

PET, a performance evaluation tool for flexible modeling and
analysis of computer systems
Citation for published version (APA):
Veth, de, R. (1988). PET, a performance evaluation tool for flexible modeling and analysis of computer systems.
(Memorandum COSOR; Vol. 8823). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1988

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/e839216c-f0b6-4a37-b3b7-bc174cabde93

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics and Computing Science

Memorandum COSOR 88-23

PET, a performance evaluation tool
for flexible modeling and analysis

of computer systems

by

Robbert de Veth

Eindhoven, the Netherlands

October 1988

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

Supervisor

MASTER'S THESIS

PET, a Perfonnance Evaluation Tool
for flexible modeling and analysis

of computer systems

by
Robbert de Veth

Advisor ' .
dr. ir. J. van der Wal
dr. \V. Z. Venema

August 1988

Table of Contents

1. Introduction 1

1.1 A growing interest in perfonnance evaluation of computer systems 1

1.2 Computer systems and queuing networks ... 1

1.3 The PET software package 1

2. Queuing network models 3

2.1 Description of a queuing network model........... 3

2.2 Assumptions and notations 3

2.3 An Example 5

2.4 IIierarchical modeling .. 6

3. The algorithms 9

3.1 The performance characteristics of interest 9

3.2 Product form networks 9

3.3 Mean Value Analysis (MVA) .. 10

3.3.1 Approximations for non-product form networks .. 13

3.3.2 Reducing the complexity of the MV A-algorithm 14

3.4 Row by row analysis .. 15

3.4.1 Row by row with multi programming .. 15

4. PET, Performance Evaluation Tool.. 17

4.1 Purpose of PET 17

4.2 Decomposing models and algorithms .. 18

4.3 The modules 18

4.4 How to use the PET package .'........................... 21

4.4.1 Defining the process tree ... 22

4.4.2 Setting the parameters 23

4.4.3 Computing the results .. :........................... 23

4.4.4 Other facilities 24

5. The VAX-cluster at the E.U.T., a case study... 25

5.1 Purpose of this case study .. 25

5.2 Description of the VAX cluster ... 25

5.3 The decision support system for the V AX cluster 26

5.4 Using PET to analyze the V AX cluster .. 27

5.4.1 The process tree for the V AX cluster 27

5.4.2 Setting the parameters of the V AX cluster .. 28

5.4.3 Computing the results for the V AX cluster ... 29

5.5 Conclusions of the case study .. 31

6. PET in more detail 32

6.1 Description of a module 32

6.1.1 The name.cap file .. 32

6.1.2 The name.c file .. 36

6.2 Data flow.... 37

6.2.1 The monitor 37

6.2.2 Communication between the user and a process 38

6.2.3 Communication between the processes 39

7. Summary, conclusions and suggestions ... 41

7.1 Summary and conclusions 41

7.2 Suggestions for further development 42

Appendix A: Theory .. 44

1. Definitions and notations for a queuing network .. 44

1.1 The parameters of a queuing network ... 44

1.2 Performance characteristics for a queuing network 45

2. Mean Value Analysis ... 47

2.1 MV A-algorithm .. 47

2.1.1 First Come First Served 49

2.1.1.1 Client type independent workloads .. 49

2.1.1.2 Client type dependent workloads 50

2.1.1.3 Non exponential distributed workloads : 51

2.1.2 Processor Sharing 52

2.1.3 Infinite Server .. 53

2.1.4 First Come First Served with Preemptive Resume Priority...................... 53

2.1.4.1 The Shadow Approximation .. 53

2.1.4.2 The Completion Time Approximation (CT A) ... 56

2.1.5 Summary for the computation of the sojourn times 59

3. Schweitzer and Schweitzer·FODI .. 62

3.1 The Schweitzer approximation algorithm .. 62

3.2 The Schweitzer·FODI algorithm .. 64

4. Row By Row Analysis ... 65

4.1 The Row By Row algorithm .. 65

4.2 Row By Row with multi programming ... 70

Appendix B: Introductory manual.. 71

1. Introduction .. 71

2. Getting started 72

3. Defining the process tree ... 75

4. Setting the parameters 77

5. Computations ... 80

6. Making some changes 82

7. Leaving PET, entering Unix .. 82

8. And finally.. .. 83

Appendix C: Writing new modules ... 85

1. Introduction .. 85

2. Writing the module 85

3. The name.cap file 86

4. The name.d file 87

References 88

Glossary of notations 90

1. Introduction

1.1. A growing interest in performance evaluation of computer systems

Only a few decades ago a whole new era began with the introduction of the computer.
It started with big slow computing machines, for special purposes only, but they
seemed to get faster and smaller almost every day, and now they can be found not
only in nearly all companies, but also at schools, households, etc.
Another interesting development is the connection of computers (and devices) to other
computers, thus forming complex computer systems and networks.

Related to all this is the growing interest in the evaluation of the performance of com
puter systems. In most cases this performance evaluation is a useful tool if decisions
are to be made.
If for example the performance of a computer system is getting worse because of a
growing number of users, or a change in the users behavior, then it would be appropri
ate to know in which part of the system the bottleneck can be found, and how the per
formance of the system can be improved.
In both cases performance evaluation (of the current computer system and some alter
native computer systems) can be of great help.

1.2. Computer systems and queuing networks

One way of obtaining the desired information is by modeling the computer system
(which on its own can already give some insight) and then investigate the model. A
frequently used strategy is to model the system as a queuing network, and then use
mathematical analysis to determine the performance of the modeled system. Up till
now exact analysis within a reasonable amount of time is only possible for a small
class of queuing networks, the so called product form networks. The algorithms
based on this kind of networks offer results for the system in eqUilibrium. Some pro
gress has been made in the development of approximation methods and heuristics that
can handle a larger class of networks. But there is still a lot of work to be done in this
field of research.

1.3. The PET software package

To use the algorithms, they have to be implemented in some kind of software pack~
age. Recently an initial implementation of such a package was made by A. Koopman
[6]. The package is called PET: Performance Evaluation Tool. Also a short note on
the PET package (as well as a detailed description of several algorithms) can be found
in Wijbrands[14].
The strength of PET is that it can not only support the performance evaluation of com
puter systems by practical users (system managers, students, etc) but also the testing
of new developed algorithms. That's why a very flexible design for the package has
been made.
The starting point of PET is the hierarchical modeling approach. As we shall see later

-2-

the model (and the algorithms) can be decomposed in components that can be
analyzed separately. The results of this analysis then can be combined to obtain results
for larger components, and finally for the whole network modeL
The decomposition approach has lead to a package consisting of a set of individual
modules. This set can easily be changed or extended to satisfy the needs of the user or
developer.
The model can be entered by defining its components. For every component an algo
rithm (Le. a module) has to be specified. It is always possible to replace such an algo
rithm by another, without the need to change the whole model. In this wayan environ
ment is created where new algorithms can be tested, added and used in combination
with the already existing ones.

In the past few months the PET package is extended and has now reached the stage
that it can be used by e.g. students to test if there are any improvements to be made.

To describe the PET package one has to know how to model a computer system as a
queuing network, and what algorithms there are available for mathematical analysis of
this network. So we will first describe the queuing network model (Chapter 2) and the
algorithms (Chapter 3) before we turn our attention to the PET package in Chapter 4.
This Chapter is mainly an introduction in how to use the PET package. The way of
entering a model and choosing the algorithms will be discussed here.
After that a case study about the perfonnance evaluation of the V AX-cluster at the
Eindhoven University of Technology (E.U.T.) will show the advantages and disadvan
tages of the PET package.
In Chapter 6 we will describe the PET package in more detail. This Chapter is meant
for those users who intend to write their own modules, or who are interested in the
design of the package and the modules.
Conclusions, suggestions and some remarks can be found in the last Chapter of this
thesis. Three appendices are added: A detailed description of the theory for analyzing
queuing network models, a tutorial for the PET package, and a short description of
how to write a module.

- 3 -

2. Queuing network models

2.1. Description of a queuing network model.

A queuing network consists of a number of stations, where in every station one or
more servers wait for clients to arrive. The clients in the network travel from station to
station. At each station they offer the server(s) a certain amount of work (the work
load), and then they wait until the server has carried out the job. Let us consider such
a client, arriving at a station. Maybe it is his first visit to the network, or maybe he has
just left another station. The client joins the queue of clients already waiting at the sta
tion. The order in which the server serves the clients waiting in the queue is defined
by the service diScipline at the station. It is for example possible to serve the clients in
order of arrival, in order of priority, simultaneously. etc. If the server has completed
the service of a client, this client continues his route by leaving the station to join
another station or to leave the system. Note that the clients waiting in the queue also
include those clients the server is serving at the moment.
For convenience we introduce the following definitions. An open client is a client
who arrives at the system, visits a number of stations, and then leaves the system. A
closed client on the other hand is a client who never arrives or leaves, but always
stays in the system. An open network is a network with only open clients. Closed and
mixed networks are defined in an analogous way. Clients of the same client type are
clients with stochastically the same routing, priority and workload.

2.2. Assumptions and notations

First we consider the stations in the network. The number of stations will be denoted
by M. One can think of many possible service disciplines, but we consider only the
following disciplines:

FCFS. The simplest service discipline is the discipline where the clients are
served in order of arrival. This discipline is called First Come First Served
(FCFS).

LCFS. Another (rarely used) discipline is the so called Last Come First Served
(LCFS) discipline. where the server is always serving the client who arrived last.

IS. If there are enough (e.g. infinite) identical servers to serve all clients at the
same time, the station acts under an Infinite Server (IS) discipline.

PS. It is also possible for a server to serve the clients one by one, all during a
small amount of time. If the service of a client is not completed by then, the
client is placed at the end of the queue to wait for another amount of time. If this
amount gets infinitely small, the service discipline is called Processor Sharing
(PS).

- 4 -

PRIOR-PR. Sometimes the client types have different priorities. The clients with
the same priority are handled in order of arrival. But if a client of a higher prior
ity enters the queue, the service of the lower priority client is interrupted, and is
resumed only if there are no more clients of a higher priority in the queue. This
type of discipline is called preemptive resume priority scheduling (PRIOR-PR).
Other possibilities are non preemptive resume (a service is completed before
another starts) and preemptive repeat (after an interruption the service is started
allover again),

Now we consider the clients in the system. It's easiest to distinguish between closed
and open client types. The closed client types are numbered from 1 to R and the open
client types from R + 1 to R +L.
For the closed clients the population in the system is constant and can be written as a
population vector K = (K 1, .. ,KR), where K, is the number of closed clients of type r
in the system.
For the open clients an arrival process has to be specified. We assume that the open
clients of type r arrive at the system according to a Poisson process with parameter A"
and join station m with probability p~. Furthermore it is impossible for the open
clients to stay in the system forever.
If a client of type r leaves station m, he will join station n with probability p~,n' The
way of jumping in the network defined by these probabilities is called Markov rout
ing.
In this thesis we assume that the clients do not change type, although analysis would
be possible if they did.

Another parameter of interest is the mean total number of visits to a station. As the
closed clients never leave the system this mean number of visits will either be infinite
or zero (if the probability of visiting this station equals zero). It is however possible to
determine the relative visiting frequency 1m,,, defined as the mean number of visits of
a client of type r at station m during a cycle. For a client of type r (r = I, .. ,R) this can
be done by solving the following linear equation system

M

fm" = Lln"p~,m m = 1, .. ,M (2.1)
n=1

with the additional constraint (where C is some constant)

(2.2)

Note that the mean cycle time depends on the value of C, so by choosing C the rela
tive visiting frequencies and a cycle are defined. Note also that 1m" I in" gives us the

mean number of visits of a client of type r to station m per visit to station n.

For an open client of type r (r = R + 1, .. ,R +L) the mean number of visits will be finite
because such a client always leaves the system after a certain number of visits. It's
easy to verify that these visiting frequencies, also denoted by fm,r> can be obtained by
solving

M

fm.r = AT p~ + 'Lfn.r P~.m m = I, .. ,M (2.3)
n=l

Finally we will discuss the workload a client offers at a station. We assume that the
mean and variance of the workload for a client of type r, arriving at station m only
depend on the kind of station m and the client type r (although in some networks the
model would be closer to reality if the workload should also depend on e.g. the popu
lation). The average workload will be denoted by Wm r and the variance of this work-

2 •
load by a m,T'

It is also possible to introduce a service rate at each station as the rate at which a
server can serve its client. We assume that this rate is equal to 1.

The notations introduced in this section can also be found in the glossary of notations
at the end of this thesis.

2.3. An Example

A simple example is used to illustrate how a computer system can be modeled.

Consider a computer with some terminals connected to it. The computer consists of a
central processing unit (CPU) and two disks. Suppose there are two kinds of jobs:
batch jobs and interactive jobs. Batch jobs are started by the computer while interac~
tive jobs are generated at the terminals. If an interactive job is finished the generation
of a new job starts at the same terminal. A job 'in' the system will alternately 'visit'
the CPU and one of the disks. We assume that a job arriving at a disk has to wait until
the jobs waiting in front of him are served. At the CPU a so called Round Robin
scheduling mechanism is used in order to pay attention to the jobs in the queue in a
more fair way. With a Round Robin discipline the first job in the queue is served for a
small amount of time, and if that job is not finished after that amount of time it is
placed at the end of the queue to wait for a new service.

This system can be modeled in many ways. One obvious way is the following.
We have four stations: CPU, two disks (01 and D2) and a terminal station (T). At the
CPU we choose a PS service discipline, although FCFS would also be possible, espe
cially if the amounts of time the CPU dedicates to a job are not to small. The service

- 6-

discipline at the disks is FCFS and for the tenninal station it's IS.
Furthennore there are two client types: the batch jobs and the interactive jobs. If we
assume that the generation of a new interactive job start after the completion of the
previous job, then there are as many interactive jobs as there are terminals (in use of
course). For the batch jobs we assume that there is a limited number of jobs in the
system. If such a job is finished another batch job is started immediately, so also the
number of batch jobs stays the same. This makes it possible to model the system as a
closed queuing network For the determination of the workload distribution and the
visiting frequencies some kind of measuring has to be done.

The queuing network model as described above is depicted in figure 2.1.

figure 2.1. A simple computer system modeled as a queuing network

2.4. Hierarchical modeling

Decomposing the network in parts which are easy to handle is a commonly used stra
tegy if the system is too complex or too detailed for analyzing. Usually the structure
of the network implies already a logical decomposition. An example will illustrate
this. It is possible to decompose the network of figure 2.1 in a terminal part and a
computer part, where the computer component consists of the CPU and the two disks.
The results, obtained by analyzing the computer part can be used as input for the
simplified network, where the CPU and the disks are replaced by a single "Comp" sta
tion.

- 7 -

figure 22. The network decomposed in a terminal and computer station

The hierarchical structure, obtained in this way, can be represented in a model tree.

figure 2.3. tree representation of a queuing network model

Of course, it is also possible to analyze the model without decomposing it. In that
case the model tree will look like'this:

- 8-

figure 2.4. alternative tree representation of a queuing network model

Decomposition proves to be a useful analyzing tool. It provides better insight in the
problem, and permits a hierarchical analysis, from a detailed level up to a global level.
We will return to the tree representation of queuing networks when discussing the
PET package.

