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Introduction and 

O. By C[O,l] we denote the set of real-valued continuous functions defined 

on the interval [0,1]. Let the numbers xO,x1"",xn be prescribed with 

o = Xo < Xl < ••• < xn_
1 

< xn = 1. Then to every division of the unit inter

val into n subintervals [x. l'x,] there corresponds an (n+l)-dimensional 
1- 1 

subspace S S(xO'x1, ••• ,xn) of C[O,}] whose members are the natural cubic 

spline functions (hereafter referred to as n.c.s.) with nodes x .• So, s E S 
1 

if and only if this function satisfies the following three conditions: 

(i) 

(U) 

(iii) 

S E C2[0,1], 

S"(O) = s"(1) = 0, 

the restriction of s to an arbitrary subinterval [xi-1,xi ] is a 

polynomial of degree at most three. 

In a number of papers (see for instance [6] and [7]) Schoenberg has 

brought out the important role which n.c.s. play when approximating linear 

functionals. We particularly want to mention here his fundamental theorem J 

in [7], p. 158. 

The object of this report is twofold. Always assuming that the nodes 

are equally spaoed on [O,IJ, we first show how explicit formulae may be 

given for the n.c.s. This approach is based upon the solutions of a set of 

linear equations from which the so-called cardinal natural cubic spline 

functions (c.n.c.s.) may be calculated. As an application of these basic 

functions we present a new way to derive some familiar results of Meyers

Sard [4] and Holladay [3J. 

In the second part of the paper we carryon research done by Atkinson 

[1] concerning the application of n.c.s. to numerical integration formulae. 

We improve on one of his results (theorem 7, p. 99) and establish it in its 

definite form. In the course of the proof use is made of recent work of 

Sonneveld [8]. 
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On cardinal natural cubic spline functions 

1.1. It is known ([2J, lemma 1) that with each f E C[O,)] there can be asso

ciated a uniquely determined element s E S with the interpolation property, 

i.e. s(xi ) ::: f(x i ) for i = O,I, •.• ,n. If we write 

f. == f (x.) , \.1.::: s" (x.) , 
1 1 1 1 

then on the interval [x. 1,x.J the function s can be written in the follow-
1- 1 

ing form: 

(1. 1) sex) == f. 1 A. (x) + f. B. (x) + \.1. 1 C. (x) + ii. D. (x) • 
1- 1 1 1 1- 1 1 1 

Here A.(x), ••• ,D.(x) are certain cubic polynomials with suitable chosen 
l. l. 

properties. In fact, we have 

(1.2) 

(1.3) 

( 1.4) 

( 1.5) 

It is obvious from these formulae that Ai(x),Bi(X) ~ 0, whereas Ci(x),Di(X) ~ ° 
on [x. 1,x.J. Moreover, 

1- 1. 

(1. 6) A. (x) 
l. 

+ B. (x) =< 1 , 
1. 

X. x. 

(1. 7) J 1. Ai(x)dx I 1 B. (x)dx 1 
=< =-

l. 2n ' 
xi - 1 xi - 1 

x. x. 

( 1.8) I 1. C. (x)dx == J 1 D. (x)dx == ---1 1 24n3 

Xi - J xi-l 

In view of the conditions (i) and (ii) the parameters V. have to satisfy 
1 

some particular relations, which can be found for instance in [9J. They take 

the form 

(1. 9) (i = 1,2, ••• ,n-l) , 
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with 

(1.10) o 

There exists a unique solution for the parameters ll., because the matrix as-
1. 

socia~ed with system (1.9) is diagonally dominant. Together with (1.1) this 

establishes a proof of the fact that the interpolating n.c.s. exists and is 

unique. 

Besides (1.1) there is another way of representing the interpolating 
i n.c.s. sex). If s (x) E S denotes the i-th c.n.c.s. (this function is defined 

by the equations si(x.) = o~ for i,j = O,I, ••• ,n), then in terms of these 
J J 

functions we have 

(1. 11) 
n 

sex) = r 
i=O 

i f. s (x) 
1. 

this is a formula of Lagrange-type. 

1.2. As usual we write for m ~ 0 

{ 

m 
(x - t) 

(x - t)m = 
+ 0 

if x ~ t , 

if x < t . 

Moreover, let 

(1.12) L(x,t) = - (x-t)3 - (1-t)x3 - r {(x.-t)3 - (J-t)x~}s1.(x) • 1 [ n • J 
6 . + . 0 1. + 1. 

1.= 

In the sequel we will need a result which is due to Atkinson. It reads as 

follows: 

THEOREM 1 (Atkinson [IJ) 

(i) L(x,t) is symmetric, i.e. L(x,t) = L(t,x). For each x, it is an n.c.s. 

in t with nodes xO,xl, ••• ,xn ' and x; for i = O,I, ••• ,n, L(x,xi ) = O. 

(ii) Assume that f E C4[O,lJ. Then 

n 
(1. 13) f(x) - I 

i=O 

with 

i f. s (x) = 1. eO(x)f"(I) + e t (x)f"(O) + 

1 

JL(X,t)£(4)(t)dt 

o 
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= i- {x3 -
n 

Si(X)} , eo(x) I x~ 
i=O 1 

(1.14) 

= i- {(l-X)3 -
n 

Si(X)} • leI (x) I (l-x.)3 
. 0 1 1= 

As an obvious consequence of (1.13) We have 

COROLLARY 1 

(1.15) 

where 

(1.16) 

1 

f£(X)dX -
() 

n 

L 
i=O 

f. 
1 

c £"(1) + c f"(O) + o 1 

1 1 

J fL (X,t)f(4)(t)dtdx 

o 0 

Under the assumption that the nodes are equally spaced, it is true (cf. formula 

(1.34» that Co = c t ' Relation (l.tS) is of some interest because Schoenberg 

[6J has shown that of all numerical integration formulae of type 

1 

ff(X)dX s:::I 

a 

n 
I w. f. , 

i=O 1 1 

which are exact for linear functions, the best one in the Sense of Sard [5] 

is obtained by integrating the n.c.s. which interpolates f at the points 

(1.17) 

Le. 

1 

wi := Jsi(X)dX 

o 

In his paper [5] Sard also included a short table of weights w. in case the 
1 

nodes are equally spaced. Actually it is possible to determine explicit 

formulae for the weights. This was done for the first time in 1950 by 

Meyers and Sard [4J without using the concept of spline function. We refer 

the reader to their paper for more extensive data on the numbers w., In this 
1 

respect one also has to mention a paper by Holladay [3]. In 1957 he proved a 

fundamental result in the theory of n.c.s., apparently without knowing of 
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the work of Schoenberg in this area. He also derived formulae for the 

numbers wi using 0,17), exhibited a table for the weights and formulated 

some simple rules to calculate them. Schoenberg noted that the data given by 

llolladay are exactly the same as those of Meyers-Sard and this led him to 

establish a close connection between the problems of spline interpolation 

and mechanical quadratures, which culminates in his fundamental theorem 1 in 

[7J. 

