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CRYSTAL DISSOLUTION AND PRECIPITATION IN POROUS
MEDIA: L1-CONTRACTION AND UNIQUENESS

T. L. van Noorden, I. S. Pop and M. Röger

Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. In this note we continue the analysis of the pore-scale model for crystal
dissolution and precipitation in porous media proposed in [C. J. van Duijn and I. S.
Pop, Crystal dissolution and precipitation in porous media: pore scale analysis, J.
Reine Angew. Math. 577 (2004), 171–211]. There the existence of weak solutions was
shown. We prove an L1-contraction property of the pore-scale model. As a direct
consequence we obtain the uniqueness of (weak) solutions.

1. Introduction. Crystal dissolution and precipitation is an important process
arising in different real life applications. In the pore-scale model introduced in
[5], the flow of a fluid and the transport of a certain chemical substrate through
a porous medium is coupled with dissolution/precipitation processes on the grain
boundary. In [1, 5] an analytical and numerical study of this model is performed but
the question of uniqueness of (weak) solution was left open. In this note we prove
an L1-contraction property of weak solution, which in particular implies uniqueness
of the solution.

1.1. The pore-scale model. To describe the model introduced in [5] we consider
a porous medium consisting of the pore space and the solid (impermeable) matrix.
This matrix consists of solid grains, whose boundary we call grain boundary. Let
the pore space be represented by an open, connected and bounded domain Ω ⊂ Rd,
d > 1. The boundary ∂Ω is assumed to be Lipschitz continuous and consists of two
disjoint parts: an internal part ΓG describing the boundary of all grains, and an
external boundary ΓD - the outer boundary of the medium. Both boundary parts
are assumed to have a non-zero measure. We denote by ~ν the outer normal to ∂Ω,
fix an arbitrarily chosen value of time T > 0 and set

ΩT := (0, T ]× Ω, ΓT
G := (0, T ]× ΓG, and ΓT

D := (0, T ]× ΓD.

We consider a fluid flowing through the pores of a porous medium and transport-
ing cations and anions of a certain chemical substrate. These ions can precipitate
on the grain boundary and form a crystalline solid, the precipitate. The reverse
reaction of dissolution is also possible. The flow, as well as the precipitation and
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dissolution process will be described by the following (dimensionless) quantities:

q : Ω → Rd, the fluid velocity,

u : ΩT → R, the solute concentration (cation),

v : ΓT
G → R, the precipitate concentration,

w : ΓT
G → R, the dissolution rate.

Notice that q and u are defined in the entire pore space Ω, whereas v and w are
defined only on the grain boundary ΓT

G.

Remark 1. In the above we have only considered one solute (the cation), whereas
dissolution and precipitation involves another species, the anion. Following [8], this
second species is eliminated in [5] by involving another quantity, the total electric
charge in the fluid. This is a linear combination of the concentrations of the ions,
and can be determined by solving a linear parabolic problem that depends only on
the flow and not on the precipitation process. Therefore the problem is simplified
by reducing the number of unknown quantities, since the electric charge can be
decoupled from the chemistry and thus be determined separately. Moreover, for
simplicity we assume here that the initial data are compatible in the sense of [4]
and [8]. Essentially this means that initially the system is in equilibrium. Moreover,
the boundary data are assumed such that the total charge remains constant in time
and space, therefore in the model considered here we consider the charge being a
given constant. However, the results presented here can be extended to the case of
a known, non-constant electric charge.

In a dimensionless form the model considered in [5] is given by the following
system:

∂tu +∇ · (~qu−D∇u) = 0 in ΩT , (1)
together with 




−D~ν · ∇u = εn∂tv, on ΓT
G,

∂tv = k(r(u)− w), on ΓT
G,

w ∈ H(v), on ΓT
G,

(2)

Here ε > 0 is a, typically small, parameter and n ∈ N , D > 0 are given constants
describing the valence of the anions and a diffusion coefficient, respectively. k is
another constant related to the ratio of the characteristic precipitation/dissolution
time scale and the characteristic transport time scale (the Damköhler number).
Finally, r : R → [0, +∞) denotes the precipitation rate described in Section 1.3
below and H the set-valued Heaviside function,

H(v) =




{0}, if v < 0,
[0, 1], if v = 0,
{1}, if v > 0.

