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The stochastic single resource service-provision
problem*

Shane Dyef
Leen Stougie?
Asgeir Tomasgard®

December 17, 2002

Abstract

The service-provision problem described in this paper comes from an applica-
tion of distributed processing in telecommunications networks. The objective is
to maximize a service provider’s profit from offering computational based ser-
vices to customers. The service provider has limited capacity and must choose
which of a set of software applications he would like to offer. This can be done
dynamically, taking into consideration that demand for the different services
is uncertain. The problem is examined in the framework of stochastic integer
programming,.

Approximations and complexity are examined for the case when demand is
described by a discrete probability distribution. For the deterministic coun-
terpart a fully polynomial approximation scheme is known [2]. We show that
introduction of stochasticity makes the problem strongly NP-hard, implying
that the existence of such a scheme for the stochastic problem is highly unlikely.
For the general case a heuristic with a worst-case performance ratio that in-
creases in the number of scenarios is presented. Restricting the class of problem
instances in a way that many reasonable practical problem instances satisfy,
allows for the derivation of a heuristic with a constant worst-case performance
ratio. Worst-case performance analysis of approximation algorithms is classical
in the field of combinatorial optimization, but in stochastic programming the
authors are not aware of any previous results in this direction.

Keywords: distributed processing; telecommunications; service-provision;
stochastic (integer) programming; strong NP-hardness; approximation; worst-
case analysis
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1 Introduction

The problem we study concerns the provision of a set of services from a network
of resources. For each service there are requests from customers. In order to
meet a request for a service, the service has to be installed and, once installed,
the request served. Both installation and provision of a service require capacity
from the same resource. Each resource has a limited capacity. Every request
served yields a given profit. The problem is to select a subset of the services to
be installed and to decide which customer requests to serve, so as to maximize
the total profit from serving requests.

Deterministic versions of the above, in which all demands are known in
advance, have been studied previously. The decision problem with multiple re-
sources that asks whether there is a solution for which all demand is met, is
strongly NP-complete [3]. The deterministic optimization problem with multi-
ple resources is strongly NP-hard even when the number of resources is fixed,
[2]. The deterministic optimization problem with a single resource is NP-hard
in the ordinary sense [2]. The same paper presents a fully-polynomial time
approximation scheme for this problem.

We study the single resource version of the problem with uncertain demand
for services. The uncertainty is represented by a discrete probability distribution
over the demands. The mass points of the distribution are called scenarios in
stochastic programming literature (see e.g. [5]). The problem is to select services
to be installed so as to maximize the expected profit from serving requests.
This is a two-stage stochastic integer programming problem. We show that this
problem is strongly NP-hard. Thus, the complexity of the problem increases by
introducing stochasticity. If the number of scenarios describing the probability
distribution on the demand is constant, then a pseudo-polynomial time dynamic
programming algorithm exists.

We analyze the performance of approximation algorithms for this problem
from a worst-case perspective. This is commonly done in combinatorial opti-
mization, but, to the best knowledge of the authors, it is the first result of this
type in stochastic programming,.

The motivation for this problem comes from an application in telecommu-
nication that considers the installation of different processing based services on
a set of computer nodes in a network with distributed processing capabilities.
The services, if installed, are provided on demand. In the practical problem,
services are constructed from more elementary building blocks, so-called sub-
services. These are software applications, which run in a distributed manner
throughout the network. The computers typically have limited capacity on
memory, processing power and storage. The service provider must decide how
to allocate the computational resources to the subservices in order to meet cus-
tomer demand for services. Because of the limited capacities, at times it may
be necessary to reject some customers. The distributed processing capabilities
of the network enable the subservice demand to be considered independently of
the service which generated it.

The single resource version of the problem can arise when the service provider
rents capacity from a network provider, see [7, §].

In the practical problem, demand for services is uncertain and dynamic. At
various times the demand for a single service peaks, affecting the demand for
all subservices used by that service. Before the peak actually occurs, a signal is



detected through deviations from the normal subservice demand patterns. The
signals can be ambiguous but point to a number of possible services that might
peak. For any signal there is some idea about the possible situations that are
about to occur in terms of subservice demand. Therefore, given a signal, the
number of scenarios required to describe the possible events which may occur,
is small relative to the overall number of subservices.

