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The effect of interstage buffer storage on the output of two unreliable 

production units in series with different production rates. 

J. Wijngaard 

1. Introduction 

The effect of interstage buffer storage on the output of a production 

line is discussed very ~requently. Two classes of models are considered. 

In the first place models where the processing time of the production 

units is stochastic (see for instance [2], [3], [4], [6], [8], [10]). 

In the second place models where the processing time is constant but 

where each production unit is subject to failures (see for instance 

[1], [5], [7], [9], [11]). 

For the case of a two stage production line there are some exact 

analytical results, for three or more stages simulation is used or only 

approximated solutions are given. 

For the two-stage case analytical results are found by considering the 

equations for the stationary probabilities. At least for the model with 

machine failures this is probably not the easiest way to solve the problem 

(Buzacott [1] gives only exact formula's for the case with two identical 

production units with geometrically distributed time to failure and repair 

time, Okamura and Yamashina [9] give only numerical results). 

In the failure model it is easy to distinguish regeneration points, for 

instance the points of time where the buffer becomes empty. The time 

between two subsequent regenerations is called a cycle. The output rate 

of the production line can be written then as the quotient of the expected 

production per cycle and the expected cycle time. This is worked out in 

this paper. 

We use a continuous time model. This makes it possible to consider also 

cases where the production rates of the two stages differ. 

If v is the production rate of a (working) machine, A is the failure rate 

and ~ the repair rate, then the net production rate is v • ~ * The effect 

of a buffer storage decreases if the difference between the net production 

rates of the two units increases. Some numerical results are given far the 

cases: VI - v2 ' ~I - ~2' Al ; A2; VI - v2 ' ~1 ; ~2t At - A2 ; v] ; v2 ' 

~l - ~2' A] - A2* 
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2. The model 

The system considered in this paper is a two stage production line with 

an interstage buffer storage. 

buffer 

The production is intended to be continuous but there are unexpected 

machine failures. For both production units the time until the first 

failure is assumed to be negative exponentially distributed with 

parameters AI and A2 respectively. The duration of the down-time of a 

production unit is also assumed to be negative exponentially distributed 

(parameters ~I and ~2)' The unit of time is chosen such that the pro­

duction rate of PI is I. The production rate of P2 is called v. 

If the buffer is completely occupied and production unit P2 is down, then 

prOduction unit PI has to stop also (or the products which are made are 

wasted), if P2 is running but v < I then PI has to slow down to rate v 

(PI is blocked). If the buffer is empty and production unit PI is down 

then prOduction unit Pz has to stop also, if PI is running but v > I then 

Pz has to slow down to rate I (P2 is starved). 

We are interested in the question how the average production rate of the 

whole line depends on the capacity of the buffer (this capacity is called 

K). To answer this question we introduce regeneration points. 

The points of time where P2 is running, p] is down and the buffer becomes 

empty are defined as regeneration points. The time between two regeneration 

points is called a cycle. Let P
T 

be the expected production of the line 

per cycle and T the expected cycle length, then the net prOduction rate of 

the line is PT/T. The quantities PT and T can be calculated in the same 

way, both can be seen as "costs l1 per cycle. The rate at which the costs 

grow during the cycle depends on the state of the system. The state of the 

system can be described by the triple (a, b, x), where a is the state of 

production unit PI (a = 0 means down, a = I means running), b is the state 

of production unit P2 and x is the inventory level in the buffer. (The 

regeneration points are therefore the entrances in state (0, 1,0». 
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Let: 

a(x) be the rate at which the "costs" grow in state (J, 0, x) 

B(x) be the rate at which the "costs" grow in state (0, 1 , x) 

y(x) be the rate at which the "costs" grow in state (0, 0, x) 

O'(x) be the rate at which the "costs" grow in state (I , J , x) 

If a(x) = B(x) = y(x) = O'(x) - 1 for all x, 0 S x S K, then the expected 

"costs" per cycle are equal to the expected cycle length, T. 