In view of Schoenberg's theorem, it seems to be of some interest to get 

hold of the c.n.c.s. si(x) (i = O,I, ••. ,n). They also enable us to calcu

late the weights w. in a different way as was done before by Sard, Meyers-
~ 

Sard and Ibl1aday. These two subjects will be dealt with in the next two 

BE'<:t;.ons, 

1.3. The calculation of the c.n.c.s. can be based upon formulae (1.1), (1.9) 

and (1.10). Putting 

then according to (1.1) we have on the interval [x. I'x.]: 
~- 1. 

(1.18) sk(x) = ok A.(x) + ok B (x) + ~~k) C.(x) + ~~k) D (x) 
i-I 1. i i 1.-1 ~ 1. i ' 

(k = O,I, ••• ,n) • 

In order to compute sk(x), we first have to write equations (1.9) in their 

appropriate form. We get 

(1.19) 

with 

(1.20) 

(k) + 
11 • 1 ].-

2 k 
6n (Oi+l 2o~ + O~ I) 

1. 1.-

(k == O,1,2, ••• ,n) • 

(~ 0,1 , ••• ,n; ) 
.... = 1 t 2 , ••• , n-1 ' 

In view of (1.18) and together with formulae (1.2), (1.3), (1.4), (1.5), the 

c.n.c.s. will be completely determined if we can solve the systems of linear 

equations (1.19) for n = 2,3, •••• Before we go into this, we first state an 

elementary lemma which will be needed for the proof of the next theorem. 

LEMMA 1 The solution of the difference equation 

(l.21) (i = 0,1,2, ... ) , 
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with initial conditions a
O 

= 0, a l = I, is given by 

(1.22) = i fi(a 
i -i (i 0,1,2, ••• ) a. - a ) = , 

1. 

where (t 2 + )' J. Moreover, we have 

(1.23) a. a n-i a n-I 
+ a + ... + a n-2i+1 , ( I ::; i ::; [!!.] ) , 

1. n-3 2 

(J .24) (0 ::; i ::; n-l) • 

Some other particular solutions are 

(1.25) 
1 -I I )a i (a + I)a-i } (i 0,1,2, ••• ) bO = 1 b

l 
= 1 b. = "6 {(a + + = , , 

1. 

(1.26) 5 I l)a i (a -I I) a -i} (i 0,1,2, ... ) Co 1 c
1 

= c. = - {(a - + - = , , 
1. 2 

(I.27) dO 2 d
1 

4 d. i -i (i 0,1,2, ... ) = , = = a + a = , 
1. 

PROOF Using the standard technique for solving difference equations with 

constant coefficients we easily deduce the formulae (1.22), (1.25), (1.26), 

(1.27). Relation (1.23) can be proved by using mathematical induction. 

Equality (1.24) is a straightforward calculation. 

THEOREM 2 Let n = 2m, respectively n = 2m + I (m = 1,2, ••• ). Then for an 

arbitrary but fixed number m the unique solution of the set of equations 

(1.19), always assuming that (1.20) holds, takes the form 

(1. 28) (0) (_l)i-I 
6n2 a n-i 

]1. = 
1. a (i = 1,2, ••• ,n-l) , 

n 

36n2 a 

I 

(1.29) (k) (_I)i-k-I 
ak n-i 

ll· = 
1. a (k = 1,2, ••• ,m; 1. = k+l,k+2, ••• ,n-l) , 

n 

(J .30) (k) 
= 

(i) ].t . llk , 
1. 

(k 1,2, ... ,m; i = 1,2, ... ,k-l) , 

(1.31) (1) = - 211(0) + (0) 
].tl 1 112 

(I.32) (k) 
].tk = 

(k-I) 
11k-l 

(I) 
+ 112k-1 (k = 2,3, ••• ,m) , 

(1. 33) (n-k) 
= 

(k) 
11n-i 11· 1. 

(k = O,l, ••• ,m; i = 1,2, ..• ,n-l) • 

, 

, 

. 
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PROOF It is sufficient to consider the systems (1.19) only for k = O,I, ••• ,m, 

'Jecause in case of k = m+ 1, •.• ,n we can proceed by replacing k by n-k and i 

by n-·i. Then we get a system of equations which we encounter in case 

k "" 0,1, ..• ,me Therefore we have formula (I.33) which has as a consequence, 

together with (1.18) and (1.2), (1.3), (1.4), (1.5), that 

(1. 34) n-i i 
s (x) = s (1 - x) , (i = 0, 1 , ••• , m) ; 

this was to be expected because the nodes are equally spaced. 

AR for the proof of theorem 2, let m be an arbitrary but fixed positive 

integ'?r.. Then k can be one of the integers O,I, ••• ,m and we have to distin

guish between several cases. If k = 0, then it follows from (1.19) that we 

have to deal with 

(1.35 ) 

J"~O) + 4"~O) + "~O) = 6n2 , 

l' ~~O) + 4~~0) + ~(O) = 0 , 
1 1.+1 i+2 (i = 1,2, ••• ,n-2) • 

Together with (1.20), it is an immediate consequence of the difference 

equation (1.21) that (1.28) is the solution of system (1.35). (If the last 

element of the set through which the index variable i runs is smaller than 

the first element, we will always assume that the set of equations under 

considerat~on is void.) Now we turn to the case k = 1. Then in view of 

(1.19) one has for n > 2 

(1) + 4,,(1) + (1) _ 12n2 
~O '"'I ~2 = , 

(1.36) (1) + 4,,(1) + (1) 6n2 
ll1 '"'2 ~3 = , 

,,(I) + 4,,(1) + ,,(I) = 0 
'"'i '"'i+l '"'i+2 ' (i = 2,3, ••• ,n-2) • 

Using (1.20), (1.31), (1.21) and 

that the expressions for ~~1) as 
1 

the fact that a 1 = 1, it is easily verified 

exhibited in (1.29), together with (1.31), 

are the solution of system (1.36). The case k = 2, when appropriate, can be 

dealt with in an analogous way. The main part of the proof of theorem 2 

comes in when k = 3,4, ••. ,m; these cases can be considered all together. 