The subservices typically take time and resources for start-up and shutdown.
The configuration of subservices cannot react to changes in demand instanta-
neously. When a signal gives just enough time to re-configure the network
before the peak occurs, a two-stage decision situation naturally emerges. In the
first stage the decision is which subservices to install given only probabilistic
information on demand. During the set-up time uncertainty resolves itself. The
only possible recourse action in the second-stage concerns what demand to meet
using the subservices installed in the first stage. The available capacity is re-
stricted by the first stage decision. More information on the telecommunication
problem and the model can be found in [8]. The subservices in this practical
problem are the services in the general definition of the service-provision prob-
lem. Thus, the services referred to in the remainder of the paper, relate to the
subservices of the practical problem.

In Section 2 we describe the stochastic single resource service-provision prob-
lem in a formal way, which will lead to a stochastic integer programming for-
mulation. Its so-called deterministic equivalent formulation is presented in the
same section. The complexity of the problem is studied in Section 3. Approxi-
mation algorithms are designed and analyzed in Sections 4 and 5. Both design
and analysis of these algorithms are based on a study of the LP relaxation
of the deterministic equivalent formulation. The approximation algorithm in
Section 4 has a worst-case performance ratio which is a function of input pa-
rameters of the problem, a highly undesirable property. In Section 5 we restrict
the class of problems by introducing the assumption that there is sufficient re-
source capacity to install all services concurrently. For the practical problem
this is reasonable as the service provider would not reject demand when there
is no peak in demand. If such rejection was common, it would be in the service
provider’s interest to invest in more resource capacity. This assumption allows
the design of an approximation algorithm with constant worst-case performance
ratio.

Computational testing of these approximation algorithms is reported in Sec-
tion 6. The numerical experiments were performed on randomly drawn problem
instances of a size which is reasonable for the practical telecommunication prob-
lem mentioned above. These experiments reveal that using standard software
to solve the instances requires an unreasonable running time. In contrast, the
approximation algorithms yield fast solutions which are within a factor of 1.08
on average.

2 A mathematical formulation

To state the problem we first introduce some notation. Let n be the number of
services and s the capacity of the single resource. Let g; be the profit obtained
from allocating one resource unit to meeting demand for service j. Each service,
7, uses a resource capacity of r; while installed, which is independent of the



demand met. Demand is denoted by the random vector § € R™, with §; denoting
the demand for service j.

We introduce binary decision variables z; that indicate whether service j is
installed (2; = 1), or not (z; = 0), j = 1,...,n. Decision variable z; gives the
amount of resource used to meet demand for service j. The stochastic, single
resource service-provision problem (SSRP) has a two-stage stochastic program-
ming formulation:

max E[Q(z,4)]

s.t. Z rjz; <8 o))
j=1
z; € {0,1} i=1...,n

with Q(z, ) the optimal objective value of the second-stage linear program:

Q(z,6) = max qu:z:j

& n
s.t. ij <s- erzj (2)
i=1 j=t
Tj S&ij j=1,...,n,
;20 i=1...,n

The second-stage problem is to set the values of the variables z; under two con-
straints: the capacity constraint ensuring that resource capacity is not exceeded
and the demand constraint ensuring that demand is not exceeded and met only
for services that have been installed. The constraint in the first stage ensures
relatively complete recourse (see e.g. [5]).

The probability distribution on demand is described, in stochastic program-
ming terminology, in terms of scenarios [5]. Here a scenario is a vector of
demands. A probability is assigned to each scenario. Denote by K the number
of demand scenarios and let p be the probability that scenario k occurs. Then,
d;x is demand for service j in scenario k.

Given the scenarios, the stochastic program has a deterministic equivalent
formulation (see [5], also called the extensive-form formulation [1]), which is
a linear mixed integer programming model. We use zj;, for the second-stage
variables, denoting the resource allocated to providing service j in scenario k.

K n
max Zpk Z 95Tk
=1 j=1

s.t. Z(rjzj +zp)<s k=1,... K, )
i=1
djkzi =2z =0 j=1...,n, k=1,...,K,
ZjE{O,l}, zjp 20 ji=1,...,n, k=1,...,K.

The mathematical program of interest is a stochastic integer program. The
integrality is purely in the first stage. In fact one may argue about the conti-
nuity assumption on the z-variables. However, if the data (resource capacity,
installation requirements, and demands) are integral, the second stage will have
an integer solution in every scenario.



To facilitate the exposition the assumption is made that no demand is higher
than the resource capacity minus the corresponding installation requirement. If
necessary, this can be ensured by preprocessing: just cutting off each demand
above a level that could, whatsoever, never be met in any feasible solution.

Assumption 1 For any service j in any scenario k, 0 < dx < s —7j.

