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Concrete process algebra 

Algebra may be considered, in its most general form, as the 
science which treats of the combinations of arbitrary signs and 
symbols by means of defined through arbitrary laws ... [Peack­
ock, 1830]. 

1 Introduction 

3 

Concurrency theory is the branch of computer science that studies the 
mathematics of concurrent or distributed systems. In concurrency theory, 
the design of such mathematics is studied and issues concerning the speci­
fication and verification of such systems are analysed. Often, a concurrent 
system is called a process. In order to analyse a large and complex pro­
cess it is desirable to be able to describe it in terms of smaller and simpler 
processes. Thus, it seems natural to have some simple processes-the ones 
that are not subject to further investigation-and operators on them to 
compose larger ones thus resulting in an algebraic structure. In order to 
reason about large processes it is often useful to have a set of basic identities 
between processes at one's disposal. The most relevant identities among 
them are normally called axioms. The axiomatic and algebraic point of 
view on concurrency theory is widely known as process algebra. 

The most well-known algebraic concurrency theories are the ones known 
by the acronyms CCS, CSP, and ACP. CCS is the Calculus of Communi­
cating Systems of [Milner, 1980]. Theoretical CSP originates from [Brookes 
et al., 1984]; the acronym CSP stands for Communicating Sequential Pro­
cesses. ACP is the Algebra of Communicating Processes; the original ref­
erence to ACP is [Bergstra and Klop, 1984a]; we note that recently the 
full version of [Bergstra and Klop, 1984a] has appeared; see [Bergstra and 
Klop, 1995]. Of these three, (theoretical) CSP is the most abstract (it 
identifies more processes than the other two), and tends in the direction of 
a specification language. The other two, CCS and ACP, are based on the 
same notion of equivalence (bisimulation equivalence), and are more oper­
ationally oriented than CSP. They tend in the direction of a programming 
language. Of the two, CCS has links to logic and A-calculus, and ACP may 
be best characterized as a purely algebraical approach. 

In this survey we focus on concrete process algebra. Concrete process al­
gebra is the area of algebraic concurrency theory that does not incorporate 
a notion called abstraction. Abstraction is the ability to hide information, 
to abstract information away. The reason that we refrain from incorpo­
rating this important issue is that concrete process algebra is already such 
a large part of the theory that it justifies its own survey. Moreover, it is 
more and more recognized that for the understanding of issues in large lan­
guages it is often convenient first to study such issues ill a basic language, 
a language with less features. For instance, some decidability results in 
process algebra are obtained in this way. Other examples of such basic 
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languages are Milner's basic CCS [Milner, 1980], BCCSP [Glabbeek, 1990], 
ASTP [Nicollin and Sifakis, 1994], TCCSo [Moller and Tofts, 1990], BPP 
[Christensen et al., 1993], and the pair BPA/PA [Bergstra and Klop, 1982]. 
The results that may be obtained for a basic language are almost always 
useful when the language is extended with additional constructs. Most of 
the time, these basic languages are concrete. In this survey we will see 
many examples where a result for a basic language is very useful for an 
extended version of the language. 

Another reason to focus on concrete process algebra is that it is indeed 
purely algebraically a neat theory. On the other hand, the theory with a 
form of abstraction and thus with some special constant such as Milner's 
silent action (7) or the empty process c: of [Koymans and Vrancken, 1985] 
is not (yet) stabilized. That is, there are many variants of the theory and 
it is not clear if there exists a superior variant. For instance, there are two 
closely related competitive equivalences for the theory with so-called 7 ab­
straction: observational congruence [Milner, 1980] and branching bisimu­
lation equivalence [Glabbeek and Weijland, 1989]. 

To obtain a uniform notation, since the majority of the available con­
crete process algebras are ACP-like ones, and since the ACP approach is the 
most algebraical approach, we survey the algebraical part in the ACP-style 
process algebra of [Bergstra and Klop, 1984a; Bergstra and Klop, 1995]. As 
for the semantics of the various languages we deviate from the approach of 
[Bergstra and Klop, 1984a; Bergstra and Klop, 1995] since nowadays many 
process algebras have an operational semantics in the style of [Plotkin, 
1981]. So, we equip all the languages with such an operational semantics. 
In the articles [Bergstra and Klop, 1982], [Bergstra and Klop, 1984b], BPA, 
PA, and ACP were introduced with a semantics in terms of projective limit 
models. When we restrict ourselves to guarded recursion, projective limit 
models identify exactly the (strongly) bisimilar processes. The projective 
limit models are an algebraic reformulation of the topological structures 
used in [Bakker and Zucker, 1982]. Regarding syntax as well as semantics, 
[Bergstra and Klop, 1982] reformulates [Bakker and Zucker, 1982] in order 
to allow more efficient algebraic reasoning. 

For those readers who want to know more about possibly other ap­
proaches to process algebra (with abstraction), we refer to the following 
four text books in the area [Baeten and Weijland, 1990], [Hennessy, 1988], 
[Hoare, 1985], and [Milner, 1989]; see also section 4. 

Finally, we briefly review what can be expected in this survey. The 
survey is organized into three sections (not counting this section). 

The first section (2) describes concrete sequential processes; that is, in 
this section we even refrain from discussing parallelism. In this section, 
we will meet and tackle many problems that accompany the design of any 
algebraic language. Since the languages are simple, it is relatively easy 
to explain the solutions. The solutions that we obtain for the concrete 
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sequential processes turn out to be useful for other languages, too. In 
particular, we will use these solutions in section 3 where we discuss concrete 
concurrent processes. Lastly, section 4 gives directions for further reading. 

Acknowledgements We thank the proof readers, Jan Bergstra (University 
of Amsterdam and Utrecht University) and Jan Willem Klop (CWI and 
Free University Amsterdam) for their useful comments. Also comments 
by Twan Basten (Eindhoven University of Technology), Kees Middelburg 
(PTT Research and Utrecht University), Alban Ponse (University of Am­
sterdam), and Michel Reniers (Eindhoven University of Technology) were 
appreciated. Special thanks go to Joris Hillebrand (University of Ams­
terdam) for his essential help in the final stages of the preparation of the 
document. 

2 Concrete sequential processes 
In this section we will introduce some basic concepts that can be found in 
process algebra. We will do this in a modular way. That is, first we treat a 
basic theory that is the kernel for all the other theories that we will discuss 
subsequently. The basic theory describes finite, concrete, sequential non­
deterministic processes. Then we add features to this kernel that are known 
to be important in process algebra: for instance, deadlock or recursion to 
mention a few. Such features make the kernel more powerful for both 
theoretical and practical purposes. We also show that each feature is a 
so-called conservative extension of the original theory; thus, we may argue 
that our approach is modular. 

2.1 Introduction 
In this subsection we give the reader an idea of what can be expected in 
the subsections of the sequential part of this survey. 

We start with the basic language. Once we have treated this language, 
we will extend it in the following subsections with important features. We 
discuss the notions of recursion in subsection 2.3, projection in 2.4, deadlock 
(or inaction) in 2.5, empty process in 2.6, and we discuss the following 
operators: renaming operators in subsection 2.7, state operators in 2.8 
and 2.9, the priority operator in 2.10, and Kleene:s binary star operator 
in 2.11. Next, we focus in subsection 2.12 on an extension with time. Then 
subsection 2.13 follows with pointers to extensions that we do not discuss 
in this survey. Finally, we discuss decidability and expressiveness issues in 
subsection 2.14 for some of the languages introduced. 

2.2 Basic process algebra 
First, we list some preliminaries. Then we treat the basic language of this 
chapter. Next, we devote subsection 2.2.2 to term rewriting analysis; we 
discuss a powerful method that we will frequently need subsequently. In 
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the next, and last, subsection 2.2.3 we discuss an operational semantics for 
our basic language. In 2.2.3 we also treat a meta-theorem on operational 
semantics that we will often use in the rest of this survey. 

We assume that we have an infinite set V of variables with typical 
elements x, y, z, .. ,. A (single sorted) signature E is a set of function 
symbols together with their arity. If the arity of a function symbol fEE 
is zero we say that f is a constant symbol. The notion of a term (over E) 
is defined as expected: x E V is a term; if tl, ... ,tn are terms and if fEE 
is n-ary then f(tl,' .. ,tn ) is a term. A term is also called an open term; if 
it contains no variables we call it closed. We denote the set of closed terms 
by C(E) and the set of open terms by O(E) (note that a closed term is 
also open). We also want to speak about the variables occurring in terms: 
let t E O(E) then var(t) <;;; V is the set of variables occurring in t. 

A substitution 0" is a map from the set of variables into the set of terms 
over a given signature. This map can easily be extended to the set of 
all terms by substituting for each variable occurring in an open term its 
O"-lmage. 

2.2.1 The theory Basic Process Algebra 

We will give the theory Basic Process Algebra or BPA in terms of an equa­
tional specification. BPA is due to [Bergstra and Klop, 1982]. 

Definition 2.2.1. An equational specification (E, E) consists of a set E 
that is a signature and a set of equations of the form tl = t2 where tl and t2 
are (open) terms. The equations in E are often referred to as axioms. 

We define the definition of derivability of an equation from an equational 
specification. 

Definition 2.2.2. Let (E, E) be an equational specification. We define 
inductively when an equation s = t is derivable from the equational spec­
ification (E,E) (with sand t terms over E). When an equation s = t is 
derivable from (E, E) we write (E, E) r- s = t or provided that no confusion 
arises E r- s = t. We call the symbol r- the derivability relation. 

(i) s=tEE~Er-s=t 

(ii) Er-s=t~Er-t=s 

(iii) Er-t=t 

(iv) E r- t = sand E r- s = u ~ E r- t = u 

Let 0" be a substitution. 

(v) E r- s = t ~ E r- O"(s) = IT(t) 

Let C[_] be a context. 

(vi) E r- s = t ~ E I- C[s] = Crt] 
We recall that a context is a term with a hole in it; contexts can be 

defined inductively in the obvious way. 
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Table 1. BPA. 

x+y =y+x Al 

(x+y)+z=x+(y+z) A2 

x + x = x A3 

(x + y)z = xz + yz A4 

(xy)z = x(yz) A5 

Now we give the theory BPA = (~BPA,EBPA)' 
We begin with the signature ~BPA. There are two binary operators 

present in ~BPA; they are denoted + and '. The signature ~BPA also con­
tains a number of constants with typical names a, b, c, . . .. We will use the 
capital letter A for the set of constants. The set A can be seen as a param­
eter of the theory BPA: for each application the set A will be specified. For 
now it is only important that there are constants. This ends our discussion 
of the signature. 

The set of equations EBPA consists of the five equations AI-5 in table 1. 
The variables x,y, and z in table I are universally quantified. They stand 
for elements of some arbitrary model of BPA. These elements are often 
called processes. 

Remark 2.2.3. Terms will be denoted according to the same conventions 
as the usual ones for summation and multiplication. We will often omit 
the centered dot in a product. The centered dot binds stronger than the 
plus. Thus, xy + z means (x· y) + z and the brackets in x(y + z) cannot 
be omitted. 

Intuition We will give an intuitive meaning of the signature and the ax­
ioms respectively. Formal semantics can be found in 2.2.3. 

The constants a, b, c, ... are called atomic actions or steps. We consider 
them as processes, which are not subject to any investigation whatsoever. 

We think of the centered dot (.) as sequential composition. The pro­
cess xy is the process that first executes the process x and when (and if) 
it is completed y starts. 

The sum or alternative composition x + y of two processes x and y 
represents the process that either executes x or y but not both. 

Now we will discuss the axioms of table l. 
Axiom Al expresses the commutativity of the alternative composition. 

It says that the choice between x and y is the same as the choice between y 
and x. 

Axiom A2 expresses the associativity of the plus. It says that first 
choosing between x + y and z and then (possibly) a choice between x and y 
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Fig. 1. Two deduction graphs with the same execution paths ab and ac 
but with different choice moments. 

is the same as choosing between x and y + z and then (possibly) a choice 
between y and z. 

Axiom A3 expresses the idempotency of the alternative composition. A 
choice between x and x is the same as a choice for x. 

Axiom A4 expresses the right distributivity of the sequential composi­
tion over the alternative composition. A choice between x and y followed 
by z is the same as a choice between x followed by z and y followed by z. 

Axiom AS expresses the associativity of the sequential composition. 
First xy followed by z is the same as first x followed by yz. 

Full distributivity We will explain why only right distributivity is pre­
sented in table 1. An axiom that does not appear in BPA is the axiom that 
expresses the left distributivity (LD) of the sequential composition over the 
alternative composition: 

LD x(y + z) = xy + xz. 

Axioms A4 and LD together would give full distributivity. Axiom LD is 
not included on intuitive grounds. In the left-hand side of LD the moment 
of choice is later than in the right-hand side. For in a(b + c) the choice 
between band c is made after the execution of a, whereas in ab + ac first 
the choice between ab and ac must be made and then the chosen term can 
be executed, as in figure 1, where we depict two deduction graphs. See 
definition 2.2.24 later on for a formal definition of a deduction graph. 

The right-hand side of LD is often called a non-deterministic choice, 
which is a subject of research on its own. 

Structural induction Structural induction is a basic proof technique in 
process algebra when closed terms are involved. We will inductively define 
the class of basic terms. It will turn out that every closed term can be 
written as a basic term. 
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Definition 2.2.4. An atomic action is a basic term. If t is a basic term 
and a E A, then a . t is a basic term. If t and s are basic terms, then t + s 
is a basic term. 

Remark 2.2.5. If we consider terms to be identical that only differ in 
the order of the summands, we can see that basic terms have the following 
form 

n m. 

L ai . td L bj , 

i=1 j=1 

where ai, bj E A, 1 < i ~ n, 1 < j ~ m, n + m > I, and the ti again basic 
for 1 < i < n. Here, 

k 

LPi 
i=! 

is an abbreviation of PI + ... + Pk, and if n = 0, m > 1 we have a term of 
the form b1 + ... + bm . Similarly if m = 0, n > l. 

In the next proposition we see that if we want to prove a statement 
correct for all closed terms (see subsection 2.2 for the definition of a closed 
t~rm), it suffices to prove it for basic terms. Since they are inductively 
defined we can use structural induction. 

Proposition 2.2.6. Let t be a closed BPA term. Then there is a basic 
term s such that BPA f- t = s. 

Proof. We will use term rewriting analysis to prove 2.2.6. In the next 
subsection (2.2.2) we will give a short introduction to this theory. We will 
use the proof of the fact that the term rewriting system of table 2 is strongly 
normalizing as a running example. Once we know that the term rewriting 
system of table 2 has this property, it is not difficult to see that given a 
closed BPA term t, there is a normal form s, which is a basic term, and 
that BPA f- t = s, which proves the proposition. • 

2.2.2 Term rewriting systems 

In this subsection we will introduce a result from the field of term rewriting 
systems that is a powerful tool in process algebra. We will do this by means 
of an example: we will prove the essential step of proposition 2.2.6 using the 
result. General references to this theory are [Dershowitz and Jouannaud, 
1990] and [Klop, 1992]. 

Definition 2.2.7. A term rewriting system or term reduction system is 
a pair (E, R) with E a signature and R a set of rewriting (or reduction) 
rules. The reduction rules are of the form s -+ t, where sand t are terms 
over the signature Ej we denote this set by O(E) with 0 for open terms 
over E. For these terms we have two constraints 

• s is not a variable. 
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• all variables that occur in t must also occur in s. 

Often, we give reduction rules a name, as in our example below. The one­
step reduction relation on terms, also denoted --, is the smallest relation 
on terms containing the rules that is closed under substitutions and con­
texts. We denote the transitive-reflexive closure of the one-step reduction 
relation --> by -. 

Example 2.2.8. We give an example of a term reduction system. Let T 
be the term reduction system with as signature that of BPA and as a 
set of reduction rules those in table 2. Note that we do not have rules 
corresponding to axioms Al or A2, as these axioms have no clear direction. 

A useful property for a term reduction system is that there are no 
infinite reductions possible. Below we define some more notions. 

Definition 2.2.9. Let (~, R) be a term reduction system and let S be a 
~ term. We say that s is a normal form if there is no term t such that s --> t. 
A term s has a normal form if there exists a normal form t with s-t. 

A term So is called strongly normalizing or terminating (SN) if there 
exists no infinite series of reductions beginning in So: 

A term reduction system is called strongly normalizing if every term of it 
is SN. 

Example 2.2.10. For our running example we have that the process a is 
a normal form, the process (ab)c is not a normal form but has one, a(bc) 
(use RA5), and there are no infinite reductions possible. To prove the 
last statement, we introduce the method of the recursive path ordering 
following [Klop, 1992]. 

Definition 2.2.11. Let (~, R) be a term reduction system. We define 
O*(~) to be the superset of O(~) where some function (and constant) 
symbols may be marked with an asterisk (*). 

Example 2.2.12. A typical element of the superset 0* of our running 
example is 

a .* (b· CO). 

Table 2. A term reduction system for BPA. 

x +x __ x RA3 

(x + y)z --> xz + yz RA4 

(xy)z -- x(yz) RA5 
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Definition 2.2.13. Let ~ be a signature and let > be a well-founded 
partial ordering on ~. Let -+ be the reduction relation that is defined in 
the clauses RPOl-5 in table 3. 

Let s, t E 0* (~). We write s ~ t if 5 can be obtained from t by 
permuting the arguments of t. 

Let s, t E O(~). We write s >rpo t if there exists a u E O(~) such 
that u ~ t and s -++ u. With -++ we mean the transitive closure of-+. 

Example 2.2.14. Suppose that we have the following ordering on the 
signature of our running example: . > +. With this choice of > we can 
execute the following reduction: 

(x+y)·z >rpo 
>rpo 
>rpo 
>rpo 

(x+y)·*z 
(x + y) .* z + (x + y) .* z 
(x +* y). z + (x +* y) . z 
x· z + y' z. 

In the following theorem (due to [Dershowitz, 1987]) we will see that if we 
have such a reduction for each rewrite rule we have a strongly normalizing 
term rewriting system. 

Theorem 2.2.15. Let (~, R) be a term rewriting system with finitely many 
rewriting rules and let> be a well-founded ordering on~. If s >rpo t for 
each rewriting rule s -+ t E R, then the term rewriting system (~, R) is 
strongly normalizing. 

The method of the recursive path ordering is not convenient for rewrit­
ing rules such as (x· y) . z -+ x· (y. z). We will discuss a variant of the above 
method which is known as the lexicographical variant of the recursive path 

Table 3. The recursive path ordering. 

RPOl. Mark head symbol (k ~ 0) 

H(tJ, ... ,tk) -+ H*(tl"" ,tk) 

RP02. Make copies under smaller head symbol (H > C, k > 0) 
H*(tl, ... ,td -+ C(H*(t1, ... ,tk), ... ,H*(tl, ... ,tk)) 

RP03. Select argument (k > 1, lSi < k) 

H*(tl"'" tk) -+ ti 
RP04. Push * down (k > 1, I > 0) 

H*(tl, ... ,C(51, ... ,51), ... ,tk) -+ H(t1, ... ,C*(SI, ... ,51), ... ,tk) 
RP05. Handling contexts 

5 -+ t =:} H( ... ,5, ... ) -+ H( ... ,t, ... ) 
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ordering. The idea is that we give certain function symbols the so-called 
lexicographical status (the remaining function symbols have the multiset 
status). The function symbols with a lexicographical status have, in fact, 
an arbitrary but fixed argument for which this status holds. For instance, 
we give the sequential composition the lexicographical status for the first 
argument. 

We also have an extra rule to cope with function symbols with a lexico­
graphical status. For a k-ary function symbol H with the lexicographical 
status for the ith argument we have the following extra rule in table 4. 
The idea behind this rule is that if the complexity of a dedicated argument 
is reduced and the complexity of the other arguments increases (but not 
unboundedly) the resulting term will be seen as less complex as a whole. 

Definition 2.2.16. Let s, t E 0(1:). We write s >/po t if s -++ t with -++ 
this time the transitive closure of the reduction relation defined by the rules 
RPOl-5 and LPO. 

Example 2.2.17. Suppose that we have the following ordering on the 
signature of our running example· > +. We give the symbol· the lexico­
graphical status for the first argument. Consider the following reduction: 

(x . y) . z > /po (x· y) . * z 
> /po (x· * y) . (x. y) . * z) 
> /po x· (x. * y) . z) 
>/po x·(y·z). 

Note that we did not use permutation of arguments in the deduction of 
example 2.2.14. This means that we also have 

(x + y) . z >/po x· z + y. z. 

In the following theorem (due to [Kamin and Levy, 1980]) we will see that 
if we have such a reduction for each rewrite rule we also have a strongly 
normalizing term rewriting system. 

Theorem 2.2.18. Let (1:, R) be a term rewriting system with finitely many 

Table 4. The extra rule for the lexicographical variant of the recursive 
path ordering. We have that H has the lexicographical status for the ith 
argument. 

LPO Reduce ith argument (k ;:: 1, 1 :'S: i :'S: k, l > 0) 

Let t = H*(tl, ... ,ti-l,C(SI, ... ,sd,ti+1 , ..• ,tk) 

Then t --+ H (t, ... , t, C* (SI' ... , s/), t, ... , t) 
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rewriting rules and let > be a well-founded ordering on E. If s > /po t for 
each rewriting rule s ...... t E R, then the term rewriting system (E, R) is 
strongly normalizing. 

So with the aid of the above theorem we conclude that the term rewrit­
ing system of table 2 is strongly normalizing (we leave the case RA3 to the 
reader). To prove strong normalization we will henceforth confine ourselves 
to giving a partial ordering> on the signature and to saying which function 
symbols do have the lexicographical status (and for which argument). 

2.2.3 Semantics of basic process algebra 

In this subsection we will give an operational semantics of BPA in the style 
of Plotkin; see [Plotkin, 1981]. The usual procedure to give an operational 
semantics is to only give a table with so-called transition rules; see, for 
instance, table 5. In this subsection we will make a small excursion to the 
so-called general theory of structured operational semantics because in that 
framework we can formulate general theorems that hold for large classes 
of languages. The reason for this detour is that we will use such general 
results many times in this chapter. 

To start with, we define the notion ofa term deduction system, which 
is taken from [Baeten and Verhoef, 1993]. It is a modest generalization of 
the notion of a transition system specification that originates from [Groote 
and Vaandrager, 1992]. The idea of a term deduction system is that it can 
be used not only to define a transition relation but also to define unary 
predicates on states that turn out to be useful. See table 5 for a typical 
term deduction system; it is a definition of both transition relations ~ 
and unary predicates ~..; for each a E A. 

First we list some preliminaries for completeness sake. 

We recall that the meaning or semantics of an equational specification 
(E, E) is given by a model or an algebra A. Such an algebra consists of a set 
of elements U (called the universe or domain of A) together with constants 
in U and functions from un to U. We call A a E-algebra when there is 
a correspondence between the constant symbols in E and the constants 
in U, and between the function symbols in E and the functions in A (of 
the same arity). We call such a correspondence an interpretation. Now if A 
is a E-algebra of the equational specification (E, E), then an equation s = 
t over (E, E) has a meaning in A, when we interpret the constant and 
function symbols in sand t by the corresponding constants and functions 
in A. Moreover, the variables in sand t are universally quantified. So 
when for all variables in sand t we have that the statement s = t is true 
in A we write A 1= s = t and we say A satisfies s = t or s = t holds 
in A. We call 1= the satisfiability relation. If a L:-algebra A satisfies all 
equations s = t over (L:, E) we write A 1= (L:, E) (or A 1= E) and we say 
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that A is an algebra for E, or a model of E. We also say that E is a sound 
axiomatization of A. See remark 2.2.34 and theorem 2.2.35 for an example. 

Definition 2.2.19. A term deduction system is a structure (L, D) with L 
a signature and D a set of deduction rules. The set D = D(Tp, Tr) is 
parameterized with two sets, which are called respectively the set of pred­
icate symbols and the set of relation symbols. Let P E Tp and R E Tn 
and s, t, u E D(L). We call expressions Ps and tRu formulas. A deduction 
rule d E D has the form 

H 
C 

with H a set of formulas and C a formula. We call the elements of H the 
hypotheses of d and we call the formula C the conclusion of d. If the set 
of hypotheses of a deduction rule is empty we call such a rule an axiom. 
We denote an axiom simply by its conclusion provided that no confusion 
can arise. Notions such as "substitution", "var", or "closed" extend to 
formulas and deduction rules as expected. 

Example 2.2.20. Let T(BPA) be the term deduction system consisting 
of the signature of BPA and the deduction rules of table 5. As relation 
symbols we have the transition relations and as predicate symbols we have 
the successful termination predicates. The intuitive idea of s...!!.....s' is that, 
for example, a machine in state s can evolve into state s' by executing 
step a. The intended meaning of s...!!.....J is that this machine in state s 
can terminate successfully by executing a; the symbol J (pronounced tick) 
stands for successful termination. 

Next, we give the definition of a proof of a formula from a set of deduc­
tion rules. This definition is taken from [Groote and Vaandrager, 1992]. 

Definition 2.2.21. Let T = P:, D) be a term deduction system. A proof 
of a formula 'IjJ from T is a well-founded upwardly branching tree of which 
the nodes are labelled by formulas such that the root is labelled with 'IjJ and 
if X is the label of a node q and {Xi : i E I} is the set of labels belonging 

Table 5. Derivation rules of T(BPA). 

a , 
x----+x 

a , 
X + y----+x 

x...!!.....J 

X + y...!!.....J 
a , 

x----+x 
a , 

xy----+x y 

y...!!.....y' 
a , 

X + y----+y 

y...!!.....J 

X + y...!!.....J 

x...!!.....J 
a xy---+y 
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Fig. 2. A proof 

to the nodes {qi : i E I} directly above q (I some is index set) then there 
is a deduction rule 

{rpi : i E I} 
rp 

and a substitution u : V ---+ O(L) such that 0'( rp) = X and u( rp;) = Xi 
for i E I. 

If a proof of ¢ exists, we say that ¢ is provable from T, notation T r ¢. 

Example 2.2.22. It is not difficult to verify that the tree in figure 2 is a 
proof of the transition (a + b)c~c. 

Next, we define the notion of a deduction graph. It generalizes the 
well-known notion of a labelled state transition diagram in the sense that 
it can also handle unary predicates on states. First, we need a reachability 
definition. 

Definition 2.2.23. Let T be a term deduction system and let sand t be 
terms. We define a binary relation p as the transitive reflexive closure of 
the binary relation {(s,t) I 3R : T r sRt}. If spt we say that from s we 
can reach t, or that t is reachable from s. 

Definition 2.2.24. Let T be a term deduction system. The deduction 
graph of a closed term s is a labelled graph that is obtained as follows. 
The nodes of this graph are the terms that can be reached from s; the 
labels of nodes are sets of predicate symbols. The edges of a deduction 
graph are labelled by relation symbols. Let t be a node of the deduction 
graph of s; then there is a label {P : T r Pt} attached to this node. Let t 
and t' be nodes of the deduction graph of s. Then there exists an edge 
labelled by R from t to t' in the deduction graph of s if and only if we 
have T I- tRt'. See figure 3 for examples. Observe that we are a bit sloppy 
there: we identify the edges of the graph with its labels; that is, we render 
an edge 
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a 
--> 

l 

simply as ~. Moreover, we depict a predicate ...!!.......; as a b-labelled edge 
to a node .,;. 

Next, we define the notion of a structured state system [Baeten and 
Verhoef, 1993). It is a generalization of the well-known notion of a labelled 
transition system. 

Definition 2.2.25. A structured state system is a triple (8, Sp, Sr) where 
S is a set of states, 8p is a subset of the power set of 8 and Sr is a subset 
of the power set of 8 x S. The sets Sp and Sr are called respectively the 
set of predicates and the set of relations. 

A term deduction system induces in a natural way a structured state 
system. 

Definition 2.2.26. Let T = (~, D) be a term deduction system and 
let D = D(Tp,Tr). The structured state system G induced by T has as its 
set of states S = C(~); the predicates and relations are the following. 

{ { t E C(~) I T ~ Pt } I P E Tp }, 

{ { (s, t) E C(~) x C(~) I T ~ sRt} IRE Tr }. 

Example 2.2.27. Let L = L(BPA) be the structured state system induced 
by the term deduction system T(BPA) from example 2.2.20. In figure 3 we 
depict two deduction graphs of the terms ab + a(b + b) and abo 

Both terms represent the same behaviour: first a is executed, then b, 
and then both systems terminate successfully. However, they do not have 
the same deduction graphs as we can see in figure 3. So the set of deduction 
graphs is not directly a model of BPA since in that system we want the 
alternative composition to be idempotent. 

Many different equivalence notions have been defined in order to identify 
states that have the same behaviour; see [Glabbeek, 1990J and [Glabbeek, 
1993] for a systematic approach. The finest among them is the so-called 
strong bisimulation equivalence of [Park, 1981]. We will take the formula­
tion of [Baeten and Verhoef, 1993J for this well-known notion. 

It will turn out that the two deduction graphs of example 2.2.27 are 
bisimilar. 

Definition 2.2.28. Let G = (S, Sp, Sr) be a structured state system. A 
relation B ~ S x S is called a (strong) bisimulation if for all s, t E S 
with sBt the following conditions hold. For all R E Sr 

\Is' E S(sRs' => 3t' E 8: tRt' II s'Bt'), 

\It' E S(tRt' => 3s' E S : sRs' II s' Bt'), 
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ab ab + a(b + b) 

"1 /~ 
b b b+ b 

'1 ~/ 
vi vi 

Fig. 3. Two deduction graphs. 

and for all P E Sp 
Ps {:} Pt. 

