loop in which, at each iteration, an active rule is
executed on the current database state. Rule processing continues until there are no more
active rules. When a rule is selected for execution Cold is replaced by Cnew. If the rule
does not influence its own condition then whenever the rule is evaluated again Cnew −Cold

will be empty, so the rule is not executed again and again in an infinite loop. Of course,
if the rule’s action creates new tuples that are in C the rule can be selected for execution
again.

CA rules may have termination problems just like ECA rules. Also, because there may
be many active rules at one time the system may have to choose which rule to execute first
and that choice may determine the final result. This indicates a confluence problem. In
the next subsections we summarize the study of termination and confluence for CA rules
as described in [Baralis and Widom, 2000].

Static analysis of termination

In the above rule execution process CA rules may interact with each other, in the sense
that the execution of an active rule may activate or deactivate some other rules.

Whether a rule activates or deactivates another rule depends on the database instance.
Static analysis is done at design time when only the database scheme is known. It must
take into account all possible database instances. We say that a rule may activate (or
deactivate) another rule if there is a database instance in which the first rule is active and
in which the execution of that rule does activate (or deactivate) the other rule.

Definition 4.11 Consider two rules ri : Ci → Ai and rj : Cj → Aj. ri may activate
rj if ri is active in some database instance and the execution of action Ai can change the
database instance from a state in which Cnew

j −Cold
j = ∅ to a state in which Cnew

j −Cold
j 6= ∅.

ri may deactivate rj if ri is active in some database instance and the execution of action
Ai can change the database instance from a state in which Cnew

j − Cold
j 6= ∅ to a state in

which Cnew
j − Cold

j = ∅.

70 CHAPTER 4. AE: ADAPTATION ENGINE

The static analysis of CA rules in active databases is based on a general algorithm,
called the Propagation Algorithm (PA), which uses syntactic analysis to determine how a
database query (C) can be affected by the execution of a data modification operation (A).
The modification can consist of insertions, deletions and updates.

Definition 4.12 The Propagation Algorithm PA takes as input a query Q (which can
be the condition C of a CA rule) and a modification M (which can be the action of a
CA rule), both expressed in extended relational algebra as defined in [Baralis and Widom,
2000]. The output of the algorithm is zero or more of each of the operations insert, delete,
and update, characterizing how the result of the query may change due to the execution of
the modification. If the algorithm produces an insert or delete operation, then the query
may contain more or less data after the modification; if the algorithm produces an update
operation, then the query may also contain updated data after the modification.

We will not describe the details of this algorithm. It is not trivial to deduce from a
query Q and a modification M whether the modification will add tuples to the result of
Q, delete tuples from it or modify tuples in that result. We will discuss this issue when
discussing CA rules for adaptive hypermedia in Section 4.6.

The static analysis of termination is to check the influence of the action of one rule on
the condition of another rule by using the Propagation Algorithm for every pair of rules.
This analysis process is defined as the calculation of an Activation Graph.

Definition 4.13 The Activation Graph (AG) consists of a set of nodes and directed edges.
Each node represents a CA rule. AG contains an edge ri → rj if and only if the Propagation
Algorithm applied to Ai and Cj produces an insert and/or update operation. In other words
ri → rj belongs to AG if and only if Ai may add elements to Cnew

j . Similarly we can
construct a Deactivation Graph (DG) consisting of edges ri → rj when Ai produces delete
and/or update operations for Cj, or in other words when Ai may remove elements from
Cnew

j .

The Activation Graph is the key to solving the termination problem:

Theorem 4.3 If there are no cycles in the Activation Graph then the rule execution is
guaranteed to terminate.

The static analysis of CA rules [Baralis and Widom, 2000] is more precise than the
one for ECA rules because it takes the condition into account when analyzing possible
rule activation. However, the analysis is still conservative: termination is guaranteed when
there are no cycles in AG, but it is possible that in a real application termination may be
guaranteed even in a situation where AG contains a cycle. Only analysis of the possible
database instances would reveal that.

4.3. REVIEW OF STATIC ANALYSIS IN ACTIVE DATABASES 71

Static analysis of confluence

Suppose that rule execution is guaranteed to terminate. We want the rule execution, which
starts with the same initial state, to always end in the same final database state.

For confluence we need to know how rules activate and deactivate each other. Further-
more we also need to know whether the actions of rules interfere with each other in any
other way.

Definition 4.14 Consider two rules ri : Ci → Ai and rj : Cj → Aj. The actions Ai and
Aj commute if, for all database states, the execution of Ai followed by Aj and the execution
of Aj followed by Ai produce the same database state.

For checking whether Ai and Aj commute we apply the following “trick”: We create two
new rules: r′ has as condition C ′, a query that corresponds to Ai, and r′′ has as condition
C ′′, a query that corresponds to Aj. We can then use PA to determine whether Ai may
influence C ′′ or whether Aj may influence C ′. (If PA produces ∅ as the set of insert, delete
and update operations in both cases then Ai cannot change the effect of Aj and vice versa.)

From the paper [Baralis and Widom, 2000] we cite the following results:

Lemma 4.3 Two distinct rules ri and rj commute if: (1) ri cannot activate rj; (2) ri

cannot deactivate rj; (3) condition (1) and (2) with i and j reversed; (4) ri’s action and
rj’s action commute.

Note that a rule always commutes with itself, even though it may not satisfy the
conditions (1) to (4).

Theorem 4.4 A rule set R is confluent if all pairs of rules in R commute.

To guarantee the commutativity of two distinct rules ri and rj, we need to verify the
conditions (1)-(4) in the above Lemma. Condition (1) can be seen from the Activation
Graph: an edge ri → rj indicates that ri may activate rj. Condition (2) can be seen from
the Deactivation Graph. For condition (3) we only reverse the role of i and j. Condition
(4) is checked as described above.

The time complexity of the static analysis of CA rules is determined by the time
complexity of the Propagation Algorithm (PA). According to [Baralis and Widom, 2000],
while in the case of queries containing aggregation, the execution time of the PA can be
exponential in the depth of the query tree (or in rough approximation in the number of
operations in the query). When the query does not contain aggregations, the execution
time of the PA grows linearly with the depth of the tree. In any case, this depth is normally
small and the analysis is performed at design time (not run-time) so time complexity should
not be problematic.

The condition to guarantee confluence is very strict. Unfortunately it cannot be im-
proved without taking properties of database instances into account. The strict condition
becomes much less of a problem if priorities are associated with rules. Only rules with the
same priority need to commute to guarantee confluence. In AHAM we use rule execution
phases for this purpose.

72 CHAPTER 4. AE: ADAPTATION ENGINE

4.4 Defining AHAM-CA, a Rule Syntax for the AE

To show how an adaptation engine works, we design a rule language for a general-purpose
adaptation engine (AE). Based on this rule language we will focus on issues of the termi-
nation and confluence in Section 4.6, Section 4.7, and Section 4.8. At first sight it seems
that ECA rules are best for AHS, because the system always reacts to an event generated
by the user (such as clicking on a link anchor). However, after this initial event all rules
are just triggered through changes in the user model. By translating the initial event to a
simple user model update (updating some attribute value to represent the “click”) we can
also describe the behavior of an AHS through CA rules.

Since both DM and UM have a structure that consists of objects (like concepts and
concept relationships) with an object identity and a set of (named) attributes it appears
natural to base our rule language on trigger and query languages for databases. Doing so
also makes it relatively easy to draw a parallel between the properties of our language with
CA rules and those of CA rules in active databases, as studied in [Baralis and Widom,
2000]. In the paper [Baralis and Widom, 2000] the relational algebra syntax is used, but in
order to obtain easily readable rules we base our language on the well-known SQL syntax.
Our language and the static analysis issues were first introduced in [Wu et al., 2001].

4.4.1 Definition of AHAM-CA rule language

In Section 3.4 we defined the syntax of generic rules and specific rules for AHAM. We
combined them as a tuple <R, {SC}, PH, PR> where R is a “triggered” rule; SC is
optional, it is used for specific rules to represent a set of concept components used in the
rule; PH is the “phase” and PR is the Boolean “propagate” field. To illustrate how an
AE works, now we describe the syntax of a “triggered” rule R by the grammar described
in Table 4.1. Note that we simplified details like where to use quotes and we also allow
some meaningless constructs such as names with multiple dots, etc. Such details are not
important for understanding how the language is used in AHAM-CA rules.

All concepts of the DM are present in the UM using the same name. We use relationship
predicates to represent that a certain condition holds between two concepts in the DM.
An example is Prerequisite(C1, C2). Most other AHAM-CA rule constructs apply to the
UM. Therefore we opt to sometimes omit the from clause. Whenever we use a concept
(variable) C in a rule we assume that a clause “from UM as C” was present in the query.
For concept relationships the same holds, but there we even omit a symbolic name to refer
to the relationship (instance).

In our examples (below) we also use the convention that uppercase names are used to
indicate concept variables (used in generic rules) whereas lowercase names are used for
specific concepts (used in specific rules and in instantiated rules defined below) and for
attributes.

In our later discussion of AHAM-CA rules, we analyse the rules according to different
phases, but for now we ignore the execution phase, as well as the propagate field we intro-
duced in Chapter 3. AHAM-CA rules form a subset of CA rules in active databases. They

4.4. DEFINING AHAM-CA, A RULE SYNTAX FOR THE AE 73

have the same semantics as database CA rules, but the actions only contain updates, no
insertions or deletions.

<R> ::= < C >→< A >
<C> ::= <query>
<A> ::= update <list assign> {where <condition>}
<condition> ::= <Boolean> | ‘(’ <condition> ‘)’ |

exists <query> | <relationship> |
<expr><eq op><expr> | not <condition> |
<condition> and <condition> |
<condition> or <condition>

<eq op> ::= ‘=’ | ‘6=’ | ‘<’ | ‘≤’ | ‘>’ | ‘≥’ | in
<expr> ::= <constant> | <name> | <query> |

<expr><bmath op><expr> |
<umath op><expr>

<relationship> ::= <name> ‘(’ <name> { ‘,’ <name> } + ‘)’
<bmath op> ::= ‘+’ | ‘−’ | ‘×’ | ‘/’ | max | min
<umath op> ::= ‘−’
<constant> ::= <Integer> | <Boolean> | <String> | <Set> | null
<Integer> ::= <digit> {<digit>}∗

<String> ::= ‘"’ <alpha> { <alpha> | <digit> | <stringspecial> }∗ ‘"’
<Boolean> ::= true | false
<Set> ::= ∅ | ‘{’ <constant> { ‘,’ <constant> }∗ ‘}’
<query> ::= select <name list> { from UM as <name> }

{ where <condition> }
<list assign> ::= <name> := <expr> { ‘;’ <list assign> }∗

<name list> ::= <name> { ‘,’ <name> }∗

<name> ::= <alpha> { <alpha> | <digit> | <special> }∗ |
<relationship> ‘.’ <name>

<alpha> ::= ‘a’ . . . ‘z’ | ‘A’ . . . ‘Z’
<digit> ::= ‘0’ . . . ‘9’
<special> ::= ‘ ’ | ‘.’
<stringspecial> ::= <special> | ‘ ’

Table 4.1: Definition of AHAM-CA rule syntax

4.4.2 Examples of AHAM-CA rules

The following examples are intended to illustrate our rule language. They are not meant
to present generally accepted behaviour of AHS (as all systems behave differently).

74 CHAPTER 4. AE: ADAPTATION ENGINE

Example 4.1 The following (generic) rule specifies that all relevant fragments of page P
will be shown to the user when this page is presented.

C: select P.access
A: update F.pres := “show”

where Fragment(P, F) and F.relevant = true

Fragment(P, F) is a predicate. The where clause in A means:

CR.cinfo.type = “Fragment” and CR.ss[1].uid = P and CR.ss[2].uid = F
and CR.cinfo.dir[1] = “FROM” and CR.cinfo.dir[2] = “TO”
and CR.ss.length = 2 and CR.ss[2].uid.relevant = true

Here we have made the association between objects and attributes explicit and we “merge”
DM and UM concepts. (Indeed, the relevant attribute is a UM attribute and is used here
in a DM construct CR.ss[2].uid.) We will also do this in the following examples. Two parts
in the rule of this example need some explanation:

1. The rule monitors a change in P.access because P.access appears in the select clause.
So whenever a page is accessed this rule can be executed.

2. For all fragments F that are part of page P and for which the relevant attribute is
true, the pres attribute is set to the value “show”. Note that in a “real” SQL syntax
we would need an exists and subquery here to check for the existence of the part-of
relationship between F and P .

An interesting aspect of this example is that it shows how information is carried over from
the Storage Layer to the presentation specification of the AHAM model.

Example 4.2 Suppose that the knowledge value of a concept can have the values “not
known”, “known” and “well known”. (In later examples we will also assume the property
that “not known” < “known” < “well known”.) A concept can be “ready-to-read” or not.
Accessing a concept may have the effect described by the following rule:

C: select P.access
where P.ready = true

A: update P.knowledge := “well known”

Note that while the condition of this rule checks the value of two attributes, the rule is
only triggered when the access attribute changes. The select clause tells the AE to only
look for changes to access. Also, because this rule only changes attribute values for the
object (page) that appears in the condition, the action has no where clause.

Example 4.3 Suppose that a concept becomes “ready-to-read” when all its prerequisites
are at least “known”. We can write a rule to take this into account when a knowledge value
changes:

4.4. DEFINING AHAM-CA, A RULE SYNTAX FOR THE AE 75

C: select C1.knowledge
where C1.knowledge ≥ “known”

A: update C2.ready := true

where Prerequisite(C1, C2) and

not exists (select C3

where Prerequisite(C3, C2) and

C3.knowledge < “known”)

Predicate Prerequisite(C1, C2) means that the following condition must hold in the DM:

CR1.cinfo.type = “Prerequisite” and CR1.ss[1].uid = C1 and CR1.ss[2].uid = C2

and CR1.cinfo.dir[1] = “FROM” and CR1.cinfo.dir[2] = “TO”
and CR1.ss.length = 2

The other predicate Prerequisite(C3, C2) and C3.knowledge < “known” represents that
the following condition must hold in the DM:

CR2.cinfo.type = “Prerequisite” and CR2.ss[1].uid = C3 and CR2.ss[2].uid = C2

and CR2.cinfo.dir[1] = “FROM” and CR2.cinfo.dir[2] = “TO”
and CR2.ss.length = 2 and CR2.ss[1].uid.knowledge < “known”

This example means that when C1.knowledge has been changed to “known” or “well
known”, all the concepts for which C1 is a prerequisite are verified, and for each of these
concepts we check whether they have unsatisfied prerequisites; if they do not, then the
ready attribute is set to true.

Example 4.4 As another example let us consider the effect of an “inhibit” relationship
that gets activated when a concept becomes “well known”.

C: select C1.knowledge
where C1.knowledge = “well known”

A: update C2.ready := false

where Inhibit(C1, C2)

Predicate Inhibit(C1, C2) means that the following condition must hold in the DM:

CR.cinfo.type = “Inhibit” and CR.ss[1].uid = C1 and CR.ss[2].uid = C2

and CR.cinfo.dir[1] = “FROM” and CR.cinfo.dir[2] = “TO”
and CR.ss.length = 2

Example 4.3 and Example 4.4 together already show some of the potential problems with
adaptation rules in general: if we allow the arbitrary creation of “prerequisite” and “in-
hibit” relationships and apply these adaptation rules it is possible that two rules are trig-
gered at the same time, one of which tries to set ready attribute to true while the other
one tries to set ready attribute to false, for the same concept. In Section 4.6 we describe
how to detect such conflicts.

76 CHAPTER 4. AE: ADAPTATION ENGINE

4.4.3 Other issues about the AHAM-CA language

The adaptation rules describe most of the adaptation behavior of AHS. (A part still depends
on how the AE works.) What can be specified in the rule language has a direct impact
on the expressive power and on the complexity of the system control. Because AHAM-
CA rules are defined as a subset of database CA rules (but with a different syntax), we
can discuss which aspects of active database rule languages are relevant for the study of
AHAM-CA rules. We use the active database trigger mechanisms to simulate adaptation
rule execution in AHS, but we have a much simpler situation than in active databases.

Events

In an active database rule, the event specifies what causes the rule to be triggered. Useful
triggering evens are:

• Data modification: A data modification can be specified as one of three SQL data
modification operations: insert, delete, or update on a particular table. In AHAM-CA
rules we do not use events explicitly; events are implicitly combined in the condition.
We use only update as an event to trigger rules. Update can be used to represent
the (internal) event generated during the rule execution. For external events we
use an attribute, e. g. the access attribute we used in Example 4.1 to represent the
user requesting a page. When an external event occurs, the system will update
the corresponding attribute value, and this update will trigger rules as an (internal)
event.

• Data retrieval: A data retrieval event might be specified as a select operation on a
particular table. We do not use it in AHAM-CA rules.

• Time: A temporal event might specify that a rule should be triggered at an absolute
time (e. g. 1 Jan 95 at 12:00), at a repeated time (e. g. every day at 12:00), or at
periodic interval (e. g. every 10 minutes). We do not consider time events in AHAM-
CA rules. (They can easily be added.)

• Application-defined: An application-defined event might be specified by allowing an
application to declare a name E as denoting an event (e. g. high-temperature, user-
login, or data-too-large) and allowing active database rules to specify E as their
triggering event. Then, each time an application notifies the database system of the
occurrence of the event E, any rule specifying E as its event is triggered. In this
way the application may perform any monitoring or computation it desires with or
without accessing the database to detect when event E should occur. We do not use
it in AHAM-CA rules, but we can use this to simulate external events in AHS if we
use ECA rules for AHS.

For complicated situations, a single event is not enough; a composite event is used to
combine single events or other composite events in active databases. Useful operators for
combining events are:

4.4. DEFINING AHAM-CA, A RULE SYNTAX FOR THE AE 77

• Logical operators. Events might be combined using the Boolean operators and, or,
not, etc.

• Sequence. A rule might be triggered when two or more events occur in a particular
order.

• Temporal composition. A rule might be triggered by a combination of temporal and
non-temporal events, such as “5 seconds after event E1,” or “every hour after the
first occurrence of event E2.”

We do not consider composite events in AHAM-CA rules.

Condition

In an active database rule, the condition specifies a condition to be checked once the rule
is triggered and before the action is executed. There are four kinds of conditions:

• Database predicates: A condition can specify that a certain predicate must hold
on the database, where the predicate is defined using a language corresponding to
a condition clause in the database query language. We use relationship predicates
like Prerequisite(C1, C2) in AHAM-CA rules to represent that a relationship holds
between two concepts in the DM.

• Restricted predicates: Condition evaluation can be the most expensive aspect of rule
processing, so restrictions on predicates, e. g. not allowing aggregate operations and
joins, are used for performance reasons. We do not consider using aggregation in
AHAM.

• Database queries: The condition may specify a query using the database system’s
query language. The condition is true if and only if the query produces a non-empty
answer. Note that because most database query languages include conditions as
a component, there may be no difference in expressiveness between predicates and
queries as rule conditions. A rule with any predicate P as its condition is equivalent
to a rule with query Q(P) as its condition, where Q(P) retrieves all data satisfying
predicate P. We only use database queries to specify the adaptation condition.

• Application procedures: A rule condition might be specified as a call to a procedure
written in an application programming language, where the procedure may or may
not access the database. We do not consider this in AHAM-CA rules as it makes
analysis impossible.

Action

In an active database rule, the action is executed when the rule is triggered and its condition
is true. Useful actions are:

78 CHAPTER 4. AE: ADAPTATION ENGINE

• Data modification operations: A relational database system might allow rule actions
to specify SQL insert, delete, or update operations. We only use update operations.
(We only assign values to user model concept-attributes.) This is the singlemost
factor that causes AHAM-CA rules to be much easier to analyse than active database
rules in general.

• Data retrieval operations: A relational active database system might allow rule ac-
tions to specify SQL select operations. For the analysis of the behavior of AHAM-CA
rules retrieval operations are not interesting because they cannot trigger other rules.

• Other database commands. A rule action might allow any database operation to be
specified. In addition to data modification and retrieval operations, most database
systems support operations for data definition, operations for transaction control
(e. g. rollback, commit), operations for granting and revoking privileges, etc. We do
not explicitly consider these in AHAM, but we assume that the rule execution that
results from an event is a transaction that must be committed.

• Application procedures: A rule action might be specified as a call to a procedure
written in an application programming language, where the procedure may or may
not access the database. Again, we do not consider this in AHAM-CA rules as it
makes analysis impossible.

4.5 The Semantics of AHAM-CA Rule Execution

In the previous subsections we presented (part of) the syntax used in the specification of
rules, and gave some examples. To determine the actual behavior of the AHS we must
describe how the adaptation engine actually selects and executes the adaptation rules. We
call this the execution model.

4.5.1 Rule execution phases

Many rules must be “considered” during rule execution. (After each action the AE must
determine which rules have become active.) In order to make the AE more efficient and also
to reduce the time complexity of the static analysis of the rules we distinguish a number
of phases in which the rules are executed that serve a similar purpose.

For the events “login” or “register”, if the user logs in for the first time, the system
builds a user model for the user and initializes that user model (phase IU), and selects
the first page to adapt and show to the new user. (This is done through the resolver and
accessor functions which we do not describe.) If the user logs in as an existing user, the
system can use the already existing user model of that user, and only needs to select the
first page to adapt and show to the user.

If the user accesses a page, the system first performs initialization of volatile attributes
of concepts in the phase IU. The system then updates the user model (phase UU-pre), it

4.5. THE SEMANTICS OF AHAM-CA RULE EXECUTION 79

generates the adapted page (phase GA), and finally it may update the user model (phase
UU-post) some more to reflect some user’s “feature changes” after the adaptation.

The partitioning of rules into these phases and the sequential execution of these sets of
rules can be realized through the association of rules with a priority. The AE will start by
executing rules in IU, which must have the highest priority. Rules in UU-pre come later by
giving them a lower priority, and by making sure that these rules do not cause rules from
IU to be executed again. Rules from GA have a still lower priority and may not activate
any rules from IU or UU-pre. Rules from UU-post have the lowest priority. It is easy to
write conditions to ensure that rules never start a rule from a previously completed phase.
In the sequel we will limit ourselves to rules within a single phase and not worry about
accidentally invoking rules from another phase.

4.5.2 General constraints

It is all too easy to define sets of rules that trigger each other indefinitely and thus cause
infinite loops in the AE. It is clear that some restrictions are needed to prevent undesired
effects such as infinite loops. We first describe some “common sense” constraints that each
rule system for AHS should observe.

• If the C part and the A part of a CA rule contain an attribute of the same concept
then the C part must include an (attribute that represents an) event. This constraint
basically says that an event that causes several attributes of a concept to be updated
must do so through CA rules that are activated by this event. The event should not
just cause an update of one attribute and then have that update trigger an update of
another attribute of the same concept. We would consider this a sign of bad design
because it hides the direct relationship between the event and the updates it causes.

• If the C part and A part of a generic adaptation rule contain different concept
variables, then the condition (the where clause) of the A part must also include a
concept relationship linking these concepts. Thus, propagation of user model updates
between different concepts is only allowed then these concepts are linked through
concept relationships.

• Rules with events have higher execution priority than rules without events that belong
to the same execution phase. This means that rules with an event in their C part will
all be executed first and then the AE will look at the rules that depend on attribute
value changes in their C part.

We can illustrate these constraints by the examples in Section 4.4.2. Example 4.2
satisfies the first constraint. The update to the knowledge (attribute) of P depends on
the ready attribute of the same P, and therefore must be triggered by an event such as
access(P).

Example 4.3 satisfies the second constraint. It says the change of the knowledge of
concept C1 propagates to the ready attribute of concept C2 when there is a relationship
Prerequisite(C1, C2).

80 CHAPTER 4. AE: ADAPTATION ENGINE

Example 4.2 will execute before Example 4.3; this illustrates the third constraint. How-
ever, Example 4.1 will execute later although it also contains an event. This is because it
is a rule from the GA phase (it sets a presentation specification) whereas the other rules
belong to the UU-pre phase.

It is clear that while the above constraints eliminate certain meaningless rule sets,
infinite loops in the rule execution are still possible when there are cycles in the relationships
that are used in the adaptation rules. For some common types of relationships, such as
prerequisites we can require that they do not have cycles, but this restriction may be
too severe for other types of relationships, e. g. link relationships. And even if there are
no cycles when considering relationships of one type, the interaction between concept
relationships of different types may still result in infinite loops. In Section 4.8 we describe
constraints that eliminate termination and confluence problems. In Section 4.6 we will first
discuss how to predict possible infinite loops and non-deterministic results in general.