Let k be an arbitrary but fixed element of the set {3,4, ••• ,m}. From (1.19) 

we obtain 
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jl~k) ... 411~k) + p~k) = o , (i = 0,1, ••• ,k-3) , 
1. 1+1 1.+2 

(k) + 
llk-2 

4 (k) 
llk-1 

+ (k) 
]lk = 6n2 , 

(1.37) (k) + 411(k) + (k) = - 12n2 llk-1 k llk+l , 

(k) + 411(k) + ll(k) = 6n2 
l1k k+l k+2 , 

ll(k) ... 4p(k) + jl(k) = 0 , 
i i+l i+2 (i = k+l,k+2, ••• ,n-2) • 

In the first set of equations of system (1.37) we can make use of (l.30). 

Then one has to show that 

I'll(l) + (2) = 0 
k Ilk 

and 

(i) + 4 (i+l) + (i+2) - 0 
~k Pk Pk -, (i = 1,2, ••• ,k-3) • 

In order to do this we apply (1.29).Then both equalities are a consequence of 

relation (1.21) if we take into account the accompanying initial conditions. 

Using (1.30) the second equation of system (1.37) can be written in the form 

(1.38) 

In view of (1.32) and then applying (1.31), the left-hand side of this 

equality is equal to 

(k-2) + 4 (k-I) _ 2 (0) + (0) + (1) + + (I) 
~k llk ll1 ll2 P3 ••• P2k- 1 • 

Now the formulae (1.28) and (1.29) can be used. If we proceed in this way, 

then the verification of (1.38) amounts to showing that 

(1.39) (n = 6,7, ••• ; k = 3,4, ••• ,m) • 

And this is true because of (1.23) of lemma 1. 

The third and fourth equation of system (1.37) can be dealt with in the 

same way. We do not carry out the details of these calculations, but remark 

that in both derivations it is advantageous to use relation (1.39). For 

instance, the validity of the third equation of (1.37) then stems from 

(1.24) of lemma 1. Finally, it is obvious that in the last set of equations 

of system (J.37) the appropriate formulae of (1.29) can be applied. Then it 

is sufficient to refer to (1.21) and the proof of theorem 2 is complete. • 
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Taking into account (1.22), the whole set of formulae of theorem 2 is 

rather complicated and one may have some doubts whether they are suited for 

a rapid calculation of the second derivatives of the c.n.c.s. Fortunately, 

this is the case. We will now first give some examples by way of illustra

tion. On tLe basis of this we will supply an algorithm which can be used to 

calculate the numbers ~~k) recursively by going from n nodes to n+l nodes. 
1 

In the following tables we only exhibit the numbers ~ik) for k = Otl, ••• ,[~J 
and i ~ 1,2, •.• ,n-l because of (1.20) and the symmetry relations (1.33). We 

remark that for a specific number n all data in the table have to be multi

plied by 6n
2 

where a is given by (1.22). This number, together with the 
a n 

n 
value of n, placed in the first row. 

As is apparent from theorem 2 the sequence {ail as given in (1.22) plays 

a prominent role in our calculations. Starting out with the initial condi

tions aO = 0, a l = 1, the elements are easily generated by means of the re

currence relation (1.21). We so obtain 

{

aD = 0, a 1 = 1, a2 = 4, a3 = 15, a4 = 56, a5 = 209, 

(1.40) 
a6 = 780, a7 = 2911, a8 = 10864, a9 = 40545, •••• 

Formula (1.40), together with the contents of theorem 2, gives rise to the 

data for ~ik) as exhibited in tables 1,2, ••• ,7. 

n ;:: 2 3 
6n2 

n = 15 n = 4 
6n2 

56 

o I~I ! 1. • 0 1 ~ 0 I 2 

-2 I 4 -9 1 15 -34 24 

l 2 -1 6 2 - 4 24 -40 

3 I - 6 24 

Table I Table 2 Table 3 
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, ... 

n = 5 6n2 

209 n = 6 6n2 

780 
---~- .. " 

.~ 0 1 2 ~ 0 1 2 3 

~6 1-127 90 
.-

-15 90 -151 

4 - 24 96 

1 209 -474 336 - 90 

i 
2 - 56 336 -564 360 

13 15 - 90 360 -570 
-

- - 24 4 - 4 24 - 96 360 I 

5 1 - 6 24 - 90 

Table Table 5 

n = 7 6n2 

2911 

10~ 0 I 2 3 

1 780 -1769 1254 - 336 
-

2 -209 1254 -2105 1344 

3 56 - 336 1344 -2129 
f-----

4 - 15 90 - 360 1350 

5 4 - 24 96 - 360 

6 - I 6 - 24 90 

Table 6 

n 6n2 

10864 

~ 0 J 2 3 4 

I 2911 -6602 4680 -1254 336 

2 - 780 4680 -7856 5016 -1344 

3 209 -1254 5016 -7946 5040 

4 - 56 336 -1344 5040 -7952 
------

j 5 15 - 90 360 -1350 5040 

6 - 4 24 - 96 360 -1344 

7 1 - 6 24 - 90 336 

Table 7 
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Based on the formulae of theorem 2 we will now give an algorithm for 
, (k) n the calculatLon of the data ~i (k ::: 0,1""'[2J; i ::: 1,2, ••• ,n-l) for an 

arbitrary number of nodes. For a 

Guandt u'S in the tables by b ~nk) 
L, 

specific value of n let us denote the 

(k = O,I, .•• ,[~J; i = 1,2, ••• ,n-J). Then 

in going from n to n+l one has the following procedure, which is easy to 

apply, and which can serve to calculate the numbers bi~~I). 

ALGORITHM 1 

b(n+l) ::: _ b(n) 
i+l,k i,k ' (i = 1,2, ••• ,n-l; k = O,I, ••• ,min(i-I,[~J» • 

The ne:rt step has only to be applied when going from n is odd to n+l is even. 

with 

~!;~E_2 

~!;~E_~ 

~!~E~Z 

b(n+l) 

i+l,[~J+] 
"" _ (4b(n+l) + b(n+l) ) 

i+l '[I] i+l ,[~J-l 

b (n+l) 
i,i-I 

(i = [n;)J + 1,[n;1J + 2, .•• ,n-l) • 

[ 
(n+ 1) (n+ 1 ) ) 

= - 4bi +l ,i_1 + bi +2 ,i-1 (1' 2 [n+I J ) = 1, ,..., -2- + I , 

b(3) 
2, I "" 6 , b~~~ "" 

24 b(n+l) = 
, n+ 1 ,k o , n+1 

(k = 0,1""'[--2--]) 

(i = 1,2, ••• ,[n~lJ - 1; k = i+l,i+2, ••• ,[n;l J) • 

b (n+l) = - 2b (n+I) + b (n+l) 
I , I . 1 ,0 2,0 

b ~n:l) ::: b(n+l) 
L,L i-I ,i-l 

+ b(n+l) 
2i-l,1 (1' 2 [n+l]) = ,3, ••• , --2-- • 

(k) 
= 

6(n + 1)2 b (n+1) 
lli an+1 i,k (i=I,2, •• .,n;k n+1 

= 0, I , ••• , [-2-]) , 

where a I n+ is given by (1.22) • 
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REMARK The process of the algorithm is initiated with the data of table I. 

