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Nieuw Archief voor Wiskunde (3), XI, 142-161 (1963)

ENUMERATIVE COMBINATORIAL PROBLEMS
CONCERNING STRUCTURES

BY

N. G. DE BRUIJN

1. Introduction. Before we state the main theme of this paper,
we present the definition of the cycle index of a permutation group
and we describe a typical special case of Pélya’s famous counting
theorem connected with it.

Let D be a finite set with # elements. If g is any permutation
of D then g splits into cycles; let 5;(g) be the number of cycles of
length § (whence Y 7b;(¢) = #). Let G be a group of permutations
of D; |G| denotes the order of the group. Let y1, y2, y3, ... be vari-
ables. To each element g e G we associate a product y,2@ @ ...
(we do not bother to write down the last factor in the product, for
wemay adopt the convention that an infinite product yz+1%y 120 ..
represents unity). The “cycle index” (or “‘cycle index polynomial”)
is the average of these products:

PG(}’L V2, V3, ) — |G|“1 EgeG ylbl(g)yzbz(g)y?}bs(g)”‘_ (1‘1)

It is obviously a polynomial of finite degree in a finite number of
variables. We now describe a special case of Pélya’s theorem (see
PoLyA [7], and, for generalizations, DE Bruijn [1, 2]). We con-
sider mappings f of D into a set R. Two of these, f; and fs, are
called equivalent if there is a g € G such that f1g = f2. An equiva-
lence class of mappings is called a mapping pattern. Then Pdlya’s
theorem states that the number of patterns is

Pg(m, m, m, ...), (1.2)

where m is the number of elements of R.

It seems that so far most applications of (1.2) were made with
isolated cases, using only one group at a time, and that hardly any
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attempt was made to do something with a whole class of groups.
This is connected with the fact that there are not many classes of
groups for which we posses something like a catalogue of the cycle
indexes. It is the object of the present paper to establish that there

are cases where we have a sequence of groups Gi, ..., Gy, where the
sum .
Ny Pg(m,m,m, ...) (1.3)
has a combinatorial significance, and where the sum
Ulys, y2, ...) = 3N Pg(y, v, -..) (1.4)

can be evaluated more or less successfully. In fact U(m, m, m, ...)
has a combinatorial meaning which is similar to the one of (1.2), so
U plays the same role as the cycle index of a permutation group.
We shall call it the U-polynomial.

We give here a brief description of one of the typical examples.
Let I'y, ..., I'y be the different (i.e. pairwise non-isomorphic) graphs
with # nodes and % edges, and let G; be the automorphism group of
I'y. Then, Pg (m,m,m, ...) represents, by Pélya’s theorem, the
number of essentially different ways to colour the nodes of I, if
the colours have to be chosen from a given set of m colours. Hence
(1.3), that is U(m, m, m, ...), is the number of different m-coloured
graphs with # nodes and % edges. Similarly it will be established
that U(0,2,0, 2, ...) is the number of symmetrically bicoloured
graphs with # nodes and % edges. These two examples may suffice
to show the combinatorial significance of U(yi, yg, ...). It is, of
course, only a matter of orderly administration to multiply this
expression by w7z% (z and w are independent variables) and to sum
for #» and k. This produces a generating function U(w, z; v1, y2, ...)
which gives the answer to many combinatorial questions concerning
the set of all graphs.

In these ideas, the notion of a graph can be replaced by any other
class of structures on finite sets, and for a number of them (see
secs. 3 and 4) we get quite simple expressions for the U-polynomial
or for its generating function. :

In sec. 5 we consider pairs of structures. As in particular a
colouring of a set may be considered as a structure on that set, a
coloured structure is, in fact, already a structure pair.

Notation. If D and R are sets, then the set of all mappings of D
into R is denoted by RP. If d € D, f € RP, then the image of d under
the mapping / is indicated sometimes by f(d), sometimes by fd. If
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D,R,S, T aresets,if fe RD, ge ST, andif R C T, then the compo-
sition gf is the mapping of D into S, defined as follows: (gf}(d) =
= g{f(d)} for all deD. If A and B are sets, then 4 X B is the
cartesian product, i.e. the set of all pairs (@, d)(ac 4,0 B). If D
is a finite set, then |D| represents the number of elements of D.

2. Structures on a finite set. We shall not define here explicitly
what we mean by the word “‘structure”. We shall only assume that
there is a set of things which are called “‘structures” and which are
permuted in a certain way. .

Let D be a finite set, to be called the base set. Let G be a group
of permutations of D. Let S be a finite set, the elements of which are
called structures, or in particular, structures on D. Finally we assume
that we have a representation ¢ of G as permutations of S. That is,
to each ge G there corresponds a permutation o(g) of S, and
o(g1) o(g2) = o(g1g2) for all g1, g2 € G. Throughout this section, the
symbols D, G, S, ¢ will keep this fixed meaning.

Two elements s1, sz of S are called ésomorphic if thereisa geG
such that o(g)s1 = se. Isomorphism is an equivalence relation; the
equivalence classes are called structure classes. If ge G and se€ S
are such that o(g)s = s, then g is called an awutomorphism ot s. These
g form a group Hj, called the automorphism group of s.