The first two conditions are known as the transfer property. Two states s 
and t in S are bisimilar in the structured state system G if there exists 
a bisimulation relation containing the pair (s, t). The notation is s "'G t 
or s ~ t provided that no confusion can arise. 

Note that bisimilarity is an equivalence relation, called a bisimulation 
equivalence. 

Example 2.2.29. Let L = L(BPA) be the structured state system of 
example 2.2.27. It is not hard to see that the two states ab + a(b + b) 
and ab are bisimilar. We graphically depict the bisimulation relation by 
connecting its pairs with a dashed line as in figure 4. 

When two states in a deduction graph are bisimilar, we also call the 
corresponding terms bisimilar. 

An example of two deduction graphs that are not bisimilar can be found 
in figure l. 

Considered as deduction graphs, the two processes x = ab and y = ab + 
a(b + b) are not equal, but from a process algebraic point of view, we want 
them to be. That is, they both first execute the atomic process a and then 
the b. So we would like to have a model for which ab = ab + a(b + b). The 
usual approach to obtain this is to work with an equivalence relation and to 
identify equivalent objects. We then say that the objects are equal modulo 
this equivalence relation. If x is a process and ~ denotes bisimulation 
equivalence, the equivalence class is defined [xl = {y : x ~ y}. So, in the 
above example the two processes x = ab and y = ab + a(b + b) are equal 
modulo bisimulation equivalence: [xl = [yl. Now it would be very nice if 
the equivalence class is independent of the chosen representative. If this is 
the case, we can easily define our process algebra operators on these classes. 
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Fig. 4. Bisimilar deduction graphs. 

For instance, the alternative composition can be defined as [x]+[y] = [x+y]. 
In general, the assumption that a relation is an equivalence relation is too 
weak for this purpose. The additional property that does the job is called 
congruency. In the next definition we define this well-known notion. 

Definition 2.2.30. Let ~ be a signature. An equivalence relation R on 
the set of closed ~ terms is called a congruence if for all n-ary function 
symbols f E ~ we have 

where Xl, YI, ... , X n , Yn are closed ~ terms. 

Next, we define some syntactical constraints on the rules of a term 
deduction system for which it can be proved that if a term deduction system 
satisfies these constraints then strong bisimulation equivalence will always 
be a congruence. Below we discuss the so-called path format; this stands 
for "predicates and tyft/tyxt hybrid format" and is proposed by [Baeten 
and Verhoef, 1993]. It is a modest generalization of the tyft/tyxt format 
originating from [Groote and Vaandrager, 1992]. The name tyft/tyxt refers 
to the syntactical form of the deduction rules. 

We refer to [De Simone, 1985] for the first paper that discusses syntacti­
cal constraints on operational rules. Nowadays, the syntactical constraints 
formulated in that paper are often referred to as the "De Simone format". 

Definition 2.2.31. Let T = (~, D) be a term deduction system with D = 
D(Tp, Tr). Let I and J in the following be index sets of arbitrary cardinal­
ity, let ti, Sj, t E O(~) for all i E I and j E J, let Pj , P E Tp be predicate 
symbols for all j E J, and let Ri, R E Tr be relation symbols for all i E I. 
A deduction rule d E D is in path format if it has one of the following four 
forms: 



Concrete process algebra 

{PjS j : j E J} U {tiRiYi : i E I} 
f(xI,· .. , xn)Rt 
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with f E ~ an n-ary function symbol, X = {Xl, ... ,xn }, Y = {Yi : i E I}, 
and X U Y ~ V a set of distinct variables; 

{PjS j : j E J} U {tiRiYi : i E I} 
xRt 

with X = {X}, Y = {Yi : i E I}, and X U Y C V a set of distinct variables; 

{PjSj : j E J} U {tiRiYi : i E I} 
Pf(x!, ... ,xn ) 

with f E ~ an n-ary function symbol, X = {Xl> ... ,xn }, Y = {Yi : i E I}, 
and X U Y ~ V a set of distinct variables or 

{PjS j : j E J} U {tiRiYi: i E I} 
Px 

with X = {x}, Y = {Yi : i E I}, and X U Y C V a set of distinct variables. 
If in the above four cases var(d) = Xu Y we say that the deduction 

rule d is pure. 
We say that a term deduction system is in path format if all its deduction 

rules are in path format. We say that a term deduction system is pure if 
all its rules are pure. 

Next, we formulate the congruence theorem for the path format. It is 
taken from [Baeten and Verhoef, 1993). There the so-called well-founded 
subcase is proved. [Fokkink, 1994) showed that this requirement is not 
necessary, thus yielding the following result. Note that we do not use the 
notion pure in the theorem below. We just define it since we will need this 
notion later on when we will have our second excursion into the area of 
general SOS theory. 

Theorem 2.2.32. Let T = (~, D) be a term deduction system in path for­
mat. Then strong bisimulation equivalence is a congruence for all function 
symbols occurring in ~. 

Lemma 2.2.33. Let T(BPA) be the term deduction system that we defined 
in example 2.2.20. Then bisimulation equivalence is a congruence on the 
set of closed BPA terms. 

Proof. It is easy to see that the operational semantics given in table 5 is 
in path format, so with theorem 2.2.32 we immediately find the proof of 
this lemma. • 

Remark 2.2.34. It follows from lemma 2.2.33 that we can take the quo­
tient of the algebra of closed BPA terms with respect to bisimulation equiv­
alence and that the operators of BPA can be defined on this quotient by 
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taking representatives. Next, we will show that this quotient algebra is a 
model of BPA. We recall that this property is called soundness; that is, if 
two closed terms x and yare provably equal, BPA f- x == y, then we also 
have that x and yare bisimilar, x ~ y. 

Theorem 2.2.35. The set of closed BPA terms modulo bisimulation equiv­
alence is a model of BPA. 

Proof. Since bisimulation equivalence is a congruence, we only need to 
verify the soundness of each separate axiom. We check Al (see table 1). 
Let x and y be closed BPA terms. We have to show that x + y is bisimilar 
with y + x (using the rules of table 5). It is not hard to see that the 
relation that contains the pair (x + y, y + x) and the diagonal of S x S 
is a bisimulation. The cases A2-4 are treated analogously. It remains to 
check A5. It is easy to see that the relation containing all the pairs of the 
form ((xy)z,x(yz») and the diagonal of S x S is a bisimulation. • 

Next we will show that BPA is a complete axiomatization of the set of 
closed terms modulo bisimulation equivalence. We recall that an axiom­
atization is complete if bisimilar x and yare provably equal with these 
axioms. Note that we only talk about closed process terms here: complete 
axiomatizations for open terms are much more difficult, see, e.g. [Groote, 
1990al. But first we will need some preliminaries to prove this; they are 
listed in the next lemma. 

Lemma 2.2.36. Let x and y be closed BPA terms and let n(z) be the 
number of symbols of a closed BPA term z. Then we have: 

(i) T(BPA) f- x"'!!""'y' =} BPA f- x == a + x, 

(ii) T(BPA) f- x"'!!""'y =} BPA f- x == ay + x, 

(iii) T(BPA) f- x"'!!""'y =} n(x) > n(y). 

Proof. Easy. Use induction on the depth of the proof. • 

Theorem 2.2.37. The axiom system BPA is a complete axiomatization 
of the set of closed BPA terms modulo bisimulation equivalence. 

Proof. Let x and y be bisimilar closed BPA terms, notation x ~ y. We 
have to prove that BPA f- x == y. With the aid of proposition 2.2.6 and 
theorem 2.2.35 it is enough to prove this for basic terms. By symmetry, it 
is even enough to prove that for basic terms x and y 

x + y ~ y =} BPA f- x + y == y. 

We will prove this with induction on n = n(x) + n(y). First, let x == a. 
Then y"'!!""'y', so with lemma 2.2.36 we find that x + y = y. This proves the 
basis of our induction. Now suppose that x == ax' . Then x+y"'!!""'xl , so there 
is a yl with y"'!!""'yl and Xl ~ yl. But then also Xl + yl ~ yl and yl + Xl ~ Xl 



Concrete process algebra 21 

and with induction we find x' + y' = y' and y' + x' = x'. SO x' = y'. 
Now x + y = ax' + y = ay' + y = y with lemma 2.2.36. Finally, suppose 
that x = x' + x". Since x + y '" y, we also have x' + y '" y and x" + y '" y. 
By induction x' +y = y and x" +y = y. So x+y = x' +x" +y = y+y = y .• 

2.3 Recursion in BPA 
In this subsection we will add recursion to the theory BPA. 

Definition 2.3.1. Let V be a set of variables. A recursive specifica­
tion E = E(V) is a set of equations 

E = {X = sx(V) : X E V}, 

where each sx(V) is a BPA term that only contains variables of V. These 
equations are called recursion equations. A recursion equation is called a 
recursive equation if it has the form X = s(X) where s(X) only contains 
the variable X. By convention, we use capital letters X, Y, ... for variables 
bound in a recursive specification. 

Example 2.3.2. El = {X = Xa + a} and E2 = {Y = aY} are examples 
of recursive specifications. 

Definition 2.3.3. A solution of a recursive equation is a process in some 
model of BPA such that its substitution in the recursive equation yields a 
true statement in that model. 

A solution {(X I E) : X E V} of a recursive specification E(V) is a 
set of processes in some model of BPA such that replacing each variable X 
by (XI E) in the recursion equations of E(V) yields true statements in 
that model. Mostly, we are interested in one particular variable X E V. 
Abusing terminology we call (X I E) the solution of E. Moreover, abusing 
notation we often write X for (X I E). 

Remark 2.3.4. In ecs [Milner, 1980; Milner, 1989] and CSP [Hoare, 
1985] the so-called J.l notation is used: if x = t(x) is a recursive equation, 
then J.lx.t(x) is a process satisfying this equation. 

Definition 2.3.5. Let E = E(V) be a recursive specification and let t be 
an open BPA term. Then (t I E) is the process t with all variables X both 
occurring in t and V replaced by the processes (X I E). 

At this point we have all the necessary definitions to define the equa­
tional specification BPArec, in which rec is an abbreviation for recursion. 
The signature of BPArec consists of the signature of BPA plus for all re­
cursive specifications E(V) and for all X E V a constant (X I E). The 
axioms of BPArec consist of the axioms of BPA plus for all recursive spec­
ifications E(V) = {X = Sx : X E V} and for all X E V an equation 
(X I E) = (sx I E). 

Definition 2.3.6. Let s be a term over BPA containing a variable X. We 
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call an occurrence of X in s guarded if s has a subterm of the form a· t 
with t a BPA term containing this occurrence of X; in this case we call the 
atomic action a E A a guard (of X in s). Otherwise we call the occurrence 
of X in s unguarded. 

Definition 2.3.7. We call a term completely guarded if all occurrences of 
all its variables are guarded. 

We call a term guarded if we can rewrite it to a completely guarded 
term by use of the axioms. Otherwise, a term is called unguarded. 

ExaUlple 2.3.8. The term aX + bX is completely guarded, (a + b)X is 
guarded but not completely guarded, and X a + Xb is unguarded. 

Definition 2.3.9. We call a recursive specification completely guarded if 
the right-hand sides of its recursion equations are completely guarded. 

We call a recursive specification guarded if we can rewrite it to a com­
pletely guarded recursive specification by use of the axioms and/or its re­
cursion equations. Otherwise, a recursive specification is called unguarded. 

ExaUlple 2.3.10. In example 2.3.2, the recursive specification EJ is un­
guarded and E2 is completely guarded. 

The next two definitions are taken from [Bergstra and Klop, 1986]. 

Definition 2.3.11. The (restricted) recursive definition principle is the 
assumption that every (guarded) recursive specification has a solution. We 
refer to this assumption as RDP(-). 

Definition 2.3.12. The recursive specification principle (RSP) is the as­
sumption that every guarded recursive specification has at most one solu­
tion. 

Note that RSP contains the guardedness demand from the beginning (as 
opposed to AlP and RDP); this is due to the fact that having at most one 
solution is not feasible for unguarded specifications, take for example {X = 
X}. 

Together, RDP- and RSP say that a guarded recursive specification 
has a unique solution. 

Semantics The semantics of BPArec can be given completely analogously 
to the semantics for BPA that we gave in subsection 2.3. 

We consider the term deduction system T(BPArec) with as signature 
the signature of BPArec and as rules the rules in table 5 together with those 
in table 6. Bisimulation equivalence is a congruence on the structured state 
system L(BPArec) induced by T(BPArec); see 2.2.32. So on the quotient of 
the algebra of closed BPArec terms with respect to bisimulation equivalence 
we can define the operators of BPArec by taking representatives. The next 
theorem states that this quotient algebra is a model of BPArec. 

TheoreUl 2.3.13. The set of closed BPArec terms modulo bisimulation 
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Table 6. Derivation rules for recursion (X = Sx E E). 

/ a v .. 

a 

{sx I E)...!!....."j 
{X I E)...!!....."j 

X 
... ... ... 

{sx I E)"'!!""'y 
(X I E)"'!!""'y 

... ... 
a ....... 

a a a ..... ___ a2 .... ___ a3 _----
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Fig. 5. Two deduction graphs of the processes X and Y that can be found 
in example 2.3.2. 

equivalence is a model of BPArec. Moreover, it satisfies RDP and RSP. 

Proof. As bisimulation equivalence is a congruence we only need to check 
the soundness of each axiom. The axioms A1-5 are treated in exactly the 
same way as in theorem 2.2.35. Equations concerning recursion are treated 
in the same way as AI. 

Let E(V) be a recursive specification. Then ([{X I E)] : X E V} is a 
solution. See below example 2.2.29 for the [.J notation. 

The proof that this model satisfies RSP wiIl be postponed until we 
have discussed the combination of recursion and so-called projections. See 
theorem 2.4.36 for a proof. • 

Example 2.3.14. In figure 5, we depict two deduction graphs of the solu­
tions of the two recursive specifications of example 2.3.2. It is not hard to 
see that X ...!!....."j and X ...!!.....an for all n > 1. We can think of the process X 
as the infinite sum Ln<w an and we can think of the process Y as the 
infinite product aW

• Note that X + Y and X are not bisimilar since X + Y 
can do infinitely many a steps, whereas X can perform only finitely many 
a steps. 

2.4 Projection in BPA 
In subsection 2.3 we introduced guarded recursive specifications. They 
are mainly used to specify infinite processes such as a counter: see exam­
ple 2.14.5. With the principles RDP and RSP we can prove statements in­
volving such infinite processes. See example 3.6.1 for an application ofRSP. 
In this subsection we will introduce another method for this purpose. The 
idea is that we approximate an infinite process by its finite projections. The 
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Table 7. Projection. 

7rn (a) = a PRI 

7rl(ax)=a PR2 

7rn +l(ax) = a7rn (x) PR3 

7rn (x + y) = 7rn (x) + 7rn (Y) PR4 

finite projections for their part turn out to be closed terms and they can 
therefore be taken care of by structural induction (see also 2.2 for struc­
tural induction). This material is based on the paper [Bergstra and Klop, 
1982]. 

We will define the equational specification BPA + PR, in which PR is 
an abbreviation for projection. 

The signature of BPA + PR consists of the signature of BPA plus for 
each n 2: 1 a unary function 7r n that is called a projection operator of order 
n or the nth projection. The axioms of BPA + PR consist of the axioms 
of table 7 and the axioms of BPA; we call the axioms PRl-4. In table 7 
we have n 2: 1, the letter a ranges over all the atomic actions, and the 
variables x and yare universally quantified. 

We will now discuss the axioms of table 7. 
The idea of projections is that we want to be able to cut off a process 

at a certain depth. An atomic action is intrinsically the most "shallow" 
process so we cannot cut off more. Axiom PR1 expresses this: a projection 
operator is invariant on the set of atomic actions. 

The subscript n of the projection operator serves as a counter for the 
depth of a process. Axioms PR2 and PR3 illustrate how this counter can 
be decremented. 

Axiom PR4 says that the projection operator distributes over the al­
ternative composition: choosing an alternative does not alter the counter 
of the projection operator. 

Proof rule We will discuss a proof rule expressing that a process is de­
termined by its finite projections. This rule is due to [Bergstra and Klop, 
1986]. 

Definition 2.4.1. Let x and y be processes. The approximation induc­
tion principle (AlP) is the following assumption. If for all n 2: 1 we 
have 7rn (x) = 7rn (Y) then x = y. 

Remark 2.4.2. In the presence of recursion we will define a more restric­
tive version of this principle; see definition 2.4.28. 

The following theorem states that projection operators can be elim­
inated from closed terms. To prove this we will use a method that we 



Concrete process algebra 25 

briefly explained in subsection 2.2.2. First, we define what we mean by the 
elimination of operators. 

Definition 2.4.3. Let L = (~, E) and Lo = (~o, Eo) be two equational 
specifications with ~o ~ ~. If for all s E C(~) there is atE C(~o) such 
that L I- s = t we say that L has the elimination property (for Lo). 

Theorem 2.4.4. The equational specification BPA + PR has the elimina­
tion property for BPA. 

Proof. It is not hard to show that the term rewriting system of table 8 is 
strongly normalizing with the lexicographical variant of the recursive path 
ordering that we treated in subsection 2.2.2. We confine ourselves to giving 
a partial ordering < on the elements of the signature of BPA + PR. 

+ < . < 7rl < 7r2 < .... 

Moreover, we give the sequential composition· the lexicographical status 
for the first argument. It is straightforward to show that the left-hand 
side of each rewrite rule is >/po than its right-hand side. Now, apply 
theorem 2.2.18. 

Now it is not hard to see that a normal form (with respect to the term 
rewriting system in table 8) of a closed BPA + PR term must be a basic BPA 
term, which proves the theorem. • 

Next, we formulate a traditional theorem in process algebra. It states 
that the term rewriting system associated to the equational specification 
BPA + PR behaves neatly: it terminates modulo the equations without a 
clear direction (viz. the commutativity and the associativity of alternative 
composition) and it is confluent modulo these equations. In term rewrit­
ing theory, this is expressed by saying that the term rewriting system is 
complete. Incidentally, note that we proved in theorem 2.4.4 that the asso­
ciated term rewriting system terminates, but not that it terminates modulo 
the equations Al and A2. 

Table 8. A term rewriting system for BPA + PR. 

x+x-+x RA3 

(x + y)z --+ xz + yz RA4 

(xy)z -+ x(yz) RA5 

7rn(a) -+ a RPRI 

7rIC ax) --+ a RPR2 

7rn +l (ax) --+ a7rn(x) RPR3 

7rn(x + y) --+ 7I"n(x) + 7rn (Y) RPR4 
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The main application of the next result is that it is usually used to prove 
the conservativity of BPA + PR over BPA (an extension is conservative if 
no new identities can be derived between original terms in the extended 
system). The proof of this term rewriting theorem requires much term 
rewriting theory, which is beyond the scope of this chapter. For more 
information on these term rewriting techniques we refer to [Jouannaud and 
Munoz, 1984] and [Jouannaud and Kirchner, 1986]. Nevertheless, we want 
to mention the theorem anyway, since it has an importance of its own, for 
instance for implementational purposes. We will prove the conservativity 
with an alternative method that we will explain in the next subsection; see 
subsection 2.4.l. 

Theorem 2.4.5. The term rewriting system of table 8 is confluent modulo 
the equations A1 and A2. Therefore, it has unique normal forms modulo 
the equations A1 and A2. 

The next theorem states that for a closed term s the sequence 

converges to the term s itself. It is a nice example of the use of structural 
induction. 

Proposition 2.4.6. Let t be a closed BPA + PR term. Then' there is 
an n > 1 such that for all k ~ n we have BPA + PR f- 1l"k(t) = t. 

Proof. It suffices to prove this proposition for basic BPA terms (use the­
orem 2.4.4). We will use the technique of structural induction that we 
discussed on page 8. So, we will use the inductive definition of a basic 
term (2.2.4). 

Let t be an atomic action. Take n = 1 and use axiom PRl. 
Let t = a's with a E A and s. Suppose that the proposition holds for s. 

Then there is an n' ~ 1 with 1l"ds) = s for all k ~ n'. Take n = n' + 1 and 
use axiom PR3. 

Let t = s+r. Suppose that the proposition holds for sand r. Then there 
are n' and nil with the desired properties for sand r. Take n = max( n', nil) 
and use axiom PR4. • 

Semantics The semantics of BPA + PR can be given in the same way as 
the semantics for BPA. 

Table 9. Derivation rules for projections. 

a , 
x--->x 

a , 
x-->x 
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We consider the term deduction system T{BPA + PR) with as signature 
the signature of BPA + PR and as deduction rules the rules in tables 5 
and 9. Bisimulation equivalence is a congruence on the structured state 
system induced by T{BPA + PR); see 2.2.32. So the quotient of closed 
BPA + PR terms with respect to bisimulation equivalence is well-defined; 
that is, the operators of BPA + PR can be defined on this quotient by taking 
representatives. The following theorem states that this quotient is a model 
ofBPA + PR. 

Theorem 2.4.7. The set of closed BPA + PR terms modulo bisimulation 
equivalence is a model of BPA + PR and AlP. 

Proof. Strong bisimulation equivalence is a congruence, so to prove the 
soundness of the axiomatization BPA + PR we just need to check the sound­
ness of the separate axioms. The axioms Al-5 are treated exactly the same 
as in theorem 2.2.35. So we only need to check the axioms of table 7. The 
relation between 7rn {a) and a is a bisimulation, so PRl holds. Axiom PR2 
is treated analogously. Axioms PR3 and PR4 are treated as AI. 

With proposition 2.4.6 we see that AlP holds. • 

2.4.1 Conservativity 

Here, we will explain how to prove the conservativity of BPA + PR over 
BPA without using theorem 2.4.5. We recall that the main application of 
theorem 2.4.5 is that we can prove that adding the projection operators 
does not yield new identities between BPA terms. This important property 
is called conservativity. We did not give a proof of theorem 2.4.5, but 
instead we will provide an alternative powerful method for proving the 
conservativity of BPA + PR over BPA (and all the other conservativity 
theorems in this chapter). This method is based on the format of the 
operational rules of both systems rather than on a term rewriting analysis. 
So, we will make a second expedition into the area of general theory on 
structured operational semantics and we will illustrate the theory with a 
running example. This example will yield, of course, the conservativity of 
BPA + PR over BPA. We will base ourselves on [Verhoef, 1994bl. 

First we formalize how we can join two given signatures. 

Definition 2.4.8. Let I:o and I:l be two signatures. If for all operators 
f E I:o n I:l the arity of f in I:o is the same as its arity in I:l then 
the sum of I:o and I:1, notation I:o E& I:1, is defined and is equal to the 
signature I:o U I:1 . 

Example 2.4.9. Let I:o == AU {+,.} and I:J == I:o U {7rn : n ~ I} be 
signatures. Then the sum I:o E& I:l is defined and equals the signature of 
BPA + PR. Note that these signatures are not disjoint. 

Next, we define how to "add" two operational semantics. 

Definition 2.4.10. Let Ti == (I:i' D i ) be term deduction systems with 
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predicate and relation symbols T; and T; respectively (i = 0,1). Let 
Eo EEl El be defined. The sum of TO and Tl, notation TO EEl Tl, is the 
term deduction system (Eo EEl E1 , Do U D 1 ) with predicate and relation 
symbols Tg U T~ and T~ U T; respectively. 

Example 2.4.11. Let To be the term deduction system with Eo of our 
running example and with the rules oftable 5. Let Tl be the term deduction 
system with El of the running example and with deduction rules that can 
be found in table 9. The sum To EEl Tl is defined and is the operational 
semantics of the theory comprising basic process algebra and projections: 
BPA+PR. 

Next, we define what we will call operational conservativity. This def­
inition is taken from [Verhoef, 1994b], but this notion is already defined 
by (Groote and Vaandrager, 1992] for the case without extra predicates on 
states. 

Definition 2.4.12. Let Ti = (Ei, Di) be term deduction systems (i = 0, 1) 
with T = (E, D) := TO E9 Tl defined. Let D = D(Tp, Tr). The term 
deduction system T is called an operationally conservative extension of TO 
if for all s, u E G(Eo), for all relation symbols R E Tr and predicate 
symbols P E Tp , and for all t E G(E) we have 

T I- sRt ¢=> TO I- sRt 

and 

Before we can continue with a theorem that gives sufficient conditions 
when a term deduction system is an operationally conservative extension 
of another such system, we need one more definition. This definition orig­
inates from [Groote and Vaandrager, 1992J. 

Definition 2.4.13. Let T = (E, D) be a term deduction system and let F 
be a set of formulas. The variable dependency graph of F is a directed graph 
with variables occurring in F as its nodes. The edge x -> y is an edge of 
the variable dependency graph if and only if there is a relation tRs E F 
with x E var(t) and y E var(s). 

The set F is called well-founded if any backward chain of edges in its 
variable dependency graph is finite. A deduction rule is called well-founded 
if its set of hypotheses is so. A term deduction system is called well-founded 
if all its deduction rules are well-founded. 

Example 2.4.14. Definition 2.4.13 expresses that a rule is well-founded 
if the set of premises does not contain cyclic references to variables (in case 
this set is finite). So, for instance, if there is a premise xRx then there is 
a cyclic reference to the variable x. Also the two premises xRy and ySx 
comprise a cyclic reference to x. Since we do not have such premises in the 
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operational semantics of BPA, it is not hard to verify that the deduction 
rules of table 5 are well-founded. 

Now, we are in a position to state a theorem providing us with sufficient 
conditions so that a term deduction system is an operationally conservative 
extension of another one. This theorem is based on a more general theorem 
of [Verhoef, 1994b]. A more restrictive version of this theorem was first 
formulated by [Groote and Vaandrager, 1992]. 

Theorem 2.4.15. Let TO = (1:0, Do) be a pure well-founded term deduc­
tion system in path format. Let T1 == (1:1, D 1) be a term deduction system 
in path format. If there is a conclusion sRt or Ps of a rule d1 E D1 
with s == x or s = f(X1, ... ,xn ) for an f E 1:0, we additionally require 
that d1 is pure, well-founded, t E D(Eo) for premises tRy of d1, and that 
there is a premise containing only Eo terms and a new relation or pre­
dicate symbol. Now if T = TO EB T1 is defined then T is an operationally 
conservative extension of To. 

Example 2.4.16. We already gave the definition of a pure term deduction 
system in definition 2.2.31. It is not hard to see that the term deduction 
system To of our running example is pure. It is also not difficult to see 
that T1 of our running example is in path format. Moreover, since there is 
no deduction rule in T1 with an old function symbol or a variable on the 
vital position, we do not need to check the additional requirements. So, 
since the sum is defined we conclude with the above theorem that To EB T1 
is an operationally conservative extension of To. 

Now that we have the operational conservativity, we need to make 
the connection with the usual conservativity. Following [Verhoef, 1994b], 
henceforth we will call this well-known property equational conservativity 
to exclude possible confusion with the already introduced notion of opera­
tional conservativity. As an intermediate step, we will first define the notion 
of operational conservativity up to '{J equivalence. Here, '{J equivalence is 
some (semantical) equivalence that is defined in terms of relation and pre­
dicate symbols only. Strong bisimulation equivalence is an example of an 
equivalence that is definable exclusively in terms of relation and predicate 
symbols. This definition was first formulated by [Groote and Vaandrager, 
1992] for the case of operational conservativity up to strong bisimulation 
equivalence. Roughly, if original terms sand tare bisimilar in the extended 
system, if and only if they are bisimilar in the original system we call the 
large system a conservative extension up to bisimulation equivalence of the 
original one. The next definition expresses this for any equivalence. 

Definition 2.4,17. Let Ti = (Ei' Di) be term deduction systems (i == 0, 1) 
with T == (E,D):= TO EB T1 defined. If we have for all s,t E C(Eo) 
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we say that T is an operationally conservative extension of To up to cp equiv­
alence, where cp is some semantical equivalence that is defined in terms of 
relation and predicate symbols only. By s =<p t we mean that sand tare 
in the same cp equivalence class. The superscripts EB and 0 are to express 
the system in which this holds. 

Remark 2.4.18. Many equivalences are definable in terms of relation 
and predicate symbols only: for instance, trace equivalence, completed 
trace equivalence, failure equivalence, readiness equivalence, failure trace 
equivalence, ready trace equivalence, possible future equivalence, simula­
tion equivalence, complete simulation equivalence, ready simulation equiva­
lence, nested simulation equivalence, strong bisimulation equivalence, weak 
bisimulation equivalence, 1J bisimulation equivalence, delay bisimulation 
equivalence, branching bisimulation equivalence, and more equivalences. 
We refer to Van Glabbeek's linear time - branching time spectra [Glabbeek, 
1990; Glabbeek, 1993] for more information on these equivalences. 

Next, we formulate a theorem stating that if a large system is an op­
erationally conservative extension of a small system, then it is also an op­
erationally conservative extension up to any equivalence that is definable 
in terms of relation and predicate symbols only. This theorem is taken 
from [Verhoef, 1994b]. This theorem was formulated by [Groote and Vaan­
drager, 1992] for the case of strong bisimulation equivalence. 

Theorem 2.4.19. Let Ti = (Ei' Di ) be term deduction systems (i = 0, 1) 
and let T = TO EB T1 be defined. If T is an operationally conservative 
extension of To then it is also an operationally conservative extension up 
to cp equivalence, where cp is an equivalence relation defined exclusively in 
terms of predicate and relation symbols. 

Example 2.4.20. For our running example it will be clear that the term 
deduction system of the sum To EB T1 is an operationally conservative ex­
tension up to strong bisimulation equivalence of the base system To. 