As a consequence, denoting the optimal value of (3) by #OFT,

7I'OPT > qu[Jj], ] =1,...,n. (4)

3 Computational complexity

As indicated in the introduction, the deterministic counterpart of the problem
admits a fully polynomial approximation scheme for its solution. Here we show
that, unless P=NP, this is impossible for the stochastic problem.

Theorem 1 SSRP is strongly NP-hard, even when 2?21 r; < 8.

Proof The natural recognition version of this problem, obtained by introduc-
ing a number and asking if there is a feasible solution giving profit at least that
number, is obviously in NP, This can be seen because the representation of the
probabilistic input in scenarios allows the formulation of a deterministic equiv-
alent mixed-integer programming problem. To see that the recognition version
is strongly NP-Complete consider a reduction from the well-known, strongly
NP-Complete vertex cover problem (see [4]):

Given a graph G = (V, E) with |V| vertices and |E| edges and a
constant k, does there exist a subset V' of the vertices, such that

each edge in F is incident to at least one vertex in V’, and such that
[V < &?

For every vertex j € V introduce a service, j, with installation requirement
a = #ET For every edge, introduce a scenario with demand 1 for the two
services incident to it and demand O for all other services. Let g; = |E|Vj € V,
and let all scenarios have a probability T)'ls'T of occurring. Then the expected
profit from meeting one unit of demand in a single scenario is 1. Take ka + 1
as capacity of the resource in SSRP. The question is whether there is a solution
to this instance of SSRP with total expected profit at least |E|.

This transformation is obviously polynomial. In case there exists a vertex
cover of size at most x then there is a service-provision with total expected
profit at least | E|. Install the services corresponding to the vertices in the vertex
cover. Then for each scenario (edge) at least one of the services with demand
1 is installed. The total capacity used by the installation of the services is at
most ko leaving at least capacity 1 to fill with the demands for each scenario.

The other direction is a bit more complicated. Suppose there does not
exist a vertex cover of size k or less. Then installing all services corresponding
to a vertex cover would use resource capacity strictly greater than ko leaving
strictly less than 1 for meeting demand in each of the |E| scenarios, making a
total expected profit of at least |E| unattainable. Installing any set of services
of size L < x would leave (k — L)a + 1 resource capacity for meeting demand in



each scenario. However, at least one edge will remain uncovered, implying that
there is at least one scenario in which both services with a positive demand are
not installed. With at most |E| —1 scenarios the expected profit will be at most
(1Bl - 1) (s - L)a+1) < (|E| - D(ka+1) = (|E| - 1)(|_1E_I +1) < |E|. For the
transformed problem we have ).7_ 7 = |Ela=§ <1<s. O

Below we will show that if the number of scenarios is fixed, the problem can
be solved using a dynamic programming algorithm.

Theorem 2 The stochastic, single resource service-provision problem with a
fized number of scenarios can be solved in pseudo-polynomial time.

Proof Consider the following DP that has the services as its stages. A state,
Se Zf , gives the capacity used in each scenario. Define f;(S) as the maximum
profit that can be achieved from scenario capacities S = (S, ..., Sk) using the
services 1,...,j. Each S; may take a value between 0 and s, hence there are
at most (s + 1)¥ states per stage. There are two types of transitions in every
stage, either the service is not installed, or it is installed and some demand is
met. There are fewer than s+ 1 possible choices concerning the demand to meet
in each scenario, and overall there are then fewer than (s + 1)¥ different feasible
decisions in a state. The initial settings are

_ 0 f0<S5;<s, i=1,....K,
fo(S1---, 5x) = { —00  otherwise.
The recurrence is given by

_fj(Sl,...,SK) = o max {fj_l(Sl —’I‘j —a:l,...,SK —7']' —.’I:K)

<zu<djk

K
+0; Y przk, fi-1(Sh,... ,SK)}-

k=1

From each state there are at most (s + 1) + 1 possible transitions. At each
of the n stages there are at most (s 4+ 1)¥ states. The running time of the DP
is therefore at most O(ns*X), which implies the theorem. O

Thus, the conclusion is that the problem with a fixed number of scenarios
is not strongly NP-hard. This suggests also the existence of a fully polynomial
approximation scheme for the problem, a nice subject for future investigations.
This subclass of problems is still NP-hard since the problem with only one sce-
nario (the deterministic problem) is NP-hard [2]. We argued in the introduction
that this problem is not only of academic interest: in the telecommunication
problem the number of scenarios to describe the random peak event is very
small relative to the total number of services.