If two elements of S are isomorphic, then their automorphism
groups are conjugated: if o(h)s = s, then o(ghg—t) = o(g) o(h) o(g) 2
leaves o(g)s invariant, whence Hs(g)s = gHsg1. It follows that H
and Hg(g)s have the same cycle index. So if K is a structure class,
we can define

Zg(y1, ¥2, ---) = Pr{y1, y2, -..), (2.1)

where H is the automorphism group of any arbitrary structure of
the class. And we define

U(yi, y2. ...) = Sk Zg(y1, y2, -..), (2.2)

where the sum runs over all possible classes of S. Since D and S
are finite, U is a polynomial; it will be referred to as the U-
polynomial of S.

We first explain the combinatorial significance of U. We take a
third finite set R, the elements of which we shall refer to as colours.
And we consider pairs (s, /), where s € S, f € RD (i.e. f is a mapping
of D into R, i.e. a colouring of D). These pairs (s, f) will be called
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coloured structures (although it is the base set D that is coloured,
and not the structure).

The set of coloured structures may be considered as a new set S*
ol structures, as we can introduce a representation ¢* of G as
permutations of S*. If g € G, we define ¢*(g) by

o*(g) (s, f) = (o(g)s, feH)  (seS,feRD).

For example, if S is the set of all possible graphs whose set of nodes
is D, then the coloured structures are graphs with coloured nodes.
If s is a graph, and g a permutation of D, then we define o(g)s as the
graph in which 4; and d3 are connected if and only if g~1(d;) and
g~1(d2) are connected in the original graph s. Further, if s* is a
colouring of s, then o*(g)s is the colouring of o(g)s obtained by
giving each 4 the colour that g—14 had in the original coloured
graph s*. Another point of view, which we shall not adopt here,
however, is that ¢*(g) does nothing to the graph and nothing to
the colours but that it only changes the names of the elements of D.

Returning to our general structure, we again introduce equiva-
lence classes, this time in the set of coloured structures. Two
coloured structures s;*, sp* will be called isomorphic if there is a
g € G such that o*(g)s1™ = s2*. Again, this is a equivalence relation;
for the equivalence classes we shall use the name coloured structure
patterns.

Following Pélya’s theorem, with the terminology of [3], we attach
a weight w(r) to each colour (the weights may be numbers, or vari-
ables, or, more generally, the weights may be elements of some
commutative ring which is, at the same time, a vector space over
the rationals). To each colouring f € RP we attach as weight

W(f) = Ilaep @(/(@)), (2.3)

and, if F is a coloured structure pattern, we may define its weight
W(F) by taking any arbitrary pair (s, f) € F and putting W(F) =
= W{(f) (the weight does not depend on the structure, but only on
the colouring). We want to express the sum of the weights of the
- coloured structure patterns, and that is achieved by theorem 1.
Theorem 1. Xp W(F) = U(Z,cr @), Z,ep @(#)2,...).
Corollary. In particular, by choosing w(r) = 1 for all 7, we obtain
that the number of coloured structure patterns equals U(|R|, |R|,
IR|, ...) (|R| is the number of colours). Again taking a special case,
viz. |R| = 1, we infer that the total number of structure classes
equals U(1, 1, 1, ...).
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Prooj. 1f (s, f) is a coloured structure, and if s; is isomorphic with
s, then there is an f; such that (s, ) and (s1, f1) are isomorphic. And
if s1 is not isomorphic with s, there is no such f;. So in order to
enumerate all F it suffices to select a single s from each structure
class K, and to investigate the pairs (s, /). We notice that (s, /1) and
(s, f2) are isomorphic if and only if there is a g€ H;s such that
f1 = feg. So the relation between f; and f is exactly the equiva-
lence relation considered in Pélya’s theorem, and we observe a one-
to-one correspondence between the coloured structure patterns
(with fixed s) and Polya’s mapping patterns (see sec. 1). Pélya’s
theorem gives for the sum of the weights

PHs(zreR w(r), Zper (@ ()% Zier (w(y))g) cee)
(the special case that all weights are 1 was mentioned in (1.2)).
So far we had the contribution of a single s. We have to take one
s from each class K and to carry out summation over all classes. So
by (2.1) and (2.2) the theorem follows.

It is quite easy to transform U into an expression which makes
no reference to equivalences, nor to automorphism groups. If g is
any element of G, we define

) V(g) = [{slofg)s = s} 1. (24)
that is, V(g) is the number of structures which are invariant under
o(g). With this notation we can state

Theorem 2. We have

U(y'l’ ye, Vs, ) = }Gl_l EQEG V(g) y1b1(g)y2bz(g)_“,

where b;(g) denotes (as in sec. 1) the number of cycles of g with
length 7.

