

Concrete process algebra

Citation for published version (APA):
Baeten, J. C. M., & Verhoef, C. (1995). Concrete process algebra. (Computing science reports; Vol. 9503).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/be1d9336-331a-40a0-9a55-7e5e61729f7a

Eindhoven University of Technology

Department of Mathematics and Computing Science

ISSN 0926-4515

All rights reserved
editors: prof.dr. I.C.M. Baeten

prof.dr. M. Rem

Concrete Process Algebra

by

I.C.M. Baeten and C. Verhoef
95/03

Computing Science Report 95/03
Eindhoven. Ianuary 1995

Concrete process algebra
J.C.M. Baeten and C. Verhoef
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
NL-5600 MB Eindhoven
The Netherlands
email: {chrisv.josb}@win.tue.nl

Note: J.C.M. Baeten received partial support and C. Verhoef received full
support from ESPRIT basic research action 7166, CONCUR2.

Note: This report will appear (in a slightly different version) as a chapter
in the forthcoming Volume 4 of the Handbook of Logic in Computer Sci­
ence (eds. S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, Oxford
University Press.

1

Contents
1 Introduction
2 Concrete sequential processes

2.1 Introduction. .
2.2 Basic process algebra.
2.3 Recursion in BPA .
2.4 Projection in BPA
2.5 Deadlock.
2.6 Empty process
2.7 Renaming in BPA .
2.8 The state operator
2.9 The extended state operator.
2.10 The priority operator.
2.11 Basic process algebra with iteration.
2.12 Basic process algebra with discrete relative time.
2.13 Basic process algebra with other features ..
2.14 Decidability and expressiveness results in BPA .

3 Concrete concurrent processes . .
3.1 Introduction. . .
3.2 Syntax and semantics of parallel processes
3.3 Extensions of PA
3.4 Extensions of PA8 . . • • . .

3.5 Syntax and semantics of communicating processes
3.6 Extensions of ACP ., ..
3.7 Decidability and expressiveness results in ACP

4 Further reading ., ..

2

3
5
5
5

21
23
35
38
44
51
55
58
71
74
78
80
82
83
83
89
95
98

105
110
114

Concrete process algebra

Algebra may be considered, in its most general form, as the
science which treats of the combinations of arbitrary signs and
symbols by means of defined through arbitrary laws ... [Peack­
ock, 1830].

1 Introduction

3

Concurrency theory is the branch of computer science that studies the
mathematics of concurrent or distributed systems. In concurrency theory,
the design of such mathematics is studied and issues concerning the speci­
fication and verification of such systems are analysed. Often, a concurrent
system is called a process. In order to analyse a large and complex pro­
cess it is desirable to be able to describe it in terms of smaller and simpler
processes. Thus, it seems natural to have some simple processes-the ones
that are not subject to further investigation-and operators on them to
compose larger ones thus resulting in an algebraic structure. In order to
reason about large processes it is often useful to have a set of basic identities
between processes at one's disposal. The most relevant identities among
them are normally called axioms. The axiomatic and algebraic point of
view on concurrency theory is widely known as process algebra.

The most well-known algebraic concurrency theories are the ones known
by the acronyms CCS, CSP, and ACP. CCS is the Calculus of Communi­
cating Systems of [Milner, 1980]. Theoretical CSP originates from [Brookes
et al., 1984]; the acronym CSP stands for Communicating Sequential Pro­
cesses. ACP is the Algebra of Communicating Processes; the original ref­
erence to ACP is [Bergstra and Klop, 1984a]; we note that recently the
full version of [Bergstra and Klop, 1984a] has appeared; see [Bergstra and
Klop, 1995]. Of these three, (theoretical) CSP is the most abstract (it
identifies more processes than the other two), and tends in the direction of
a specification language. The other two, CCS and ACP, are based on the
same notion of equivalence (bisimulation equivalence), and are more oper­
ationally oriented than CSP. They tend in the direction of a programming
language. Of the two, CCS has links to logic and A-calculus, and ACP may
be best characterized as a purely algebraical approach.