4 The LP bound and a heuristic

Given strong NP-hardness we study approximation algorithms. As a prelim-
inary we concentrate on the LP relaxation of SSRP in which the restrictions
z; € {0,1},j=1,...,n,in (3) are replaced by 0 < z; < 1, j = 1,...,n. This
section describes an optimal basis for the LP relaxation of SSRP and uses it
to give an upper bound on the ratio of the LP versus the optimal solution. A
heuristic based on the bound is given subsequently in Subsection 4.2.



4.1 The LP bound

The following theorem bounds the number of variables in an optimal LP solution
that have a value different from their lower and (in some cases variable) upper
bound, i.e., variables z; with a value 0 < z; < 1, and variables z;; with 0 <
Zjr < 6j12;. We will call these variables interior.

Theorem 3 Any basic optimal solution to the LP relazation of SSRP with K
scenarios has at most K interior z and z variables.

Proof Let (2F,2'F) be an optimal basic solution to the LP relaxation of
SSRP. Reduce the problem by eliminating all services for which zJI-‘P = 0 from
the original problem. Clearly, the optimal solution of the LP relaxation of the
reduced problem has the same number of interior z and z variables, and z'F > 0.

Introducing slack variables ¢; for the capacity constraints and u; for the
demand constraints, results in the following reformulation of the LP relaxation.

n K
max Z > peaizie (5)
7=1 k=1
s.t.
n n
erzj+2xjk+tk = s k=1,...,K, (6)
ji=1 j=1
(5jkz,»—z]-k—ujk = 0 j=1,...,n,k=1,...,K, (7)
0<2; L1, Zj,uji,te > 0 i=1...,n, k=1,...,K. (8)

This LP has K + nK functional constraints, so that at any basic solution there

are at most K 4+ nK basic variables. Let (t*F, T, zL'P 2LF) be a basic optimal

solution. We count the number of basic variables, i.e., variables with strictly

positive values and, in the case of z variables, with value strictly less than 1.
Remember that we consider a problem with z;-‘P > 0,7 =1,...,n. Thus,

constraints (7) imply that at least one of z&F or u}y will be positive for each pair

(G,k),j=1,...,n, k=1,...,K, accounting for at least nK basic variables.
Define the following sets

2={jl4" =1},

F={jlo<z® <1},
U= {(j,k)| =5 >0and ujf >0}
and
T={k|tF >0}
Notice that U is exactly the set of indices for which :z:g‘,f are interior because
they are positive but not equal to 8, z}".
The number of interior 2F and 2 is |F| + |U/| and the number of basic

variables is | F|+|7T| +|U|+nK. From the above this is no greater than K +nkK,
implying |F| + 7| + |U| < K. O



LP

The optimal solution value, 7, can be written as

K K
= Z Zpkqj‘l’;{ + Z Zpkqjxi-‘,f. 9

JEZ k=1 JEF k=1

In particular, |F| < min{K,n}. Under Assumption 1, the above theorem im-
mediately yields the following corollary, in which 7°FT denotes the optimal
solution value of SSRP.

Corrollary 1 Under Assumption 1, 7'F < min{K + 1,n}z°FT.

Proof Apply x P < ik to (9):

K K
TP <N g + Y a5 Y ek (10)

jEZ k=1 JEF k=1

Since ez Zf=1 pkqja:;f,f is the value of a feasible solution it is no greater

than 7OPT. Assumption 1 implies that (4) holds. Inserted in (10) the two
observations yield

P < gOPT 4 Z 7OFT < (min{K,n} + 1)7°FT,
JEF
since |F| < min{K,n}. Finally, note that if |[F| = n, then Z = 0 and (10)
implies 7F < n7xOFT, O

We have no example that shows tightness of this bound. The worst example
found so far has ratio n*F /7OFT =4,

Consider the following instance for an odd integer ¢ > 3. Define the param-
eters s =1, K=n=12r; =1/(t+1), ¢; = 1, p; = 1/t2, §;; = t/(t + 1), for
j=1,...,t% and §;s =0, for j # k, j,k=1,...,t2

For this instance r; + §;x < s for j,k =1,...,t% and

ZTJ t+1 > 1

In an optimal solution of the LP relaxation, the constraints of the form
8552 — xj; > 0 will be binding. Thus, the LP relaxation may be re-written as

t2
Zj
max ;t(t-i-l)
2 (11)

1 t 2
.t. < =1,...,t
s.t ; 1 J+t+1 1 k 17 by

0<z;<1 j=1,...,t%

As the problem is symmetric in z; there is an optimal solution for which all z;
are equal to o, say. For this solution, the first set of constraints will be binding
yielding a = < 1. The optimal LP objective value is 77F = ;5.