If a(x) = 0, B(x) - v, y(x) - 0, O'(x) = v for x, 0 < x S K and 

a(O) = 0, 8(0) = 0, y(O) = 0, 0'(0) • min(l, v), then the expected 

"costs" per cycle are equal to the expected production per cycle, PT' 

3. The expected costs per cycle 

In this section it is shown how in general the expected costs per cycle, 

CT, can be determined. Therefore we have to introduce the functions 

f(.), g(.), h(.), t(.). 

f(x) are the expected costs until the end of the cycle if the 

system is now in state (1,0, x), 0 S x s K. 

The functions g(.), h(.), t(.) are defined analogously for the states 

(0, I, .), (0,0, .), (1, 1, .). The definition of g(O) is somewhat 

ambiguous, but it is easy to see that lim g(x) = 0 and to make g(x) 

continuous in x = 0 we define g(O) = O~~ 
For the expected costs per cycle we can write now 

( ) "2 U 
C = B 0 + h(O) + ,,+1 1(0) 
T "2+ UI "2+ UI 2 UI 

(I) 

Notice that it is assumed here that P2 has the same failure rate when 

it is starved as when it is running. In the same way it is assumed that 

PI blocked has the same failure rate as PI running. 

Other assumptions about the failure rates can be handled 1n the same 

way. 
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Now it will be shown how the functions f, g, h, 1 can be determined. 

The costs f(x) can be divided in the costs during the first small time 

interval 6 and the rest of the costs until the end of the cycle. 

For 0 s x < K we get (deleting some terms of order A
2
). 

Hence (deleting again terms in 62). 

Taking the limit for 6 + 0 this yields 

In the same way we can derive 

vg' (x) 

o 
(v-I) l' (x) 

= ~(x) - (A2+~1)g(x) + hZh(x) + ~lt(x). 0 < x S K 

= y(x) - (~1+~2)h(x).+ ~lf(x) + ~2g(x), 0 S x s K 

= o(x) - (A
1

+A
2

)1(x) + A1g(x) + A2f(x), 0 < x < K 

For x = K, instead of (2) we find 

If v s 1 ~hen equation (5) also holds for x - 0, for x = K we get 

If v ~ equation (5) holds also for x - K, for x = 0 we get 

For x = 0 instead of (3) we have 

g(O) = 0 

(2) 

(3) 

(4) 

(5) 

(2a) 

(Sa) 

(5b) 

(3a) 
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Using equation (4) the function h(.) can be substituted into the functions 

f(.), g(.), t(.). That gives a system of three first order 

linear differential equations in the functions f(.), g(.), t(.) with 

boundary conditions (2a), (3a) and (5a) or (5b). 

In the solution of these equations we have to distinguish between the 

cases v = I and v ~ t. 

4. The case v = 

In this case the left hand side of equation (5) reduces to O. 

Substitution of (4) and (5) into (2) arid (3) yields 

-f' (x) ::: e(x) + rf(g(x)-f(x» 0 :;; x < K 

g' (x) ::: n(x) + r (f (x)-g(x» g 0 < x =:;; K 

, where r
f 

).}\1 2 ),)112 1..211] "2]J] 
::: + r ::: + 

J..!)+\.I 2 A1+A 2 g \.11+\.12 A]+A2 

and dx) a(x) + 
A) 

y(x) + 
\.1 2 o(x) , 0 K ::: :;; X :;; 

]Jl+]J2 A)+).2 

n(x) sex) + 
),2 

y(x) + 
]Jl 

\S(x) , 0 x :;; K = $ 
111+\.12 "1+1..2 

Addition of (6) and (7) yields 

g'(x) - flex) ::: e(x) + n(x) + (rf-rg)(g(x)-f(x», 0 < x < K 

(6) 

(7) 

(8) 

By substitution of equation (4} for x = K and equation (5a) into equation (2a) 

we get the boundary condition 

o ::: g(K) + rf(g(K)-f{K» (9) 

Let the function w(.) be defined by w(x) ::: g{x) - f(x). This function w(.) 