If one of the variables i or k runs through a sequence of values the last of 

which is smaller than the first one, then it is understood that the corre

sponding instructions are not to be executed. An examination of the struc

ture of the algorithm reveals that the first three steps are a consequence 

of formulae (1.28), (1.29). Step 2 is only to be applied in case n is odd, 

because then in going from n to n+l the value of m (and thus the number of 

columns of the matrix) is increased by 1. The steps 4, 5 and 6 immediately 

follow from (1.30), (1.31), (1.32) respectively. Relation (1.33) does not 

find its analogue in the algorithm because we have restricted the values of 
n+1 

k to 0, 1 , .•• '[-2-J • 

An important consequence is that now, together with the formulae (1.2), 

(1.3), (1.4), (1.5) and (1.18), the c.n.c.s. are completely at our disposal 

for an arbitrary number of (equally spaced) nodes. By way of illustration we 

exhibit these basic functions in cases n = 2 and n = 3, using the data from 

tables 1, 2 and the symmetry relations (1.33) • 

n = 2 

0 3 tl (x) + 6Dl (x) , (0 ::; x ::; D , 
s (x) 

6C2(x) 0 ::; x ::; 1 ) 

1 

• \ ~(x) 
B) (x) - 12D1(X) (0 ::; x ::; D 

s (x) 
- I2C2(x) 0 ::; x ::; 1) 

2 

1 B2 (x) + 

6D1(x) , (0 ::; x ::; D 
s (x) = 

6C2(x) 0 ::;; x ::;; 1) . 

!!-=-~ 

Al (x) 72 (0 < 1..) + "5 D) (x) , ::; x - 3 , 

0 72 )8 I 2 s (x) = 5" C2(x) - - D (x) (3::;; x < -) 5 2 , - 3 , 

18 (! < - - C (x) x ::;; 1) • 5 3 3 -
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Bl (x) 
162 (0 ::; 1..) - -5- Dl (x) , ::; x 

3 
, 

1 - 162 C (x) + 1~8 D2(x) 1 2 
s (x) == (3 ::; x ::; 3) , 

2 

108 C
3

(x) 2 
(3::; x ::; 1) • 

108 
-5- D1 (x) , (0 ::; x I 

::; 3) , 

2 108 C
2

(x) _ 162 D (x) 1 2 
s (x) = B2(x) + (3 ::; x ::; 3) , 

5 2 

A3(x) - 162 C (x) 
3 t 

(~ < 3 - x ::; 1) • 

18 - 5" D) (x) , (0 ::; x 1 
::; 3) , 

3 18 72 1 < ~) s (x) == - - C (x) + 5" D2(x) (3 ::; x 5 2 - 3 

B3(x) 72 
+ 5" C3(x) 

2 
(3 ::; x ::; ]) . 

REMARK Using various properties of the numbers ~~k) (k = O,I, •.• ,n; 
1 

i = 0, I , . . . , n ) and taking into account (1.18), one can show that the 
k c.n.c.s. s (x) (k = O,I, ..• ,n) do not change sign on the subintervals and 

have simple zeros at the nodes. We omit the details of this verification. 

1.4. Besides the derivation of the c.n.c.s. we recall that at the end of 

section 1.2 we set ourselves the task of calculating the weights wk 
(k == O,I, ... ,n), which numbers appear in the numerical integration formula 

(1.15). One has (cf. (1.]7» 

] 

wk == ISk(X)dX 

o 
(k = O,I, ••• ,n) t 

where sk(x) is the k-th c.n.c.s., the nodes being equally spaced. These 

integrals can be expressed in terms of the numbers ~~k) (i = O,I, ••• ,n), 
k 1 

the second derivatives of the function s (x) at the nodes. Because of (1.34) 

it is sufficient to restrict ourselves to values of k for which 0 ::; k ::; m, 

where n = 2m, respectively n = 2m + 1. It is a consequence of (1.18), to

gether with (1.7), (1.8) and (1.20), that one has 
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1 I n-l (0) 
w =--- \' 
o 2n 12n3 i:l lli ' 

1 
wk = Ii - -12-n-3 

n-l 

L 
1 

(k) 
ll. 

1 
(k = 1,2, ••. ,m) , 

(k = 0, 1 , ••• ,m) • 

For some explicit formulae of the underlying functions sk(x) we refer to the 

examples given at the end of the preceding section. The sums which appear in 

(1.41) can be dealt with in the following way. Taking into account (1.20) it 
n-l (k) 

is an easy consequence of (1.19) that I ll. can be written in terms of 
(k) (k) i=1 1 

ll} and !In-l' This fact, together with the information supplied by theorem 

2, actually gives rise to the following expressions: 

n-} 

L 
1 

(1.42) 

n-l 
L 

i=1 

( 1.43) 

(0) 
ll. 

1 

(1) 
ll· 1 

6n2 a (_I)n 6n2 a
l n-I 

---- + -----,.;;.. 
2 an an n2 n 

= n + ----------- = - {a + a 1 + (-I) } , a n n-6 n 

(1) + (1) 
111 lln-l = - n 2 + ---;:--- = 

6 
(n ~ 3) 

= - n 2 + 
6n2 n = - - {a + (-1) } • 
a n-l 

n 

This formula holds also in case n = 2; in the course of its derivation use 

is made of (1.21). When k = 2,3, .•• ,m we obtain 

(k) + (k) 
111 l1n-1 

(I) + (k) 
llk lln-l 

6 = 6 = 

36n2 a
l a 36n2 ak a l = (-Ok n-k + (_1)n-2+k = 6a 6a n n 

( 1.44) 
k 6n2 n = (-I) - {a + (-1) ~} . a n-k 

n 
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As usual, a. (i = 0,1, ••• ) is given by (1.22). We note that in view of 
~ 

(1.43) formula (1.44) can also be used in case k = 1. 