- 9-

3. The algorithms

3.1. The performance characteristics of interest
After modeling a computer system as a queuing network, it is possible to obtain some
performance characteristics by using mathematical analysis. The performance charac
teristics we will discuss first are the mean values, such as

The mean number of clients (per client type) waiting in the queue at a station
(including the ones being served).

The mean throughput in the stations per client type, Le. the mean number of
clients that are served per unit of time.

The mean time a client has to wait at a station, including his service time. This
time is called the sojourn time.

The mean utilization of the station per client type. I.e. that part of the time that
there are clients (in service) at that particular station.

Usually these mean values will give a good idea about the performance of the system,
and they can be used for answering questions like: What response times can be
expected, how much time is spent with waiting, what is the bottle neck, etc.
A class of networks for which these mean values are relatively simple to calculate are
the product form networks. We will first describe these networks, because most algo
rithms use the theorems on product form networks as a starting point. After that we
will introduce the algorithms.

Of course the mean values do not answer all questions. Other interesting questions
one could ask are: What are the variances of the queue lengths and sojourn times?
What is the probability that there are more than a certain number of clients in a sta
tion? etc. Unfortunately, answering these questions usually turns out to be rather
difficult, because it means you have to know something about the distribution of the
sojourn times or the queue lengths. We remark that it is possible to determine the
steady state distribution by using the theory on Markov chains. In practice however
the number of states can be enorinously big, even for small models, so usually it will
take far too much computation time to calculate this distribution.

3.2. Product form networks
The most important class of networks in queuing theory are the so called product fonn
networks or separable networks. For these networks the steady state distribution can
be written as the product of the state distributions of the independent queues. Baskett,
Chandy, Muntz and Palacios [1] have described the BCMP-networks. These product
form networks are defined as queuing networks satisfying the following restrictions:

- 10-

The clients jump according to a Markov routing, with state independent transi
tion probabilities. It is however possible for a client to change type, also in a
Markovian way.

If a station operates with a FCFS discipline the workload must have an exponen
tial distribution. and must be independent of the client type.
For the other service disciplines (LeFS. IS and PS) the client types may have dif
ferent workloads. The distribution of these workloads has to have a rational
Laplace transform. This last restriction is not a strong one, because every distri
bution can be approximated arbitrary close by a distribution that has a rational
Laplace transform.

The BCMP-networks include closed, open and mixed networks. It is also possible
(under certain conditions) to vary the service rate at a station, but since we only con
sider constant service rates this possibility is not used.

3.3. Mean Value Analysis (MVA)

In queuing theory Mean Value Analysis can be used to obtain some information about
the mean values of the system, such as the mean number of clients waiting in a queue,
the mean time spent in the network, etc. Especially if the network satisfies the pro
duct form conditions it is possible to formulate some interesting relations between the
mean values of the network. The algorithm that uses these relations to compute some
performance characteristics is called the MV A-algorithm. This algorithm can entirely
be expressed in the mean number of clients at a station per client type, the mean
throughput at the stations, and the mean time spent in a queue during a visit, also per
client type.

Before we formulate the MV A-algorithm for mixed queuing networks we introduce
some notations:

k population for the closed clients in vector notation. ! = (k 1 ,k 2 • .. ,kR)' The
maximum population will be denoted by K.

~ vector denoting a population of a single client of type r.

And the performance characteristics of interest: .

A,[!]

mean time a client of type r spends in the queue during a visit at station m
given population k. This time is also called the sojourn time.
mean throughput rate in the network, measured in cycles per unit of time,
for a closed client of type r, given population !.
mean throughput rate at station m for clients of type r, given population !s:
For open clients this throughput rate is independent of the population, and
will also be written as Am,r.

- 11 -

mean number of clients at station m of type r, given population !s..
mean utilization for a client of type r at station m, given population !s..

There are two theorems on which the MV A-algorithm is based. First of all we have
Little's Formula [8]. This general applicable theorem gives us a simple relation
between the mean number of clients (N) waiting at a station, the mean throughput (A)
at that station and the mean amount of time (S) a client spends in the queue during a
visit

N = AS (3.1)

The second theorem (Reiser and Lavenberg [9]) is based on the product form of the
network. This arrival theorem can be stated as follows

A closed client of type r arriving at a station observes the system in the steady
state distribution with one client of type r removed.

For the open clients the arrival theorem is even easier:

An open client arriving at a station observes the system as if it is in equilibrium.

The arrival theorem can be used to obtain a relation between the sojourn times of the
systems with population !s.-!r and the system with population !s.. This implies an algo
rithm, recursive in the population vector !s..
To compute the performance characteristics for a system with popUlation K one has to
compute these characteristics for all populations !s. in the range from Q to K. This
leads to an exact algorithm (for BCMP-networks) for which we will describe how the
perfonnance characteristics can be computed in every iteration step. We consider the
iteration step for the system with population!s.. assuming that we've already performed
these steps for the system with populations !s.~!r' r = 1, .. ,R.

For all closed client types r (r = 1, .. ,R), and all stations m (m = 1, .. ,M) compute

R+L
1: Nm..s[!-£,-)wm + Wm • m = FCFS
s=]

R+L
Sm..r[!] = L Nm..s[!~]wm..r + wm.r • m = PS (3.2)

s=l

Wm•r , m=IS

- 12 -

kr
Ar[~] = """""M:-:----- (3.3)

L I m,r Sm,r [!]
m=l

(3.4)

The first equation is a consequence of the arrival theorem. The last two equations are
applications of Little's Formula. For a more detailed description see the appendix on
the theory of the MY A-algorithm.

For the open client types the situation is a little different. First of all the mean
throughput at the stations is constant, no matter how many closed clients there are in
the network. This throughput Am,r is defined as

Am.r = Arlm,r (3.5)

The arrival theorem for open clients doesn't imply a recursive algorithm, but in com
bination with Little's Formula it can be used to obtain the performance characteristics
for a system with population k, if these characteristics are known for the closed client
types. For the BC:M.P-networks the computations of the performance characteristics
are exact and can be obtained by solving the system of linear equations (3.6) and (3.7)

R+L

L NmA!]wm + Wm ,m = FCFS
s=l

R+L

Sm,,[!] = L Nm.s[!]Wm,r + Wm,r ,m = PS
s=1

, m =IS

(3.6)

(3.7)

So an iteration step of the MY A-algorithm consists of two parts. First the performance
characteristics for the closed clients for the system with population ! are computed,
using the characteristics (for closed and open clients) for the system with populations
!-!!r. r = 1, ... R.
After that the performance characteristics for the open clients for the system with
population ! can be obtained by solving a system of linear equations, where the

performance characteristics for the closed client types are assumed to be known.

Disadvantages of the MV A-algorithm are the great computational complexity and the
strong restrictions on the network for the computations to be exact.

3.3.1. Approximations for non-product form networks

Other workloads at a PCPS stations

If the workloads at a FCFS station depend on the type of client, the computations are
no longer exact. The simplest solution is to replace the workload in equation (3.2) by
the client type dependent workload. This leads to the following sojourn time for a
closed client of type r at such a FCFS station

R+L

Sm,r[~J = L Nm,s[!-~]wm,s + wm.r (3.8)
s=l

For the open client types an analogous formula can be obtained. This leads to an
approximation which is not too bad if the workloads do not differ too much.

It is also possible that the workload for a client at a FCFS station is not distributed
according to a negative exponential distribution. In that case the product fonn condi
tions aren't satisfied either. Now consider a client of type r arriving at the station. The
probability of finding a client of type s in service equals the utilization of this client
type s. This utilization Pm,s[!] is given by

Pm,s[!] = Am,r[!] wm,r (3.9)

The average amount of work th~t still has to be done for the client of type s, at the
moment of arrival of the type r client, is called the mean residual workload Rm,s' If
the workload would have an exponential distribution the mean residual workload Rm,s
would equal wm.,s' This is not the case for a non-expone!1tial distributed workload. It is
however possible to use an approximation for the mean residual workload, which
should be exact if the client of type r should arrive according to a Poisson process
(this is the so called PASTA property, Poisson Arrivals See Time Average). This
approximation is

2 2
crm,s + wm,s

Rm,s = --.;.;.;;,;;....-...;.;.;.;..:...
2wm•s

(3.10)

- 14 -

The formula for the sojourn time then becomes

(3.11)

For the open clients an analogous formula can be obtained. Note that we obtain for
mula (3.8) if the workloads are distributed according to an exponential distribution.

Priority scheduling at a FCFS station

If the station acts under a priority schedule, it is possible to approximate the sojourn
times by using the shadow approximation or the completion time approximation. For
the shadow approximation the network is transformed into a network where clients do
not have to wait for clients of a higher priority. The workloads however are adjusted
to slow down the progress of the clients. This transformed network satisfies the pro
duct form conditions. This is not the case if the CT A algorithm is used. This last
approximation however considers also the clients of a higher priority waiting in the
queue if a client arrives. Both approximations are based on a preemptive resume
schedule. For the computation of the sojourn times and a more detailed description
we refer to the appendix on the theory of the MVA-algorithm.

3.3.2. Reducing the complexity of the MV A-algorithm

A disadvantage of the MVA-algorithm is its computational complexity. For all popu
lations in the range from (0, .. ,0) to (K 1, .. ,KR) an iteration step has to be done. So the
total number of iterations is

(K 1 + I)(K2 + 1) ... (KR + 1) (3.12)

Especially for larger populations and more client types this will lead to a lot of com
putation time.
Schweitzer [10] suggested to replace the recursive algorithm by an iterative approxi
mation that computes the performance characteristics only for the maximum popula
tion K, because usually this is the population of interest. The approximation starts
with an initial guess for the performance characteristics of the system with population
K. These characteristics are then improved by iteration. In this iteration the equations
of the (last) iteration step of the MVA-algorithm are used. The approximation proves
to be fast in relation to the errors (about 5%).

A more accurate approximation method is a First Order Depth Improvement of the
Schweitzer algorithm, the Schweitzer-FODI algorithm. Instead of using the

- 15 -

Schweitzer algorithm for the system with population K, the Schweitzer algorithm is
used for the system with populations K - £T, r = 1, .. ,R. The approximated perfor
mance characteristics for these populations then can be used to perfonn the last step of
the MY A-algorithm. thus obtaining the perfonnance characteristics for the system
with population K. The computation time for this algorithm will be larger, because
there are R Schweitzer approximations, instead of 1. The errors however are reduced
to about 1%.

3.4. Row by row analysis

The row by row analysis can only be used for a closed queuing network, consisting of
two stations. As shown in the example of sections 2.3. and 2.4. a network with two
stations can always be obtained by a proper decomposition. So assume we have such a
network. In that case it is possible to transfonn the network so that a client leaving one
station always joins the other station. This type of network can be considered as a sin
gle queue, where one of the stations takes care of the arrival process, and the other of
the service process. By using the theory on single queues analyzing is possible. The
(iterative) algorithm based on this analysis is called the row by row algorithm (RBR
algorithm). The name of the algorithm refers to the fact that the client types are con
sidered one by one (or row by row). The algorithm was presented independently by
Brandwajn [2] and by Lazowska & Zahorjan [7].

The special fonn of the network is not the only difference between MY A-algorithm
and the RBR-algorithm. For the RBR-algorithm it is possible to use service rates
depending on the number of clients in the station. Furthennore the marginal probabil
ities can be obtained. The marginal probability Pm,r[k] is the probability that there are
k clients of type r at station m.
Finally we remark that the computations are exact if there is only one client type
(R = 1), otherwise the results are approximations.
For a more detailed description we refer to the appendix on the theory of the RBR
analysis.

3.4.1. Row by row with multi programming.

The RBR-algorithm can easily be adjusted so that it can be used if the number of
clients at one of the two stations is limited. The maximum number of clients allowed
at the station is called the multi programming level. Clients arriving at a full station
have to wait in a buffer.
In computer systems a multi programming level at the CPU is often used by the sys
tem manager, to improve the perfonnance of the system. Note that a multi program
ming level is only useful if the service rate depends on the population at the station,
otherwise it makes no difference if you are waiting in the queue or in the buffer.

- 16 -

The RBR-algorithm (with multi programming) is often used in the situation where the
stations are in fact aggregated parts of the network. The population dependent service
rates then can be obtained by computing the (population dependent) throughput in
those parts of the network (this can be done by e.g. the MV A-algorithm).

4. PET, Performance Evaluation Tool

4.1. Purpose of PET

To get some insight in the performance of a computer system, such a system is often
modeled as a queuing network, and then analyzed. The PET package is designed to
support both the modeling and analysis of the computer system, and it has already
proved to be a useful and time saving tool.
This Chapter is mainly an introduction to the PET package. For those who intend to
use PET, an introductory manual is added as an appendix, and for those who are
interested in the design of PET a more technical description is given in Chapter 6.

The PET package is intended for several situations in which performance evaluation
plays a role. Of course it can be used to model and analyze practical situations, but
PET is also a useful tool in evaluating newly developed heuristics and approximation
methods.

Therefore there will be also several kinds of users. PET can be used by students, so
they can learn how to model small computer systems, and what algorithms there are
available to analyze a model.
It can also be used by for instance computer system managers, for evaluating the per
formance of larger computer systems. An example of such a situation is described in
Chapter 5, where the V AX-cluster at the E.U.T. is modeled and analyzed.
And finally PET can be used by researchers in a theoretical environment, where it can
support the development of new analyzing methods, because these methods can be
tested against, and in combination with the already existing ones. In Chapter 6 we
will describe how such a newly developed algorithm can be added to the set of algo
rithms.

Because PET is intended for several kinds of users, it must be easy to learn and to use,
but it also has to be flexible and easy to extend. Therefore the design of PET is so
that:

It is easy to model a computer system, by specifying the components of the sys
tem. It is also easy to add, delete or replace such components.

It is easy to choose the algorithms that are used to analyze the model. It has to
be possible to replace these algorithms by other algorithms, without the need to
change the whole model. And it has to be easy to add new algorithms to the PET
package, and to use algorithms in combination with each other.

- 18 -

4.2. Decomposing models and algorithms

The starting point of PET is the hierarchical modeling approach. As described in
Chapter 2 it is possible to decompose a network into several "sub networks", the so
called components. Eventually these components are further decomposed into
smaller parts. The smallest component is called a station. Decomposition is a useful
modeling tool if the network is too big or complex to analyze it at once. Usually the
individual components of the decomposed queuing network are chosen in a way that
they are easy to analyze, and the results then can be combined to obtain results for the
whole network.