In this survey we focus on concrete process algebra. Concrete process al­
gebra is the area of algebraic concurrency theory that does not incorporate
a notion called abstraction. Abstraction is the ability to hide information,
to abstract information away. The reason that we refrain from incorpo­
rating this important issue is that concrete process algebra is already such
a large part of the theory that it justifies its own survey. Moreover, it is
more and more recognized that for the understanding of issues in large lan­
guages it is often convenient first to study such issues ill a basic language,
a language with less features. For instance, some decidability results in
process algebra are obtained in this way. Other examples of such basic

4 J.C.M. Baeten and C. Verhoef

languages are Milner's basic CCS [Milner, 1980], BCCSP [Glabbeek, 1990],
ASTP [Nicollin and Sifakis, 1994], TCCSo [Moller and Tofts, 1990], BPP
[Christensen et al., 1993], and the pair BPA/PA [Bergstra and Klop, 1982].
The results that may be obtained for a basic language are almost always
useful when the language is extended with additional constructs. Most of
the time, these basic languages are concrete. In this survey we will see
many examples where a result for a basic language is very useful for an
extended version of the language.

Another reason to focus on concrete process algebra is that it is indeed
purely algebraically a neat theory. On the other hand, the theory with a
form of abstraction and thus with some special constant such as Milner's
silent action (7) or the empty process c: of [Koymans and Vrancken, 1985]
is not (yet) stabilized. That is, there are many variants of the theory and
it is not clear if there exists a superior variant. For instance, there are two
closely related competitive equivalences for the theory with so-called 7 ab­
straction: observational congruence [Milner, 1980] and branching bisimu­
lation equivalence [Glabbeek and Weijland, 1989].

To obtain a uniform notation, since the majority of the available con­
crete process algebras are ACP-like ones, and since the ACP approach is the
most algebraical approach, we survey the algebraical part in the ACP-style
process algebra of [Bergstra and Klop, 1984a; Bergstra and Klop, 1995]. As
for the semantics of the various languages we deviate from the approach of
[Bergstra and Klop, 1984a; Bergstra and Klop, 1995] since nowadays many
process algebras have an operational semantics in the style of [Plotkin,
1981]. So, we equip all the languages with such an operational semantics.
In the articles [Bergstra and Klop, 1982], [Bergstra and Klop, 1984b], BPA,
PA, and ACP were introduced with a semantics in terms of projective limit
models. When we restrict ourselves to guarded recursion, projective limit
models identify exactly the (strongly) bisimilar processes. The projective
limit models are an algebraic reformulation of the topological structures
used in [Bakker and Zucker, 1982]. Regarding syntax as well as semantics,
[Bergstra and Klop, 1982] reformulates [Bakker and Zucker, 1982] in order
to allow more efficient algebraic reasoning.

For those readers who want to know more about possibly other ap­
proaches to process algebra (with abstraction), we refer to the following
four text books in the area [Baeten and Weijland, 1990], [Hennessy, 1988],
[Hoare, 1985], and [Milner, 1989]; see also section 4.

Finally, we briefly review what can be expected in this survey. The
survey is organized into three sections (not counting this section).

The first section (2) describes concrete sequential processes; that is, in
this section we even refrain from discussing parallelism. In this section,
we will meet and tackle many problems that accompany the design of any
algebraic language. Since the languages are simple, it is relatively easy
to explain the solutions. The solutions that we obtain for the concrete

Concrete process algebra 5

sequential processes turn out to be useful for other languages, too. In
particular, we will use these solutions in section 3 where we discuss concrete
concurrent processes. Lastly, section 4 gives directions for further reading.

Acknowledgements We thank the proof readers, Jan Bergstra (University
of Amsterdam and Utrecht University) and Jan Willem Klop (CWI and
Free University Amsterdam) for their useful comments. Also comments
by Twan Basten (Eindhoven University of Technology), Kees Middelburg
(PTT Research and Utrecht University), Alban Ponse (University of Am­
sterdam), and Michel Reniers (Eindhoven University of Technology) were
appreciated. Special thanks go to Joris Hillebrand (University of Ams­
terdam) for his essential help in the final stages of the preparation of the
document.