Now that we have the intermediate notion of operational conservativity 
up to some equivalence, we will come to the well-known notion that in this 
chapter we will call equational conservativity. We recall that an equational 
specification is a pair consisting of a signature and a set of equations over 
this signature. First we define how we combine equational specifications 
into larger ones. 

Definition 2.4.21. Let L; = (E;, Ed be equational specifications (i = 
0,1). Let Eo EB E1 be defined. Then the sum Lo EB L1 of Lo and L1 is the 
equational specification (~o EB ~r, Eo U Ed. 
Example 2.4.22. Let Lo be the equational specification that consists of 
the signature Eo of our running example and the equations Eo of BPA that 
we already listed in table 1: the axioms AI-A5. Let L1 be the equational 
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specification with as signature El of our running example and with equa­
tions that we presented in table 7: PR1-PR4. Now the sum Lo EB Ll is 
defined and equals the equational specification that we baptized BPA + PR. 

Next, we define the notion of equational conservativity. 

Definition 2.4.23. Let Li = CEi, Ei ) be equational specifications (i 
0,1) and let L = Lo EB Ll be defined. We say that L is an equationally 
conservative extension, or simply a conservative extension of Lo, if for 
all s, t E C(Eo) 

L f- s = t ¢:::::> Lo f- s = t. 

We recall that f- stands for derivability in equational logic as defined in 
definition 2.2.2. 

Now we have all the prerequisites to formulate the equational conser­
vativity theorem. This theorem is taken from [Verhoef, 1994bl. 

Theorem 2.4.24. Let Li = CEi , Ed be equational specifications Ci = 0, 1) 
and let L = CE, E) = Lo E9 Ll be defined. Let Ti = CE i , Dd be term 
deduction systems and let T = To E9 T1 • Let cp be an equivalence that is 
definable in terms of predicate and relation symbols only. Let Eo be a 
. complete axiomatization with respect to the cp equivalence model induced 
by To and let E be a sound axiomatization with respect to the cp equivalence 
model induced by T. If T is an operationally conservative extension of To 
up to cp equivalence then L is an equationally conservative extension of Lo. 

Now, we can apply the equational conservativity theorem to prove the 
conservativity of BPA + PR over BPA. 

Theorem 2.4.25. If t and s are closed BPA terms, then we have 

BPA f- t = s ¢:::::> BPA + PR f- t = s. 

Proof. On the way to this proof we checked all the conditions of the theo­
rem in the example paragraphs except for the soundness and completeness 
of BPA and the soundness of BPA + PRo Fortunately, we already proved 
these conditions. The soundness and completeness of BPA is proved in 
theorems 2.2.35 and 2.2.37 respectively and the soundness of BPA + PR is 
proved in theorem 2.4.7. So, we can apply theorem 2.4.24 and conclude 
that BPA + PR is an equationally conservative extension of BPA. • 

Now that we have the conservativity of BPA + PR, we can immediately 
prove its completeness from the completeness of the subsystem BPA. We 
will not do this directly, but we will formulate a general completeness the­
orem that can be found in [Verhoef, 1994bj; it is a simple corollary of the 
equational conservativity theorem. This completeness theorem states that 
the combination of conservativity, elimination of extra operators, and the 
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completeness of the subsystem yields the completeness of the extension. 
For the formulation of the next theorem, we stick to the notations and 
assumptions stated in theorem 2.4.24. 

Theorem 2.4.26. If in addition to the conditions of theorem 2.4.24 the 
equational specification L has the elimination property for Lo (see defini­
tion 2.4.3) then we have that E is a complete axiomatization with respect 
to the cp equivalence model induced by the term deduction system T. 

Theorem 2.4.27. The axiom system BPA+PR is a complete axiomatiza­
tion of the set of closed BPA + PR terms modulo bisimulation equivalence. 

Proof. We apply theorem 2.4.26. We already know that the conditions 
of the conservativity theorem are satisfied. So we only need to check the 
additional one. According to theorem 2.4.4 the elimination condition is 
satisfied. So the conditions of theorem 2.4.26 are satisfied and we are done. 

I 

2.4.2 Recursion and projection 

In this subsection we will add recursion and projections to the theory BPA. 
We will define the equational specification BPArec + PR by means of a 

combination of BPArec and BPA + PR. 
The signature of BPArec + PR consists of the signature of BPArec plus 

for each n > 1 a unary function 7rn (projections). The axioms of BPArec + 
PR are the axioms of BPArec and the axioms of table 7. 

Proof rule We will discuss a proof rule expressing that a process that can 
be specified with the aid of a guarded recursive specification is determined 
by its finite projections. This rule is a restricted version of the rule that is 
defined in definition 2.4.1 and is also due to [Bergstra and Klop, 1986]. 

Definition 2.4.28. Let x and y be processes such that x or y (or both) can 
be specified with the aid of a guarded recursive specification. The restricted 
approximation induction principle (AIP-) is the following assumption. If 
for all n 2: 1 we have 7rn (x) = 7rn (Y) then x = y. 

Remark 2.4.29. The principle AIP- is more restrictive than necessary. 
A more general approximation induction principle is defined in [Glabbeek, 
1987]. 

Theorem 2.4.30. Let x be a solution of a guarded recursive specification. 
Then 7r n (x) can be rewritten into a closed BPA term for all n > 1. 

Proof. Without loss of generality we may assume that x is a solution of a 
completely guarded recursive specification. Let the right-hand side of the 
recursion equation of x be called S1' Suppose that we have defined Sn. Then 
we obtain Sn+1 as follows: substitute for each variable in Sn the right-hand 
side of its recursion equation. It is not hard to see that for every n > 1 
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we have 7rn {x) = 7rn{sn) and that the latter term can be rewritten into a 
closed BPA term. • 

The following corollary is called the projection theorem. 

Corollary 2.4.31. Suppose that we have two solutions Xl and X2 of a 
guarded recursive specification belonging to the same recursion equation. 
Then for all n > 1 : 7rn {xd = 7rn {X2) . 

. Proof. This follows immediately from the proof of theorem 2.4.30. • 

Theorem 2.4.32. The principle AIP- implies the principle RSP. 

Proof. This follows immediately from corollary 2.4.31. • 
Semantics The semantics of BPArec + PR is given by means of a term de­
duction system T{BPArec+ PRJ with as signature the signature of BPArec+ 
PR and as rules the rules in tables 5, 6, and 9. Bisimulation equivalence 
is a congruence on the structured state system L{BPArec + PRJ induced 
by T{BPArec+PR); see 2.2.32. So the quotient of closed BPArec+PR terms 
modulo strong bisimulation equivalence is well-defined; that is, the opera­
tors of BPArec + PR can be defined on this quotient by taking representa­
tives. The next theorem states that this quotient is a model of BPArec+PR. 

Theorem 2.4.33. The set of closed BPArec + PR terms modulo bisimu­
lation equivalence is a model of BPArec + PR. 

Proof. Since strong bisimulation equivalence is a congruence, we only need 
to verify the soundness of each axiom. This has been done in the proofs of 
theorems 2.3.13 and 2.4.7. • 

Theorem 2.4.34. The model of closed BPArec + PR terms modulo bisim­
ulation equivalence satisfies RDP, AIP-, and RSP. 

Proof. The principle RDP is proved as in theorem 2.2.35. With the aid 
of theorem 2.4.32 it suffices to prove that the model satisfies AIP-. This 
proof is taken from [Glabbeek, 1987]. 

So let X and y be closed BPArec + PR terms such that for all n > 1 
we have 7rn (x) ~ 7rn (Y) (the symbol ~ stands for the bisimulation rela­
tion). Suppose that y can be specified with the aid of a guarded recursive 
specification. We have to prove that x and yare bisimilar. We relate u 
and v, notation u R v, if and only if v can be specified with the aid of a 
guarded recursive specification and if for all n > 1 : 7rn (u) ~ 7rn (v). Note 
that x R y. We will prove that R is a bisimulation relation. So we have to 
distinguish three cases. 

Suppose that u R v and u~u'. Define for n 2:: 1 

To prove that there is a v' with v~v, and u' R v' it suffices to show that 
the intersection of the Sn contains an element. Firstly, every Sn contains 
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an element since 7rn+l(U) ~ 7rn+l(V). Secondly, each Sn is finite. For v can 
be specified with the aid of a guarded recursive specification, so there is 
a completely guarded term t with v = t. We can rewrite this term using 
the rewrite rules RA3, RA4, and RA5 of table 8 to a sum of terms. The 
summands are either atomic actions or products t' . til and t' is not a sum 
or a product. Since t is completely guarded it must be an atomic action. 
So v has the form 

n m 

v = Lai 'Vi + Lbj. 
i=1 j=1 

This means that the set Sn is finite. Thirdly, we have Sn+l ~ Sn for 
all n > 1, since 7rn +l(U' ) ~ 7rn+dv*) implies 7rn (u' ) ~ 7rn (v*). From 
these three observations we can conclude that the sequence SI, S2, ... must 
remain constant from some index onwards. Thus, the intersection of the Sn 
is not empty. 

Now suppose u R v and V~V'. Define, as above, for all n > 1 

We can again observe that every Sn contains an element and that the 
sequence SI,S2,." is decreasing (but not that each Sn is finite). So we 
can choose for each n ~ 1 an element Un E Sn. By the first part of the 
proof we know that there are Vn with v~vn and Un R Vn. But since v can 
be specified with the aid of a guarded recursive specification there is a v* 
that occurs infinitely many times in the sequence VI, V2, . ... Let v· = Vk 

for some index k. We show that Uk R v', which proves the second case. 
So fix an n > 1. Then there is an index m > n with v* = Vrn and we 
find 7rn (um) ~ 7rn(v' ), since Urn E Sm ~ Sn. Moreover, we have Uk R v· 
and Urn R v*. So 7rn (Uk) ~ 7rn (um ) and we find 7rn (Uk) ~ 7rn (v' ). So we 
have Uk R v', since n ~ 1 was arbitrarily chosen. 

Finally, note that if U R v then we have 

So R is a bisimulation. This finishes the proof. • 
Theorem 2.4.35. The principle AlP does not hold in the model of closed 
BPArec + PR terms modulo bisimulation equivalence. 

Proof. Consider the two recursive specifications that we defined in exam­
ple 2.3.2. Let x = (X I El ) and y = (Y I E2)' With the aid of figure 5 we 
can see that for all n > 1 we have that 7rn (x+y) '" 7rn (x) but that x+y f x. 
Note that El is not guarded so x + y and x are not specified with the aid 
of a guarded recursive specification. • 
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The following theorem concerns the theory BPArec. The result was 
already stated in theorem 2.3.13. We postponed the proof of this until 
now, since we want to use the fact that RSP holds in BPArec + PR. 

Theorem 2.4.36. The model of closed BPArec terms modulo bisimulation 
equivalence satisfies RSP. 

Proof. Let E(V) be a guarded recursive specification and suppose that we 
have two solutions, say x and y, belonging to the same recursion equation. 
We have to show that x ~ y. Since x and yare also BPArec+PR terms we 
find with the aid of theorem 2.4.34 that x ~ y, which proves the theorem .• 

2.5 Deadlock 
Usually deadlock stands for a process that has stopped its executions and 
cannot proceed. In this subsection we will extend the theory BPA with a 
process named deadlock. We can distinguish between successful and unsuc­
cessful termination in the presence of deadlock. This subsection is based 
on [Bergstra and Klop, 1984aj Bergstra and Klop, 1995]. 

Let x . y be a sequential composition of two processes. The process y 
starts if x has terminated. But if x reaches a state of inaction due to 
deadlock, we do not want y to start: we want it only to start when x 
terminates successfully. We will axiomatize the behaviour of a deadlocked 
process called Ii in table 10. 

The signature of the equational specification BPAc5 is the signature 
of BPA extended with a constant Ii ¢ A called deadlock, or inaction. The 
axioms of the equational specification BPA6 are the axioms of BPA in ta­
ble 1 plus the two axioms in table 10 CA6 and A7). We will discuss th~m 
now. 

Equation A6 expresses that 6 is a neutral element with respect to the 
alternative compositionj it says that no deadlock will occur as long as there 
is an alternative that can proceed. Axiom A7 says that the constant 6 
is a left-zero element for the sequential composition. It says that after 
a deadlock has occurred, no other actions can possibly follow. Actually, 
inaction would be a better name for the constant 6, for a process a+ 6 (a E 
A) contains no deadlock. Deadlock only occurs if there is no alternative 
to 6, as in a . 6. 

So using the process 6 we can distinguish between successful and un­
successful termination. Thus, the process a6 terminates unsuccessfully 
whereas a. terminates successfully. 

Structural induction In BPAc5 we can use the technique of structural in­
duction just like in BPA (compare page 8). We will adjust the definition 
of a basic term (see definition 2.2.4) and we will mention the result that 
every closed term over BPAc5 can be written as a basic term. 

Definition 2.5.1. The constant 6 is a basic term over BPA6 . An atomic 
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action is a basic term. If t is a basic term and a E A, then a . t is a basic 
term. If t and s are basic terms, then t + s is a basic term. 

We recall that a closed term over BPA. is a BPA. term without variables. 

Remark 2.5.2. If we consider terms t and s to be identical if 

AI,A2 f- t = s, 

we can see that basic terms have the following form: 

n m 

La;. t; + Lbj , 

;=1 j=l 

where a; E A, bj E Au {o}, I <i ~ n, I ~ j < m, and n + m 2: 1. 

Proposition 2.5.3. Let t be a closed BPA. term. Then there is a basic 
term s such that BPA. f- t = s. 

Proof. The proof of this proposition can be given along the same lines as 
the proof of proposition 2.2.6. • 

Semantics As usual, we give the semantics by means of a term deduction 
system. Take for the signature of T(BPA.) the signature of BPA. and 
for the set of rules just the ones of BPA of table 5. Since bisimulation 
equivalence is a congruence (2.2.32), the quotient of closed BPA. terms 
modulo bisimulation equivalence is well-defined so the operators of BPA. 
can be defined on this quotient using representatives. This quotient is a 
model of BPA •. 

Theorem 2.5.4. The set of closed BPA. terms modulo bisimulation equiv­
alence is a model of BPA •. 

Proof. It suffices to check the soundness of each axiom, since bisimula­
tion equivalence is a congruence. Axioms AI-A5 are treated as in theo­
rem 2.2.35 since there are no transitions for o. Axiom A6 is treated as AI. 
For axiom A7 take the relation that only relates 5x and 5. • 

Theorem 2.5.5. The axiom system BPA. is a complete axiomatization of 
the set of closed BPA. terms modulo bisimulation equivalence. 

Proof. Since there are no new transitions for the constant 8, this is proved 
as theorem 2.2.37. • 

Table 10. Deadlock. 

x + 8 = x A6 

8x = 0 A7 



Concrete process algebra 37 

2.5.1 Extensions of BPA. 

In this subsection we will discuss the extensions of BPA. with recursion 
and/or projections. 

Recursion We can add recursion to BPA. in exactly the same way as we 
did for BPA. The equational specification BPA.rec contains the signature 
of BPArec and a constant 8 rt A. The axioms of BPA.rec are the axioms 
of BPArec plus the axioms of table 10. 

Note that 8 rt A so it cannot serve as a guard: 8X is not completely 
guarded but it is guarded since 8X == 8. 

The semantics of BPA.rec can be given by means of the term deduction 
system T(BPA.rec) that has as its signature the signature of BPA.rec and 
as rules the rules of tables 5 and 6. Since bisimulation equivalence is a con­
gruence (2.2.32), the operators of BPA.rec can be defined on the quotient 
algebra of closed BPA.rec terms with respect to bisimulation equivalence. 
This quotient is a model of BPA.rec and it satisfies RDP. To prove this, 
combine the proofs of theorems 2.3.13 and 2.5.4. Moreover this model satis­
fies RSP, which can be proved when we combine BPA.rec with projections. 

Projection We can extend BPA. with projections in exactly the same way 
as we did for BPA. The equational specification BPA. + PR has as its 
signature the signature of BPA + PR and a constant 8 rt A. Its axioms are 
the axioms of BPA + PR and the ones concerning deadlock (tables 1, 7, 
and 10). We assume that a ranges over AU {8} in table 7 on projections. 

The following theorem states that projection operators can be elimi­
nated from closed terms. 

Theorem 2.5.6. For every closed BPA. +PR term t there is a basic BPA. 
term s such that BPA. + PR f- t == s. 

Proof. Use the term rewriting system that consists of the rules in table 8 
and in addition the rewrite rule 8· x --> 8 and show that this term rewriting 
system is terminating. Hint: use theorem 2.2.18. The rest of the proof is 
straightforward and therefore omitted. • 

Proposition 2.5.7. Let t be a closed BPA. + PR term. Then there IS 

an n > 1 such that for all k > n we have BPA. + PR f- 7rdt) == t. 

Proof. With theorem 2.5.6 it suffices to prove the proposition for basic 
BPA. terms t. So we can use structural induction on t to prove the propo­
sition. • 

The semantics of BPA. + PR can be given with the term deduction 
system T(BPA. + PR) that has as its signature the signature of BPA. + PR 
and as rules the rules of tables 5 and 9. Since bisimulation equivalence is 
a congruence (2.2.32), it follows that the operators of BPA. + PR can be 
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defined on the quotient algebra of closed BPA. + PR terms with respect to 
bisimulation equivalence. This quotient is a model of BPA6 + PR and it 
satisfies AlP. To prove this, combine the proofs of theorems 2.4.7 and 2.5.4. 
Moreover, according to theorem 2.4.24 we have that BPA6 + PR is a conser­
vative extension of BPA •. So with theorem 2.4.26 we find that BPA. + PR 
is a complete axiomatization of this model (use also theorem 2.5.6). 

Recursion and projection Here we extend BPA6 with recursion and pro­
jections. The equational specification BPA6rec + PR has as its signature 
the signature of BPA6rec plus for each n :::: 1 a unary function 7rn • The 
axioms are the axioms of BPA.rec and the axioms concerning projections 
(table 7). We assume that a ranges over A U {8} in this table. 

The standard facts (and their proofs) of subsection 2.4.2 are easily trans­
posed to the present situation. Their translation is, in short: every pro­
jection of a solution of a guarded recursive specification can be rewritten 
into a closed BPA6 term; the projection theorem 2.4.31 holds; and AIP­
implies RSP. 

The semantics of BPA.rec + PR is given by means of a term deduction 
system T(BPA6rec+PR). Its signature is the signature of BPA6rec+PR and 
its rules are those of T(BPA. + PR) plus the rules concerning recursion that 
are presented in table 6. Since bisimulation equivalence is a congruence, the 
quotient algebra of closed BPA6rec + PR terms with respect to bisimulation 
equivalence is well-defined, and the operators of BPA6rec + PR can be 
defined on this quotient. This quotient is a model of BPA.rec + PR and it 
satisfies RDP, RSP, and AIP-, but not its unrestricted version AlP. We 
can prove that BPA6 rec satisfies RSP. This is proved in the same way as 
theorem 2.4.36. 

2.6 Empty process 
In many situations it is useful to have a constant process that stands for 
immediate successful termination. In this subsection we will extend the 
equational specifications BPA and BPA. with a process that is only capable 
of terminating successfully. We will call such a process the empty process 
and we will denote it by E. This constant originates from [Koymans and 
Vrancken, 1985]. Another reference to this constant is [Vrancken, 1986]. 

The empty process is a counterpart of the process deadlock. The process 
deadlock stands for immediate unsuccessful termination while the empty 
process stands for immediate successful termination. Moreover, the combi-

Table 11. Empty process. 

XE == x A8 

EX == X A9 
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nation of the two axioms AS and A9 of table 11 express that c; is a neutral 
element with respect to the sequential composition whereas axioms Al 
and A6 express that 8 is a neutral element with respect to the alternative 
composition. Note that successful termination (not in a sum context) after 
the execution of at least one action can already be expressed in systems 
without c;, as a· c; = a (a E A). 

The equational specifications BPA. and BPA •• are defined as follows. 
The signature of BPA. consists of the signature of BPA extended with 

a constant c; ¢ A called the empty process. The equations of BPA. are the 
axioms of BPA and the axioms AS and A9 of table II. 

The signature of BPA •• consists of the signature of BPA. extended with 
a constant c; ¢ Au {8}. The axioms of BPA •• are the ones of BPA. plus AS 
and A9. 

Structural induction In BPA. and BPA.. we can use the technique of 
structural induction just like in BPA or BPA. since every closed term can 
be written as a basic term. We will adjust the definitklll of a basic term 
to the present situation and we will mention that closed terms over BPA. 
or BPA •• can be written as basic terms. 

Definition 2.6.1. A basic term over BPA. is defined as follows. 
An atomic action is a basic term over BPA •. The constant c; is a basic 

term over BPA.. If t is a basic term over BPA. and a E A, then a . t is a 
basic term over BPA.. If t and s are basic terms over BPA., then t + s is 
a basic term over BPA •. 

A basic term over BPA •• is defined as follows. 
An atomic action is a basic term over BPA... The constants 8 and c; 

are basic terms over BPA... If t is a basic term over BPA •• and a E A, 
then a· t is a basic term over BPA ••. If t and s are basic terms over BPA •• , 
then t + s is a basic term over BPA ••. 

We recall that a closed term over BPA. /BPA •• is a BPA. /BPA •• term 
without variables. 

Remark 2.6.2. If we consider terms identical that only differ in the order 
of the summands, basic terms over BPA. or BPA .. are of the form 

n m 

La;. t; + Lbj , 

i=1 j=1 

where ai E A, bj E A U {( 6, )c;}, 1 ~ i ~ n, 1 ~ j < m, and n + m > I. 

Proposition 2.6.3. Let t be a closed BPA./BPA •• term. Then there is a 
basic term s such that BPA./BPA •• r t = s. 

Proof. The proof of this proposition can be given along the same lines as 
the proof of proposition 2.2.6. • 
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Semantics We give the semantics of BPA< and BPA6< by means of term 
deduction systems. We handle both cases at the same time. Take for the 
signature of T(BPA(6)<) the signature of BPA(6)< and for the set of rules 
the ones that are presented in table 12. This operational semantics is taken 
from [Baeten and Glabbeek, 1987]. 

The term deduction systems that we consider here differ from the ones 
that we treated before: instead of successful termination predicates . ...!!......J 
we now have a termination option predicate; it is denoted postfix: . 1. Since 
they both are unary predicates on states we can still use the general theory 
on structured operational semantics that we treated in subsection 2.2.3. 
In particular we can use theorem 2.2.32 to prove that bisimulation equiv­
alence is a congruence. So, the quotient algebra of closed BPA(6)< terms 
with respect to bisimulation equivalence is well-defined for the operators of 
BPA(6)<' This quotient is a model for BPA(6)<' 

Theorem 2.6.4. The set of closed BPA(6)< terms modulo bisimulation 
equivalence is a model of BPA(o)<' 

Proof. Easy. A1-A7 are treated as usual, A8 as A5, and A9 as AI. • 

Theorem 2.6.5. The axiom system BPA(6)< is a complete axiomatization 
of the set of closed BPA(6)< terms modulo bisimulation equivalence. 

Proof. This is proved along the same lines as theorem 2.2.37 if we rephrase 
lemma 2.2.36 as follows. First, redefine the function n: nee) = nCo) = 1, 
n(a) = 2 for all a E A, and n(x + y) = n(xy) = n(x) + n(y). Secondly, 
replace the first case of 2.2.36 by T(BPA(6)<) f- x 1 ::=} BPA(6)< f- x = e+X . 

• 
2.6.1 Conservativity 

In this subsection we will explain how to prove that BPA< is a conserva­
tive extension of BPA. We cannot immediately use the theory of subsec­
tion 2.4.1, since the operational semantics of BPA< presented in table 12 
is not an operationally conservative extension of the operational semantics 
of BPA that we listed in table 5. For we can prove in the extended system 
that a...!!.....e, whereas in the subsystem we can prove that a...!!......J. So we can 

, Table 12. Derivation rules of T(BPA(o)<)' 

a 1 x-->x 
a 1 

X + y-->x 

a 1 1 y-->y X 
-,--,-:-", 

X + y...!!.....y' (x + y) 1 
al 1 al 11 x-->x x, y-->y x, Y 

xy...!!.....x'y xy...!!.....y' (xy) 1 

y 1 
(x + y) 1 
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"reach" a new term if we start with an original term. A possible solution 
for this problem is to give an alternative operational semantics for BPA, 
than the one that we present in table 12. 

The special behaviour of the constant c: is expressed in the operational 
semantics of BPA, as it is presented in table 12. Another possibility is 
to express the special behaviour of the empty process with the aid of the 
equivalence relation. A well-known example of this kind is observational 
congruence due to [Milner, 1980]. There, Milner's silent action T is treated 
as a normal atomic action in the operational rules and its special behaviour 
is expressed with the equivalence relation: observational congruence. In the 
case of the empty process a similar approach is reported on by [Koymans 
and Vrancken, 1985]. In that paper a graph model was constructed fea­
turing the empty process as an ordinary atomic action. A notion called 
c: bisimulation was defined to express the special behaviour of the empty 
process. With the approach of [Koymans and Vrancken, 1985] we can use 
the theory of subsection 2.4.1 to prove the conservativity of BPA, over BPA. 
We will sketch the idea and leave the details as an exercise to the interested 
reader. For the operational rules we just take the operational semantics 
of BPA where we let a also range over c:. This means that we have, for 
instance, the rule c:~.J. Note that this adds a new relation ~ and a 
new predicate ~.J to the operational rules for BPA. Now with the aid of 
theorem 2.4.15 it is not hard to see that this term deduction system is an 
operationally conservative extension of the term deduction system in ta­
ble 5. By way of an example we will check the conditions of theorem 2.4.15 
for one deduction rule in the extended system: 

, I 
x--+x 

X+y~X" 

The crucial place to look at is the left-hand side of the conclusion: x + y. 
There an original function symbol occurs: +. Now we need to check that 
this rule is pure and well-founded. This is easy. Also the terms x and x' 
must be original terms; this is the case since they are variables. And there 
must be a premise containing only original terms and a new relation or 
predicate symbol. This is also the case. The other rules are treated equally 
simply. So, we may apply theorem 2.4.15 and find the operational conser­
vativity. Now this notion termed c: bisimulation can be defined exclusively 
in terms of relation and predicate symbols. So with theorem 2.4.19 we find 
that the term deduction system belonging to BPA, is an operationally con­
servative extension up to c: bisimulation equivalence of the term deduction 
system belonging to BPA (note that c: bisimulation becomes normal strong 
bisimulation for BPA where no c: is present). Now we can apply the equa­
tional conservativity theorem 2.4.24 if we know in addition that the model 
induced by the operational rules modulo c: bisimulation equivalence is sound 
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with respect to the axioms of BPA. that we listed in tables 1 and 11. This 
is shown for the graph model by [Koymans and Vrancken, 1985] and this 
proof transposes effortlessly to the situation with operational rules that we 
sketched above. This proves that BPA. is a conservative extension of BPA. 

2.6.2 Extensions of BPA(6). 

In this subsection we will discuss the extensions of BPA(6). with recursion 
and/or projections. 

Recursion We can add recursion to BPA(6). in exactly the same way as 
we did for BPA(6). The equational specification BPA(6).rec contains the 
signature of BPArec and (8,)0: ¢ A. The axioms are the ones of BPArec 
and the axioms of table 11 (and table 10). 

Since 8,0: ¢ A, they cannot serve as a guard. For instance, o:X is neither 
completely guarded nor guarded. 

The semantics of BPA(6).rec can be given by means of a term deduction 
system T(BPA(6).rec) that has as its signature the signature of BPA(6),rec 
and as its rules the ones of T(BPA(6).) plus the rules of table 13. Since 
bisimulation equivalence is a congruence (2.2.32), we can define the opera­
tors of BPA(6).rec on the quotient algebra of closed BPA(6).rec terms with 
respect to bisimulation equivalence. This quotient is a model of BPA(6).rec 
and it satisfies RDP and RSP. 

Projection We extend the theory BPA(6). with projections. The equa­
tional specification BPA(6). +PR has as its signature the one of BPA(6) +PR 
plus a constant 0: ¢ A (and 0: =1= 8). The axioms of BPA(6). + PR are the 
axioms of BPA(6) + PR plus the axioms of table 11. Moreover, we assume 
for axiom PRI (table 7) that a may also be c. 

The results that we inferred for BPA(6) + PR also hold for BPA(6). + 
PR: we can eliminate projections occurring in closed terms and the se­
quence 7rl(t), 7r2(t), ... has t, t, ... as its tail. We can also prove many 
conservativity results using subsection 2.4.1. We can, for instance, show 
that BPA(6), + PR is conservative over BPA(6),. We already showed that 
BPA(6). is a conservative extension of BPA, so with transitivity we find that 
BPA(6), + PR is a conservative extension of BPA. We use the transitivity 
argument here since the proof that BPA(6). is a conservative extension of 
BPA uses another semantics. See subsection 2.6.1 for more information. 

The semantics of BPA(6). + PR can be given by means of a term deduc-

Table 13. Derivation rules for recursion and empty process. 

(sx I E) 1 
(X I E}l 

(sx I E)~y 
(X I E}~y 
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Table 14. Derivation rules for projections with empty process. 

xL X~x' 

tion system T(BPA(6)e + PR). Its signature is the signature of BPA(6), + PR 
and its rules are the rules of tables 12 and 14. We can define the quotient 
algebra of closed BPA(6), + PR terms with respect to bisimulation equiva­
lence and the operators of BPA(6), + PR as usual. The quotient is a model 
of BPA(6), + PR and it satisfies AlP. The theory BPA(6), + PR is complete. 