4.5.3 Instantiating rules

The AE needs to instantiate the generic rules and specific rules before it can apply them.
When a generic rule says that “when a page P is accessed P.read is set to true”, the
AE will actually use a rule for each page p, saying that when page p is accessed p.read
becomes true. (Note that P means a variable and p means a concrete page.) Also, when
a condition contains a concept relationship, the actual instance of the relationship is used
to make the rule specific. For instance, let c1 be a concept and let c1 be an inhibitor for
c2 and c3 (i. e. the relationships Inhibit(c1, c2) and Inhibit(c1, c3) exist). We can then
instantiate Example 4.4:

Example 4.5 The rule in Example 4.4 is instantiated to the following rule. It updates c2

and c3 separately.

C: select c1.knowledge
where c1.knowledge = “well known”

A: update c2.ready := false;
c3.ready := false

The instantiation of rules makes it easy to detect the presence of specific rules that are in
conflict with some generic rule. The instantiation of the generic rule for the objects that
appear in the specific rule is then discarded.

The following pre-process translates a set of generic and specific rules to a set of in-
stantiated rules (Ins rules).

1. Let Ins rules = ∅.

2. Instantiate all generic rules and add to Ins rules.

3. Consider each specific rule and remove an instance of a generic rule from Ins rules if
both following conditions hold:

4.5. THE SEMANTICS OF AHAM-CA RULE EXECUTION 81

• their conditions are logically equivalent

• the updates of the A parts update the same attributes

4. After instantiating all generic rules to specific rules, all syntactically equivalent rules
will be merged into one rule.

From now on we will always mean “instantiated rule” when we use the term “rule”.
(Sometimes we may wish to issue a reminder that rules are instantiated.) Using instantiated
rules is the key to obtaining better conditions to guarantee termination and confluence than
for active databases. Indeed, instantiated rules make use of the instance of the DM and
not just the scheme. The analysis described in Section 4.6 is still a static analysis in the
sense that it only uses information known at design time: the scheme and instance of the
DM but only the scheme of the UM.

4.5.4 Other issues about the semantics

We give a brief description of other issues about AHAM-CA semantics according to rela-
tional active database rule languages [Widom and Ceri, 1996].

Rule processing granularity

The granularity of rule processing specifies how often the points occur at which rules may
be processed, i. e., how often the rule execution algorithm is invoked. The finest granularity
is that rules may be processed at any point during the database system’s execution, as soon
as any rule’s triggering event occurs. In a relational database system database updates
are typically defined as SQL operations. A database may start considering triggered rules
for execution as soon as a single tuple has been added, deleted or modified, or may wait
until the entire SQL statement finishes. A database may also delay rule processing until it
reaches the end of a transaction (consisting of several SQL statements). It is possible but
unusual for rule processing granularity to be coarser than the transaction boundaries.

In AHAM the condition C of a rule selects only one tuple, but the rule’s action A may
contain several updates to different attributes of (possibly different) concepts. We may
consider the rule execution to be tied to the execution of a complete instantiated rule or to
each statement in the rule’s action. While it may seem most logical to only consider the
granularity of the complete instantiated rule we cannot rule out the other option in the
reference model as there may be AHS that trigger rules after each statement in a rule’s
action. In fact, the AHA! system [De Bra and Calvi, 1998c] exhibits this behavior (at least
in version 1.0).

Instance-oriented versus set-oriented execution

Active database rule execution is instance-oriented if a rule is executed once for each
tuple in the evaluation of the rule’s condition (i. e. in the query result). Active database
rule execution is set-oriented if a rule is executed once for the whole database instance

82 CHAPTER 4. AE: ADAPTATION ENGINE

triggering the rule or satisfying the rule’s condition. In AHAM-CA based AE, we use
instantiated rules that have a condition containing only one specific tuple of a database
instance (UM). For example, the rule instance in Example 4.5 has a condition that only
contains c1. AHAM-CA rule execution is thus instance-oriented execution.

Iterative versus recursive execution algorithm

An iterative execution algorithm selects and processes one rule, then selects and processes
another rule, and so on. The AHAM-CA rule execution algorithm is iterative, e. g. when
the rule instance in Example 4.5 is active and selected, it updates c2 and c3 before looking
for the next active rule. A recursive algorithm would invoke rule execution recursively
during the execution of another rule’s action. In the example the update of c2 may then
be followed by other rule executions before returning to the update of c3. In our study of
termination and confluence we will concentrate on iterative rule execution. (But note that
AHA! 1.0 [De Bra and Calvi, 1998c] uses recursive execution.)

Conflict resolution (Scheduling)

Several rules may be triggered simultaneously. There are three possible reasons for that:

• Several rules specify the same triggering event.

• The rule processing granularity is coarse enough so that many triggering events may
occur before rules are processed.

• A rule is triggered but not (yet) selected, and the rule is still triggered the next time
when the AE selects rules.

All these reasons exist in an AHAM-CA based AE. Conflict resolution is a way to select
one rule from a set of triggered rules (adopted from the same concept in AI rule languages).
There are numerous possibilities for conflict resolution; for example:

• A rule may be chosen arbitrarily.

• A rule may be chosen based on priorities specified in the definition of rules.

• A rule may be chosen based on other static properties of rules, such as the time of
rule creation or the data on which rules are defined.

• A rule may be chosen based on dynamic properties of rules, such as the time of rule
triggering. (Triggered rules may be placed on a stack or a queue of rules waiting to
be selected for execution.)

We have four execution phases which have a linear order. In each phase we choose a
triggered rule arbitrarily. Our design goal is to make authoring easier. Therefore we do
not rely on priorities or stack or queue mechanisms to solve confluence problems. Such

4.6. STATIC ANALYSIS OF AHAM-CA RULES 83

measures would guarantee that the result is predictable in theory, but it may be too hard
for authors to understand how to predict which rules are going to be executed in which
order.

Sequential versus concurrent execution

The AHAM-CA rule execution algorithm performs rule processing in a sequential manner:
one rule is executed at a time. A conflict resolution mechanism described in the above
subsection may be used to choose which rule to execute when multiple rules are triggered.
An alternative to executing one rule at a time is concurrent rule processing: if multiple
rules are triggered, the rules’ conditions are evaluated and their actions are executed con-
currently. Concurrent rule processing avoids the issues of conflict resolution and, in the
appropriate setting, can speed up rule processing. However, this requires that concurrently
executing rules do not interfere with each other (which is hard to guarantee).

Coupling modes

Coupling modes discuss the relationship between rule processing and database transactions.
For Event Condition Action rules, one needs two coupling modes. One coupling mode
can specify the transactional relationship between a rule’s event and the evaluation of its
condition, while another coupling mode can specify the transactional relationship between
a rule’s condition evaluation and the execution of its action. For Condition Action rules,
one needs one coupling mode. It can specify the transactional relationship between a rule’s
condition evaluation and the execution of its action. Possible coupling modes are:

• Immediate: the execution of the action of rules is performed immediately after the the
evaluation of the conditions of rules when the condition is true. We can realize the
priority of rule execution order by the set its evaluation order. The way we described
the AE’s behavior in Section 4.1.1 yields an immediate mode: rules become active
immediately after their condition becomes true. AHAM-CA rule execution takes
immediate mode.

• Deferred: the execution of the action of rules takes place at the commit point of the
current transaction. We do not consider deferred coupling mode in AHAM-CA.

• Decoupled: the execution of the action of rules takes places in a separate transaction.
We do not consider this mode either.

For the static analysis we perform in Section 4.6 it makes no difference whether we use the
immediate or deferred mode.

4.6 Static Analysis of AHAM-CA Rules

In [Aiken et al., 1995; Baralis and Widom, 2000] the static analysis only looks at the
database scheme, not the actual instance. So they must include every possible activation

84 CHAPTER 4. AE: ADAPTATION ENGINE

or deactivation in the AG and DG. We can make our static analysis much more precise (or
less conservative) than that of [Aiken et al., 1995; Baralis and Widom, 2000] by trying to
only include edges when this activation is really possible (for some instance of the UM),
given the DM instance that is available at design time. The use of the DM instance is
effectuated by using instantiated rules in the static analysis.

4.6.1 The Propagation Algorithm for AHS

The static analysis of AHAM-CA rules is based on the activation graph AG and the
deactivation graph DG, both of which are constructed using a propagation algorithm PA.
The main differences between AHS as described by AHAM-CA rules and active databases
as described in [Aiken et al., 1995; Baralis and Widom, 2000] are:

• In databases we have to consider insert, delete and update operations, whereas in
AHS we only have updates to the user model. (The AE only changes attribute values
for concepts.)

• In AHS the updates are defined using instantiated rules.

• In active databases many different possible updates can be the triggers for rules
whereas in an AHS the rule execution starts after a very specific type of update that
represents a user-generated event like clicking on a link anchor.

Below we first describe the general propagation algorithm. Then we show how the algo-
rithm can be improved for the use with AHS.

The basic PA described in [Baralis and Widom, 2000] uses the action of ri (say Ai)
and the condition of rj (say Cj) to decide whether ri may activate rj. The PA of [Baralis
and Widom, 2000] does this by combining the relational algebra expressions of Ai and Cj

to calculate an expression that defines which tuples will be added to, removed from or
changed in the query result of Cj. For (instantiated) AHAM-CA rules the condition C
names an attribute of a concept in its select clause. The rule is triggered only when this
attribute of this specific concept changes. The action A of a rule contains assignments to
attributes of (specific) concepts. It is clear that Ai can only influence Cj if Ai contains an
assignment to the attribute of the concept in the select clause of Cj. Our basic PA for
AHAM-CA rules is used to build AG and DG in the following way: an edge ri → rj is
added to AG and DG if Ai assigns a value to the attribute of the concept used in the select
clause of Cj. This may seem peculiar because the resulting AG and DG will be the same.
It makes sense though because we only know to which attribute of which concept a value is
assigned. We do not know which value, and we thus do not know if the where condition of
Cj will be satisfied or not. (We would need the instance of the UM to decide this, and that
is not available at design time.) We also do not know if the assignment actually takes place
because without the UM instance we also cannot evaluate the condition (where clause) of
Ai.

As an example it is easy to see that the action of the rule in Example 4.2 can result in the
condition of the rule in Example 4.3 becoming true for the same concept. Accessing one

4.6. STATIC ANALYSIS OF AHAM-CA RULES 85

page may “generate” the last bit of required prerequisite knowledge for another concept.
(The PA works on instantiated rules to decide exactly which edges to add to AG and DG
based on which prerequisite relationships actually exist in the DM instance.)

There are a number of ways in which the basic PA can be improved, while remaining
conservative (i. e. while guaranteeing that it detects all possible activations and deactiva-
tions):

1. Properties from the value domains of attributes can be used to determine that an
update changes the value to something that the condition can accept. If Ai sets a
knowledge attribute to “not known” and Cj checks for knowledge = “known”, we
know that ri cannot activate but may deactivate rj. If the assignment in Ai uses
a constant and the condition in Cj compares the attribute value to a constant then
this refinement can be done. In general the assignment may also use attributes of
concepts (instead of constants) and the condition may compare with attributes of
concepts (instead of constants) and then this optimization is not possible.

2. In [Baralis and Widom, 2000] it is already remarked that we can also include Ci in
the process: when action Ai is executed it must be executed in a situation in which
Ci was satisfied. This can possibly provide some information needed to see whether
Cj will be satisfied after executing Ai.

3. Since we know the “event” that starts the AE we can start the construction of the
activation graph at the concept with the initial “event”, e. g. the concept for which
the access attribute becomes true. We can thus improve on the above step by taking
into account all the conditions of the rules on a path from the rule that is triggered
first to the rules ri and rj for which we are investigating the possible activation. (For
every attribute of every concept we need to maintain a range of possible values and
can use that in evaluating whether Ai may change Cj.

4. A final improvement can be obtained by constructing a separate activation graph
for each possible “event” that starts the AE. Indeed, for every link anchor we can
construct an activation graph that represents the possible rule executions that are a
consequence of a user clicking on that link anchor.

Following and extending [Baralis and Widom, 2000] we can analyze the behavior of the
AHS by using the AG and the DG. In such graphs nodes represent instantiated rules and
edges indicate that one instantiated rule may activate or deactivate the other instantiated
rule.

The following theorem is quite straightforward:

Theorem 4.5 A set of AHAM-CA rules R terminates if there are no cycles in the Acti-
vation Graph.

For confluence we need to find out if rules commute. We recall that Lemma 4.3 states
that two distinct rules ri and rj commute if: (1) ri cannot activate rj; (2) ri cannot

86 CHAPTER 4. AE: ADAPTATION ENGINE

deactivate rj; (3) condition (1) and (2) hold with i and j reversed; (4) ri’s action and
rj’s action commute. Conditions (1), (2) and (3) only require us to look at AG and DG.
To decide whether the actions Ai and Aj commute (i. e. that their execution order never
matters) we can check that the assignment(s) of Ai do not change an attribute of a concept
used in the condition or assignment of Aj and that the assignment(s) of Aj do not change
an attribute of a concept used in the condition or assignment of Ai.

Theorem 4.4 translates literally to AHAM-CA rules:

Theorem 4.6 A set of AHAM-CA rules R is confluent if all pairs of rules in R commute.

The sufficient condition for confluence is very strict because it forbids activation and
deactivation. However, when using priorities confluence can be guaranteed under much
less strict conditions (as we shall see in Section 4.8). The introduction of execution phases
is also a step towards reducing the confluence problems.

4.7 Enforcement for AHAM-CA Rules

Termination and confluence can be enforced (when not guaranteed) by either placing re-
strictions on the circumstances in which rules are allowed to activate each other, or by
monitoring the rule execution process and interrupting it when a problem is detected. The
former is called static enforcement , the latter dynamic enforcement . We are not going to
discuss dynamic enforcement because it confronts end-users with termination and conflu-
ence problems. We want to ensure termination and confluence before the rule execution
starts, so that end-users never receive error messages about these problems.

4.7.1 Enforcement of termination

We propose some static enforcement methods for AHS that ensure that the rule execution
will stop after some time, even when the rule definitions (together with cycles in the DM)
cause loops. This approach is easier for the author, because the author need not know or
be informed about (potential) loops. However, the enforced termination may not leave the
system in the state the author desired. We propose three easy (and also simplistic) ways
to make an AE ensure termination of each transaction (or rule execution process):

1. The system changes the attribute value of a concept at most once per transaction.
Because UM has only a finite number of concepts and each concept has a finite
number of attributes, the number of possible update steps that do not change a
previously updated attribute value is finite. Unfortunately this method inhibits some
possibly interesting ways to update the UM. For example, if concept A contributes
knowledge towards B and C, and B and C both contribute (a possibly different
amount of) knowledge towards D, D’s knowledge value can only be updated in a
predictable way if knowledge propagation from B and from C are both allowed to
happen during one event-process. One can easily come up with similar examples

4.7. ENFORCEMENT FOR AHAM-CA RULES 87

using concept relationships instead of the concept hierarchy, and also leading to
“premature” termination of parts of the transaction.

2. Each rule instance (either an instance of a generic rule or a specific rule) is executed
at most once in one event-process. A generic rule may be used several times, but
with different bindings of its (concept) variables to actual concepts. This method
again guarantees termination. In the above example the knowledge value of D can
be updated twice because both updates are different rule instances. Unfortunately,
if in this example D also contributes knowledge to E, the resulting two knowledge
contributions cannot both be propagated to E because that would be done through
the same rule instance.

3. The AE can make use of properties of the value domain for each attribute (of con-
cepts) to determine whether repeated updates to a concept or repeated execution of
the same rule instance are potential sources of infinite loops. The AE of the AHA!
system for instance allows repeated monotonic updates to a concept’s knowledge
value. This poses no danger when the value domain consists of integers between 0
and 100. (All monotonic update loops terminate when the value reaches 100 or 0,
depending on whether the value monotonically increases or decreases.)

The first two methods can be modified so that they allow not one but a larger (fixed or
variable) number of updates or instances of rules to be executed. This may eliminate some
of the negative side effects, but it also slows down the AE in case of an infinite loop that
must be interrupted. The third method is preferable, but for some value domains it may
be difficult to come up with a property that provides a good basis for terminating potential
infinite loops.

4.7.2 Enforcement of confluence

A single event may activate several rules, and each rule execution may activate some more
rules. In the sequential model we presented in Section 4.3.2, active rules are executed
one by one. The order in which rule instances are executed may influence the final result
UMf . Also, when a potential infinite loop is cut short by one of the methods described in
Section 4.7.1, the order in which rules are executed may influence which rules are executed
and which rules are discarded. The easiest way to guarantee deterministic behavior of AE
is to define the rule language in such a way that the author has to indicate when a rule must
be executed, and not only under which conditions a rule may be executed. However, that
would be like replacing the declarative nature of our language by an imperative one. This
would make authoring more difficult and we therefore do not consider this acceptable. We
have chosen an intermediate approach: the author must assign rules to the four categories
IU, UU-pre, GA and UU-post, but within each category the author does not indicate any
execution order.

While we do not have a general solution, an AE can find out potential sources of non-
confluence by searching for conflicting user model updates that result from active rules.

88 CHAPTER 4. AE: ADAPTATION ENGINE

For instance, considering Example 4.3 and Example 4.4, what these rules actually imply is
that there cannot simultaneously be a prerequisite and an inhibit relationship between C1

and C2. If these relationships would exist however then whether C2.ready becomes true
or false depends on the order in which the rules are executed. A smart authoring tool can
detect that the rules have a conflicting outcome, and thus warn the author of the error in
either the given relationships or the supplied rules. In fact, the check for commuting actions
that is part of the static confluence analysis detects potential conflicting updates (but may
give false alarms). When an author mistakenly thinks that a potential conflict will not
occur in practice the AE can still be instructed to detect conflicts. What is needed then is
a conflict resolution strategy that must be specified by the author or the system and that
can be used to eliminate the conflict. Once all conflicts between the active rules have been
resolved, the order of execution is not important any more and the event-process terminates
in a well-determined state. In the case of the prerequisite and inhibit relationships one
might for instance state that prerequisites take precedence and that in case of conflict the
rule for the inhibitor relationship is not executed. In the case of a conflicting generic and
specific rule, the specific rule always takes precedence.

A viable approach is to assign adaptation rules to groups and specify some general
precedence relationships, which will constitute the AE default behavior. This will leave a
number of situations in which the author has to provide some mechanism of choice for the
order-dependent transactions. An attractive option appears to be the collective application
of all rules that are active in a particular state and provide a conflict resolution strategy.
This way, we can build general AEs that provide a clear separation of responsibilities
between the system and the author. The input of the author will, of course, always be
required and is best put in the form of overruling general AE behavior with specific, domain
dependent choices.

4.8 Constraints for AHAM-CA Rules

Theorems 4.5 and 4.6 give sufficient conditions to guarantee termination and confluence.
However, these conditions may be too restrictive. Especially the condition for confluence
is strict as it does not allow any rule to trigger any other rule. In this section we discuss
how to loosen the sufficient conditions for termination and confluence without losing these
properties. This is an extension of the theory we published in [Wu and De Bra, 2001].

In common AHS the adaptation requirements are quite simple, e. g. each rule propagates
the change through one relationship, and the relationship graph is a DAG (directed acyclic
graph). For such simple cases, we can design a simple way to test for termination and
confluence by enforcing some constraints on the rules.

In this section we only consider concept relationships that are binary. In adaptation
rules, when an expression like relationship(C1, C2) is used it can only be used to find the
concepts C2 that correspond to C1. If we were to allow the relationships to be used in both
directions we cannot guarantee termination by only looking at the structure of the rules.
We can create an “inverse” relationship type, which is a different relationship type, and

4.8. CONSTRAINTS FOR AHAM-CA RULES 89

apply constraints for different relationship types to a type and its inverse.

4.8.1 Definition of terms

When considering constraints for rules, we mainly look at possible ways in which a pair of
rules may influence each other. This involves two aspects:

• Rules may activate or deactivate each other when the updated attribute (of a concept)
is used in the select clause of the C part of another rule.

• Rules that are (or can be) active at the same time may influence each other’s update
result thus causing the result of a transaction to depend on the execution order.

We first introduce terminology to be able to formalize our constraints. In this section we
will deal with constraints that use rules as given in the AM, not with instantiated rules.

Definition 4.15 The terms used in Section 4.8 are defined as following:

1. The function att.exp for expressions (ei) to attribute sets a is defined inductively as
follows:

(a) att.exp(a) = a if a is an attribute

(b) att.exp(constant) = ∅

(c) att.exp({e1, · · · , en}) =
⋃n

i=1
attr.exp(ei) (for query results)

(d) att.exp(e1 bmath op e2) = att.exp(e1) ∪ att.exp(e2)

(e) att.exp(umath op e1) = att.exp(e1)

2. Let R: C → A

(a) S(R)=the set of attributes which are selected in C

(b) U(R)=the set of attributes to which values are assigned in A

(c) E(R)=the set of attributes used in the right-hand side of assignments in A

3. Let R: C → A, the function num.rel for the number of relationships used in the
where clause of A (A.where) is defined inductively by

(a) num(relationship) = 1

(b) num(e1 eq op e2) = 0

(c) num(not condition) = num(condition)

(d) num(constant) = 0

(e) num(exist query) = 0

(f) num(e1 and e2) = num(e1) + num(e2)

90 CHAPTER 4. AE: ADAPTATION ENGINE

(g) num(e1 or e2) = num(e1) + num(e2)

4. We divide the attributes in three sets:

(a) Ext.att represents the external events.

(b) Int.att represents the internal events to start different execution phases, gener-
ated by the system.

(c) Usr.att represents the user features.

5. Let R: C → A, Sel(C) is the set of concepts selected by C.where, Upd(A) is a set of
concepts selected by A.where. We say that R is

(a) a start rule st rule if S(R) ⊆ Ext.att ∪ Int.att, num(R) = 0,
and Sel(C) = Upd(A)

(b) a propagation rule pr rule if S(R) ⊆ Usr.att, and
(∀c2 ∈ Upd(A) : (∃c1 ∈ Sel(C) : (∃rel ∈ UM-rel: relationship(c1, c2))))

6. Others

(a) St rule is a finite set of start rules.

(b) Pr rule is a finite set of propagation rules.

(c) Rule(rel) is a finite set of rules that propagate their change through the relation-
ship type rel.

(d) Pri(R) is a number to represent the priority of the execution order of rule R.

(e) DM rel is the set of relationship types in the DM.

(f) Rule is a finite set of all rules in the AM.

Function attr.exp calculates the number of different attributes that appear in an expression.
In the simplest case we may want only one attribute in an expression. S(R) represent the
set of attributes selected in the C part of a rule R. U(R) is the set of attributes being
updated (appearing in the left-hand side of the assignments) in the A part of a rule R.
E(R) is the set of attributes used in the expression of the assignment in the A part of a
rule R. Function num.rel calculates the relationships used in the A part. In the simplest
case we limit this to one relationship. Ext.att, Int.att, and Usr.att are used to distinguish
different kind of attributes in the UM. Rules having these different types of attributes as
trigger events have different execution orders because we want the external event to trigger
the rules and we divide rules into four different phases to simplify the static analysis.

A start rule st rule which is the first rule to execute in each phase will use Ext.att and
Int.att as its events. We can use Int.att to connect the execution of the four phases. Rules
triggered by events may update attributes of concept(s) appearing in their condition. The
“external” source is required in st rules, otherwise it is a sign of bad design, because we
want the external event to trigger the rules and to update all relevant attributes of one

4.8. CONSTRAINTS FOR AHAM-CA RULES 91

concept. This avoids recursive triggering among different attributes of one concept. (See
also our first general constraint in Section 4.5.2.) A propagation rule pr rule that executes
after the start rules is triggered by some change in the UM and it propagates the change
of values to different concepts through relationships between these concepts. (See also our
second general constraint in Section 4.5.2.) Rule(rel) is set of propagation rules that use
relationship rel. Pr rule is a set of propagation rules in general, and St rule is a set of
st rules.

4.8.2 Constraints

Now we discuss the sufficient conditions for termination and confluence. We start with a
simple but very strict Constraint 4.1.

Constraint 4.1 ∀Ri, Rj ∈ Rule : (S(Ri) ∩ U(Rj)) = ∅

Constraint 4.1 specifies that for every two rules Ri, Rj, the set of select attributes of
one rule is disjoint from the set of attributes updated in other rules. So they will not
activate or deactivate each other. With Constraint 4.1, a set of finite rules applied to a
finite database will always terminate; in worst case the rule execution terminates after N
steps, where N is the number of rules.

Theorem 4.7 A rule set Rule satisfying Constraint 4.1 terminates.

Proof: ∀Ri, Rj ∈ Rule, the execution of Ri cannot active Rj, because (S(Ri)∩U(Rj)) = ∅,
that means the execution of action Ai cannot change the database from a state in which
Cnew

j − Cold
j = ∅ to a state in which Cnew

j − Cold
j 6= ∅.

Constraint 4.1 still cannot guarantee confluence, because the updated attribute may
appear in the expression of the assignment of another rule, or (S(Ri) ∩ E(Rj)) 6= ∅.