2 Concrete sequential processes
In this section we will introduce some basic concepts that can be found in
process algebra. We will do this in a modular way. That is, first we treat a
basic theory that is the kernel for all the other theories that we will discuss
subsequently. The basic theory describes finite, concrete, sequential non­
deterministic processes. Then we add features to this kernel that are known
to be important in process algebra: for instance, deadlock or recursion to
mention a few. Such features make the kernel more powerful for both
theoretical and practical purposes. We also show that each feature is a
so-called conservative extension of the original theory; thus, we may argue
that our approach is modular.

2.1 Introduction
In this subsection we give the reader an idea of what can be expected in
the subsections of the sequential part of this survey.

We start with the basic language. Once we have treated this language,
we will extend it in the following subsections with important features. We
discuss the notions of recursion in subsection 2.3, projection in 2.4, deadlock
(or inaction) in 2.5, empty process in 2.6, and we discuss the following
operators: renaming operators in subsection 2.7, state operators in 2.8
and 2.9, the priority operator in 2.10, and Kleene:s binary star operator
in 2.11. Next, we focus in subsection 2.12 on an extension with time. Then
subsection 2.13 follows with pointers to extensions that we do not discuss
in this survey. Finally, we discuss decidability and expressiveness issues in
subsection 2.14 for some of the languages introduced.

2.2 Basic process algebra
First, we list some preliminaries. Then we treat the basic language of this
chapter. Next, we devote subsection 2.2.2 to term rewriting analysis; we
discuss a powerful method that we will frequently need subsequently. In

6 J. C.M. Baeten and C. Verhoef

the next, and last, subsection 2.2.3 we discuss an operational semantics for
our basic language. In 2.2.3 we also treat a meta-theorem on operational
semantics that we will often use in the rest of this survey.

We assume that we have an infinite set V of variables with typical
elements x, y, z, .. ,. A (single sorted) signature E is a set of function
symbols together with their arity. If the arity of a function symbol fEE
is zero we say that f is a constant symbol. The notion of a term (over E)
is defined as expected: x E V is a term; if tl, ... ,tn are terms and if fEE
is n-ary then f(tl,' .. ,tn) is a term. A term is also called an open term; if
it contains no variables we call it closed. We denote the set of closed terms
by C(E) and the set of open terms by O(E) (note that a closed term is
also open). We also want to speak about the variables occurring in terms:
let t E O(E) then var(t) <;;; V is the set of variables occurring in t.

A substitution 0" is a map from the set of variables into the set of terms
over a given signature. This map can easily be extended to the set of
all terms by substituting for each variable occurring in an open term its
O"-lmage.

2.2.1 The theory Basic Process Algebra

We will give the theory Basic Process Algebra or BPA in terms of an equa­
tional specification. BPA is due to [Bergstra and Klop, 1982].

Definition 2.2.1. An equational specification (E, E) consists of a set E
that is a signature and a set of equations of the form tl = t2 where tl and t2
are (open) terms. The equations in E are often referred to as axioms.

We define the definition of derivability of an equation from an equational
specification.

Definition 2.2.2. Let (E, E) be an equational specification. We define
inductively when an equation s = t is derivable from the equational spec­
ification (E,E) (with sand t terms over E). When an equation s = t is
derivable from (E, E) we write (E, E) r- s = t or provided that no confusion
arises E r- s = t. We call the symbol r- the derivability relation.

(i) s=tEE~Er-s=t

(ii) Er-s=t~Er-t=s

(iii) Er-t=t

(iv) E r- t = sand E r- s = u ~ E r- t = u

Let 0" be a substitution.

(v) E r- s = t ~ E r- O"(s) = IT(t)

Let C[_] be a context.

(vi) E r- s = t ~ E I- C[s] = Crt]
We recall that a context is a term with a hole in it; contexts can be

defined inductively in the obvious way.

Concrete process algebra 7

Table 1. BPA.

x+y =y+x Al

(x+y)+z=x+(y+z) A2

x + x = x A3

(x + y)z = xz + yz A4

(xy)z = x(yz) A5

Now we give the theory BPA = (~BPA,EBPA)'
We begin with the signature ~BPA. There are two binary operators

present in ~BPA; they are denoted + and '. The signature ~BPA also con­
tains a number of constants with typical names a, b, c, We will use the
capital letter A for the set of constants. The set A can be seen as a param­
eter of the theory BPA: for each application the set A will be specified. For
now it is only important that there are constants. This ends our discussion
of the signature.