Proof. We fix our attention to a special structure class K. We
notice that for all se K the automorphism group Hs has the same
cycle index, viz. Zg (see (2.1)), that all Hs (s € K) have the same
order, and that, for all s € K, the quotient |G|/|H;| represents the
number of elements in K. Therefore

Zg = |Hs|. |G|t Zsex P,

Applying the definition (1.1) we find
ZK - !G|_1 ZSEK 2_(]EI—I.; lzb(g)’

$g) = 1Dy 0. , (2.5)

where
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In other words, Zg = |G|~ s 35 #(g), where the summation runs
over all pairs (s, g) with s e K, ge G, o(g)s = s. Carrying out sum-
mation with respect to K, we obtain that :

U =Xk Zg = |G 5 S5 h(g);

where the summation is now restricted by s S, ge G, o(g)s = 5.
If g is fixed, the number of possible s equals V(g), so our proof is
complete. :

We close this section by indicating an application of the poly—
nomial U that is not a direct consequence of Pélya’s theorem. We
take a set of two colours. A structure s is said to be symmetrically
bicoloured if there is an automorphism of the structure that inter-
changes the colours, i.e. if there is a g€ Hy such that fg=1 = pf,
where p is the permutation that interchanges the two elements of
R. If in a coloured structure the colouring has this symmetry,
then the same is true for all coloured structures of the same coloured
structure pattern, and we may call the pattern a symmetrically bi-
coloured structuve pattern. '

Theorem 3. The number of symmetrically bicoloured structure
patterns equals U(0, 2,0, 2,0, 2, ...).

Proof. As in the proof of theorem 1, we have to select a single s
from each structure class K, and to count the number of symmetric
bicolourings of s. According to [2] (or to sec. 4 of the present paper)
the number of symmetric bicolourings of a set (symmetry being
defined by a permutation group H) equals Pg(0, 2,0, 2, ...). In our
case we. have to take for the group H the automorphism group Hs,
whence the number of symmetric bicolourings of the structure s
equals Zg(0, 2,0, 2, ...). Now taking the sum over all classes K,
the theorem follows.: B .

A generalization of theorem 3 can be obtained from a result of
sec. 4 (see (4.4)). We take a set R of colours, and a permutation $
of R. For j = 1,2, 3, ..., let 4; denote the number of elements 7 of
R with pf7 = 7. Then the number of coloured structure patterns
which are not.affected by the colour permutation p, equals
U(21, A2, A3, ...). In the case that R contains oﬁly two colours,
and p interchanges these, we have ;i =3 =45 = ... =0, A2 =
=4 = = 2, and we get theorem 3. In the case that R contains
any number of colours, and p is the 1dent1ty, we get the corollary
of theorem 1. ' T
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3. Examples with symmetric group G. In each example we take
for S the set of all structures of a given type, and G is always the
full symmetric group of D. The number of elements of D is called
#. In all examples of this section the U-polynomial will depend on
n, and will be interpreted as the coefficient of w” in a generating
function

Uw; y1, y2, ...) = 25 wUnp(y1, ve, ...)- (3.1)

(i) “Trivial” structures. Having the trivial structure on D means
that D is considered as just a set. Or, rather, the set S consists of
only one element, and the representation ¢ can be only the trivial
one. So there is only one structure class, and the automorphism
group of the one element in that class is G itself. So U(yy, ys, ...) =
= P¢(y1, ¥z, -..). As G is the symmetric group of degree #, we know
(see [7, 2]) that (3.1) equals

Uw; y1, y2, ...) = exp (y1w + 3yaw? + 3yswd + ...).

(i) Mappings into a fixed set. Let R be a fixed finite set. We take
S = RD, so the structures are the mappings of D into R. The
representation ¢ is defined as follows: for each g € G, s € S we have

o(g)s = sg1. So the structure classes are just the mapping patterns,
or colour patterns, of sec. 1. We claim that

Uw; y1, v, ...) = exp (ry1w -+ $rysw? 4 Iryswd - ...}, (3.2)
where 7 stands for the number of elements of R. This can be ob-
tained from theorem 2. We suppress the derivation, since (3.2) does
not lead to new results. We have to bear in mind that colouring the
structures with a colour set R1 means the same thing as colouring
D itself with a colour set R X Rj, so that the number of coloured
structures can be obtained directly from Pélya’s theorem.

(iil) Ordered couplings. An ordered coupling of a set D is a set of
pairs (di, do) of elements of D, such that each element occurs
exactly once in a pair. This can only happen, of course, if # is even.
An alternative definition of an ordered coupling is: a one-to-one
mapping of a subset of D onto its complement. The natural defi-
nition of the representation o is obtained by requiring that if
(41, d2) occurs in the coupling s, then (gdi, gdo) occurs in the
coupling o{g)s.

For this type of structure, the generating function contains even
powers of w only. We can show that

Uw; y1, ¥, ...) = exp (y120? + $y22wt + Lys2wb 4 ...), (3.3)
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but we again suppress the proof, as (3.3) does not lead to new re-
sults. For colouring an ordered couple with colours taken from the
colour set R, can also be described as colouring the first component
of the couple with a colour taken from the set R X R.