Because every component is analyzed separately there is a strong relation between the
way the network is decomposed, and the algorithms that are used to solve the model.
In fact one could say that the decomposition of the model also implies a decomposi
tion of the algorithm that analyzes the model. This observation forms the basis of the
design of the PET package. In the package each part of an algorithm that can be used
to analyze a component of a network is implemented in an individual module. These
modules are in fact individual programs, and they are only connected to eachother if
the user says so, when he defines how the model has to be solved. By implementing
PET as a set of individual modules we came to a flexible and easy to understand
software package.

4.3. The modules

In Chapter 3 we have discussed some algorithms that can be used to analyze a queuing
network model. We will first describe how the algorithms are decomposed, and what
modules there are available up till now. After that an example will illustrate how the
modules can be combined to solve a model.

First of all there are the algorithms based on the Mean Value Analysis. We intro
duced the MV A-algorithm, and two approximation methods: the Schweitzer approxi
mation, and the Schweitzer-FOOl approximation. These algorithms can solve a queu
ing network model consisting of one or more stations. For the stations, as well as for
the whole network, some parameters have to be specified, such as the workloads (for
each station) and the population (in the whole network) ..
A decomposition of these algorithms suggests itself. All three of the algorithms use
the same way of calculating the mean sojourn times for each part (i.e. each station) of
the network. Because it depends on the service discipline at a station how these
sojourn times are to be calculated, it is obvious that the computation of the sojourn
times is implemented in several individual modules. And it depends on the service
discipline at a station what module should be used for that station.
The computation of the mean queue lengths and the mean throughput rates however
can be implemented in a module for the whole network.

- 19 -

So for each of the three algorithms we implemented a module that computes the mean
queue lengths and the mean throughput rates for all stations in the network. For each
individual station however the computation of the mean sojourn times is done by a
"station level" module. Which module is used depends on the service discipline at that
station. one advantage of this approach is that all three algorithms can use the same
modules for the computation of the sojourn times. Another advantage is that it
becomes very easy to add modules for other service discipline.

Up till now the following modules, based on the Mean Value Analysis, are available:

model component

network
FCFS-station
PS-station
IS-station

modules available

mva, schweitzer. schweitzer-fodi
mva-station
mva-station
mva-station

FCFS-station with non expo mva-nonexp
distributed workloads
PR-PRIOR-station mva-prior-cta, mva-prior-shadow

Table 4.1. Available MVA-based modules.

For the algorithms based on the row by row (rbr) analysis the situation is analogous.
The two algorithms that we have discussed are the row by row algorithm, and the row
by row algorithm with multi programming. For both algorithms the mean service rates
for each of the two stations have to be known, so the computation of these service
rates can be done in an individual module. This leads to the following modules.

model component

network
FCFS-station
PS-station
IS-station

Table 42. Available RBR based modules.

modules available

rbr, rbr-multi-prog
rbr-station
rbr-station
rbr-station

As an example we will use the model of section 2.3 and 2.4., where a computer sys
tem consists of a computer with some terminals connected to it. The computer itself is
further specified as a CPU with two disks. The terminals are modeled as a single IS
station, the CPU has a PS service discipline, and the disks use a FCFS discipline. The
model tree for this network represents the way it is decomposed. In section 2.4. the
following decomposition was presented.

- 20-

figure 4.1. model tree oj a queuing network model

Suppose we want to use the RBR-algorithm to analyze the modeL It is possible to use
this algorithm because there are only closed clients. and the model consists of two sta
tions (Comp and T). For both stations the service rates (for all populations) have to be
available.
One way of obtaining these values for the Comp station is by using the MV A
algorithm to analyze the computer part of the network. The results of this analysis
then can be used as input for the row by row algorithm. The algorithm tree for this
way of solving the model is depicted in the following figure.

- 21 -

figure 4.2. algorithm tree/or the queuing network model

The relation between the model tree and the algorithm tree is obvious. Every node of
the model tree corresponds with a node of the algorithm tree. In fact one could say
that there is only one tree, defining the model and the algorithms used to solve it. The
nodes of this model and algorithm tree are the so called processes. and the model and
algorithm tree is called the process tree.

It is clear that it is easy to replace an algorithm (or part of an algorithm) by another
one, simply by replacing a process. One could for instance propose to use a priority
station at the CPU (replace mva-station by e.g. mva-prior-cta), or to use a multi pro
gramming level at the computer (replace rbr by rbr-multi-prog). Also the addition or
deletion of a station is no problem, because it is easy to add or delete a process.
Furthermore it is very easy to specify a station in more detail. If for instance the disks
are further decomposed, the only thing you have to do is to replace the process for the
disk station by a process with some subordinate processes.

How the modeling and analyzing with the PET package is done will be described in
the next paragraph.

4.4. How to use the PET package

One can distinguish three phases when using the PET package. These phases are dep
icted in figure 4.3.

- 22-

define model
and algorithm

tree

set parameters

compute
results

evaluate
results

figure 4.3. The three phases when using PET

4.4.1. Defining the process tree

The first phase of defining the process tree (the model and algorithm tree) is very
important. In fact this is the phase where the computer system is modeled. Here one
has to decide how to decompose the model, and what algorithms one wants to use to
solve the model. Of course it is, during the analysis of the model, always possible to
change the model and algorithm tree by replacipg the processes (i.e. replacing algo
rithms), by further specifying a station, or by adding or deleting a station (add or
delete one or more processes).

A process of the model and algorithm tree can be defined by specifying its place in
the process tree, its name and the program it uses. First the place of the process has to
be given by specifying its parent. After that the name of the process is asked. This
name refers to the part of the network the process stands for. In figure 4.1 for example,
the names as given in the model tree can be used as names for the processes.
Finally the name of (a part of) an algorithm is asked. Here one has the choice between

- 23-

the modules available in the PET package. They are listed in the tables given in the
section about the modules. The program permits only those modules that technically
fit at that place of the model tree (by checking the input of the module against the out
put of the ones connected to it and vice versa). Usually these are the only modules
that make sense.

One process is always present, because there has to be a parent available if the user
starts defining the process tree. This process is called the root, because it forms the
root of the model and algorithm tree.
So the parent of the process network of the example of figure 4.1 is the root.
The processes with the same parent are the so called slaves of that parent. So the
slaves of the process network are T and Camp.

4.4.2. Setting the parameters

After defining the process tree the parameters of the different processes have to be set.
Every process has its own parameters to be set. Usually it is obvious which parame
ters "belong" to which process. For the process root for instance, the number of clients
for the closed client types and the arrival rates for the open client types have to be
specified, while at station level for example one has to specify the mean workloads.
The order in which the processes are passed through doesn't maner, because the
modules do not "know" yet that they are connected to each other (although the
number of slaves usually has to be known).

A special kind of parameters are the options. These parameters already have a default
value, but they can be reset by the user during the setting of the other parameters.
Options never contain parameters of the network model, but they are used for instance
to set the way of reporting, the number of iterations, the rate of convergence, etc.

4.4.3. Computing the results '

If the model and algorithm tree is defined in a proper way, and if all parameters are
set, it is possible to compute some results. For the user this means that he has to give
the compute command, and then sit back and wait until the computation is finished.
After that he can ask each process to report its results. Usually the results are also
written to a file, called processname.report.

The computation uses the structure of the algorithm tree. Remember that the processes
(the nodes) of this tree are implemented as individual programs. Such a process is
started (i.e starts computing) only if the parent of that process asks the process for
results. The computation therefore is as follows. First the process root is started. This
process asks his slave for results, so the slave process is started. At the moment that
this slave also needs results from his slave(s), those processes are started, etc. In this

- 24-

way the algorithm tree is passed through from the top (root) to the bottom (stations).
A more detailed description of the computation is given in Chapter 6, where we take a
closer look at the PET package.

4.4.4. Other facilities

In the previous paragraphs we discussed how to model and analyze a computer system
with the PET package, by defining the model, setting the parameters and computing
the results. Of course one can also show, save and print the input parameters and the
results, but that are not the only facilities of the package. It is for instance possible to
show the times spend with computing and transporting data. One can also edit the
parameters of the model or a process, instead of setting the parameters by answering
the questions of the computer. And some help can be obtained if one needs it.
We are also working on a facility that will give some information on the complexity
of (a part of) an algorithm, so one doesn't need to do some computations to find out
what this complexity will be.

Of course there's still a lot to be done to improve the PET package, but we think
we've provided a good basis with enough facilities that can be used as a starting point
of a useful software package.

- 25-

S. The V AX-cluster at the E.U.T., a case study

5.1. Purpose of this case study

A substantial phase in the development of a software package is the testing phase.
The first tests for the PET package consisted of only very small problems, because
these were the only problems we could check by recalculation of the results with pen
and paper. These tests however had some important disadvantages. First of all the
models were not realistic, so we didn't know what troubles there would be if a more
realistic situation had to be modeled and analyzed.
It was also unknown how fast PET should be if bigger problems had to be solved. Par
ticularly this question was very interesting, since we didn't have any experience with
a software package where several programs are running at the same time and where
the exchange of data between the programs is done via the system I/O channels.
Therefore we decided to analyze a bigger and more realistic situation to test the PET
package.

The problem we have chosen concerns the V AX-cluster at the Eindhoven University
of Technology. For this computer network a decision support system, called V AMP
is developed that can be used by the system manager to get some insight in the perfor
mance of the cluster. The decision support system also uses a queuing network to
model the computer system. Therefore this problem is very suitable as a test problem
for the PET package, because for this problem it is possible to compare the results and
computation time with the results and computation time obtained with the especially
for this problem designed decision support system. For a more detailed description of
VAMP we refer to the master's theses of De Orient Dreux [3] (in dutch) and Hoogen
doorn[4]. and a memorandum about this subject [5J.

We will first describe the V AX cluster and the decision support system VAMP, before
we discuss how the PET package has "passed" the test.

5.2. Description of the V AX cluster

The V AX cluster is a computer network consisting of three V AX computers, nine disk
units. and several terminals. It can be modeled as a qU6uing network in a similar way
as the example described in sections 2.3 and 2.4. The model is depicted in figure 5.1.

The terminals are modeled as a single IS-station, at the V AXes there's a priority
scheduling (that will be discussed later), and the disks use a FCFS service discipline.
The workloads at the disks however do not satisfy an exponential distribution, because
during the observation of the disk units it turned out that the variances of the work
loads would be too large if we should use exponential distributed workloads. There
fore the variances are taken three times as small as the average workload to obtain a
more realistic model.

- 26-

figure 5.1. The V AX cluster modeled as a queuing network

There are two kinds of jobs: the batch jobs and the interactive jobs. The interactive
jobs are generated by (the users at) the terminals, while the batch jobs are started by
the V AXes. A job is always assigned to one of the V AXes, so after a "visit" to a disk
the job will either be finished, or it will "visit" the same VAX as it did before the visit
to the disk.
Therefore its easiest to distinguish six different client types. For each V AX we have
two client types: the batch jobs and the interactive jobs, where at a V AX station the
interactive clients have a higher priority than the batch clients.
A batch job only visits the V AXes and the disks. If such a job is finished, a new job of
the same type is immediately generated, so the number of batch jobs stays the same.
If an interactive job is finished, the user who generated the job at one of the terminals
starts to generate a new job. The time it takes to generate this job (the thinking time of
the user) can be modeled as the time an interactive job spends at the terminal. In that
case also the number of interactive jobs is constant. This makes it possible to model
the computer system as a closed queuing network.

5.3. The decision support system for the V AX cluster

The decision support system (V AMP) for the V AX cluster is especially made for the
analysis of networks, as the one described in the previous paragraph. System
managers of a V AX cluster could use it to obtain useful information if decisions are to
be made. Therefore V AMP has to be very easy to understand, and it must not bother
the user with questions like how to model the system, which algorithm is suitable, etc.
So the user interface, taking care of the input as well as the output, is an important
part of V AMP.

- 27-

Another part of V AMP is the part that collects all data, such as the mean workloads,
the relative visiting frequencies, the population, etc. Most of these values are obtained
by observing the system for a certain period (days, months) and measuring the charac
teristics of interest (number of users, workloads, etc). Collecting all values that are
needed usually turns out to be a difficult and time-consuming job.

If all parameters are available, it is possible to compute some results. As the users of
V AMP are likely to be unfamiliar with the algorithms that can be used, it seems favor
able to choose an algorithm with a reasonable computation time, and with acceptable
errors. Here the Schweitzer-FOOl approximation is used for this computation, because
the MV A-algorithm for bigger problems usually costs too much computation time,
and the accuracy of the ordinary Schweitzer approximation is not good enough.

5.4. Using PET to analyze the V AX cluster

As described in Chapter 4, there are three phases one can distinguish while using PET:
defining the process tree, setting the parameters and computing the results. We will
shortly discuss the problems that arose during each of these phases. After that some
general remarks are made.

5.4.1. The process tree for the V AX cluster

Since the whole model is analyzed with the Schweitzer-FOOl algorithm, the network
has to be "decomposed" as depicted in the process tree (figure 5.2). For the network
the Schweitzer-FOOl module has to be used, for the terminal station the mva-station
module, for the V AXes the mva-prior-shadow module (although mva-prior-cta is also
possible) and for the disks the mva-nonexp module.

Here the first problems of a big model arose.

Although the disks are all identical and use the same program, they have to be
modeled as nine different processes, which means that the user has to type in the same
values several times. For nine disks however this is still a lot faster than writing your
own program.

A more serious problem arose when the computation aborted because there where too
many programs running. Actually the number of programs still was allowed. but the
number of I/O channels exceeded the maximum number. Fortunately we could over
come this problem by changing some parameters of the operating system that ran the
PET package. Still the maximum number of I/O channels. or the maximum number of
programs that can run at the same time, is a strong restriction on the size of the prob
lems. Especially because these numbers strongly depend on the machine that is used
to run PET, and on the way the operating system on that machine is initialized.

- 28 -

mva-station mva-prior-shadow mva-nonexp

figure 52. Process tree of the VAX cluster.

Besides these problems there are also some advantages of using the PET package
instead of VAMP. It is for instance very easy to compare different algorithms, like
the MVA-algorithm, the Schweitzer algorithm and Schweitzer-FODI, simply by
replacing the program schweitzer-fodi of the process network by mva or schweitzer.
In this way it is possible to compare the speed and the accuracy of the algorithms and
to decide which program is suited best.

It is also no problem to add or delete a disk or a V AX, or even another kind of station.
This last possibility is very difficult to realize if V AMP should be used.

5.4.2. Setting the parameters of the V AX cluster

The parameters as collected by V AMP. were essentially. the same as the ones we used
for our Schweitzer-FODI algorithm. We only had to adjust some values by multiply
ing them with each other because the formulation of the algorithm used by VAMP
was slightly different from the one used by the PET package.
We adjusted and typed in the parameters ourselves, since the number of test problems
was too small to consider other ways of entering the input data.
However it should have been possible to transform the input file as generated by
V AMP into an input file suitable for PET, because PET uses very simple input files.