The set of equations EBPA consists of the five equations AI-5 in table 1.
The variables x,y, and z in table I are universally quantified. They stand
for elements of some arbitrary model of BPA. These elements are often
called processes.

Remark 2.2.3. Terms will be denoted according to the same conventions
as the usual ones for summation and multiplication. We will often omit
the centered dot in a product. The centered dot binds stronger than the
plus. Thus, xy + z means (x· y) + z and the brackets in x(y + z) cannot
be omitted.

Intuition We will give an intuitive meaning of the signature and the ax­
ioms respectively. Formal semantics can be found in 2.2.3.

The constants a, b, c, ... are called atomic actions or steps. We consider
them as processes, which are not subject to any investigation whatsoever.

We think of the centered dot (.) as sequential composition. The pro­
cess xy is the process that first executes the process x and when (and if)
it is completed y starts.

The sum or alternative composition x + y of two processes x and y
represents the process that either executes x or y but not both.

Now we will discuss the axioms of table l.
Axiom Al expresses the commutativity of the alternative composition.

It says that the choice between x and y is the same as the choice between y
and x.

Axiom A2 expresses the associativity of the plus. It says that first
choosing between x + y and z and then (possibly) a choice between x and y

8 J.C.M. Baeten and C. Verhoef

Fig. 1. Two deduction graphs with the same execution paths ab and ac
but with different choice moments.

is the same as choosing between x and y + z and then (possibly) a choice
between y and z.

Axiom A3 expresses the idempotency of the alternative composition. A
choice between x and x is the same as a choice for x.

Axiom A4 expresses the right distributivity of the sequential composi­
tion over the alternative composition. A choice between x and y followed
by z is the same as a choice between x followed by z and y followed by z.

Axiom AS expresses the associativity of the sequential composition.
First xy followed by z is the same as first x followed by yz.

Full distributivity We will explain why only right distributivity is pre­
sented in table 1. An axiom that does not appear in BPA is the axiom that
expresses the left distributivity (LD) of the sequential composition over the
alternative composition:

LD x(y + z) = xy + xz.

Axioms A4 and LD together would give full distributivity. Axiom LD is
not included on intuitive grounds. In the left-hand side of LD the moment
of choice is later than in the right-hand side. For in a(b + c) the choice
between band c is made after the execution of a, whereas in ab + ac first
the choice between ab and ac must be made and then the chosen term can
be executed, as in figure 1, where we depict two deduction graphs. See
definition 2.2.24 later on for a formal definition of a deduction graph.

The right-hand side of LD is often called a non-deterministic choice,
which is a subject of research on its own.

Structural induction Structural induction is a basic proof technique in
process algebra when closed terms are involved. We will inductively define
the class of basic terms. It will turn out that every closed term can be
written as a basic term.

Concrete process algebra 9

Definition 2.2.4. An atomic action is a basic term. If t is a basic term
and a E A, then a . t is a basic term. If t and s are basic terms, then t + s
is a basic term.

Remark 2.2.5. If we consider terms to be identical that only differ in
the order of the summands, we can see that basic terms have the following
form

n m.

L ai . td L bj ,

i=1 j=1

where ai, bj E A, 1 < i ~ n, 1 < j ~ m, n + m > I, and the ti again basic
for 1 < i < n. Here,

k

LPi
i=!

is an abbreviation of PI + ... + Pk, and if n = 0, m > 1 we have a term of
the form b1 + ... + bm . Similarly if m = 0, n > l.

In the next proposition we see that if we want to prove a statement
correct for all closed terms (see subsection 2.2 for the definition of a closed
t~rm), it suffices to prove it for basic terms. Since they are inductively
defined we can use structural induction.

Proposition 2.2.6. Let t be a closed BPA term. Then there is a basic
term s such that BPA f- t = s.