Formulae (1.42) and (1.44), together with (1.22), can be used to give 
n-I (k) 

explicit expressions for the sums I u. (k = O,I, ••• ,m). It turns out to 
i=1 1 

be advantageous to consider the cases n is even and n is odd separately. We 

omit the somewhat tedious but elementary calculations and state only the 

results. In case n is even (n = 2m) one has 

(1. 45) 

(l .46) 
n-I 
I 

I 

~k -!!+k 
k 2 2 

(-1) 6n2 {a + a } 
n/2 -n/2 a + a 

(k = 1,2, ••• ,m) , U~k) = 
1 

whereas in case n is odd (n = 2m + 1) we obtain 

n-l (n-l ) 

(1.47) 
n-1 

(0) 213 n2{a 
-2- 2 } l - a 

ll· :: 
(n-I) 1 n-I , 

i=1 -2- -I 2 
(a - 1)a + (a - l)a 

n-l 
n-I_k _ (n-I) +k 

(1.48) L 
i=1 

(k) 
ll· 1 

(_I)k 6n2{(a _ I)a 2 + (a-1 _ 1)a 2 } 
= ~~----~-n---I~------~--~(-n-~l)~------~ 

(a - l)a-2- + (a -I - I)a 2 

(k = 1,2, ••• ,m) • 

n-l (k) 
To give the reader an idea what the sums I u. (k = O,I, ••• ,m) look like 

i=1 1 

for the first few values of n, we use the expressions (1.42) and (1.44) in-

stead of (1.45)-(J.48). We arrive at the following table; to obtain the 
n-I 

value of the sum I ll~k) for a particular nand k, the element in the top 
1 ~ 

row and (n-J)-th column has to be multiplied by the entry in the k-th row 

and (n-l)·-th column. 
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6n2 6n2 
6n

2 I 6n2 6n2 I 
6n2 6n2 6n2 6n2 6n2 

-4- 5 14 i 19 52 71- 194 265 m 989 

~ 
! 

2 3 4 5 6 7 8 9 10 II 

0 1 3 4 11 15 41 56 153 209 
1------

1 -2 -1 -4 -5 -14 -19 -52 -71 -194 -265 
----._" i 

2 2 1 4 5 14 19 52 71 

~ - 2 - 1 - 4 - 5 - 14 - 19 

4 2 1 4 
_ .... -

5 I - 2 -
-_._.- --

Table 8 

We note that there are several striking recurrences in this table. 

When n is even the sequence of numbers {2,4,14,52, ••• } plays a dominant 

role. In case n is odd the same is true for the sequence {1,5,19,71, ••• }. 

Both sequences are characterized by property (1.21). 

Using the set of formulae (1.45)-(1.48) one can show that the recur

rence features of the entries exhibited in table 8 for n = 2, ••• ,1] do hold 

in general. Using these properties an algorithm can be deduced for the cal
n-I 

culation of the sums l J..l~k). It is apparent from the data of the table 
i-I 1. 

that the cases n is even and n is odd have to be considered separately. 

Assume first that n = 2m (m = 1,2, ••• ) and let the value of m be increased 

by 1; further let the numbers b. and d. be defined by (1.25), respectively 
1. 1. 

(1.27). 

ALGORITHM 2 

(m+l) 
e

k 
= 

k 
(-1) dm- k+! ' 

= 4b - b 1 • m m-

(k = 1,2, ••• ,m+l) • 

5 

J 



2m+I 
L 

i=I 

2m+l 

(0) 
1.1. 

1 
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= 24(m + 1)2 b 
dm+1 m+I' 

L (k) 
ll. 

1 

24(m + 1)2 (m+I) 
= d

m
+

I 
ek 

(k = 1,2, ••• ,m+ 1) • 
i=l 

Now let n = 2m + 1 (m = 1,2, ••• ) and let the value of m be increased by 1; 

the numbers a. and c. are given by (1.22), respectively (1.26). 
1 1 

ALGORITHH 3 

= 4c - c m m-I' 

~~~E_~ 

(m+l ) k (k I,2, ••• ,m+I) gk = (-1) cm- k+I = . 
~~~E_2 

2m+2 
(0) 6(2m + 3)2 L = am+I ~. , 

i=I 1 Cm+I 

2m+2 
(k) 6(2m + 3)2 (m+I) I ~. = gk (k = I,2, ••• ,m+I) . 

i=1 1 Cm+I 

REMARK Since there corresponds a uniquely determined n.c.s. to each 

f E C[O,I], and taking into account (1.11), it follows that 

n 
L sk(x) = 1 • 

k=O 

This, together with (1.6) and the representation formula (1.18) for sk(x), 

has as a consequence tha~ at an arbitrary node the sum of the second deriva

tives of the c.n.c.s. is zero, i.e. 

n 

L 
k=O 

(k) 
~i = ° , 

and thus (cf. table 8) 

(i=O,I, ••. ,n) , 
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n n-l 

L l: o . 
k=O i=1 

The ultimate aim of the first part of this paper is the calculation of 

the weights in the numerical integration formula (1.15). This can now be 

accomplished by using (1.41) and the set of formulae (1.45)-(1.48). As is to 

be expected the calculations involved are rather lengthy and therefore 

omitted here. We obtain the following results. 

Assume first that n = 2m. If, as usual, a = 2 + 1:3 then 

1 1:3 ·n -n 2) ( 1.49) Wo =-+-- (a + a -
4n 12n n -n (a - a ) 

~-k ~k 

(1.50) 1 (-1 )k+l (a2 + a 2 ) 
wk =-+ 

(an/ 2 -n/2 , n 2n + a ) 
(k = 1,2, ••• ,m) • 

Ifn 2m + 1, then one has 

1 1:3 n -n 
(l.51) Wo =-+-- (a + a + 2) 

4n 12n n -n (a - a ) 

(k = 1,2, ••• , m) • 

~-k -~k 
1 (-1 )k+1 (a2 2 

(1.52) - a ) wk =-+ 2n (an/ 2 -n/2 , n a ) 

Apart from a normalization factor, these formulae can be proved to be 

identical with similar ones given by Meyers-Sard ([4J, p. 121-122) and 

Holladay ([3J, p.237-238). It is of some interest to gather together the 

weights for the first few values of n. This is done in table 9 (a more 

extensive one may be found in [4J). 
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-~ 

1 1 1 1 1 1 I 1 1 1 r 

8n. IOn 28n 38ii 104n 142n 388n 530n 1448n 1978n 

~ 2 3 4 5 6 7 8 9 10 11 

0 3 4 ~ 15 41 56 153 209 571 780 

1 10 1 1 32 43 118 161 440 601 1642 2243 

2 26 37 100 137 374 511 1396 1907 

3 106 143 392 535 1462 1997 

4 386 529 1444 1973 
----~ 

5 
i I 

1450 1979 

Table 9 

For an arbitrary value of nand k (0 ~ k ~ m) the weight wk is equal to 

the product of the element in the top row of the n-th column and the entry 

in the k-th row and the n-th column. 

We do not hesitate to say that the structure of table 9 is beautiful. 

As Meyers-Sard remark ([4J, p. 121) there are several kinds of striking 

regularities. For instance, minus any entry plus four times the entry two 

places on its right equals the entry four places on its right. This is, in 

fac~relation (1.21) and shows again that it is appropriate to distinguish 

between n is even and n is odd. Moreover, if n is odd, say, then the dif

ference between the entry in the second row and the entry in the first row 

is just 7a , where a is defined by (1.22). A similar statement holds when n m m 
is even. 