(iv) Permutations. Let S be the set of all permutations of D. If
s€S, ge G, we define o(g)s == gsg~1 (so if s carries & into d’, then
o(g)s carries gd into gd'). We shall show that, in this case

Uw;y1,ye, ...) = {(1 — y1@)(l — yaw?)(l — ysw3)...}71. (3.4
Notice that the number of structure classes on D is equal to the
number of partitions of #, and, indeed, (3.4) produces the well-
known generating function for these partition numbers by setting
Vi=Y2 = ... = 1.

We prove (3.4) by application of theorem 2. According to the
definition of o, the number V{(g) (see (2.4)) equals the number of s
with gs = sg. The permutations commuting with g map cycles of g
into cycles of the same length. If g has &1 cycles of length 1, bg of
length 2, etc., then there are b1! ba! b3! ... possibilities for mapping
the set of cycles onto itself by mappings that preserve the length
of the cycles. And from each one of these mappings we obtain
2b23%s_.. possibilities for s. So

V(g) == by! 171hyl 23! 3%....

We have b1 + 2b2 + ... = #, and the number of g € G correspond-
ing to this sequence by, by, ... equals
nlf{by! 12bg! 2%} (3.5)

Now applying theorem 2 we find that U(yy, vs, ...) equals the coef-
ficient of w® in the product

(S, 910"} (T, v ..,
and (3.4) follows.

(v) Cyclic arrangements. A cyclic arrangement of D is the same
thing as a cyclic permutation of D. For this type of structure we
get, using the same o as in the previous example,

() L

U 5 ’ 3 esn) T Oi . 1 PRE)
(w; y1, y2, -..) P ¥ Ogl__ij]

where ¢ denotes Euler’s function. This can be obtained by appli-
cation of theorem 2, but also directly from the definition (1.4):
notice that D has only one class of cyclic arrangements, and that
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the automorphism group of D is just the cyclic group of order #,
whose cycle index is
w7t Bgin (7)Y,

(vi) Nestings. A nesting of D is a finite decreasing sequence of
non-empty subsets of D, starting with D itself. (““decreasing” means
that of any two consecutive sets in the sequence the latter is a
proper subset of the former). If g€ G and if s is a nesting, then
o(g)s is defined as the nesting whose subsets are obtained from
those of s upon transformation by g.

A nesting can also be described by looking at the differences of
the consecutive nested sets. If we number these differences 1, 2, 3,
..., we get what can be called a “labeled partition”, or a “prefer-
ential arrangement” (see [4]).

We want to determine V(g), i.e. the number of nestings invariant
under o(g). A nesting is invariant under o(g) if and only if for each
cycle of g and for each set of the nesting sequence it is true that
either the cycle is part of the set or the cycle and the set are -dis-
joint. It follows that the number of invariant nestings equals the

__total number of nestings of a set with m elements, where m is the
number of cycles of g. Obviously m = b1(g) + ba(g) -+ bs(g) 4 ....
Denoting this total number of nestings by ¢, and putting ¢ = 1,
it is easy to derive the recurrence relation

& = EO§M<v (;)QN’ (’V > O)’
from which we obtain the generating function
Soro ! = (2 —e®)7l =1 4 x 4 342 4 1343 L

Hence the number of nestings invariant under o(g) can be repre-
sented as the value of

A N\@ 7 g \b@)
(7) <d_> e (2= e

at x = 0. Applying (3.5) and theorem 2, we obtain that U(yy, ys, ...)
equals the coefficient of w? of

o l yiw 4\ oo 1 yow? d \°
21;1:071,*( —“> sz:o_b;!_ R e T V)

1 dx 2 dx

at x = 0. Now Taylor’s formula

fexp (a dJdx)}f(x) = 1 + @)
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leads to the final result

2 3 -1
Ulw; v1, y2, ...) = 1{2 — exp (ylw -+ yziw + ysjﬂ - )l .
1 2 3 /}

We can also split this expansion according to the length of the

sequence of sets involved in the nesting. Let g,, denote the number

of nestings of length A, constructed in a set of » elements, and put

0u(2) = XA quiz*, (v >1), Qo(2) = 1. Then it is not difficult to
derive a recurrence for Qy(z), viz.

O(z) = 2 Bp<per (1)Qul?),
and we derive

32 o On(@)wrfr! = {1 — z(e® — 1)} L

As above, we can substitute x = y1w + ¥y2w? + ... in order to
get the corresponding result for U(w; y1, ¥2, ...).

(vii) Graphs. We consider graphs without loops and without
double connections, with D as the set of nodes. And ¢ is defined
in the obvious way: if s is one of the graphs, and if g€ G, then
a(g)s is the graph in which dy, da are connected if and only if g~1dy,
g 1ds are connected in s.

We split our set of structures according to the number of nodes
as well as to the number of edges. Let Sy; be the set of all graphs
with # nodes and j edges. Its U-polynomial is denoted by
Uani(¥1, y2, ...)- Accordingly, Va;(g) denotes the number of graphs
with # nodes and § edges which are invariant under o(g). As G is
the symmetric group, Vg;(g) only depends on the cycle structure
of g, i.e. on by, be, bs, ... (where b; = by(g)). We may write Vy;(g) =
= Vj(b1, b, b3, ...); we need not indicate # on the right-hand side,
since # depends on the b’s: # = by + 2bg + 3b3 + .... The number
of g having these &’s is expressed by (3.5).