Recursion and projection Here we discuss the combination of recursion, 
projection, and the empty process. The theory BPA(6),reC + PR has as 
its signature the signature of BPA(6)reC + PR and a constant e ¢ A (and 
e # 8). The axioms of BPA(6),reC + PR are the ones of BPA(6)reC + PR 
and the axioms of table 11. Moreover, we assume for axiom PRI (table 7) 
that a may also be e. 

The standard facts (and their proofs) of subsection 2.4.2 are easily trans­
lated to the present situation. 

The semantics of BPA(6),reC + PR is given by means of a term de­
duction system T(BPA(6),reC + PR). Its signature is the signature of 
BPA(6),reC + PR and its rules are those of T(BPA(6), + PR) plus the rules 
concerning recursion that are presented in table 13. Since bisimulation 
equivalence is a congruence, we can define the operators of BPA(6),rec+PR 
on the quotient algebra of closed BPA(6),reC + PR terms with respect to 
bisimulation equivalence. This quotient is a model of BPA(6)erec+ PRand 
it satisfies RDP, RSP, and AIP-, but not its unrestricted version AIP. As 
a consequence, we can prove that BPA(6),reC satisfies RSP. This is proved 
in the same way as theorem 2.4.36. 

2.6.3 CCS termination 

A variant of the empty process is given by the CCS process NIL [Milner, 
1980]. We can extend the signature of BPA by the constant NIL, and 
formulate the operational rules in table 15. These rules are taken from 
[Aceto and Hennessy, 1992]. 

The crucial difference between the necessary termination predicate ..; 
and the termination option predicate L is in the rule for +: for ..;, both 
components must terminate in order for the sum to terminate. As a result, 
NIL satisfies the laws for e but at the same time the law x + NIL = x. A 
consequence is that the law A4 (distributivity of . over +) does not hold 
for all processes, and so BPANIL cannot be axiomatized using the axioms 
of BPA. The following complete axiomatization is taken from [Baeten and 
Vaandrager, 1992]; for more information, we refer to this paper. 
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Table 15. Derivation rules of T{BPANIL)' 

a~NIL NILv' 
x~x' a I y-->y xv',yv' 

X+y~x' a I x + y-->y (x + y)v' 
a I x---->x v' a I X ,y-->y xv',yv' 

xy~x'y a I xy---->y (xy)v' 

As before, we can add {j without any operational rules. Its axioms have 
to be adapted in the presence of NIL, though. We show this in table 17. 

2.7 Renaming in BPA 
Sometimes it is useful to have the possibility of renaming atomic actions. 
The material of this subsection is based on [Baeten and Bergstra, 1988a] 
with improvements by [Vaandrager, 1990a]. Renaming operators occur in 
most concurrency theories; see, for example, [Milner, 1980; Milner, 1989], 
[Hennessy, 1988], and [Hoare, 1985]. 

The signature of the equational specification BPA + RN consists of the 
signature of BPA plus for each function I from the set of atomic actions to 
itself a unary operator PI called a renaming operator. Such a function I is 
called a renaming function. The axioms of BPA + RN are the ones for BPA 
plus the axioms concerning renaming operators displayed in table 18. 

Structural induction In BPA + RN we can use structural induction just as 
in BPA, since closed BPA+RN terms can be rewritten into basic BPA terms. 
To that end, we will first prove that the term rewriting system associated to 
BPA + RN is strongly normalizing. We display the rewrite rules concerning 
the renaming operators in table 19. Note that, in rule RRN1, I{a) stands 

Table 16. BPANIL. 

X +y = y + x Al 

(x+y)+z=x+{y+z) A2 

x+x=x A3 

(ax + by + z)w = axw + (by + z)w A4' 

(xy)z = x(yz) AS 

X + NIL = x A6' 

X· NIL = x A8' 

NIL· x = x A9' 
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Table 17. 0 in the presence of NIL. 

ax + 0 = ax A6** 

O·x=O A7 

for the atomic action that a is renamed into. 

Theorem 2.7.1. The term rewriting system associated to BPA + RN is 
strongly normalizing. The rewrite rules are those of table 2 and the rules 
in table 19. 

Proof. We will apply theorem 2.2.18 to prove that the rewrite rules are 
terminating. For that, we first give a partial ordering of the signature. 

V/,a E A: Pf > . > +,Pf > a. 

Moreover, we give sequential composition the lexicographical status for the 
first argument. Now straightforward calculations will show that each left­
hand side of a rewrite rule is strictly greater in the >/po ordering than its 
right-hand side. • 

With the aid of the above termination result, we can show the elimina­
tion theorem for basic process algebra with renaming operators. 

Theorem 2.7.2. For every closed BPA + RN term t there is a basic BPA 
term s such that BPA + RN I- t = s. 

Proof. Consider the term rewriting system presented in table 19. Accord­
ing to theorem 2.7.1, this term rewriting system is strongly normalizing. 
Now let t be a closed BPA + RN term and rewrite this into a normal 
form s with respect to the term rewriting system of table 19. With propo­
sition 2.2.6 it suffices to show that s is a closed BPA term. Suppose that s 
contains a renaming operator and consider the smallest subterm containing 
this occurrence. The subterm has the form Pf(u) with u a closed BPA term. 
This contradicts the normality of 5, since now we can rewrite the subterm 
using RRN1, RRN2, or RRN3. So 5 is a closed BPA term. • 

Proposition 2.7.3. Let I, g : A --+ A. Let x be a closed BPA + RN term. 
Then we have the following: 

Table 18. Renaming. 

pj(a) = I(a) RN1 

pj(X + y) = pt(x) + pj(Y) RN2 

Pt(xy) = Pt(x)Pf(Y) RN3 
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(i) pI(X) = x, 

(ii) Pt{pg(x») = Ptog(x). 
Here, the function fog: A --+ A is defined by f 0 g(a) = j{g(a») and 

the function I : A --+ A is defined by I(a) = a for all a E A. 

Proof. With the aid of theorem 2.7.2 it suffices to prove the theorem for 
basic BPA terms. For these terms the proof is trivial. • 

Semantics We give the semantics for BPA + RN by means of a term de­
duction system T(BPA + RN), whose signature is the one of BPA + RN and 
whose rules are the rules of tables 5 and 20. Bisimulation equivalence is a 
congruence, so the quotient of closed BPA+RN terms modulo bisimulation 
equivalence is well-defined. This means that the operators of BPA + RN 
can be defined on this quotient, which is a model of BPA + RN. 

Theorem 2.7.4. The set of closed BPA + RN terms modulo bisimulation 
equivalence is a model of BPA + RN. 

Proof. Axioms AI-A5 are treated as in 2.2.3S. For RNI take the relation 
that only relates pt(a) and f(a). RN2 goes like AI. RN3 goes like AS. • 

At this point we have all the ingredients necessary to state and prove 
that BPA + RN is a conservative extension of BPA. 

Theorem 2.7.5. The equational specification BPA + RN is a conservative 
extension of the equational specification BPA. That is, if t and s are closed 
BPA terms, then we have 

BPA I- t = s -¢=} BPA + RN I- t = s. 

Proof. The operational semantics of BPA can be operationally conser­
vatively added to the operational rules concerning the renaming opera­
tor. This follows immediately from theorem 2.4.1S. The sum of these 

Table 19. A term rewriting system for BPA + RN. 

pt(a) -t f(a) 

Pt(x + y) ...... Pt(x) + Pt(Y) 

Pt(xy) ...... Pt(x)Pt(Y) 

RRNI 

RRN2 

RRN3 

Table 20. Derivation rules concerning renaming operators. 

a , 
x--+x 

PI(X) I(a),,,; Pt(X) t(a) 'PI(X') 
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operational rules is precisely the operational semantics of BPA + RN. Now 
with theorem 2.4.19 we find that modulo strong bisimulation equivalence 
BPA + RN is an operationally conservative extension of BPA. So with the­
orem 2.4.24 we find with the soundness of the equational specification 
BPA + RN and the soundness and completeness of BPA that basic pro­
cess algebra with renamings is an equationally conservative extension of 
B~. • 

With the aid of the above conservativity result and the elimination 
theorem for BPA + RN, we find the completeness of BPA + RN. 

Theorem 2.7.6. The axiom system BPA + RN is a complete axiomatiza­
tion of the set of closed BPA + RN terms modulo bisimulation equivalence . 

Proof. Apply theorem 2.4.26. 

2.7.1 Extensions of BPA + RN 

• 
In this subsection we will discuss the extensions of BPA + RN with recursion 
and/or projections. 

Recursion We can add recursion to BPA + RN in the same way as we 
added recursion to BPA. The equational specification BPArec + RN has as 
its signature the signature of BPArec plus for all functions f from A to A 
a renaming operator PI' The equations of BPArec + RN are the axioms 
of BPArec plus the axioms concerning renaming; see table 18. We can turn 
the set of closed BPArec + RN terms into a model of BPArec + RN that 
satisfies RDP and RSP as usual. 

Projection Projections can be added in an obvious way to BPA+RN: just 
add the projection functions and their axioms to the equational specifica­
tion BPA + RN to obtain BPA + RN + PRo The standard facts that hold 
for BPA + PR also hold for BPA + RN + PRo As we did for BPA + PR 
we can infer that BPA + RN + PR is sound and complete, and that AlP is 
valid. 

Recursion and projection The extension with both recursion and projec­
tion of BPA + RN, called BPArec + RN + PR, can be obtained just like in 
the case of BPA. 

2.7.2 Renaming in basic process algebra with deadlock 

In this subsection we will extend the BPA6 family with renaming operators. 
We begin with BPA6 itself. The equational specification BPA6 + RN has as 
its signature the one of BPA6 and for each function f : AU {8} -+ Au {8}, 
with f(8) = 8, a unary operator PI called a renaming operator. The axioms 
of BPA6 + RN are the axioms of BPA + RN plus the axioms concerning 
deadlock; see table 10. We assume for axiom RN1 (table 18) that a ranges 
over AU {8}. Note that we have PI(8) = f(8) = 8, for all renaming 



48 J. C.M. Baeten and C. Verhoef 

operators. This is necessary: it is easy to derive a contradiction if we allow 
5 to be renamed into an atomic action. 

Structural induction We can use structural induction as before, SInce 
closed BPA. + RN terms can be rewritten into basic BPA. terms. This 
follows from the next elimination theorem. 

Theorem 2.7.7. For every closed BPA.+RN term t there is a basic BPA. 
term s such that BPA. + RN f- t = s. 

If t and s are closed BPA. terms, then we have 

BPA. f- t = s ~ BPA. + RN f- t = s. 

Proof. Add the extra rewrite rule f(5) --> 8 to table 19 and reiterate the 
proof of theorem 2.7.2. • 

Remark 2.7.8. Note that proposition 2.7.3 also holds for BPA. + RN. 

Semantics The semantics for BPA. + RN can be given just like the seman­
tics for BPA + RN. Let T(BPA. + RN) be the term deduction system with 
the signature of BPA. + RN and with the rules of tables 5 and 20. In the lat­
ter table we further assume that f(a) E A. Since bisimulation equivalence 
is a congruence, the quotient of the set of closed BPA. + RN terms with re­
spect to bisimulation equivalence is well-defined. This quotient is a model 
of BPA. + RN; from this, the completeness of BPA., and the elimination 
result, the completeness of BPA. + RN follows. 

2.7.3 Extensions of BPA. + RN and BPA. 

In this subsection we discuss the extensions of BPA. + RN with recursion 
and/or projections and we discuss the extension of BPA. with a particular 
renaming operator. 

Recursion and/or projection The extensions of BPA. + RN with recursion, 
projection, or a combination of both are obtained in the same way as these 
extensions without deadlock; see section 2.7.1. 

Encapsulation In most concurrency theories in which a form of deadlock is 
present there usually is the notion of an encapsulation or restriction opera­
tor; this is a renaming operator that renames certain atomic actions into 5. 
The notion of encapsulation and the notation aH stem from [Bergstra and 
Klop, 1984b]. The notion named restriction is due to [Milner, 1980]. 

In this subsection we will add the encapsulation operator to BPA •. 
The equational specification BPA. + aH has as its signature the one 

of BPA. plus for each H ~ A a unary operator aH called the encapsulation 
operator. The axioms of BPA. + aH are the equations of BPA. and the 
equations defining aH in table 21. We assume in this table that a ranges 
over AU {5}, so in particular we find with D1 that 8H(8) = 8. 
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Table 21. The encapsulation operator. 

OR(a) == a, if a rf. H D1 

OR(a) == 8, if a E H D2 

OR(X + y) == OR(X) + OH(Y) D3 
OR(XY) == OH(X)OH(Y) D4 

The semantics of BPAo+OR can be derived just like in the case of BPAo+ 
RN. We can take OH == PIH with 

fH(a) == {~ if a rf. H; 
u otherwise. 

For completeness sake, we give the operational rules for the encapsulation 
operator in table 22. 

It is also straightforward to extend BPA. + OR with recursion and/or 
projections. 

2.7.4 Renaming in basic process algebra with empty process 

In this subsection we will add renaming operators to both BPA, and BPAo• 
with extensions. We will simultaneously refer to both of them as before 
with parentheses: BPA(o),. Arbitrary combinations of renaming operators 
and the empty process introduce a form of abstraction, which is beyond 
the scope of concrete process algebra. Therefore, we will restrict ourselves 
to the concrete subcase that prohibits renaming into the empty process. 

The signature of the equational specification BPA(o). + RN is the signa­
ture of BPA(o) + RN plus a constant e: rf. A (e: f:. 8). We do not allow renam­
ing into e: so for the functions f we assume (moreover) that f(a) E A(o) 
if a E A(6) and (J(8) == 8,) fee:) == e:. The axioms of BPA(o), + RN are 
the ones of BPA(o). and the equations for renaming; see table 18. Note 
that PI (e:) == e: (and PI(o) == 0). 

Abstraction We have an abstraction mechanism if we allow renaming into 
the empty process. For instance, suppose that we have two atomic actions, 
say a and b. Let f(a) == a and feb) == e:. Then PI(ab) == a and we have 
abstracted from b. 

Table 22. Derivation rules for the encapsulation operator. 

a I 
x~x 
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Structural induction We can use structural induction as before, since 
closed BPA(6)e + RN terms can be rewritten into basic BPA(6)< terms. This 
can be shown along the same lines as the elimination theorem for the theory 
without the empty process; see, for instance, theorem 2.7.2. 

Note that proposition 2.7.3 also holds for BPA(6)e + RN. 

Semantics The semantics of BPA(6)e + RN will be given by means of a 
term deduction system. Let T(BPA(8)e +RN) be the term deduction system 
with BPA(6)< + RN as its signature and with rules displayed in tables 12 
and 23. Bisimulation equivalence is a congruence, so we can define the 
operators of BPA(8)e + RN on the quotient of closed BPA(6)< + RN terms 
modulo bisimulation equivalence. It is straightforward to prove that this 
is a model of BPA(6)e + RN. The completeness of BPA(8)e + RN is also 
standard to prove. 

Look-ahead If we allow renaming into the empty process, we need two 
more derivation rules that concern renaming; they introduce a look-ahead 
as can be seen in table 24. The operational rules that we list in this table 
are due to [Baeten and Glabbeek, 1987]. 

We will give an example. Suppose that f(a) = c and feb) = b. Then 
we can derive PI(anb)~c, for each n > 1. 

2.7.5 Extensions of BPA(6)< + RN and BPA(6)< 

In this subsection we discuss the extensions of BPA(6)< + RN with recursion 
and/or projections and we discuss the extension of BPA(8)e with a particular 
renaming operator. 

Recursion and/or projection The extensions of BPA(8)e + RN with recur­
sion and/or projection can be obtained just like before. However, if we 
allow renaming into the empty process the definition of a guarded recur­
sive specification has to be adapted. We will show in an example that 
RSP no longer holds with the present definition. This example is taken 
from [Baeten et ai., 1987]. Suppose that we have at least three elements in 

Table 23. Derivation rules for renaming operators and empty process. 

X~X' xl 
PI(x) ! I(a) , I(a) E A 

PI(X) 'PI(x') 

Table 24. Extra rules when we allow renaming into c. 

X....!!:.....y, PI(Y)! 
( ) 

, I(a) = c 
PI x ! 

a ( ) b , 
x~Y, PI Y ~x 

b ' I(a) = c 
PI(X)~X' 
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the set of atomic actions, say a, i, and j. Let Ci resp. C j be the renaming 
operators that rename i resp. j into C and further do nothing. Then the 
guarded recursive specification 

{X = i· Cj(Y), Y = j . ci(X)} 

has the solution {ian,jan} for all n ?: 1. So RSP cannot hold. 
A possible solution can be to prohibit the occurrences of renaming op­

erators in the body of guarded recursive specifications. Also more sophis­
ticated solutions can be obtained in terms of restrictions on the renaming 
operators that do occur in the body of a guarded recursive specification. 

Encapsulation The extension of BPAc5e with the encapsulation operator 
can be obtained in the same way as in the case without the empty process; 
see subsection 2.7.3. 

2.8 The state operator 
In this subsection we extend BPA with the (simple) state operator, which 
is a generalization of a renaming operator. It is a renaming operator with a 
memory to describe processes with an independent global state. We denote 
the state operator by As; the subscript is the memory cell containing the 
current state s. This subsection is based on [Baeten and Bergstra, 1988a]. 
Another treatment of state operators can be found in [Verhoef, 1992]. 

Next, we will discuss the signature of BPA>.. It consists of the usual 
signature of BPA extended with for each m E M and s E S a unary 
operator ..\;' called the (simple) state operator. M, S, and A are mutually 
disjoint. The set S is the state space and M is the set of object names; the 
M stands for machine. 

We describe the state operator by means of two total functions action 
and effect. The function action describes the renaming of the atomic ac­
tions and the function effect describes the contents of the memory. We 
have 

action: A x M x S ---> A, effect : A x M x S ---> S. 

Mostly, we write a(m,s) for action(a,m,s) and s(m,a) for effect(a,m,s). 
Intuitively, we think of the process A;'(X) as follows: m represents a 

machine (say a computer), s describes its state (say the contents of its 
memory), x is its input (say a program). Now A;'(X) describes what hap­
pens when x is presented to machine m in state s. 

Now we discuss the equations of BPA>.. They are the axioms of BPA 
(see table 1) and the axioms of table 25. The first axiom SOl gives the 
renaming part of the state operator. The second axiom S02 shows the 
effect of renaming an atomic action on the current state. Note that if a 
renaming has no effect on states we obtain an ordinary renaming oper-
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Table 25. The axioms defining the state operator. 

A:"(a) = a(m, s) SOl 

A:,,(ax) = a(m,s»).:(m,a)(x) S02 

A:"(X + y) = A:"(X) + A:"(Y) S03 

ator. Axiom S03 expresses that the state operator distributes over the 
alternative composition. 

2.8.1 TerInination and elimination 

Next, it is our aim to show that the state operator can be eliminated. 
Therefore, we will use that the term rewriting system associated to BPA), 
is strongly normalizing. We will prove the latter fact with the aid of the 
method of the recursive path ordering. However, we cannot apply this 
method immediately. This is due to the fact that we cannot hope to find 
a strict partial ordering on the signature of BPA), that does the job. The 
problematical rule is the rewrite rule RS02 (see table 26). Suppose that 
we have one atomic action a. Let us have two different states, which shall 
remain nameless. Take an inert action function, that is it does nothing, and 
let the effect function act as a switch. This yields the following instantiation 
for the rewrite rule RS02: 

A(ax) 

A' (ax) 

--t aA'(x), 

--t aA(x). 

For the first rewrite rule the ordering that works is A > ,\'. But for the 
second rule, the ordering should be the opposite, thus yielding an incon­
sistency. We solve this by giving the state operator a rank; the rank of a 
state operator depends on the weight of its operand. This idea is taken from 
[Verhoef, 1992]; he based this idea 011 a method that [Bergstra and Klop, 
1985] give for the termination of a concurrent system (see theorem 3.2.3 
where we treat their method). 

Definition 2.8.1. Let x and Y be terms and let a be an atomic action. 

Table 26. The rewrite rules for the simple state operator. 

A:"(a) --t a(m,s) 

A:,,(ax) --t a(m, S)A:(m,a)(x) 

A:"(X + y) --t ).:,,(x) + ).:"(Y) 

RSOl 

RS02 

RS03 
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The weight of a term x, notation lxi, is defined inductively as follows. 

• lal = 1, 
• Ix + yl = max{lxl, Iyl}, 
• Ix, yl = Ixl + Iyl, 

• 1>';'(x)1 = IxI-
Definition 2.8.2. The rank of a state operator is the weight of the sub­
term of which it is the leading operator. So, if Ixl = n, we write >';:' sex). , 

Theorem 2.8.3. The term rewriting system associated to the equational 
specification of BPA>. is strongly normalizing. The rewrite rules are the 
ones listed in tables 2 and 26. 

Proof. Take the following precedence for the elements of the signature of 
BPA>.: 

\In > 1, m E M, 5, s' E S, a E A: >';:'+I,s > >':'., > . > +, >':'s > a. 

Moreover, give the sequential composition the lexicographical status for the 
first argument. Now it is not hard to see that each left-hand side of the 
rewrite rules is strictly greater than its right-hand side in the> lpo ordering. 
We will treat an example. Let a' = a(m, s), >'n = >';:' s' and >.~ = >.m ( ). 

I n,B m,a 

Suppose that Ixl = n. 

>'n+1 (ax) >lpo >'~+l (ax) 

>lpo >'~+l (ax) . >'~+l (ax) 

>lpo a' . >.~ ( >.~+ 1 ( ax ) ) 

>lpo a'·>'~(ax) 

>lpo a' . >'::(ax) 

>/po a' . >'~(a .* x) 

>lpo a'·>'~(x). 

The other inequalities are checked analogously. With theorem 2.2.18 it 
follows that the system is terminating. • 

Now, we can state the elimination theorem for basic process algebra 
with the state operator. 

Theorem 2.8.4. For every closed BPA>. term t there is a basic BPA term s 
such that BPA>. f- t = s. 

Proof. Straightforward. • 
Semantics We give the semantics for BPA>. by means of a term deduction 
system T(BPA>.). Its signature is that of BPA>. and its rules are the rules 
of tables 5 and 27. According to theorem 2.2.32 bisimulation equivalence 
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Table 27. Derivation rules of T(BPA,\). 

oX:"'(x) a(m,s) 'V 

a , 
x---+x 

\ ms (x) a(m,s) oX m (') 
A • s(m,a) X 

is a congruence so the operators of BPA,\ can be defined on the quotient of 
the closed BPA", terms modulo bisimulation equivalence. Moreover, it is a 
model of BPA,\. With the aid of the method explained in subsection 2.4.1, 
it is not hard to see that BPA", is a conservative extension of BPA. Then 
it easily follows with theorem 2.4.26 that the axioms in tables 1 and 25 
constitute a complete axiomatization of BPA",. 

Extensions The extensions of BPA", with recursion and/or projection are 
obtained in the same way as those of BPA. 

The extension of BPAo with the state operator is obtained in the same 
way as the extension of BPA with it. We also allow a( m, s) = 0 so the action 
function can rename into /5. There is only one extra axiom: we need to know 
what the state operator should do with the extra constant /5. Therefore, we 
need to know how the functions action and effect are extended to AU {/5}. 
We define /5( m, s) = /5 and s( m, /5) = s. The extra axiom is 

oX:",(o) = o. 

The extensions of BPA6,\ with recursion and/or projection are obtained 
in the same way as those of BPA6. 

The following example is due to Alban Ponse [Ponse, 1993]. 

Example 2.8.5. We describe an edit session with the aid of the state 
operator. We will use the theory BPA", with recursion. 

The characters that can be typed are the lower case characters a, b, ... , z 
with the usual meaning, and two special characters D and P. We call the 
set of characters that can be typed C. The character D stands for the 
deletion of the last character from the memory; if the memory is empty 
pressing the D will cause a beep. The P sends the contents of the memory 
to a printer device. We have a user U that wants to type characters from C. 
The user is specified as follows: 

U = L type(c) . U + L type(c). 
cEC cEC 

The state space is S = {a, b, ... , z}·; we denote the empty word by c:. The 
set A of atomic actions is 

{type(c), typed(c) , deleted(c) : c E C} U {printed(a) : a E S} U {beep}. 
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We give the action and effect functions implicitly, by giving the relevant 
axioms for our specific state operator. We assume that c E {a, b, ... , z} 
and U E S. 

A«type(D)· x) 

Auc(type(D)· x) 

Au(type(c)· x) 

Au (type(P) . x) 

beep· A.(X) 

deleted ( c) . .Au (x) 

typed(c)· Auc(X) 

printed(u) . Au(X). 

For the other atomic actions in A we define the action and effect functions 
to be inert. Now the process A«U) describes an edit session. Since we 
have only one object name, we left out the superscripts. 

Note that the following choice for the last equation of the above display 
also works: 

Au(type(P)· x) = printed(u)· A.(X). 

However, we did not choose this option to separate different concerns: if 
we want to empty the memory, it may be more appropriate to define an 
atomic action that empties the memory. 

2.9 The extended state operator 
In the following, we will discuss BPA with the extended state operator, 
which is a generalization of the simple state operator. We denote the 
extended state operator by A;'. The difference with the (simple) state 
operator is that we can rename an atomic action into a closed term of a 
particular form, namely a finite sum of atomic actions. With this extra 
feature it is possible to translate an instruction like read (x) into process 
algebra. 

This subsection is based on [Baeten and Bergstra, 1988aJ. 
We discuss the signature of BPAA • It consists of the usual signature 

of BPA extended for each m E M and s E S with a unary operator A~' 
called the extended state operator. M, S, and A are mutually disjoint. 
The set S is the state space and M is the set of object names; the M 
stands for machine. 

We describe the extended state operator by means of two functions ac­
tion and effect. The function action describes the renaming of the atomic 
actions and the function effect describes the contents of the memory. We 
have 

action : A x M x S --+ 2A \ {0}, effect: A x M x S x A --+ S. 

We write a(m,s) for action(a,m,s) and s(m,a,b) for effect(a,m,s,b). 
The axioms of BPAA are those of BPA and the axioms of table 28. 

Next, we discuss them. The first axiom GSI states that an atomic action 
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Table 28. The axioms defining the generalized state operator. 

A:"(a) = L b GSI 
bEa(m,s) 

A:"(ax) = Lb. A:(m,a,b) (x) GS2 
bEa(m,s) 

A:"(x + y) = A:"(x) + A:"(Y) GS3 

Table 29. Derivation rules of T(BPAA ). 

x-'!:....,J 
---b;--' bE a(m, s) 
A:"(x)->J 

is renamed into a sum of atomic actions. Axiom GS2 shows the side effects 
of the renaming on the state space. Axiom GS3 expresses that the extended 
state operator distributes over the alternative composition. 

Termination In the previous subsection (2.8) we mentioned that we can­
not use the method of the recursive path ordering immediately. The same 
phenomenon occurs with the extended state operator. Fortunately, the so­
lution of the problems is the same as for the simple state operator. We 
have to define ranked extended state operators and prove the termination 
of this system. We omit the details and refer to subsection 2.8 for more 
information. We only mention the main result. 

Theorem 2.9.1. The term rewriting system that is associated to BPAA IS 

strongly normalizing. The rewrite rules are those of tables 2 and 30. 

Semantics We give the semantics for BPAA by means of a term deduc­
tion system T(BPAA ). Its signature is that of BPAA and its rules are the 
rules of tables 5 and 29. According to 2.2.32 bisimulation equivalence is a 
congruence so the quotient of the closed BPAA terms modulo bisimulation 
equivalence is well-defined. Moreover, it is easily seen that the quotient is 
a model of BPAA . With the theory of section 2.4.1, we find that BPAA is a 
conservative extension of BPA. With the termination theorem 2.9.1 and an 
elimination result, similar to 2.8.4, we find using theorem 2.4.26 that the 
axioms of tables 1 and 28 constitute a complete axiomatization of BPAA • 

Extensions The extensions of BPAA and BPAOA with recursion and/or 
projection are obtained in the same way as those with BPA,X and BPAo'x. 
The only difference is that we can now allow a(m, s) = 0 if in addition we 
define 
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Table 30. The rewrite rules for the extended state operator. 

A:"(a) -> L b RGSI 
bEa(m,s) 

A:"(ax) -> Lb. A:(m,a,b) (x) RGS2 
bEa(m,s) 

A:"(x + y) -> A:"(x) + A:"(Y) RGS3 

As before, we have A:"(8) == 8. 

Example 2.9.2. In this example we describe a gambling session of a fruit 
machine player with the aid of the extended state operator. We use the 
theory BPAA with recursion, again leaving out superscripts. 

The player P is specified as follows: 

P == pull· win· P. 

Note that P has a serious gambling problem. With the extended state 
operator we specify what actually will happen during the gambling session. 
First we give the state space S == F x F x F where 

F == {bar, bell, grape, melon, orange, cherry}. 

The set of atomic actions A is 

{pull, win, lost} u {won(J) : / E F} U {pulled(f,g, h) : /,g, hE F}. 