For the optimal IP solution, the formulation is symmetric so it suffices to

know how many z; = 1. Assume that it is the first m of them, then for j =



1,...,m, z;; = 1 — ;% otherwise z;; = 0. The objective value is (1 — %)
which is maximized when m = (t + 1)/2. As t is odd, m is an integer, the
optimal IP value is 7P = &1 and

4¢?
LP;_OPT __
s /71' —(t+—1)2-—)4 as t — o0.

4.2 The LP round-down heuristic

We present an approximation algorithm which amounts to rounding down the
optimal solution of the LP relaxation of SSRP. Its worst-case performance anal-
ysis is related to the analysis of the greedy heuristic for the knapsack problem
(see e.g. [6, Subsection 2.4]).

In the deterministic case the knapsack LP solution can be found in O(n)
time by a median finding algorithm using the price per unit criterion [2]. Here
a similar approach is not known.

Our algorithm installs service j if and only if z}‘P = 1; i.e., installs all
services j € Z. The remaining capacity is then allocated to serve demand for
the installed services in a greedy way, in order of non-increasing g; values. We
call this algorithm G}, denote its solution by (21, z%1) and its value by n%1.

Since G5 installs only services in Z, the following lower bound is trivial.

Proposition 1

M=

LP
PrqjTjp, -

DD
€2

That #9PT /751 can be arbitrarily high is seen from the example at the end
of Section 4.1 where 0 < Z}P < 1, V4 and hence 7€ = 0. Therefore we modify
the algorithm: compute for each service j € F the objective value if j is the
only service installed. Choose from the best of these values and 7% as output
for the algorithm. Call this approximation algorithm Gs, then,

k=1

il

7°? = max{n®, max ¢; E[6;]}-
JjeF

A pseudo-code of the algorithm is shown in Figure 1, in which services are
assumed to be ordered according to decreasing profits.

Theorem 4 G, has worst case performance ratio
7OFT /2% < min{K + 1,n},

and this ratio is tight.

Proof
K K
PP < oSS gl + Y el
JEZ k=1 JEF k=1
< 719+ q;El5]
JEF
< 79 4| F|7% < (min{K,n} + 1)7°2.



Solve the LP relaxation, set s’ = s, 7¢1 = 0.
For each service j = 1,...,n:
If sz < 1 then set z]G‘ =0 and xjc.';‘ =0forallk=1,...,K,
Otherwise set sz’ =land s’ =5 —r;j.
For each scenariok =1,...,K:
Set s = 4'.
For each service j =1,...,n:
If 2{' = 1:
Set z;; = min{s", 0},
Set 5" = max{0,s" — d;;}.
Set 762 = 701, 262 = 201 and 2C2 = 261,
For each service j =1,...,n:
If 0 < 2FF < 1and 7% < ¢;E[5;]:
Set zicz =0andng =Qforali=1,...,nand k=1,...,K,
Set 7€ = ¢, E[4;], zfz =1and x?,'f =d forallk=1,..., K.

Figure 1: Approximation algorithm GJ.

Again, the case where |F| = n strengthens the bound to min{K + 1,n}n%2.

For the following instance the bound is tight. It has v + 1 services and v
scenarios, v > 2,q; =v—€,1; =€, j = 1,...,v, gy41 = v/€ and ry4) = 0 where
0 < € < 1. The resource capacity is s = 1 + ve and all scenarios are equally
likely. Demand for service v + 1, is the same for all scenarios: dy416 = €/v,
k =1,...,u. For each service j, with j = 1,...,v, there is positive demand
only in scenario j: §;; =1 and §;, = 0 when k # j.

The optimal solution is to install all services. Demand for service v + 1 is
always met completely, while in scenarios j = 1,...,v the optimal solution has
g9FT = 1— £, The profit from this is 7°FT =1+ v — 2+ %

The optimal solution of the LP relaxation is 257, = 1, zl¥, , = ¢/v, V&,

gt = 2P = H'—lz_%i, Vj, zif = 0, k # j. This solution has K = v interior
z-values and no interior z-values. Thus, 7¢2 = max{1, (v —¢)} = 1. As € gets

arbitrarily small,
2

7OPT /702 = 1 4 v — 2e + %

gets arbitrarily close to v + 1. O

Notice that the given bound on the performance ratio holds for any possible
discrete distribution defined in terms of scenarios. It is increasing in the num-
ber of scenarios and if the number of scenarios is greater than the number of
services the bound is linear in the number of services, which, in general, is not
a very favorable situation. For the telecommunication problem described in the
introduction the number of scenarios is typically small, so the algorithm might
still be useful. Yet, it would be preferable to have an algorithm with a constant
performance ratio. In the next section we derive such a bound by restricting
the problem class slightly.

