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Abstract. Local feature matching is an essential component of many image re-
trieval algorithms. Euclidean and Mahalanobis distances are mostly used in or-
der to compare two feature vectors. The first distance does not give satisfactory
results in many cases and is inappropriate in the typical case where the compo-
nents of the feature vector are incommensurable, whereas the second one requires
training data. In this paper a stability based similarity measure (SBSM) is intro-
duced for feature vectors that are composed of arbitrary algebraic combinations
of image derivatives. Feature matching based on SBSM is shown to outperform
algorithms based on Euclidean and Mahalanobis distances, and does not require
any training.

1 Introduction

Local descriptors evaluated at certain interest points in scale space are widely used in
object-recognition and image retrieval due to their robustness under occlusion, certain
image transformations (rotation, zooming, up to some extent view point changes) and
distinctive power. First, the interest points should be localized in space and scale. There
is wide range of interest points [1],[2],[3], such as Harris points, Harris-Laplace regions,
Hessian-Laplace regions, DoG, Top-Points. The second step is to build a description
of the interest point, which should be discriminative and invariant to certain image
transformations.

There are many different techniques to describe local image properties. Mikolajczyk
and Schmid [4] compared several local descriptors, such as steerable filters, differential
invariants, moment invariants, complex filters, cross-correlation of different types of
interest points, and SIFT [1]. In this paper we focus only on differential type of descrip-
tors, particulary on improvements of discriminative power of descriptors by introducing
a sensible distance measure for such descriptors.

Our approach is applicable to any feature vector constructed from Gaussian deriva-
tives taken at the interest point and it shows improvement compared to Mahalanobis and
Euclidean distances. The proposed stability based similarity measure (SBSM) is based
on analysis of local structure at the interest point and therefore uses a more appropri-
ate covariance matrix than in case of the global Mahalanobis distance. The symmetry
property of a true distance function is lost, but this does not affect matching results.
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2 Feature Vectors

In this article we consider only differential features in scale-space, e.g. differential in-
variants proposed by Florack et al. [5] or steerable filters [6]. We collect local features
with the same base point in scale-space into a “feature vector”. Under perturbation
(noise, rotation, jpeg-compression and so on) every feature vector behaves differently,
depending on the local image structure at the interest point. Our intention is to take this
fact into account when comparing features.

Local image structure can be captured by the so-called local jet[7], i.e. a set of im-
age derivatives computed up to some order. As our features are differential descriptors
feature vectors can be expressed as functions on the local jet {u1, . . . , un} (for brevity,
we have indicated the various image derivatives by uk, k = 1, . . . , n), as follows

di = di(u1, . . . , un), i = 1 . . .m. (1)

So each feature vector has m components.
We construct the differential feature vectors in such a way that they are invariant to

certain transformations, notably, rotation, zooming and linear intensity changes. In the
experimental part we consider one particular set of differential invariants up to third
order, evaluated at a top-point of the image Laplacian �u, viz.
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One can show that this set is complete, in the sense that there exists no other third order
invariants (at a Laplacian top-point) that is independent of the entries of d, Eq. (2).
Another set, used for testing, is the set of steerable filters up to third order as described
by Freeman [6].

3 Distance Measure

The space of features is a vector space, but it is not obvious how to introduce a norm
because of the incommensurability of the components. Similarity between descriptors is
usually computed with either the Euclidean or the Mahalanobis distance measure. The
Euclidean distance does not make much sense in case of Eq. (2), and indeed performs
poorly in practice as we will illustrate in section 5. The Mahalanobis distance gives
better matching results but has 3 disadvantages, viz

– it requires a covariance matrix estimated from training data;
– performance results will depend on the training set used;
– it is a global measure, not optimally adapted to the local structure at any feature

point of interest.
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We propose a more generic measure similar to the Mahalanobis distance that obviates
training and takes into account the local structure at the feature points of interest. In
this case the covariance matrix is obtained directly from the differential structure at
each interest point. The matrix can be obtained in analytical form and reflects the actual
behavior of the descriptor due to small perturbations. In the next section we present the
details of this approach.