Definition 4.16 ∀Ri, Rj ∈ Rule:

1. Ri is independent from Rj if (S(Ri) ∪ U(Ri) ∪ E(Ri)) ∩ U(Rj) = ∅

2. Ri is self-independent if (S(Ri) ∪ E(Ri)) ∩ U(Ri) = ∅

Constraint 4.2 ∀Ri, Rj ∈ Rule: Ri is independent from Rj, and Ri is self-independent

Constraint 4.2 implies Constraint 4.1, which means it guarantees termination. It also
requires that each rule is independent from the other rules, and it is also self-independent.
That means the execution of any rule cannot affect the outcome of any other rule execution.

92 CHAPTER 4. AE: ADAPTATION ENGINE

Theorem 4.8 A rule set Rule satisfying Constraint 4.2 terminates and is confluent.

Proof: Constraint 4.2 implies Constraint 4.1, hence the rule set Rule terminates. By
Constraint 4.2, ∀Ri, Rj ∈ Rule, Ri cannot activate and deactivate Rj because Ai cannot
influence Rj (it cannot change Cnew

j) and vice versa. Ai and Aj commute according to
Definition 4.14 because the execution order of them will not influence the final instance
of UM . According to Lemma 4.3 Ri and Rj commute. And by Theorem 4.6 the rule set
Rule is confluent.

Constraint 4.2 is a sufficient condition for termination and confluence. For each rule, the
computational complexity of verifying that the rule is self-independent is O(M 2), where M
is the number of attributes. For each pair of rules the complexity of verifying independence
is also O(M 2). When there are N rules, the computational complexity of the algorithm to
verify these constraints is O(N 2 × M2).

Constraint 4.2 is very strict in the sense that it is impossible to describe any propaga-
tion (i. e. that a rule triggers other rules). It can only be used to allow the description of
very simple adaptation. For more complicated applications authors need a more powerful
rule language, in which they are allowed to express propagation. To provide more expres-
sive freedom to authors we define a set of “reasonable” constraints that still enable the
description of adaptation found in common AHS while maintaining the termination and
confluence properties.

We first describe a general constraint for rules to be semantically correct in AHS as
described in Section 4.5.2. We discuss termination and confluence under these general
constraints.

Constraint 4.3 Rule = St rule ∪ Pr rule, and ∀Ri ∈ St rule, ∀Rj ∈ Pr rule :
Pri(Ri) > Pri(Rj).

Constraint 4.3 means that the set of rules consists of start rules and propagation rules.
This constraint also describes that (in each phase of the transaction if we divide rules into
phases), the start rules execute before the propagation rules. Constraint 4.3 describes a
general constraint for rules to be semantically correct in AHS. Of course Constraint 4.3 is
not enough to guarantee termination and confluence.

Constraint 4.4 Every relationship graph except that of the hyperlinks is a DAG.

Constraint 4.4 is a constraint on DM. Hyperlinks are used as a way for connecting
pages. The link structure is very often cyclic, but is not used for propagating user model
changes. Other relationships are used to propagate the UM changes between different
concepts. Cyclic relationship graphs are not very common. They require extra conditions
in their adaptation rules to prevent infinite loops. Termination is easier to guarantee if we
simply forbid cyclic relationships.

Constraint 4.5 ∀rel1, rel2 ∈ DM rel, if rel1 6= rel2 then
∀Ri ∈ Rule(rel1),∀Rj ∈ Rule(rel2) : U(Ri) ∩ S(Rj) = ∅.

4.8. CONSTRAINTS FOR AHAM-CA RULES 93

Constraint 4.5 means that rules using different types of relationships cannot trigger
each other. This constraint forces propagation in a simple way. It forbids complicate prop-
agation cases that use several different relationship graphs at the same time. Combining
different relationship types could lead to infinite loops because the union of two DAGs may
have cycles.

The following theorem describes sufficient conditions for termination. A rule set Rule
consists of a finite number of st rules and pr rules. The st rules will not trigger each
other; they are triggered by external and internal events. The st rules may trigger the
pr rules, and the pr rules may also trigger pr rules. The propagation for rules that use
a relationship type always terminates because the relationship graph is a DAG. And rules
that use different types of relationships cannot trigger each other, because they use different
attributes, so different DAGs cannot be combined to form a cycle.

Theorem 4.9 A rule set Rule terminates if it satisfies Constraints 4.3, 4.4 and 4.5.

Proof : Assume there exists a cycle in the Activation Graph, then there exist two different
relationship types that are used in this cycle, because every relationship graph is a DAG
according to Constraint 4.4. Suppose these two different relationship types are rel1 and

rel2, then there exist Ri

−−→
rel1 Rj and Rj

−−→
rel2 Rk, that means U(Ri)

⋂
S(Rj) 6= ∅. This

contradicts with Constraint 4.5. So we conclude that there does not exist a cycle in
Activation Graph. By Theorem 4.5 that means the rule set Rule terminates.

Constraints 4.3, 4.4, and 4.5 together cannot guarantee confluence. For example, in one
relationship graph, there may exist one node which has two incoming edges, that means
there exist two ways to propagate different changes to this node. At a certain time, this
node may have been changed to different values by choosing a different propagation order.

Constraint 4.6 Every node in every type of relationship graph has at most one incoming
edge, and ∀rel ∈ DM rel : (∀Ri, Rj ∈ Rule(rel), if Ri 6= Rj then U(Ri) ∩ U(Rj) = ∅).

Constraint 4.6 (combined with constraint 4.4) says that every relationship graph is not
just a DAG but a tree. It also says that different updates made through different rules
using the same relationship type must use different attributes. It thus implies that updates
to an attribute of a concept cannot come from two sources (through the same relationship
type).

When two propagation rules that use different types of relationships become active at
the same time, the different execution order of these two rules may cause a different state
in the processing of a set of rules, and this may cause different final results.

Definition 4.17 ∀reli, relj ∈ DM rel, Independent(reli, relj) holds if
∀Ri ∈ Rule(reli), ∀Rj ∈ Rule(relj) :
(S(Ri) ∪ U(Ri) ∪ E(Ri)) ∩ U(Rj) = ∅ and (S(Rj) ∪ U(Rj) ∪ E(Rj)) ∩ U(Ri) = ∅.

This definition says that rules associated with relj do not update any attribute that is used
(selected or updated) by rules associated with reli, or vice versa. The execution order of
rules of such pair of relationship types does not matter to the final result.

94 CHAPTER 4. AE: ADAPTATION ENGINE

Constraint 4.7 ∀rel1, rel2 ∈ DM rel, if rel1 6= rel2 then Independent(rel1, rel2) holds.

Constraint 4.7 needs to calculate many attribute sets, and in worst case we need to apply
different relationships separately. In fact it is more natural to just define some execution
order for them to replace Constraint 4.7.

Constraint 4.8 (∀R ∈ Rule,R : C → A : num(A.where) ≤ 1) and

(∀rel1, rel2 ∈ DM rel :
(∀Ri ∈ Rule(rel1),∀Rj ∈ Rule(rel2), if rel1 6= rel2 then Pri(Ri) > Pri(Rj)) or

(∀Ri ∈ Rule(rel1),∀Rj ∈ Rule(rel2), if rel1 6= rel2 then Pri(Ri) < Pri(Rj))).

Constraint 4.8 says that there is an order between relationship types. All rules associ-
ated with one type are executed before all the rules of another type, or after all the rules
of that other type.

Theorem 4.10 A rule set Rule is confluent if it satisfies Constraint 4.3, 4.4, 4.5, 4.6,
and Constraint 4.7 or 4.8.

Proof: With Constraint 4.3, 4.4 and 4.5 we know that Rule is guaranteed to terminate.
With Constraint 4.6 the propagation through the same relationship graph has an exclusive
route; each attribute on the path of this route can only be assigned to once. All actions on
this route have fixed execution order. So the final result at the end of the route is always
the same. But the value of each attribute may still be uncertain if we allow the propagation
through other types of relationship at the same time. With Constraint 4.7, execution of
rules through one relationship graph has no influence on the rules using other relationship
graphs. Here no influence means rules from different groups cannot activate or deactivate
each other and their actions commute. So we conclude that rule set Rule is confluent. But
Constraint 4.7 still limits the possible triggering: triggering is only allowed among the rules
using the same relationship type. Constraint 4.8 replaces Constraint 4.7 by enforcing a
pre-defined execution order between different relationship types. The propagation through
different relationship graphs has a priority order, so the final result of the UM from the
same event for the same user will be always be the same. Hence rule set Rule is confluent.

Constraints 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 are fairly simple constraints, easy to under-
stand for authors, are satisfied by some current AHS (as we will see later) and can be used
in future AHS.

4.8.3 Complexity of static analysis

Because the system has to check at least Constraint 4.3 to guarantee reasonable adapta-
tion behavior, and because Constraint 4.4 and Constraint 4.8 on the DM are known before
analyzing a set of rules, we neglect checking of Constraints 4.3, 4.4 and 4.8 when consid-
ering the complexity of the whole checking algorithm for termination and confluence. The
checking time is mainly spent on checking Constraints 4.6 and 4.7. The complexity for
Constraint 4.6 is O(L × E × M 2) where L is the total number of relationship graphs used

4.9. SUMMARY OF AE 95

in all rules, E is the maximum number of edges in every relationship graph, and M is the
total number of all attributes. The complexity for Constraint 4.7 is O(N 2 × M2), N is
number of rules and M is the total number of all attributes. So the complexity of this
checking algorithm for termination and confluence is O((N 2 + L × E) × M 2).

4.9 Summary of AE

We have defined a general purpose adaptation engine. We focused on the design goals
of providing powerful expressiveness for writing adaptation strategies, making authoring
easy, and providing static analysis for termination and confluence.

To show how an AE works exactly, we designed an abstract adaptation engine. This
abstract machine uses AHAM-CA rules as a subset of CA rules from active database theory,
because the database CA rules are close to the adaptation requirement of AHS, and CA
rules are well-studied in active database theory. For CA rules better static analysis results
for termination and confluence are available than for the more general ECA rules.

We have illustrated two widely used static analysis methods for termination and con-
fluence, one is the TR (Triggering Graph) for ECA rules and one is AG (Activation Graph)
for CA rules. Considering the special situation of AHS: that we know the DM instance, we
have proposed a less conservative static analysis of termination and confluence (less con-
servative for AHS than for active databases). This analysis has the same time complexity
as the Propagation Algorithm [Baralis and Widom, 2000]. The complexity of the static
analysis is exponential in general, but for AHS the PA is simple and efficient.

Static analysis of termination and confluence is based on the assumption that the AE
randomly selects an active rule to execute. Different systems may uses different conflict
resolution methods. For the case where termination and confluence is not guaranteed,
static enforcement can be used to force the properties. For example, the AE can associate
a priority to every rule, concept, concept relationship and/or attribute, thereby specifying
the choice the AE has to make at runtime when two rules become eligible for execution.
However, such tricks are masking problems rather than solving them. When the adaptation
result depends on a system- or author-defined priority of one rule over another (apart from
the priorities used to distinguish the execution phases) it becomes difficult for authors to
predict the behavior of the adaptive application they are developing. We again prefer a
static analysis to predict when confluence is no longer guaranteed.

Unfortunately, the sufficient conditions used in the static analysis are too strict: they
do not allow rules to trigger each other. We have proposed sufficient conditions for simple
adaptive hypermedia systems that guarantee termination and confluence while still allowing
rules to trigger each other.

In this chapter we answered research question 4. We have defined behavioral semantics
for AHS and have illustrated how AHS work exactly. We have discussed different ways to
guarantee termination and confluence for AHS.

96 CHAPTER 4. AE: ADAPTATION ENGINE

Chapter 5

Validation of AHAM: InterBook

This chapter describes InterBook in terms of our reference architecture for adaptive hyper-
media applications. InterBook [Brusilovsky et al., 1996b] is an authoring tool to develop
electronic textbooks on the World Wide Web. It is a typical AHS that provides adaptive
content and adaptive navigation support according to users’ features. (However, the con-
tent adaptation is very limited.) Section 5.1 introduces the user interface of InterBook by
characterizing all its different types of windows and user interaction with those windows.
Section 5.2 describes the structure of the domain model of InterBook. Section 5.3 de-
scribes the structure of the user model of InterBook. Section 5.4 describes the adaptation
of InterBook using AHAM-CA rules. Section 5.5 describes the issues of termination and
confluence in the case of InterBook. Section 5.6 summarizes the validation of our reference
model by expressing the functionality of InterBook.

5.1 Introduction

An electronic textbook (ET) is a popular form of on-line learning material that replicates
classic printed textbooks in digital form. Adaptivity makes the book personalized. Adap-
tive ET systems can be useful in any situation when the ET is expected to be used by
people with different goals and knowledge and where the hyperspace is reasonably large.
Knowing users’ goals and knowledge, an adaptive ET can support users in their navigation
by limiting the browsing space, suggesting the most relevant links to follow, or by provid-
ing adaptive annotations to visible links. Users with different goals and knowledge may be
interested in different pieces of information presented on a hypermedia page and may use
different kinds of links for navigation.

InterBook, designed by Peter Brusilovsky, is an authoring tool to develop adaptive elec-
tronic textbooks on the World Wide Web. It builds on the ELM-ART system [Brusilovsky
et al., 1996a] which was used for an interactive Lisp course. We studied InterBook’s pro-
duction version, which is available on-line and very stable. There is also a development
version with richer functionality, which we do not discuss in this dissertation. The limited
production version is sufficient to show how to describe InterBook’s adaptation functional-

97

98 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

ity in AHAM. It should not be difficult to extend our description to the richer development
version (but we have not tried this).

InterBook is a typical AHS that consists of a domain model, a user model, and an
adaptation model. It has only built-in adaptation rules. There is no adaptation language
for authors to use to describe adaptation rules. Authors only define the domain model
which consists of a set of concepts and concept relationships. The system maintains a
user model for each individual user and uses the domain model and user model to provide
adaptation. Before we describe these models of InterBook, we first introduce the interface
of InterBook.

InterBook uses multiple windows and multiple frames within windows. There are var-
ious types of windows in InterBook: registration window, section window, domain-concept
window, content window, glossary window, search window, and help window. We concen-
trate on the section window, domain-concept window, content window, glossary window,
and help window, because InterBook provides adaptation in these windows and adaptation
is what we are most interested in. We use the term section for Textbook Section (TS) in
the remainder of this chapter.

Figure 5.1: A screen shot of the section window (1)

When the user “clicks” on a section link a section window appears as shown in Figure 5.1
or Figure 5.2. The section window is the most important window in InterBook’s interface.

5.1. INTRODUCTION 99

This window is designed to view the textbook section by section. A section window has
three frames: text, navigation bar, and tool box. Several textbooks can be viewed at the
same time; each textbook will be shown in a separate window. All textbooks on the
same bookshelf share a common domain-concept structure and a common user model. As
a result, in our description we use a single user model for each user to store the user’s
knowledge of all domain-concepts about all textbooks in the bookshelf.

Figure 5.2: A screen shot of the section window (2)

• The text frame is the lower sub-window of a section window. This frame shows
a particular section of the textbook that is called the current section. It can be
a terminal section or a high-level section (the most high-level section is the book
itself). For a terminal section (see Figure 5.1) the text frame shows the “ready bar”,
the title of the section, and then possibly some pictures, text and domain-concept
links. Note that “domain-concept” is a term used in InterBook to represent a piece
of knowledge about a textbook. A domain-concept is an abstract concept in terms
of AHAM. In the text frame, domain-concept links are treated normally as a part
of text; these domain-concept links are not adaptive (not annotated adaptively) in
InterBook. (They can be annotated in InterBook but this feature was disabled in the
production version we describe.) For a high-level section (see Figure 5.2) the text

100 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

frame shows the “ready bar”, the title of the section, an introduction to the section
(if that exists) and a list of subsection links. It provides content adaptation and link
adaptation. If one of its subsections is the last section visited and this subsection is
not a terminal section, the system shows “(You are here!)” and shows hierarchical
subsection links for this subsection. The system also shows “(You were here!)” for
the link to the section that was visited before last. Technically speaking these notes
are a form of content adaptation. However, their function is to annotate the links to
sections. You can see these annotations also in Figure 5.4 which is a content window,
not a section window.

Another form of content adaptation is the change in color of the “ready bar”. The
green bar indicates that the user is ready to read this page. For “real” link adaptation
InterBook uses colored bullets as we explain below.

• The navigation bar frame is the upper left sub-window of the section window. This
frame shows the position of the current section in the textbook: it lists the titles
of all direct ancestor links (father, grandfather, etc.) and all sibling links (links at
the same level) of the current section. It also shows the current section title, with
annotation, but this is not a link. The system represents links using the same color
metaphor as used for adaptive annotation to show the educational status for the
sections. The navigation bar frame serves for both orientation and navigation.

• The tool box frame is the upper right sub-window of a section window. It provides a
set of buttons that are used to call additional windows (tools). It does not provide
adaptation.

InterBook distinguishes two “read” states of a section. It uses a check mark to show
that the user has read this section or not. InterBook has a feature to show a concept bar
in which links to concepts are shown with check marks of different sizes. This feature was
disabled in the production version we describe.

InterBook distinguishes three “ready” states of a section. It uses the link annotation
technique to show the relevance of links to sections, which is a combination of color and font.
The color “green” and font “bold” means the section is “recommended” to be read. The
color “red” and font “italic” means the section is “not recommended”. The color “white”
and font “normal” means the section is “not interesting” (because its outcome concepts
are already known). The adaptation for section links is the same in all the windows. The
current section is always shown in “black” and with a “bold” font. It is not a link.

When the user “clicks” on a domain-concept link a domain-concept window is opened
as shown in Figure 5.3. A domain-concept window has three parts: a description frame
describes the domain-concept itself; an introduction frame contains a list of links to sections
that introduce this domain-concept; and a requirement frame gives a list of links to sections
for which knowledge of this domain-concept is required. The section links are presented in
the same way as in the section window.

5.1. INTRODUCTION 101

Figure 5.3: A screen shot of the domain-concept window

A “click” on the content button in the tool box frame of the section window creates a
content window as shown in Figure 5.4. The content window shows two tables of content
(in two frames): The bookshelf frame shows the list of book links on the bookshelf of this
site; the index frame shows links to the sections of the current book. It also shows recently
visited subsections and adds the “(You are here!)” and “(You were here!)” comments. The
system represents links using the same link annotation techniques as in other windows.

A “click” on the glossary button in the section window creates a glossary window as
shown in Figure 5.5. The glossary window has three frames: alphabet, glossary, and content.
The alphabet frame shows a list of 26 letters as an index for the glossary. A “click” on
a letter causes the system to update the glossary frame. There is no adaptation in the
alphabet frame. The glossary frame shows a list of domain-concept links. The information
in this frame is adaptively annotated. It only shows domain-concept links that have the
selected letter as the first character in their name. InterBook does not need “read” states
for the domain-concepts (unlike for the sections), because the domain concepts are used
to represent a piece of knowledge about the subject domain, not to represent the content
of the textbook. Each “click” on a domain-concept link in the glossary frame updates
the content frame. The content frame shows the same information as the domain-concept
window. (In fact, the domain-concept window is a glossary window with the alphabet and

102 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

Figure 5.4: A screen shot of the content window

glossary frames disabled.) The information in the content frame is adaptive. The frame
shows the domain-concepts that are selected in the glossary frame. It uses the same link
annotation techniques as in the domain-concept window.

InterBook offers a help window to show to users which pages to read to prepare them-
selves to read a section. The system knows the structure of prerequisites and outcome
domain-concepts. When a student enters a section page that is not yet ready to be learned,
he or she can “click” on the help button in the tool box frame. The system then opens a
help window as shown in Figure 5.6. A help window shows an explanation of the problem
the student may have, and the links to sections that explain a domain-concept. The section
links are adapted using link annotation techniques.

We concentrate on the various types of links described above from an adaptation point
of view. There are also other kinds of links that are not relevant for the discussion of
adaptation in InterBook (because these links have no adaptation associated with them).
We will not discuss these links in this dissertation.

• test – pop up a solution feedback window and pop up an information window.

• back – go to previous text window (without using the browser’s back button).

5.2. INTERBOOK: DOMAIN MODEL 103

Figure 5.5: A screen shot of the glossary window

• continue – go to next text window.

• search – pop up a window with a search form.

5.2 InterBook: Domain Model

As we described above, InterBook uses multiple windows and frames. The author does
not specify this rich functionality. An author only defines sections, domain-concepts, a
hierarchical relationship between sections, and a structure of outcome and requirement
relationships between sections and domain-concepts. It is the system that generates all
windows and frames. AHAM focuses on describing adaptation functionality based on a
static domain model. In our description of InterBook we assume all windows and pages
have been designed, authored or generated. We concentrate on how to update the user
model and how to generate the adaptation in the windows and frames. Each type of
window in InterBook corresponds to a set of pages (either authored or generated from
different books, sections, and domain-concepts). Each page consists of a set of fragments.
Some fragments are always included and some are conditionally included, based on the

104 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

Figure 5.6: A screen shot of the help window

user model instance. Some link fragments are adaptively annotated and some are not. We
only describe adaptation rules for things that depend on the user model.

Like traditional printed textbooks InterBook uses hierarchically structured presenta-
tions of a subject. Units at different levels are called sections in InterBook. The highest
level unit is the electronic textbook. A book is divided into sections. Each section is
structured further into smaller units (subsections). A terminal section presents text, links
and maybe also pictures. A high level section usually provides some introduction or pref-
ace that introduces the reader into its subsections. Both terminal sections and high-level
sections have a physical page to present it.

InterBook uses a domain-concept to describe a piece of knowledge about the subject
domain. Depending on the application area, domain-concepts represent smaller or larger
pieces of domain knowledge. A section is usually centered on a specific subset of the
domain-concepts.

In addition to the main content of the textbook, InterBook provides navigation aids
just as good textbooks do. Examples are the table of contents, the index of the glossary
and the glossary itself. The table of contents contains a hierarchy of sections of a textbook.
Each section is presented as a link to its physical page. The index contains the first letter of
the names of the most important terms and keywords of the book. Each term and keyword

5.2. INTERBOOK: DOMAIN MODEL 105

links to a physical page. The glossary contains a more extensive description for a number
of important domain-concepts that link to a detailed explanation of the domain-concept
and where the domain-concept is presented. All sections are indexed by domain-concepts
that appear in the glossary.

5.2.1 Concepts in the DM-InterBook

The domain model describes the information domain at a conceptual level. In AHAM it
consists of a set of concepts and concept relationships. Suppose we use DM-InterBook to
represent the domain model of InterBook. The term concept used in AHAM is a general
term, it can represent low level fragments, pages and high level abstract concepts. The
DM-InterBook has several kinds of concepts. At the lowest level there are fragments which
are pieces of text, pictures, links which may link to other windows (pages), e. g. a section,
the content of a book, a domain-concept, an external source, etc. Above fragments there
are pages that can be distinguished by the types of windows described below. To simplify
the page description, we introduce frames to group fragments in the page according to
different use. We do not actually use frames in our rules to describe InterBook. At the
highest level there are concepts of which a user can have knowledge (stored in the user
model).

Section windows (SW)

We assume each section has a corresponding section window. A section window is generated
when a user “clicks” on a section link. A section window has three frames, a navigation
bar frame, text frame, and tool box frame:

• The navigation bar frame consists of section link fragments. These sections can be
chapters, sections, or subsections.

• The text frame consists of fragments. The first fragment is a colored “ready bar”
presented at the top of the frame. Below the colored bar is a fragment to describe the
content of this section. The other fragments can be either links to subsections if the
current section is not a terminal section, or can be text and links to other sections or
domain concepts (or to external sources) if the current section is a terminal section.

• The tool box frame contains a content button linking to a content window and a
glossary button linking to a glossary window.

Domain-concept windows (DCW)

We assume that each domain-concept has a corresponding domain-concept window. A
domain-concept window is generated when the user “clicks” on a domain concept link in
the text frame of a section window. A domain-concept window consists of three frames, a
description frame, outcome frame and requirement frame:

106 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

• The description frame is a text fragment to explain this domain-concept.

• The outcome frame consists of link fragments linking to terminal sections that provide
knowledge on the current domain-concept.

• The requirement frame consists of link fragments linking to sections for which the
knowledge about this domain-concept is required.

Content windows (CW)

We assume each textbook has a corresponding content window. A content window is
generated when the user “clicks” on the Content button in the section window. A content
window consists of two frames, bookshelf frame and index frame:

• The bookshelf frame consists of link fragments pointing to electronic books stored on
this site.

• The index frame consists of link fragments. Each fragment is a section link that
points to one section of the current textbook. Links to subsections are also shown
for the sections containing the two most recently visited subsections.

Glossary windows (GW)

We assume each domain-concept has a corresponding glossary window. A glossary window
is generated when the user “clicks” on the Glossary button in the section window. It
consists of three frames, an alphabet frame, glossary frame, and content frame. Each frame
is generated by a different event.