- 29-

5.4.3. Computing the results for the V AX cluster

The computation time of the general applicable PET package was expected to be
larger as the computation time of the special for this purpose designed VAl\.1P pack
age. In fact in literature a factor 10 is mentioned to be fully normal. But as we started
the computation we had to wait for several minutes before the Schweitzer-FODI algo
rithm was finished.
IT V Al\.1P is used, the results are almost immediately available, so for the V AMP
package the computation time is neglectable.
A first cause of this very long computation time can be found in the speed of the
machine on which the PET package was running. So it was decided to transpon the
package from the V AX, on which it was developed to another machine: the SUN. This
SUN proved to be about three times as fast as the V AX. Another advantage of tran
sporting the package was the reduced influence of other users.

Still the computation time was too long compared with the computation time of
V Al\.1P. To find out where improvements had to be made we measured the time every
process spent with computing and the time it was busy doing system calls (mainly I/O
time because of the exchange of data). Remember that the PET package has the pos
sibility of showing these times. It turned out that the I/O times were the main reason
for the long computation time. Therefore we took a closer look at the data communi
cation. For sending only one series of data an I/O channel had to be used six times.
For instance the name of the data had to be send, just as the type of data, the number
of records and the data itself. By sending some of these messages as one "aggregated"
message, instead of one by one, the number of times an I/O channel had to be opened,
could be reduced to three.
An example of the output that is generated if one asks PET for the computation times
if given in the following table. Here the process monitor is the process that takes care
of the exchanging of data between the programs mutually, and between the programs
and the user. In fact it is a kind of traffic manager. User refers to the time the pro
gram is computing, and sys refers to the time the system (the SUN) performs system
calls (mainly I/O time).

- 30-

6 messages 3 messages
process

user sys user sys

monitor 2.47 23.05 1.55 14.97
root 0.03 0.13 0.03 0.17

network 2.58 13.82 2.27 7.25
vax 1 0.23 0.57 0.17 0.53
vax2 0.17 0.55 0.22 0.38
vax3 0.22 0.67 0.17 0.47
diskl 0.18 1.37 0.15 1.07
disk2 0.27 1.28 0.48 1.17
disk3 0.43 1.65 0.42 0.82
disk4 0.27 1.55 0.28 0.88
disk5 0.17 1.47 0.42 0.95
disk6 0.33 1.93 0.13 1.07
disk7 0.35 1.52 0.28 1.08
disk8 0.05 0.15 0.02 0.13
disk9 0.07 0.67 0.07 0.48
term 0.22 1.43 0.23 0.92

total 8.04 51.81 6.89 32.34

Table 5.1. Computation times as reported by the old and by the
adjusted PET package.

From the table of computation times we learn that by halving the number of messages
the system times (liD times) are also (nearly) halved. Still these 1/0 times form the
main pan of computation times. Furthermore we see that, especially for the smaller
values, the computation times are not very accurate, since one should expect the user
times almost to be equal for twice solving the problem with the same programs.
However the computation times, as reported by the system, are not very accurate and
besides they depend strongly on the number of users, etc. So the differences, as found
in table 5.1., are fully normal.

So by two simple actions, namely transporting PET to another machine and adjusting
the way of exchanging data between the programs, the computation time could be
reduced by about a factor 6.

We expect to improve this computation time even further in the future. It is for exam
ple possible to reduce the actual computation time (the user time in the table). This
can be done by leaving out some checks that are made during the execution of an
algorithm (for instance all vector indices are tested if they are valid). Of course dur
ing the development of a new module these tests can be very usefuL

- 31 -

We think that it is also possible to reduce the computation time considerably by using
the same memory for each module (shared memory). In that case the I/O channels are
no longer necessary. This however would involve a major redesign of the way data
communication is handled in the PET package.

50S. Conclusions of the case study

Testing PET with a bigger problem has proved to be a necessary and useful phase of
the development of the PET package. First of all we found out that the size of the
problem gave some troubles, and that the computation time was far too long. We
adjusted PET so that the modeling of larger problems is possible now, but still the size
of the model can be a restriction on the possibilities of PET. We also reduced the
computation time, but we think that some more improvements can be and have to be
made to achieve a more satisfying response time.

Also the user interface of the PET package is not what one should want it to be.
Maybe the improvement of this user interface could be the next phase in the develop
ment of the PET package.

What's more important is that PET proved to be the tool it was meant for. If VAMP
should be still in development, then PET could be used to test several algorithms. If a
part of an algorithm was not available, then only that part had to be made, and added
to the set of algorithms. In fact we did so ourselves by replacing the mva-nonexp
module by a module that calculated the residual workloads by using the special form
of the variances of the workloads (see the description of the V AX cluster). But PET
could not only be used for the development of the V AMP package. It could also easily
replace the part of the V AMP package where the calculations are done (especially if
the computation time is further reduced).

- 32 -

6. PET in more detail
In this Chapter a more technical description of the PET package will be presented. It
is mainly intended for those readers who want to write their own modules, or who are
interested in the way things are arranged in PET.
For those who are only interested in how to use the PET package, the description of
PET of Chapter 4 will do.

In the following sections we will describe the contents of a module and the data flow
in more detail, but first some general information about PET is given.

We chose to develop PET in a Unix environment, because Unix is an operating sys
tem that is well suited for developing new software packages. It also allows more pro
grams (called processes in Unix language) to run simultaneously.
Since Unix is written in the programming language C, it is obvious that the support of
this language by Unix is on a high leveL Therefore we chose to write the modules in
C. However, it is also possible to use other programming languages to write one or
more modules.

6.1. Description of a module

In a module (a part of) an algorithm is implemented. Although such an algorithm is
compiled to an individual program, it has to be possible for other algorithms to use the
results of this algorithm. And the algorithm itself may also ask another algorithm for
results.
Therefore some things have to be the same for all modules, such as the names of the
parameters, the way of communicating with other modules, the names of some func
tions in the module, etc.
In this section we will describe what a module should look like.

A module consists of two files: the name.cap file and the name.c file. Here name
refers to the name of the module, cap stands for capability (what results can be com
puted, etc) and the extension C is always used for a source file written in the program
ming language C. These two files are now discussed in more detail.

6.1.1. The name.cap file

In this file some information about the relation of the module with the outer world is
given. This information mainly consists of the parameters the module needs as input,
and the results it can deliver. As an example we consider the mva module for which
the input parameters are given in the following table. We refer to the glossary of nota
tions (or Chapter 3) for the meaning of the symbols.

- 33-

from master from slave from user

R,L Sm.rL~J fm,r
(K b .. ,KR)
Ab .. ,AL

Table 6.1. Input parameters for the mva module.

The output parameters can be listed in the same way as the input parameters.
The mva.cap file, as given in figure 6.1, contains these input and output parameters
also, but now the standard names for the parameters are used. For example nrclosed
refers to the number of closed client types R, and visitfreqstattype is the name of the
matrix of visiting frequencies fm.r> for m = 1, .. ,M and for r = 1, .. ,R +L.
The names of all parameters are listed in a special file, and each module has to use
these names, so that the different programs can communicate with each other.

In this mva.cap file the words fm, tm, fs, ts and fu stand for from master, to master, to
slave, from slave and from user. The word ns is an abbreviation for the number of
slaves.

~ 34-

mva.cap

fm nrc10sed fl_complexitylfl_compute
fm nropen fl_complexitylfl._compute
fm popc1osed fl_complexitylfl._compute
fm arrivalrateopen fl_complexitylfl_compute

tm truputpoptype fl_compute
tm complexity fl_complexity

ts nrc10sed
ts nropen
ts arrivalrateopen
ts queuelengthtype
ts truputc10sed
ts visitfreqtype
ts clienttype

fs responstime,truputtype

fu visi tfreq stattype

ns >0

figure 6.1. The mva.cap file.

One has to specify if the parameters are used in the computation (add fl_compute), or
if the data are used for complexity calculations (add fl_complexity), or both. If a zero
is specified for the to-master data, then these data are assumed to be available without
calculation. If two parameter names are separated by a comma then only one of them
has to be available.

The data flow as given in the name. cap file can be depicted as follows.

- 35 -

~8 ...c;<<-----

from master lito master

fromuser 8)II

user

user process
<

user

to slave 1 1 from slave

...c;<<---->-- 8
figure 6.2. dataflow for a process.

In the name. cap file also the restriction on the number of slaves has to be specified.
For the mva module for example the number of slaves (ns) has to be positive (ns > 0).

The name. cap file is used by the PET package to check if the input and output of the
process corresponds with the input and output of the master and slave processes. Also
the number of slaves can be checked.

The name.cap file is also transformed into a table of messages, called the name.h file.
This file has to be a part of the source file (the name.c file), because also the program
has to know the names of the input and output parameters. This can be done by
including the name.h file in the name.c file (see next section). The h is an extension
that is used for files that are included in source files written in C.
For the modules written in C a'special program, called msgtables, is available for
transforming the name. cap file into the name.h file. One only has to type in

msgtables <name. cap >name.h

Especially for the builder of a new module the name. cap files of the already existing
modules are very imponant. Because if he wants his module to cooperate with the
other modules, then the input and output of data should match. This is easily checked
by comparing the name.cap files.

- 36-

6.1.2. The name.c file

The name.c file consists of the name.h file and some standard functions. Therefore the
framework of the name.c file will always look like this.

#include name.h

start_up 0
{ ... }

ask_userO
{ ... }

show_userO
{ ... }

saveO
{ ... }

complexityO
{ ... }

computeO
{ ... }

rep on 0
{ ... }

figure 6.3. Framework o/the name.cfiie o/a module.

The start_upO function is invoked only once, when the process starts running. Usu
ally this is before the first time the parameters are set. It provides the process with its
number of slaves, and it can also be used to initialize and check some things.

The ask_userO function asks the user for the panmeterS it needs from the user. These
parameters can be typed in by the user or they can be written from an input file. These
parameters should not be modified during the computation.

Show _userO shows the parameters as given by the user.

SaveO has the same output as show_userO, but now the parameters are written to a
file. This file can be used as input file for the ask_userO function, simply by typing
<filename.

- 37-

ComplexityO calculates the complexity of the algorithm.

The computeO function is the most important function. Here the calculation is done
for which the module is written. This function may use the functions message(..) and
request(..) to send information to its slaves and to ask for results from its slaves. This
way of exchanging data will be discussed in the next section.

Finally the reportO function can be used to report the results obtained while comput
ing.

Of course the user may add some more functions if he wants to. But the functions
listed above always have to be present.
Therefore it is easiest to take an already existing module as a starting point for a new
one, because all function names are present and in most cases also the contents of the
functions doesn't have to be changed that much.

6.2. Data flow

6.2.1. The monitor

Since each part of an algorithm is implemented in an individual module, the exchange
of data has to be done via the liD-channels of the operating system the PET package
runs on. In our case this is the Unix system. A program can write some data to such a
channel. These data are placed in a buffer. Another (or the same) program reads the
data from the buffer in the order they were written to it (first in first out). The operat
ing system takes care of all this.

One can think of the I/O channels as the arrows as depicted in figure 6.2, but this is
not exactly the way these channels are used. To save on the number of channels and to
simplify the exchanging of data, all data transport is done via a sort of traffic manager:
the monitor. So the situation of figure 6.2 can be depicted as:

- 38 -

"'8 master
"'oEe---

user "'8 process
"'"<e---

monitor

... c:e-__)Io_ 8
figure 6.4. All data exchange goes via the monitor.

Directing the data flows is only one of the tasks of the monitor. Some other tasks are:

Let the user build the process tree, and memorize all the information about this
tree. Also check if the algorithms in the tree do match.

Let the user set the parameters, and check if the parameters for all processes are
set if the computation starts.

Start the computation, and take care of the communication of the processes dur
ing that computation.

Supply each process with its number of slaves.

Some examples of how information is exchanged between the user and the processes,
and between the processes in the process tree, are discussed in the following two para
graphs.

6.2.2. Communication between the user and a process

IT the user defines the process tree, then this information is memorized by the monitor.
It is also the monitor who checks if the algorithms fit in. the tree by comparing the dif-
ferent name. cap files. -
IT the user asks to show the model then the monitor will show what the process tree
looks like. So in the defining phase it is not necessary for the processes to run.

IT the user wants to set the parameters of a process however, he (or she) has to com
municate with that process. This is done in the following way. First the user has to tell
the monitor for which process he wants to set the parameters. Then the monitor
checks if the process is already running. IT this is not the case, the process is started,

- 39-

and the start_upO function is called.
Now that the process is running, it is possible to start the ask_userO function of the
process. This function asks the user to type in all parameters that the process needs
from the user. It is not possible to set only some of the parameters of the process,
because the ask_userO function has to tell the monitor if the setting was successful, so
the monitor will know that it is possible to use the show _userO, saveO or computeO
function of that process.
If the user wants to see the parameters of a process, he first has to specify the name of
the process to the monitor, and the monitor then starts the show_userO function of that
process. The saving and reporting is done in a similar way.

In the computation phase the processes have to communicate with each other, instead
of communicate with the user. In the next section this type of communication will be
discussed.

6.2.3. Communication between the processes

If the user tells the monitor to start the computation, then the monitor starts the com
puteO function of the root process. This root process will tell its slaves (via the moni
tor of course) when they have to start their part of the computation. These slaves can
do the same thing with their slaves, etc. So by starting the computation at the root, the
whole model will be solved, because each process can tell each of its slaves to start
computing the results for the part of the network such a slave represents.
Because of the special structure of the process tree (each process has only one parent,
and cycles are impossible), and because of the fact that a process can only ask results
from its slaves. processes will never wait for eachother or something like that. So if
the computeO functions are implemented correctly, the model will always be solved.

There are two functions a process can use to communicate with its slaves. These
functions can only appear in the computeO part of the module. They are the mes
sage(..) function and the requestG.} function. The message(..) function is used to give
the slave process the data it needs for his computation, and the request(.. } function is
used to ask the slave for some kind of data. If these data are not available, and if the
module has all the parameter values to compute the requested data, then the computeO
function of the slave process is started to calculate the requested data. Note that the
request(..) function is the only function that can start a computeO function (besides the
monitor, who can start the computeO function of the root).
The use of the message(..} and request(..) functions during a computation are depicted
in figure 6.5.

1. send data, needed
for computation

2. ask slave
for result

- 40-

slave computes
- - - - - - - - - -> requested data

3. slave
sends result

figure 6.5. Asking a slave/or information during a computation.

Note that the dashed arrow of figure 6.5 indicates the time that slave process is com
puting. Also note that the figure suggests that a process is "talking" directly to its
slave. This however is always done via the monitor.

- 41 -

7. Summary, conclusions and suggestions

7.1. Summary and conclusions

In the first Chapter of this thesis PET (Performance Evaluation Tool) is introduced as
a software package that can be used to obtain some information about the perfor
mance of a computer system.
The package is designed to support both the modeling of practical situations as well as
the evaluation of new approximation methods.

To model a computer system PET uses queuing network models. One way of investi
gating such a model is by decomposing it into smaller components that can be
analyzed separately. The results of this analysis then can be combined to obtain
results for larger components, and finally for the whole network.
The decomposition of the model also implies a decomposition of the algorithm, with
components (implemented in modules) that can analyze a part of the network.
This hierarchical modeling and analyzing approach forms the starting point of the
design of the PET package.