4 Feature Vector Perturbation

We use a perturbation approach for estimation of the covariance matrix for each feature
vector as alluded to in the previous section.

We generically model changes in the image due to rendering artifacts induced by
transformations, jpeg-compression effects and noise as additive random perturbations.
This distribution of the random value is assumed pixel to be the same for all pixels. Due
to linearity of scale-space the perturbed local jet in the point is

{v1, . . . , vn} = {u1, . . . , un} + {N1, . . . , Nn}, (3)

where the last term models the perturbation.
Let us rewrite Eq. (1) for the unperturbed image as

di = di(u) (4)

and for the perturbed image as
d̃i = d̃i(v) (5)

Then the difference between these two descriptors can be approximated by a Taylor
expansion of Eq. (5) around u up to first order:

Δdi = d̃i − di =
n∑

k=1

∂di

∂vk
|vk=uk

Nk (6)

Therefore, the approximate covariance matrix Σ is given by (〈Ni〉 is assumed to be
zero)

Σij =< ΔdiΔdj >=
n∑

k=1

n∑
l=1

∂di

∂vk
|vk=uk

∂dj

∂vl
|vl=ul

< NkNl > (7)

The only step left is to estimate this covariance matrix for the feature perturbation,
which is the subject of the next section.

4.1 Gaussian Correlated Noise

The momentum M2
mx,my,nx,ny

=< Nmx,myNnx,ny > of Gaussian derivatives of or-
ders (mx, my) and (nx, ny) of correlated noise in case the spatial noise correlation
distance τ is much smaller than scale t is given by [8]

M2
mx,my,nx,ny

�< N2 >
( τ

2t

) (
−1
4t

) 1
2 (mx+my+nx+ny)

Qmx+nxQmy+ny (8)

with Qk given by Table 1.
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Table 1. Some values of Qn (Qn=0 if n is odd)

n 0 2 4 6
Qn 1 1 3 15

Let us take the correlation kernel to be roughly of one pixel width corresponding to
τ = ε2/4, where ε denotes pixel size. For Gaussian derivatives of first and second order
we obtain the following correlation matrix:

C = (〈NiNj〉)ij =

⎛
⎜⎜⎜⎜⎝

4t 0 0 0 0
0 4t 0 0 0
0 0 3 0 1
0 0 0 1 0
0 0 1 0 3

⎞
⎟⎟⎟⎟⎠

ε2〈N2〉
(4t)3

, (9)

where (N1, . . . , N5) = (Nx, Ny, Nxx, Nxy, Nyy), and the matrix entries in Eq. (9) are
labeled accordingly. This correlation matrix together with Eq. (7) gives an approxima-
tion of the covariance matrix of each local feature vector for given perturbation variance
and pixel size.

4.2 Distance

We define the similarity between feature descriptors u and u0 in a similar way as the
well-known Mahalanobis distance, except that for every point u0 we insert its own
covariance matrix

ρ(u;u0) = (u − u0)T Σ−1
u0

(u − u0) (10)

Consequently, the function ρ(u;u0) is not symmetric, therefore it is not a distance in the
strict sense. The reference image u0 is considered to be the “ground truth”. Covariance
matrix and, as a consequence, distance are proportional to the constant ε2〈N2〉, i.e.
the product of the noise variance and the pixel size. This constant is the same for all
points of the reference image and hence does not change the ordering of distances from
some point to the set of all points of the reference image, therefore the constant can be
omitted.

5 Experiments

5.1 Database

For the experiments we use a data set containing transformed versions of 12 different
magazine covers. The covers contain a variety of objects and text. The data set contains
rotated, zoomed and noisy versions of these magazine covers as well as images with
perspective transformations. For all transformations the ground truth is known, which
enables us to verify the performance of different algorithms on the database. Mikola-
jczyk’s data set used in [2,4] is not suitable for our purposes, as we require ground truth
for genuine group transformations not confounded with other sources of image changes,
such as changes in field of view or lighting conditions. To our knowledge Mikolajczyk’s
data set does not provide this.
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Fig. 1. A selection of data set images. From left to right: unchanged, rotated, added noise, scaled,
changed perspective.