The system (1)-(2) is complemented by the following initial- and boundary con-
ditions, 




u(0, ·) = uI in Ω,
v(0, ·) = vI , on ΓG,

u = uD, on ΓT
D.

(3)

For simplicity, in the present paper we only consider boundary data of Dirichlet type.
The results can be extended straightforwardly to the case where also Neumann type
boundary conditions are defined on the external part of the boundary.



DISSOLUTION AND PRECIPITATION IN POROUS MEDIA 3

We remark that (1)-(3) couples a parabolic problem defined in the domain ΩT

through the boundary conditions to a differential inclusion on the grain boundary
ΓT

G . The problem above is the pore-scale-counterpart of the macroscopic (core-
scale) model introduced in [8].

One basic assumption in the pore-scale model is that the porous skeleton is not
affected by the chemical processes. This situation occurs if the size of the crystals
is small when compared to a grain, and therefore the changes in the void space
are negligible. A one dimensional model involving variations in the fluid domain
is analyzed in [10]. Further, it is also assumed that the fluid properties are not
affected by the precipitation process: the flow is a decoupled part of the model and
is obtained independently. We therefore consider ~q to be a given, divergence free
velocity, having a zero trace along the internal grain boundary ΓG:

∇ · ~q = 0 in Ω, ~q = ~0 on ΓG. (4)

1.2. Notations. Using standard notations of functional analysis we denote by
H1(Ω) the space of functions defined on Ω and having L2 generalized derivatives,
and by H1

0,ΓD
(Ω) those elements of H1(Ω) vanishing on ΓD. Moreover let (·, ·)Ω be

the scalar product in L2(Ω), or the duality pairing between H1
0,ΓD

(Ω) and H−1(Ω)
- the dual of H1

0,ΓD
(Ω). The notations L2(ΓY ) (with Y = G or D) have similar

meanings. Moreover, with X ∈ {Ω,ΓG}, by (·, ·)XT we mean the time integral∫ T

0
(·, ·)X . The corresponding norms are denoted by ‖ · ‖X , ‖ · ‖XT .

1.3. Assumptions on the precipitation rate. The equations (2) are the chal-
lenging part in the pore-scale dissolution and precipitation model. Several model-
specific functions are involved. For the precipitation rate r we assume here

(Ar) (i) r : R→ [0,∞) is locally Lipschitz in R;

(ii) there exists a unique u∗ ≥ 0, such that

r(u) =
{

0, for u ≤ u∗,
strictly increasing for u > u∗ with r(∞) = ∞.

A typical example is suggested by the mass action kinetics:

r(u) = [u]m+ [(mu− c)/n]n+, (5)

with c the given electric charge (assumed constant here) and m the valence of the
cation; [·]+ denotes the non-negative cut

[u]+ =
{

0, if u < 0,
u, if u > 0.

(6)

Remark 2. In the setting above, a unique u∗ > u∗ exists for which r(u∗) = 1.
This value can be interpreted as an equilibrium value: if u = u∗ for all t and x,
then neither precipitation nor dissolution occurs. As we will see below, in this case
the precipitation rate is balanced by the dissolution rate regardless of the presence
or absence of crystals.

Remark 3. The particularity of the model is in the description of the dissolution
by means of a multi-valued rate function. This implies that the dissolution rate w
is constant (and scaled to 1) in the presence of crystals, i.e. for v > 0 somewhere on
ΓG. In the absence of crystals (v = 0), the dissolution rate takes values in [0, 1]. To
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be more precise, in this situation we have to distinguish between two possibilities.
In the oversaturated case, i. e. for u > u∗ implying r(u) > 1, we prescribe that
w = 1 and the overall precipitation/dissolution rate is strictly positive. Whenever
u ≤ u∗ - thus r(u) ≤ 1, the fluid is not containing sufficient dissolved ions for an
effective gain in precipitate (the undersaturated regime). Since v = 0 a.e. in the
regions of ΓG being in contact with the undersaturated fluid, it follows that ∂tv = 0
there, implying that w = r(u) so that the overall rate is 0. Following the detailed
discussion in [3], this can be summarized in

w =





0, if v < 0,
min{r(u), 1}, if v = 0,
1, if v > 0.