We define the action and effect functions implicitly by giving the relevant 
instances of axiom GS2. The first equation expresses that if P pulls the 
fruit machine it will give one of the possible triples. The second equation 
describes that win is renamed into lost if the obtained triple contains dif­
ferent "fruits". If the triple contains only one symbol, say melon, we have 
that win is renamed into won( melon). 

pulled(f, g, h) . A(f,9,h) (x) 
(f,9,h)ES 

A(f,9,h) (win . x) L won(f)· A(f,9,h)(X) + L lost· A(f,9,h) (x) 
f=9=h ft9 

+ L lost· A(f,9,h)(X) + L lost· AU,9,h)(X). 
9#h f#h 
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For the other actions in A we define both functions action and effect to 
be inert. The process A(J,g,h)(P) with f, g, h E F describes a gambling 
seSSlOn. 

2.10 The priority operator 
In this subsection we introduce BPA6 with the priority operator that orig­
inates from [Baeten et al., 1986]. 

The signature of the equational specification BPA6 with the priority 
operator, BPA60, consists of the signature of BPA6 plus a unary operator 9 
and an auxiliary binary operator <l pronounced "unless". Furthermore, 
a partial ordering <, called the priority ordering on the set of atomic 
actions A is presumed. The axioms of the equational specification BPAc50 

are the usual axioms of BPA6 (see tables 1 and 10) and the axioms of 
tables 31 and 32. The axioms that we present in these tables make use 
of O. We can imagine a system without 0 (BPAo) but such a system has a 
laborious axiomatization; see [Bergstra, 1985] for such an axiomatization. 

Next, we will discuss the axioms concerning priority. 
The axioms of table 31 define the auxiliary unless operator. It is used 

to axiomatize the priority operator. The intended behaviour of the unless 
operator is that the process x <l y filters out all summands of x with an 
initial action smaller than some initial action of y. So, one could say that 
the second argument y is the filter. If, for instance, a > b> c then we want 
that 

(ax + by + cz) <l (bp + cq) = ax + by. 

To model the filter behaviour we use the constant process 0 to rename the 
unwanted initial actions of x into O. The axioms Ul and U2 essentially 
define the mesh of the filter: they say which actions can pass the filter and 
which cannot. Axiom U3 expresses the fact that the initial actions of y 

are the same as the initial actions of yz. Axiom U4 says that it is the 
same to filter the initial actions of x with filter y + z as to filter first the 

Table 31. The axioms defining the unless operator. 

a<lb=a if ...,(a < b) U1 

a<lb=o if a < b U2 

X<lyz = X<ly U3 

x <l (y + z) = (x <l y) <l z U4 

xy <l z = (x <l Z )y U5 

(x + y) <l Z = X <l Z + Y <l Z U6 



Concrete process algebra 59 

Table 32. The axioms defining the priority operator. 

B(a) = a TH1 

B(xy) = B(x) ·O(y) TH2 

B(x +y) = O(x) <ly+B(y) <IX TH3 

initial actions of x with filter y and filter the result with filter z. Axiom U5 
expresses that z is a disposable filter: once in xy the process x is filtered 
through z, the process y can freely pass. Axiom U6 expresses that filtering 
a sum is the same as adding the filtered summands. 

The priority operator uses the unless operator to filter out the sum­
mands with low priority. Thus, the priority operator is invariant under 
atomic actions and sequential composition. This is expressed in the ax­
ioms TH1 and TH2. The priority operator does not distribute over the 
alternative composition, since in a prioritized sum O(x + y) there is an 
interaction between the restrictions concerning the priorities imposed on 
each other by x and y, whereas in O(x) + B(y) we do not have such an 
interaction. Axiom TH3 states that the prioritized sum equals the sum of 
the prioritized summands with the remaining alternatives as filters. So, for 
instance, we have 

O(a + b + c) = O(a) <l (b + c) + O(b) <l (a + c) + O(c) <l (a + b). 

Intuition The partial order < is used in order to describe which actions 
have priority over other actions. If for instance a < band band care 
not related we want to have that O(a + b) = band O(b + c) = b + c. 
The priority operator thus respects the alternative composition for actions 
without priority but gives the alternative with the highest priority, in the < 
hierarchy, if the sum contains prioritized actions. A typical example of a 
low priority action is an atomic action expressing time-out behaviour: as 
long as there are alternatives with a higher priority no time-out will be 
performed within the scope of the priority operator. The priority operator 
has been used to specify and verify time critical protocols in an untimed 
setting; see, for instance, [Vaandrager, 199Gb]. 

Next, we list some properties of the unless operator and the priority 
operator that can be derived from BPA6o. The first identity expresses that 
the ordering of filtering does not matter. The second equation expresses 
that when a process is filtered once, a second application of the same filter 
has no effect. The third one expresses that a prioritized process O(x) IS 

automatically filtered with its subprocess x without priority. 
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Table 33. Rewrite rules for the unless operator. 

-.(a < b) ==> a<lb -> a RUl 

a<b==>a<lb->t5 RU2 

x <l yz -+ X <l Y RU3 

x <l (y + z) -> (x <l y) <l Z RU4 

xy <l Z -+ (x <l Z )y RU5 

(x + y) <l Z -> X <l Z + Y <l Z RU6 

(X<lY)<lY -> X<ly RU7 

Lemma 2.10.1. The following identities are derivable from BPA69 : 

• (X<lY)<lz=(X<lz)<lY, 

• (X<lY)<lY=X<lY, 

.8(x)<lx=8(x). 

Proof. The proofs of these identities are easy. To illustrate the usage of 
the axioms we provide full proofs. Here is the first one: 

(X <l y) <l Z = X <l (y + z) = X <l (z + y) = (x <l z) <l y. 

For the second one, take Z = Y in the above deduction and use the fact 
that Y + Y = y. The third identity is derived as follows: 

O(X) <l X = 8(x) <l X + 8(x) <l X = 8(x + x) = 8(x). 

Note the double use of the idem potency of the alternative composition in 
this inference. • 

Next, we formulate a term rewriting result for basic process algebra with 
priorities. It states that the term rewriting system associated to BPA69 is 
strongly normalizing. To prove this we use the method of the recursive 
path ordering that we introduced in subsection 2.2.2. We need the lexico­
graphical variant of this method. Note that the rewrite rules concerning 
the unless operator (table 33) form a conditional term rewriting system. 
We can, however, see the rewrite rules RUl and RU2 as a scheme of rules; 
for all a and b there is a rule. So, in fact, this term rewriting system is un­
conditional. Thus, we may use the method of the recursive path ordering. 

Theorem 2.10.2. The term rewriting system that is associated to BPA69 
is strongly normalizing. This term rewriting system consists of the rewrite 
rules listed in table 2, table 33, and table 34. 
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Table 34. The rewrite rules for the priority operator. 

8(a) -+ a 

8(xy) -+ 8(x) ·8(y) 

8(x+y)-+8(x)<3y+8(Y)<3x 

8(x) <3 X -+ 8(x) 

RTH1 

RTH2 

RTH3 

RTH4 

61 

Proof. We use the lexicographical variant of the recursive path ordering 
that we treated in subsection 2.2.2. Take as precedence for the elements of 
the signature of BPA.6 the following partial ordering: 

8 > <3 > . > +, \;fa E A : a > O. 

Furthermore, we give the sequential composition the lexicographical status 
for the first argument and we give the unless operator the lexicographical 
status for the second argument. We will treat a typical case: we treat the 
case RU4 where we use the lexicographical status of the unless operator. 

X<3(Y+Z) >/po x <3* (y + z) 

>Ipo (x <3* (y + z») <3 (y + * z) 

>Ipo (X<3(y+* z») <3z 

>Ipo (X<3Y)<3z. 

The other cases are dealt with in a similar way. This means that we find 
with theorem 2.2.18 that the term rewriting system is strongly normalizing, 
which ends the proof of the theorem. • 

Next, we formulate the elimination theorem for basic process algebra 
with priorities. 

Theorem 2.10.3. The equational specification BPA.6 has the elimination 
property for BPA.. That is, for every closed BPA.6 term t there is a basic 
BPA. term s such that BPA.9 f- t = s. 

Proof. Easy. 

2.10.1 Semantics of basic process algebra with priorities 

In this subsection we discuss the operational semantics of BPA.9 • 

• 
The operational semantics of the priority operator can be found in 

[Baeten and Bergstra, 1988b]. A more accessible reference is, for instance, 
[Groote, 1990b] or [Baeten and Weijland, 1990]. In table 35 we give the 
characterization presented in [Baeten and Weijland, 1990]. In [Bol and 
Groote, 1991] we find rules that operationally define the unless operator, 
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Table 35. Derivation rules for the priority operator. 

x~x', {x4,x4J I b> a} 
f)(x)~f)(x') 

x~J, {x4,x4v'1 b> a} 
f)(x)~J 

Table 36. Derivation rules for the unless operator. 

x~x', {y4,y4J I b> a} 
x <ly~x' 

x~J, {y4,y4v'1 b> a} 
X<ly~J 

essentially as in table 36 (but we follow the approach of [Baeten and Weij­
land, 1990]). 

We note that it is possible to operationally characterize the priority 
operator without the use of the unless operator. The latter one is used for 
the axiomatization of the priority operator. However, [Bergstra, 1985) gives 
a not so well-known finite axiomatization of the priority operator without 
the unless operator. Moreover, in this approach the special constant 8 
is not necessary. For more information on this axiomatization we refer 
to [Bergstra, 1985). 

We also note that on the basis of an operational semantics for the pri­
ority operator it is possible to find the unless operator in a systematical 
way. This can be done with the paper [Aceto et at., 1994) where an algo­
rithm is given to generate a sound and complete axiomatization from a set 
of operational rules that satisfy a certain SOS format (the so-called GSOS 
format, see further on). 

An interesting point concerning the operational rules of the priority 
operator and the unless operator is the appearance of negative premises in 
them. Clearly, such rules do not satisfy the path format. Therefore, in this 
subsection we will make a third journey to the area of general theory on 
operational semantics. Next, we will generalize the theory that we already 
treated in subsection 2.2.3. As a running example we take the operational 
semantics of basic process algebra with priorities. This subsection is based 
on [Verhoef, 1994a). 

In the following definition we generalize the notion of a term deduction 
system (cf. definition 2.2.19) in the sense that deduction rules may also 
contain negative premises. [Bloom et al., 1988) formulated the first format 
with negative premises; it is called the GSOS format. [Groote, 1990b) gen­
eralized this substantially and he proposed the so-called nty/t/ntyxt format. 
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Definition 2.10.4. A term deduction system is a structure (E, D) with E 
a signature and D a set of deduction rules. The set D = D(Tp, Tr) is pa­
rameterized with two sets, which are called respectively the set of predicate 
symbols and the set of relation symbols. Let s, t, and u E O(E), P E Tp , 

and R E T r • We call expressions Ps, ..,Ps, tRu, and toR formulas. We 
call the formulas Ps and tRu positive and ..,Ps and toR negative. If S is 
a set of formulas we write PF(S) for the subset of positive formulas of S 
and NF(S) for the subset of negative formulas of S. 

A deduction rule d ED has the form 

H 
G 

with H a set of formulas and G a positive formula; to save space we will 
also use the notation HIG. We call the elements of H the hypotheses of d 
and we call the formula G the conclusion of d. If the set of hypotheses of a 
deduction rule is empty we call such a rule an axiom. We denote an axiom 
simply by its conclusion provided that no confusion can arise. The notions 
"substitution", "var", and "closed" extend to formulas and deduction rules 
as expected. 

Example 2.10.5. A typical example of a term deduction system with 
negative premises is the operational semantics of BPA69 . The term deduc­
tion system T(BPA69 ) has as signature that of the equational specifica­
tion BPA69 and its rules are the rules of tables 5, 35, and 36. 

Next, we formalize the notion when a formula holds in a term deduction 
system with negative premises. 

Definition 2.10.6. Let T be a term deduction system. Let F(T) be the 
set of all closed formulas over T. We denote the set of all positive formulas 
over T by PF(T) and the negative formulas by NF(T). Let X ~ PF(T). 
We define when a formula cp E F(T) holds in X; notation X f- cp. 

X f- sRt if sRt E X, 

X f- Ps if Ps E X, 

X f- s..,R if \;It E G(E) : sRt ¢ X, 

X f- ..,Ps if Ps ¢ X. 

The purpose of a term deduction system is to define a set of positive 
formulas that can be deduced using the deduction rules. For instance, if 
the term deduction system contains only positive formulas then the set 
of deducible formulas comprises all the formulas that can be proved by a 
well-founded proof tree. If we allow negative formulas in the premises of 
a deduction rule it is no longer obvious which set _of positive formulas can 
be deduced using the deduction rules. [Bloom et al., 1988] formulate that 
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a transition relation must agree with a transition system specification. We 
will use their notion; it is only adapted in order to incorporate predicates. 

Definition 2.10.7. Let T = (~,D) be a term deduction system and 
let X C PF(T) be a set of positive closed formulas. We say that X agrees 
with T if a formula cp is in X if and only if there is a deduction rule in­
stantiated with a closed substitution such that the instantiated conclusion 
equals cp and all the instantiated hypotheses hold in X. More formally: X 
agrees with T if 

cp EX-¢=} 3HIC E D,u: F ---> C(~): u(C) = cp, Vh E H: X I- u(h). 

[Groote, 199Gb] showed that if for each rule the conclusions are in some 
sense more difficult than the premises, there is always a set of formulas 
that agrees with the given rules. [Verhoef, 1994a] generalized this to the 
case where predicates come into play. Next, we will formalize this notion 
that is termed a stratification. 

Definition 2.10.8. Let T = (~, D) be a term deduction system. A map­
ping S : PF(T) ---> Q for an ordinal Q is called a stratification for T if 
for all deduction rules H IC E D and closed substitutions u the following 
conditions hold. For all h E PF(H) we have S(u(h)) < S(u(C)); for 
all s..,R E NF(H) we have for all t E C(~) : S(u(sRt)) < S(u(C)); for 
all..,Ps E NF(H) we have S(u(Ps)) < S(u(C)). We call a term deduction 
system stratifiable if there exists a stratification for it. 

Relllark 2.10.9. Next, we will give a recipe for finding a stratification. In 
most cases we can find a stratification (for which the two conditions hold) 
by measuring the complexity of a positive formula in terms of counting 
a particular symbol occurring in the conclusion of a rule with negative 
premises. 

Example 2.10.10. As an example of the use of the above rule of thumb, 
we give a stratification for the term deduction system T(BPA6o ). The rules 
containing negative premises have in their conclusion a (J or an <I. We define 
a map that counts the number of 8's and the number of <I'S as follows: let t 
be a closed term with no occurrences of 8's; and nl occurrences of <l'S then 
S(t~s) = S(t~';) = no + nj. Now we check the two conditions for the 
first rule of table 35. Replace each x and x' by closed terms t and t'. Since 
the number of 8's plus the number of <l'S occurring in B(t) is one greater 
than the number of B's plus the number of <l'S occurring in t we are done. 
The other rules are equally simple. 

Next, it is our aim to define a set of positive formulas that agrees 
with a given term deduction system. Therefore, we will use the following 
notion. Just think of it as a uniform upper bound to the number of positive 
premises in a given term deduction system. In general, it is not the least 
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upper bound. 

Definition 2.10.11. Let V be a set. If 0 ~ IVI < No we define the degree 
of V, denoted by d(V) to equal Woo If IVI = Na for an ordinal a ~ 0 we 
define d(V) = WaH' 

Let T = (E, D) be a term deduction system. The degree d(H/C) of a 
deduction rule H /C E D is the degree of its set of positive premises; in 
a formula: d(H/C) = d(PF(H)). Let w'" = sup{d(H/C) : H/C ED}. 
The degree d(T) of a term deduction system T is Wo if a = 0 and W",+l 

otherwise. 

Example 2.10.12. It is not hard to see that the degree of our running 
example is Woo In fact, we will only treat term deduction systems with 
degree Wo in this survey. See, for instance, [Klusener, 1993] for rules that 
contain infinitely many premises. 

Next, we will define this set of positive formulas for which it can be 
shown that it agrees with a given term deduction system. This definition 
originates from [Groote, 1990b] and is adapted to our situation by [Verhoef, 
1994a]. 

Definition 2.10.13. Let T = (E, D) be a term deduction system and 
let S : PF(T) ---+ a be a stratification for an ordinal number a. We define 
a set Ts C PF(T) as follows. 

Ts = U Tl, Tl = U Ti~i' 
i<a i<d(T) 

It will be useful to introduce the following notations for certain unions 
over TF and Ti~i: 

ul = U Tl (i ~ a), US. = U T S., (J' < d(T)). 
ttJ t,J-

i'<i i'<i 

We drop the sub- and superscripts S and, for instance, render ul as Ui 

and Ts r <.p as T r <.p, provided no confusion arises. Now we define for 
all i < a and for all j < d(T) the set Ti,j = Ti~i: 

{<.p I S(<.p) =i, 3H/C E D,u: V ---+ C(E) : u(C) = <.p, 

'if hE PF(H) : Ui •i U Ui r u(h), 'if hE NF(H) : Ui r u(h)}. 

The next theorem is taken from [Verhoef, 1994a] but its proof is essen­
tially the same as a similar theorem of [Groote, 199Gb]. It states that for 
a stratifiable term deduction system the set that we defined above agrees 
with it. Moreover, this is independent of the choice of the stratification. 
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Theorem 2.10.14. Let T = (~, D) be a term deduction system and let 8 : 
PF(T) ---> Q be a stratification for an ordinal number Q. Then Ts agrees 
with T. If 8' is also a stratification for T then Ts = Ts'. 

Example 2.10.15. Since our running example is stratifiable it follows 
from the above theorem that the term deduction system T(BPAoo) deter­
mines a transition relation (with predicates) on closed terms. 

So, now we only know that when a term deduction system has a strati­
fication there exists some set of positive formulas that agrees with it. Next, 
we are interested in the conditions under which strong bisimulation equiv­
alence is a congruence relation. Just as in subsection 2.2.3 we define a 
syntactical restriction on a term deduction system. We will generalize the 
path format to the so-called panth format, which stands for "predicates and 
ntyft/ntyxt hybrid format". The ntyjt/ntyxt format stems from [Groote, 
1990bj. 

Definition 2.10.16. Let T = (~, D) be a term deduction system with 
D = D(Tp, Tr). Let in the following K, L, M, and N be index sets of 
arbitrary cardinality, let Sk, t/, Urn, vn , t E O(~) for all k E K, I E L, 
mE M, and n E N, let Pk , Pm, P E Tp be predicate symbols for all k E K 
and m E M, and let R/, R n , R E Tr be relation symbols for all 1 E L 
and n E N. 

A deduction rule d E D is in panth format if it has one of the following 
four forms: 

{PkS k : k E K}u{t/R/y/: I E L}U{,Pmu",: m E M}u{vn,Rn: n E N} 
C 

• with C = f(Xl,"" xn)Rt, f E ~ an n-ary function symbol, X = 
{XI, ... ,Xn }, Y = {y/: IE L}, and XuY ~ Vaset of distinct 
variables; 

• with C = xRt, X = {x}, Y = {y/ : I E L}, and X U Y ~ V a set of 
distinct variables; 

• with C = Pj(XI,""Xn ), X = {XI,""X n }, Y = {y/ : I E L}, 
and X U Y ~ V a set of distinct variables; or 

• with C = Px, X = {x}, Y = {y/ : IE L}, and Xu Y ~ Va set of 
distinct variables. 

A term deduction system is in panth format if all its rules are. 

Example 2.10.17. It is not hard to verify that the deduction rules of our 
running example satisfy the panth format. 

Next, we define the notion of strong bisimulation for term deduction 
systems with negative premises. In definition 2.2.28 we gave the positive 
case. This definition is based on [Park, 1981] and its formulation is taken 
from [Verhoef, 1994aj. 
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Definition 2.10.18. Let T = (E, D) be a term deduction system with 
stratification S and let D = D(Tp,Tr ). A binary relation B C G(L) x C(L) 
is called a (strong) bisimulation if for all s, t E C(E) with sBt the following 
conditions hold. For all R E Tr 

Vs' E C(E) (Ts f- sRs' => 3t' E G(L) : Ts f- tRt' /\ s' Bt'), 

Vt' E G(E) (Ts f- tRt' => 3s' E C(L) : Ts f- sRs' /\ s' Bt'), 

and for all P E Sp 

Ts f- Ps ¢} Ts f- Pt. 

The first two conditions are known as the transfer property. Two states s 
and t E C(L) are bisimilar if there exists a bisimulation relation containing 
the pair (s, t). If sand tare bisimilar we write s ~ t. Note that bisimilarity 
is an equivalence relation, called bisimulation equivalence. 

At this point we have all the ingredients that we need to formulate the 
theorem that is interesting for our purpose: the congruence theorem for 
the panth format. It states that in many situations strong bisimulation 
equivalence is a congruence. The congruence theorem is taken from [Ver­
hoef, 1994a] albeit that there the well-founded subcase is proved. [Fokkink, 
1994] showed that this condition is not necessary. Thus, we dropped the 
extra assumption. 

Theorem 2.10.19. Let T = (L, D) be a stratifiable term deduction system 
in panth format. Then strong bisimulation equivalence is a congruence for 
all function symbols. 

Example 2.10.20. Since the deduction rules of our running example are 
in panth format and since the term deduction system has a stratification, 
we find with the congruence theorem that strong bisimulation equivalence 
IS a congruence. 

According to the above example we find that the quotient of the closed 
BPAoo terms modulo bisimulation equivalence is well-defined; this means 
that the operators of BPAo9 can be defined on this quotient. By a straight­
forward proof we can show that it is a model of BPAoo . 

We postpone the proof of the completeness of BPAoo until we have 
shown that it is a conservative extension of BPAo' 

2.10.2 Conservativity 

In this subsection we take care of the conservativity of BPA69 over BPA. We 
are used to proving this via the conservativity theorem for the path format 
but since the operational rules of BPAo9 do not fit this format, we cannot 
simply apply this theorem. Just as with the conservativity of BPAoo (see 
subsection 2.10.1) over BPA we will generalize below the theory that we 
already treated on conservativity-yet another trip into the general theory 
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on operational semantics. This time we will mainly extend the theory 
of section 2.4.1 so that we can also deal with negative premises. This 
subsection is based on [Verhoef, 1994b]. 

Since we treated some theory on negative premises and some theory 
on conservative extensions, their combination will be not too much work. 
We have to update the notions of pure, well-founded, and operationally 
conservative extension. Then only the operationally conservative extension 
theorem for the path format needs a little modification. 

Below, we give the update of the notion pure. It was defined in the 
positive case in definition 2.2.31. 

Definition 2.10.21. A deduction rule containing negative premises is 
pure if this rule is already pure when the negative premises are discarded. 
A term deduction system with negative premises is pure if all its deduction 
rules are pure. 

Example 2.10.22. It is not hard to see that the term deduction sys­
tem T(BPA69) is pure. 

Now, we update the definition of well-founded. This notion is defined 
in definition 2.4.13 for the positive case. The update is in the same vein as 
the one for the purity. 

Definition 2.10.23. Let T = (E, D) be a term deduction system and 
let F be a set of formulas. The variable dependency graph of F is a directed 
graph with variables occurring in F as its nodes. The edge x --+ y is an 
edge of the variable dependency graph if and only if there is a positive 
relation tRs E F with x E var(t) and y E var(s). 

The set F is called well-founded if any backward chain of edges in its 
variable dependency graph is finite. A deduction rule is called well-founded 
if its set of hypotheses is so. A term deduction system is called well-founded 
if all its deduction rules are well-founded. 

Example 2.10.24. It is not hard to see that the term deduction sys­
tem T(BPA68 ) is well-founded. 

Next, we update the notion of an operationally conservative extension. 
Also this definition does not look very different from its positive counter­
part. Note that in the positive case proofs are well-founded trees, whereas 
in the negative case we use the notion of agreeing with. More information 
on this can be found in subsection 2.10.1. We also refer to this subsection 
for the definition of stratifiabili ty. 

Definition 2.10.25. Let Ti = (Ei, Di) be term deduction systems with 
T == (E, D) := TO Ell Tl defined. Let D == D(Tp, Tr). The term deduction 
system T is called an operationally conservative extension of TO if it is 
stratifiable and for all s, u E G(I:o), for all relation symbols R E Tr and 
predicate symbols P E Tp , and for all t E G(E) we have 
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T s f- s Rt ¢::::::> T~o f- s Rt 

and 

Ts f- Pu ¢::::::> T~o f- Pu, 

where S is a stratification for T and SO is a stratification for TO (take for 
instance SO to be the restriction of S to positive formulas of TO). 

Now we have all the updates of the definitions that we need in order to 
state the operationally conservative extension theorem for the panth format. 
The following theorem is taken from [Verhoef, 1994bj. 

Theorem 2.10.26. Let TO = (Eo, Do) be a pure well-founded term deduc­
tion system in panth format. Let Tl = (El' D 1 ) be a term deduction sys­
tem in panth format. If there is a conclusion sRt or Ps of a rule d 1 E Dl 
with s = x or s = f(Xl, ... , xn) for an f E Eo, we additionally require 
that d1 is pure, well-founded, t E O(Eo) for premises tRy of d1 , and that 
there is a positive premise containing only Eo terms and a new relation or 
predicate symbol. Now if T = TO EB Tl is defined and stratifiable then T is 
an operationally conservative extension of To. 

Example 2.10.27. In subsection 2.10.1 we already showed that the term 
deduction system that belongs to BPAo8 is stratifiable. It is easy to verify 
the other conditions of the above theorem so we may conclude that BPAo8 

is an operationally conservative extension of BPA. 

In the above example we have shown the operational conservativity of 
BPAo8 over BPA. We are in fact interested in the equational conservativity. 
The other theorems, in particular the equationally conservative extension 
theorem, that we treated in subsection 2.4.1, do not need any updates, 
since in those theorems we only refer to term deduction systems and we do 
not specify which ones. [Verhoef, 1994bj showed that these theorems hold 
for term deduction systems with negative premises. 

So, we can formulate and prove the following theorem. 

Theorem 2.10.28. The equational specification BPAo8 is an equationally 
conservative extension of BPA. 

Proof. Straightforward: check the conditions of theorem 2.4.24 and use 
example 2.10.27. • 

Now that we have the conservativity result, the completeness of BPA68 
follows more or less from the completeness of BPAo. We will see this in the 
following theorem. 

Theorem 2.10.29. The equational specification BPAo8 is a complete ax­
iomatization of the set of closed BPAo8 terms modulo bisimulation equiva­
lence. 
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Proof. Easy: use theorem 2.4.26. 
eliminated; see theorem 2.10.3. 

2.10.3 Extensions of BPA69 

Note that the priority operator can be • 
In this subsection we discuss extensions of BPA69 with the notions of re­
cursion, projections, renaming, and/or the encapsulation operator, and the 
state operator. In fact, all extensions but the one with recursion can be 
obtained just as for the BPA or BPA. case. 

Recursion The problem with the extension of BPAoo with recursion is 
purely technical. Since there are negative premises in the operational char­
acterization of the priority and unless operators, we introduced the notion 
of a stratification to ensure that the semantical rules indeed define a tran­
sition relation. We recall that in example 2.10.10 we give a stratification 
for the operational semantics of BPA.o. The map defined there counts the 
total number of occurrences of () and <I. This approach no longer works 
in the presence of the operational rules for recursion that we presented in 
table 6. We illustrate this with a simple example. Suppose that we have 
the following recursive specification: 

E = {X = a· X + ()(a)}. 

In this case, the operational rule takes the form 

a· (XIE) + ()(a)~(XIE) 
(XIE}~(XIE) 

So with the above stratification we have that the stratification of the 
premise is not less than or equal to the stratification of the conclusion. 
To solve this problem we use infinite ordinals. We adapt the stratification 
as follows: 

S(t~t') = w . n + m, 

where n is the number of unguarded occurrences of ( and m is the total 
number of occurrences of () and occurrences of <1 (so the m part is the 
original stratification). With the modified stratification, the problem is 
solved. We leave it as an exercise to the reader to check the details. 

Projection The extension of BPA.o with projection is obtained in the same 
way as this extension for BPA; see subsection 2.4. 

Renaming and encapsulation It is straightforward to extend the equa­
tional specification BPA69 with renaming operators or the encapsulation 
operator; cf. subsection 2.7.3. 

State operator The extension of the theory BPA60 with either the simple or 
extended state operator is obtained in the same way as for the theory BPA; 
see subsections 2.8 and 2.9. 
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Proof. Since bisimulation equivalence is a congruence, we only need to 
check the soundne!\s of the axioms of BPA *. The first five axioms are already 
treated in the soundness theorem for BPA (see 2.2.35). So it suffices to prove 
the soundness of the three remaining equations. The case BKS1 is proved 
analogously to the case A1: take as relation the pair (x(x*y) + y, x*y) and 
the diagonal. Now it is not hard to show that this is a bisimulation relation. 
For the equation BKS2 we have the following relation: relate all terms of 
the form x*(yz) with (x*y)z; relate each term of the form x' . (x*(y . z») 
with (x'·(x*y») ·z; and relate each term with itself. We leave it to the reader 
to verify that this relation is a bisimulation relation. The verification of the 
soundness of Troeger's axiom is obtained analogously to the verification of 
equation BKS2. • 

It is easy to see that BPA * is a conservative extension of BPA; see sub­
section 2.4.1. However, we cannot eliminate Kleene's binary star operator. 
See subsection 2.14 where we discuss expressivity results. This can be easily 
seen as follows. Call a term deduction system T operationally terminating 
if there are no infinite reductions 

possible. It is easy to see by inspection of the operational rules for BPA that 
its term deduction system is operationally terminating (cf. lemma 2.2.36 
where a "weight" function is defined). It is also easy to see that the term 
deduction system belonging to BPA * is not operationally terminating. We 
have, for instance, the infinite reduction 

*b a *b a *b a a --+a ----+oa --t .... 