On the basis of formulae (1.49), (1.50), (1.51) and (1.52) it can be 

shown that the various recurrences which may be observed when n = 2,3, ••• ,11 

hold in general. This makes it possible to construct an easily applicable 

algorithm for the calculation of the weights (cf. also Holladay's paper). 

We first assume that n is even (n = 2m). Using (1.25) and (1.27) of lemma 

we have 

ALGORITHM 4 
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a(m+l) b L 7b 
fJ 1 == 2 '.,.. l' m+ m+ 

(k == 1,2, ••• ,m) . 

Wo == 4(m + l)d I' m+ 

a (m+l) 
k w == ~--~~~--

k 4(m + l)dm+) , 
(k == 1,2, ••• , m+ 1) • 

Let now n be odd (n = 2m + 1). If a. and c. are defined as in lemma 1, 
~ ~ 

tIten OTI" has to apply 

ALGORITHM 5 

y(m+l) = 
1 

y(m+l ) 
k+l 

(m+l) k 
== Yk + (-I) 6am+1_k , 

(m+l ) 
Yk 

(k == 1,2, ••• ,m) • 

2(2m + 3)cm+1 ' = 2(2m + 3)cm+1 ' 
(k == 1,2, ••• ,m+ J) • 

REMARK Because (1.15) is exact for linear functions it follows that 

n 

I 
i=O 

w. == 1 , 
~ 

n 

I 
i=O 

iw. = n/2 • 
~ 

Also it can be shown that for an arbitrary value of n the weights with even 

subscripts form an increasing sequence, whereas on the other hand 

WI > w3 > ••• ; moreover, m~x w2i < m~n w2i+1• We omit the verification of 

this result. ~ ~ 
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An application to numerical integration formulae 

2.1. Whereas in the first part of the paper we were mainly concerned with 

the calculation of the c.n.c.s. and the weights wi appearing in the integra

tion formula (1.15), we now fix the attention to the right-hand side of 

(1.15). The purpose of this second part is an improvement in its definite 

form of the following result due to Atkinson. 

THEO~M 3 ([IJ, p. 99) Let the nodes be equally spaced and let Co (- c I) be 

given by (1.16). Then 

(2, 1 ) .021 
< -c < o 

Furthermore, if f E C4[0,IJ, then one has 

1 

I ff(X)dX - I w· f· I ~ . 0 ~ ~ 1.= o 

where II f (4) II = max If (4) (x) I. The lower bound of (2.1) implies that no 
O~x~l 

greater an order than _1_ is possible when 
n 3 

f"(O) + fll(1) ~ 0 • 

The derivation of this theorem (and also our improvement of it) is 

based upon corollary of section 1.2. From this corollary we conclude that 

I 

I jf(X)dX -

o 

n 
I w. 

i=O ~ 
Icollf"(O) + ffl(l) I + 

1 I 

f ILex ,t)f(4)(t)dt dxl ~ 
o 0 

1 

(2.2) ~ Icollfn(O) + f"(OI + 11£(4)[1 f I fL(x,t)dtldX • 

o 0 

To calculate the constant Co we may note that it is an immediate consequence 

of (1.15), (1.14) and (1.17) that we have 

1 {lIn c =- --- l 
043 2. 0 n ~= 
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(2.3) I {I In} c :: - - - - L i 3 w. , 
064 3' 0 1 n 1.= 

where the weights w. are given by formulae (1.49)-(1.52). But the expressions 
1. • • *) 

just exhibited for Co do not seem to be so sUltable for calculatlon. 

Therefore 'ile proceed in a different way. Using formula (1.12) for L(x,t) one 

has 

I 

IL(X,t)dt 

o 

1 

= i J [(X-t)! - (1-t)x3 - i~O{(Xi-t)! - (l-t)xi}si(X)]dt = 
o 

1 1 

J (1-t)dt + 

o 

n 

I 
i=O 

xi si(x) I(I-t)dt 

o 
II I (x.-t)! 

. 0 1 o 1= 

But 

n 

L 
i=O 

] 

sl(x) J(Xi-t)! dt = 
o 
Xl 

= sl(x) J (x t-t)3dt + 

o 

x2 

s2(x) J (x2-t)3dt 

o 
+ ••• + 

*) Atkinson shows that 

(i) 
n 

c = _._1_ I 
o 24n3 0 i=1 

n 
k. .. •• k 

1.-1 n-l 

1 

sn(x) I(1-t)3dt 

o 

n 
\' 4 i = ! l.. x. s (x) 

i=O 1. 

where the constants o. (i = 0,1,2, ••• ) and k. (i = 0,1,2, ••• ) are defined 
1 1. 

recursively by the relations 

(it) 

and 

(iii) 

3 + O. 
\5 i + 1 = 4 4" + \5 ~ , 

1. 

] 
ki+l "" 4 - k:- ' 

1 

Using this he arrives at inequality (2.1). (Actually, the lower bound of 

(2.1) is not valid for n = 2, cf. (2.15).) It is possible to calculate the 

exact value of Co on the basis of the expressions (i), (ii), (iii). This was 

pointed out to me by F. Gobel and F.W. Steutel (Twente University of Tech

nology). 
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Using this it is then easily verified that 

(2.4) 

1 

JL(X,t)dt = ~4 {X4 - 2x3 
- i~O(X~ - 2X~)Si(X)} • 

o 

In order to find the constant Co it turns out to be worthwhile to consider 
1 

the integral fL(x,t)dX' Using (1.17) we obtain 

o 
I 

fL(X,t)dX = i {i- (l-t)4 - ! (I-t) + 

a 
(I-t) r w. x~ - r w.(x.-t)!}, 

. 0 1 1 . 0 1 1 1= 1= 

which can be written in the form 

(2.5) 

1 

fL(X,t)dX = ! {- 6cO(I-t) 

o 

because of (2.3). 

1 n } + .,.. (l-t)4 - I w. (x.-t)+3 
'+ • 0 1 1 1= 

At this junction we need one of the results of theorem ] which says 

that the function L(x,t) is symmetric, i.e. L(x,t) = L(t,x). This property 

has as an important consequence that the right-hand side of (2.5) is equiva

lent to the right-hand side of (2.4) if the variable t is replaced by x. The 

expression in (2.4) can be regarded as the difference of the function 

~4 (x4 - 2x3 ) and its interpolating n.c.s. Taking into account (2.5) the 

constant Co will be determined if we know the first derivative of the func

tion 

at the point x = 1. We will come to this later. 