We build the generating function

Ulw, z; y1, v, ...) = X Djeo W Uni(y1, V2, ---)- (3.6)

From theorem 2 we deduce the following result: U(w, 2; 1, ¥2, --+)
is obtained by expanding

exp (y1w + byzw? + fyswd + ...)

in terms of powers of y1, Vg, ¥s, ..., and multiplying each term
y1?'y9b%... by the factor

V(Z; bl, bz, ) =, 2;20 ZjVj(bl, bz, bg, ) (37)
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(needless to say, V; == O from a certain § onward, as thé number of
edges cannot exceed §(n2 — n)).

Using the notation (%, m) for the greatest common divisor of %
and m, we shall show that

Vi(z; b1, bg, ...) = 12 TIS5_, (1 + zhme,m))2le,mbebm

1 27)2 ] 20y

Y R g 1) Rkl ST
In order to prove this, we take a special permutation g of G, with
b1(g) = b1, ba(g) == ba, etc. We want to count the number of graphs
(with D as the set of nodes) which are invariant under o(g), or,
rather, we want to have the sum of the weights of those graphs,
where each graph has the weight wj, if 7 is the number of edges.
Such graphs can be found by superposition of a number of possibly
simpler graphs which we call primitive: a primitive graph is ob-
tained by choosing a single edge and constructing the graph whose
edges are just all edges obtained from this special one by repeated
application of g. We want to evaluate the primitive graph inven-
tory, i.e. the sum of the weights of all primitive graphs (we still
keep g fixed).

First, we have primitive graphs arising from a connection be-
tween two different cycles, one of length % and one of length m
(k and m are not necessarily different). Once these cycles have been
fixed, it is easy to see that there are still (%, m) primitive graphs
possible, and that each one of these has Am/(k, m) edges. Their
contribution to the inventory is (&, m)zkm/(k,m) This was for one
single pair of cycles; if we take the sum over all pairs we obtain

3 Zit1 Zoe brbm(k, m)zbmiEm — L 30 bykz (3.9)

(the subtracted sum arises from the fact that connections within a
cycle were excluded for the moment).

Secondly, we consider the remaining primitive graphs, e.g. those
arising from a connection between two different points of one and
the same cycle. If the cycle has length %, and if % is odd, then there
are (k& — 1) such primitive graphs, and they all have % edges; if 2
is even there are & — | primitive graphs with % edges, and a single
primitive graph with {£ edges. So the contribution to the inventory
is #(8 — 1)z* if & is odd, and (}& — 1)zF -+ 2*% if £ is even. Taking
the sum over all cycles, we find

B 5k — 1)bwz® + g2 bey(ar — §2%). (3.10)
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Adding (3.9) and (3.10) we find the primitive graph inventory

LS 0 By Dabm(k, m)sEm B m — 3 byl
‘ 4 3R bop(ar — 2%7). (3.11)

Notice that (3.11) is a power series in z with non-negative coei-
ficients. If we wish, we can write it as

50 cnit, (3.12)
where cj is the number of primitive graphs with 4 edges.
- Returning to the question of a// graphs invariant under g, we
notice that an arbitrary graph of that type is obtained by taking
any subset of the set of primitive graphs, and constructing the
superposition of the primitive graphs belonging to that subset. It
follows that the inventory of the set of all graphs invariant under g
(this inventory is V(z; b1, bs, ...), by definition} equals

I, (1 + 2. (3.13)

Finally remarking that (3.12) is an abbreviation for (3.11), we
can rewrite (3.13) as the right-hand side of (3.8).

There are some modifications of our problem which can be dealt
with in the same fashion. For example, we might admit loops in
our graphs (at most one loop at each node). This would have added
the sum X$3.; bxz% to the primitive graph inventory, and that
would have resulted in replacing, in (3.8), the second factor

T, (1 + 28)7¥ by [T (1 + k)i,

Another modification is obtained by admitting multiple connections
between nodes. In that case, we have to replace (3.13) by

' T2, (1 4 2 4 220 ),
and than the expression for V{(z; b1, bg, ...) is altered accordingly.

Our method can also be applied, for instance, to oriented graphs
(digraphs), or to trees.

As pointed out in the introduction, Ug;(1, 1, 1, ...) represents the
total number of “different’” graphs with # nodes and § edges. This
number was also determined by HARARY [5]. And Uy4(2, 2, 2, ...) is
the number of bicoloured graphs (i.e. bicoloured structure patterns),
which was also evaluated in a different way by HArary [6].
Uw(0, 2,0, 2, ...) is the number of symmetrically bicoloured graphs,
ete.
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4. Examples with a general group G. We again take a finite set D,
and a permutation group G of D, which is, in contrast to the
previous section, not necessarily the symmetric group.

(viii) TH-structures. Let T be another finite set, and let H be a
group of permutations of 7. If both f; and fs are mappings of T
into D, then they are called equivalent if and only if /; = foh for
some k€ H. The equivalence classes defined by this equivalence
will be called TH-structures. If f e D7, then the TH-structure to
which f belongs can be denoted by fH; if f; and f2 are equivalent
we have f1H = foH.