is determined by (8) and (9). Substitution of (4) for x ::: 0 and (5b) in 

equation (1) yields 

(to} 

Hence the expected costs per cycle, CT, depend only on the function w(.). 
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In order to find the expected cycle length we have to substitute a(x) = Sex) = 

= rex) = o(x) = } for x, 0 S x $ K. For r f + rg this yields 

* * 1 where e ,n are equal to e(.) and n(.) with a(x) = Sex) = rex) - o(x) = • 
For r = r we get 

f g 

The expected production per cycle is found by substituting a(x) = rex) = 0, 

, a(x) = o(x) = 1 for 0 < x S K and a(O) = a(O) = yeO) = 0, 0(0) = 1. 

For r f + rg this yields 

Nhere e', n' are equal to e(.) and n(.) with a(x) - y(x) = 0 and 

Sex) = o(x) = 1. 

For r f = rg we get 

11} 
{A + 

1 112 
+ e' + r (n' +e')K} 

g 

The average production rate of the line is equal to PT/T. 

This can also be written as 11 2/(1.. 2+11 2) - (1/(A 2+11 1)/T, where 112/(1l2+A2) is the 

aet production rate of P2 and (J/(A2+11 1»/T is the average loss of production 

per unit of time due to an empty buffer (P
2 

starved). 

5 • The case v + I 
Substitution of the equation (4) into the equations (2), (3), (5) yields 

_f'(x) =.s,(x) +A!(x) 



where lex) is the 
vector ~(x) 

g(x} 

l(x) 

A]lJz 
1l1+lJ2 

A is the AZ\l) 

matrix 
v \It+lJ2 

1.2 - v-I 

and ~(x) is the vector 
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!' (x) is the 
vector ~ f (x) 

g I (x) 

t' (x) 

A]llZ 
ll]+1J Z 

AZll) 
(lJ} + lJ +lJ V ] Z 

1.1 

v-I 

) 

- J.l 2 

11] 

v 

ll] 
If --­

A]+J.l
1 

(the units have different net production rates) then A 

i1as three different eigenvalues, A I' 1.
2

' 1.
3

, 

'me of these eigenvalues (say AI) is always 0 and has eigenvector ~I = (:) 

:he eigenvectors of the other two eigenvalues are called ~2 and ~3. 

~he general solution of the homogeneous equation is 

, where c I ' c2 , c3 are arbitrary constants. 

jJI 
:,:f --'--­

A]+llJ 
= v. then A has only 2 different eigenvalues, 0 and A. 

Since A has index 2 the general solution of the homogeneous equation in this 
ease is 
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where c l ' c2 ' c3 are arbitrary constant~, ~J is an eigenvector of 

eigenvalue 0, ~2 is an eigenvector of eigenvalue "2 and ~ satisfies 

(A-A)~; "" !:2' 

In case a(x) "" Sex) - y(x) = 6(x) • 1 (to determine T) a solution of the 

inhomogeneous equation is given by 

* + d* G .!.} x 

* * . £ * where G' and d have to ,satts y G .!.} "" c* + Ad* and c* is equal to ~(x) 

with a(x) "" Sex) "" y(x) "" o(x) m 1. 

In case a(x) "" y(x) = 0, sex) "" o(x) "" v (to determine PT) a solution of 

the inhomogeneous equation is given by 

Gte x + d' 
-] 

where Gt and d' ,must satisfy Gte = c' + Ad' and c' is equal to ~(x) 
-] 

with a(x) = y(x) "" 0, sex) = o(x) "" v. 

For v < } the boundary conditions are 

A 
a(K) + ! 

J..I 1 J..I 2 

o (K) 

g(O) .. 0 

- ("1+A2)i(K) "" 0 

For v > J the latter boundary condition has to be replaced by 

In order to determine T we substitute into these equations a(K) "" y(K) "" 

"" o(K) "" &(0) "" 1. 

To determine PT we have to substitute a(K) "" y(K) = 0, 6(K) - v, 0(0) = min 
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Substitution of equation (4) for x ~ 0 into (1) yields 
" 

To determine T and PT we can substitute into this expression the corresponding 
solutions of f(O) and 1(0). 