Proof. We will use term rewriting analysis to prove 2.2.6. In the next
subsection (2.2.2) we will give a short introduction to this theory. We will
use the proof of the fact that the term rewriting system of table 2 is strongly
normalizing as a running example. Once we know that the term rewriting
system of table 2 has this property, it is not difficult to see that given a
closed BPA term t, there is a normal form s, which is a basic term, and
that BPA f- t = s, which proves the proposition. •

2.2.2 Term rewriting systems

In this subsection we will introduce a result from the field of term rewriting
systems that is a powerful tool in process algebra. We will do this by means
of an example: we will prove the essential step of proposition 2.2.6 using the
result. General references to this theory are [Dershowitz and Jouannaud,
1990] and [Klop, 1992].

Definition 2.2.7. A term rewriting system or term reduction system is
a pair (E, R) with E a signature and R a set of rewriting (or reduction)
rules. The reduction rules are of the form s -+ t, where sand t are terms
over the signature Ej we denote this set by O(E) with 0 for open terms
over E. For these terms we have two constraints

• s is not a variable.

10 J.C.M. Baeten and C. Verhoef

• all variables that occur in t must also occur in s.

Often, we give reduction rules a name, as in our example below. The one­
step reduction relation on terms, also denoted --, is the smallest relation
on terms containing the rules that is closed under substitutions and con­
texts. We denote the transitive-reflexive closure of the one-step reduction
relation --> by -.

Example 2.2.8. We give an example of a term reduction system. Let T
be the term reduction system with as signature that of BPA and as a
set of reduction rules those in table 2. Note that we do not have rules
corresponding to axioms Al or A2, as these axioms have no clear direction.

A useful property for a term reduction system is that there are no
infinite reductions possible. Below we define some more notions.

Definition 2.2.9. Let (~, R) be a term reduction system and let S be a
~ term. We say that s is a normal form if there is no term t such that s --> t.
A term s has a normal form if there exists a normal form t with s-t.

A term So is called strongly normalizing or terminating (SN) if there
exists no infinite series of reductions beginning in So:

A term reduction system is called strongly normalizing if every term of it
is SN.

Example 2.2.10. For our running example we have that the process a is
a normal form, the process (ab)c is not a normal form but has one, a(bc)
(use RA5), and there are no infinite reductions possible. To prove the
last statement, we introduce the method of the recursive path ordering
following [Klop, 1992].

Definition 2.2.11. Let (~, R) be a term reduction system. We define
O*(~) to be the superset of O(~) where some function (and constant)
symbols may be marked with an asterisk (*).

Example 2.2.12. A typical element of the superset 0* of our running
example is

a .* (b· CO).

Table 2. A term reduction system for BPA.

x +x __ x RA3

(x + y)z --> xz + yz RA4

(xy)z -- x(yz) RA5

Concrete process algebra 11

Definition 2.2.13. Let ~ be a signature and let > be a well-founded
partial ordering on ~. Let -+ be the reduction relation that is defined in
the clauses RPOl-5 in table 3.

Let s, t E 0* (~). We write s ~ t if 5 can be obtained from t by
permuting the arguments of t.

Let s, t E O(~). We write s >rpo t if there exists a u E O(~) such
that u ~ t and s -++ u. With -++ we mean the transitive closure of-+.

Example 2.2.14. Suppose that we have the following ordering on the
signature of our running example: . > +. With this choice of > we can
execute the following reduction:

(x+y)·z >rpo
>rpo
>rpo
>rpo

(x+y)·*z
(x + y) .* z + (x + y) .* z
(x +* y). z + (x +* y) . z
x· z + y' z.

In the following theorem (due to [Dershowitz, 1987]) we will see that if we
have such a reduction for each rewrite rule we have a strongly normalizing
term rewriting system.

Theorem 2.2.15. Let (~, R) be a term rewriting system with finitely many
rewriting rules and let> be a well-founded ordering on~. If s >rpo t for
each rewriting rule s -+ t E R, then the term rewriting system (~, R) is
strongly normalizing.

The method of the recursive path ordering is not convenient for rewrit­
ing rules such as (x· y) . z -+ x· (y. z). We will discuss a variant of the above
method which is known as the lexicographical variant of the recursive path

Table 3. The recursive path ordering.