• The alphabet frame consists of 26 link fragments labelled with the letters ‘A’ to ‘Z’
and an “All” link fragment. Each letter links to a list of domain-concept links which
have this letter as the first letter of their names. The “All” link fragment links to a
list of all domain-concept links.

• The glossary frame consists of fragments. The first fragment contains the text “Glos-
sary” which is presented when the user “clicks” on a glossary button. The second
fragment is the selected link fragment in the alphabet frame which is presented when
the user “clicks” on a link fragment in the alphabet frame. A list of domain-concept
link fragments is presented below the first and the second fragment. When the user
“clicks” on an alphabet link, the list contains domain-concepts having the selected
letter as the first letter of their names. When the user “clicks” on the “All” link, the
list contains all domain-concepts.

• The concept frame consists of a set of fragments. The first fragment explains this
domain-concept. It is followed by fragments that are links to sections providing
knowledge about this domain-concept. Below these are fragments that are links to
sections that require knowledge of this concept. The content frame contains the same

5.2. INTERBOOK: DOMAIN MODEL 107

information as the domain concept window. The content of this frame is generated
by a “click” on a domain-concept link in the glossary frame. It is empty when users
just “click” on the glossary button.

Help windows (HW)

We assume each section has a corresponding help window. A help window consists of two
frames: a description frame and a suggestion frame:

• The description frame is a fragment to describe the section page for which the user
requests help.

• The suggestion frame consists of link fragments linking to sections that provide re-
quired (prerequisite) knowledge.

5.2.2 Concept relationships in the DM-InterBook

Concepts in the DM-InterBook are related to each other in a certain way. InterBook
requires authors to define the following relationships:

• Firstpage(Book, P) describes that page P is the first page of the Book.

• Subsection(TS1, TS2) describes the hierarchical structure of the textbook, e. g. section
TS1 has a subsection TS2. The Book itself is the top of this hierarchy.

• Domain concept(Bookshelf, C) describes that C is a domain-concept of the Bookshelf.
The Bookshelf is a predefined entity (concept component). We use it to get access to
all the domain-concepts used in the Bookshelf.

• Bookset(Bookshelf, Book) describes that the Book is on the Bookshelf .

• Loginpage(Bookshelf, CW) describes that CW is the the first page to visit after a user
registers or logs in to the system. The first page of the system is a content window
(CW) which only contains a Bookshelf, the index frame of the CW is empty.

• Requirement(TS,DC) describes that the knowledge of domain-concept DC is re-
quired (prerequisite) for the section TS.

• Outcome(TS,DC) describes that domain-concept DC is an outcome of section TS.
(Reading TS generates knowledge about DC. A section may have several outcome
concepts.)

• Fragment(P, F) describes that F is a fragment of section P . Here P represents a
window (page), e. g. SW, DCW, CW, GW, and HW.

To simplify the rule description for InterBook, we introduce the following relationships
that can be deduced from above relationships.

108 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

• Descendant(Book, TS) describes that section TS is a descendant of the Book, TS
is a direct or indirect subsection of the Book. This can be derived from Subsection
relationship.

• Descendant−1(TS,Book) is the inverse relationship of Descendant(Book, TS).

• Requirement−1(DC, TS) is the inverse relationship of Requirement. It describes that
section TS requires the knowledge of the domain-concept DC.

• Outcome−1(DC, TS) is the inverse relationship of Outcome. It describes that DC is
introduced in TS.

• Subsection−1(TS2, TS1) is the inverse relationship of Subsection.

• GAlphabet(Letter,DC) describes that domain concept DC has Letter as the first
character in its name.

These relationships are binary tuples. They can only be applied from the first parameter to
the second parameter. We introduced inverse relationships to circumvent this restriction.
The restriction is not necessary for AHAM, but we use it on AHAM-CA rules in order to
control termination and confluence.

5.3 InterBook: User Model

For every user InterBook creates and maintains an individual model. The UM of InterBook,
called UM-InterBook, is an overlay model of the DM-InterBook. For each concept in the
DM-InterBook, a set of attribute values are stored in the UM-InterBook, e. g. it can store
independently the user’s knowledge of different topics. The DM-InterBook may have many
kind of concepts, but we focus on domain-concept, section, glossary, content, help, and
(alphabet) letter, which we described in the previous section.

We can use attribute-value pairs to describe all the user features. For each concept in
DM, several attribute values are stored in the user model. Also the other user features can
be stored in the UM. We distinguish four types of attributes used in the UM of InterBook:

• user features (including knowledge)

• system related features, e. g. to remember the history or temporary results

• the adaptation attributes (of presentation specifications) used in the run time layer

• (simulations of) external events

5.3. INTERBOOK: USER MODEL 109

5.3.1 Attributes for users’ features

InterBook stores and/or uses a number of attributes about concepts and pages that repre-
sent what the user “did” about these concepts and pages.

• For each domain-concept, a knowledge attribute stores a value that is an estimate of
the student’s knowledge level of this domain-concept. InterBook distinguishes four
knowledge states: “new”, “known”, “well known”, and “learned”. We use a numeric
representation of these states: 0 for “new”, 1 for “known”, 2 for “well known”, and 3
for “learned”. We will see how these different knowledge states are used in adaptation
rules in Section 5.4. We assume that the data type of knowledge is real because there
are adaptation rules that increase the knowledge by 0.1 under certain conditions.

• For each domain-concept, a test attribute stores the result of a test performed by the
user. If the user passes the test the function returns true, otherwise it returns false.

• For each section a ready attribute stores the state of the section: whether it is ready
to be read or not. This attribute could be calculated on the fly instead of storing
it in the user model. We chose to make it persistent in our representation because
it simplifies the adaptation model. The data type for this attribute is enumerated:
“recommended”, “not recommended”, “not interesting”.

• For each section a read attribute represents whether the section has been accessed
by the user. Its value can be true or false.

5.3.2 Attributes for system related features

Temporary results are generated during the rule execution. They may be used later during
the same transaction and are preserved for use during the next transaction. They can be
(re-)calculated on the fly, or stored in the UM. We chose the latter in our representation
of InterBook because it greatly simplifies the adaptation model.

• For each domain-concept a page attribute stores the (uid of the) first page that made
the knowledge of this domain-concept become “known”. The data type is string.
Initially the value is null. This attribute is used to avoid updating the knowledge a
second time when a user revisits this page.

• For each book a last attribute remembers the section last visited. Initially it is null.
This is used to generate the “(You are here!)” annotation.

• For each book a before last attribute remembers the section visited before the last
section. Initially it is null. This is used to generate the “(You were here!)” annota-
tion.

110 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

5.3.3 Attributes for presentation specifications

The adaptation attributes used for presentation specifications store the adaptation results.
These will be used by the Run-time Layer according to the definition of AHAM.

For each section several attributes are used to indicate different features:

• An indicator attribute stores a (color) value for the bullet in front of the section link
fragments. The same indicator is also used for the color of the “ready bar” in the text
frame of a section window. InterBook uses the link annotation technique to indicate
the different relevance levels of these links (for the current user). The relevance is
represented by the colors “green”, “red” and “white” for the states “recommended”,
“not recommended”, and “not interesting”.

• A font attribute stores a value for the text of a link fragment. It can be “bold”,
“italic” or “normal” to indicate that this link leads to a section with state “recom-
mended”, “not recommended”, and “not interesting”. It is used together with the
indicator (bullet) in InterBook to indicate the relevance of section links.

• A pres attribute stores a value for the presentation specification of a section link
fragment. It can be “show” or “hide”.

• A link attribute stores a value to indicate whether to hide this link or not. When
a link is hidden the text of the link anchor is shown but it is not a link. The value
can be “show” or “hide”. When a link is hidden the anchor will appear in black,
whereas a link that is shown appears in blue (or purple but that is determined by
the browser).

• A mark attribute stores a value for the check mark in front of the link fragment. It
can be “show” or “hide” to indicate whether to show a mark or not.

• A fa attribute stores a value to indicate whether to show the text fragment “(You
are here!)” after the link section fragment. It serves as a reminder of the current
reading place. The value can be “show” or “hide”.

• A fw attribute stores a value to indicate whether to show the text fragment “(You
were here!)” after the link fragment. It serves as a reminder of the previous reading
place. The value can be “show” or “hide”.

For domain-concepts some attributes are used as follows:

• An indicator attribute stores a value for the bullet in front of the domain-concept
link fragments (which appear in a glossary window). InterBook uses the annotation
technique to indicate the relevance of these links to the user. The value can be “red”,
“green” or “white” depending on the knowledge state (for the concept): “red” for
smaller than 1, “green” for between 1 and 2, and “white” for bigger than 2. Note that
the green-red-white color metaphor used for domain-concepts is used with a different
meaning than for links to sections.

5.4. INTERBOOK: ADAPTATION MODEL 111

• A pres attribute stores a value for the presentation specification of the domain-
concept link fragment (in the glossary window). The value can be “show” or “hide”.

• A font attribute stores a value for the text of a link to a domain-concept. It can
be “italic”, “bold” or “normal” to indicate that this link leads to a domain-concept
with knowledge values smaller than 1, between 1 and 2, or bigger than 2. It is used
together with an indicator to indicate the relevance of domain-concept links.

5.3.4 Attributes for simulating events

We use “pseudo” user model attributes to represent that an event has happened. We use
three such events: for accessing a page, for logging onto the system and for registering as
a new user.

• We use a Boolean access attribute to represent the event of accessing a page (which
is done by “clicking” on a link anchor). For example, P.access represents that
“clicking” on a section (window) link; GW.access represent “clicking” on a glossary
(window) link; C.access represents “clicking” on a domain-concept (window) link;
Letter.access represents “clicking” on a letter in the alphabet frame of the glossary
window; Book.access represents “clicking” on a book link the Book on the Bookshelf
(in the content window).

• We use a Boolean new access attribute to represent the special event of “registering”
with the system as a new user.

• We use a Boolean old access attribute represents the special event of “registering”
with the system as an existing user.

5.4 InterBook: Adaptation Model

The adaptation model describes how to update the user model and how to generate the
adaptation based on that user model and the domain model. We use AHAM-CA rules
to describe the adaptation model of InterBook, called AM-InterBook. As we described in
Chapter 3 the adaptation rules are divided into four execution phases: IU, UU-pre, GA,
and UU-post. These four phases are executed in a linear order. In each phase there are
several transitions, where each transition is the execution of one active rule.

5.4.1 Adaptation rules in the IU phase

InterBook allows the creation of a bookshelf containing different electronic textbooks. We
will take the existence of the bookshelf into account (using the name Bookshelf, for instance
when initializing new access values and old access values of books). Apart from that, we
only deal with the “current” book. Each page belongs to a book; each book has a last
visited page and a before-last visited page. We treat the action of registering (or logging

112 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

in) and selecting a book to study as different events. Registering will give access to the
Bookshelf. The user must then choose a book from the Bookshelf to study.

When a user logs in on the system, the system reacts differently depending on whether
the user is a “new” or existing (“old”) user. If the user is new, the system creates the UM,
initializes all attributes with default values, and generates a first page (CW) of the system
to show to the user. If the user is old, then system retrieves the existing user’s UM and
generates the same first page (CW) for the user. Assume we use the Bookshelf concept to
represent the registration window of the system. The following rules set the default values
for the registration. Section variable P represents a section (window) link. We write the
initialization rules for InterBook as follows:

Rules 1 to Rule 6 are generic rules for initializing the user model when a user registers
with the system for the first time. These rules set default values for each section P of each
book on the Bookshelf.

The rules correctly initialize the user model only under the following assumptions:

• Every page of a book contributes (knowledge) to at least one outcome concept. (Oth-
erwise InterBook will consider the page not interesting and users are likely to then
never read that page.)

• The first page of a book does not have prerequisites. Otherwise the page with which
a user starts will not be recommended.

• The first page of a book contributes knowledge to an “initial” concept that is a
prerequisite for all other pages. As a result, when the user registers and accesses
the first page the “initial” concept becomes known, and that knowledge change will
make pages become “recommended” that have no other prerequisites.

Rule 1:
C: select Bookshelf.new access
A: update Book.new access := true; Book.access := false

where Bookset(Bookshelf, Book)

Rule 2:
C: select Bookshelf.new access
A: update CW.access := true

where Loginpage(Bookshelf, CW)

Rule 3 is a generic rule to set the knowledge of all concepts to 0 when the user registers
as a new user.

Rule 3:
C: select Bookshelf.new access
A: update C.knowledge := 0

where Domain concept(Bookshelf, C)

5.4. INTERBOOK: ADAPTATION MODEL 113

Rule 4:
C: select Book.new access
A: update P.ready = “recommended”; P.fa := “hide”;

P.fw := “hide”; P.read := false;
P.mark := “hide”; P.link := “show”

where Firstpage(Book, P)

Rule 5:
C: select Book.new access
A: update P.ready = “not recommended”; P.fa := “hide”;

P.fw := “hide”; P.read := false;
P.mark := “hide”; P.link := “show”

where Descendant(Book, P) and not Firstpage(Book, P)

Rule 6 is a generic rule that initializes the last and before last attributes of each book
on the Bookshelf.

Rule 6:
C: select Book.new access
A: update Book.before last := null;

Book.last := null

Rules 7–12 handle events that can occur more than once. Therefore we verify that the
“event” attribute has become true. (We will also have to reset the value to false at the
end of the rule processing.)

Rule 7:
C: select Bookshelf.old access

where Bookshelf.old access = true
A: update Book.old access := true; Book.access := false

where Bookset(Bookshelf, Book)

Rule 8:
C: select Bookshelf.old access

where Bookshelf.old access = true
A: update CW.access := true

where Loginpage(Bookshelf, CW)

Rule 9–10 describe when a user accesses another book on the Bookshelf, the system
shows the first page of that book, and hide the others.

Rule 9:
C: select Book.access

where Book.access = true
A: update P.access := true

where Descendant(Book, P) and Firstpage(Book, P)

114 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

Rule 10:
C: select Book.access

where Book.access = true
A: update P.access := false

where Descendant(Book, P) and not Firstpage(Book, P)

Rule 11 sets the pres adaptation attribute for all domain-concepts to “hide” for the
glossary window when a user access a glossary window.

Rule 11:
C: select GW.access

where GW.access = true
A: update C.pres := “hide”

where Domain concept(Bookshelf, C)

Rule 12 is a generic rule to set the access attribute to false for all Letters (and “All”)
in the alphabet for the glossary window when a user access a glossary window.

Rule 12:
C: select GW.access

where GW.access = true
A: update Letter.access := false

where Letter ∈ {A, . . . , Z,All}

This is not exactly AHAM-CA rule syntax, but simply represents 27 specific adaptation
rules, one for each letter and one for All.

5.4.2 Adaptation rules in the UU-pre phase

The following rules describe how InterBook updates the user model before generating the
values of adaptation attributes of the presentation specifications.

Rules 1 through 4 define how the knowledge of concepts changes (increases) when the
user accesses section pages or performs (and passes) a test. Rule 1 says that if a user
reads a “recommended” section page P , the knowledge of all domain-concepts C that are
outcome concepts of P become 1 (“known”) if P is the first “recommended” section page
that has been visited for domain-concept C.

Rule 1:
C: select P.access

where P.access = true
A: update C.knowledge := 1; C.page := P

where Outcome(P,C) and P.ready = “recommended” and C.page = null

Rule 2 says that if a user reads a “not recommended” section page P , the knowledge of
all domain-concepts C that are outcome concepts of P is increased by 0.1 if C.knowledge
is smaller than 1.

5.4. INTERBOOK: ADAPTATION MODEL 115

Rule 2:
C: select P.access

where P.access = true
A: update C.knowledge := C.knowledge + 0.1

where Outcome(P,C) and P.ready =“not recommended” and C.knowledge < 1

Rule 3 says that if a user reads a second (different) “recommended” section page of
the outcome domain-concept C, then C.knowledge becomes 2 (“well known”). Note that
C.page does not change because it keeps track of the first recommended page the user read
for concept C.

Rule 3:
C: select P.access

where P.access = true
A: update C.knowledge := 2

where Outcome(P,C) and P.ready = “recommended”
and C.knowledge = 1 and C.page 6= null and C.page 6= P

Rule 4 says that if a user accesses a section page, then the system believes that the
user read the page.

Rule 4:
C: select P.access

where P.access = true
A: update P.read := true

Rule 5 says that if a user passes a test for domain-concept C (C.test is true), then
C.knowledge becomes 3 (“learned”).

Rule 5:
C: select C.test

where C.test = true
A: update C.knowledge := 3

Rules 6 through 8 define how the ready status of section pages changes depending on the
knowledge of prerequisite and outcome concepts. Rule 6 says that if all the “prerequisites”
for page P are satisfied, meaning that the knowledge for these prerequisite concepts is at
least 1, and if P contributes knowledge to at least one still unknown outcome domain-
concept, meaning the knowledge of that outcome concept is less than one, then P is
“recommended” to be read.

Rule 6:
C: select C.knowledge
A: update P.ready := “recommended”

where Requirement−1(C,P) and Outcome(P,C1) and C1.knowledge < 1 and
not exists (select C2

where Requirement(P,C2) and C2.knowledge < 1)

116 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

It is also possible that all the “prerequisites” for page P become satisfied when P can
only contribute knowledge to an outcome concept for which the knowledge is already 1
(but not yet 2). This means that the page must not be the “first recommended page” for
this outcome concept. Rule 7 sets the recommended state in this case.

Rule 7:
C: select C.knowledge
A: update P.ready := “recommended”

where Requirement−1(C,P) and Outcome(P,C1) and C1.knowledge < 2 and
C1.page 6= P and
not exists (select C2

where Requirement(P,C2) and C2.knowledge < 1)

Note that we could have combined rules 6 and 7 into one rule but we kept them separate
to make them easier to read and understand.

Rule 8 says that if reading a recommended page P does not contribute any knowledge
to any outcome concept of P then it becomes “not interesting”. This can happen when
there is no outcome concept that is still unknown or which has knowledge already 1 but
when that knowledge was obtained by reading page P .

Rule 8:
C: select C.knowledge
A: update P.ready :=“not interesting”

where Outcome−1(C,P) and
not exists (select C1

where Outcome(P,C1) and
(C1.knowledge < 1 or (C1.knowledge = 1 and C1.page 6= P)))

Note that unlike with rules 6 and 7 we cannot split this rule in the same way to make it
easier to read.

5.4.3 Adaptation rules in the GA phase

In this section we describe how to generate the adaptation. InterBook does not provide
content adaptation, or adaptive presentation, in the sense of Chapter 2. Such adaptation
would normally be expected in the text frame of a section window, and would provide
additional, prerequisite or comparative explanations. A common reason for not performing
content adaptation is that the students may not like it when the same page can look
different each time it is visited. However, there are cases where InterBook provides some
conditional text (like “(You are here!)” or “(You were here!)”). So in the rules below we
will encounter conditional inclusion of fragments in a number of places even though this
does not represent the typical use of adaptive presentation mentioned above.

To support users navigating through the course, InterBook provides adaptive naviga-
tion support through the adaptive link annotation technique. Adaptive link annotation

5.4. INTERBOOK: ADAPTATION MODEL 117

means that the system uses visual cues (icons, fonts, colors) to show the type and the edu-
cational state of each link. InterBook distinguishes three educational states for each page
of material: “recommended”, “not recommended”, and “not interesting”. The annotation
is done through a colored bullet where “green” means “recommended”, “red” means “not
recommended”, and “white” means “not interesting”. The same type of annotation is used
for links to domain-concepts, but the meaning of the colors is different: “red” for “new”,
“green” for “known”, “white” for “well known”. Another annotation, using a check mark,
indicates that a section has been accessed already.

We study the adaptation offered by InterBook for each type of window separately.

Section windows

We already know there are three frames in this window. The tool box frame contains
no adaptation. The text frame provides content adaptation and link adaptation. The
navigation bar frame provides link adaptation.

In the text frame, if the section is a terminal section then InterBook shows the contents
of the section (the text, possibly with images, and links). The only adaptation in the text
frame is the color of the “ready bar” which can be green, white or red. (See Figure 5.1 for
an example). This adaptation is expressed through the indicator attribute. If the section
is not a terminal section, InterBook shows a list of links to subsections. It performs content
adaptation (to show certain subsubsections and the “(You are here!)” message) and link
adaptation to indicate the ready status of the subsections. Also in this case a “ready bar”
is shown with the appropriate color. (See Figure 5.2 for an example of such a section
window).

Since the content of the text frame for a terminal section is not adaptive there is no
adaptation rule for the inclusion of this content. For text frames (for terminal or non-
terminal sections) we have the following rules to determine the color of the “ready bar”:

Rule 1:
C: select P.access

where P.access = true and P.ready = “recommended”
A: update P.indicator := “green”

Rule 2:
C: select P.access

where P.access = true and P.ready = “not recommended”
A: update P.indicator := “red”

Rule 3:
C: select P.access

where P.access = true and P.ready = “not interesting”
A: update P.indicator := “white”

118 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

For non-terminal sections InterBook shows a list of links to subsections. This list is not
adaptive (and hence we do not have an adaptation rule for that). If the last or before-last
visited subsection is in this list or is a subsubsection of an item on the list then InterBook
shows links to the subsubsections of that item. We need an adaptation rule to indicate for
these subsubsection links whether they are shown or hidden.

Rule 4:
C: select P.access

where P.access = true
A: update M.pres := “show”

where Fragment(P, F) and Subsection(F,M) and
Descendant−1(P,Book) and (Book.last = F or Book.before last = F or
(Fragment(F,N) and (Book.last = N or Book.before last = N)))

This rule is complicated because there are four different conditions that may make a
subsubsection link be presented, and because this depends on the last or before-last visited
section, which is stored in an attribute of a “global” variable for the book.

Rule 5 says not to show subsubsection links for other subsections.

Rule 5:
C: select P.access

where P.access = true
A: update M.pres := “hide”

where Fragment(P, F) and Subsection(F,M) and not (
Descendant−1(P,Book) and (Book.last = F or Book.before last = F or
(Fragment(F,N) and (Book.last = N or Book.before last = N))))

Rules 6–8 determine the bullet color and font for link fragments. To greatly simplify
the adaptation model we describe rules that determine the bullet color and font when the
ready status of a section changes. Whenever an annotated link to a section is shown (in any
type of window) the annotation is exactly the same. Therefore it makes sense to calculate
the annotation when it changes instead of when it needs to be presented.

Rule 6:
C: select P.ready

where P.ready = “recommended”
A: update P.indicator := “green”; P.font := “bold”

Rule 7:
C: select P.ready

where P.ready = “not recommended”
A: update P.indicator := “red”; P.font := “italic”

Rule 8:
C: select P.ready

where P.ready = “not interesting”
A: update P.indicator := “white”; P.font := “normal”

5.4. INTERBOOK: ADAPTATION MODEL 119

Rule 9 determines whether to show the check mark (mark attribute) for the sections
that have been read. Initially (through Rules 4 and 5 of the IU phase) the mark attribute
for every section has the value “hide”. Rule 9 sets the check mark for future use. All
subsection links that are shown either have their check mark or not depending on whether
they were read before or not.

Rule 9:
C: select P.read

where P.read = true
A: update P.mark := “show”

Note that when a page is read, the rule to set the read attribute belongs in the UU-pre
phase, and the rule to set the mark attribute (which is an adaptation attribute) belongs
in the GA phase.

InterBook annotates (links to) the most recently visited section (in this book) by “(You
are here!)”. The section most recently visited section is annotated by “(You were here!)”.
This annotation only appears if these sections are a subsection or a subsubsection of the
current section. Rules 10–13 describe this.

Rule 10:
C: select P1.access

where P1.access = true
A: update P2.fa := “show”

where Fragment(P1, P2) and Descendant−1(P1, Book) and Book.last = P2

Rule 11:
C: select P1.access

where P1.access = true
A: update P3.fa := “show”

where Fragment(P1, P2) and Subsection(P2, P3) and Descendant−1(P1, Book)
and Book.last = P3

Rule 12:
C: select P1.access

where P1.access = true
A: update P2.fw := “show”

where Fragment(P1, P2) and Descendant−1(P1, Book) and Book.before last = P2

Rule 13:
C: select P1.access

where P1.access = true
A: update P3.fw := “show”

where Fragment(P1, P2) and Subsection(P2, P3) and Descendant−1(P1, Book)
and Book.before last = P3

120 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

In the navigation bar frame, InterBook shows links to all siblings and all ancestors of
the current section. (We assume that a frame with this information is present, without
requiring any rules.) The link annotation does not require any additional rules (since we
already calculated the bullet color and check mark). But in the navigation bar frame the
link to the current page is disabled. Rule 14 describes how this is done:

Rule 14:
C: select P.access

where P.access = true
A: update P.link := “hide”; P.font := “black bold”

Domain-concept windows

A domain-concept window contains annotated links to pages. This annotation uses colored
bullets and check marks as calculated before. So no additional adaptation rules are needed
for these windows.