2.2. Returning to (2.2), one is led to consider the integral 

1 1 

J J~(x,t)dtldx 
o 0 

for positive integer values of n ~ 2. In order to calculate and estimate 

these numbers accurately one needs information about the function in (2.4), 

especially where it changes sign on [0,1]. As we already noticed the right-
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hand side of (2.4) can be seen as the difference of the function 

1 (x4 - 2x3) and its interpolating n.c.s. Because of the fact that the 

1 4 3 second derivative of 24 (x - 2x ) vanishes at the end points of the unit 

interval, the corresponding interpolating n.c.s. is equivalent to a type of 

spline functions as considered by Sonneveld in his paper [8]. Therefore his 

results are applicable and we will use them to examine the behaviour of the 
1 

function JL(X,t)dt. Following Sonneveld we denote by Yl/n(f;x) the unique 

° cubic spline associated with f(x) and having the properties 

f YI/n(f;xi ) == f. t (0 ::;; i S n) , 
1 

yj' / (f ;x.) == f'.' (i == 0, i = n) 
~ 

, 
~ n 1. 

the subscript lin means that we assume the nodes to be equally spaced on 

[O,IJ. 

In his paper Sonneveld establishes a relation between cubic spline 

interpolation and cubic Hermite interpolation.':Assuming f(x) E CI[O,tJ, this 

classical approximation function yH(fjx) satisfies the following conditions: 

(ii) yH(fjx) is a polynomial of degree at most three on each 

subinterval [x. l,x.J, 
1.- 1. 

(iii) (i == O,l, ••• ,n) , 

(iiii) (i=O,I, ••• ,n) • 

Furthermore, if f € C4[0,IJ, then it is well known that one has 

In view of this we can write on [xi,xi +1] 

(2.6) 

(x. < ~. < x'+]) 
1. 1. 1. 
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Let us nm., take in particular f(x) = ~4 (x4 - 2x3 ) on [O,lJ. Then the spline 

1 n . 
functions --I L (x~ - 2x~)sl(x) and Y1!n(f;x) are identical and it follows 

2'f • 0 1 1 l= 
from (2. f, that we have 

Using Sonneveld's results (in particular (2.25.b) and the set of formulae on 

p. 113 of [8J) the difference of the cubics yH(f;x) and YJ!n(f;x) can be 

evaluated. Proceeding in this way we get on [xi,xi+JJ 

(2.7) 

where the numbers z! (i = O,I, ••• ,n) are the solution of a system of linear 
1 

equations of the form 

(2.8) 

2z' + z' o 1 
::::-

!z' + 2z' + !z' = 0 t 012 

I Z I + 2z' + 1 z' :::: 0 
~ n-2 n-l ~ n ' 

z' + 2z' :::: 
n-I n n3 

For the investigation of (2.7) we need the solution of the set (2.8). 

THEOREM 4 Let n be even (n = 2m) and a. :::: 2 + 13. Then the unique solution 

of the system of linear equations (2.8) is given by 

(i = O,I, •.. ,m) , 

(2.9) 

z' . :::: - z~ 
n-1 1 

(i :::: 0,1,2, .•. ,m) 



- 26 -

however, if n is odd (n = 2m + 1) then we have 

(2.l0) 
r zi -
\ z! l n-i 

= - z! 
1. 

(i = O,I, ••• ,m) , 

(i=O,l, ••• ,m) • 

PROOF We will only verify the contents of the theorem in case n is even; 

the proof in case n is odd may be given in a similar way. First of all we 

remark that there is a unique solution because the matrix of (2.8) is 

diagonally dominant. Assuming n = 2m, it is sufficient to show that the ex

hibited numbers z! of (2.9) satisfy the first m+l equations of (2.8). If 
1. 

this is f.rue, then the symmetry relations zim-i = - zi (i = O,l, ••• ,m) will 

guarantee that the remaining equations of (2.8) are also satisfied. Taking 

into account a = 2 + 13 we have 

2z' + z' ° 1 

m -m 
a - a =--

~3 m-I -m+l 
v.1 Ct. - a 
~--~--= 

24m3 am + Ct.-m 

= 13 {2(Ct.m 
- a-

m
) - (2 - ~am + (2 + l3)a-m} =_ 

24m3 am + a 8m3 

In case i = 1,2, ••• ,m-J we get 

-m+i Ct. ) m-i-l -m+i+l} + a - a 

and the expression between brackets vanishes because a - 4 + a-I = 0. 

The (m+l)-th equation of (2.8) is also satisfied because z' = ° and m 
Z~_l = - z~+l' This proves theorem 4. 

In the sequel we will need some information about the magnitude of the 

numbers z! (i = O,l, ••• ,m). This we state in the form of a lemma. 
1. 

• 

LEMMA 2 Let the numbers z! (i = O,I, ••• ,m) be given by (2.9), respectively 
1. 

(2.10). Then the following assertions are true: 

(i) when n is even, then n3 Zo is increasing with nand 
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(ii) 

(2. 12) 

(2. 13) 
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1 < I 13 ---z <--
03' 2n3 3n 

when n 1S odd, then n 3 z' is decreasing with nand a 

PROOF All three statements can be verified by elementary calculations based 

upon theorem 4. We omit the details. • 
REMAl\.K In view of (2.4) and (2.7) the first derivative of the function 

1 

fL(x,t)dt at the point 1 
1 I 1 I we remarked x = is equal to 24 zn = - 24 zO° As 

0 
on page 23 this suffices for the calculation of the constant Co appearing in 

(2.2). Using (2.5), together with (2.9) and (2.10) we obtain 

(2. 14) 
n -n (ex - ex ) 

Moreover, using (2.11) and (2.12), it is a consequence of (2.14) that 

(2. 15) 

2.3. Theorem 4, together with formula (2.7), can also be used to determine 
1 

the shape of the functions fL(X,t)dt on [O,IJ for positive integer values 

a 
of n. In view of (2.2) it is our purpose to give an estimate of 

1 1 

J I JLex,t)dtldX which holds for all positive integer values of n ~ 2 and 

o 0 
which is best possible. Therefore we are particularly interested where the 

1 

functions jL(X,t)dt change sign on [O,IJ. Before we go into this, we first 

a 
want to remark that the functions under consideration are symmetric on the 

unit interval with respect to x = ~. This follows from (2.7) and the rela-
1 

tions z I • = 
n-1 z .' 