Now suppose that Kleene's binary star operator can be eliminated in favour 
of the operators of BPA. Then a*b must be bisimilar to a BPA term, say t. 
Because of the bisimilarity with a* b we must have that t can mimic the 
above steps that a*b is able to perform. So t must have an infinite reduc­
tion. This contradicts the fact that the semantics of BPA is operationally 
terminating. 

Table 38. Operational rules for Kleene's binary star operator. 

a I x---->x 
* a * X y---->x Y 

y"'!!:""'..j 
x*y~V 
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Inconsistent combinations Remarkably, if we combine recursion with the 
equational specification BPAo9 plus renaming operators we will find an in­
consistency. [Groote, 1990b) gives the following example. Take a renaming 
function f such that 

• f(b) = a, 
• f(a) = c, 
• f(d) = d for all dE A \ {a,b}. 

Consider the recursive equation 

Now it can be shown that 

if we take a > b as the partial ordering on the atomic actions. 
Observe also that the combination of recursion with BPA69 plus state 

operators is inconsistent since state operators are a generalization of re­
namings. 

2.11 Basic process algebra with iteration 
In this subsection we extend basic process algebra with an iterative con­
struct. This construct is, in fact, Kleene's star operator, a binary infix 
operator denoted *. We will call this operator Kleene's binary star opera­
tor, since there are two versions of Kleene's star operator: one unary and 
one binary. The binary construct originates from [Kleene, 1956) and its 
more commonly known unary version is due to [Copi et al., 1958). This 
subsection is based on the papers [Bergstra et aI., 1994a) and [Fokkink and 
Zantema, 1994). 

We want to note that using iteration we can also define infinite pro­
cesses. We already discussed recursion, the standard way to define infinite 
processes, in subsection 2.3. The advantage of the approach that we explain 
in this subsection is that there is no need for proof rules like the recursive 
definition principle or the recursive specification principle, to guarantee 
that a recursive specification has a possibly unique solution. In this set­
ting, the recursive construct is just some binary operator that we may add 
to a process language. 

The theory The equational specification BPA· consists of the signature of 
BPA and a binary infix operator *, called Kleene's binary star operator. 
Its equations are the ones of BPA plus the axioms in table 37. 

We will comment on these axioms. The first one BKS1 is the defining 
equation for the star operator that [Kleene, 1956) gives in the context of 
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Table 37. The axioms defining Kleene's binary star operator. 

x(x*y) + y = x*y 

x*(yz) = (x*y)z 

x*(y((x+y)*z) +z) = (x+y)*z 

BKS1 

BKS2 

BKS3 

finite automata. Only the notation is adapted to the present situation. 
The second equation originates from [Bergstra et al., 1994al; it is a simple 
equation needed for the completeness. The third axiom BKS3 is more 
sophisticated; it stems from [Troeger, 1993]. Troeger used this equation for 
a slightly different process specification formalism. 

Next, we will show some properties that can be derived from the equa­
tional specification BPA * . For instance, if we apply Kleene's axiom to 
the first term in the display below we find a term to which we can apply 
Troeger's axiom with x+y substituted for y. Thus, this yields the following 
identity: 

x*((x+y)*z) x*((x+y)((x+y)*z) +z) 

(x+y)*z. 

The next identity expresses that applying the star operator in a nested way 
for the same process reduces to applying it once. First, we apply Kleene's 
axiom, then we use the idem potence of the alternative composition, then 
we use Troeger's identity, and then one application of idem potence finishes 
the calculation. We display this below. 

x*(x*y) - x*(x(x*y) + y) 

- x*(x((x+x)*y)+y) 

- (x + x)*y 

- * x y. 

Semantics We give the semantics of the equational specification BPA * by 
means of a term deduction system T(BPA *). Its signature is the signature 
of BPA *. Its deduction rules are the rules for BPA that we met many times 
before (see table 5) plus the rules that characterize Kleene's binary star 
operator. We list them in table 38. 

TheoreIll 2.11.1. The set of closed BPA" terms modulo strong bisimula­
tion equivalence is a model of BPA * . 
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Table 39. The axioms defining the discrete time unit delay. 

aAx) + Ud(Y) = Ud(X + Y) DT1 

Ud(X) . Y = Ud(X . y) DT2 

As a corollary, we cannot use the completeness theorem 2.4.26 to prove 
the completeness of BPA·. The proof that our axiomatization is neverthe­
less complete is due to [Fokkink and Zantema, 1994] and is beyond the 
scope of this chapter. The reason for this is that the proof makes use of a 
sophisticated term rewriting analysis. Below, we will list their main result. 

Theorem 2.11.2. The equational specification BPA" is a complete axiom­
atization with respect to strong bisimulation equivalence. 

Proof. See the paper [Fokkink and Zantema, 1994]. • 
Extensions of BPA" The extension of BPA" with deadlock (BPA6) is as 
usual. This system is obtained by taking the syntax of BPA8 plus Kleene's 
binary operator *. The axioms of BPA6 are the ones of BPA' plus those 
for deadlock. 

Since BPA6 is more expressive (see subsection 2.14) than BPA" we can­
not use the usual machinery to prove basic properties such as completeness. 
There is no completeness result for the system BPA6 so we will not discuss 
the extensions of BPA" (or BPA6) with the notions that we usually extend 
our systems with. Moreover, at the time of writing this survey the only 
studied extensions of BPA' are those with abstraction, fairness principles, 
deadlock, and parallel constructs. We will discuss some of these extensions 
after we have introduced such parallel constructs. 

2.12 Basic process algebra with discrete relative time 
Now, we treat an extension of BPA with a form of discrete relative time; we 
abbreviate this as BPAdt. We speak of discrete time since the system works 
with so-called time slices. It is called relative since the system refers to the 
current time slice, the next time slice, and so on. BPAdt stems from [Baeten 
and Bergstra, 1992a]. For other approaches to discrete time process algebra 
we refer to [Moller and Tofts, 1990] and [Nicollin and Sifakis, 1994]. 

Theory The equational specification BPAdt has as its signature the one 
of BPA and a unary function called discrete time unit delay, which is de­
noted Ud. The U is some fixed symbol, which is a measure for the delay. 
The axioms of BPAdt are the ones of BPA that we listed in table 1 plus the 
equations defining the discrete time unit delay; see table 39. 

We denote the atomic action a in the current time slice by~. We 
distinguish ~ from a because also other embeddings of BPA into BPAdt 
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are possible, where a is interpreted as a occurs at some time, that is, we 
have a = ~+O"d(a). The intended interpretation ofthe unary operator O"d(X) 
is that it pushes a process x to the next time slice. The length of a time 
slice is measured with the positive real 0". This is operationally expressed 
by the rule O"d(X)~X, where ~ is a special relation that describes the 
pushing behaviour. Note that the label 0" is not part of the signature of 
BPAdt· 

Axiom DTI is called "time factorizing axiom". It expresses that the 
passage of time by itself cannot determine a choice. We note that the form 
of choice here is called "strong choice" (the other two approaches mentioned 
above have weak choice), so in ~ + O"d(!!.) both a in the current time slice 
and b in the next time slice are-possibk. We do have in the closed term 
above that by moving to the next time slice, we disable a. 

Next, we will show that the term rewriting system associated to BPAdt 
is terminating. Although this result has importance of its own, we cannot 
use it to prove an elimination result. For the discrete time unit delay cannot 
be eliminated. 

Theorem 2.12.1. The term rewriting system that is associated to BPAdt 
is strongly normalizing. This system consists of the rules in tables 2 and 40. 

Proof. We use the method of the recursive path ordering that we treated in 
subsection 2.2.2. Take as precedence for the operations in the signature· > 
+ > O"d and give the sequential composition the lexicographical status for 
the first argument. As an example, we treat RDT2. 

O"d(X) . y >Ipo O"d(X)'*Y 

>Ipo O"d(O"d(X)'* y) 

>Ipo lTd (O";i(x) . y) 

>Ipo O"d(X . y). 

The other rule is dealt with just as simply. • 
Now that we know that the term rewriting system associated to BPAdt 

is terminating, we discuss what form the normal forms can take. Following 
[Baeten and Bergstra, 1992a], we define these normal forms, called basic 
terms. 

Definition 2.12.2. In order to define inductively the set of basic terms, 

Table 40. The rewrite rules for the discrete time unit delay. 

O"d(X) + O"d(Y) ..... O"d(X + y) 

O"d(X) . Y ..... lTd(X . y) 

RDTI 

RDT2 
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we need the auxiliary notion of an A-basic term: a BPAdt term with no 
leading O'd. We define both notions simultaneously. 

• every A-basic term is a basic term; 

• for each a E A, g is an A-basic term; 

• if a E A and t is a basic term, then g' t is an A-basic term; 

• if t and s are A-basic terms, then t + s is an A-basic term; 

• if t is a basic term, then O'd(t) is a basic term; 

• if t is an A-basic term and s is a basic term, then t + O'd(S) is a basic 
term. 

Next, we formulate some facts from [Baeten and Bergstra, 1992al. They 
can be easily proved. 

Theorem 2.12.3. 

• Let t be a closed BPAdt term. Then there exists a basic term s such 
that BPAdt f- t = s. 

• An A-basic term takes the form: 2:i<n gi ·ti + 2:j <m gj with n+m > 0, 
ai, bj E A, and ti basic. 

• A basic term is either an A-basic term or of the form t + O'd(S) with t 
and s A-basic terms. 

Semantics Next, we formally define the semantics by way of a term de­
duction system for BPAdt . The signature of this system consists of the one 
for the equational specification BPAdt. The deduction rules are those for + 
and· of BPA in table 1, and the rules for constants and the discrete time 
unit delay in table 4l. 

Note the appearance of negative premises in the operational rules. By 
means of the theory that we discussed in subsection 2.10.1, we can find 
that this system indeed defines a set of positive formulas. We recall that 
we, therefore, have to find a stratification. Let n be the number of + signs 
that occurs in a closed BPAdt term t. Then we define a stratification S by 
assigning to t~s and to t~j the number n. For the other formulas 'P 
we simply define S('P) = O. It is not hard to see that this function is a 
stratification. So the term deduction system is well-defined. 

Table 41. The operational semantics for the discrete time unit delay. 

r:7 , U I 
x--+x , y--+y 

X +y~x' +y' 

<T I --"L. x--+x , y---r' 
U I X + y--+x 

<T I x· y--+x . y 
-.!!..L..,. cr I x---r', y--+y 

X+y~y' 
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It is easy to see that the deduction rules are in panth format (see sub­
section 2.10.1), so we find with theorem 2.10.19 that strong bisimulation 
equivalence is a congruence. 

Theorem 2.12.4. The equational specification BPAdt is a sound axioma­
tization of the set of closed BPAdt terms modulo strong bisimulation equiv­
alence. 

Proof. We can give the soundness proof along the usual lines: the sound­
ness of the BPA axioms is already done and the soundness of the equations 
DTI-2 can be obtained just as the case AI. • 

Theorem 2.12.5. The equational specification BPAdt is a complete ax­
iomatization of the set of closed BPAdt terms modulo strong bisimulation 
equivalence. 

Proof. Usually, we prove the completeness with theorem 2.4.26. However, 
in this case we cannot apply our routine approach. This is due to the 
fact that the discrete time unit delay cannot be eliminated; for instance, 
the term Ud(g) cannot be reduced any further. So we cannot apply our 
completeness theorem 2.4.26, since there we assume that extra operators 
can be eliminated. 

To prove the completeness we follow [Baeten and Bergstra, 1992al. 
Their idea is to define a bijective mapping between BPAdt terms and 
BPA terms; the completeness of BPAdt now follows from the completeness 
of BPA. Next, we will work out their idea. 

The equational specification BPAdt is parameterized with a set of atomic 
actions A; we write BPAdt(A). Similarly, the theory BPA is parameterized 
in this way. Since there is mostly no confusion with which set our systems 
are equipped, we omit them often-but not in this case, since we param­
eterize BPA with Au = A u {u}, where U i A is an atomic action (with 
a suggestive name). So let <p from BPAdt(A) to BPA(Au) be inductively 
defined as follows: 

• <peg) = a, 
• <p(x+y)=cp(x)+<p(y), 
• <p(x· y) = <p(x) . <p(y), 
• <P(Ud(X)) = U· <p(x). 

Now, suppose that we have two bisimilar BPAdt terms sand t .. With 
the aid of theorem 2.12.3 we may assume that sand t are basic terms. 
So we find that <pes) and <pet) are also bisimilar. With the completeness 
theorem 2.2.37 for BPA we find that BPA(Au) I- <p(s) = <pet). Using the 
inverse mapping of cp, we can mimic each step of this proof by a step in 
BPAdt . So we find that BPAdt I- s = t. • 

Next, we formulate a conservativity result for BPAdt. 
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Theorem 2.12.6. The equational specification BPAdt ~s a conservative 
extension of BPA (using g instead of a). 

Proof. This can be easily shown using the theory that we discussed in 
subsection 2.10.2. 

We note that this result is due to [Verhoef, 1994b]. • 

2.12.1 Extensions of BPAdt 
We will only discuss the extension of BPAdt with deadlock and recursion. 
We will not treat the other extensions that we usually have. The reason 
for this is that at the time of writing this survey these have not been 
formulated. 

First, we will discuss how to extend BPAdt with deadlock and then we 
discuss the extension with recursion. 

Deadlock We can extend BPAdt with deadlock in the usual way. We ab­
breviate this equational specification as BPAodt. The axioms for ~ are the 
usual ones for deadlock; see table 10. The termination proof is a combina­
tion of these proofs for BPAdt and BPAo. The notion of a basic term needs 
a little modification: ~ is an A-basic term. The operational semantics is the 
same as the one for BPAdt . The soundness and completeness are proved 
along the same lines as the case BPAdt . The conservativity of BPAodt over 
BPA(o) is obtained as usual. 

Recursion The extension of BPAdt with recursion has the same technical 
problem as the extension of BPAolI with recursion. We recall that the 
problem is that we need to define a new stratification on the operational 
rules of BPAdt with recursion in order to guarantee that the transition 
relation is well-defined. For a solution we refer to subsection 2.10.3 where 
extensions of BPA6/I are discussed. 

2.13 Basic process algebra with other features 
When we want to describe parallel or distributed systems, the most im­
portant extensions are the ones with some form of parallel composition. 
We devote section 3 to such extensions. Below, we list a number of other 
extensions that we will not cover in this survey. We remark that this list 
is incomplete and in random order. 

Abstraction In this survey we only treat concrete process algebra, hence 
any extension of the systems that we discuss with some notion of abstrac­
tion will not be covered by this survey. For more information on process 
algebras that incorporate abstraction we mention [Bergstra and Klop, 1985] 
that treats an extension of BPA with abstraction. Other systems that fea­
ture abstraction are ees [Milner, 1980; Milner, 1989], Hennessy's system 
[Hennessy, 1988], and esp [Hoare, 1985). We note that the latter two sys­
tems are not extensions of BPA but treat basic notions in a different way. 
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But also ees is not an extension of BPA because there is no sequential 
composition in ces. 

There are many other process algebras (with abstraction) such as CIR­
CAL [Milne, 1983], MEIJE [Austry and Boudol, 1984], sees [Milner, 1983], 
and the 7r-calculus [Milner et al., 1992] to mention some. 

Backtracking A well-known notion in logic programming is backtracking. 
[Bergstra et al., 1994c] extended process algebra with this notion. They 
discuss an algebraic description of backtracking by means of a binary oper­
ator. For more details on this extension we refer to [Bergstra et al., 1994c]. 

Combinatory logic In [Bergstra et al., 1994b], process algebra is extended 
with combinatory logic. An interesting point of this combination is the 
possibility to verify the well-known alternating bit protocol without any 
conditional axiom, that is, the verification is purely equational. For more 
information on this combination and the equational verification we refer to 
[Bergstra et al., 1994b]. 

Real-time In recent years, much effort has been spent on the extension of 
several process algebras with a notion of time. We discuss in this survey just 
one such extension: process algebra with relative discrete time. However, 
there are many more (concrete) extensions present in the literature. We 
mention the distinction between relative and absolute time, and the choice 
of the time domain: discrete or dense. We refer to [Klusener, 1993] for 
more information on real time process algebra in many and diverse forms. 

Real-space In [Baeten and Bergstra, 1993] a form of real time process 
algebra is extended with real space. The paper surveys material from 
former reports on this topic. We refer the interested reader to [Baeten and 
Bergstra, 1993] for more information. 

Nesting In this survey, we discuss the extension of process algebra with 
iteration, or Kleene's binary star. An extension that we do not discuss 
is one with an operator called the nesting operator. Like Kleene's binary 
star operator, the nesting operator also is a recursive operator (though it 
defines irregular recursion). We refer to [Bergstra et al., 1994a) for more 
information on this topic. 

Signals In [Baeten and Bergstra, 1992b) process algebra is extended with 
stable signals. These are attributes of states of a process. They introduce 
a signal insertion and a signal termination operator to be able to describe 
signals with a certain duration. A typical example that can be described 
with this theory is a traffic light system. For more information on the 
extension with signals we refer to [Baeten and Bergstra, 1992b]. 

Conditionals An extension with conditionals or guards can be found in 
the just mentioned paper [Baeten and Bergstra, 1992b]. They introduce 
an if-then-else operator in the notation of [Hoare et al., 1987). [Baeten and 
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Bergstra, 1992b] also introduce a variant of this conditional operator, called 
the guarded command that originates from [Baeten et al., 1991]. [Groote 
and Ponse, 1994] developed a substantial amount of theory for a similar 
conditional construct called a guard. 

For more information on the extension of BPA with conditional con­
structs we refer to the above papers. 

Invariants and assertions Often, it is useful to have a connection between 
algebraic expressions and expressions in a logical language. Logical formu­
las can be used to express invariants (see [Bezem and Groote, 1994]) or as 
assertions (see [Ponse, 1991]). 

Probabilities Often, systems exhibit behaviour that is probabilistic or sta­
tistical in nature. For example, one may observe that a faulty communi­
cation link drops a message 2% of the time. Algebraic formulations of 
probabilistic behaviour can be found in [Baeten et al., 1992], [Giacalone et 
al., 1990], [Larsen and Skou, 1992], and [Tofts, 1990], to mention some. 

2.14 Decidability and expressiveness results in BPA 
In this subsection we briefly mention decidability and expressiveness issues 
for the family of process algebras that we have introduced thus far. 

2.14.1 Decidability 

In our case, the decidability problems concern the question whether or 
not two finitely specified processes in, for instance BPArec, are bisimilar; 
see [Baeten et al., 1993], [Caucal, 1990], and [Christensen et al., 1992]. 
Informally, we refer to this as the question whether or not BPArec is de­
cidable. It turns out that BPArec is decidable for all guarded processes; 
see [Christensen et al., 1992]. For almost all extensions of BPA the de­
cidability problem is open. Only for some extensions of BPArec with the 
state operator we have some information at the time of writing this survey. 
We refer the interested reader to [Baeten and Bergstra, 1991] and [Blanco, 
1995] for more details on the systems A(BPAbrec) and BPAb>.rec and their 
decidability problems. 

The following theorem is taken from [Christensen et al., 1992]. The 
proof of this theorem is beyond the scope of this survey. 

Theorem 2.14.1. Bisimulation equivalence is decidable for all BPArec 
processes that can be specified with a finite guarded recursive specification. 

2.14.2 Expressiveness 

For the family of systems that we introduced it is natural to address the 
question of expressivity. The result that is known states that BPArec can 
express non-regular processes. So, we first need to know what exactly are 
regular processes. This well-known definition is formulated below and is 
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taken from [Baeten and Weijland, 1990]. Roughly, a process is regular if it 
has a finite graph. 

First, we define when a process is regular in some model. 

Definition 2.14.2. Let x be a process in some model M of BPArec. Define 
the relations .~. on this model as follows: 

• x~y ¢::::::} M F x = x + ay, 

• x~J ¢::::::} M F x = x + a. 

A process y is called a subprocess of x if y is reachable from x; reach ability 
means that there is a path of the following form that begins in x and ends 
In y: 

See also the definition of reachability in a term deduction system 2.2.23. 
We say that x is a regular process (for the model M) if x has only 

finitely many subprocesses. 

Next, we define when a guarded recursive specification is linear. It will 
turn out that a regular process can always be specified by a finite linear 
specification. 

Definition 2.14.3. Let E be a recursive specification with variables from 
the set V. The specification E is called linear if every recursion equation 
in E is of the form: 

i<n j<m 

for certain atomic actions ai and bj and variables X, Xi E V (n + m > 0 
and n,m EN). 

We call a recursion equation linear if it takes the above form. Note that 
every linear specification is guarded. 

Lemma 2.14.4. Let M be a model ofBPArec. A process x is regular for M 
if and only if there exists a finite linear specification with x as solution. 

Proof. Sketch. We can turn each model into a graph model with defini­
tion 2.14.2. Now given a regular process x, we turn it into a finite graph. 
This graph determines a finite linear specification of which x is a solution. 

Vice versa, let E be a finite linear specification. We can easily associate 
a finite graph to E, which in turn represents a regular process. (For in­
stance, in the next example we turn a recursive specification into a graph 
using the above method.) • 

Next, we show that there is a non-regular process that is finitely ex­
pressible in the theory BPArec, namely a counter. 

Example 2.14.5. Consider the following guarded recursive specification. 
We call the process C a counter. 
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Fig. 6. The deduction graph of the counter e. 

e T·e 
T plus· T' 

T' minus + T· T'. 

We give the deduction graph (see definition 2.2.24) of C in figure 6. Note 
that we use + for plus and - for minus. 

It is well known that the counter is a non-regular process. It has in­
finitely many distinct states, since for each n there is a state where n 
consecutive minus steps can be executed but not n + 1. 

Recursion versus iteration In subsection 2.3 we discussed the extension of 
BPA with recursion. In subsection 2.11 we discussed a similar construct: 
iteration. We can compare both approaches in the following sense: BPA· 
is less expressive than BPAlin. BPAlin is BPArec where only finite linear 
specifications are allowed!. In other words, BPA· does not contain non­
regular processes. In [Bergstra et al., 1994aJ a simple example is given 
that shows the strictness of the inclusion. Consider the following regular 
process: 

x 
Y 

a·Y+b, 

c·X+d. 

In figure 7 we give the graph that belongs to this process. This process is 
not definable in BPA·. In the next theorem we summarize the results. For 
the proof we refer to [Bergstra et al., 1994aJ. 

Theorem 2.14.6. BPA· is strictly less expressive than BPAlin. There is 
a regular process that cannot be defined in BPA· . 

Remark 2.14.7. We refer to theorem 3.7.8 for more expressivity results 
concerning BPA· and BPA~ and systems that we have not seen yet. For 
now we state that, in general, BPA· is less expressive than BPA~. 

3 Concrete concurrent processes 
Up to now, we have discussed the language BPA with many of its extensions. 
Next, we want to discuss an extension of such significance that we devote a 

1 Note that each recursively specifiable process over ACP can also be specified with a 
possibly infinite number of linear equations. Hence the finiteness constraint. 
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a 

Fig. 7. The deduction graph of a regular process. 

new section to it. It is the notion of parallelism or concurrency that we add 
to our family of basic systems that we treated in the previous section. We 
will restrict ourselves to concrete concurrency; that is, we do not consider 
abstraction. 

We follow the ACP approach of [Bergstra and Klop, 1984b]. For other 
approaches to concurrency we refer to Milner's CCS [Milner, 1980; Milner, 
1989], [Hennessy, 1988], and Hoare's CSP [Hoare, 1985]. 

3.1 Introduction 
In this section, we first extend the BPA family with a parallel construct 
without interaction; that is, processes can be put in parallel by means of 
this operator but they cannot communicate with each other. This system 
is called PA. Then we will extend this theory with extensions that we 
discussed in the case of BPA (and new extensions). It will turn out that in 
most cases the extensions can be obtained in the same way as in the BPA 
case. 

Secondly, we extend the parallel construct itself such that communi­
cation between parallel processes is also possible, that is, we discuss the 
system ACP. Then we discuss extensions of ACP, which is in most cases 
an easy job since they can be obtained in the same way as the extensions 
for BPA. 

Finally, we discuss decidability and expressiveness issues for various 
systems. 

3.2 Syntax and semantics of parallel processes 
In this subsection we will describe the syntax and semantics of concrete 
concurrent processes. 

3.2.1 The theory PA 

We will discuss the equational theory PA = (I:PA, EpA). This section is 
based on [Bergstra and Klop, 1982]. 

The signature ~PA consists of the signature of BPA plus two binary oper­
ators II and lL. The operator II is called (free) merge or parallel composition 
and the operator lL is called left merge. The left merge was introduced 
in [Bergstra and Klop, 1982] in order to give a finite axiomatization for 
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the free merge. [Moller, 1989] proved that it is impossible to give a finite 
axiomatization of the merge without an auxiliary operator. 

The set of equations EpA consists of the equations of BPA in table 1 
and the axioms concerning the merge in table 42. We assume in this table 
that a ranges over the set of atomic actions. So axioms M2 and M3 are in 
fact axiom schemes: for each atomic action there are axioms M2 and M3. 

We assume that sequential composition binds stronger than both merges 
and they in turn bind stronger than the alternative composition. So, for 
instance, the left-hand side of M3 stands for (a . x) lL y and the brackets in 
the left-hand side of M4 are necessary. 

Intuition Before we provide the semantics of PA, we give an intuitive 
meaning to the non-BPA part of PA: the part concerning both merges. 
We already discussed the BPA part informally in 2.2.1. We recall that we 
consider the execution of an atomic action to occur at (or to be observed 
at) a point in time. We start with the signature and then we treat the 
axioms. 

We think of the merge of two processes x and y as the process that 
executes both x and y in parallel. We think of the left merge of x and y 

as precisely the same, with the restriction that the first step of the pro­
cess x lLy comes from its left-hand side x. We disregard the simultaneous 
execution of atomic actions here (but see subsection 3.5 where communica­
tion comes into play). This leads to the so-called interleaving view, which· 
clarifies the behaviour of the left merge. 

This intuition clarifies that axiom M1 is defined in terms of the left 
merge: the merge of two processes starts either with the left-hand side or 
with its right-hand side. 

The remaining axioms M2-4 define the left merge following the struc­
ture of basic terms. 

The parallelism in axiom M2 collapses into sequential composition since 
the first step at the left-hand side is also the last one. After the first step 
in M3, we obtain full parallelism for the remainders. Axiom M4 simply 
says that the left merge distributes over the alternative composition. Note 
that, in general, (x + y) II z t= x II z + y II z. So, here we describe an inter­
leaving parallel composition. Also, other forms of parallel composition can 
be formulated. We already mentioned interleaving extended with simul­
taneous execution, to be discussed from subsection 3.5 on, but also want 
to mention so-called synchronous parallel composition, by which we can 
describe clocked systems, where all components proceed in lock-step. A 
well known process algebra with synchronous parallel composition is sees 
[Milner, 1983], two references using the present framework are [Bergstra 
and Klop, 1984b] and [Weijland, 1989]. 

Structural induction We can use structural induction for PA as before 
for BPA, since basic PA terms are just basic BPA terms. This follows 
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Table 42. Axioms for the free merge. 

xl/y=x[ly+y[lx Ml 

a \Lx = ax M2 

ax [ly = a(x 1/ y) M3 

(x+y)[lz=x[lz+y[lz M4 

immediately from the theorem to follow (theorem 3.2.4). It states that 
parallel composition can be eliminated from closed PA terms. 

Termination Next, it is our aim to prove that the term rewriting system 
associated to the equational specification PA is strongly normalizing. In 
subsection 2.2.2 we already discussed the powerful method of the recursive 
path ordering. Indeed, we will use this method to prove the desired result 
but we cannot apply it immediately. We recall that the termination prob­
lem more or less reduces to finding the appropriate strict partial ordering 
on some operators in the signature. The problem that we have with this 
particular system is that we cannot define a consistent partial ordering on 
the elements of the signature. First, we will explain this problem and then 
we will see that a possible solution can be obtained in the same way as for 
the termination of BPAA; see section 2.8.1. The problematical pair consists 
of the rules (RMl,RM3). Analysing this pair we find that if we take the 
rule RMI on the one hand, the ordering that does the job is 1/ > [l. 
On the other hand, if we look at RM3, the right choice is the other way 
around: [l > II. This particular problem is tackled by [Bergstra and Klop, 
1985]. More detailed information on this problem can be found in a survey 
on term rewriting that appeared in this series [Klop, 1992, remark 4.11(ii)]. 
The idea of [Bergstra and Klop, 1985] was to equip the operators 1/ and [l 
with a rank. Thus yielding a ranked signature for which it is possible to 
define the desired strict partial ordering. To formalize the ranked signature 
we first need a notion termed "weight". Its definition stems from [Bergstra 

Table 43. A term rewriting system for PA. 

(x+y)z-+xz+yz RA4 

(xy)z -+ x(yz) RA5 

xl/y-+x[ly+y[lx RMI 

a [lx -+ ax RM2 

ax [ly -+ a(x 1/ y) RM3 

(x+y) [lZ -+ x lLz+y lLz RM4 
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and Klop, 1985]. Note that we already defined this notion in the case of 
BPA with the state operator; see definition 2.8.l. 