10



5 A constant bound

Here, we consider the class of problems for which it is feasible (but not necessar-
ily optimal) to install all services concurrently; i.e., the sum of the installation
requirements is less than the resource capacity. As discussed in the introduction,
this assumption is reasonable in the telecommunication problem setting.

Assumption 2 For the class considered: Z?zl r; < 8.

In order to facilitate the exposition, the resource capacity is scaled to 1: s = 1.

5.1 The LP bound

Again, we start by studying the ratio between the optimal solution value of
the LP-relaxation with that of the original problem. Let (2F,z'F) be a basic
optimal L.P relaxation solution. Let £ be the number of interior zgfp and assume
that £,, of these services have r; < w for some 0 < w < 1 to be chosen later.
These services will be installed in groups while those with r; > w will be installed
separately as before. Again, let Z = {j | zy¥ = 1}. Without loss of generality
let 0 < zgfp <landr;<wforj=1,...,4,, and 0 <z§’P < 1and r; >w for

J=2,+1,..., £ Write the optimal LP value as

P = wé’P + ﬂ'i‘P + 7r§‘P, (12)
where
K
LP _ LP
o =D ) PraiTie
jEZ k=1
tw K
LP LP
mT =23 Pz
i=1k=1
and

¢ K
LP _ LP
mt = DL D P -

j=Lu+1 k=1

Feasible solutions generated from the LP solution will be used to bound
parts of (12). Proposition 1 implies

7OFT > 7C1 > 7LP, (13)

To bound 7F define A = Eﬁ:l r;z¥F and note that Z§l1 zix <1-Afor

each k = 1,..., K. Partition the set {1,...,£,} into I subsets, {S;}._;, such
that

ergﬁ-i-w i=1,...,1
JES;:
and

dori=p  di=1,...,I-1, (14)

JES;
for some constant 8 > 0 to be chosen later, such that f + w < 1. Notice
that 37, 7; is allowed to be smaller than 4. In the optimal solution of the

11



LP relaxation at most 1 — A units of capacity are available for the z variables.
Installing only the services in one of the sets S; will leave at least 1 — 8 —w units
of capacity available. The z-variable values from the LP relaxation solution
corresponding to services in S; may be scaled down, if necessary, to use a total
of no more than 1 — 3 — w units of capacity in each scenario.

For each i =1,...,I define the feasible solution (2%, zH:) with z]H" =1 for
j €S, zf" =0forjé¢Ss, xﬁc" ='ya:}‘}; forjeS;,k=1,...,K and :Eg; =0 for
j € S; and all k, where

1-8-w
if > A,
y=¢ 1-4  fHhrw= (15)
1 otherwise.
The objective value of solution (2, zf+) is
K K
LD IDI T ELDIPI T
Jj€8; k=1 JES: k=1
Hence,
I K 1 d I
H oYY Yt = Ly Lo g
i=1 jES; k=1 i3 v

By the assumption on the problem class and the definition of the sets S; (specif-
ically (14)) we have

n [ I
12 > ri=> Y 2T -18 (17)
i=1 i=1 i=1 jeS;
Thus, I <1+ 1/8 which, inserted in (16), implies that
P < —'B—+—17rOPT. (18)
By
To bound 7iF consider installing each service j = £, + 1,...,£ (having

r; > w) individually. Using the definition of A:

¢ ¢
— LP LP LP
A=YrdF s Y nfre Y AT

=1 j=tw+1 j=Lfw+1

Thus,

Just installing service j has objective value g;E[d;]. Satisfying the demand
constraints implies that ZkK=1 pkx}‘,f < E[éj]z;fp. Using Assumption 1, this
leads to the following bound.

£ K
LPp _ LP
mEo= ) D kT

j=lw+1lk=1
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L

> GEB)z"

J=ly+1
- A
< OPT LP . £ OPT
< 7 | Z zi" < =7 (19)
]=ew+1
Combining (13), (18), and (19) gives
aF < (1 + prl, é) 7OFT, (20)
By w

Theorem 5 Under the assumption that E;;l r; <1,

IA

ﬂ.LP S (5+2\/§)7rOPT.