The basic characteristic of PET is that it consists of a library of individual modules.
Each module can be seen as an algorithm component. So the user may build his own
algorithm by using these components. He may even write his own components.

An initial implementation of the PET package was developed by Koopman [6] . We
continued this development by adding some new modules to the library and by adjust
ing the other modules, so that also open client types are allowed in the queuing net
work modeL
Furthermore we added the name. cap file to each module. These files can be used if
information about the data flow has to be available.

Of course we also tested the PET package. One of these tests concerned the V AX
cluster at the Eindhoven University of Technology. This test was particularly interest
ing because it was the first time we had to solve a big and realistic model. There
appeared to be some problems, especially about the computation time, but the PET
package also offered some possibilities that facilitated the modeling and analyzing of
the problem. The results of this test are given in Chapter 5, where it is concluded that
PET proves to be the package it is designed for.

From the other chapters the second Chapter is used to describe the queuing network
model. and how it can be decomposed, and in Chapter 3 some algorithms are
presented. A more detailed description of the theory for these algorithms can be found
in Appendix A.

Chapter 4 is where the PET package is described. This section is mainly a global

- 42-

introduction to PET, and it gives some information about how the package can be
used. A more technical description, for those users who want to build their own
modules, is given in Chapter 6. And an introductory manual is added as an appendix.

We note that the use of PET is not restricted to the performance evaluation of com
puter systems only. It is also very easy to analyze other situations that can be modeled
as a queuing network. It is even possible analyze problems that have a tree structured
model, and that can be analyzed in an hierarchical way, by creating a new module
library for such problems.

Of course there is still a lot to be done, but we think we have provided a useful, flexi
ble and time saving tool, that will help several kinds of users to solve various kinds of
problems.

7.2. Suggestions for further development

The library of modules is still very modest. It is for example only possible to build
process trees up to three levels in height. Therefore this library should be extended.
Here we can think of aggregation/disaggregation methods, or a module that
represents a number of identical stations, etc. Maybe it is also possible to build a
simulation module, so that the results of a mathematical analysis can be compared
with the results of a simulation.

As we noted in the analysis of the V AX cluster (Chapter 5) the performance of PET is
not yet what one should want it to be. There are several suggestions to improve this
performance. One possibility is to use shared memory (all modules use the same
memory). In that case the VO channels are no longer necessary.
Another suggestion is to let the processes communicate directly with each other
instead of via the monitor. This would halve the I/O time, but a lot of complex
arrangements have to be made to realize this kind of communication.
One could also consider to let a process ask for results from one of its slaves, even
before it has received an answer from another slave. In that way the processes can do
their computations simultaneously. We presume however that this will only improve
the performance of PET if the computations are 9.one on different machines.

Especially the user interface needs some improvement. For example it would be very
nice if the process tree could be shown in a graphical way. Maybe it is even possible
to let the user define a queuing network by "drawing" it, without the need to know that
there is also a tree representation of the model.
Also a the setting of the parameters should be improved. Up till now it is not possible
to set only some of the parameters of a module (or you have to edit a file that can be
used as input file). It is also unpleasant that the modules know nothing about the
parameters of the other modules. Especially the parameters that define the size of the

- 43-

model (and thus the number of other parameters) should be available for the other
modules.

Our last suggestion is about the output of the modules. Up till now the results are
reported per module, and one has only little influence in the way the output is gen
erated. In some cases however one would like to be able to combine results of one or
more processes to obtain new results. Therefore we think of some kind of report
writer, that will read its infonnation from the processes, and that will report the things,
like tables and maybe even graphics, the user wants to see.

- 44-

Appendix A: Theory

1. Definitions and notations for a queuing network

We will first summarize the parameters that are used to describe a queuing network,
and the penormance characteristics we are interested in.
After that the Mean Value Analysis and the Row By Row analysis are discussed.

1.1. The parameters of a queuing network

In Chapter 2 we have introduced the parameters that describe a queuing network
model. We will first summarize these parameters.

The number of stations will be denoted by M. The service discipline at a station can
be one of the following: First Come First Served (FCFS), Processor Sharing (PS),
Infinite Server (IS) or Preemptive Resume Priority scheduling.
The amount of work a client of type r offers at station m, the workload. will be
denoted by wm,r (or by Wm • if the workload does not depend on the client type).

For the closed clients we have

fm.r

The number of closed client types.
The maximum population in the network in vector notation. where Kr
denotes the number of closed clients of type r. This vector is also
denoted as K.
The mean number of visits to station m during a cycle for a client of
type r (r = 1, .. ,R). This number is also called the relative visiting fre
quency. since the magnitude of the visiting frequencies depends on
the choice of the cycle.

And for the open clients

The number of open client types.
The arrival rates for the open client types
The mean total number of visits to station m for an open client of type
r (r = R + 1, .. ,R +L) during the time this client is in the network.

Maybe the visiting frequencies are known, but it is also possible to calculate them if
the transition probabilities are known. These probabilities are defined as

p~

r
Pm,n

- 45- Appendix A: Theory

The probability that an open client of type r joins station m when he
arrives at the network.
The probability that a client of type r joins station n after leaving sta
tion m.

To obtain the visiting frequencies for a closed client of type r we have to solve the fol
lowing system of linear equations

M

fm,r = l:fn,rP~.m m = l, .. ,M
n=l

with the additional constraint (where C is some constant)

M

l:fm.r = C
m=l

By choosing C the visiting frequencies and the cycle are defined.
For an open client of type r, the following system has to be solved

M

fm,r = ArP'm + l:fn.rp~,m m = I, .. ,M
n=l

1.2. Performance characteristics for a queuing network

(A.I)

(A.2)

(A.3)

In Chapter 3 we introduced some performance characteristics. The characteristics we
will use in the algorithms to be discussed are

mean time a client of type r spends in the queue during a visit at station m,
given population k. This time is also called the sojourn time.
mean throughput rate in the network, measured in cycles per unit of time,
for a closed client of type r, given population !.
mean throughput rate at station m for clients of type r, given population k.
For open clients (r = R + l, .. ,R +L) this throughput rate is independent of the
population, and will also be written as Am,r.
mean number of clients at station m of type r, given population If::

- 46- Appendix A: Theory

mean utilization for a client of type r at station m, given population !. The
mean utilization can be calculated as the product of the mean throughput
rate and the average workload. Again, for the open client types
(r = R + 1, .. ,R +L) this utilization is population independent, and will also be
written as Pm,r.

For the open client types the mean throughput rate Am,r and the utilization Pm,r can
immediately be obtained

(A.4)

Pm,r = Am,r Wm,r (A.5)

This means that it is possible to detect if the system can handle the open clients even
before the computation of the performance characteristics is started. We denote the
total utilization of open clients at station m by Pm. with

R+L

Pm= L Pm,r
r=R+l

(A. 6)

This utilization can also be seen as the mean number of open clients in service at the
station. So the open clients arrive faster than they can be served if this total utilization
is greater than or equal to the number of servers at the station.

- 47 - Appendix A: Theory

2. Mean Value Analysis

One way of analyzing a queuing network model is by using Mean Value Analysis
(MV A). This analysis gives us some relations between the mean values of the perfor
mance characteristics of the network, such as mean queue lengths, mean sojourn
times, mean throughputs, etc.

The algorithm that is based on the Mean Value Analysis is called the MVA-algorithm.
In this section we will shortly discuss some theoretical aspects of this algorithm.

2.1. MV A-algorithm

The MVA-algorithm is based on two theorems. First we have Little's Formula (Little
[8]), which gives us a relation between the mean number of clients (N), the mean
sojourn time (S) and the mean throughput (A)

N = AS (A.7)

Secondly we have the arrival theorem (Reiser and Lavenberg [9]) for BCMP-networks
(a class of product form networks, refer Baskett, Chandy, Muntz and Palacios [1]),
which we will use in the following form

In a system with population 1£ a closed client of type r arriving at a station
observes an average number of clients waiting in the queue which equals the
mean number of clients at that station in equilibrium for a system with popula
tion!-~.
For an open client the average number of clients at an arrival instant equals the
mean number of clients at that station in equilibrium for a system with popula
tion k.

The arrival theorem leads to an algorithm, recursive in the population vector !.:

- 48- Appendix A: Theory

MV A-algorithm

For all populations k in the range from 0 to K, compute the performance
characteristics in the following way

For the closed client types

Sm"t~J = f (the characteristics of the system with populations !-!,,)

k,
A,[!] = -M,...,.----

L. fm., SmA!]
m=l

Am ,[k] = fm, A,[k] , - , -

And for the open client types solve for every station the system

SmA!] = f (the characteristics of the system with population!)

(A8)

(A9)

(A 10)

(All)

(AI2)

(AI3)

Note that the performance characteristics for the closed clients have to be calculated
first, because these characteristics are needed in the calculation of the performance
characteristics for the open client types.
It is also necessary that the iteration steps for populations !-!" (r = 1, .. ,R) are done
before the beginning of the iteration step for population!. One way of ensuring this is
to pass through the populations in a lexicographical order, starting of course with
population Q. This and other enumerations are cijscussed by Wijbrands [13].

We will now discuss the iteration step of the MVA-algorithm as described by (A8) -
(A. 13) in more detail.

Equations (A8) and (AI2) indicate that the mean sojourn time is a function of the
other performance characteristics. The computation of this sojourn time is based on
the arrival theorem. How the sojourn time can be obtained depends on the service dis
cipline at the station and will be discussed in sections 1.3.1. - 1.3.4. and summarized

- 49- Appendix A: Theory

in section 1.3.5.

Equation (A.9) is an application of Little's Formula for a closed client type r in the
network. The total number of clients in the network equals k,. the mean throughput
rate in the network, measured in cycles is given by Ar[~J, and it is easy to verify that
the mean cycle time C,[~] can be expressed by

M
c, [!] = k f m."SmA!J (A. 14)

m=l

So Little's Formula becomes

(A.15)

By combining the last two results we obtain equation (A.9).

Equation (A.lO) is obvious and both (A.ll) and (A. 13) use Little's Formula for a sin
gle station.

In each of the following paragraphs we will consider a service discipline. The calcu
lation of the sojourn time for this service discipline will be discussed. For the open
clients this means we have to solve a system of linear equations.

2.1.1. First Come First Served

2.1.1.1. Client type independent workloads

The sojourn time of a client of type r, arriving at station m, consists of two parts: the
time he has to wait until the clients in front of him are served, and his own service
time. If the workload Wm is independent of the client type and has an exponential dis
tribution, then the mean sojourn time for a closed client of type r, r = 1, .. ,R is given
by

R+L
Sm.,r[!J =Wm + kNm.,s[!-!r]wm (A. 16)

s=}

For the calculation of the mean sojourn time at station m, for open clients of type r
(r =R+l, .. ,R+L) we have to solve the system (consisting of a number of 2L equa
tions)

- 50- Appendix A: Theory

(A.17)

By substituting the second equation in the first, and observing that the mean sojourn
time is equal for all open client types, we can solve the system, leading to

R
Wm + INm,s[!]Wm

9=1
Sm,r[~J = R+L

1- I Am,swm
s=R+l

R
Wm + INm,s[!]wm

s=1 =------- (A.18)

One can think of cases were the workload does depend on the client type and even
might have a non exponential distribution. In that case the product fonu conditions are
no longer satisfied, and since the arrival theorem is based on those conditions, we may
not use this theorem. It is however possible to approximate the mean sojourn time.

2.1.1.2. Client type dependent workloads

If the workload wm,r does depend on the client type r, but still has an exponential dis
tribution, the approximation for the closed clients is obvious

R+L

Sm,r[~J = wm,r + I Nm,s[!-!r]wm,s (A.19)
9=1

For the open clients the linear equation system is a little more difficult to solve. How
ever by observing that the sojourn time of a type s client can be expressed in tenus of
the sojourn time of the open type r client, we obtain the following system

R+L

Sm,r[!] = wm,r + I Nm,s[!]wm,s
3=1

Nm,s[!] = Am,s Sm,s[!] (A.20)

Sm,s[!] = Sm,r[!] + wm,s - wm,r

Note that type s in the second and last equations has to be an open client type. By
substituting the last equation in the second, and then the second in the first the mean
sojourn time for an open client of type r can be obtained

- 51 - Appendix A: Theory

R R+L
Wm,r + LNm,s[!Jwm,s + L Am,swm,s(wm,s - wm,r)

S [k] - s:::1 s:::R+l (A.21) m,r _ - R+L

1- L Am,swm,s
s=:R+l

If we use (A.5)-(A.6) for the utilization of the open clients then the mean sojourn time
for an open client can be rewritten as

R R+L
LNm,s[!]wm,s + L Pm,swm.s

S [k]
_ $:::1 s=R +1

m,r _ - Wm,r +
I-Pm

(A.22)

2.1.1.3. Non exponential distributed workloads

The situation becomes even more complicated if the workloads do not have an
exponential distribution. In that case an arriving client of type r can find a client of
type s in service, with a residual workload Rm,s that doesn't have to equal the average
workload of that client (for exponential distributions it does however).
Although the arrival theorem is not valid for these workload distributions, the best
approximation we can think of is based on another 'arrival' theorem, the Pollaczek
Khintchine formula. This formula states that at a station, where clients arrive accord
ing to a Poisson process, the mean residual workload of the client in service upon an
arrival instant equals

_ [a~.r + w~,rJ
Rmr -

, 2wm•r
(A.23)

Furthermore the probability that a closed client finds a client of type s in service
equals the mean utilization Pm,s

(A. 24)

So an approximation for the mean sojourn time of a closed client of type r would be

R+L R+L
Sm,rL~J = wm,r + L Nm,s[!,-0-]wm,s + L Pm,s[!'-0-](Rm,s - wm,s) (A.25)

s=1 s=1

For the open client types we find a system of linear equations analogous to (A.20)

- 52- Appendix A: Theory

R+L R+L
Sm,r[~J = Wm,r + L Nm,s[~Jwm,s + L Pm,s[~](Rm,s - wm,s)

s=1 s=1

Nm,s[~J = Am,s Sm,s[~J (A. 26)

Sm,s[~J = Sm,r[~J - Wm•s + Wm,r

The mean sojourn time can also be obtained by substitution. which leads to

R R4 R4
LNm,s[~]wm,s + L Pm.sWm.s + L pm,sL~J(Rm.s - wm,s)

S [k] _ s=1 s=R+l s=1
m.r _ - Wm,r +

I-Pm
(A.27)

Note that if the workloads are distributed according to an exponential distribution
(then Rm,s = wm,s)' we find the sojourn time given by (A.22). If in addition the work
loads do not depend on the client type (wm,r = wm) we obtain equation (A.18).