(7)

This description of the dissolution process allows for dissolution and precipitation
fronts. For the upscaled model, these fronts are investigated in [11] (assuming
equilibrium conditions) and in [3] (as traveling waves). For the pore scale model,
the dissolution fronts are investigated analytically in [5] and numerically in [1],
where also the convergence of a numerical scheme is proven. For the analysis of
similar models with particular emphasize on homogenization we mention [6] and
[7]. The effect of having high Peclet and Damköhler numbers is investigated in
[2, 9] for models of the same type, but involving a simplified chemistry on the grain
boundary.

2. Existence of weak solutions. The main difficulty in the pore-scale model is
associated with the multi-valued function describing the dissolution. In general we
do not expect to find classical solutions. In [5] the existence of weak solution is
proved, under the following assumption on the data and ~q:

(AD) The boundary and initial data are essentially bounded and non-negative;
the boundary data are constant in time and traces of H1 – functions. Fur-
ther, ~q ∈ [H1(Ω)]d is essentially bounded and satisfies (4).

The positivity and boundedness of the data are not restrictive, since u and v model
concentrations. By considering here boundary data that are constant in time we
avoid non essential technical details.

For defining a weak solution we consider the following function spaces

U := {u ∈ uD + L2(0, T ;H1
0,ΓD

(Ω)) : ∂tu ∈ L2(0, T ; H−1(Ω))},
V := {v ∈ H1(0, T ; L2(ΓG))},
W := {w ∈ L∞(ΓT

G), : 0 ≤ w ≤ 1}.
Note that the definition of U takes care of the Dirichlet-boundary-condition.

Definition 1. A triple (u, v, w) ∈ U ×V ×W is called a weak solution of (1)-(3) if
(u(0, ·) = uI , v(0, ·) = vI and if

(∂tu, ϕ)ΩT + D(∇u,∇ϕ)ΩT − (~qu,∇ϕ)ΩT = −εn(∂tv, ϕ)ΓT
G
, (8)

(∂tv, θ)ΓT
G

= k(r(u)− w, θ)ΓT
G
,

w ∈ H(v) a.e. in ΓT
G,

(9)

for all (ϕ, θ) ∈ L2(0, T ; H1
0,ΓD

(Ω))× L2(ΓT
G).
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Moreover, following the discussion in Remark 3, (92) should be understood in
the sense of (7).

We can now state the following existence result:

Theorem 1 ([5] Theorem 2.21). Assume (Ar) and (AD), then there exists a weak
solution of (1)-(3). In addition, such a solution satisfies

‖u‖2L∞(0,T ;L2(Ω)) + ‖∇u‖2L2(ΩT ) + ‖∂tu‖2L2(0,T ;H−1(Ω))

+ε‖v‖2L∞(0,T ;L2(ΓG)) + ε‖∂tv‖2L2(ΓT
G)

≤ C,
(10)

where the constant C > 0 is independent of u, v, w and ε.

Furthermore, it is proven in [5, Lemmas 2.6-2.8] that a weak solutions also sat-
isfies

0 ≤ u ≤ max{‖uI‖∞,Ω, u∗} a.e. in ΩT (11)

0 ≤ v(t, ·) ≤ MveCvt for all t ∈ [0, T ] and a.e. on ΓG, (12)

0 ≤ w ≤ 1 a.e. on ΓT
G, (13)

where Mv := max{‖vI‖∞,Ω, 1}, Cv := r(Mu)
Mv

.

3. L1-contraction and uniqueness. In this section we analyze the solution of
the pore scale model (1)-(3). We prove an L1-contraction result and obtain as a
corollary the uniqueness of weak solutions.

The basis of the contraction property is in a monotone structure of the overall
precipitation-rate given by the right-hand side of (22).