Proof w and f3 are chosen to ensure the smallest bound in (20). When A < 1
takew =1-1v3and B =~-1+4v3and when A >} takew=8=14. In
both cases w+ 8 > A, and therefore v = 1—;—%. In the former case (20) yields

2(1+v3)(1— A) A OPT
(H -1++3 Jrl—%\/ﬁ)7T

= (1 +(1+V3)2(1-A)+4(1+ %\/E)A) 7OFT = (5 4 2v/3)xOFT.

7I'LP

IN

In the latter case (20) leads to
7P < (4 + %) 7OPT < 879PT < (5 + 2v/3)xCFT,

O

We have also not been able to show tightness for this bound. The worst

instance found (with ratio 2) is similar to the instance given at the end of
Section 4.1 but with r; = 1/¢? and §;; = (#2 — 1)/t2.

5.2 A round and partition heuristic with constant worst-
case ratio

Based on the previous LP bound a round and partition heuristic, RP, is devel-
oped with a worst-case performance ratio bounded above by 5 + 2v/3.

Let (21F, z1'T) be a basic optimal LP relaxation solution with the optimal so-
lution value given by (12). Choose the constants w and  of the previous subsec-
tion as in the proof of Theorem 5 and generate a partition {Z,V,W, 5},..., 51}
for some I in {1,...,n} as follows.

Z = {jlzF=1}
V. o= {jlzfF =0}
W = {j|0<zfp<1,rj>w}.

The remaining services {j | 0 < z]IfP < 1,7; < w} are partitioned into the sets
Si1, ..., 51 in the following way. Consider these services in arbitrary order. Start
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filling set S with the first services until addition of the next service will raise
the sum of the installation requirements above w + . That service will be the
first one to go into the set S3. Continue in the same way filling the set Se and
so on until the last set Sy is constituted by the last few items. Thus, the sets
S1,...,S51 have the properties

er € [ﬂ,ﬁ’f‘ﬂ)],i:l,...,]—l,

JE€S:

er < 4w

JESI

For each set T € {Z,V,{j}jew, S1,...,S1} heuristic RP generates the solu-
tion (z7,z”) with objective value 7, by setting 27 = 1if j € T and z] =0
if j ¢ T and choosing z7 to maximize the LP created by fixing z to 27. Then
RP chooses the solution with highest objective value. We denote this value by
7P A pseudo-code of RP is shown in Figure 2.

Solve the LP relaxation to get basic optimal solution (21¥,zlF)
Set I =1 and r* = 0 and declare sets Z, V, W, and S; open.
For each subservice j = 1,...,n (order arbitrary):
If z}'P =1 then add j to Z,
Otherwise if z}‘p =0 then add jto V,
Otherwise if 0 < 2;¥ <1 and r; > w then add j to W,
Otherwise (Comment: 0 < z;-‘P <landr; <w)
If r* +r; <w+ B then
Add j to S and set r* =1 + 715,
Otherwise
Close Sy and open Sy,
Add j to S;4+; and set r* =},
Set I =1+1.
Close sets Z, V, W, and S;.
Generate the solutions (27, 2%) and ({7}, 217} for all j € W.
Generate the solutions (z%,2%) fori =1,...,K.
Set 7P = max{nZ, max{r{?} | j € W}, max{r5 |i=1,...,I}}.

Set (%P, 2FP) to the solution corresponding to 7FF.

Figure 2: Approximation Algorithm RP.

Theorem 6 For SSRP with Z;.l:l r; < s, RP has worst-case performance ratio

7OPT /7FP < (5 + 2V/3).

Proof This follows almost immediately from the proof of the bound for the
LP relaxation in Section 5.1. Notice that 7% = 7 and for any j € W,
7li} = ¢; E[8;]. Also, for eachi € {1,...,I}, 75 > xfi, Thus,

P >0t RF > ol vi=1,...,] and =% > ¢;E[$;),Vie W.
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These observations allow 7°F7T to be replaced by #F¥ in (13), (16) and (19).
Following this throughout the proof of the LP bound in Theorem 5 gives

O

We have not been able to show tightness of the bound. The worst instance

we have been able to find has a performance ratio of 2. When Assumption 2

does not hold RP can have an arbitrarily high ratio. The instance given at the

end of Section 4.1 is an example of this, which can the readers can easily verify
themselves.

6 Computational Results

The heuristics G2 and RP were tested on problem instances that reflect the
telecommunication application described in the introduction. The instances
have realistic sizes and are randomly generated. Parameter values were chosen
so as to generate problems that were challenging for the heuristics. The test
problems have the following characteristics.