2.1.2. Processor Sharing

At a PS-station the workload may depend on the client type and may even have a non
exponential distribution to satisfy the product form conditions. By again applying the
arrival theorem we find the mean sojourn time for the closed client types

(A.28)

For solving the system for an open client of type r we will again add an equation. with
the mean sojourn time of an open client of type s expressed in terms of the mean
sojourn time of the open client of type r

S ... ,!!] = [1 + :f, N ... ,[!]] w""

Nm,s[~J =Am,sSm,s~] (A.29)

By substitution, this results in a mean sojourn time given by

- 53 - Appendix A: Theory

(A.30)

2.1.3. Infinite Server

This is the simplest case, for all client types r we have

(A.31)

2.1.4. First Come First Served with Preemptive Resume Priority

At a station with a PRIOR-PR schedule each client type has a priority level. The
client type with level 1 has the highest priority, and the type with level N the lowest.
The priority level of a type r client will be denoted by pr (r).
At the station client types with the same priority are served in order of arrival. If a
client of a higher priority enters the station, the service of the client with the lower
priority is interrupted, and resumed only if there are no more clients of a higher prior
ity at the station.
If the network contains a station with this service discipline, the product form condi
tions are no longer valid, and hence exact analysis is prohibited. The priority schedul
ing however is an often used service discipline in computer systems, so an approxima
tion of the mean sojourn time is desirable.

Two approximation methods are considered in this section: the Shadow Approxima
tion and the Completion Time Approximation.

2.1.4.1. The Shadow Approximation

Sevcik [11] proposed to transform the network, so that the product form conditions are
valid again (the attentive reader however will notice that this is not the case if client
types with the same priority have different workloads). The transformation of the net
work is done by replacing the priority station by N FCFS-stations (the shadow sta
tions), one for each priority level.

- 54- Appendix A: Theory

Priority level 1

Priority level 2

Priority level N

figure AI. A Priority station

Priority level 1

Priority level 2

Priority level N

figure A2. The transformed Priority station

In the transfonned station clients of priority n. do not· have to wait for clients of a
higher priority, so the sojourn times will be too small, especially for the low priority
clients (priority level N, N-l, ..). To overcome this problem we will slow down the
progress of the clients by adjusting the workload. It seems reasonable to do this by
dividing the workload by the probability that the station is not utilized by higher prior
ity clients. This leads to an estimation of the new average workloads w~.r

..
Wm,r =

1- L Pm,s
pr (s)<pr (r)

- 55 - Appendix A: Theory

(A.32)

'" In the original approach the utilizations Pm,s are unknown, but they can be approxi-
mated by the following algorithm:

Original Shadow approximation

,..
(1) Initialize the utilizations Pm,s.

(2) Approximate the (new) mean workload of each client type r by

..
Wm,r =

1- L Pmos
pr (s)<pr (r)

(3) Solve the queuing network model, with the single server preemptive
resume priority station replaced by N single server shadow stations as
described above.

A

This will lead to new values for the utilization Pm,s'

(4) Usually the utilizations converge. If the desired accuracy is not reached,
go to step (2).

Of course solving a whole model (step 3) with maybe bad estimations for the new
workloads seems not very favorable. so it was proposed to use an iterative or recursive
algorithm to solve the model, and adjust the estimations for these new workloads in
every iteration step.

If the MY A-algorithm is used to solve the model, then it is obvious to choose for the
utilization of a client of type r

,..
Pm.s = Am,s[!-!r]wm,s (A.33)

Note that the adjusted workload now becomes population dependent, and therefore
has to be evaluated in every iteration step

Wm,r

1 - L Am,s[!]wm,s
pr (s)<pr (r)

(A.34)

Now it is possible to determine the mean sojourn time for a closed client of type r

~ 56- Appendix A: Theory

SmA!J = w~.rL~~] + L Nm,sL~.-~]w~.s[!-~] (A.35)
pr ($)=pr (r)

For the open clients we have to solve a system analogous to the ones in the previous
sections

SmA!] = w:'r[!] + L Nm,s[!]w:'s[!J
pr ($)=pr (r)

Nm,s[!] = Am,s Sm,s[!] (A.36)

Where the type s clients of the second equation are open clients, and for the last equa
tion they are open clients with pr (s) = pr (r).

Fortunately, the new workloads for the open client types are known if the perfor
mance characteristics for the closed clients are available (which they are), because for
the open clients the throughput Am r[k] does not depend on the population k . . - -
By substitution of the last two equations in the first one, we obtain the following
sojourn time

... k
L Nm,s[!]wm,s[!] + LAm,s wm,A!] wm,sL]

pr (s)=pr (r) pr (s)=pr (r)
SmA!] = w:'r[!] + s closed s open * (A.37)

1 - L Am,s wm,A!]
pr (s)=pr (r)

s open

2.l.4.2. The Completion Time Approximation (CT A)

A major source of error for the Shadow approximation can be found in the fact that
the clients of a higher priority, waiting in the queue at an arrival instant, aren't con
sidered in the model.
Wijbrands [12] suggested to consider also those clients by replacing (A.35), where
only client types with the same priority are found in the queue at an arrival instant, by
an equation where the clients with a higher priority are also considered

Sm,r[!] = w:'r[!-~] + L Nm,s[!-~]w:'sL!-~J (A.38)
pr (s)Spr (r)

We will first explain why the algorithm that uses (A.38), is called the Completion

- 57 - Appendix A: Theory

Time Approximation-algorithm (Cf A-algorithm).
The service completion time is defined as the time that passes between the moment
that a client obtains its first service, and the moment that its service is finished, and the
client leaves the station. The completion time of a client of type r consists of two
parts: the time that this client is served, and the time he has to wait for clients of a
higher priority, that join the station after the service of the type r client started.
The adjusted workload w~.r[!J can be seen as an approximation for this service com
pletion time for a client of type r in a system with population Is because it is the solu
tion of

(A.39)

Note that Am s[k]w~ r is an approximation for the total number of clients of type s that . - ,
arrive at the station during the completion time of the type r client. The observation
that the new workloads of the Shadow Approximation and the approximation for the
completion time are equal justifies the use of (A.38) and analogous formulas, and
therefore (A.38) can be seen as an improvement of the Shadow Approximation.

For the open client types the mean sojourn time can be obtained by solving the follow
ing linear equation system

(A.40)

Unfortunately, the mean sojourn time of an open type s client with pr (s)Spr (r) can
not be expressed in terms of the sojourn time for the type r client (as we did for the
other service disciplines). Therefore we have to follow another strategy to obtain the
mean sojourn time for an open type r client.
First we define sum 1 and sum 2

suml = (A.41)

sum 2 = * 1: Nm.sr.~]wm,sI!] (A.42)
pr(s)<pr(r)

sopen

- 58 - Appendix A: Theory

Note that sum 1 is known, because the perfonnance characteristics for the closed
clients are calculated first.
Now we can rewrite the equation system of (A.40)

• • k Sm,r[~J = wm,r(~.J + sum 1 + sum 2 + .r, Nm,s[~Jwm,s[_]
pr(s)=pr(r)

sopen

Nm,s[!J = Am,s Sm,s[~] (A.43)

Sm,s[!J = SmA!] - w~r(~J + w~s[~J

As in (A.36) the clients of type s in the last two equations have to be open clients, and
for the last equation the clients have to be open with pr (s)=pr (r). By substitution the
mean sojourn time can be written as (with sum 2 still unknown)

sum 1 +sum2+ • • .r, Am,swm,s[~Jwm,s[~]
pr (s)=pr (r)

• rk] s open Sm,r[~.J = Wm,rl!!:. + ------.....;;....=..;;...'----.-----
1 - .r, Am.swm.A!]

(A.44)

pr (s)=pr (r)
s open

We observe that sum 2 is known only if all queue lengths for the open clients of types
s with pr (s)<pr (r) are known.
These queue lengths can be calculated in the following way

Calculate for all open client types s with pr (s)<pr (r) in order of priority (starting
with the open client type of the highest priority)

1 The mean sojourn time Sm,s[~J by using (A.44).

2 The mean queue length Nm.A!l for this client type, by using Little.

Because this is done in order of priority, sum 2 is known if the sojourn time of a client
type of the next priority level is calculated.
It is obvious that the sojourn time for the type r clients now is easy to obtain with
(A.44), because all queue lengths for the open clients of type s with pr (s)<pr (r) are
calculated.

- 59- Appendix A: Theory

2.1.5. Summary for the computation of the sojourn times

In this section we will repeat the formulas for the computation of the sojourn time. In
fact equations A.8 and A.12 of the MVA-algorithm (paragraph 1.3. of this appendix)
can be replaced by the equations of this section.

If the service discipline at station m is First Come First Served (PCFS), and the work
load does not depend on the client type and has an exponential distribution, then the
exact calculation of the sojourn time is as follows

R+L

Sm.rL~J = Wm + L Nm,s[!-~]wm r = I. .. ,R (A. 16)
s=l

R
Wm + LNm.s[!]wm

Sm r[k] = s=l R 1 R L r = + , .. , +
. - 1- Pm

(A.18)

With a FCFS service discipline, and a workload depending on the client type (still
with an exponential distribution) the computation of the mean sojourn time is no
longer exact.

R+L

SmA!] = Wm,r + L Nm.s[!-~]wm.s r = 1, .. ,R
s=l

(A. 19)

r =R+l, .. ,R+L (A.22)

If the service discipline is FCFS, and the workload depends on the client and has not
an exponential distribution, the sojourn time can be approximated in the following
way.

_ [a~r +w~r]
Rm.r-

2wm•r
(A.23)

- 60- Appendix A: Theory

R+L
Sm,r[!] = wm,r + :L Nm,s[!-~]wm,s + (A.25)

s=l
R+L
:L Pm.s[!-~](Rm,s - wm,s) r = 1, .. ,R
s=l

R R+L
:LNm,s[!]wm,s + :L Pm,swm,s

S [kJ - + 8=1 s=R+1 m,r _ - wm,r
I-Pm

+ (A.27)

R+L

:L Pm.A~J(Rm,s - wm,s)
s=1

r =R+l •.. ,R+L

For a Processor Sharing (PS) service discipline at station m, the calculation of the
mean sojourn time is exact.

r = I, .. ,R (A.28)

R

:LNm,s[!]wm,r + Wm.r
SmA!] = _s_=l ______ _

1- Pm
r =R+l •.. ,R+L (A,30)

The calculation for the Infinite Server (IS) service discipline at station m is exact and
very simple.

SmA!] = wm.r r = 1 •..• R+L (A.31)

If station m has a (Preemptive Resume) priority scheduling, then the shadow approxi-
mation can be used. .

I - :L Am.s[!]wm.s
pr (s)<pr (r)

r = 1, .. ,R+L (A,34)

- 61 -

* + r, Am,s wm,sL~J
pr (sFpr (r)

sopen

* * r, Am,s wm.s[~J wm.A~J
pr(s)=pr(r)

s open

1 - r, Am.s w:"sr~J
pr(s)=pr(r)

s open

Appendix A: Theory

(A.35)

(A.37)

r =R+l, .. ,R+L

Also the Completion Time Approximation can be used for a priority station.

(A.38)

For the open clients (r = R + 1, .. ,R +L) we have to solve the following system of linear
equations as described in 1.3.4.2. of this appendix

(AAO)

- 62- Appendix A: Theory

3. Schweitzer and Scbweitzer-FOD!

3.1. The Schweitzer approximation algorithm

The Schweitzer approximation algorithm [10] can be seen as an approximate version
of the MV A-algorithm (described in the previous paragraph), where the recursion in
the population vector is replaced by the iterative solution of only the last recursion
step, which is the step for the maximum system population K.
The Schweitzer algorithm starts with an initial guess for the performance characteris
tics of the system with population K (usually initiating only the mean queue lengths is
already sufficient). The choice of these initial values does not have great influence on
the iteration process. So it is for instance possible to distribute the clients over all sta
tions, thus initializing the mean queue length at station m for a client of type r by

(A.45)

Another possibility is to choose

(A.46)

After setting the initial values, the iteration starts. For the last iteration step of the
MV A-algorithm the performance characteristics for the system with populations
K -!I, r = 1 R are needed. In the Schweitzer algorithm these characteristics are
approximated by using the characteristics of the system with population K.

The mean queue length for a client of type s in a system with population K -!I is
approximated by the mean queue length of that client type in the system with popula
tion K, unless s = r . In that case the mean queue length at every station is reduced
proportionally with the number of clients. So the approximation for the mean queue
lengths is

(A.47)

Now that the queue lengths for the system with populations K -!I are approximated,
the last step of the MVA-algorithm can be performed (!. = K), resulting in new
approximations for the characteristics of the system with population K.

- 63- Appendix A: Theory

If we consider a system with only FCFS stations (for simplicity, extensions are obvi
ous) then the iteration step of the Schweitzer approximation wi11 be

For the closed client types

fm,rKr
Am,,[K] = -M-:-:------

Lfn,rSn,r[K]
n=l

For the open client types

R

Wm + LNm,s[K]wm
5=1

Sm,r[K] = -------
1- Pm

(A.48)

(A.49)

The iterative algorithm, described above, usually converges. It can be stopped if the
perfonnance characteristics of two subsequent iteration steps are sufficiently close to
each other.

In some situations the approximated queue lengths Nm,r[K -~] are not the only
characteristics, needed for the computation of the mean sojourn time Sm,r[K] for the
closed clients. This is for instance the case at a FCFS-station with a non exponential
workload distribution, and at a priority station. In both cases the mean throughput
rates Am,r[K -~] are needed for the computation of the Plean sojourn time (refer para
graphs 1.3.1.3. and 1.3.4. of this appendix). A simple approximation that turns out to
be rather good is

(A. 50)

- 64- Appendix A: Theory

3.2. The Schweitzer-FODI algorithm

This First Order Depth Improvement of the Schweitzer algorithm can be used to
obtain more accurate results. Instead of using the Schweitzer algorithm to calculate
the performance characteristics for the system with population K, Schweitzer is used
to calculate the characteristics for the system with populations K -~, r = 1, .. ,R. These
characteristics then can be used to perform the last step of the MVA-algorithm. The
computation time of the Schweitzer-FOOl algorithm will be larger as for the
Schweitzer algorithm, because there are R Schweitzer approximations instead of 1.

- 65- Appendix A: Theory

4. Row By Row Analysis

Another way of analyzing a queuing network is by using the RBR analysis. The idea
is to transform the network into a single queue. Then the theory on single queues is
used to obtain some information about the queuing network. We will first discuss the
RBR-algorithm; the algorithm that is based on the ideas of the RBR analysis.

4.1. The Row By Row algorithm

The Row By Row-algorithm (RBR-algorithm) can only be used for a closed queuing
network, consisting of two stations (station 1 and station 2). For each of the two sta
tions the mean service rates are assumed to be known. These service rates however
may depend on the population at the station. This makes it possible to use the RBR
algorithm in the following situation.