6. The effect of a buffer storase 

First the case is considered where both production units are identical with 

respect to production rate, break down rate and repair rate 

().) = >"2 = A, l1I = 1.12 ... 11, v2 = 1). 

In this case, according to section 4, the net production rate of the line 

is given by 

* , where n 

--
* 2n (I+r K) g 

(A+1.1)2 1 
... 2Al.1 and rg ... 2 (A+l.1) 

For A ... 0.01, 11 ... 0.09 the net production rate of the line as function of K, 

the capacity of the buffer, is given in fig. 1. 

For K ~ ~ the line production rate goes to 0.9 



0.9 

QJ 0.8 
+J 
as ,.. 
(:! 
0 

-.-I 
+J 
(J 

=' "1:1 
0 ,.. 
~ 

QJ 
(:! 

-.-I 
t ..... 

o 10 20 

Fig. 1. 
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30 40 50 60 70 
+K 

80 90 100 

In most practical cases the two production units will not be identical. In 

fig. 2 and table 1 the effect of the buffer capacity is shown for the cases 

a. A2 > A) = 0.01, 112 = lit = 0.09, v2 == 1, "2 varying 

b. A) = "2 == 0.0), 112 < 111 == 0.09, v2 = 1, 112 varying 

c. A) == ),2 == 0.01, ll} = 112 == 0.09, v2 < 1, V2 varying 

lit 
The net pr.oduction rate of p) is "" 0,9. The parameters are chosen 

At+lll 

such that the cases a, band c can be compared for the same net production 

J.l2 
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., 
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P2 
v2 = 2/3(0.9) = 0.600 A2+P2 

x.... A2 varying 

+ P2 varying 

o ••••. v
2 

varying 



),2 

a. 0.0110 

b. 0.01 

c. 0.01 

a. 0.0153 

b. 0.01 

c. 0.01 

a. 0.0300 

b. 0.01 

c. 0.01 

a. 0.0600 

b. 0.01 

c. 0.01 

Table 1. 
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'\.1
2 

'\.12 
v' 

2 v2 );2+'\.12 

0.09 0.891 

0.0817 1 0.891 

0.09 0.00 0.891 

0.09 t 0.855 

0.0590 0.855 

0.09 0.95 0.855 

0.09 0.750 

0.0300 1 0.750 

0.009 0.83 0.750 

0.09 0.600 

0.015 1 0.600 

0.09 0.67 0.600 

o 10 20 30 40 50 

0.802 0.833 0.849 0.858 0.864 0.869 0.891 

0.802 0.832 0.848 0.857 0.863 0.868 0.891 

0.802 0.835 0.850 0.859 0.865 0.870 0.891 

0.770 0.804 0.821 0.831 0.838 0.842 0.855 

0.770 0.800 0.817 0.827 0.833 0.838 0.855 

0.770 0.810 0.826 0.835 0.841 0.845 0.855 

0.675 0.714 0.731 0.740 0.744 0.747 0.750 

0.675 0.704 0.720 0.730 0.737 0.741 0.750 

0.675 0.721 0.737 0.744 0.747 0.749 0.750 

0.540 0.578 0.591 0.597 0.599 0.600 0.600 

0.540 0.564 0.578 0.587 0.591 0.596 0.600 

0.540 0.584 0.595 0.598 0.600 0.600 0.600 

The loss of production due to a lack of storage capacity is in the first place 

a function of the buffer capacity and the net production rate of P2 <the net 

production rate of PI being given). But if the difference between both net 

production rates increases it becomes more and more necessary to distinguish 

between the cases a~ band c. 

For instance, ),2 .. O.OJ, '\.12 .. 0.03,v2 .. 1 and ),2 .. 0.01, '\.12 .. 0.09, v2 = 0.83 

give the same net production rate of P2 (0.750), but in the first case one 

needs a buffer capacity of 20 units to realize the same line production rate 

as in the second case with a buffer capacity of 10 units. 

For all parameter settings a buffer has the most effect in case c and the 

least in case b. 
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