1 
(i = O,l, •• o,m). As for the sign changes of jL(X,t)dt, 

o 
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we note from (2.7) that on every subinterval we deal with a polynomial of 

degree four which vanishes at both end points. Now let n be arbitrary but 

fixed and consider the expression 

(2. 16) 

on the interval [xi,xi +I ], which occurs in (2.7). Due to symmetry we may 

restrict ourselves to 0 sis m-I. If i is even, then according to theorem 4 
1 

we have zi > 0 and zi+1 < 0 and thus is JL(X,t)dt positive definite on 

o 
(X.,x. 1)' However, if i is odd, then we obtain z! < 0, z!+l > O. So the 

~ ~+ 1. 1. 1 
parabola in (2.16) is pulled down, but due to the fact that Iz! I <---

1. 5n3 

i = l,~" .. m (this is a consequence of lemma 2), the function remains 
1 

for 

positive when x = !(xi + xi +1). Therefore the function jL(X,t)dt has two 

o 
simple zeros on the open interval (xi,xi +I), assuming i is odd. In case n 

is even, finally, there is a double zero in x = ! because z' = 0; moreover, 
m 

the fourth zero will lie on the inside of [x l'x ] when m is even and stay m- m 
outside when m is odd. These observations, together with the fact that the 

coefficient of the leading term of the polynomial on each subinterval is ~4 ' 
1 

completely determine the shape of the functions fL(x,t)dt on [0,1]. By way 

o 
of illustration we exhibit the graphs of these functions for n = 2,3,4,5. 

The values which are given for the zeros on the inside of a subinterval may 

be verified by simple calculations based on (2.7) and theorem 4. 

n = 2 

\ 
I 

! __ I IS 
30 

\ 1 
~ + 30 IS 



n = 4 

n = 5 
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~~ o 1'" 1 +~ 1 
4 I 2 I 4 

I 
I I 

2/7 5/7 

59 - I2i3 
190 

131 + I2T3 
190 

I 
I 

I I 

I 
I 

I I 

~ o 1/5 1'11' 1 tit' 4/5 I 
I \ 2 I \ 

I 2/5 3/5 \ 
I \ 
I 
I \ 

59 + 7:2f3 131 - I:2f3 
190 190 

Using the information provided by the pictures, formula (2.7) and theorem 4, 
1 1 

we can evaluate the integrals J I jL(X,t)dt1dX in cases n = 2,3,4. Ele

o 0 
mentary calculations lead to the following results: 

(2.11) 

(2.18) 

(2.19) 

1 

if n = 2, then J 
o o 

1 

flex, t)dt Idx = -- = 
320n4 

0.003125 

n4 

1 

if n = 3, then J 
o 

1 

fL(X,t)dt1dx = 
o 

125 + 215 0.00283 ••. 

1 

J I J I 19349 if n = 4, then L(x,t)dt dx = -~-- = 
8067360n4 

o 0 

0.00239 •.. 

n4 

In cases n = 5,6, ••• the integrals under consideration can be dealt with in 

the following way. For our purpose it is not necessary to calculate them 

exactly; estimates 
1 

will be sufficient. To this end we use the representation 

of IL(X,t)dt 

o 
on the interval [x.,x. IJ as given in (2.1). As a preliminary 

~ ~+ 
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result we need the integrals 

(2.20) 

(2.21) 

x. 
~ 

xi+1 

f (x 

x. 
~ 

1 
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1 ---xi+l 

f (x 

x. 
1. 

An estimate of f I fL(X,t)dtldX may now be derived from (2.7) as follows. 

o 0 
Taking together all contributions to the integral over the n subintervals 

and using (2.20), (2.21) and theorem 4, we obtain 

(2.22) 

I I 

I I IL(X,t)dt1dX 

o 0 

::;;;_l_{_l_+_I_C Z ' - 2z'l + 2z
2
' - ••• + (_l)m 2Zm'J}· 

24 30n4 6n2 0 

We will show that for an arbitrary but fixed positive integer n 2 5 the 

right-hand side of (2.22) is smaller than --~I--
320n4 

it is sufficient to establish that 

ZO' - 2z
l
' + 2z

2
' - ••• + (_l)m 2z' ::;;; _1_ 

m 4n2 

(cf. (2.17». Accordingly, 

(n 2 5) . 

Using Zo ::;;; -1- and taking into account (2.13) we obtain 
Sn S 

Zo - 2zi + 2zZ - .•• + (_I)m 2z' < _3_ + _2_ {I + ~ + _1_ + ••• } _ ~ < _1_ , 
m Sn3 Sn3 32 Sn3 4n2 

(n 2 5) • 

This, together with (2.18) and (2.19), shows that 

I 1 

(2.23) J I fL(Xtt)dt1dX ::;;; ------
320n4 

o 0 

(n = 2,3,4, ••• ) , 

and the equality sign holds if and only if n = 2. 
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2.4. Now we can state our definite result. Taking into account formula (2.2), 

together with (2.15) and (2.23), one has the following theorem, which is an 

improvement of Atkinson's result as formulated on p. 21. 

THEOREM 5 Let f € C4[0,lJ and let the nodes x. (i = O,I, ••• ,n) be equally 
~ 

spaced on [O,IJ. If the weights w. are defined by (1.17), then for 
~ 

n = 2,3, ••• 

(2.24) 

I 

ff(X)dX 
o 

n 
I w. 

i=O ~ 
£.1 ~ _1- If"(O) + f"(1) I + --
~ 40n3 320n4 

with llf(4) II = max If(4) (x) I. In this inequality the constants 
O~x~1 

I 
40 = 0.025 

and 
1 

320 = 0.003125 

are best possible. 

PROOF Only the last assertion needs to be verified. This will be done by 

choosing two extremal functions f 1 and f2 having the property that II f ~4)1I = 0 

and fZ(O) + f2(1) = O. In fact, fl can be set equal to x3 on [O,IJ. Applying 

the numerical integration formula (1.15) we obviously have 

and it is a consequence of (2.15) that Icol = __ 1 __ when n = 3. So the 
40n3 

constant !o in (2.24) cannot be replaced by any smaller number. 

It is also easy to show that the constant 3~0 in (2.24) is best 

possible. For this purpose take n = 2 and consider the function f2 on [O,IJ, 

defined by f 2 (x) = ~4 (x4 - 2x3). Then fZ(O) + f 2(1) = 0 and f~4)(x) = I. 

Because of this and the fact that for n = 2 the right-hand side of (2.4) is 

non-negative on [O,]J (cf. p. 28), it follows from (1.15) and (2.17) that we 

have 

~ 1 
l.. w. f 2 (x.) = ------

i=O 1. 1. 320.24 

This proves our assertion. • 
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REMARK If fl1(O) + fl1(1) ~ 0, then the first two terms in the right-hand 

side of formula (1.15) behave like _1_ as n +~; this is a consequence of 

(2.15). Using 
1 order than -
n4 

n 3 

(2.7) and theorem 4 it can also be shown that no greater an 

is possible for the last term in (I.I5). We omit the details. 
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