Lemma 1. Consider the precipitation rate r satisfying (Ar), let the dissolution rate
w(u, v) be defined by (7) and set

f(u, v) := r(u)− w(v, u). (14)

Then f is monotone with respect to both arguments:

u 7→ f(u, v) is monotone increasing, (15)

v 7→ f(u, v) is monotone decreasing. (16)

Proof. Whenever v 6= 0, the first claim follows directly from the monotonicity of
r. In the case v = 0 we obtain f(u, v) = r(u) − min(1, r(u)), which is monotone
increasing in u. This proves (15).

The second claim follows from the definition of w in (7).

We now prove the L1-contraction principle.

Theorem 2. Let the assumptions (Ar) and (AD) be satisfied and consider two
weak solutions (u(i), v(i), w(i)) ∈ U × V ×W, i = 1, 2 of (1)-(3) with initial values
(u(i)

I , v
(i)
I ), i = 1, 2 respectively. Then for any t ∈ (0, T ] we have

∫
Ω
|u(1)(t, x)− u(2)(t, x)|dx + εn

∫
ΓG
|v(1)(t, s)− v(2)(t, s)|ds

≤ ∫
Ω
|u(1)

I (x)− u
(2)
I (x)|dx + εn

∫
ΓG
|v(1)

I (s)− v
(2)
I (s)|ds.

(17)
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Proof. We start by defining

Tδ(x) :=





−x− δ

2
, if x < −δ,

x2

2δ
, if x ∈ [−δ, δ],

x− δ

2
, if x > δ,

where δ > 0 is arbitrary small. Its derivative is the regularized sign function

T ′δ (x) = Sδ(x) :=





−1, if x < −δ,
x

δ
, if x ∈ [−δ, δ],

1, if x > δ.

Subtracting (8) written for u(2) from the one fulfilled by u(1) and using (9) gives
for u := u(1) − u(2) ∈ L2((0, T ); H1

0 (Ω)):

(∂tu, ϕ)ΩT + D(∇u,∇ϕ)ΩT − (~qu,∇ϕ)ΩT

+εnk(r(u(1))− r(u(2))− (w(1) − w(2)), ϕ)ΓT
G

= 0,
(18)

for all ϕ ∈ L2((0, T ); H1
0,ΓD

(Ω)). Similarly, for v := v(1) − v(2) ∈ L2(ΓT
G) we obtain

(∂tv, θ)ΓT
G

= k(r(u(1))− r(u(2))− (w(1) − w(2)), θ)ΓT
G

(19)

for all θ ∈ L2(ΓT
G), where w(i) ∈ H(v(i)) a.e. in ΓT

G.
With χI being the characteristic function of a time interval I, for any t ∈ (0, T ]

we test (18) with ϕ := χ(0,t)Sδ(u) ∈ L2((0, T ); H1
0,ΓD

(Ω)) and (19) with θ :=
εnχ(0,t)Sδ(v). Adding the resulting gives

∫ t

0
(∂tu,Sδ(u))Ωdt + εn

∫ t

0
(∂tv, Sδ(v))ΓG

dt

+D
∫ t

0
(∇u,∇Sδ(u))Ωdt− ∫ t

0
(~qu,∇Sδ(u))Ωdt

+εnk
∫ t

0
(r(u(1))− r(u(2))− (w(1) − w(2)),Sδ(u)− Sδ(v))ΓG

dt = 0.

(20)

We proceed by estimating each of the terms in the equation above, denoted by
I1
δ , I2

δ , . . . , I5
δ . For I1

δ we obtain

I1
δ =

∫ t

0

∫

Ω

∂τTδ(u(τ, x))dxdτ =
∫

Ω

Tδ(u(t, x))dx−
∫

Ω

Tδ((u
(1)
I − u

(2)
I )(x))dx.