The representation ¢ will be defined as follows: if g € G, then
o(g) maps the class fH onto gfH.

We shall show that for the set of all TH-structures the U-
polynomial U(y1, y2, ¥3, ...) is equal to

PH<§, %) “'>PG(y1621+zz+za+.-.} ygedlEtaatant )
1 2
y3e3(2‘s+ze+zs+m) ) (41)

(evaluated at z; = 22 = ... = 0). In order to prove this, we apply
theorem 2, so for any g € G we have to determine V(g), i.e. the
number of T H-structures invariant under o(g). Obviously V(g) is
equal to the number of equivalence classes which entirely consist
of functions f satisfying gf € fH.

For determining the number of equivalence classes, we first use a
device that was applied in Burnside’s lemma ([3], sec. 145, theorem
viii): the number of classes is ¥} {Q(f)}~1, where the asterisk indi-
cates that we only take those } for which gf € fH, and Q(f) is the
number of elements in the equivalence class to which f belongs. We
have Q(f) = |H|/|Hy|, where Hy is the group of all # with /4 = §,
since the left cosets of Hy can be brought into 1-1-correspondence
with the elements of the equivalence class of f. So

V(g) = X} [Hyl/IH|.

If f has the property that gf € fH, there are exactly |Hy| elements
h e H with gf == fh; if f does not have the property there are none.
It follows that

V(g) = [H|™! Xy (number of f € DT with gf = fA). (4.2)

Ti’liS number-of f with gf == f# only depends on the cycle repre-
sentation of g and 4. Denoting b;(g) by b;, b;(h) by c¢;, the number of
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f with gf = fh can be shown to be (see [2])
b1 (b1 + 2b9)2(b1 + 363)83(61 A 2by + 4b4)% ... =

a \01 a \62 .
= (3_11 ) <Aéz_2) ... €Xp {Z;ll ﬂ)j(Zj -+ 225 + Z3j + )}, (4.3)
evaluated at z; = 2o = ... == 0. Taking the sum over all 42 € H, and
dividing by |H|, we get V(g). In order to get U(yy, y2, ...) we apply
theorem 2, and that produces (4.1).

The special case y; = y2 = ... = 1in (4.2) reproduces a result of
[1,2]. For, U(1, 1, 1, ...) is nothing but the number of structure
classes, and these structure classes can also be interpreted as
follows: consider in DT the stronger equivalence defined by:
fi ~fo if and only if f; € Gf2H. For the number of these classes
we obtained ([1, 2]) the expression (4.1) with y; = yp == yg = ... == 1.

We remark that our above computation of V(g) gives a direct
proot for the result on symmetric bicolourings that we used in the
proof of theorem 3. For, according to the left-hand side of (4.3), we
have:

V(g) = Pu(Xen ths, Sz ths, eia ths, ...). (4.4)

The expression on the right occurred in [1], without the present
interpretation, however. The result Py(0, 2, 0, 2, ...) for symmetric
bicolourings arises from (4.4) by taking for D a set of two elements,
and for g the permutation that interchanges those two; in that case
we have b1 == 0, bg = 1, bg == by = ... = O.

Notice that the entries X5 fc; admit a direct interpretation: for
each j it is the number of elements of D which are invariant under
g '

As a further application of (4.4), we ask for the number of ways
to colour the six faces of a cube with colours red, white and blue,
in such a way that the cyclic permutation red — white, white —
blue, blue — red, does not alter the colour scheme essentially
(“essentially”” means: but for rotations of the cube). Now g is the
cychc permutation of 3 elements, so b3 = 1, by == by == by = by =
= ... == 0, and the required number is

Px(0,0,3,0,0,3,...).

As Py = (v1® + 6y12y4 3y12y2 +6y93 8y3 )/24 our result is
8.32/24 = 3. - '
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A further question is, in how many ways we can colour the six
faces with red, white and blue in such a way that red and blue can
be interchanged without altering the colour scheme essentially. In
that case we have b1 = 1, bg = 1, bg = by = ... = 0, whence the
required number is Px(1, 3, 1, 3, ...) = 9. These nine solutions are
easily obtained experimentally: one is all-white; two have one red
and one blue face, four have two red and two blue faces, and two
have three red and three blue faces.

We next show that our notion of TH-structures is sufficiently
general for the simulation of all possible (D, G, S, o) situations of
sec. 2, if we exclude the case that D has only one element. To be
precise: let D and G be given (G is any group of permutations of D),
ID| > 1, let So be a set of structures, and let o be some repre-
sentation of G by permutations of So. We shall construct an exact
copy (D, G, Si1, o1) of the situation (D, G, Sp, go), where S1 is a
subset of the set of all 7H-structures (with a suitable set 7" and
a suitable group H of permutations of T), and o1 is essentially the
standard representation of G by permutations of S1. Needless to
say, S has to have the property that if it contains a class fH then
it contains the class gfH, for each ge G; and o; is defined by
o1(¢)(fH) = gfH. By saying that (D, G, S1, 61) is an exact copy of
(D, G, So, 60), we mean that there is a 1-1 mapping # of S; onto S
such that Jo1(g) = oo(g)y for all g e G.