Definition 3.2.1. Let x and y be terms and let a be an atomic action. 
The weight of a term x, notation lxi, is defined inductively as follows: 

• lal = 1 
• Ix + yl = max{lxl, Iyl} 
• Ix, yl = Ixl + Iyl 

• Ix II yl = Ixl + Iyl 
• Ix lLYI = Ixl + Iyl· 

Below we give the definition of a ranked operator as defined by [Bergstra 
and Klop, 1985]. And we list the new signature. 

Definition 3.2.2. The rank of an operator II or lL is the weight of the 
subterm of which it is the leading operator. The signature for the term 
rewriting system associated with PA is the following: 

where the subscripted n stands for the sum of the weights of the arguments. 

Now that we are equipped with the right tools we formulate the termi­
nation theorem for the system PA. 

Theorem 3.2.3. The term rewriting system associated to PA (see table 
43) is strongly normalizing. 

Proof. We will give the partial ordering so that we can use the method of 
the recursive path ordering. We use the following ordering on the signature; 
this ordering is taken from [Bergstra and Klop, 1985]. 

+ < . < lL2 <Ib< lL3 <Ib< .... 

Moreover, we give' the lexicographical status for the first argument. We 
will treat RM1 and RM3 to show the use of the ranked operators. First, we 
display the calculations that lead to the desired inequality concerning RMl. 
Let Ixl + Iyl = n. Notice that we are to show that 

x lin y >lpo X lLn y +y lLnx. 

We will make use of the fact that lin> + and that lin > lLn. 

x lin y >lpo X II~ y 

>Ipo X II~ y + X II~ y 

>Ipo (x II~ y) lLn(x II:' y) + (x II~ y) lLn(X II~ y) 
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Now we handle the case RM3. Let Ixl + Iyl = n. 

(a· x) Il.n+l y >lpo (a· X)\L~+l y 

>lpo (a. x) 1l.~+1 y) . (a. x) Il.~+l y) 

>lpo (a· x)· (((a. x) 1l.~+1 y) lin (a· x) 1l.~+1 y)) 

>lpo (a·* x)· (a. x) lin y) 
>lpo a· (a·* x) lin y) 
>lpo a· (x lin y). 

The other cases are verified along the same lines. 
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• 
By means of the termination of PA we can now formulate the following 

elimination theorem, which states that the merge and the left merge can 
be eliminated for closed terms. 

Theorem 3.2.4. For every closed PA term t there is a basic BPA term s 
such that PA I- t = s. 

Proof. According to theorem 3.2.3 we find that the term rewriting system 
of table 43 is strongly normalizing. Let t be a closed PA term and let s 
be its normal form with respect to the term rewriting system of table 43. 
With proposition 2.2.6 it suffices to show that s is a closed BPA term. 
Suppose that s contains a merge; then we can use RMl, which contradicts 
the normality of s. Now suppose that s contains a left merge and consider 
the smallest subterm containing it. Due to this minimality, it is of the 
form u 11. v with u and v closed BPA terms. Rewrite u into its BPA normal 
form. Then RM2, RM3, or RM4 can be applied, which again contradicts 
the normality of s. So s must be a closed BPA term. • 

Standard concurrency Some properties concerning both merges cannot be 
derived from PA, but can only be proved for closed PA terms, for instance 
the associativity of the merge. In many applications these properties are 
useful and thus assumed to hold. Hence, following [Bergstra and Tucker, 
1984], they are often referred to as axioms for standard concurrency. In 
the next theorem we will treat two such equalities. 

Theorem 3.2.5. Let x,y, and z be closed PA terms. Then the following 
two statements hold: 

(i) (x Il.Y) Il. z = x Il.(y II z), 

( ii) (x II y) II z = x II (y II z). 

Proof. We prove both equalities with induction on the sum s of the num­
ber of symbols occurring in x, y, and z. The case s = 3 is trivial so we 
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only treat the case s + 1. In accordance with theorem 3.2.4, we may as­
sume that x is a basic BPA term. This gives three trivial cases for the first 
equality. 

To prove the second equality use the fact that the first equality holds 
for s + 1 and use the (derivable) fact that the merge is commutative. • 

Expansion An important result in PA with standard concurrency is the 
so-called expansion theorem, which is a generalization of axiom M1 (see 
[Bergstra and Tucker, 1984]). It tells us how the merge of more than two 
processes can be evaluated. For instance, the merge of three processes x, y, 
and z yields 

x !L(y II z) + y !L(x II z) + z !L(x II y). 

Theorem 3.2.6. In PA with standard concurrency we have the following 
for all open PA terms Xl, X2, • .. , Xn and n > 2. 

n 

Xl II X2 II ... II Xn = L Xi ~ (Xl II ... II Xi-l II Xi+l II ... II Xn). 

i=l 

Proof. Straightforward induction on n. • 
3.2.2 Semantics of PA 

We will give the semantics of PA by means of a term deduction sys­
tem T(PA). Take for its signature the one of PA and for its rules the ones 
of BPA in table 5 and the rules concerning the merge in table 44. Bisimu­
lation equivalence is a congruence; see 2.2.32. So the operators of PA can 
be defined on the quotient of closed PA terms with respect to bisimula­
tion equivalence. The following theorem says that this quotient is a model 
ofPA. 

Theorem 3.2.7. The set of closed PA terms modulo bisimulation equiva­
lence is a model of PA. 

Table 44. Derivation rules of T(PA). 

a , 
x--->x 

X II y-.!!.....x' II y 

x-.!!.......j 

X II y-.!!.....y 
a , 

x--->x 

X !L y-.!!.....x' II y 

a , 
y--+y 

X II y-.!!.....x II y' 

y-'!!""'..j 

X II y-.!!.....x 

x-.!!.......j 

X !L y-.!!.....y 
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Proof. AI-A5 are treated as in 2.2.35. M2-M4 are proved as AI. Take 
for Ml the relation between the left- and right-hand sides of MI, that 
relates all pairs (xiII y', y' II x'), and that contains the diagonal. • 

Next, we take care of the conservativity of PA over BPA. 

Theorem 3.2.8. The equational specification PA is a conservative exten­
sion of the equational specification BPA. 

Proof. With the aid of theorem 2.4.15 it is very easy to see that the term 
deduction system T(PA) is an operationally conservative extension of the 
term deduction system T(BPA) (listed in table 5). With theorem 2.4.19 we 
also find that this holds up to strong bisimulation equivalence. With the 
above theorem we know that PA is sound with respect to the model induced 
by T(PA), so according to theorem 2.4.24 we find the conservativity. • 

Below we give the completeness theorem for PA. 

Theorem 3.2.9. The axiom system PA is a complete axiomatization of 
the set of closed PA terms modulo bisimulation equivalence. 

Proof. With the aid of theorem 2.4.26 and the conservativity of PA over 
BPA we find the completeness of PA (use also theorems 2.2.37 and 3.2.4) .• 

3.3 Extensions of PA 
In this subsection we will discuss extensions of PA with various features. 
We already met these extensions when we discussed BPA. We treat the 
extension of PA with recursion, projections, renaming, the state operator, 
and iteration. We postpone the extensions of PA with the priority operator 
and discrete time until we extended the theory PA with deadlock. We deal 
with PAD in subsection 3.3.2. In subsection 3.3.3, we present an application 
of PAD with the state operator, namely in the description of asynchronous 
communication. We explain in 3.3.4 why we do not treat PA with the 
empty process. 

An extension that is new here is the extension of PA with a process 
creation mechanism. The reason we did not discuss this extension before, 
is that this extension makes essential use of the parallel operator. We 
discuss this extension in subsection 3.3.I. 

Recursion Here we will add recursion to PA. This is done in the same way 
as we did for BPA. 

The equational specification PArec has as its signature the signature 
of BPArec plus the two binary operators II and ~ present in the signature 
of PA. The axioms of PArec are the ones of BPArec plus the axioms of 
table 42. 

The definition of a guard and a guarded recursive specification are 
the same as in subsection 2.3. Note that there are more guarded terms 
and recursion equations (thus guarded recursive specifications) in PA than 
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in BPA. For example, a(X II Y) is a guarded term and the recursion equa­
tion X = a ~ X is guarded because of axiom M2. 

The semantics of PArec can be given with a term deduction system 
T(PArec): take for its signature the one of PArec and for its rules the rules 
of PA plus the rules concerning recursion; see table 6. Since bisimulation 
equivalence is a congruence (2.2.32), we can define the operators of PArec 
on the quotient algebra of the set of closed PArec terms with respect to 
bisimulation equivalence. This quotient is a model of PArec and it satis­
fies RDP, AIP-, and RSP. 

Projection We can extend the equational specification PA with projections 
as we did for BPA. The equational specification PA+PR has as its signature 
the one of BPA + PR plus the two binary operators II and ~ present in the 
signature of PA. Its axioms are the ones of PA plus the axioms concerning 
projections; see table 7. 

The results that we obtained in subsection 2.4 translate effortlessly to 
the present situation. 

Recursion and projection Here we will extend PA with both recursion 
and projection. This extension is obtained analogously to the extension 
of BPA with recursion and projection. The specification PArec + PR has 
as its signature the one of PArec plus the unary operators 7l"n that occur 
in the signature of PA + PR. Its axioms are the ones of PArec plus the 
axioms concerning projection; see table 7. The results that we obtained 
for BPArec + PR in subsection 2.4.2 also hold for PArec + PR. We will not 
mention them here. 

The semantics of PArec+ PR can be given by a combination of the term 
deduction system of PArec and PA + PRo 

Renaming It is not difficult to extend the equational specification PA, and 
its extensions, with renaming operators; see subsections 2.7 and 2.7.l. 

State operator We can extend the theory PA with either the simple or 
extended state operator in the same way as we did for the theory BPA. For 
details we refer to subsections 2.8 and 2.9. 

Iteration We can extend PA with iteration by just adding the defining 
axioms for • in table 37 to the ones for PA. For this theory there is no 
completeness result present at the time of writing this survey. 

3.3.1 Process creation 

In this subsection, we discuss an extension of PA with an operator that 
models process creation. This extension is not present in BPA since it 
is defined using the parallel composition II. This subsection is based on 
[Bergstra, 1990]. We refer to [America and Bakker, 1988] and to [Baeten 
and Vaandrager, 1992] for other approaches to process creation. 

We refer to [Bergstra and Klint, 1994] for an application of process 
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Table 45. Axioms for the process creation operator. 

E",(a) = a, if a f= cr(d) for d E D 

E",( cr(d») = cr(d) . E",(¢(d»), for d E D 

E",(a' x) = a' E",(x), if a f= cr(d) for d ED 

E", ( cr( d) . x) = cr( d) . E", (¢( d) II x), for d E D 

E",(x + y) = E",(x) + E",(y) 

creation. 

PCRI 

PCR2 

PCR3 

PCR4 

PCR5 
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The theory The equational specification PA + PCR (process algebra with 
process creation) is defined in stages. First we take the theory PA where 
we assume that the set of atomic actions A contains some special actions: 
for all d in some data set D we assume that cr(d) E A and cr(d) E A. 
We moreover assume the existence of a function, the process creation func­
tion, ¢ on D that assigns to each d E D a process term ¢(d) over PA with 
the above set of atomic actions A. Using the function ¢ we add a unary 
operator E", to the signature, thus obtaining the signature of PA + PCR. 
The operator E", is called the process creation operator. 

The equations ofPA+PCR are those ofPA plus the ones that define E",. 
We list these equations in table 45. 

Intuition We provide some intuition for PA + PCR. We will compare pro­
cess creation with the UNIX2 system call fork; see [Ritchie and Thompson, 
1974]. We recall that with fork we can only create an exact copy (child 
process) of its so-called parent process. We note that with the process cre­
ation operator we are able to create arbitrary processes but to provide an 
intuition for process creation the system call fork is illustrative. 

The atomic action cr(d) can be seen as a trigger for E",; compare cr(d) 
to the system call fork. The operator E", initiates the creation of a process 
when a cr(d) is parsed; think of it as a program that invokes the system 
call fork. The action cr(d) indicates that a process creation has occurred; 
this action can be interpreted as the return value of the system call fork 
to the parent process (which is the unique process ID of the newly created 
process). Maybe this intuition is best illustrated by axiom PCR4. There 
we see that from E",(cr(d) . x) a process ¢(d) is created that is put in 
parallel with the remaining process x, while leaving a trace cr(d). 

Next, we formulate a simple lemma that states that process creation 
distributes over the merge. 

Lemma 3.3.1. For all closed PA terms x and y we have 

2UNIX is a registered trademark of UNIX System Laboratories (at least at the time 
of writing this survey). 
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Table 46. Operational rules for the process creation operator. 

x~v 
E¢(x)~v,a:j:. cr(d) 

cr(d) / 
X 'Y 

Proof. Use structural induction on both x and y. • 
Example 3.3.2. Let D = {d} and let ¢(d) = cr(d). If x = E¢{cr(d)), 
then x = cr(d) . x. So we see that even the simplest examples give rise to 
recursive equations. 

Termination The above example shows that the term rewriting system 
associated to PA + PCR (by orienting the axioms of PA + PCR from left 
to right) is, in general, not terminating. For, in case of the above example, 
we have the following infinite sequence of rewritings: 

E¢{cr(d)) -t cr(d)· E¢{cr(d)) -t cr(d)· cr(d)· E¢{cr(d)) -t .... 

Semantics We discuss the operational semantics of PA + PCR. It is ob­
tained by means of a term deduction system. The signature is that of 
PA + PCR; the operational rules are those of PA plus the rules that opera­
tionally define the process creation operator E¢. We list them in table 46. 
The rules of this table originate from [Baeten and Bergstra, 1988b}. 

The soundness of PA + PCR is easily established. 

Theorem 3.3.3. The set of closed PA + PCR terms modulo bisimulation 
equivalence is a model of PA + PCR. 

Proof. For the equations of PA we refer to theorem 3.2.7. So we only 
need to show the soundness of the equations PCRI-5. This is easy. We 
only give the bisimulation relations and leave the calculations to the reader. 
For PCRI, relate the left-hand side and the right-hand side of PCRI. For 
PCR2-5 also take such a pair and join this with the diagonal. • 

Next, we state that PA + PCR is a conservative extension of PA. 

Theorem 3.3.4. The equational specification PA + peR is a conservative 
extension of the equational specification PA. 
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Proof. As usual. • 
From example 3.3.2 it follows that the process creation operator intro­

duces recursion. So we do not have a completeness theorem. 

3.3.2 Deadlock in PA 

It is straightforward to add deadlock to the theory PA. The equational 
specification PAD has as its signature the one of PA plus a constant (j ~ A. 
Its axioms are the ones of PA plus the axioms concerning deadlock listed 
in table 10. We assume for axioms M2 and M3 that a ranges over the 
set AU {8}. 

Structural induction We can use structural induction for PAD as before 
for BPA., since basic PAD terms are just basic BPA. terms. This follows 
immediately from the fact that both merges can be eliminated from closed 
PAD terms. This can be shown by means of a term rewriting analysis just 
as in theorem 3.2.3 and the following elimination theorem. 

Theorem 3.3.5. For every closed PAD term t there is a basic BPA. term s 
such that PAD I- t = s. 

Proof. This is proved along the same lines as theorem 3.2.4. • 

Also the conservativity of PAD over BPA. and the completeness of PAD 
can be proved along the same lines as these results for PA without exten­
sIOns. 

Standard concurrency Standard concurrency in PAD is dealt with com­
pletely analogously to the situation without deadlock, so we refer to theo­
rem 3.2.5 for standard concurrency. Below, we will mention some properties 
about the connection of deadlock and parallel composition. The proof of 
these properties is elementary and therefore omitted. 

Theorem 3.3.6. 

(i) PA61-8\Lx=8. 

Let x be a closed PAD term. Then we have 

(ii) xIl8=x\L8=x8. 

Let x and y be closed PAD terms. Then we have 

(iii) x II y8 = (x II y)8 = x8 II y. 

Remark 3.3.7. We mention that if in addition we have standard concur­
rency, the proof of (iii) follows easily using (ii): 

x II y8 = x II (y II 8) = (x II y) II 8 = (x II y)8. 

Expansion For PAD with standard concurrency we have the same expan­
sion theorem as for the theory without deadlock, so for expansion we refer 
to theorem 3.2.6. 
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Semantics The semantics of PAD can be given by means of a term deduc­
tion system T(PAo), which is just T(PA) with h added to its signature. The 
operators of PAD can be easily defined by taking representatives on the quo­
tient of the set of closed PAD terms modulo bisimulation equivalence, since 
this relation is a congruencej see 2.2.32. The quotient is a model for PA., 
which can be easily checked by combining the soundness proofs for BPA. 
and PA. Moreover, the axiom system PAD is a complete axiomatization of 
this quotient. This follows immediately from the completeness of PA since 
we did not introduce any new transitions. 

3.3.3 Asynchronous communication 

It is straightforward to extend PAD with any of the features mentioned in 
the beginning of subsection 3.3. Here, we consider an application of PAD 
with the (simple) state operator. We describe mail through a communi­
cation channel. Let D be a finite data set and let c be a communication 
channel. We assume that for each d E D we have the following special 
atomic actions: 

• c i d 

• c'lf d 

• c 1 d 

• cJJ.d 

send d via Cj potential action 

send d via Cj realized action 

receive d via Cj potential action 

receive d via Cj realized action. 

The state operator will turn potential, intended actions into realized ac­
tions. The state space will keep track of outstanding messages. 

We consider the case where the communication channel behaves like a 
queue, i.e. the order of the messages is preserved. Without much trouble, 
descriptions for other kinds of channels can be generated (for instance, a 
bag-like channel). Thus, the state space is D*, the set of words over D. 
Let u, p range over D*, and let c: denote the empty word. We denote the 
concatenation of words u and p simply by up. Note that D ~ D* so ud 
is the concatenation of the words u and d (for dE D). Let last(u) be the 
last element of word u, if u i= t. 

We define the action and effect functions implicitly, by giving the rele­
vant instances of axiom S02. 

A~ (c i d . x) 

A~d(c 1 d· x) 

A~{cL d· x) 

C 1t d· Adq(x) 

c.ij. d· A~{X) 

h, if u = c: or last{ u) i= d. 

The action and effect functions are inert for all other atomic actions. Now 
suppose 0 E Dj then we can describe two communication partners: 

S = c i 0, 
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R L c 1 d· print(d). 
dED 

Some easy calculations show that 

'\~(S II R) cit o· '\~(R) = cit o· c.JJ. 0 . >.~ (print(O)) 

cit 0 . c.JJ. 0 . print(O). 
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Asynchronous communication in the setting of PA was introduced in [Berg­
stra et ai., 1985]. The present formulation is taken from [Baeten and Weij­
land, 1990]. 

3.3.4 Empty process in PA 

We will not discuss the combination of parallel composition and the empty 
process, since this combination is not (yet) standardized. At this moment 
there are two possible ways to combine the merge and the empty process. 
These options originate from the various interpretations of the term c lL x. 
It may seem natural to demand that this equals x, since c is only capable 
of terminating successfully, but this perspective leads to a non-associative 
merge, which is rather unnatural and therefore unwanted [Vrancken, 1986]. 
The intended interpretation of the left merge is that of the merge with the 
first action from the left process, so the term c lL x cannot proceed, since c 
cannot perform an action. One of the options is that c lL x equals 6 ex­
cept if x = c: then it equals c; see [Vrancken, 1986] for more information. 
The other option drops this exception and uses a unary operator indicat­
ing whether or not a process has a termination option to axiomatize the 
merge [Baeten and Glabbeek, 1987]. 

3.4 Extensions of PAD 
In this subsection we will discuss the extensions of PAD with recursion, pro­
jections, renaming, and/or the encapsulation operator, the state operator, 
the priority operator, iteration, process creation, and discrete time. 

Recursion and/or projection The extensions of PAD with recursion, pro­
jection, or a combination of both are obtained by simply merging these 
extensions for BPA. and PA; see subsections 2.5 and 3.3. 

Renaming and encapsulation It is straightforward to extend the equa­
tional specification PA., and its extensions, with renaming operators or 
the encapsulation operator; d. subsection 2.7.3. 

State operator The extension of the theory PAD with either the simple or 
extended state operator is obtained in the same way as for the theory PA; 
see subsections 2.8 and 2.9. 

Priority operator We can extend the theory PAD with the priority operator 
in the same way as the extension of BPA. with that operator. For details 
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Table 47. The interaction between the left merge and the discrete time 
unit delay. 

lTd(X) Ii g = g 
lTd(X) Ii (g, + Y) = lTd(X) IiY 

lTd(X) Ii (g,. Y + z) = lTd(X) liz 
lTd(X) Ii lTd(Y) = lTd(X liy) 

of that extension we refer to section 2.10. 

DTM1 

DTM2 

DTM3 

DTM4 

Iteration We can extend PAc with iteration by just adding the defining 
axioms for· in table 37 to the ones for PAc. Only for BPA * is the com­
pleteness proved at the time of writing this survey. 

Process creation We can extend PAc with the process creation operator E", 
in the same way as we did for PA. For details we refer to subsection 3.3.l. 

3.4.1 Discrete time 

In this subsection, we extend PAc with discrete time. With the interaction 
between the discrete time unit delay lTd and the left merge Ii we have to be 
a bit careful. We recall that x Ii Y is x and y in parallel but the first action 
stems from x. With discrete time present, the question arises if that is 
possible at all. For instance, lTd(g) lig equals g in this system as we cannot 
move to the next time slice in order to let a happen, since b must occur in 
the current time slice. The material of this subsection is based on [Baeten 
and Bergstra, 1992aJ. 

The theory We discuss the equational specification PA6dt . Its signature 
is the one of PAc (with g instead of a for a E A6) plus the discrete time 
unit delay operator (J"d that we first introduced in BPAdt . The equations of 
PAcdt are the ones of BPADdt plus the equations for the merge that we listed 
in table 42 (again with g instead of a) and the equations that represent the 
interaction between the left merge and the discrete time unit delay; we list 
the latter axioms in table 47. Incidentally, this axiomatization is new here. 

Termination Next, we discuss the termination of a term rewriting system 
associated to the equational specification PADdt. Since we have the left 
merge in our signature we use the ranked operators that we also used for 
the termination of PA; cf. subsection 3.2.l. 

Theorem 3.4.1. The term rewriting system associated with PAcdt con­
sisting of the rewrite rules for PAD, the rules of table 40, and the equations 
in table 47 oriented from left to right is strongly normalizing. 

Proof. Let us use the theory of subsection 2.2.2. As usual we confine 
ourselves to giving a partial ordering on the signature. In addition to the 
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ordering that we gave in the termination proof for PA6 

+ < . < lL2 < 112 < lL3 < 113 < ... , 

we have the following precedence: 

The rest of the proof consists of straightforward calculations. • 
Elimination With the above theorem we can obtain an elimination result 
for closed terms. However, we cannot obtain this result directly. This is 
due to the fact that we did not consider a term rewriting analysis modulo 
the axioms without a clear direction such as Al and A2. We make the 
problems a bit more concrete with the following term rewriting modulo Al 
and A2. 

-+ 

-+ 

Ud(~) lL (~+ (Ud(g) + Ud(~))) 
Ud(~) lL Ud(g +~) 

Ud(g, lL (Q + f)) - - -
U d (~ . (g + ~) ) . 

So, we see that for the elimination of the left merge we need more than 
just the termination result above. We will solve this problem in the next 
theorem. 

Theorem 3.4.2. The equational specification PA6dt has the elimination 
property for BPA6dt. 

Proof. Let t be a PA6dt term. Rewrite t with the term rewriting system 
associated with PA6dt to a normal form to. It is possible that left merges 
still occur in the resulting term. Take the minimal subterm of to that 
contains a left merge s lL S1. Both 8 and 81 are BPA6dt terms. We may 
assume that s is of the form Ud(SO) (otherwise to would not be in normal 
form). With the aid of theorem 2.12.3 we know that 81 can be written in 
one of the following forms: 

· L ~i . ti + L gj' 
i<n j<m 

• t + Ud(S) with t of the above form. 

Now replace S1 with one of the above forms and rewrite the resulting new 
term to a normal form and repeat this procedure until all left merges have 
been eliminated. • 

Semantics Now we discuss the operational semantics of PA6dt. The se­
mantics of the system PA6dt is quite straightforward. In table 48 we list the 



98 J.C.M. Baeten and C. Verhoef 

Table 48. The additional rules for the merge and the left merge. 

x...!!.....x', y...!!.....y' 

x II y...!!.....x' II y' 

x...!!.....x', y...!!.....y' 

x ~ y...!!.....x' h' 

additional operational rules for the merge and the left merge. The entire 
semantics of PAodt consists of the one of BPA6dt plus the rules in tables 44 
and 48. 

Theorem 3.4.3. The set of closed PAodt terms modulo bisimulation equiv­
alence is a model of PAodt · 

Proof. Since bisimulation equivalence is a congruence, we only need to 
check the soundness of the axioms of PAodt . We already treated all the 
axioms except DTMI-4. For these we give the bisimulation relations. For 
DTMI relate the left-hand side and the right-hand side. For DTM2-4 also 
relate the left- and right-hand sides and add the diagonal. • 

Theorem 3.4.4. The equational specification PAodt is a conservative ex­
tension of the equational specification BPAodt. 

Proof. Easy. • 
Now we have all the prerequisites to state the completeness theorem for 

PAodt ' The proof is as usual and therefore omitted. 

Theorem 3.4.5. The axiom system PAodt is a complete axiomatization of 
the set of closed PAodt terms modulo bisimulation equivalence. 

3.5 Syntax and semantics of communicating processes 
In this subsection we will extend the meaning of the parallel operator II 
that we introduced in subsection 3.2. We will call the ensuing operator II 
the merge or parallel composition. We use the name free merge for the 
merge without communication, that is the merge of PA. 

We use the extended merge to model synchronous communication be­
tween processes. 

3.5.1 The theory ACP 

We define the syntax of the equational specification ACP = (~ACP, EAcp) 
of [Bergstra and Klop, 1984b]. 

The signature ~ACP consists of the one of PAD plus a binary operator I, 
called the communication merge and the encapsulation operator 8H that we 
already discussed in subsection 2.7.3 (we recall that H ~ A). Moreover, we 
fix a partial function 'Y : A X A --+ A, where A is the set of atomic actions. 
We call 'Y the communication function. The communication function is, 
like A, a parameter of the theory. It is meant to model the communication 
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Table 49. Axioms for the merge with communication. 

a I b = 'Y(a, b), if,,(a, b) defined; CFl 

a I b = 6 otherwise. CF2 

xlly=x~y+y~x+xly CM1 

a~x=ax CM2 

ax h = a(x II y) CM3 

(x+y)~z=xlLz+YlLz CM4 

(a,x)lb=(alb)·x CM5 

al(b·x)=(alb)·x CM6 

(a·x)l(b·y)=(alb)· (x II y) CM7 

(x + y) I z = x I z + y I z CM8 

x I (y + z) = x I y + x I z CM9 

between processes. In fact, the communication merge I is the extension 
of the communication function to processes. We require that 'Y is both 
commutative and associative; that is, if 'Y(a, b) is defined, it equals 'Y(b, a) 
and if {(a,{(b,c)) is defined it equals {({(a,b),c) and vice versa. So, we 
can leave out the brackets in such formulas and render the latter expression 
as {(a, b, c). 

Now we give the set of equations I:ACP. This set consists of the equa­
tions for BPAo +8H that we discussed in subsection 2.7.3 and the equations 
that we list in table 49. See table 21 for the defining axioms of the encap­
sulation operator. Observe that the equations CM2-4 are the same as the 
ones that we discussed when we introduced PA. We recall them for the sake 
of ease. 

Now we discuss the axioms of ACP. The most important one is CM1 
where a third possibility for the merge is added. The intended interpreta­
tion of this summand x I y is that it is the parallel composition of the two 
processes x and y but that the first step must be a communication. Both 
processes must be able to perform an action for which 'Y is defined. 

Terminology We say that two atomic actions do not communicate if the 
communication function is not defined for them. We say that an atomic 
action a is a communication action if a = feb, c) for atomic actions band c. 
A communication action 'Y(b, c) is called a binary communication; likewise 
'Y(a, b, c) is called ternary if defined. However, most of the time just using 
binary communication is enough in applications. See also later on when we 
discuss so-called handshaking. 
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Read/send communication An important case of binary communication 
is called read/send communication. The idea is that in the set of atomic 
actions we have read actions ri(d), send actions si(d), and communication 
actions ci(d). The intended meaning of ri(d) is to read datum d E D at 
port i, where the set D is some finite data set. For 8i(d) a similar intuition 
holds. Now ci(d) is the result of a communication of ri(d) and si(d): it 
means transmit the datum d by communication at port i. The appropriate 
communication function is I'(ri(d),si(d)) = I'(si(d),ri(d)) = ci(d) and l' 
is not defined otherwise on ri(d), sj(e), and Ck(J) (for ports i,j, k and data 
elements d, e, j). For other atomic actions it is permitted to have some 
communications defined. The above conventions are due to [Bergstra and 
Klop, 1986). An example of the use of read/send communication is given 
in section 3.6. 

Structural induction As before we can use structural induction for ACP, 
since basic ACP terms are just basic BPA6 terms. This follows from the­
orem 3.5.5 that states that parallel composition and encapsulation can be 
eliminated from closed ACP terms. 

3.5.2 TerInination 

As before we prove the termination of a term rewriting system associated 
to ACP (see table 50) with the aid of the theory of subsection 2.2.2. The 
proof of this fact will more or less be the same as the proof for PA. There we 
have given some operators a weight to avoid problems with the left merge. 
Note that in table 50, we rewrite a I b to an atomic action c or {j in order 
to eliminate the communication merge. 

Next, we give the definition of the weight function. It is an extension 
of definition 3.2.l. 