Content windows

The content window contains a bookshelf frame (without adaptation) and a frame showing
a table of contents of the current book. The sections and subsections shown, and the
“(You are here!)” and “(You were here!)” notes are the same as on a section page (for a
non-terminal section). So no additional adaptation rules are needed for content windows.

Glossary windows

The glossary is an important part of InterBook. It is a visualized (and externalized)
domain-concept network. Each node of the domain network is represented by a glos-
sary entry in the glossary frame. Vice versa, each glossary entry corresponds to one of
the domain-concepts. Each glossary entry provides links to all pages that introduce the
domain-concept and pages for which the knowledge of the concepts is required. There is
no adaptation in the alphabet frame, but there is adaptation in the glossary frame and
the content frame. The adaptation in the content frame does not require additional rules
because this frame contains annotated links to sections.

In the glossary frame InterBook provides domain-concept link annotation which is
similar to the section link annotation in the text frame of a section window, described by
Rules 6–8. In the glossary frame, however, the annotation is based on the knowledge about
concepts, not the ready status of sections.

Rule 15:
C: select Letter.access

where Letter.access = true
A: update C.indicator := “green”; C.font := “bold”

where GAlphabet(Letter, C) and C.knowledge = 1

5.4. INTERBOOK: ADAPTATION MODEL 121

Rule 16:
C: select Letter.access

where Letter.access = true
A: update C.indicator := “red”; C.font := “italic”

where GAlphabet(Letter, C) and C.knowledge < 1

Rule 17:
C: select Letter.access

where Letter.access = true
A: update C.indicator := “white”; C.font := “normal”

where GAlphabet(Letter, C) and C.knowledge ≥ 2

Help windows

When the user “clicks” on the help button when reading a section, the system generates
a help window that shows the user which pages to read to learn the prerequisite concepts
for this section. (This list is not adaptive. It includes all relevant pages, including pages
the user has read before.) The links that are shown are annotated in the same way as in
a section window, so no additional adaptation rules are needed.

5.4.4 Adaptation rules in the UU-post phase

To be able to update the user model after generating the adaptation, and after the system
has sent the adapted page to the user’s browser, AHAM provides the UU-post phase.
InterBook is very well suited for illustrating the use of the UU-post phase. The following
rules in the UU-post phase undo some user model changes made in the GA phase.

In the navigation bar frame of a section window the link to the current section is
disabled. It is shown in black, using a bold font. After the presentation we need to
calculate its normal font again. The following rules “counteract” Rule 14 of the GA phase
by repeating some of the work performed by GA Rules 6–8:

Rule 1:
C: select P.access

where P.access = true and P.ready = “recommended”
A: update P.link := “show”; P.font := “bold”

Rule 2:
C: select P.access

where P.access = true and P.ready = “not recommended”
A: update P.link := “show”; P.font := “italic”

Rule 3:
C: select P.access

where P.access = true and P.ready = “not interesting”
A: update P.link := “show”; P.font := “normal”

122 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

Note that these rules do not have to change the bullet color or the check mark because GA
Rule 14 does not change these.

Another change that has to be undone is the indication where to show “(You are here!)”
and “(You were here!)”. This is done through four rules that are essentially the same as
GA Rules 10–13, but this time setting the fa and fw attributes to “hide”:

Rule 4:
C: select P1.access

where P1.access = true
A: update P2.fa := “hide”

where Fragment(P1, P2) and Descendant−1(P1, Book) and Book.last = P2

Rule 5:
C: select P1.access

where P1.access = true
A: update P3.fa := “hide”

where Fragment(P1, P2) and Subsection(P2, P3) and Descendant−1(P1, Book)
and Book.last = P3

Rule 6:
C: select P1.access

where P1.access = true
A: update P2.fw := “hide”

where Fragment(P1, P2) and Descendant−1(P1, Book) and Book.before last = P2

Rule 7:
C: select P1.access

where P1.access = true
A: update P3.fw := “hide”

where Fragment(P1, P2) and Subsection(P2, P3) and Descendant−1(P1, Book)
and Book.before last = P3

The presentation of the “(You are here!)” and “(You were here!)” notes requires
that InterBook remember these two sections after presenting the page. The following rule
must not only be executed after generating the adaptation (because otherwise the wrong
pages would be annotated) but also after Rules 4–7 because these rules use the last and
before last attributes that are assigned to in Rule 8. We omit the “tricks” needed to enforce
this execution order here.

Rule 8:
C: select P.access

where P.access = true
A: update Book.before last := Book.last; Book.last := P

where Descendant−1(P,Book)

5.5. INTERBOOK: TERMINATION AND CONFLUENCE 123

The final action to be performed in UU-post is resetting the access attribute:

Rule 9:
C: select P.access

where P.access = true
A: update P.access := false

Here again a “trick” is needed to enforce that these rules are executed last.

Rule 10:
C: select Book.access

where Book.access = true
A: update Book.access := false

Rule 11:
C: select Letter.access

where Letter.access = true
A: update Letter.access := false

Rule 12:
C: select Bookshelf.access

where Bookshelf.access = true
A: update Bookshelf.access := false

Rule 13:
C: select GW.access

where GW.access = true
A: update GW.access := false

5.5 InterBook: Termination and Confluence

The previous section showed that we can describe InterBook using AHAM-CA rules. The
rules in the UU-pre phase trigger each other, so in principle there may be termination and
confluence problems. InterBook, however, provides timely and deterministic result to the
user. We will discuss below how rules trigger each other in InterBook.

The rules the IU, GA and UU-post phases do not trigger each other in the same phase.
(To have a simple description in IU phase, we do use triggers, e. g. Rule 1 triggers Rules
4–6, but this is just to transfer Bookshelf.new access to Book.new access. This happens
in an acyclic way, so it obviously terminates.) Rules in the UU-pre phase do trigger each
other, in the same execution phase. So for termination we only have to verify the UU-pre
phase.

Rules 1–3 transfer access into knowledge. Rule 4 transfers access into read. Rule
5 transfers test into knowledge. Rules 6–8 transfer knowledge to ready. From the fact

124 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

that information is passed between attributes (of pages or concepts) in an acyclic way
we immediately conclude that the Activation Graph, for every possible domain model
instance, must be acyclic. According to Theorem 4.3 in Section 4.3.2 InterBook guarantees
termination.

The theory in Chapter 4 has conditions for confluence that are too strict. Still, we can
verify confluence in InterBook by examining the where clauses and updates of rules that
have the same select clause. Many rules depend on P.access becoming true. However, we
have carefully written these rules in such a way that the where clauses (in the C or the
A part) are mutually exclusive (as in UU-pre Rules 1, 2 and 3 for instance, or 6 and 7, or
GA Rules 1, 2 and 3, etc.) whenever the same attribute of the same concept or page is
assigned a value.

The only place where we left a “conflict” is in the UU-post phase where priorities (or a
simulation trick) are needed to ensure that Rules 1–7 are executed before Rule 8 and Rule
8 before Rule 9. So InterBook guarantees confluence, although our description leaves an
incomplete detail at the end.

5.6 Summary of Validation 1

InterBook is a special-purpose AHS: it is intended only for electronic textbooks. InterBook
offers a versatile user interface with multiple windows and a frame-based presentation.
It combines the information with helpful navigation support. It provides little adaptive
content but extensive adaptive navigation support. This navigation support consists of a
partial table of contents, a glossary, an overview of required prerequisite knowledge for the
current book page, and an overview of “outcome” knowledge.

InterBook can be described in AHAM, as shown by our definition of DM-InterBook,
UM-InterBook, and AM-InterBook. DM-InterBook consists of a concept hierarchy and
concept relationships. The concept hierarchy consists of fragments, frames, pages and
abstract concepts. (The frames have been used in the informal description but do not
appear in DM-InterBook.)

UM-InterBook uses an overlay model, with several attribute-value pairs per concept or
page. InterBook most likely does not use all these attributes. We introduced some artificial
attributes in order to be able to describe the adaptation model.

AM-InterBook consists of predefined rules to perform knowledge updates and generate
adaptive link annotation. We have not described the generation of pages, which is not
adaptive, but only the annotation, which is adaptive. Even though InterBook only uses
two concept relationship types: “requirement” (or prerequisite) relations and “outcome”
relations, a rich set of adaptation possibilities is offered.

AM-InterBook contains several cases of rules that trigger each other. The rule triggering
is limited, and termination and confluence are guaranteed. Still, even this relatively small
example has revealed one shortcoming of the “standard” way in which Chapters 3 and 4
suggest structuring the adaptation model: the use of only four execution phases (IU, UU-
pre, GA and UU-post) is not enough to allow the description of a “moderate” AHS without

5.6. SUMMARY OF VALIDATION 1 125

the need for priorities or other ways of subdividing rules into sets that are executed one
after the other.

The description of InterBook in AHAM shows that the model can express the adapta-
tion functionality of a relatively complex AHS, not designed by us.

126 CHAPTER 5. VALIDATION OF AHAM: INTERBOOK

Chapter 6

Validation of AHAM: the AHA!
system

This chapter describes the second Version 1.0 of the AHA! system [De Bra et al., 2000]
using the AHAM reference architecture described in this dissertation. AHA! is the Adap-
tive Hypermedia Architecture, used for distance learning applications and for a “kiosk”
information system at the Eindhoven University of Technology (TU/e). AHA! is a tool
for providing adaptive hypermedia applications on the World Wide Web. It claims to be
“general purpose” but has mainly been used to develop on-line courses.

AHA! exists in three main versions. AHA! Version 0 [De Bra and Calvi, 1998a] was
the first adaptive hypermedia system built at the TU/e. It has very simple rules using one
attribute with a Boolean value for every course page or concept. It does not allow rules to
trigger each other. AHA! Version 1 allows rules that trigger each other in a certain way. It
still uses one attribute in its rules, but the attribute value can be an integer ranging from
0 to 100. AHA! Version 2 is the current development version which uses many features in
its rules, inspired by the AHAM model. We chose AHA! Version 1 [De Bra et al., 2000]
to validate our reference architecture for adaptive hypermedia applications in this chapter.
AHA! Version 1 is the “production” version. As with InterBook (see Chapter 5) we prefer
to describe the production version which is stable (both in terms of the software and in
terms of the features it offers). Section 6.1 introduces the user interface of AHA! and the
user interaction with AHA!. Section 6.2 describes the domain model of AHA!. Section 6.3
describes the user model of AHA!. Section 6.4 describes the adaptation model of AHA!
using AHAM-CA rules. In Section 6.5 we study the termination and confluence properties
of AHA!. Section 6.6 summarizes the validation of our reference model that was done by
describing AHA!.

6.1 Introduction

AHA! (Adaptive Hypermedia Architecture) is a Web-based adaptive hypermedia system
intended to serve many different purposes. As such AHA! is able to perform adaptation

127

128 CHAPTER 6. VALIDATION OF AHAM: THE AHA! SYSTEM

that is based on the user’s browsing actions, regardless of the interpretation of browsing
as a learning process, exploration or other purpose. AHA! provides adaptive content and
adaptive navigation support.

To illustrate the adaptation features of AHA! we show two applications built using
AHA!: the online courses 2L690 and 2R350, dealing with Hypermedia and Graphical
User-Interfaces respectively.

Figure 6.1: A screen shot of a 2L690 window

A page from course 2L690 is shown in the Figure 6.1. Every page of 2L690 has a
header, a footer, and a section part. We will refer to these parts as “frames” but they are
not frames in the HTML sense (unlike in InterBook where the frames are HTML frames).

The header frame is an interface to special AHA! functions. Users can see how much
they have learned already, how much they still have to do, and they can change the
knowledge values and color preferences in their user model. The footer frame gives a
copyright notice and shows a photo of the author of the course. The header and footer are
created by the author of the course. The special functions of AHA! (like number or list of
pages read and pages still to do) can be included in the header or footer as desired by the
author. In order to keep our description of AHA! simple we do not describe these special
functions of AHA! using the AHAM model. A list of pages already read (or still to read) is
a simple page listing all the pages, each in a conditional fragment that is shown or hidden

6.1. INTRODUCTION 129

depending on the “visited” status of the page. The forms to change knowledge values and
color preferences are similar and the events they generate require special handlers that do
not interact with the rules for handling a simple page access.

AHA! provides adaptive content by conditionally including fragments, and adaptive
navigation support by annotating (actually coloring) links. In Figure 6.1 the brief expla-
nation on Xanadu (shown between parentheses) is conditionally included. It is only shown
to users who have not read the page about Xanadu. The link to Xanadu is blue, indicating
that this page is recommended to be read.

As shown in Figure 6.2, every page of the course 2R350 consists of a header, a footer, a
section part, and a site-map frame. The first three parts of 2R350 are similar to the layout
in the 2L690 course. The difference is that in 2R350 there is a site-map frame that serves
as an additional navigation support tool. The site-map shows the structure of chapters and
sections of this course. It works in more or less the same way as a menu or the “Folders”
part of the Windows explorer. When a user clicks on a menu item, the system opens a
submenu for this item if it is not a leaf-level item; at the same time the system closes
other submenu(s) that might be open. Each menu item is a link to a section page of the
course, and the menu link presentation is adapted to the user’s knowledge by using the
link annotation technique. Figure 6.2 shows links in three colors: blue, black and purple,
corresponding to the states “recommended”, “not recommended” and “not interesting”.

Figure 6.2: A screen shot of a 2R350 window

130 CHAPTER 6. VALIDATION OF AHAM: THE AHA! SYSTEM

In the AHAM description of AHA!, we will refer to the courses 2L690 and 2R350, to
illustrate interesting ways in which the functionality of AHA! can be used. The description
of AHA! is not entirely accurate. We use the following simplification:

• actual AHA! use: In course 2R350 when a user clicks on a link (in the site-map frame
or the section frame) the destination of the link is opened in the right frame. The
destination is an HTML page that contains the section part and includes the header
and footer. Every page in 2R350 contains a 1 line Javascript function that orders the
browser to reload the site-map frame.

• modeled AHA! functionality : When a user clicks on a link we assume that a page
consisting of header, footer, section part and site-map frame is accessed. We thus
assume that the result of clicking on a link is that only one new page is loaded.

AHA! contains some “magic” to generate text dynamically. The header for instance shows
the name of the user and the number of pages the user has read and the number of pages
still to do. We model AHA! headers and footers as fragments. In AHAM fragments are
atomic concepts, of which the internals are hidden in the Within-Component layer.

6.2 AHA!: Domain Model

Let us call the domain model of AHA!, DM-AHA. The DM-AHA consists of a set of
concepts and concept relationships, according to AHAM. In DM-AHA the lowest level
concepts are fragments. In AHA! fragments can contain other fragments. In order to satisfy
the restrictions of AHAM we assume that an application does not contain fragments within
fragments. This is no real restriction because a conditional fragment within a fragment
can be modeled as a fragment that has the conjunction of its own and its parent’s (or
ancestors’) condition. We can thus “flatten” the structure of fragments within fragments
in order to eliminate it. Fragments within fragments are most useful for the conditional
opening and closing of menus and submenus. One level higher in the concept hierarchy
we have the page level. Pages consist of conditional and unconditional fragments. One
of the properties of AHA! that makes it somewhat difficult for authors to use is that the
conditions are associated with the fragments and written down on the pages containing the
fragments, but that conceptually they represent specific adaptation rules and are thus not
part of DM-AHA. AHA! also supports abstract concepts. Normally a concept is connected
to a page with the same name. Concepts with a name that does not correspond to a
page are automatically abstract concepts. The only way in which abstract concepts have
a different function from page concepts is that there is no “access” event for an abstract
concept.

In order to connect concepts in AHA! using AHAM constructs we define the following
types of concept relationships:

• Fragment(P, F) means F is a fragment of page P. Through the Fragment relation-
ship we can decide on the inclusion of fragments of a page.

6.3. AHA!: USER MODEL 131

• Link(P1, P2) means that there is a hyperlink from P1 to P2. Through the Link
relationship we can perform adaptation of link anchors based on the desirability of
the link destination.

• Contains(C,P) means that the abstract concept C “contains” page or concept p.
The Contains relationship is used to be able to perform an action on user model
attributes of all pages of an application (or course) at once.

• Contains−1(P,C) is the inverse of Contains. We only use this relationship type to
find out to which application (or course) a page belongs.

These relationships are binary, and can only be applied from the first parameter to the
second in adaptation rules, because of the restriction of AHAM introduced in Chapter 4.
We introduced Contains−1 because of this restriction.

It may seem strange that AHA! provides adaptive hypermedia but does not offer concept
relationship types such as prerequisites. The reason is that AHA! only offers authors the
ability to write specific adaptation rules. It has no generic adaptation rules based on
relationship types.

The presentation specification pres of a fragment can have the values “show” and
“hide”. Instead of using anchor values we will use the presentation specification pres of
a page to indicate the “desirability” of page as the destination of a link. The desirability
can be “good”, “bad” or “neutral”, representing that the page is “recommended”, “not
recommended” or “not interesting”.

6.3 AHA!: User Model

AHA! maintains a user model for each individual user, called UM-AHA. The real user model
in AHA! contains only two attributes: one representing knowledge and one representing
the visited status. The visited status is used by the system but cannot be used in author-
defined adaptation rules. Only the knowledge can be used by the author. AHA! simply uses
the page name to represent this attribute. If an author wants to associate more attributes
with a page this can only be done by creating new concepts, and by using, or abusing, the
knowledge attribute for these other purposes.

In UM-AHA we introduce additional attributes to represent temporary information
about concepts. (The temporary nature of this information can be seen from its initializa-
tion at the start of the execution of the adaptation rules.) Below is the list of attributes:

• A knowledge attribute stores user’s knowledge state about a page (concept). It has
an integer value between 0 and 100.

• A visited attribute keeps track of whether a page was visited. It has a Boolean value.
(Actually in AHA! the value is an integer but only the numbers 0 and 100 are used
to mean false and true.)

132 CHAPTER 6. VALIDATION OF AHAM: THE AHA! SYSTEM

• A change attribute stores the amount by which the knowledge has changed. This
is used in the propagation of knowledge from pages to sections and from sections to
chapters.

• A ready attribute represents whether this page is “recommended” to be read. It
uses values of “recommended”, “not recommended” and “not interesting”. We use
an additional value “unknown” for initialization purposes, and a value “needed” to
trigger the computation of the true ready value. This attribute must be computed
each time after receiving an event because it is not stored in the user model in AHA!.

• An access attribute stores the event of “clicking” on a link to the page. It changes
from false to true when the user clicks on a link to the page, and it resets to false
after the presentation generation has been performed.

6.4 AHA!: Adaptation Model

The adaptation model of AHA!, called AM-AHA, describes how to update the user model
and how to generate the adaptation based on that user model and the domain model.
In AHA! authors write specific adaptation rules to define how reading pages generates
user model updates. The system offers generic adaptation rules for initialization, and for
generating the adaptation from the current user model (and access event). AHA! performs
all user model updates before generating the adaptation. As a result it does not have rules
in the UU-post phase. However, we can use the UU-post phase to reset the access attribute
of the page that was accessed.

In this section we will assume that the top-level abstract concept that Contains all
other concepts and pages is called Book. In the examples we gave earlier this would be
either 2L690 or 2R350.

6.4.1 Adaptation rules in the IU phase

When a user visits an adaptive (AHA!) application for the first time the system builds and
initializes a user model. The initialization is performed in what we call the IU phase.

The IU phase requires that an application Book contains a special attribute FirstPage
that indicates the page to be accessed when a user logs in.

Rule 1 says that when a new user logs on the knowledge for all pages and concepts is
set to 0.

Rule 1:
C: select Book.register
A: update P.knowledge := 0

where Contains(Book, P)

6.4. AHA!: ADAPTATION MODEL 133

Rules 2 and 3 set the access attribute. All pages except FirstPage are assigned the value
false, except for FirstPage which is assigned the value true. By making FirstPage.access
true, the rules in other execution phases are triggered for FirstPage.

Rule 2:
C: select Book.register
A: update P.access := false

where Contains(Book, P) and P 6= Book.F irstPage

Rule 3:
C: select Book.register
A: update P.access := true

where Contains(Book, P) and P = Book.F irstPage

AHA! only stores the knowledge and visited attribute. The other attributes in UM-
AHA need to be initialized when an event happens and before the rules are executed that
are triggered by that event. The rules in IU initialize the attributes change and ready, not
just when the user registers or logs in, but also at the beginning of rule execution after
“clicking” on a link.

Rule 4 initializes the change attribute to 0 for all concepts of the application to which
the accessed page belongs.

Rule 4:
C: select P.access

where P.access = true
A: update Q.change := 0

where Contains−1(P,Book) and Contains(Book,Q)

Rules 5 and 6 initialize the ready attribute to “unknown” for all pages that can be
reached through a link from the accessed page, and for all fragments of the accessed page.
Whenever the real value of ready is calculated (in the UU-pre phase) it will be a change
from “unknown” and thus trigger other rules that depend on the ready attribute.

Rule 5:
C: select P.access

where P.access = true
A: update Q.ready := “unknown”

where Link(P,Q)

Rule 6:
C: select P.access

where P.access = true
A: update F.ready := “unknown”

where Fragment(P, F)

134 CHAPTER 6. VALIDATION OF AHAM: THE AHA! SYSTEM

Note that rules in the IU phase are not functionally different from rules in the subse-
quent phases. The updates to the change and ready attributes that are performed here
may try to trigger rules in other phases just like any update to any attribute. Therefore all
adaptation rules in the other phases will check the value of change or ready. The conditions
will check that change 6= 0 and ready 6= “unknown”.

In the UU-pre phase there are rules that use the “visited” status of pages. In AHA! a
page is considered visited in adaptation rules for the access of the page itself. It is thus
important to set the visited status before entering the UU-pre phase:

Rule 7:
C: select P.access

where P.access = true
A: update P.visited := true

6.4.2 Adaptation rules in the UU-pre phase

AHA! updates the user model when the user “clicks” on a link and thereby accesses a page.
Part of the definition of how the update process works is generic, meaning independent of
the accessed page, and part is specific, meaning written by the author. We will describe
the adaptation rules in such a way that the generic part is contained in generic rules and
the specific part in specific rules. We hope that this leads to the clearest albeit not shortest
description.

The first rule that is executed when the user accesses a page determines the desirability
of the page. This desirability is defined in AHA! through a requirement, specified in XML
in a file “xmlreqlist”. An example of such a requirement is:

<concept>

<conceptname>

dexter_runtime

</conceptname>

<relationexpression>

advanced>70 and dexter>70

</relationexpression>

</concept>

It expresses that the page dexter runtime is “recommended” if the knowledge of the
concepts advanced and dexter is higher than 70. In AHAM we can represent the processing
of this rule through three specific adaptation rules:

Rule 1:
C: select dexter runtime.access

where dexter runtime.access = true
A: update dexter runtime.ready := “recommended”

where dexter runtime.visited = false and
advanced.knowledge > 70 and dexter.knowledge > 70

6.4. AHA!: ADAPTATION MODEL 135

Rule 2:
C: select dexter runtime.access

where dexter runtime.access = true
A: update dexter runtime.ready := “not interesting”

where dexter runtime.visited = true and
advanced.knowledge > 70 and dexter.knowledge > 70

Rule 3:
C: select dexter runtime.access

where dexter runtime.access = true
A: update dexter runtime.ready := “not recommended”

where not (advanced.knowledge > 70 and dexter.knowledge > 70)

In order to later generate the presentation of a page we need to know not just the
“ready” status of the presented page but also of every fragment of that page and every
page to which there is a link. Strictly speaking this can be determined in the GA phase
because ready is not a user model attribute in AHA! (although we use it in UM-AHA). We
include it here (in UU-pre) because otherwise we encounter rule execution order problems
in the GA phase.

The rules for determining the status of fragments and link destinations work in two
phases: first we determine the fragments and pages of which we need to calculate the
status. We can do this through a generic rule. Then we determine the status itself. For
that we need specific rules because in AHA! the author writes the requirements for pages
and fragments as specific rules.

Rule 4:
C: select P.access

where P.access = true
A: update F.ready := “needed”

where Fragment(P, F)

Rule 5:
C: select P.access

where P.access = true
A: update Q.ready := “needed”

where Link(P,Q)

The “needed” status is used as the trigger for the specific rules. Consider a fragment
“withmenu” that shows a submenu in the course 2R350. In AHA! it appears as follows:

<if expr="evalmenu>0 and withmenu>0">

<block>

...