The construction is as follows. We start from our equivalence in
So (s and s’ are equivalent if and only if there is a ge G with
oo(g)s = s’. Let X1, ..., Xm be the equivalence classes (i.e. the
structure classes), and select an element s; from each ;. The
automorphism group of s; (i.e. the group of all 2 € G with oo(k)s; =
= ;) is denoted by H;. We now define T and H by

T =D X ... X D (mfactors), H= H1 X ... X Hy,
the elements of H acting on T as indicated by
(h1, ooy ) (@1, -, Bm) = (Pada, ..., hmdm) (ks € Hy, dy € D).
We next consider the mapping f1 of T onto D, defined by
fild, ..., dn) = dy,

and similarly we define fg, ..., fm- And we consider the set Sy of all
those TH-structures which can be written in the form gf;H (g € G,
7 = 1, ..., m). This set has obviously the property that if it contains
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a class /H, then it contains the class gfH, for each g € G. We shall
define the mapping ¢ of S1 onto S by

H(efsH) = oo(g)ss, (4.5)
but we have to show first that this definition is unambiguous. As-
sume that gf;H represents the same T H-structure as g'/¢H. Then
there is an element Ae H (we put % = (b, ..., hy)) such that
gf; = g'fih. An arbitrary element (dy, ..., dy) of T is mapped by
gf; onto gd;, and by g'fih onto

g'fi(h]_(il, ceey hmdm) = g'hzdz

So g, g, ki, © and § are such that gd; = g'/d; for all possible (dy, ...,
dm). This implies that d; is uniquely determined by d;; since |D| > 1
it follows that ¢ =4. Moreover, g = g'4;; as h;e H; we have
o6(h;)s; = s;. Therefore

ao(g)s; = 00(g)si = oo(g'hi)si = oo(g’)o(ls)s: = vo(g’)s:.
This means that (4.5) gives for (gf;H) the same result as for
S(g'fiH), so ¢ has been defined unambiguously.

Next we show that the mapping ¢ is one-to-one. Assume that -
g, &, 7, j are such that oo(g)s; = oo(g’)si. Then s; and s; are equiva-
lent, whence ¢ =j. And we infer that oo(g’'~1g)s; = s;, whence
g'~lg e H; We define h = (hq, ..., hp) by taking &y to be the identy
if 2 5 ¢, and %; = g'~1g. Now we have, for all (dy, ..., dm),

glih(dy, ..., dm) = g'hids,

gfi(d, .., dm) = gdy,
and as g'ld; = gd;, we infer that gfi4 and gf; represent the same
mapping. So ¢ is one-to-one.

It is obvious that ¢ maps Sy onto So, for each s € Sy belongs to
one of the X;, whence it has the form oy(g)s;, i.e. the form of the
right-hand side of (4.5).

Finally it is easy to show that $o1(g) = oo(g)y for all g € G. For,
the definitions of o1 (by o1(g)(fH) = gfH) and ¢ (by (4.5)) imply,
for all ge G and all g1 € G,

po1(g)(g1/'sH) = h(gg1/H) = oo(gg1)s; = oo(g)oo(g1)s; = oo(g)(g1/7H).

The above construction fails in the trivial case that D has only
one element. Indeed, if |D| =1, |So| > I, simulation by TH-
structures is impossible: if T and H are given, there is only one
mapping of T into D, in this case, so there is only one T H-structure,
and we cannot simulate Sp.
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(ix) Colourings. We take a set R of colours, and the structures
to be considered in this example are just the colourings of D with
colours from R, i.e. S = RP. And, for ge G, we define o(g) by
o(g)f = fgt (f e RD). This is the same situation as in example ii
(sec. 3), this time without restriction to the symmetric group and
without summation with respect to #. It is not difficult to obtain
(for example by theorem 2) that in this case we have

Va(g) = |R|P@+b@+ .
Ulys, ya, -..) = Pe(IRlys, |Rlyz, ...).

In particular we can take for R a set of two elements, and then the
J € RP can be interpreted as subsets of D. '

(x) Colourings with colour indifference. We again take a colour
set R, but this time we also take a permutation group of R; this
group will be denoted by L. Two colourings f1, f2 will be called
equivalent if there is an / € L with f; = /fs. The equivalence classes
defined by this equivalence will be our structures; they can be
represented as left classes Lf.

The representation o will be defined as follows: if ge G, then
o(g) maps the class Lf into Lfg~1. These definitions of S and o are
very similar to those involved in the T H-patterns of example viii.

For the U-polynomial belonging to our present structures we shall
derive the expression

Pg<y1 _8__, o i’ .“>PL(821+22+.--’62(22+Z4+...)’ 63(Z3+ze+.h.), ), (4‘6)
021 073 i
again evaluated at the point 2; = 22 = ... = 0. This result strongly

resembles (4.1), and the derivation will follow the same lines.