The number of services ranges from 500 to 1000 and the number of scenarios
from 10 to 50, with 5 to 13 services peaking in each scenario. In each scenario,
a group of related services (the subservices involved in a service in the context
of the telecommunication problem) experience a peak in demand. The single
resource has a constant capacity of 10,000 units. There are 72 sets of test prob-
lems generated each with different relationships between the various problem
data. For each set, 30 test problems are generated with the parameters for each
service chosen randomly, giving a total of 2160 test problems.

The test problems include problems with both Y r < s and Y r > s.
Roughly two-thirds have Y r < s and of the remainder about half have s <
Y. < 2s and half have 4s < Y r < 5s. The last two groups were generated to
test the heuristic (RP) on problems for which it is not guaranteed to perform
within the constant performance ratio derived.

The problems were all solved on a PC Pentium III, with 500MB of RAM,
2GB of swap space, running at over 800MHz, and running Microsoft Windows
2000. AMPL and CPLEX 7.5.0 were used to find the optimal solutions to
the integer problem and the linear relaxation. The heuristics were coded in
Matlab 6, using the linear relaxation solution as generated by CPLEX.

In solving the integer problem by AMPL and CPLEX 7.5.0, a limit of 30
minutes was given. About 30% of the problem instances could not be solved
within that time. For the remaining 70% the average time was over 13 minutes.
The linear relaxation was solved with an average time of 19 seconds and a
standard deviation of 30 seconds. About 92% of the linear relaxations were
solved within 60 seconds.

The running times of heuristics G; and RP were recorded independently of
the time required to solve the linear relaxation. For the heuristic G2 the mean
running time was 0.08 seconds. For heuristic RP the mean running time was
0.09 seconds. The maximum running time of either heuristic was 0.6 seconds.

Quantities 79FT /xC2 and 79PT /xRP were calculated. These ratios only
differed for 1% of the test problems. For heuristic RP, the average ratio over all
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test problems was 1.08, with standard deviation 0.08. For 4.4% of the cases the
solution found was within the default MIP gap accepted by CPLEX (of 0.0001).
In addition, 34% of the cases were within 1% of the optimal solution and 67%
of the cases within 10%. The worst ratio encountered for a test problem was
1.52. These results are shown in Figure 3.

1001

60r

40r

percentage of instances

20

0 — . 1
1 1.1 1.2 1.3 1.4 1.5
ﬂOPT/nRP

Figure 3: Percentage of instances with given performance ratio or better.

When only those test problems with ) r < s are considered, the average
ratio is 1.06 and the worst ratio 1.33.

From the test problems studied the performance seemed most affected by the
average standard deviation of the demand (over all services), —};Z;;l std(d;).
This is shown in Figure 4. The figure includes all instances. Restricting to
instances with ) r < s shows a similar relationship.

We notice that the standard packages, which we applied without any perfor-
mance tuning, take too much time for the typical telecommunication problem
that motivated this research. The time between the signal and the occurrence of
the peak is typically no more than 20 minutes, and often much less. The approx-
imation algorithms obviously give very good solutions, quickly. Therefore, they
are recommended in favor of the exact optimization methods. In other practi-
cal applications for which there is much more time between the installation of
services and the actual use, one may still aim for optimality.

7 Conclusions

This paper considered a service-provision problem. The main motivation for
studying the problem was an application on a distributed processing telecom-
munication network. In that problem there is uncertain demand for the services.
It was shown that the natural stochastic programming model is strongly NP-
hard. It is worthwhile to stress this as the deterministic counterpart, having
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Figure 4: Heuristic performance compared to the demand standard deviation.

the same number of binary decision variables, is weakly NP-hard. Thus, the
complexity of the problem increases by introducing stochasticity, even if it only
means adding continuous decision variables for each scenario of the problem.

We studied approximation algorithms for the stochastic service provision
problem. A first algorithm based on the LP relaxation of the deterministic
equivalent stochastic problem has worst-case performance ratio equal to the
minimum of the number of services and the number of (demand) scenarios plus
one. The second algorithm has a constant worst-case performance ratio for a
restricted class of problems. The assumption defining this subclass is, however,
not unnatural and indeed satisfied for the telecommunication problem.

Results of this type are standard in combinatorial optimization, but, to the
best knowledge of the authors, the results in this paper are the first worst-case
performance analysis results in the field of stochastic programming. They give
guarantees on the quality of the solutions provided by the algorithms.

The numerical testing shows that these guarantees are quite pessimistic in
practice, for the random instances tested. The approximation algorithms typi-
cally performed very well, while exact optimization methods required impracti-
cal running times.
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