</block>

136 CHAPTER 6. VALIDATION OF AHAM: THE AHA! SYSTEM

Actually the menu “evaluation with users” appears within a larger menu “evaluation”, but
as we flatten the fragments within fragments in AHAM we obtain the conjunction of the
conditions for both menus. Assuming the name withmenu for this fragment, the pair of
rules for determining the status of the fragment is:

Rule 6:
C: select withmenu.ready

where withmenu.ready = “needed”
A: update withmenu.ready := “recommended”

where evalmenu.knowledge > 0 and withmenu.knowledge > 0

Rule 7:
C: select withmenu.ready

where withmenu.ready = “needed”
A: update withmenu.ready := “not recommended”

where not (evalmenu.knowledge > 0 and withmenu.knowledge > 0)

For pages that appear as link destinations the rules are very similar as for the accessed
page. But instead of access it is now the ready attribute that triggers the rules. Recall
the condition for the concept dexter runtime. The rules for determining the status of this
concept when it is the destination of a link are:

Rule 8:
C: select dexter runtime.ready

where dexter runtime.ready = “needed”
A: update dexter runtime.ready := “recommended”

where dexter runtime.visited = false and
advanced.knowledge > 70 and dexter.knowledge > 70

Rule 9:
C: select dexter runtime.ready

where dexter runtime.ready = “needed”
A: update dexter runtime.ready := “not interesting”

where dexter runtime.visited = true and
advanced.knowledge > 70 and dexter.knowledge > 70

Rule 10:
C: select dexter runtime.ready

where dexter runtime.ready = “needed”
A: update dexter runtime.ready := “not recommended”

where not (advanced.knowledge > 70 and dexter.knowledge > 70)

After determining the “ready” status of the accessed page we can determine the knowl-
edge update that occurs when the page is accessed. This is hard-coded behavior of AHA!

6.4. AHA!: ADAPTATION MODEL 137

and can thus be described by generic adaptation rules. Note that we cannot have these
rules be triggered by P.access because then they might be evaluated before the rules that
determine the “ready” status. But since the “ready” status was “unknown” and is changed
to “recommended”, “not interesting” or “not recommended”, and this only for the accessed
page, we can use this change to trigger the knowledge update rules.

Rule 11:
C: select P.ready

where P.ready = “recommended” or P.ready = “not interesting”
A: update P.change := 100 − P.knowledge; P.knowledge := P.knowledge + P.change

Rule 12:
C: select P.ready

where P.ready = “not recommended” and P.knowledge < 35
A: update P.change := 35 − P.knowledge; P.knowledge := P.knowledge + P.change

From these rules we see that AHA! can change the knowledge of a page in two ways:
the knowledge becomes 100 if the page was not “not recommended”; it becomes 35 if the
page was “not recommended” except when it was already higher than 35 in which case the
value does not change. The rules could have been simplified a bit (for instance because
we know in Rule 4 that P.knowledge becomes 100, but we want to illustrate the typical
construct that we first determine the change and then add the change to knowledge.

The change to the knowledge value of the page can be propagated to other concepts in
AHA! through rules that are written by the author. These rules are XML constructs in a
file called “xmlgenlist”. AHA! limits the recursive propagation to monotonic updates. We
need to incorporate this limitation in the adaptation rules.

Suppose an author writes the following adaptation rules in AHA! (adapted from rules
in course 2R350):

<genitem>

<name>eval_with</name>

<genlist>eval_with_knowledge:+100 eval_with:0

withmenu:100 withoutmenu:0</genlist>

</genitem>

<genitem>

<name>eval_with_knowledge</name>

<genlist>evaluation:+50</genlist>

</genitem>

The rules are motivated as follows: There is a menu dealing with the topic of “evaluation”.
The topic consists of “evaluation with users” and “evaluation without users”. There are
submenus corresponding to these items. When the user “clicks” on the “eval with” link
and accesses the corresponding page the following actions take place:

138 CHAPTER 6. VALIDATION OF AHAM: THE AHA! SYSTEM

• The “eval with” knowledge first becomes 100. Let us assume that the value was 0
before and that the page was recommended.

• The knowledge of “eval with” is copied to another concept “eval with knowledge” in
order to remember it.

• The attribute of “eval with” is reset to 0 so that the rule will still have effect the
next time the user clicks on “eval with”.

• The attribute of “withmenu” is set to 100. This will cause the submenu for “evalua-
tion with users” to be shown.

• The attribute of “withoutmenu” is set to 0. This will cause the submenu for “evalu-
ation without users” to be hidden.

• The update to “eval with knowledge” is monotonic (indicated by +100). This means
that the rule for “eval with knowledge” will also be executed. This rule propagates
50% of the update to “eval with knowledge” to the concept “evaluation”.

In AHAM the AHA! adaptation rules are translated to specific adaptation rules. The
updates all depend on the change to the knowledge of “eval with”. (Note that the previous
generic rules create this change value.)

Rule 13 performs the monotonic relative update to “eval with knowledge”. In AHA!
only monotonic relative updates are propagated. We represent this in AHAM by only
setting the change attribute in the case of a monotonic relative update. Propagation in our
representation depends on the change attribute, so the update to “eval with knowledge”
will be propagated. We do not set the change attribute for the other updates (Rules 14,
15 and 16) so these do not cause propagation.

Rule 13:
C: select eval with.change

where eval with.change 6= 0
A: update eval with knowledge.change :=

min(100 − eval with knowledge.knowledge, 1.0 × eval with.change);
eval with knowledge.knowledge :=
eval with knowledge.knowledge + eval with knowledge.change

Note that we could have written eval with knowledge.knowledge := 100 but we wanted to
illustrate that the value is augmented by 100% of the change to the knowledge of eval with
and limited to 100. The given expression is easier to generalize to other values as we shall
see in Rule 10 below. Also note that when change is set to 0 (as in the IU phase) it does
not trigger this rule.

Rule 14:
C: select eval with.change

where eval with.change 6= 0
A: update eval with.knowledge := 0

6.4. AHA!: ADAPTATION MODEL 139

Rules 15 and 16 are used to “play” with menus in the site-map frame of course 2R350.
They set the knowledge attribute of “withmenu” and “withoutmenu” to 100 and 0 respec-
tively. Of course they do not represent knowledge, but the knowledge attribute is the only
attribute available to the author.

Rule 15:
C: select eval with.change

where eval with.change 6= 0
A: update withmenu.knowledge := 100

Rule 16:
C: select eval with.change

where eval with.change 6= 0
A: update withoutmenu.knowledge := 0

Rule 17 describes the propagation of knowledge that is achieved through the rule as-
sociated with concept “eval with knowledge”. It illustrates the propagation in AHA! in
general through its similarity with Rule 13:

Rule 17:
C: select eval with knowledge.change

where eval with.change 6= 0
A: update evaluation.change :=

min(100 − evaluation.knowledge, 0.5 × eval with knowledge.change);
evaluation.knowledge := evaluation.knowledge + evaluation.change

Note that since the update to “evaluation” is again a monotonic relative update it may
propagate further through other rules.

6.4.3 Adaptation rules in the GA phase

In AHA! fragments are shown when their condition is true. In the UU-pre phase we have
calculated the “ready” status of fragments included in the accessed page. A pair of rules
in the GA phase is sufficient to generate the required presentation specification:

Rule 1:
C: select P.access

where P.access = true
A: update F.pres := “show”

where Fragment(P, F) and F.ready = “recommended”

Rule 2:
C: select P.access

where P.access = true
A: update F.pres := “hide”

where Fragment(P, F) and F.ready = “not recommended”

140 CHAPTER 6. VALIDATION OF AHAM: THE AHA! SYSTEM

In AHA! an author marks conditional links (i. e. links for which there is adaptation
of the link anchor) through an HTML link class called “conditional”. AHA! changes the
class to “good”, “bad”, and “neutral” depending on whether the destination of the link is
a “recommended”, “not recommended” or “not interesting” page. Through a style sheet
these link classes are coupled with link colors, which are “blue”, “black” and “purple” by
default but which can be changed by the user.

Rule 3:
C: select P.access

where P.access = true
A: update Q.pres := “good”

where Link(P,Q) and Q.ready = “recommended”

Rule 4:
C: select P.access

where P.access = true
A: update Q.pres := “bad”

where Link(P,Q) and Q.ready = “not recommended”

Rule 5:
C: select P.access

where P.access = true
A: update Q.pres := “neutral”

where Link(P,Q) and Q.ready = “not interesting”

6.4.4 Adaptation rules in the UU-post phase

AHA! does not use a UU-post phase. However, we can use this phase to make the AHA!
representation in AHAM independent of how the system deals with the attributes that
represent events. When the user “clicks” on a link to page P we represent this as the
P.access attribute becoming true. After executing the rules P.access has to become false
again. We can actually arrange for this in the UU-post phase:

Rule 1:
C: select P.access

where P.access = true
A: update P.access := false

This rule explains why in all rules we tested for P.access being true. If we allowed
rules to also be triggered when P.access becomes false then this rule in UU-post would
trigger rules in previous phases again, thus potentially causing infinite loops, but certainly
causing undesired rule executions and results.

6.5. AHA!: TERMINATION AND CONFLUENCE 141

6.5 AHA!: Termination and Confluence

In order to determine termination and confluence we unfortunately cannot use the con-
straints given in Section 4.8 because these assume the AHS works with generic adaptation
rules (of different types), whereas AHA! only uses specific rules. But even if we could
somehow group the rules to make them generic a constraint such as Constraint 4.5 would
not hold anyway.

So in order to determine termination we turn to the conservative approach by using the
Propagation Algorithm PA from Section 4.6.1 to build an activation graph AG. The basic
PA creates an edge between two (instantiated) rules if there is an attribute of the same
concept that appears in the action of the first rule and in the condition of the second rule.
It is immediately clear that the basic PA creates cycles because Rule 1 of the UU-post
phase updates P.access and its condition uses P.access so we have a cycle right there.
More cycles can be found in Rules 6 through 10 of the UU-pre phase: These rules assign
values to the ready attribute and use the same attribute in their condition. So we have
to augment the PA with the intelligence to at least look at the values assigned in the
action of the first rule and the values used in the condition of the second rule. Rules 6
through 10 of UU-pre compare the ready attribute with value “needed” and only assign
values “recommended”, “not recommended” or “not interesting”, so they cannot cause an
infinite loop.

Careful analysis of the rules for AHA! reveals that UU-pre rules such as Rule 13 and 17
can generate what appears to be an infinite loop if the author creates a structure in which
there is a cycle of monotonic relative knowledge updates. (The AHA! system has no
authoring tool to warn authors of this danger.) Fortunately, such loops cannot be infinite
loops because the knowledge values cannot be monotonically increased forever as the values
cannot exceed 100. In the worst case, a loop must end when the knowledge value of all
concepts reaches 100. The number of rule execution steps is thus (in the worst case) linear
in the number of concepts. AHA! thus enforces termination through the limit of the value
range of the knowledge attribute and the propagation through monotonic relative updates.

Regarding confluence it is easy to see that AHA! with the rules defined earlier in this
chapter cannot guarantee confluence. If concept A has a rule that propagates a monotonic
relative update to B and C, and B and C each perform a different absolute update on
D then the outcome depends on the order in which the updates are performed. (This
order is predetermined by AHA!’s adaptation engine, but we wish to guarantee confluence
without using that implementation dependent execution order.) In [De Bra et al., 2000]
two additional constraints are defined on AHA! rules in order to enforce confluence:

• Only the rules associated with a page may contain absolute updates.

• Relative updates (monotonic or not) are only allowed on abstract concepts, not on
pages.

In the example given above the updates on B and C mean that according to the second
constraint B and C must be abstract concepts. The absolute updates originating from B

142 CHAPTER 6. VALIDATION OF AHAM: THE AHA! SYSTEM

and C require that B and C are pages because of the first constraint. So this example that
violates confluence is forbidden in AHA!.

In De Bra et al. [2000] we claimed that the above condition is sufficient to make AHA!
guarantee confluence. Unfortunately this claim is false because of the possibility of round-
ing errors. Consider the following set of monotonic relative updates in Figure 6.3:

Figure 6.3: An example of AHA! rule propagation

Suppose the knowledge of A is changed from 0 to 100. The knowledge of B is then
increased by 30 and the knowledge of C is increased by 20. These two updates propagate
to D: The first increases the knowledge of D by 15, the second by 10. These updates
propagate to E as an increase of 7 (50% of 15 rounded down) and an increase of 5. However,
assume that the knowledge of D is already 80 when this process starts. This knowledge
value cannot be increased by 15 and 10 because then it would exceed 100. The following
possibilities exist:

• If the update from B occurs first then the knowledge of D is first increased by 15, and
then by only 5 (instead of 10) because the limit of 100 is reached. The propagation
to E is first 7 and then 2 (both updates being rounded down). E is thus increased
by 9.

• If the update from C occurs first then the knowledge of D is first increased by 10, and
then by only 10 (instead of 15) because the limit of 100 is reached. The propagation
to E is first 5 and then 5 again. E is thus increased by 10.

So, although in most cases AHA!’s behavior is confluent there are exceptional cases in
which confluence is not guaranteed.

6.6 Summary of Validation 2

AHA! is clearly a lower-level AHS than InterBook, relying heavily on the use of specific
adaptation rules. As such it is more difficult to use for authors. AHA! is also more difficult
to model in AHAM. We needed some artificial constructs to describe the built-in behavior
of AHA! through generic adaptation rules and combine it with the specific rules an author
writes.

6.6. SUMMARY OF VALIDATION 2 143

We have hinted at the possibilities of AHA! to create different presentation styles, in
particular to create menus that function as an adaptive site-map. Such creations require in-
ventive use of conditional inclusion of fragments and the invention of additional “concepts”
to make the user model remember which menu should be open.

In order to describe AHA! we have “invented” concept relationships in DM-AHA that
do not really exist in AHA! and attributes in UM-AHA (change, ready and access) that do
not exist in AHA!. This shows that it is certainly an overstatement that AHAM would be
specifically designed as a model of AHA!. (Some people have informally told us that they
got this impression because the name AHAM suggests that it is the AHA! Model, which
it is not.)

From our AHAM representation of AHA! we could not conclude on termination in
a straightforward way using the theory of Chapter 4. A refined Propagation Algorithm
(considering the values used in the conditions and actions of rules) left one unresolved
problem with monotonic relative updates. Fortunately we know that this problem does
not really cause infinite loops because the knowledge values have an upper bound of 100.
So AHA! guarantees termination through what we referred to as static enforcement in
Chapter 4.

Regarding confluence the theory again did not lead to the conclusion that AHA! would
guarantee confluence. Theorem 4.4 requires all pairs of rules to commute, which is definitely
not guaranteed (just look at the rules for menus). The rules of Section 4.8 could not be
used because AHA! uses specific adaptation rules. AHA! tries to use static enforcement
for confluence through constraints introduced in [De Bra et al., 2000]. Unfortunately these
constraints still leave cases where the execution order chosen by the AE matters.

As a validation of AHAM the case of AHA! is positive in the sense that we have been
able to represent the behavior of AHA! in the AHAM model. However, some tricks were
needed, the most important one being that some part of the GA phase was moved to the
UU-pre phase in order to avoid order dependence or the need for sub-phases within the
GA phase. Indeed: first determining the status of fragments and link destinations and
then generating the presentation specifications are two distinct phases, and the first one
does not really belong in UU-pre because it determines values that are not part of the user
model in AHA!. Another such strange rule is the update of P.visited in the IU phase which
is done in that phase to avoid order dependence in the UU-pre phase where this rule really
belongs. These observations seem to indicate that our choice to divide the execution into
an IU, UU-pre, GA and UU-post phase (and no other phases) may be too severe. (It is
an arbitrary choice anyway.) A more natural representation of AHA!, with fewer tricks to
avoid order dependence, would be possible if AHAM simply suggested to use an arbitrary
number of phases (instead of four).

144 CHAPTER 6. VALIDATION OF AHAM: THE AHA! SYSTEM

Chapter 7

Concluding Remarks

In this chapter we summarize the results of the previous chapters and give some pointers
for future research.

7.1 Conclusions

In this dissertation we have studied the field of adaptive hypermedia. We started in Chap-
ter 1 by asking five research questions about this research area. We will now summarize
our findings and give the answers that we came up with in the different chapters of this
dissertation.

Question 1: How do hypertext systems (and applications) attempt to personalize the
information?
In Chapter 2 we studied the history of hypermedia, and found out that true personalization
does not exist in hypermedia. It first appeared in adaptive hypermedia systems in the early
1990’s.

Question 2: How can adaptive hypermedia systems solve the problems of (non-adaptive)
hypermedia systems?
In Chapter 2 we discussed the methods and techniques used in adaptive hypermedia, and
concluded that personalization is offered in two ways:

• adaptive presentation: this solves the problem that users may not understand
a page they can navigate to; missing foreknowledge is compensated by inserting
additional explanations.

• adaptive navigation support: this solves the problem that users may not know
which of the available links to follow in order to reach their goals without encoun-
tering pages that are not relevant or that they cannot understand; the link anchors
are adaptively annotated, hidden or sorted to guide users to the most appropriate
information.

145

146 CHAPTER 7. CONCLUDING REMARKS

In order to perform such adaptation the systems maintain a user model that is updated
every time the user interacts with the system.

Question 3: Can we describe the functionality of AHS at an abstract level? Can we
describe adaptive hypermedia systems as extensions to hypermedia systems in general?
In Chapter 3 we introduced our reference model, called AHAM (Adaptive Hypermedia
Application Model). AHAM describes the functionality of Adaptive Hypermedia Systems
(AHS) at an abstract level. AHAM is an extension of the Dexter model for hypermedia
systems. As a result AHAM describes adaptive hypermedia as an extension of hypermedia
systems in general.

AHAM decomposes an adaptive hypermedia application into a domain model (DM), a
user model (UM) and an adaptation model (AM).

• The DM supports composite concepts and concept relationships. A concept hier-
archy describes the conceptual structure of the application domain. The concept
relationships describe how concepts fit together. One concept may be a prerequisite
for another concept for instance. The concept relationships play an important role in
providing adaptation to users. Prerequisite relationships, for instance, can be used
to suggest or even enforce a certain reading order.

• The UM supports all kinds of user features, e. g. knowledge, goals, background, hyper-
space experience, preferences, interests and individual traits. The UM keeps a user’s
browsing history information which can be used to provide adaptation. Stereotyping
and overlay techniques are commonly used to structure and initialize the UM.

• The AM provides the strategies to perform actual adaptation. It describes the up-
dates to the UM and the generation of adaptation. We have given examples of
adaptation rules and an adaptation rule langauge, but AHAM does not impose a
certain rule language. In fact, it does not even require that an AHS is uses rule-
based adaptation.

Question 4: Can we define behavioral semantics for AHS and analyze how AHS work
exactly?
A reference architecture for adaptive hypermedia applications should describe how adap-
tation really works in AHS. In Chapter 4 we have defined an Adaptation Engine (AE) and
studied its properties. To illustrate how adaptation works in AHS, we have studied three
aspects:

• We have defined a rule language, AHAM-CA, based on a subset of condition-action
rules as studied in the field of active databases.

• We have defined the AHAM-CA rule execution model that explains how rules can
activate and deactivate each other.

• We have discussed termination and confluence problems with AHAM-CA rules. We
have developed a theory for performing conservative static analysis (at authoring

7.2. FUTURE WORK 147

time) of a given rule set, and a theory of constraints to guarantee termination and
confluence.

Question 5: Can we easily describe the adaptation functionality of some well known
existing AHS in our model?
In Chapters 5 and 6 we have described the adaptation functionality of two well-known
AHS: InterBook and AHA!. We have described the production version of InterBook, with
limited functionality, and the production version 1.0 of AHA!. Newer versions of these
systems, with richer functionality, exist. Our description of InterBook and AHA! shows
that we can describe the adaptation in AHAM. It also shows that an exact description of
a fairly simple AHS already leads to a fairly complicated set of adaptation rules. Several
parts of the description of InterBook and AHA! are somewhat similar. Understanding
the AHAM description of one system is probably helpful for understanding the AHAM
description of another AHS.

7.2 Future work

This dissertation provides a framework to understand and compare AHS, and to build
well-behaved new AHS. There are several possible directions to extend this work. One is
to formalize the description of adaptation functions at a more formal abstract level (e. g.
using Z, Object-Z or some other formal specification language).

Another direction is to extend the use of AHAM to more application areas and a more
advanced adaptation level. The following are possible extensions:

• To broaden the use of AHAM to application areas which contain “context” of the
information domain, we need to incorporate a description of the “context” of the
information domain to AHAM, perhaps by building a context model (CM). The AM
can then provide adaptation based on the DM, UM, and CM.

• To allow AHAM to support very large information applications where the DM is
unknown or partly unknown, the system needs to include functions to handle dynamic
parts of the DM.

• To make the use of adaptive hypermedia applications more convenient, the system
needs to provide advanced navigation support, e. g. link-independent navigation sup-
port and cross-reference navigation support. We have published some research in this
direction in [Wu and De Bra, 2002; Wu and de Kort, 2002]. The system needs func-
tions to present composite concepts, e. g. by showing an index page of a composite
concept (either generated on-the-fly or beforehand).

• To have more ways to trace a user’s behavior, the system needs to deal with many
different input events. In AHAM we have concentrated on the “follow link” operation,
but many other events or metrics can be added to gather information.

148 CHAPTER 7. CONCLUDING REMARKS

Another possible direction is to build authoring tools to facilitate the creation of (well-
behaved) adaptive hypermedia applications. To make authoring easy, we published some
ideas for authoring support in [Wu et al., 1999a]. We give the following wish list as an
example for authoring support:

• AHAM

– Tools for creating and maintaining the DM, UM, and AM are needed. Especially
the separation of these three parts during the authoring process is missing in
the current generation of systems.

– Tools in the AM consist of two parts: tools for adaptation and tools for main-
taining or extending the AM. The tools for adaptation should provide several
adaptation patterns (for content adaptation and link adaptation). More research
is needed on tools for defining page selectors and page constructors.

• AE

– Authoring tools need to implement and apply the algorithms for verifying suf-
ficient conditions for termination and confluence. They need to be conservative
but as accurate as possible in order to avoid giving too many false warnings.

– Authoring tools need to allow authors to select constraints to impose on the
rule sets that can be created. The author can thereby select the termination
and confluence “dangers” the system will automatically guard against.

Bibliography

M. Agosti, M. Melucci, and F. Crestani. Automatic authoring and construction of hyper-
media for information retrieval. ACM Multimedia Systems, 3:15–24, 1995.

A. Aiken, J. M. Hellerstein, and J. Widom. Static analysis techniques for predicting the
behavior of active database rules. ACM Transactions on Database Systems, 20(1):3–41,
1995.

A. Aiken, J. Widom, and J. M. Hellerstein. Behavior of database production rules: Ter-
mination, confluence and observable determinism. In Proc. of the ACM SIGMOD Inter-
national Conference on Management of Data, San Diego, CA, USA, pages 59–68, June
1992.

R. M. Akscyn, D. L. McCracken, and E. A. Yoder. KMS: A distributed hypermedia system
for managing knowledge in organizations. Communications of the ACM, 31(7):820–835,
1988.

L. Ardissono and A. Goy. Tailoring the interaction with users in electronic shops. In Proc.
7th International Conference on User Modeling (UM’99), Banff, Canada, pages 35–44,
June 1999.

R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell. WebWatcher: A learning ap-
prentice for the world wide web. In Proc. of AAAI Spring Symposium on Information
Gathering, Stanford University, CA, USA, pages 6–12, March 1995.

F. Asnicar and C. Tasso. ifWeb: A prototype of user modelbased intelligent agent for
document filtering and navigation in the World Wide Web. In Proc. of Workshop on
Adaptive Systems and User Modeling on the World Wide Web at UM’97 Conference,
Chia Laguna, Sardinia, Italy, pages 3–12, June 1997.

J. Bailey. On the Foundations of Termination Analysis of Active Database Rules. PhD
thesis, Department of Computer Science, University of Melbourne, Australia, 1997.

M. Balabanovic and Y. Shoham. Fab: Content-based, collaborative recommendation.
Communications of the ACM, 40(3):66–72, 1997.

E. Baralis. An Algebraic Approach to the Analysis and Optimization of Active Database
Rules. PhD thesis, Politecnico di Torino, Torino, Italy, 1994.

149

150 BIBLIOGRAPHY

E. Baralis and J. Widom. An algebraic approach to rule analysis in expert database
systems. In Proc. of International Conference on Very Large Databases (VLDB’94),
Santiago, Chile, pages 475–486, September 1994. URL:http://citeseer.nj.nec.com/

baralis94algebraic.html.

E. Baralis and J. Widom. An algebraic approach to static analysis of active database rules.
ACM Transactions on Database Systems, 25(3):269–332, 2000.

I. Beaumont. User modeling in the interactive anatomy tutoring system ANATOM-
TUTOR. User Modeling and User-Adapted Interaction, 4(1):21–45, 1994.

M. Bernstein, J. D. Bolter, M. Joyce, and E. Mylonas. Architectures for volatile hypertext.
In Proc. of the ACM Conference on Hypertext (Hypertext’91), San Antonio, TX, USA,
pages 243–260, December 1991.

A. C. Bertoletti and C. da Rocha Costa. SAGRES - A virtual museum. In Proc. of
Museums and WebConference, New Orleans, LA, USA, March 1999. URL:http://www.
archimuse.com/mw99/papers/bertoletti/bertoletti.html.