Consider a queuing network, decomposed in two parts (see e.g. 2.4. of this thesis).
Assume that for each of these two parts the throughput rates for all possible popula
tions at that part are calculated (for example by using the MV A-algorithm for that part
of the network). Now these throughput rates can be seen as the population dependent
service rates for the two (aggregated) stations of the network.
Usually the RBR-algorithm is used in this situation, where a station is an aggregated
part of the network, with known throughput rates Ar[k], and therefore the service rate
for a client of type r at station m (m = 1,2) with population 1£ at that station will also
be denoted by Am r[k] . . -
Because there are exactly two stations it is possible to consider the system as a simple
birth and death process, where the birth rate depends on the service rate at station 1,
and the rate of dying depends on the service rate at station 2.

By using the theory on birth and death processes, it is possible to approximate (by
iteration) the marginal probabilities Pm,r[k] of k clients of type r at station m
(m = 1,2).
This can be done by considering the client types individually (row by row).
Other performance characteristics (such as mean queue lengths, mean sojourn times
and mean throughputs) can be obtained by using these marginal probabilities.
The algorithm, based on this row by row approach, was presented independently by
Brandwajn[2] and by Lazowska & ZahoIjan [7].

If we denote the population at station 1 by 1£1, and the population at station 2 by 1£2,
then the system population K can be written as

(A.Sl)

- 66- Appendix A: Theory

And the network, with service rates, can be depicted as in figure A3.

figure A3. Network with population dependent service rates

As shown in this figure it is possible for a client to visit a station more than once
before he joins the queue at the other station. Since we are only interested in the tran
sition from a client from one station to another we determine the mean number of
visits im" for a client of type r to station m before he joins the other station. This
number of visits is also called the relative visiting frequency.
(Actually the relative visiting frequency gives us the mean number of visits to a sta
tion during a cycle. In this case we've defined a cycle as the visits between two suc
cessive transitions from one station to the other. Fortunately, other cycle definitions,
and thus other visiting frequencies, do not influence the RBR-algorithm)

If the visiting frequencies are known, it is possible to determine the transition rate
from one station to the other. The transition rate from station 1 to station 2 is given by
f1:,A1,,[K -!2], and the transition rate from station 2 to station 1 is f2,lrA2,r[!2].

Now it is possible to transform the network into a single queue, with birth and death
rates as shown in figure A4.

~f1~1~~A~1,'~[K~-k~2]~I~II~~ ____________ .~
f2,l,A2,,[!2]

figure A4. A sing Ie queue with population dependent birth and death rate

At this stage it would be possible to calculate the (steady state) probabilities of a
population !2 in station 2 for all populations !2 in the range from Q to K. This how
ever costs far too much computation time, especially for larger populations and more
client types. Therefore the client types are considered one by one (row by row). In

- 67 - Appendix A: Theory

fact for each client type a single queue can be defined

___ ~_[k] ___ I~II~~ ____ ~>
Jl,[k]

figure A5. A single queue/or clients o/type r

Here Ar[k] and Jl,[k] are the birth and death rates for a client of type r, if there are k
clients of that type at station 2.

To obtain approximations for A,[k] and Jl,[k] we assume that the number of clients of
the other types s at station 2 can be represented by their (unknown) averages N 2.s.

Because the population at station 2 has integer components we cut down these aver
ages to integer values N;.s, so that N;.s is the nearest integer smaller than N 2,,-

The approximation for the birth and death rates then becomes

(A. 52)

(A.53)

The number of clients of type r at station 2, with the corresponding transition rates,
are depicted in figure A6.

~[O] A,[k-l] Ar[Kr-l]

8::88::8
Jl,[l] Jlr[k] Jl,[Kr]

figure A6. Transition rates/or a single queue with one client type

By applying the theory on Markov chains we can formulate the following relation:

P2.,[k-l]Ar [k-l] = P2.r[k]Jl,[k] k=l, •. ,Kr (A. 54)

From these relation we obtain the solution for the marginal state distribution:

- 68- Appendix A: Theory

Ie ArU-l]
P2,r[k] = P2.r[O] TI U] k=I, .. ,Kr

j =1 Ilr
(A.55)

[0] _ 1
P2,r - K, Ie AU-I]

I:TI r •
k::{)j =1 Jir U]

(A.56)

Now we can compute the mean number of clients of type r at station 2 :

K,

N 1•2 = I:kP2.r[k] (A.57)
k=O

We will use these adjusted queue lengths in the computation of the marginal probabil
ities for clients of type r + 1.

An iterative scheme suggests itself.
At the start of the iteration, we initiate the first approximation of the mean queue
lengths as

Kr
Nm r = - m = 1,2 r = 1, .. ,R , 2 (A.58)

and determine N~,. These queue lengths then are improved by iteration, with an
iteration step as described by (A.52) - (A.57), and summarized as follows

For all client types r, r = I, .. ,R do

(1) Determine the birth and death rates as in (A.52), (A.53).

(2) Calculate the marginal probabilities P2,r[kJ, k = I, .. ,Kr .

(3) Use (A.57) to compute the mean queue length N 2,r'

(4) Determine Ni,r'

The iteration stops if the mean queue lengths Ni,r do not change during one iteration
step.
Generally, the iteration will converge, but we can think of counter examples. There
fore the iteration will be stopped after 50 steps.

At the end of the iteration, the obtained approximations of the mean queue lengths and
the marginal probabilities for station 2 can be used to compute some other

- 69- Appendix A: Theory

perfonnance characteristics:
For each client type r. r = I,• R • we find:

N 1,' = K,-N 2.r (A.59)

and

Pl.r[k] = pz,,[Kr-k] k=O Kr (A.60)

For the mean throughput Am,r of a type r client in station m, and for the mean system
throughput Ar we find

K,

AI,r= :Lfl"Ar[k]Pl,r[k]
k=O

K,

A2,r = :Lf2,rllz,r[k] P2,r[k]
k=O

A _ AI" _ A2,r
, - fl" - f2"

And finally the mean sojourn time can be computed

(A.61)

(A.62)

(A.63)

(A. 64)

Finally we remark that if there is only one client type, the computations are exact.

-70 - Appendix A: Theory

4.2. Row By Row with multi programming

The Row By Row-algorithm with multi programming is a special case of the RBR
algorithm as discussed in the previous section. Again only closed networks. consist
ing of nvo stations are allowed. The only difference is that it can handle networks
where the number of clients of type r at one of the two stations (say station 2) is lim
ited to a certain multi programming level Lr •

If this level is reached. a client arriving at this station has to wait in a buffer. This
situation is depicted in figure A 7.

figure A7. Nenvork with a buffer at station 2

As in the previous section the network can be transformed into a single queue. Again
we will investigate this queue row by row. Figure A8. gives us such a queue for one
row (the row for client type r).

___ A~'[k~] __ ~II~I~~~ __ ~~
Il,[k]

figure AB. A single queue with a buffer for clients of type r

Here Ilr[k] is the service rate for a client of type r, if there are k clients at station 2.
including the clients waiting in the buffer. So.the only difference between the ordi
nary RBR-algorithm and the RBR-algorithm with multi programming is the calcula
tion of this service rate.

(A.65)

- 71 -

Appendix B: Introductory manual

1. Introduction

The purpose of this document is to get familiar with the PET package. We will do this
by solving the following problem:

Figure Bl shows a computer system modeled as a queuing network.

r-----------------------,
.1
I
I

I
1 1 L _______________________ ~

figure Bl. A simple computer system modeled as a queuing network

We assume there are two different kinds of jobs. So we have to use two client types in
the model. The workloads of these client types are given in the following table.

CPU Diskl Disk2 Terminal

client type 1 5 10 15 5
client type 2 10 10 15 3

Table 1. Workloads per station and client type.

At the CPU there's a priority schedule. If a client of type 1 enters the CPU and a client
of type 2 is in service, then the service of this client is interrupted, and resumed only if
there are no more clients of type 1 at the CPU.
The disks are modeled as FCFS stations and at the terminal station there is an IS ser
vice discipline.
In the closed queuing network there are 4 clients of type 1 and 3 clients of type 2.

After a visit to the CPU, a client of type 1 joins the queue at disk 1 with probability
0.7 and the queue at disk 2 with probability 0.3. For a client of type 2 these probabili
ties are 0.6 and OA.
After leaving a disk a client joins the terminal station with probability 0.2 or he
returns to the CPU with probability 0.8.

Appendix B: Introductory manual

Suppose we decompose the model into a computer (Comp) part (the dashed box of
figure B 1) and a terminal (T) part. The tree representation of the decomposed model is
shown in figure B2.

figure B2. tree representation of a queuing network model

We already added the root at the top of the tree, because in the PET package this root
is always present It forms the starting point of the tree.

We will try to solve this problem by using the PET package. We want to use the Row
By Row (RBR) algorithm to analyze the computer-terminal model, where the parame
ters for the computer part are to be obtained with the MV A-algorithm.

2. Getting started

PET is available on the Sun and on the Unix-VAX, both belonging to Eindhoven
University of Technology, Department of Mathematics and Computing Science, and
both connected to the TUE network and the ETHERNET network.
For the Sun, as well as for the V AX, a user code and a password is required. To be
able to work with PET, also some of your global parameters (like your PATH) have to
be adjusted. Therefore it seems wise to contact someone who's familiar with the PET

- 73 - Appendix B: Introductory manual

package before you try to run it.

Suppose we are logged in on either the Sun or the V AX. Then PET can be started by
typing monitor in response to the prompt of the machine (here "$").

$ monitor

Type ? or help for more information

monitor>

The first line tells us there are several ways to ask for help. This can be done at any
time the program waits for input. By typing a ? the program will tell you what kind of
input is valid at that place.

monitor> ?

Commands ...

define

compute

save

exit

report

delete

set

replace

rename

show

edit

describe

Abort command with "$", terminate loop with "~,,

Type ? or help for more information
monitor>

The help command gives more detailed infonnation.

-74 - Appendix B: Introductory manual

monitor> help

help

monitor

Help can be obtained in various ways:

By typing a ? in response to a question. The program shows the

expected type of input.

By typing the help command. This can be done at any stage of

the conversation, without disrupting the flow of the program.

The program will prompt for the name of a subject (topic).

Type a ? to see which subjects are available. One or more

empty lines cause exit from the help facility.

Additional information:

! $ < - compute define delete describe edit rename replace

report save set show

help monitor topic?

Now it is possible to return to the program by sending one or more empty lines. Alter
natively, we may obtain some additional information by typing one of the topics as
listed in the topic list.

help monitor topic? define

help

monitor

define

format: define <category>

Creates an object of the specified category.

Additional information:

process

help monitor define topic?

-75 - Appendix B: Introductory manual

3. Defining the process tree

We enter some empty lines (by pressing the return key) to return to the program, and
then we start defining the process tree.

help monitor define topic?
help monitor topic?

Type ? or help for more information
moni tor> define

what: process

parent process name: ?

Commands ...
root

Abort command with "$", terminate loop with "-n

Fortunately there's already one process present. We will use this process, called root,
as a starting point of the process tree.

parent process name: root

new process name: network
program name: ?

Commands ...
mva rbr

schweitzer s-fodi

program name: rbr

monitor>

rbr-station rbr-multi-prog

Note that there are several programs that can be connected to the root. We chose the
rbr program since we want to solve the computer terminal model with the RBR algo
rithm.

The first process is defined. Now the building of the rest of the process tree will be a
piece of cake. Therefore we will use the defining of some other processes to show that
it is possible to enter several commands on the same iIiput line, and that you may use
abbreviations.

monitor> define
wha t: process

parent process name: network

new process name: computer

program name: mwa

- 76- Appendix B: Introductory manual

monitor> define process computer cpu mwa-prior-cta

monitor> defproc compdiskl mva-stati

monitor> de/proc comp disk2 mva-stati

monitor> defproc net terminal rbr-sta

Now that the process tree is defined we may use the show model command to see it.
The show command can also be used to view a single process (show process), get
some informatiqn about the inputs and outputs of a program (show program) and to
see the amount of computation time each process has used (show times).

moni tor> show

what: model

parent_name: process_name: progralT',-name:

root network rbr
network terminal rbr:"'station

network computer mva

computer cpu mva-prior-cta
computer diskl mva-station
computer disk2 mva-station

process root (no parameters available)

process network (no parameters available)

process terminal (no parameters available)

process computer (no parameters available)

process cpu (no parameters available)

process diskl (no parameters available)

process disk2 (no parameters available)

monitor>

-77 - Appendix B: Introductory manual

Here we observe that a graphical representation of the process tree should be a lot
easier to read. Maybe in future this will be possible.

4. Setting the parameters

Since there are no parameters available at all, we have to use the set command. Lets
start with the root.

monitor> set
what: process

process: rOOI

number of closed chains: 2

number of open chains: 0
population for client type 1: 4

population for client type 2: 3

monitor>

And now we choose to set the cpu process.

monitor> set process cpu
priority class (O is highest) for client

workload for client type 1, station cpu:
priority class (0 is highest) for client
workload for client type 2, station cpu:
priority class (0 is highest) for client

type 1, station cpu: 0

5
type 2, station cpu: 1

10

type 3, station cpu:

The order in which the processes are passed through during the setting of the parame
ters doesn't matter. Therefore the cpu process doesn't know that the number of client
types is already available. To know how the setting can be stopped we type a ?

priority class (0 is highest) for client type 3, station cpu: ?

Lower limit 0

Abort command with "$", terminate loop with "-,,

priority class (0 is highest) for client type 3, station cpu: $
monitor>

Remember the "$" and the II"" to stop what you are doing.