5.2 Validation

We use a criterion proposed in [9]. It is based on the number of correct matches and
the number of false matches obtained for an image pair. We couple interest points if
the distance between their feature vectors is below a certain threshold d (such a pair is
called a possible match). Note that since we know the transformations we also know
ground truth for the matches. Each feature vector from the reference image is compared
to each vector from the transformed one, and the number of correct matches (according
to the ground truth, out of all possible matches) as well as the number of false matches,
is counted.

#possible matches = #correct matches + #false matches (11)

The threshold d is varied to obtain curves as detailed in the next section. The results
are presented with recall versus 1–precision. Recall is the number of correctly matched
points relative to the number of ground truth correspondences between two images of
the same scene:

recall =
#correct matches
#correspondences

(12)

The number of false matches relative to the number of possible matches is presented by
1–precision

1 − precision =
#false matches

#possible matches
(13)

The number of correct matches and correspondences is determined with the overlap er-
ror. The overlap error measures how well the points correspond under a transformation
H . It is defined by the ratio of the intersection and union of two disks S1 and S2 with
centers in the interest points, x1 and x2, and radii given by the scales of the points σ1
and σ2,

ε = 1 − S2
⋂

HS1

S2
⋃

HS1
, (14)

where HS1 = {Hx|x ∈ S1}.
In case of transformations closed to Scale-Euclidean ones, HS1 can be also approx-

imated by a disk, and areas of intersection and union can be computes analytically. A
match is correct if the error ε in the image area covered by two corresponding regions is
less than 50% of the region union. The number of correspondences in order to compute
recall in Eq. (12) is determined with the same criterion.
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5.3 Results

In our experimental setting the distance between every point from the reference image
and every point from the transformed one is calculated. Two points are considered to
be matched if the distance ρ between their feature vectors is below a threshold d. The
result obtained by varying d is presented by a curve. The curve presents 1-precision
versus recall as a function of d. For experiments with the Mahalanobis distance training
data are required. We use part of the data base for training and the rest for evaluation.

Experiments were conducted with different choices of image transformations, fea-
ture vectors and interest points. For every pair of images a recall vs 1–precision curve is
built, and then the mean curve over 12 pairs is computed. In all the experiments usage of
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Fig. 2. Evaluation of different distances in case of DoG points, differential invariants for 5%
noise. 1- SBSM, 2 - Euclidean distance, 3- Mahalanobis distance.
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Fig. 3. Evaluation of different distances in case of Top-Points points, differential invariants and
45 degree rotation. 1- SBSM, 2 - Euclidean distance, 3- Mahalanobis distance.
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Fig. 4. Evaluation of different distances in case of Top-Points points, steerable filters and rota-
tion+zooming. 1- SBSM, 2 - Euclidean distance, 3- Mahalanobis distance.

SBSM improved the performance. In the paper we present three examples. Figure 2 de-
picts SBSM, Euclidean and Mahalanobis curves in case of 5% noise, where differential
invariants are used in Difference-of-Gaussian points. In Fig 3 Top-Points are used as in-
terest points and differential invariants as features for 45 degree rotation case. Figure 4
depicts results of using steerable filters at Top-Points for image rotation and zooming.

6 Summary and Conclusions

In this paper we have introduced a new stability based similarity measure (SBSM) for
feature vectors constructed by means of differential invariants. The algorithm is based on
a perturbation approach and uses properties of noise propagation in Gaussian scale-space.

The advantage of this approach is that a local covariance matrix describing the sta-
bility of the feature vector can be predicted theoretically on the basis of the local differ-
ential structure, and that no training data are required. In fact the analytical noise model
underlying the SBSM replaces the role of training. The drawback of using SBSM is a
necessity to store a covariance matrix for every point of the reference image.

Another advantage of SBSM is possibility of using it in order to threshold inter-
est points with very unstable and therefore unreliable feature vectors. One can think
of eigenvalues of the covariance matrix as a criterium. This allows one to reduce the
amount of data stored as well as computational time needed for matching.

The experiments show improvement in performance for different choices of interest
points, different combinations of derivatives and several transformations.
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