Definition 3.5.1. Let x and y be terms and let a be an atomic action. 
The weight of a term x, notation Ixl is defined inductively as follows. 

• lal = 1 
• Ix + yl = max{lxl, Iyl} 

• Ix· yl = Ixl + Iyl 

• Ix II yl = Ixl + Iyl 

• Ix ILYI = Ixl + Iyl 

• Ix I yl = Ixl + Iyl 

• 18H (x)1 = Ixl· 

Below we give the definition of a ranked operator as defined by [Bergstra 
and Klop, 1985). And we list the new signature. This definition is an 
extension of definition 3.2.2. 

Definition 3.5.2. The rank of an operator II, iL, or I is the sum of the 
weights of its arguments. The signature for the term rewriting system 
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Table 50. Term rewriting rules for the merge. 

a I b -+ c, if -y(a, b) = c; RCFl 

a I b -+ 8 otherwise. RCF2 

x II y -+ x lLY + y lLx + x I y RCM! 

a lLx -+ ax RCM2 

ax lLy -+ a(x II y) RCM3 

(x + y) lLz -+ x lL z + y lLz RCM4 

(a· x) Ib -> (alb)· x RCM5 

al(b·x) -> (alb)·x RCM6 

(a . x) I (b . y) -> (a I b) . (x II y) RCM7 

(x + y) I z -> x I z + y I z RCM8 

x I (y + z) -> x I y + x I z RCM9 

associated with ACP is the following: 

AU {+,',8H} u {lin, lLn' In: n > 2}, 

where the subscripted n stands for the weight of the subterm. 

Definition 3.5.3. Let the term rewriting system associated to ACP con­
sist of the following rules: the term rewriting system associated to BPA6 + 
8H and the rules in table 50. For completeness sake, we note that the term 
rewriting system associated to BPA6 + 8H consists of the rewrite rules of 
table 2 and the equations in tables 10 and 21 oriented from left to right. 

Theorem 3.5.4. The term rewriting system associated to ACP is strongly 
normalizing. 

Proof. The proof can be given along the same lines as the proof of the 
termination of the system PA; d. theorem 3.2.3. We use the partial ordering 
of the signature in figure 8 and leave the calculations to the reader. • 

With the aid of the above termination result for ACP we can easily 
prove the following elimination theorem. 

Theorem 3.5.5. The equational specification ACP has the elimination 
property for BPA6 . 

Proof. Easy. • 
Standard concurrency As for PA we have standard concurrency. That is, 
there are some properties concerning the merge, left merge, and communi­
cation merge that are not derivable for arbitrary open terms, but can be 
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A 

+ 

Fig. 8. Partial ordering of the operators in the term rewriting system 
associated to ACP. 

shown to be valid for closed terms (or even for solutions of guarded recur­
sive equations). In many applications these properties are useful and thus 
these properties are assumed to be valid. This is why these properties are 
often referred to as axioms for standard concurrency. In the next theorem 
we list them for ACP. See theorem 3.2.5 for standard concurrency in PA. 

Theorem 3.5.6. Let x, y, and z be closed ACP terms. Then the following 
statements hold. They are called axioms of standard concurrency. 

(i) xly==ylx, 

(ii) x II y = y II x, 

(iii) (xly)lz== xl(ylz), 

(iv) (x ~y) lLz == x lL (y II z), 

(v) xl(yli.z)==(xIY)li.z, 

(vi) (x II y) II z = x II (y II z). 
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Table 51. Handshaking axiom. 

xlylz=8 HA 

Proof. We will not give the details of the proof. They can be found in 
[Bergstra and Tucker, 1984]. Instead, we explain the proof strategy. 

Because of theorem 3.5.5, we only need to prove the properties for 
basic BPA6 terms. It is easy to show that the first two properties hold 
by induction to the sum of symbols that occur in both x and y. Then it 
remains to show with a simultaneous induction to the number of symbols 
occurring in x, y, and z that the other properties also hold. • 

Expansion A useful application of standard concurrency in ACP is the 
so-called expansion theorem. This theorem states how the merge of more 
than two processes can be evaluated. For the expansion theorem of PA we 
refer to theorem 3.2.6. In contrast to the PA expansion theorem, we need 
an extra proviso for the expansion of the merge in case the communication 
merge is present. We need a so-called handshaking axiom (HA). We give 
it in table 51. It states that there is only binary communication present. 

Theorem 3.5.7. Suppose that ,( a, b, c) is undefined for all atomic ac­
tions a, b, and c. Then for all closed ACP terms x, y, and z we have HA . 

Proof. Easy. • 
Next, we formulate the expansion theorem for ACP. The notation that 

we use in this theorem can be defined inductively in the obvious way. 

Theorem 3.5.8. In ACP with standard concurrency and the handshaking 
axiom presented in table 51 we have the following for all open ACP terms 
Xl,X2, ... ,Xn andn > 2. 

Proof. Straightforward induction on n. See [Bergstra and Tucker, 1984] 
for a detailed proof. • 

3.5.3 Semantics of ACP 

In this subsection we give the semantics of ACP. In fact, this is now an easy 
job, since almost all the constructs that ACP contains have been discussed 
before. The only notion that we did not characterize operationally is the 
communication merge. In table 52 we present the operational rules for this 
concept. 
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Table 52. The operational rules for the communication merge. 

a I b I x---+x , y---+y 
II C 'II ' , [(a, b) = c x y---+x y 
a , b / 

x---+x , y---+y 
II C , ,[(a,b) = c 

x y---+x 
a / b , 

X---+y , y---+y 

II 
C , ,[(a,b)=c 

X y---+y 

x~V,y~V 
xllY~v ,[(a,b)=c 

a I b I x---+x , y---+y 
I C 'II ,,[(a,b)=c 

X y---+x y 
a , b / 

x---+x ,y---+y Ie, , [(a, b) = c 
X y---+x 
a / b , 

X---+y ,y---+y Ie, ,[(a,b)=c 
X y---+y 

x~V,y~V 
I

e / ,[(a,b)=c 
X y---+y 

The complete operational semantics for ACP is given by a term deduc­
tion system T(ACP) that has as its signature the one of ACP and the rules 
are the ones of table 5 (the BPA part), the rules of table 22 (the encapsu­
lation part), the rules of table 44 (the PA merge part), and the new rules 
that we list in table 52. As usual, bisimulation equivalence is a congru­
ence; see 2.2.32. So the operators of ACP can be defined on the quotient of 
closed ACP terms with respect to bisimulation equivalence. The following 
theorem says that this quotient is a model of ACP. 

Theorem 3.5.9. The set of closed ACP terms modulo bisimulation equiv­
alence is a model of ACP. 

Proof. We have already treated the equations that comprise BPA6 ; see 
theorem 2.5.4. We have also seen the soundness of BPA + RN, which 
is BPA with renaming operators. Since the encapsulation operator is a 
special case of a renaming operator, the soundness of the equations D1-4 
can be proved in the same way as the soundness proof of BPA + RN; see 
theorem 2.7.4. '''Ie have also seen the soundness of the equations CM2-4, 
since these axioms are the same in PA; see theorem 3.2.7. So it remains 
to prove that the other equations are sound. We confine ourselves to only 
giving the bisimulation relations. We begirt with CFl. Take the relation 
that relates both sides of CFl. Equation CF2 is treated exactly the same. 
Now we treat CMl. Take for CM1 the relation that relates both sides of 
CMI, that relates x' II y' and y' " x' for all closed ACP terms x' and y', and 
that contains the diagonal. We recall that CM2-4 are treated the same as 
M2-4 of PA. So we continue with CM5-9. These are proved analogously 
to AI; that is, relate both sides of an equation and add the diagonal. This 
ends the soundness proof for ACP. • 

At this point, we are able to prove the conservativity of ACP over BPA6 • 
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Theorem 3.5.10. The equational specification ACP is a conservative ex­
tension of the equational specification BPA6. 

Proof. With the aid of theorem 2.4.15 it is very easy to see that the term 
deduction system T(ACP) is an operationally conservative extension of the 
term deduction system T(BPA6) (for the definition ofT(BPA6) we refer to 
the soundness theorem 2.5.4 for BPA6). With theorem 2.4.19 we also find 
that this holds up to strong bisimulation equivalence. With theorem 3.5.9 
we know that ACP is sound with respect to the model induced by T(ACP), 
so according to theorem 2.4.24 we immediately find the equational conser­
vativity. • 

Below we give the completeness theorem for ACP. 

Theorem 3.5.11. The axiom system ACP is a complete axiomatization 
of the set of closed ACP terms modulo bisimulation equivalence. 

Proof. With the aid of theorem 2.4.26 and the conservativity of ACP over 
BPA6 we find the completeness of ACP (use also theorems 2.5.5 and 3.5.5) . 

• 
3.6 Extensions of ACP 
In this subsection we will discuss extensions of ACP with the features that 
we already met when we discussed extensions of both BPA and PA. We 
treat the extension of ACP with recursion, projections, renaming operators, 
the state operator, the priority operator, iteration, process creation, and 
discrete time. We will also treat two examples to illustrate the use of two 
of the extensions. We do not discuss the extension of ACP with the empty 
process. We explained why in subsection 3.3.4. 

Recursion and/or projection The extensions of ACP with recursion, pro­
jection, or a combination of both are obtained by simply merging these 
extensions for BPA6 and ACP; see subsection 2.5. 

Example 3.6.1. In ACPrec, we can describe communicating buffers using 
the read/send communication function defined in subsection 3.5.1. Let D 
be a finite data set. A one-place buffer over D, with input port 1 and 
output port 2, is given by the recursive equation 

B L rl(d)· s2(d)· B. 
dED 

Likewise, a one-place buffer with input port 2 and output port 3 is given 
by 

C L r2(d) . s3(d) . C. 
dED 



106 i.C.M. Baeten and C. Verhoef 

Now if H = {r2(d), s2(d) : d ED}, then expression 

8H(B " C) 

describes a system of two communicating buffers. Some calculations, and 
using RSP, show that this system is a solution of the following recursive 
specification: 

X L rl(d) . c2(d)· Xd, 
dED 

Xd s3(d)· X + L rde) . s3(d) . c2(e)· Xe. 
eED 

This definition can be seen as defining a two-place buffer. 

Renaming and encapsulation It is straightforward to extend the equa­
tional specification ACP, and its extensions, with renaming operators; 
cf. subsection 2.7.3. 

State operator The extension of the theory ACP with either the simple or 
extended state operator is obtained in the same way as for the theories BPA 
or PA; see subsections 2.8 and 2.9. 

Priority operator We can extend the theory ACP with the priority oper­
ator in the same way as we extended BPA6 with that operator. For the 
details we refer to subsection 2.10. 

In the system ACPe, we can describe forms of asymmetric communi­
cation. Notice that ACP itself features symmetric communication: both 
'halves' of a communication action must be present before either one can 
proceed. 

Example 3.6.2. A put mechanism describes a sending action that does 
not wait for a corresponding receiving action; the message is lost if it cannot 
be received. If a receiving action is present, then communication should 
occur. 

For a port i and message d, we have actions put;(d), r;(d), c;(d) with 
communication function given by 

I'(put i (d), r;(d)) = c;(d) I' not defined otherwise. 

The priority ordering is given by put;(d) < c;(d) for all d. Then, if S has 
actions put;(d), and R actions r;(d), put communication is described by 
the expression 

8H 0 B(S II R), 

where H = {r;(d) : d ED}. 
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Table 53. An extra axiom for Kleene's binary star operator. 

BKS4 

Similarly, we can describe a get mechanism, where a process tries to 
receive a message. When no message is available, an error message 1. will 
be read. We have actions geti(d), si(d), ci(d) (d E D), and an action 
get i (1.). Communication is given by 

,(si(d),geti(d)) = ci(d) , not defined otherwise, 

and a priority ordering get;(1.) < ci(d) for all d. The system is described 
as 

8H 0 B(S II R), 

where H = {geti(d), si(d) : d ED}, and R typically has the form 

R = L geti(d) . Xd + geti(J..) . X.L. 
dED 

This material on put and get communication is based on [Bergstra, 1985], 
more information can also be found in [Baeten and Weijland, 1990]. 

Iteration We can extend ACP with iteration by adding the defining axioms 
for • in table 37 to the ones for ACP and one more axiom that gives the 
relation between Kleene's star and the encapsulation operator. We give 
this axiom in table 53. We denote this system by ACp·. Only for BPA· 
the completeness is proved at the time of writing this survey. 

Process creation We discuss the extension of ACP with the process cre­
ation operator Eq, (for the basic definitions we refer to subsection 3.3.1). We 
recall that the process creation operator is defined in terms of the parallel 
composition. So it will not be surprising that we need to impose restric­
tions on the communication behaviour of the special atomic actions cr(d). 
The restrictions are that cr(d) does not communicate and is not the re­
sult of any communication (cr(d) is not a communication action). In a 
formula: cr(d) I a = 6 and for all a, b E A : a I b =f. cr(d). We note that 
lemma 3.3.1 only holds when the communication function is trivial; that 
is, for all a, b E A : ,(a, b) is undefined. 

Furthermore, the only difference with the discussion in subsection 3.3.1 
is the restrictions on the cr(d)-actions with respect to the communication. 
So for more details we refer to that subsection. 

Inconsistent combinations If we combine unguarded recursion with ACPe 
we will find an inconsistency. We show this with an example that originates 
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Table 54. The interaction between Ud and communication and encapsu­
lation. 

~I Ud(X) == ~ 
ud(x)I~==g 

(~. x) I Ud(Y) == g 
Ud(X) I(~· y) == ~ 

Ud(X) I Ud(Y) == Ud(X I y) 

8H (Ud(X)) == ud(8H(X)) 

DTM5 

DTM6 

DTM7 

DTM8 

DTM9 

DTD 

from [Baeten and Bergstra, 1988b]. Suppose that there are three atomic 
actions r, s, and c and r I s == c. Let c > s be the partial ordering. Now 
consider the following recursion equation: 

With the operational rules we can infer that X~.j <==> X ....!f..j. 

3.6.1 Discrete time 

In this subsection we add relative discrete time to ACP. In subsection 3.4.1, 
we already extended PAo with this feature. So we only need to clarify the 
interaction between the discrete time unit delay Ud and the communication 
merge and the relation between (Td and the encapsulation operator. 

The theory The equational specification ACP dt consists of the signature 
that is the union of the signatures of ACP (with ~ instead of a for a E Ao) 
and PAodt. The equations of this specification are the ones of ACP (again 
with g instead of a) plus the rules of table 47 (they represent the interaction 
betw~n (Td and the left merge) and some new axioms that we present in 
table 54; they express the interaction between the discrete time unit delay 
operator and the communication merge and the interaction between Ud and 
the encapsulation operator. 

Termination The termination of a term rewriting system associated to 
ACP dt can be obtained with the aid of the method that we discussed in 
subsection 2.2.2. We can prove the termination by merging the termination 
proofs of ACP and PAodt and a small addition. 

Theorem 3.6.3. The term rewriting system consisting of the rewrite rules 
for ACP (see definition 3.5.3) plus the axioms listed in tables 47 and 54 
oriented from left to right is strongly normalizing (or terminating). 

Proof. The partial ordering on the signature is as follows. Take the one 
for ACP; see figure 8. Now add the following to this partial ordering: 
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Table 55. The additional rules for the communication merge and the en­
capsulation operator. 

• + > Ud, 

• C!d > g, 
• C!d > 8H • 

U I " , x--+x,y--+y 

x I y"'!!""'X' I y' 

IT I X--+X 

With the proofs of theorems 3.5.4 and 3.4.1 we find that the term rewriting 
system associated to ACP dt is strongly normalizing. We omit these infer­
ences as they are straightforward. • 

With the above theorem it is easy to obtain an elimination result for 
closed terms. 

Theorem 3.6.4. The equational specification ACP dt has the elimination 
property for BPA6dt. 

Proof. Easy. • 
Semantics The semantics of ACP dt can be given with a term deduction 
system T(ACPdt). Its signature is that of ACPdt. The rules are those of 
ACP (with g instead of a for a E A6), those in table 48 (they concern the 
merge and the left merge), and the operational rules that we present in 
table 55. The two rules in table 55 define what kind of C! transitions the 
communication merge and the encapsulation operator can perform. 

Theorem 3.6.5. The set of closed ACP dt terms modulo strong bisimula­
tion equivalence is a model of ACP dt. 

Proof. Bisimulation equivalence is a congruence, so we only need to check 
the soundness of the axioms. The only axioms that we have not checked 
yet in other soundness proofs are the ones of table 54. They are all very 
easy. For DTM5-8 we only need to relate the left- and right-hand side. For 
DTM9 and DTD we additionally include the diagonal. • 

Theorem 3.6.6. The equational specification ACP dt is a conservative ex­
tension of the equational specification BPA6dt. 

Proof. Easy. • 

Now we have all the prerequisites to state the completeness theorem for 
ACP dt. The proof is as usual and therefore omitted. 

Theorem 3.6.7. The axiom system ACPdt is a complete axiomatization 
of the set of closed ACP dt terms modulo bisimulation equivalence. 
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3.7 Decidability and expressiveness results in ACP 
In subsection 2.14 we discussed the decidability of bisimulation equivalence 
for BPArec and we showed that BPArec can express non-regular processes. 
In this subsection we will briefly discuss decidability and expressiveness 
results for the PArec and ACPrec families. 

3.7.1 Decidability 

At the time of writing this survey the results are that bisimulation equiva­
lence is undecidable for ACPrec and the problem is open for PArec. How­
ever, some results have been obtained in the direction of PArec. For the 
so-called Basic Parallel Processes (BPP) [Christensen et al., 1993] the prob­
lem is solved: BPP is decidable. The equational theory of BPP is close to 
PA6 rec with prefix sequential composition instead of sequential composi­
tion. 

We will formulate these results below. 
The next theorem is due to [Bergstra and Klop, 1984b]. For the proof 

of this fact we refer to [Bergstra and Klop, 1984b]. 

Theorem 3.7.1. The bisimulation equivalence problem for finitely recur­
sively defined processes over ACP is undecidable. 

For the decidability result on basic parallel processes we briefly intro­
duce the syntax and semantics of this system. 

Basic parallel processes We will introduce the syntax and semantics of 
BPP below using the notation that we are used to in this survey. We have 
a special constant 8, alternative composition +, parallel composition 1/, 
and a unary prefix operator a_, called prefix sequential composition, for 
all a E A, where A is some set. Now if we also add recursion we have the 
syntax of BPP. 

The semantics of BPP is given by means of the term deduction system 
in table 56. For all the operators we have the usual operational rules but 
only the non-predicate parts. We have not seen the well-known operational 
characterization of prefix sequential composition before in this chapter. We 
give the rules for BPP in one table for the sake of ease. 

We note that bisimulation equivalence in this case is just the one that 
we defined in definition 2.2.28 without the predicate part. 

The next theorem is taken from [Christensen et al., 1993]. For the proof 
of this fact we refer to [Christensen et al., 1993]. 

Theorem 3.7.2. Bisimulation equivalence is decidable for basic parallel 
processes (BPP). 

3.7.2 Expressiveness 

In this subsection we discuss various expressivity results. It turns out that 
ACPrec is more expressive than PArec and that the latter is more expressive 
than BPArec. 
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Fig. 9. A deduction graph of a bag over two datum elements. 

The bag We consider a so-called bag of unbounded capacity. A bag is a 
process able to input data elements that reappear in some arbitrary order. 
Let D be a finite set of such datum elements containing more than one 
datum. Suppose that we have atomic actions for all d ED: 

• TI (d) means put a d in the bag; 
• s2(d) means remove a d from the bag. 

The following recursive equation formally defines the bag. 

B =: L rl(d)· (B II s2(d)). 
dED 

It will be clear that B is definable over PArec. In figure 9 we depict the 
deduction graph of a bag over two datum elements 0 and 1. Note that we 
abbreviate rl(d) to d and s2(d) to d. for d =: 0,1. 

Next, we state that PArec is more expressive than BPArec. This theorem 
stems from [Bergstra and Klop, 1984a; Bergstra and Klop, 1995]. For its 
proof we refer to this paper. 

Table 56. The operational semantics of BPP. 

Q 

ax--->x 

X~X' 

X + y...!!:.....x' 
Q , 

x--->x 

x II y...!!:.....x' II y 

(sxIE)~y 

(XIE)~y 
Q , 

y--->y 

x+y~y' 
Q , 

y--->y 

x II y...!!:.....x II y' 
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1 {~1-_2-.., ....... 
Fig. 10. A FIFO queue. 

TheoreIn 3.7.3. A bag over more than one datum element cannot be given 
by means of a finite recursive specification in BPArec. So, PArec is more 
expressive than BPArec. 

ReInark 3.7.4. Observe that the bag can also be specified in BPP. But 
since there is a process (the stack) that can be defined in BPArec and not 
in BPP the systems are incomparable as far as expressivity is concerned. 
See [Christensen, 1993] for more details. 

Next, we consider the expressivity of ACPrec over PArec. The following 
theorem is taken from [Bergstra and Klop, 1984a; Bergstra and Klop, 1995]. 
For more details on this result and its proof we refer to this paper. 

TheoreIn 3.7.5. The process p = ba(ba2)2(ba3 )2(ba4 )2 ... cannot be de­
fined in PArec with a set of atomic actions {a, b} but p can be defined in 
ACPrec with atomic actions {a, b, c, d} and with communication function 
i(C,C) = a, i(d,d) = b (other communications yield 0). 

Next, we discuss a result that states that ACPrec + RN is more expres­
sive than ACPrec. 

The queue A queue is a process that transmits incoming data while pre­
serving their order. See also figure 10. Such a process is also called a FIFO 
(First In First Out) queue. First, we describe the queue with input port 1 
and output port 2 over a finite data set D by means of an infinite linear 
specification. As in 3.3.3, D* is the set of words over D. 

It is not hard to see that a queue with input port 1 and output port 2 
over the data set D can be specified as follows: 

Q =Q< I>I(d)' Qd, 
dED 

Qud s2(d)· Qu + L rl(e)· Qeud. 
eED 

We have the last equation for all cr E D* and dE D. 
In figure 11 we give a deduction graph of a queue over two datum 

elements; note that we abbreviate rl (d) by d and s2(d) by Q for d = 0,1. 

The next theorem states that there is no finite specification for the 
queue in ACPrec. This result is taken from [Baeten and Bergstra, 1988a]; 
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the proof uses results from [Bergstra and Tiuryn, 1987]. For a proof we 
refer to [Baeten and Bergstra, 1988a]. 

Theorem 3.7.6. The queue is not finitely definable over ACPrec using 
the usual read/send communication that we discussed in subsection 3.5.1. 

In [Baeten and Bergstra, 1988aJ it is shown that in ACPrec + RN there 
exists a finite specification of the queue. For details we refer to [Baeten 
and Bergstra, 1988a]. 

Theorem 3.7.7. The queue is finitely definable over ACPrec + RN using 
the usual read/send communication that we discussed in subsection 3.5.1. 

Next, we list some expressivity results for extensions of PA and ACP 
with iteration. These results are taken from [Bergstra et al., 1994a]. 

Theorem 3.7.S. If there are at least six atomic actions we have the ex­
pressivity results for the systems BPA· I BPA; I PA·, PA;, and ACp· as in 
figure 12. The systems BPA; and PA· are incomparable and for the other 
systems we have that a line down to a system indicates that the upper sys­
tem is more expressive than the lower one. 

Recursion versus iteration In subsection 2.14 we devoted a small para­
graph to the comparison of recursion as treated in subsection 2.3 and itera­
tion (see subsection 2.11). We stated that the system BPAlin (BPA with 
finite linear recursion) is more expressive than BPA· (see theorem 2.14.6). 
This result is in fact stronger: the regular system of figure 7 cannot be 
expressed in ACp·. 

In [Bergstra et al., 1994aJ it is shown that the regular process depicted 
in figure 7 can be expressed in ACp· with abstraction. 

The next theorem is taken from [Bergstra et ai., 1994a]. For the proof 
we refer to their paper. 

Theorem 3.7.9. Not every regular process can be expressed in ACp· (not 
even using auxiliary actions). 

Fig. 11. A deduction graph for the queue. 
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Fig. 12. Expressivity results for systems with iteration. 

More information on the subject of expressiveness in ACP can be found 
in [Baeten et at., 1987] and in [Vaandrager, 1993]. For more information 
on expressiveness in systems related to ACP we refer to [Ponse, 1992] or 
[Glabbeek, 1995]. 

4 Further reading 
For those readers who want to know more about process algebra, we give 
some references. First of all, we want to mention a couple of textbooks in 
the area. A textbook for CCS-style process algebra is [Milner, 1989], for 
CSP style we refer to [Hoare, 1985], and for testing theory, there is [Hen­
nessy, 1988]. In ACP style, the standard reference is [Baeten and Weijland, 
1990]. The companion volume [Baeten, 1990] discusses applications of this 
theory. We also want to mention the proceedings of a workshop on ACP 
style process algebra [Ponse et at., 1995]. 

When process algebra is applied to larger examples, the need arises to 
handle data structures also in a formal way. The combination of processes 
and data is treated in the theories LOTOS [Brinksma, 1987], PSF [Mauw 
and Veltink, 1993], or ILCRL [Groote and Ponse, 1995]. 

Tool support in the use of process algebra is provided by most systems; a 
few references are [Boudol et al., 1990], [Cleaveland et al., 1990], [Godskesen 
et at., 1989], [Lin, 1992], and [Veltink, 1993]. 

For an impression of the state of the art in concurrency theory we refer 
to the proceedings of the series of CONCUR conferences on concurrency 
theory: [Baeten and Klop, 1990], [Baeten and Groote, 1991], [Cleaveland, 
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1992), [Best, 1993), and [Jonsson and Parrow, 1994]. 
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f.L notation: notation for recursion, 

21 
f.Lx.t(x): f.L notation, 21 
f.LCRL: micro Common Representa-

tion Language, 114 
M: set of objects, 51, 55 
n-ary: arity of function symbol, 6 
NF(S): set of negative formulas, 63 
NIL: a CCS constant, 43, 44 
ntyft/ntyxt: a format, 62 
n(z): number of symbols in z, 20 
O(~): open terms, 6 
O·(~): a superset of O(~), 10 
PAs: PA with deadlock, 89, 93-98, 

108 
PA + PCR: PA with process cre­

ation, 91, 92 
PA + PR: PA with projections, 90 
PA6dt: PA6 with discrete time, 96-

98, 108 
PA6rec: PA6 with recursion, 110 
PA;: PA6 with iteration, 113, 114 
pantk: a format, 66 
PArec+PR: PArec with projections, 

90 
PArec: PA with recursion, 89, 90, 

110-112 
PA·: PA with iteration, 113, 114 
path: a format, 18 
PA: process algebra, 4, 83-96, 98-

106, 113 
PCRl-5: process creation axioms, 

91 
PF(S): set of positive formulas, 63 
<p: process creation function, 91 
<p equivalence: a neat equivalence, 

30 
7r-calculus: higher order process cal-

culus, 79 
7rn : projection operator, 24 
PRl-4: projection axioms, 24 
PRo projection, 24 
PSF: Process Specification Formal­

ism, 114 
-,Ps: (negative) formula, 63 

Ps: (positive) formula, 14 
put: put action, 106 
P: predicate symbol, 14 
RDP-: restricted recursive defini­

tion principle, 22 
RDP: recursive definition principle, 

22, 23, 33, 37, 38, 42, 43, 
47,90 

rec: recursion, 21 
PI: renaming operator, 44 
p: a reachability relation, 15 
T;(d): read d at port i, 100 
RNl-3: renaming axioms, 44 
RPOl-5: recursive path ordering, 

11 
RSP: recursive specification princi­

ple, 22, 23, 33, 35, 37, 38, 
42, 43, 47, 50, 51, 90, 106 

R: relation symbol, 14 
R: set of rewrite rules, 9 
s :::: t: permuting arguments, 11 
s -+ t: s reduces to t, 9 
S ~G t, s ~ t: sand tare bisimilar, 

17 
(S, Sp, Sr): structured state system, 

16 
SCCS: Synchronous CCS, 79, 84 
s;(d): send d at port i, 100 
(~, D): term deduction system, 14 
(~, E): equational specification, 6 
(~, R): term rewriting system, 9 
~-algebra: an algebra, 13 
~BPA: signature of BPA, 7 
Ud: discrete time unit delay, 74 
~o El7 ~1: sum of signatures, 27 
~: signature, 6 
u: substitution, 6 
SN: strongly normalizing, 10 
S01-3: simple state operator axioms, 

51 
Sp: set of predicates, 16 
Sr: set of predicates, 16 
S: set of states, 16 
hR: (negative) formula, 63 
r: Milner's silent action, 4, 41 
T(BPA): term deduction system of 

BPA,14 
TCCSo: subsystem oftemporal CCS, 

4 
(t I E): extension of (X I E) to t, 21 
TH1-3: priority axioms, 58 
6: priority operator, 58 
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TO E9 Tl: sum of term ded uction sys-
tems,28 

Tp: set of predicate symbols, 14 
tRu: (positive) formula, 14 
Tr : set of relation symbols, 14 
Ts: set of positive formulas, 65 
T f--..p: ..p is provable from T, 15 
tyft/tyxt: a format, 18 
U1-6: unless axioms, 58 
U: the universe of A, 13 
var(t): variables in a term t, 6 
X f-- <p: <p holds in X, 63 
(X I E): solution of E, 21 
[xl: bisimulation equivalence class, 

17 
Ixl: weight of x, 53 
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