For each g e G, we have to determine V{g), i.e. the number of
classes Lf satisfying Lf = Lfg—1. This number of classes equals
S:{0(H}~1, where the asterisk indicates that we only take those
{ for which fg=1 e Lf, and Q(f) is the number of elements in the
equivalence class to which f belongs. We have Q(f) = |L|/|Ly|,
where Ly is the group of all / with If = f. So

V(g) = Z; ILsl/ILI.

If f satisfies fg~1 € Lf, then there are exactly |Ly| elements /e L
with fg—1 =/f; if f does not have that property there are none.
Therefore

Vig) = |L|! X, (number of f € RD with fg—1 == If).
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Denoting b;(g) by b;, bi(l) by ¢;, the number of f with fg=1 =If
becomes {cf. (4.3))

/8 \t/ o\ -
K*é;{) o) exp {352, fes(zs + 225 + 235 + ...)}
evaluated at 21 = 22 = ... = 0. In order to get U(yi, y2, ...), we
have to take the average over all [ € L, to multiply by y1”y2"...,
and to take the average over all g € G. That leads to (4.6).

If the group L consists of the identity only, Pr(¥1, %2, ...) reduces
to |R|, and (4.6) becomes Pg(|R|y1, |[R|y2, ...); this special case is
nothing but example (ix).

5. Pairs of structures. We consider a set D, with a permutation
group G, and fwo sets of structures, S1 and Sg. And we have repre-
sentations oy and o9 of G, as permutations of Sy and Ss, respectively.
We now form the set Sz = S1 X Sg of all pairs (si, s2) (s1€ 51,
sg € Sp), and the representation o3, defined by

o3(s1, S2) = (0151, 0252) (s1 € S1, s2 € Sa).

For each one of the three situations, Si, Sz, Ss we form the
polynomial U(y1, vs, ...) (see (1.4)); we indicate these by Ui, Us,
Us. And we denote by Vi(g) (=1, 2;3) the number of s€5;
which are invariant under oy(g).

According to the definition of o3, we observe that a pair (s1, S2)
is invariant under os(g) if and only if both oi(g)s1 = s1 and
o2(g)s2 = s2. Therefore

Vs(g) = Vi(e)Va(g)- (5-1)

The coloured structures of sec. 2 are obviously a special case of
these structure pairs. We get them by taking S; = S, Sz = RP (see
sec. 4, example (ix), S3 == S X RP. The number of coloured structure
patterns now means the same thing as the number of structure
classes in Sg, and that is just Us(l, 1, 1, ...). We have (see example

(ix)),
Va(g) = |R[P@+bs@ -

Now (4.1) reveals, in combination with theorem 2, that Us(l, 1, 1,
...), is obtained by substitution of y1 = |R|, y2 = |R], ... in Uiy,
ya, ...), so Us(l, 1,1, ...) = Ui(|R|, |R|, ...); and this is again the
result expressed in the corollary of theorem 1.
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Similar simple results can always be obtained in situations where
Va(g) only depends on bd1(g), b2(g), ... For example, if Sy is the set
of nestings (see sec. 3, example vi), we obtain

a a
Us(l, 1, 1, ... =IU1<—, —_— > (2 — e?)-1 .
s )= Ul 2 ) @ }0

And if S is the set of permutations (see sec. 3, example iv), it turns
out that

3L, L, L, "') Z > d 3 e
(1 1) ( 2) ( 3) e

where the right-hand side has to be taken at x; = x5 = ... = 0.

It G is the symmetric group of all permutations of D, then V(g)
(defined by (2.4)) depends on bi(g), b2(g), ... only. For, if geG,
g eG, big) =b(g') (1 =1,2,3,...), then there exists a permu-
tation 4 with Agh—1 = ¢’. As G is the symmetric group, we have
heG. So if o(g) leaves s invariant, then o(g’) leaves ks invariant,
and vice versa. It follows that V(g) = V(g’). Putting

V(g) = w(by, b, ...),
we have for the U-polynomial:
Ulyr, ya, -..) = (#1)7! Byeq V(g™ Pya@... =

= Y (b, b, ...)(B1! 17bg! 202, ) =1y brygbe
where the summation runs over all sets 83, b, ... with

b1 + 2bg 4+ ... = |D|.

Now returning to our structure pairs we notice that if G is the
symmetric group, then the U-polynomial for the structure pairs can
be obtained from the U-polynomials for the component structure
sets. If Uy, Us, Us are the U-polynomials for S, S, S1 X Sa, re-
spectively, and if

Uily, ye, ...) = X oy(b1, ba, ...)y1%y2"..., (t=12)
then for Uz we obtain a similar polynomial, with coefficients
ag(b1, be, ...) = ay1(by, b, ...)aa(b1, b, ...) (B! 170a! 2%2...).

Similar results can be derived for structure triples, quadruples, etc,
instead of pairs. This generalizes the Redfield-Read superposition




161

theorem (see [8, 9]). That theorem is obtained from the above
result by taking each structure set to consist of a single structure
class only (Whence the U’s become cycle indexes), and putting
Y1 =Yg = ... = ! in the final result.

(Received October 7, 1963)
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