Recalling (AD), since |Tδ(s)| ≤ |s|+ δ/2 and u(1)(t), u(2)(t) ∈ L2(Ω), we obtain by
the Dominated Convergence Theorem that

lim
δ→0

I1
δ =

∫

Ω

|u(1)(t, x)− u(2)(t, x)|dx−
∫

Ω

|u(1)
I (x)− u

(2)
I (x)|dx. (21)

In a similar manner,

lim
δ→0

I2
δ =

∫

ΓG

|v(1)(t, s)− v(2)(t, s)|ds−
∫

Ω

|v(1)
I (s)− v

(2)
I (s)|ds. (22)

For I3
δ we notice that S ′δ ≥ 0 a.e. on R. Therefore we have

I3
δ = D

∫ t

0

∫

Ω

S ′δ(u)|∇u|2dxdτ ≥ 0 (23)
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uniformly in δ. Furthermore, I4
δ gives no contribution since

I4
δ =

∫ t

0

∫

Ω

∇ · (~q Tδ(u))dxdτ =
∫ t

0

∫

∂Ω

~ν · ~q Tδ(u)dsdτ = 0. (24)

In the above we have used (4), as well as the vanishing trace of u on ΓD.
Finally, we claim that

lim
δ↘0

I5
δ ≥ 0. (25)

By (14) we can rewrite

I5
δ =

∫ t

0

∫

Ω

(
f
(
u(1), v(1)

)− f
(
u(2), v(2)

))(
Sδ

(
u
)− Sδ

(
v
))

dx dτ. (26)

The integrand of this expression converges pointwise as δ > 0 and is uniformly
dominated in L1(ΓT

G). Therefore, to prove (25) it suffices to show that

lim
δ↘0

(
f
(
u(1), v(1)

)− f
(
u(2), v(2)

))(
Sδ

(
u
)− Sδ

(
v
)) ≥ 0 (27)

almost everywhere in ΓT
G. Next we notice that (27) is invariant under permuting

(u(1), v(1)) and (u(2), v(2)). Without loss of generality we therefore can restrict
ourselves to the case that u = u(1) − u(2) ≥ 0. Moreover, since

lim
δ→0

(
Sδ(u)− Sδ(v)

) → 0

if u and v are both positive or both zero, it only remains to consider the two cases
1. v ≤ 0,
2. v > 0, u = 0.

In the first case we obtain that limδ→0(Sδ(u)− Sδ(v)) ≥ 0 and

f(u(1), v(1))− f(u(2), v(2))

= f(u(1), v(1))− f(u(2), v(1)) + f(u(2), v(1))− f(u(2), v(2)) ≥ 0

by Lemma 1. This proves (27) if v ≤ 0. In the second case (v > 0 and u = 0) we
obtain that Sδ(u)− Sδ(v) < 0 and

f(u(1), v(1))− f(u(2), v(2)) = f(u(1), v(1))− f(u(1), v(2)) ≤ 0,

giving again (27). In this way we have proven (27), yielding (25).
The proof of the Theorem is concluded by letting δ ↘ 0 in in (20) and using (21)

- (25).

A direct consequence of Theorem 2 is the following uniqueness result:

Corollary 1. The system (1)-(3) has a unique solution in the sense of Definition 1.

Remark 4. The weak solution of (1)-(3) is obtained by compactness arguments,
as a limit of a sequence δ ↘ 0 of solutions of the regularized problems obtained by
replacing the Heaviside graph H by

Hδ(v) :=





0, if v < 0,
v/δ, if v ∈ (0, δ),
1, if v > δ,

By the uniqueness result, any regularizing sequence δ ↘ 0 converges to the same
weak solution. Further, the same holds for the numerical approximation constructed
in Theorem 2.15 of [1].
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[9] A. Mikelić, V. Devigne, C. J. van Duijn, Rigorous upscaling of the reactive flow through a
pore, under dominant Peclet and Damkohler numbers, SIAM J. Math. Anal., to appear.

[10] T. L. van Noorden, I. S. Pop, A Stefan problem modelling dissolution and precipitation in
porous media, CASA Report 06-30, Eindhoven University of Technology (2006).

[11] A. Pawell, K. D. Krannich, Dissolution effects in transport in porous media, SIAM J. Appl.
Math. 56 (1996), 89–118.

E-mail address: {T.L.v.Noorden, I.Pop, M.Roeger}@tue.nl