D. Billsus, M. J. Pazzani, and J. Chen. A learning agent for wireless news access. In Proc.
of International Conference on Intelligent User Interfaces (IUI’00), New Orleans, LA,
USA, pages 33–36, January 2000.

H. Böcker, H. Hohl, and T. Schwab. pADAPTer: Individualizing hypertext. In Proc. of
Human Computer Interaction (INTERACT’90), Amsterdam, The Netherlands, pages
931–936, August 1990.

G. A. Boy. On-line user model acquisition in hypertext documentation. In Proc. of Work-
shop on Agent Modeling for Intelligent Interaction at IJCAI’91 Conference, Sydney,
Australia, pages 34–42, 1991.

C. Boyle and A. O. Encarnacion. MetaDoc: An adaptive hypertext reading system. User
Modeling and User-Adapted Interaction, 4(1):1–19, 1994.

P. J. Brown. Turning ideas into products: The guide system. In Proc. of the ACM
Conference on Hypertext (Hypertext’87), Chapel Hill, NC, USA, pages 33–40, November
1987.

P. Brusilovsky. Methods and techniques of adaptive hypermedia. User Modeling and
User-Adapted Interaction, 6(2-3):87–129, 1996. URL:http://citeseer.nj.nec.com/

brusilovsky96methods.html.

P. Brusilovsky. Adaptive hypermedia. User Modeling and User-Adapted Interaction, 11:
87–110, 2001.

BIBLIOGRAPHY 151

P. Brusilovsky and D. W. Cooper. ADAPTS: Adaptive hypermedia for a Web-based
performance support system. In Proc. of Workshop on Adaptive Systems and User
Modeling on World Wide Web at WWW’99 Conference, Toronto, Canada, pages 41–47,
May 1999.

P. Brusilovsky and J. Eklund. A study of user model based link annotation in educational
hypermedia. Journal of Universal Computer Science, 4(4):429–448, 1998. URL:http/

/citeseer.nj.nec.com/161601.html.

P. Brusilovsky, J. Eklund, and E. Schwarz. Web-based education for all: A tool for devel-
opment adaptive courseware. Computer Networks and ISDN Systems, 30(1-7):291–300,
1998.

P. Brusilovsky and L. Pesin. ISIS-Tutor: An intelligent learning environment for CDS/ISIS
users. In Online Proc. of Interdisciplinary Workshop on Complex Learning in Computer
Environments (CLCE’94), Joensuu, Finland, May 1994. URL:http://cs.joensuu.fi/

~mtuki/www_clce.270296/Brusilov.html.

P. Brusilovsky and L. Pesin. Visual annotation of links in adaptive hypermedia. In Proc.
of Short Papers: Agents and Anthropomorphism of ACM Conference on Human Factors
in Computing Systems (CHI’95), Denver, CO, USA, pages 222–223, May 1995.

P. Brusilovsky, L. Pesin, and M. Zyryanov. Towards an adaptive hypermedia component
for an intelligent learning environment. In Human Computer Interaction, volume 753 of
LNCS, pages 348–358. 1993.

P. Brusilovsky, E. Schwarz, and G. Weber. ELM-ART: An intelligent tutoring system on
world wide web. In Proc. of International Conference on Intelligent Tutoring Systems
(ITS’96), Montreal, Canada, pages 261–269, June 1996a.

P. Brusilovsky, E. Schwarz, and G. Weber. A tool for developing adaptive electronic
textbooks on world wide web. In Proc. of World Conference of the WWW, Internet,
and Intranet (WebNet’96), San Francisco, CA, USA, pages 64–69, October 1996b.

P. Brusilovsky, E. Schwarz, and G. Weber. World-Wide intelligent textbooks. In Proc. of
World Conference on Educational Telecommunications, Boston, MA, USA, pages 302–
307, June 1996c.

P. Brusilovsky and G. Weber. Collaborative example selection in an intelligent example-
based programming environment. In Proc. of International Conference on Learning
Sciences (ICLS’96), Evanston, IL, USA, pages 357–362, July 1996.

P. Brusilovsky and M. Zyryanov. Intelligent tutor, environment and manual for physical
geography. In Proc. of International PEG Conference, Edinburgh, Scotland, UK, pages
63–73, July 1993.

152 BIBLIOGRAPHY

P. D. Bruza. Hyperindices: A novel aid for searching in hypermedia. In Proc. of the ACM
European Conference on Hypertext (ECHT’90), Paris, France, pages 109–122, November
1990.

V. Bush. As we may think. The Atlantic Monthly, 176(1):101–108, 1945.

B. Campbell and J. M. Goodman. HAM: A general purpose hypertext abstract machine.
Communications of the ACM, 31(7):856–861, 1988.

R. Carro, E. Pulido, and P. Rodriguez. TANGOW: Task-based adative learner guidance
on the world wide web. In Proc. of Workshop on Adaptive System and User Modeling on
World Wide Web at WWW’99 Conference, Toronto, Canada, pages 49–57, May 1999.

S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In Proc. of
International Conference on Very Large Data Bases (VLDB’90), Brisbane, Queensland,
Australia, pages 566–577, August 1990.

D. T. Chang. HieNet: A user-centered approach for automatic link generation. In Proc.
of the ACM Conference on Hypertext (Hypertext’93), Seattle, WA, USA, pages 145–158,
November 1993.

K. Clibbon. Conceptually adapted hypertext for learning. In Proc. of the ACM Conference
on Human Factors in Computer Systems (CHI’95), Denver, CO, USA, pages 224–225,
May 1995.

P. De Bra, A. Aerts, G. J. Houben, and H. Wu. Making general-purpose adaptive hy-
permedia work. In Proc. of World Conference of the WWW, Internet, and Intranet
(WebNet’00), San Antonio, TX, USA, pages 117–123, October 2000.

P. De Bra and L. Calvi. Creating adaptive hyperdocuments for and on the web. In Proc. of
World Conference of the WWW, Internet, and Intranet (WebNet’97), Toronto, Canada,
pages 149–155, October 1997.

P. De Bra and L. Calvi. AHA!: A generic adaptive hypermedia system. In Proc. of
Workshop on Adaptive Hypertext and Hypermedia (Hypertext’98), Pittsburgh, PA, USA,
pages 20–24, June 1998a.

P. De Bra and L. Calvi. AHA! an open adaptive hypermedia architecture. The New Review
of Hypermedia and Multimedia, 4:115–139, 1998b.

P. De Bra and L. Calvi. Towards a generic adaptive hypermedia system. In Proc. of Work-
shop on Adaptive Hypertext and Hypermedia at Hypertext’98 Conference, Pittsburgh, PA,
USA, pages 5–11, June 1998c.

P. De Bra, G. J. Houben, and H. Wu. AHAM: A Dexter-based reference model for adaptive
hypermedia. In Proc. of the ACM Conference on Hypertext and Hypermedia (Hyper-
text’99), Darmstadt, Germany, pages 147–156, February 1999.

BIBLIOGRAPHY 153

P. De Bra, G.J. Houben, and Y. Kornatzky. An extensible data model for hyperdocuments.
In Proc. of the ACM Conference on Hypertext (Hypertext’92), Milan, Italy, pages 222–
231, November 1992.

B. de Carolis, F. de Rosis, C. Andreoli, V. Cavallo, and M. de Cicco. The dynamic gener-
ation of hypertext presentations of medical guidelines. The New Review of Hypermedia
and Multimedia, 4:67–88, 1998.

B. de La Passardiere and A. Dufresne. Adaptive navigational tools for educational hyper-
media. Computer Assisted Learning, 602:555–567, 1992.

F. de Rosis, B. de Carolis, and S. Pizzutilo. User tailored hypermedia explanations. In
Proc. of INTERCHI’93 Conference (CHI’93 and INTERACT’93) , Amsterdam, The
Netherlands, pages 169–170, April 1993.

N. Delisle and M. Schwartz. Neptune: A hypertext system for CAD applications. In Proc.
of ACM SIGMOD, Washington DC, USA, pages 132–142, May 1986.

L. DeYoung. Linking considered harmful. In Proc. of the ACM European Conference on
Hypertext (ECHT’90), Paris, France, pages 238–249, November 1990.

H. Dieterich, U. Malinowski, T. Kuhme, and M. Schneider-Hufschmidt. State of the art in
adaptive user interfaces. Computing and Informatics, 18:357–366, 1993.

C. Eliot, D. Neiman, and M. Lamar. Medtec: A Web-based intelligent tutor for basic
anatomy. In Proc. of World Conference of the WWW, Internet, and Intranet (Web-
Net’97), Toronto, Canada, pages 161–165, October 1997.

L. M. Encarnacao. Adaptivity in graphical user interfaces: An experimental framework.
Computers & Graphics, 19(6):873–884, 1995.

D. C. Engelbart. A conceptual framework for the augmentation of man’s intellect. Vistas
in Information Handling, 1:1–29, 1963.

J. Fink, A. Kobsa, and A. Nill. Adaptable and adaptive information provision for all users,
including disabled and elderly people. The New Review of Hypermedia and Multimedia,
4:163–188, 1998.

G. Fischer, T. Mastaglio, B. Reeves, and J. Riemann. Minimalist explanations in
knowledge-based systems. In Proc. of Annual Hawaii International Conference on Sys-
tem Sciences, Kailua-Kona, HI, USA, pages 309–317, January 1990.

T. Fox, G. Grunst, and K.J. Quast. HyPlan - a contextsensitive hypermedia help system.
In Report 743: Arbeitspapiere der GMD, GMD, Germany, 1993.

L. Francisco-Revilla and F. Shipman. Adaptive medical information delivery: Combining
user. In Proc. of International Conference on Intelligent User Interfaces (IUI’00), New
Orleans, LA, USA, pages 94–97, January 2000.

154 BIBLIOGRAPHY

X. Fu, J. Budzik, and K. J. Hammond. Mining navigation history for recommendation. In
Proc. of International Conference on Intelligent User Interfaces (IUI’00), New Orleans,
LA, USA, pages 106–112, January 2000.

G. W. Furnas. Generalized fisheye views. In Proc. of the ACM Conference on Human
Factors in Computing Systems (CHI’86), New York, NY, USA, pages 16–23, April 1986.

R. Furuta and P. D. Stotts. The Trellis hypertext reference model. In Proc. of NIST
Hypertext Standardization Workshop, Gaithersburg, MD, USA, pages 83–93, January
1990.

S. Garlatti, S. Iksal, and P. Kervella. Adaptive on-line information system by means of
a task model and spatial views. In Proc. of Workshop on Adaptive Systems and User
modeling on World Wide Web at WWW’99 Conference, Toronto, Canada, pages 59–66,
May 1999.

K. Gates, P. Lawhead, and D. Wilkins. Toward an adaptive WWW: A case study in
customized hypermedia. The New Review of Hypermedia and Multimedia, 4:89–113,
1998.

S. Geldof. Con-textual navigation support. The New Review of Hypermedia and Multime-
dia, 4:47–66, 1998.

J. E. Gilbert and C. Y. Han. Arthur: Adapting instruction to accommodate learning
style. In Proc. of World Conference of the WWW, Internet, and Intranet (WebNet’99),
Honolulu, HI, USA, pages 433–438, October 1999.

M. Gonschorek and C. Herzog. Using hypertext for an adaptive helpsystem in an intelligent
tutoring system. In Proc. of World Conference on Artificial Intelligence in Education
(AI-ED’95), Washington DC, USA, pages 274–281, August 1995.

J. Greer and G. McCalla. Student Modeling: The key to Individualized Knowledge-Based
Instruction, volume 125 of NATO ASI Serie F. Springer Verlag, 1991.

K. Grønbæk and R. H. Trigg. Design issues for a Dexter-based hypermedia system. Com-
munications of the ACM, 37(2):40–49, 1994.

G. Grunst. Adaptive hypermedia for support systems. Adaptive User Interfaces: Principles
and Practice, pages 269–283, 1993.

F. Halasz. Reflections on NoteCards: Seven issues for the next hypermedia systems.
Communications of the ACM, 31(7):836–852, 1988.

F. Halasz, T. P. Moran, and R. H. Trigg. NoteCards in a nutshell. In Proc. of the ACM con-
ference on Human Factors in Computing Systems abd Graphics Interface (CHI+GI’87),
Toronto, Canada, pages 45–52, April 1987.

BIBLIOGRAPHY 155

F. Halasz and M. Schwartz. The Dexter hypertext reference model. In Proc. of the NIST
Hypertext Standardization Workshop, Gaithersburg, MD, USA, pages 95–133, January
1990.

F. Halasz and M. Schwartz. The Dexter hypertext reference model: Hypermedia. Com-
munications of the ACM, 37(2):30–39, 1994.

L. Helmes, M. Razum, and A. Barth. Concept of a hypertext interface for the information
retrieval in complex factual databases. In Hypertext - Information Retrieval - Multimedia
(HIM’95), University of Konstanz, Germany, pages 175–189, April 1995.

N. Henze, K. Naceur, W. Nejdl, and M. Wolpers. Adaptive hyperbooks for constructivist
teaching. KI - Kunstliche Intelligenz, 13(4):26–31, 1999.

T. Hirashima, N. Matsuda, T. Nomoto, and J. Toyoda. Context-sensitive filtering for
browsing in hypertext. In Proc. of International Conference on Intelligent User Inter-
faces (IUI’98), San Francisco, CA, USA, pages 119–126, January 1998.

T. Hirashima, N. Matsuda, T. Nomoto, and J. Toyoda. Context-sensitive filtering for
browsing Web pages. In Proc. of World Conference of the WWW, Internet, and Intranet
(WebNet’99), Honolulu, HI, USA, pages 294–295, October 1999.

C. Hockemeyer, T. Held, and D. Albert. RATH - A relational adaptive tutoring hyper-
text WWW-environment based on knowledge space theory. In Proc. of International
Conference on Computer Aided Learning in Science and Engineering (CALISCE’98),
Göteborg, Sweden, pages 417–423, June 1998.

H. Hohl, H. D. Böcker, and R. Gunzenhäuser. Hypadapter: An adaptive hypertext system
for exploratory learning and programming. User Modeling and User-Adapted Interaction,
6(2-3):131–156, 1996.

K. Höök, J. Karlgren, A. Wærn, N. Dahlbäck, C.G. Jansson, K. Karlgren, and B. Lemaire.
A glass box approach to adaptive hypermedia. User Modeling and User-Adapted Inter-
action, 6(2-3):157–184, 1996.

K. Höök, A. Rudstrom, and A. Wærn. Edited adaptive hypermedia: Combining human
and machine intelligence to achieve filtered information. In Proc. of Workshop on Flexible
Hypertext at Hypertext’97 Conference, Southampton, UK, pages 54–58, April 1997.

J. Hothi and W. Hall. An evaluation of adapted hypermedia techniques using static user
modelling. In Proc. of Workshop on Adaptive Hypertext and Hypermedia at Hypertext’98
Conference, Pittsburgh, PA, USA, pages 45–50, June 1998.

T. Joachims, D. Freitag, and T. Mitchell. WebWatcher: A tour guide for the WWW. In
Proc. of International Joint Conference on Artificial Intelligence (IJCAI’97), Nagoya,
Japan, pages 770–775, August 1997.

156 BIBLIOGRAPHY

T. Joerding. A temporary user modeling approach for adaptive shopping on the Web.
In Proc. of Workshop on Adaptive Systems and User Modeling on World Wide Web at
WWW’99 Conference, Toronto, Canada, pages 75–79, May 1999.

C. Kaplan, J. Fenwick, and J. Chen. Adaptive hypertext navigation based on user goals
and context. User Modeling and User-Adapted Interaction, 3(3):193–220, 1993.

A. P. Karadimce and S. D. Urban. Conditional term rewriting as a formal basis for analysis
of active database rules. In Proc. of Workshop on Research Issues in Data Engineering,
Active Database Systems, Houston, TX, USA, pages 156–162, Febuary 1994.

M. Katsumoto, M. Fukuda, N. Irie, and Y. Shibata. Dynamic hypermedia system based
on perceptional link method for distributed design image database. In Proc. of Interna-
tional Conference on Information Networking (ICOIN-9), Osaka, Japan, pages 49–54,
December 1994.

M. Katsumoto, M. Fukuda, and Y. Shibata. The kansei link method for multimedia
database. In Proc. of International Conference on Information Networking (ICOIN-10),
Kyung-Ju, Korea, pages 382–389, January 1996.

J. Kay and B. Kummerfeld. Adaptive hypertext for individualised instruction. In Proc. of
Workshop on Adaptive Hypertext and Hypermedia at UM’94 Conference , Hyannis, MA,
USA, August 1994a. URL:http://www.cs.bgsu.edu/hypertext/adaptive/Kay.html.

J. Kay and B. Kummerfeld. An individualised course for the C programming lan-
guage. In Proc. of International World Wide Web Conference (WWW’94), Chicago, IL,
USA, October 1994b. URL:http://www.ncsa.uiuc.edu/SDG/IT94/Inproceedings/

Educ/kummerfeld/kummerfeld.h%tml.

M. Kayama and T. Okamoto. Hy-SOM: The semantic mape framwork applied on an exam-
ple case of navigation. In Proc. of International Conference on Computers in Education
(ICCE’99), Chiba, Japan, pages 252–259, November 1999.

R. Keller, S. Wolfe, J. Chen, J. Rabinowitz, and N. Mathe. A bookmarking service for
organizing and sharing URLs. In Proc. of International World Wide Web Confer-
ence (WWW’97), Santa Clara, CA, USA, April 1997. URL:http://www.scope.gmd.

de/info/www6/technical/paper189/paper189.html.

D. Kim. WING-MIT: Das auf einer multimedialen und intelligenten benutzerschnittstelle
basierende tutorielle hilfesystem. In WING-IIR Technical Report 69, University of Re-
gensburg, Germany, 1995.

A. Kobsa, D. Müller, and A. Nill. KN-AHS: An adaptive hypertext client of the user
modeling system BGP-MS. In Proc. of International Conference on User Modeling
(UM’94), Hyannis, MA, USA, pages 99–106, August 1994.

BIBLIOGRAPHY 157

A. J. Kok. A review and synthesis of user modelling in intelligent systems. The Knowledge
Engineering Review, 6(1):21–47, 1991.

A. Kushniruk and H. Wang. A hypermedia-based educational system with knowledgebased
guidance. In Proc. of World Conference on Educational Multimedia and Hypermedia
(ED-MEDIA’94), Vancouver, Canada, pages 335–340, June 1994.

P. Lai and U. Manber. Flying through hypertext. In Proc. of the ACM Conference on
Hypertext (Hypertext’91), San Antonio, TX, USA, pages 123–132, December 1991.

D. B. Lange. A formal model of hypertext. In Proc. of NIST Hypertext Standardization
Workshop, Gaithersburg, MD, USA, pages 145–166, January 1990.

M. Laroussi and M. Benahmed. Providing an adptive learning through the web case of
CAMELEON: Computer aided medium for learning on networks. In Proc. of Interna-
tional conference on Computer Aided Learning and Instructon in Science and Engineer-
ing (CALISCE’98), Göteborg, Sweden, pages 411–416, June 1998.

W. S. Li, Q. Vu, D. Agrawal, Y. Hara, and H. Takano. PowerBookmarks: A system for
personalizable Web information organization, sharing, and management. In Proc. of
International World Wide Web Conference (WWW’99), Toronto, Canada, pages 297–
311, May 1999.

H. Lieberman. Letizia: An agent that assists web browsing. In Proc. of International
Joint Conference on Artificial Intelligence (IJCAI’95), Montreal, Canada, pages 924–
929, August 1995.

A. Lippman. Movie maps: An application of the optical videodisc to computer graphics.
Computer Graphics, 14(3):32–43, 1980.

M. Marinilli, A. Micarelli, and F. Sciarrone. A case-based approach to adaptive information
filtering for the WWW. In Proc. of Workshop on Adaptive Systems and User modeling
on World Wide Web at WWW’99 Conference, Toronto, Canada, pages 81–87, May 1999.

C. C. Marshall and F. M. Shipman. Spatial hypertext: Designing for change. Communi-
cations of the ACM, 38(8):88–97, 1995.

N. Mathe and J. Chen. A user-centered approach to adaptive hypertext based on an
information relevance model. In Proc. of International Conference on User Modeling
(UM’94), Hyannis, MA, USA, pages 107–114, August 1994.

N. Mathe and J. R. Chen. User-centered indexing for adaptive information access. User
Modeling and User Adapted Interaction, 6(2-3):225–261, 1996.

N. Meyrowitz. Intermedia: The architecture and construction of an object-oriented hyper-
media system and applications framework. In Proc. of Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’86), Portland, OR,
USA, pages 186–201, September 1986.

158 BIBLIOGRAPHY

A. Micarelli and F. Sciarrone. A case-based toolbox for guided hypermedia navigation. In
Proc. of International Conference on User Modeling (UM’96), Kailua-Kona, HI, USA,
pages 129–136, January 1996.

M. Milosavljevic. Augmenting the user’s knowledge via comparison. In Proc. of Inter-
national Conference on User Modelling (UM’97), Chia Laguna, Sardinia, Italy, pages
119–134, June 1997.

M. Milosavljevic and J. Oberlander. Dynamic hypertext catalogues: Helping users to help
themselves. In Proc. of the ACM Conference on Hypertext (Hypertext’98), Pittsburgh,
PA, USA, pages 123–131, June 1998.

D. Mladenic. Personal WebWatcher: Implementation and design. In Technical Report
IJS-DP-7472, Department of Intelligent Systems, J. Stefan Institute, Slovenia, 1996.

M. Montebello, W. A. Gray, and S. Hurley. A personal evolvable advisor for WWW
knowledge-based systems. In Proc. of Workshop on Reuse of Web Information at
WWW’98 Conference, Brisbane, Australia, pages 59–69, April 1998.

S. Mukherjea, J. D. Foley, and S. E. Hudson. Interactive clustering for navigating in hy-
permedia systems. In Proc. of the ACM European Conference on Hypertext (ECHT’94),
Edinburgh, Scotland, UK, pages 136–145, September 1994.

T. Murray, C. Condit, and E. Haugsjaa. Metalinks: A preliminary framework for concept-
based adaptive hypermedia. In Proc. of Workshop WWW-Based Tutoring a ITS’98
Conference, San Antonio, TX, USA, June 1998. URL:http://www-aml.cs.umass.edu/
~stern/webits/itsworkshop/murray.html.

A. Negro, V. Scarano, and R. Simari. User adaptivity on world wide web through CHEOPS.
In Proc. of Workshop on Adaptive Hypertext and Hypermedia at Hypertext’98 Confer-
ence, Pittsburgh, PA, USA, pages 57–62, June 1998.

T. Nelson. A file structure for the complex, the changing, and the indeterminate. In Proc.
of the ACM National Conference, Cleveland, OH, USA, pages 84–100, August 1965.

G. Neumann and J. Zirvas. SKILL - a scallable internet-based teaching and learning
system. In Proc. of World Conference of the WWW, Internet, and Intranet (WebNet’98),
Orlando, FL, USA, pages 688–693, November 1998. URL:http://nestroy.wi-inf.

uni-essen.de/Forschung/Publikationen/skill-webnet98.ps.

S. C. Newell. User models and filtering agent for improving internet information retrieval.
User Modeling and User-Adaptive Interaction, 7(4):223–237, 1997.

J. Nielsen. Hypertext and Hypermedia. Academic Press, 1990.

BIBLIOGRAPHY 159

E. G. Noik. Exploring large hyperdocuments: Fisheye views of nested networks. In Proc.
of the ACM Conference on Hypertext (Hypertext’93), Seattle, WA, USA, pages 192–205,
November 1993.

E. Not, D. Petrelli, M. Sarini, O. Stock, C. Strapparava, and M. Zancanaro. Hypernavi-
gation in the physical space: Adapting presentations to the user and to the situational
context. New Review of Multimedia and Hypermedia, 4:33–45, 1998.

J. Oberlander, M. O. Donnell, A. Knott, and C. Mellish. Conversation in the museum:
Experiments in dynamic hypermedia with the intelligent labelling explorer. The New
Review of Hypermedia and Multimedia, 4:11–32, 1998.

R. Oppermann and M. Specht. Adaptive information for nomadic activity. a process
oriented approach. In Proc. of Software Ergonomie, Walldorf, Germany, pages 255–264,
March 1999.

J. Paredaens, P. Peelman, and L. Tanca. Merging graph based and rule based computation.
In Proc. of International Workshop on Rules in Database Systems (RIDS’93), Edinburgh,
Scotland, UK, pages 211–233, August 1993.

F. Paterno and C. Mancini. Designing Web user interfaces adaptable to different types of
use. In Proc. of Museums and Web Conference, New Orleans, LA, USA, March 1999.
URL:http://www.archimuse.com/mw99/papers/paterno/paterno.html.