The other processes are set in a similar way. If this is done we take a look at the
modeL

moni tor> show model

process_name: program_name:

root
network

network
computer

computer
computer

process root

~ 78 ~

network
terminal

computer

cpu

diskl
disk2

number of closed_chains: 2

number_of_open_chains: 0

population_vector:

population:

1 :

2 :

process network

terminal:

4

3

computer:

Appendix B: I ntroduclOry manual

rbr
rbr-station

mva

mva-prior-cta

mva-station
mva-station

1 :

2 :

1.00000

1.00000

5.00000

5.00000

process terminal

service_discipline: infinite_server

workloads:

client:

1:

2 :

process computer

-
workload:

5.00000

3.00000

1:

2 :

process cpu

cpu:

1. 00000

1.00000

-79 -

diskl :

0.70000

0.60000

Appendix B: Introductory manual

disk2:

0.30000

0.40000

client_type: priority_class: workload:

1: 0 5.00000

2: 1 10.00000

process diskl

service_discipline: first_come_first_served

workload:

1 :

2 :

process disk2

workload:

10.00000

10.00000

service_discipline: first_come_first_served

workload:

1 :

2:

workload:

15.00000

15.00000

Note that the network process and the computer process have some options (starting
with a minus sign) as parameters. Options tell something about the way the output will
look like, the number of iterations, the accuracy that has to be reached, etc. They all
have default values that can be changed during the setting of the parameters of the
specific process. Remember that the ? will show all valid commands (including the
options).
Now that the model is defined it seems wise to save it before we start the computa
tions (in case something goes wrong).

moni tor> save

what: model

file: whatever
monitor>

- 80- Appendix B: Introductory manual

To read this file back into the PET program we only have to type

moni tor> <whatever

end-ot-file level 1

monitor>

5. Computations

The model is defined, the parameters are set, everything is saved, so now the time
seems right to start the computation. The command compute complexity isn't working
to well so we will stick to the compute results command.

moni tor> compute

what: ?
Commands ...

complexity results

Abort command with "$", terminate loop with ,,~ ..

what: results

Now we have to wait for the prompt to reappear. Hopefully this doesn't take to
long

monitor>

At last. Lets see what the results are. This can be done for each process. Of course the
network process is usually the most interesting process. But it is also possible to report
the results of another process.

monitor> report process computer

PROCESS

process name: computer
program used: mean value algorithm (mva)

INPUTS

stations in the network: cpu, diskl, disk2

population tor closed client types:

client type

1

2

population

-4

3

- 81 - Appendix B: Introductory manual

visiting frequencies at each stations per client type:

client type

1

2

cpu

1,00000

1.00000

diskl

0.70000

0.60000

RESULTS FOR MAXIMUM POPULATION VECTOR:

POPULATION VECTOR : 4, 3)

response time at each station:

client type cpu disk1

1 7.91185 33.83783
2 45.43353 37.70097

mean queue lengths at each station:

client type cpu diskl

1 0.75022 2.24600

2 1.65903 0.82600

mean throughput at each station:

client type cpu disk1

1 0.09482 0.06638
2 0.03652 0.02191

utilization at each station for the closed

client type cpu diskl

1 0.47411 0.66375

disk2

0.30000

0.40000

disk2

35.28636
35.25702

disk2

1.00378

0.51497

disk2

0.02845
0.01461

chains:

disk2

0.42670

- 82 - Appendix B: Introductory manual

2 0.36515 0.21909 0.21909

monitor>

6. Making some changes

Now suppose we want to replace the program of the cpu process by the program that
uses the shadow approximation instead of the Completion Time Approximation. This
can be done by using the replace command.

monitor> replace

what: process

process: cpu

by program: ?

Commands ...

mva-station mva-prior-cta mva-nonexp

Abort command with "$", terminate loop with

by program: mva-prior-shadow

monitor>

mva-prior-shadow

"

Note that only those algorithms are shown that will fit at that place of the process tree.
This is also the case for the define command.
Now that the cpu uses another algorithm, we have to set the parameters of this algo
rithm again. After that we can compute the results and compare them with the results
obtained for the first model.
In this way it is very easy to "play" with the model.

If we want to change some parameters of one of the processes, we have to consider
the fact that if we use the set command, we have to enter all parameters of that pro
cess. Therefore we've build in an editor, that can be called by the edit command. The
standard Unix editor vi is used. In fact the edit command is essentially the same as the
following: save the model on a file, say pet.tmp, then edit this file with the vi pet.tmp
command, and finally read back the pet.tmp file with <pet.tmp.
The edit command is very convenient for those who are acquainted with the vi editor.
If you are not, we advise to use only the set command.

7. Leaving PET, entering Unix

If we are finished with investigating the model, we can leave the program with the exit
command.

monitor> exit

$

Lets see if the file we have saved is present.

$ Is
whatever

$

- 83 - Appendix B: Introductory manual

computer.report

We can view the files with the more filename command. The whatever file is almost
the same as the output we obtained with the show model command. and the process
name.report files are the same as the output of the report process-name command.
Files can be removed by typing rm filename, and the lpr filename command will print
the file.

8. And finally •..

We hope that this introductory will be a guiding line for new users of the PET pack
age, but most of all we think and hope that PET will be an easy to use, and time
saving Performance Evaluation Tool.
For those who want to write their own modules we refer to the appendix about this
subject.

We will finish this appendix with a table containing the basic commands and a table
of the modules that are already available.

command

define
replace
delete
rename
set
edit

save
show

compute
report
describe
exit

description

define a process of the process tree.
replace a program of a process in the process tree.
deletes one or all (use delete process -all) processes.
rename a process.
set the parameters of a process.
set the parameters of a process or the model by
editing an input file.
save a process or the. model on a file.
show a process, the model, the computation times or
a program.
compute the results.
report the results of a computation.
describe a program in more detail.
leave PET.

Table B2. The basic commands in PET.

- 84- Appendix B: Introductory manual

program name description

mva uses the MV A-algorithm to solve a network. The
slaves of this process have to use mva-.... The
mva program itself can be used as a slave for the
rbr program.

schweitzer uses the Schweitzer approximation algorithm. Its
slaves have to use a program starting with mva-.

s-fodi the Schweitzer-FODI approximation (First Order
Depth Improvement) is used. Also this program
needs slaves that use mva-....

mva-station computes the sojourn times for a station with a
FCFS, a PS or an IS service discipline.

mva-nonexp can be used for a FCFS station where the
workloads have a non exponential distribution.

mva-prior-cta uses the Completion Time Approximation to
compute the mean sojourn times at a Preemptive
Resume Priority station.

mva-prior-shadow the shadow approximation is used to calculate the
sojourn times at a PR-PRIOR (Preemptive
Resume Priority) station.

rbr the Row By Row (RBR) algorithm is used to
compute results for a closed network consisting
of two stations. The slaves of the rbr program
have to deliver the throughputs for all
populations. Programs that do so are mva and
rbr-station.

rbr-multi-prog this program is similar to the rbr program, except
that it is possible to use a multi programming
level (a limit on the number of clients) at one of
the stations.

rbr-station computes the throughputs for all populations at a
station with a FCFS, PS or IS service discipline.

Table B3. Modules available in the PET package.

- 85 -

Appendix C: Writing new modules

1. Introduction

This Appendix is intended for those PET users who want to write their
own modules. It is assumed that the modules are written in the program
ming language C, in a Unix environment (for instance on the SUN or the
Unix-VAX at the Eindhoven University of Technology).

We will start by referring to the man command, that can be used to view
the manual pages of a program. For example man mva will show the
manual page of the mva module.

Before you start writing a new module, contact the PET administrator,
because he knows in what directories the PET modules and manual pages
can be found. You have to specify these directories in your environment
variables PET, PATH and MANP A TH.

2. Writing the module

First create your own directory, where you want to write your module.
The only thing you have to do is to write three files: the capability file
called name.cap, the program file written in C, called name.d and a file we
will discuss later: the make file. The extension d stands for dynamic; in this
file it is allowed to use dynamic arrays.
Normally, the PET administrator can provide you with examples of these
files.

If the name.cap and the name.d file are written, a number of other files has
to be generated as shown in figure Cl. Fortunately this generation is fully
automatic. The only thing you have to do is type

make name

The make command only works if there's an especially for the PET
modules designed makefile available in your working directory. It's easiest
to copy for instance the makefile from the mva module and then change all
appearances of the name mva in that file into name.

The name.c file is the ordinary source file, written in C, that can be com
piled into an executable program, called name.

If PET is started it searches the directories specified in the PATH environ
ment variable for a name.cap and a name file, which should both reside in

- 86- Appendix C: Writing new modules

name,cap
, I ,

msgtable9
I , , I , I

I name,h I
name.d

dynamic

I name.h I
name.c

c-compiler

name

figure Cl. name.cap, name.d and other files

the same directory.

3. The name.cap file

The name.cap file is the file where all information about the input and out
put of the module has to be given. An example of such a file can be found
in Chapter 6 of this thesis.

This file may contain comment lines, because only the'lines starting with
one of the special words are taken as input. These words are

fm for input from the master
tm for output to the master
ts for output to the slave
fs for output from the slave
fu for input from the user

- 87 - Appendix C: Writing new nwdules

ns to specify the number of slaves

Such a special word (except ns) has to be followed by the name of the
input or output data message. Only the names as listed in the petdata.h file
are excepted. Use man 5 petdata to view these data names.

If only one out of two types of data has to be available, their names can be
separated by a comma.

It is also possible to specify if the data is available without computations,
or if the computeO or complexity() function (or both) has to be used to
obtain the data. Simply add fLcompute, fi_complex (or both separated by
a "1"), or a zero. So some lines of the name.cap file could be:

fm nrc10sed fi_computelfi_complex
fm arrivalrateopen fi_computelfi_complex

This is comment

tm workloadtype 0

ns >= 1

To specify the number of slaves (ns) one may use ==, !=. >=, <=, > or <.

4. The name.d file

The name.d file is like an ordinary source file written in C, except for the
dynamic arrays. Such arrays are needed for data exchange between
modules. Information on how to use these arrays can be obtained by typ
ing man dynamic.

In chapter 6 all functions are listed that have to be present in the name.d
file. In one of them, the ask_userO function, you may use some functions
that take care of the input from and output to the user. These functions are
the cio functions (Conversational Input Output). With' the man cio com
mand some information about these functions can be obtained.

Only in the computeO part of name.d you can use functions to send data to
another module. and to ask results from another module. These functions
are messageO and requestO.

We will end this appendix with the advise to copy already existing files (as
provided by the PET administrator) to your working directory, and then
adjust these files so that they become what you want them to be.

- 88-

References

[1] BASKETI, E, CHANDY, K.M., MUNTZ, RR, AND PALACIOS, EG., "Open,
Closed and Mixed Networks of Queues with Different Classes of Customers,"
JACM 22 (1975), 248-260.

[2] BRANDW AJN, A, "Fast Approximate Solution of MUltiprogramming Models,"
Performance EvalRev. 114 (1982), 141·149.

[3] GRIENT-DREUX, A P. DE, "Performance onderzoek naar het TOE V AX-cluster
systeem," Master's Thesis, Dep. of Math. and Comput.Sci., Eindhoven U. of
Techn., Eindhoven (1987).

[4] HOOGENDOORN, 1., "Towards a DSS for Performance Evaluation of
V AX/VMS-clusters.," Master's Thesis, Dep. of Math. and Comput.Sci., Eindho
ven U. of Techn., Eindhoven (1988).

[5] HOOGENDOORN, J., MARCELIS, RC., GRIENT-DREUX, A.P. DE, WAL, J. VAN
DER, AND WUB RANDS , R.J., "The V AXNMS Analysis and Measurement
Packet (VAMP): A Case Study," Memorandum COSOR 88-09, Dep. of Math.
and Comput.Sci., Eindhoven U. of Techn., Eindhoven (1988).

[6] KOOPMAN, A, "PET, Performance Evaluation Tool," Master's Thesis, Dep. of
Math. and Comput.Sci., Eindhoven U. of Techn., Eindhoven (1987).

[7] LAZOWSKA, E.D. AND ZAHORJAN, J., "Multiple Class Memory Constrained
Queueing Networks," Performance Eval.Rev. 11-4 (1982), 130-140.

[8] LITTLE, J.D.C., "A Proof for the Queuing Formula: L=)..W," OperRes. 9
(1961),383-387.

[9] REISER, M. AND LAVENBERG, S.S., "Mean-Value Analysis of Closed Mul
tichain Queuing Networks," JACM 27 (1980), 313-322.

[10] SCHWEITZER, P.1., "Approximate Analysis of Multiclass Closed Networks of
Queues," Lecture presented at The International Conference on Stochastic Con
trol and Optimization (Amsterdam, 1979).

[11] SEVCIK, K.C., "Priority Scheduling Disciplines in Queueing Network Models of
Computer Systems," in B. Gilchrist (ed.), Information Processing 77 (North
Holland, Amsterdam, 1977), pp. 565-570.

[12] WUBRANDS, R.I., "On an Approximation Method for Priority Queuing in CPU
Disk Models," in Proceedings NG/-SION Symposium 4: Stimulerende Informa
tica (Stichting Informatica Congressen, Amsterdam, 1986).

[13] WIJBRANDS, R.I., "A Note on Enumeration Methods for the Mean Value
Analysis Algorithm," Memorandum COSOR 87-04, Dep. of Math. and
Comput.Sci., Eindhoven U. of Techn., Eindhoven (1987).

- 89-

[14J WUBRANDS, RJ., "Queueing Network Models and Performance Analysis of
Computer systems," PhD. Thesis, Dep. of Math. and Comput.Sci., Eindhoven
U. of Techn., Eindhoven (1988).

- 90-

Glossary of notations

M
m,n
R
L
r,S
k

K

Wm"

2 am.,
Rm.r

1m.,

A,[~J

Nm,,[~J
C,[!]
Pm,,[!]

The number of stations in the network.
Index denoting a station.
The number of closed client types.
The number of open client types.
Index denoting a client type.
The population for the closed clients in the network in vector notation,
! = (k 1 , .. ,kR), where k, denotes the number of closed clients of type r.
The maximum system population.
Vector denoting a population of a single client of type r.
The arrival rates for the open client types.
The average amount of work (called the average workload) a client of type
r offers at station m. If this mean workload does not depend on the client
type, then it can also be written as W m .

The variance of the workload a client of type r offers at station m.
The mean residual workload for a client of type r, who is in service at sta
tion m, at the moment another client arrives at that station.
For a closed client of type r, r = l, .. ,R this is the mean number of visits to
station m during a cycle. This number is also called the relative visiting fre
quency, since the magnitude of the visiting frequencys depends on the
choice of the cycle.
For the open clients it is the mean number of visits (visiting frequency) of a
client of type r, r = R + l, .. ,R +L to station m during the time this client is in
the network.
The probability that an open client of type r joins station m when he arrives
at the network.
The probability that a client of type r joins station n after leaving station m.
mean time a client of type r spends in the queue during a visit at station m,
given population !. This time is also called the sojourn time.
mean throughput rate in the network, measured in cycles per unit of time,
for a closed client of type r, given population !.
mean throughput rate at station m for clients of type r, given population !.
For open clients (r =R +l, .. ,R+L) ~is throughput rate is independent of the
population, and will also be written as Am,r.
mean number of clients at station m of type r, given population !.
mean cycle time for a client of type r, given popUlation !.
mean utilization for a client of type r at station m, given population k. The
mean utilization can be calculated as the product of the mean throughput
rate and the average workload. For the open client types (r = R + 1, .. ,R +L)

this utilization is population independent, and will also be written as Pm".

Pm

pr(r)
N

* Wm r[k] . -

Lr

- 91 -

The total utilization of open clients at station m. This is the sum of the utili
zations per (open) client type.
Priority level for a type r client.
Number of priority levels.
Adjusted workload for a client of type r at a (transformed) priority station
m, given popUlation !:.:
Marginal probability of k clients of type r at station m.
Population for the closed client types at station m.
Birth rate for a client of type r if there are k clients of that type in the sta
tion.
Death rate for a client of type r if there are k clients of that type in the sta
tion.
If Nm,r denotes the mean number of clients of type r at station m, then N:. r
is the nearest integer, smaller than Nm,r.
Multi programming level for a type r client.

	Voorblad
	Table of Contents
	1. Introduction
	2. Queuing network models
	3. The algorithms
	4. PET, Performance Evaluation Tool
	S. The VAX-cluster at the E.U.T., a case study
	6. PET in more detail
	7. Summary, conclusions and suggestions
	Appendix A: Theory
	Appendix B: Introductory manual
	Appendix C: Writing new modules
	References
	Glossary of notations