M. J. Pazzani, J. Muramatsu, and D. Billsus. Syskill & Webert: Identifying interesting Web
sites. In Proc. of National Conference on Artificial Intelligence (AAAI’96), Portland,
OR, USA, pages 54–61, August 1996.

T. Perez. HyperTutor: From hypermedia to intelligent adaptive hypermedia. In Proc. of
World Conference on Educational Multimedia and Hypermedia (ED-MEDIA’95), Graz,
Austria, pages 529–534, June 1995.

T. Perez, J. Gutirrez, and P. Lopisteguy. An adaptive hypermedia system. In Proc. of
World Conference on Artificial Intelligence in Education (AI-ED’95), Washington DC,
USA, pages 351–358, August 1995.

D. Pilar da Silva. Concepts and documents for adaptive hypermedia: A model and a
prototype. In Proc. of Workshop on Adaptive Hypertext Hypermedia at Hypertext’98
Conference, Pittspurgh, PA, USA, pages 33–40, June 1998.

V. Quint and I. Vatton. Combining hypertext and structured documents in grif. In Proc.
of the ACM European Conference on Hypertext (ECHT’92), Milano, Italy, pages 23–32,
November 1992.

J. Rucker and M. J. Polanco. Siteseer: Personalized navigation for the Web. Communica-
tions of the ACM, 40(3):73–76, 1997.

160 BIBLIOGRAPHY

V. Schoch, M. Specht, and G. Weber. ADI - An empirical evaluation of a tutorial
agent. In Proc. of the World Conference on Education Multimedia and Hypermedia (ED-
MEDIA’98), Freiburg, Germany, June 1998. URL:http://apsymac33.uni-trier.de:

8080/ADI.html.

I. Schwab, W. Pohl, and I. Koychev. Learning to recommend from positive evidence. In
Proc. of International Conference on Intelligent User Interfaces (IUI’00), New Orleans,
LA, USA, pages 241–247, January 2000.

Y. Shibata and M. Katsumoto. Dynamic hypertext and knowledge agent systems for
multimedia information networks. In Proc. of the ACM Conference on Hypertext (Hy-
pertext’93), Seattle, WA, USA, pages 82–93, November 1993.

O. Signore, R. Bartoli, and G. Fresta. Tailoring Web pages to user’s needs. In Proc. of
Workshop on Adaptive Systems and User Modeling on the World Wide Web at UM’97
Conference, Chia Laguna, Sardinia, Italy, June 1997. URL:http://www.contrib.

andrew.cmu.edu/~plb/UM97_workshop/Signore/Signore.html.

L. Simon and J. Erdmann. SIROG - A responsive hypertext manual. In Proc. of the
ACM European Conference on Hypertext (ECHT’94), Edinburgh, Scotland, UK, pages
108–116, September 1994.

M. Specht and R. Opermann. ACE - adaptive courseware environment. The New Review
of Hypermedia and Multimedia, 4:141–161, 1998.

M. Specht, G. Weber, S. Heitmeyer, and V. Schoch. AST: Adaptive WWW-courseware for
statistics. In Proc. of Workshop on Adptive Systems and User Modeling on the World
Wide Web at UM’97 Conference, Chia Laguna, Sardinia, Italy, pages 91–95, June 1997.

J. M. Spivey. The Z Notation: A reference manual. Prentice Hall International Series in
Computer Science. Prentice-Hall, Inc., 1989.

A. Stefani and C. Strapparava. Exploiting NLP techniques to build user model for Web
site: The use of WordNet in SiteIF. In Proc. of Workshop on Adaptive Systems and
User modeling on the World Wide Web at WWW’99 Conference, Toronto, Canada,
pages 95–100, May 1999.

A. Steinacker, C. Seeberg, K. Reichenbacher, S. Fischer, and R. Steinmetz. Dynamically
generated tables of contents as guided tours in aadaptive hypermedia systems. In Proc. of
World Conference on Education Multimedia and Hypermedia (ED-MEDIA’99), Seattle,
WA, USA, pages 640–645, June 1999.

C. Süß, B. Freitag, and P. Brössler. Metamodeling for Web-based teachware managment.
In Proc. of Workshop on World Wide Web and Conceptual Modeling (ER’99), Paris,
France, pages 360–373, November 1999.

BIBLIOGRAPHY 161

C. Thomas and G. Fischer. Using agents to improve the usability and usefulness of the
world wide web. In Proc. of International Conference on User Modeling (UM’96),
Kailuna-Kona, HI, USA,, pages 5–12, January 1996.

C. G. Thomas. BASAR: A framework for integrating agents in the world wide web. IEEE
Computer, 28(5):84–86, 1995.

A. van Dam. Hypertext’87 keynote address. Communications of the ACM, 31(7):887–895,
1987.

M. H. van de Voort. A Design Theory for Database Triggers. PhD thesis, Centrum voor
Wiskunde en Informatica, Amsterdam, The Netherlands, 1994.

J. van Ossenbruggen. Processing Structured Hypermedia - A Matter of Style. PhD thesis,
Vrije University, Amsterdam, The Netherlands, 2001.

J. Vassileva. A practical architecture for user modeling in a hypermedia-based information
system. In Proc. of International Conference on User Modeling (UM’94), Hyannis, MA,
USA, pages 115–120, August 1994.

J. Vassileva. A task-centered approach for user modeling in a hypermedia office documen-
tation system. User Modeling and User-Adapted Interaction, 6(2-3):185–224, 1996.

J. H. Walker. Document examiner: Delivery interface for hypertext documents. In Proc.
of the ACM Conference on Hypertext (Hypertext’87), Chapel Hill, NC, USA, pages 307–
323, November 1987.

J. A. Waterworth. A pattern of islands: Exploring public information space in a private
vehicle. In Proc. of Multimedia, Hypermedia and Virtual Reality (MHVR’94), Moscow,
Russia, pages 265–278, April 1994.

G. Weber. ART-WEB, 1999. URL:http://www.psychologie.uni-trier.de:8080/

projects/ELM/elm.html.

G. Weber and M. Specht. User modelling and adaptive navigation support in WWW-based
tutoring systems. In Proc. of International Conference on User Modeling (UM’97), Chia
Laguna, Sardinia, Italy, pages 289–300, June 1997.

R. Weiss, B. Velez, M. A. Sheldon, C. Namprempre, P. Szilagyi, A. Duda, and D. K.
Gifford. HyPursuit: A hierarchical network search engine that exploits content-link
hypertext clustering. In Proc. of the ACM Conference on Hypertext (Hypertext’96),
Washington, DC, USA, pages 180–193, March 1996.

A. Wesley. HyperCard Stack Design Guidelines. Apple Computer Inc, 1989.

J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for Advanced Database
Processing. Morgan Kaufmann, Inc., 1996.

162 BIBLIOGRAPHY

E. Wilson. Links and structures in hypertext databases for law. In Proc. of the ACM
European Conference on Hypertext (ECHT’90), Paris, France, pages 195–211, November
1990.

P. Wright. Cognitive overheads and prostheses: Some issues in evaluating hypertext. In
Proc. of the ACM Conference on Hypertext (Hypertext’91), San Antonio, TX, USA,
pages 1–12, December 1991.

H. Wu and P. De Bra. Suficient conditions for well-behaved adaptive hypermedia systems.
In Proc. of Internation Conference on Web Intelligence, Maebashi, Japan, pages 148–152,
October 2001.

H. Wu and P. De Bra. Link-independent navigation support in web-based adaptive hy-
permedia. In Proc. of Web-Engineering Track at WWW’02 Conference, Honolulu, HI,
USA, May 2002. URL:http://www2002.org/CDROM/alternate/684/.

H. Wu, P. De Bra, A. Aerts, and G. J. Houben. Adaptation control in adaptive hypermedia
systems. In Proc. of International Conference on Adaptive Hypermedia and Adaptive
Web-based Systems (AH’00), Trento, Italy, pages 250–259, August 2000.

H. Wu and E. de Kort. Cross-references in web-based adaptive hypermedia. In Proc. of
Workshop on Personalization in Electronic Publishing at AH’02, Malaga, Spain, pages
45–55, May 2002.

H. Wu, E. de Kort, and P. De Bra. Design issues for general-purpose adaptive hypermedia
systems. In Proc. of ACM Conference on Hypertext and Hypermedia (Hypertext’01),
Aarhus, Danmark, pages 141–150, August 2001.

H. Wu, G. J. Houben, and P. De Bra. Authoring support for adaptive hypermedia ap-
plications. In Proc. of World Conference on Education Multimedia and Hypermedia
(ED-MEDIA’99), Seattle, WA, USA, pages 354–369, June 1999a.

H. Wu, G. J. Houben, and P. De Bra. User modeling in adaptive hypermedia applications.
In Proc. of the Interdisciplinaire Conferentie Informatiewetenschap, Amsterdam, The
Netherlands, pages 10–21, November 1999b.

R. Zeiliger. Adaptive testing: Contribution of the SHIVA model. In Item Banking: In-
teractive Testing and Self-Assessment, volume 112 of NATO ASI Serie F, pages 54–65.
1993.

Y. Zhou and M. Hsu. A theory for rule triggering systems. In Proc. of Extending Database
Technology (EDBT’90), Berlin, Germany, pages 407–421, March 1990.

List of Figures

2.1 An example of hypertext structure . 6
2.2 HAM reference model . 15
2.3 The Dexter reference model for hypermedia systems 16
2.4 Dexter linking from an atomic to a composite component 17

3.1 The AHAM model . 41
3.2 An example of a concept hierarchy . 42
3.3 An example of concept relationships among concepts 46

5.1 A screen shot of the section window (1) . 98
5.2 A screen shot of the section window (2) . 99
5.3 A screen shot of the domain-concept window 101
5.4 A screen shot of the content window . 102
5.5 A screen shot of the glossary window . 103
5.6 A screen shot of the help window . 104

6.1 A screen shot of a 2L690 window . 128
6.2 A screen shot of a 2R350 window . 129
6.3 An example of AHA! rule propagation . 142

163

164 LIST OF FIGURES

Index

abstract composite, 42
abstract concept, 42
accessor function, 17
Activation Graph (AG), 70
active rule, 61
adaptation description, 36
adaptation engine (AE), 57
adaptation goals, 21
adaptation model (AM), 50
adaptation rules, 50
adaptive hypermedia application, 60
additional explanations, 30
AHA, 127
AHAM, 40
AHAM-CA semantics, 78
AHAM-CA syntax, 72
AHS, 19
aid, 18
altering fragments, 31
AM-InterBook, 111
anchor, 18
anchoring, 16
atomic component, 18
atomic concepts, 42
avalue, 18

browsing, 6

cinfo, 18
commute, 71
comparative explanations, 31
complexity of constraint analysis, 94
component, 18
composite component, 18
concept, 41
concept component, 41

concept hierarchy, 42
concept relationships, 7, 41, 44
concepts, 7
Condition Action (CA) rules, 58, 68
confluence, 61
confluence of CA, 71
confluence of ECA, 68
confluence problem, 57
confluence requirement, 68
confluent, 62
constraints, 91
content window, 101
course 2L690, 128
course 2R350, 129

Deactivation Graph (DG), 70
design goals for future AHS, 64
Dexter model, 14, 15
dimming fragments, 32
direct guidance, 34
DM-AHA, 130
DM-InterBook, 105
domain model (DM), 39, 47
domain-concept window, 100
dynamic enforcement, 86

edge confluence, 68
endpoint specifiers, 17
enforcement, 62
event, 60
Event Condition Action (ECA) rules, 58,

66
execution graph (EG), 67
execution order, 61
execution phases, 51
explanation variants, 31

165

166 INDEX

final-state, 60
FollowLink, 52
Formal Model, 14
fragments, 42

GA, 51
general constraints, 79
generic adaptation rules, 51
generic rules, 50
global guidance, 33
global orientation support, 33
glossary window, 101
guidance, 33

HAM, 14
help window, 102
hypertext, 5
Hypertext Abstract Machine, 14
Hypertext Editing System, 8

inactive, 61
information domain, 35
inserting/removing fragments, 31
instantiated rule, 81
InterBook, 97
Intermedia, 8
IU, 51

link annotation, 34
link component, 17
link disabling, 34
link generation, 35
link hiding, 34
link removal, 34
link sorting, 34
local guidance, 33
local orientation support, 33

map adaptation, 35

navigating, 6

order dependent transaction (ODT), 61
order independent transaction (OIT), 61
orientation support, 33

page, 42
page adaptation generator, 44
page selector, 44
path confluence, 67
personalized (goal-oriented) views, 33
prerequisite explanations, 31, 42
prerequisite relationships, 44
prerequisites, 42
presentation specifications, 16
propagate field, 51
Propagation Algorithm (PA), 70

quasi-CA, 66

resolver function, 17
Runtime Layer, 13

section window, 98
sequence of anchors, 44
session, 40
sorting, 31
sorting fragments, 32
specific adaptation rules, 51
specific rules, 50
specifier, 18
ss, 18
start-state, 60
static analysis, 57
static enforcement, 86
stereotype, 29
Storage Layer, 13
stretchtext, 32
system transaction, 60

technologies of adaptation, 20
terminate, 61, 62
termination of CA, 70
termination of ECA, 67
termination problem, 57
Tower Model, 14
transition, 61
Trellis model, 14
triggering graph (TG), 67
triggers, 67

INDEX 167

UM-AHA, 131
UM-InterBook, 108
user model (UM), 47
user profile, 35
UU-post, 51
UU-pre, 51

Within-Component Layer, 13

168 INDEX

Summary

Web-based hypermedia systems are becoming increasingly popular as tools for user-driven
access to information. They typically offer users a lot of freedom to navigate through a
large hyperspace. Unfortunately, this rich link structure of the hypermedia applications
causes some serious usability problems: navigation problems and comprehension problems.
Adaptive hypermedia systems (or AHS for short) aim at overcoming these problems by
providing adaptive navigation support and adaptive content. The adaptation (or person-
alization) is based on a user model that represents relevant aspects of the user such as
preferences, knowledge and interests. The system gathers information about the user by
observing the use of the application, and in particular by observing the browsing behavior
of the user.

This dissertation provides a reference architecture for adaptive hypermedia applications.
It describes the adaptation functionality of adaptive hypermedia applications at an abstract
level, using a adaptive hypermedia application model (AHAM), and at an implementation
level by using an adaptation engine (AE).

Chapter 1 introduces the research questions and approaches and the outline of this
dissertation.

Chapter 2 gives an overview of the literature and research issues in the areas of hyper-
media and adaptive hypermedia.

Chapter 3 provides a reference model for adaptive hypermedia applications, called
AHAM. AHAM should help authors and designers to more easily understand AHS (Adap-
tive Hypermedia Systems) and be able to compare different AHS. AHAM is an extension
of the Dexter reference model for hypermedia applications. AHAM keeps the standard
functions of the Dexter model and concentrates on the adaptation part.

AHAM decomposes an adaptive hypermedia application into a domain model (DM), a
user model (UM) and an adaptation model (AM).

• The DM supports composite concepts and concept relationships. The concepts form
a hierarchical structure, containing high level abstract concepts, concrete page con-
cepts, and small information fragments. Concept relationships are semantic relation-
ships between concepts.

• The UM supports all kinds of user features, e. g., knowledge, goals, background,
hyperspace experience, preferences, interests and individual traits. We can use a
combination of stereotyping and overlay modeling techniques to model the user fea-

169

170 SUMMARY

tures. In this dissertation we mainly focus on a simple way of following a link to trace
the users’ behavior, but AHAM has no built-in limits on how trace users’ features.
It can easily be extended to other forms of interaction with the user.

• The AM describes the adaptation strategies. It specified how to update the UM
and generate the adaptation. As an example we use rules to describe adaptation
strategies in this dissertation, but AHAM does not impose rule-based adaptation
onto the AM.

Adaptive hypermedia applications consist of AHAM and an Adaptation Engine (AE).
The AE is a software environment that performs the actual adaptation. Different systems
may have different ways to realize the adaptation. Chapter 4 describes an abstract AE
by separating the adaptation description from adaptation techniques. It discusses the
functions of the AE, system transactions, termination and confluence problems, and well-
behaved AE. To illustrate how adaptation works in AHS, an abstract AE is described by
defining a rule language, AHAM-CA, defining the rule execution model and discussing
termination and confluence problems therein.

In studying of the behavior of adaptive hypermedia systems, focus lies on the above-
mentioned design issues for the rule systems: termination and confluence. The problem of
termination is to decide whether the rule execution is guaranteed to terminate. Confluence
means that under the same conditions, i. e. the same domain model and same user model
instance, the same action always results in the same presentation and the same user model
updates. Every AHS expects to have these two properties. Research results for active
database are used to perform termination and confluence analysis. These results can even
be improved upon by applying domain knowledge of AHS.

Aside from termination and confluence there is also the issue of efficiency, or “fast”
determination of termination and confluence, both at authoring time and at run-time.
The detection algorithm has an exponential time complexity in general. For that reason
sufficient conditions to guarantee termination and confluence for simple adaptive hyper-
media applications are proposed. The complexity of the detection algorithm then falls to
quadratic order in the number of rules.

Finally, to validate our reference architecture for AHS, we use the above defined AE to
describe two existing well known AHS, InterBook (Chapter 5) and AHA! (Chapter 6).

Samenvatting

Inter- en intranet gebaseerde hypermedia applicaties, ook wel web-applicaties genoemd,
winnen nog altijd aan populariteit als hulpmiddel voor toegang tot informatie. Zij bieden
hun gebruikers veel bewegingsvrijheid in een grote informatieruimte. Helaas leidt de rijk
verbonden structuur van deze hypermedia applicaties tot serieuze problemen met de bruik-
baarheid: navigatie door een ondoorgrondelijk web van verbindingen. Adaptieve hyper-
media systemen (AHS) pogen deze problemen aan te pakken door middel van adaptieve
navigatie ondersteuning en adaptieve inhoud. Het adaptieve aspect en de aanpassingen
aan persoonlijke wensen zijn gebaseerd op een gebruikersmodel dat de relevante aspecten
van een gebruiker representeert zoals voorkeuren, kennis en interesse. Het systeem verza-
melt informatie over de gebruiker door het gebruik van de applicatie te analyseren en in
het bijzonder het navigatiegedrag.

Deze dissertatie beschrijft een referentie architectuur voor adaptieve hypermedia appli-
caties. De adaptieve functionaliteit van de AHS wordt op een abstract niveau beschreven
met behulp van AHAM (Adaptive Hypermedia Application Model), terwijl op implemen-
tatieniveau een adaptieve kernapplicatie (AE, voor Adaptive Engine) beschreven wordt.

Hoofdstuk 1 introduceert de ondezoeksvragen, de aanpak van het onderzoek en een
schets van de verdere inhoud van deze dissertatie.

Hoofdstuk 2 bevat een overzicht van de literatuur en onderzoeksproblemen op het gebied
van hypermedia en adaptieve hypermedia.

Hoofdstuk 3 beschrijft AHAM, een referentiemodel voor adaptieve hypermedia appli-
caties. Dit model heeft tot doel auteurs en ontwerpers in staat stellen om gemakkelijker
AHS te doorgronden en beter in staat te zijn verschillende AHS te vergelijken. AHAM
is een uitbreiding van het Dexter referentiemodel voor hypermedia applicaties. De stan-
daardfunctionaliteit van het Dextermodel wordt gebruikt en uitgebreid met functies die
adaptieve applicaties moeten bezitten.

AHAM splitst een adaptieve hypermedia applicatie in een domeinmodel (DM), een
gebruikersmodel (UM, voor User Model) en een adaptatiemodel (AM).

• Het DM ondersteunt samengestelde concepten en (semantische) relaties tussen con-
cepten. Tezamen vormt dit een hiërarchische structuur met hoog niveau abstracte
concepten, concrete pagina concepten en kleine informatie fragmenten.

• Het UM bevat allerlei gebruikersinformatie, zoals kennis, (leer)doelen, ervaring, voor-
keuren, interesses en individuële gewoonten. We kunnen met een combinatie van

171

172 SAMENVATTING

stereotypering en overdekkings- (overlay) modelleringstechnieken de gebruikersken-
merken modelleren. Het zwaartepunt in deze dissertatie ligt vooral op de de relatief
eenvoudige methode van het volgen van gebruikersnavigatie (het “klikgedrag”), maar
AHAM heeft geen ingebouwde beperkingen met betrekking tot de gebruikersken-
merken die gevolgd worden. Andere vormen van interactie kunnen eenvoudig worden
toegevoegd aan de hier gepresenteerde voorbeelden.

• Het AM beschrijft de adaptatiestrategieën; het specificeert hoe het UM moet worden
bijgewerkt en hoe de pagina’s moeten worden aangepast. Bij wijze van voorbeeld
wordt een regel-taal gebruikt om de adaptieve strategieën te illustreren, maar merk
op dat AHAM een dergelijketaal niet oplegt aan het AM.

Adaptieve hypermedia applicaties bestaan uit AHAM en een adaptieve kernapplicatie
(AE). Deze AE is een stuk programmatuur dat de eigenlijke adaptatie uitvoert. Ver-
schillende systemen kunnen verschillende AEs hebben om de adaptatie te verwezenlijken.
Hoofdstuk 4 beschrijft een abstracte AE door de adaptatie specificatie te scheiden van de
adaptatie technieken; de volgende aspecten komen aan de orde: de functies van een AE,
systeem transacties, terminatie en confluentie problemen en gewenst gedrag van een AE.
Ter illustratie wordt een voorbeeld AE beschreven. Hierin komt onder andere aan de orde
het definiëren van een regel-taal, AHAM-CA, de definitie van het regel-uitvoeringsmodel
en het bespreken van terminatie en confluentie problemen daarvan.

In de bestudering van het gedrag van adaptieve hypermedia systemen wordt speci-
aal aandacht geschonken aan de bovengenoemde ontwerpproblemen voor regelgebaseerde
systemen: terminatie en confluentie. Het probleem van terminatie omvat het onderzoek
naar de (on)mogelijkheid om te bepalen of een verzameling voorschiften gegarandeerd
eindigd binnen een gegeven regelmodel. Confluentie is de eigenschap van een verzameling
regels die garandeerd dat uitgaande van dezelfde begintoestand, dat bij dezelfde gebruik-
ersactie dezelfde eindtoestand (presentatie en UM aanpassingen) bereikt wordt, uiteraard
weer binnen een vast regelmodel. Ieder AHS moet aan deze twee voorwaarden voldoen.
Onderzoeksresultaten voor actieve databases blijken zeer wel bruikbaar voor analyse van
terminatie en confluentie. Deze resultaten kunnen zelfs nog enigszins worden verbeterd
door de domeinkennis van het AHS te gebruiken.

Behalve terminatie en confluentie moet er ook rekening gehouden worden met de ef-
ficiëntie van berekenen, ofwel het “snel” vaststellen van terminatie- en confluentievoorwaar-
den, zowel in de ontwerpfase als in het actieve gebruik van een AHS. Het detectiealgoritme,
geleend van het actieve database onderzoek, heeft in het slechste geval een exponentiëel
tijdsgebruik. Om die reden worden beperkende voorwaarden gedefiniëerd die terminatie
en confluentie afdwingen. Deze voorwaarden zijn alleen acceptabel voor betrekkelijk een-
voudige adaptieve hypermedia applicaties, maar hebben als voordeel dat de tijdscomplex-
iteit wordt teruggebracht tot kwadratische orde in het aantal regelinstanties.

Tot slot worden twee bekende AHS beschreven, met gebruikmaking van de beschreven
AE, om de referentie architectuur voor AHS te valideren: InterBook (Hoofdstuk 5) and
AHA! (Hoofdstuk 6).

Curriculum Vitae

Hongjing Wu was born on November 29, 1962, in Shanghai (China). She started her
study in Computer Science at the Department of Computer Science, Harbin Shipbuilding
Engineering Institute, Heilongjiang, China, in 1980. Having completed her B.Sc. degree
after four years, she continued with the computer science study at the same university.
She obtained her M.Sc. degree in 1987.

After her graduation Hongjing worked at the same university for eleven years. She
worked there as a lecturer for five years, as an assistant professor for five years and as an
associate professor for one year. Her major field for this period time was databases.

She spent one year as a visiting scholar at Parallel Scientific Computing and Simulation
Group at the University of Amsterdam, the Netherlands. She started her Ph.D. research
in 1998 at the Department of Computer Science, Eindhoven University of Technology, The
Netherlands. Her Ph.D. research is on adaptive hypermedia. Her major research interests
are web-based information systems, user modeling, databases, and adaptive hypermedia
systems. Her email address is h.wu@tue.nl.

173

	Contents
	Preface
	1. Introduction
	2. From hypertext to adaptive hypermedia
	3. AHAM : adaptive hypermedia application model
	4. AE : adaptation engine
	5. Validation of AHAM : InterBook
	6. Validation of AHAM : the AHA! system
	7. Concluding remarks
	Bibliography
	List of figures
	Index
	Summary
	Samenvatting
	Curriculum Vitae