RPOl. Mark head symbol (k ~ 0)

H(tJ, ... ,tk) -+ H*(tl"" ,tk)

RP02. Make copies under smaller head symbol (H > C, k > 0)
H*(tl, ... ,td -+ C(H*(t1, ... ,tk), ... ,H*(tl, ... ,tk))

RP03. Select argument (k > 1, lSi < k)

H*(tl"'" tk) -+ ti
RP04. Push * down (k > 1, I > 0)

H*(tl, ... ,C(51, ... ,51), ... ,tk) -+ H(t1, ... ,C*(SI, ... ,51), ... ,tk)
RP05. Handling contexts

5 -+ t =:} H(... ,5, ...) -+ H(... ,t, ...)

12 J.C.M. Baeten and C. Verhoef

ordering. The idea is that we give certain function symbols the so-called
lexicographical status (the remaining function symbols have the multiset
status). The function symbols with a lexicographical status have, in fact,
an arbitrary but fixed argument for which this status holds. For instance,
we give the sequential composition the lexicographical status for the first
argument.

We also have an extra rule to cope with function symbols with a lexico­
graphical status. For a k-ary function symbol H with the lexicographical
status for the ith argument we have the following extra rule in table 4.
The idea behind this rule is that if the complexity of a dedicated argument
is reduced and the complexity of the other arguments increases (but not
unboundedly) the resulting term will be seen as less complex as a whole.

Definition 2.2.16. Let s, t E 0(1:). We write s >/po t if s -++ t with -++
this time the transitive closure of the reduction relation defined by the rules
RPOl-5 and LPO.

Example 2.2.17. Suppose that we have the following ordering on the
signature of our running example· > +. We give the symbol· the lexico­
graphical status for the first argument. Consider the following reduction:

(x . y) . z > /po (x· y) . * z
> /po (x· * y) . (x. y) . * z)
> /po x· (x. * y) . z)
>/po x·(y·z).

Note that we did not use permutation of arguments in the deduction of
example 2.2.14. This means that we also have

(x + y) . z >/po x· z + y. z.

In the following theorem (due to [Kamin and Levy, 1980]) we will see that
if we have such a reduction for each rewrite rule we also have a strongly
normalizing term rewriting system.

Theorem 2.2.18. Let (1:, R) be a term rewriting system with finitely many

Table 4. The extra rule for the lexicographical variant of the recursive
path ordering. We have that H has the lexicographical status for the ith
argument.

LPO Reduce ith argument (k ;:: 1, 1 :'S: i :'S: k, l > 0)

Let t = H*(tl, ... ,ti-l,C(SI, ... ,sd,ti+1 , ..• ,tk)

Then t --+ H (t, ... , t, C* (SI' ... , s/), t, ... , t)

Concrete process algebra 13

rewriting rules and let > be a well-founded ordering on E. If s > /po t for
each rewriting rule s t E R, then the term rewriting system (E, R) is
strongly normalizing.

So with the aid of the above theorem we conclude that the term rewrit­
ing system of table 2 is strongly normalizing (we leave the case RA3 to the
reader). To prove strong normalization we will henceforth confine ourselves
to giving a partial ordering> on the signature and to saying which function
symbols do have the lexicographical status (and for which argument).

2.2.3 Semantics of basic process algebra

In this subsection we will give an operational semantics of BPA in the style
of Plotkin; see [Plotkin, 1981]. The usual procedure to give an operational
semantics is to only give a table with so-called transition rules; see, for
instance, table 5. In this subsection we will make a small excursion to the
so-called general theory of structured operational semantics because in that
framework we can formulate general theorems that hold for large classes
of languages. The reason for this detour is that we will use such general
results many times in this chapter.

To start with, we define the notion ofa term deduction system, which
is taken from [Baeten and Verhoef, 1993]. It is a modest generalization of
the notion of a transition system specification that originates from [Groote
and Vaandrager, 1992]. The idea of a term deduction system is that it can
be used not only to define a transition relation but also to define unary
predicates on states that turn out to be useful. See table 5 for a typical
term deduction system; it is a definition of both transition relations ~
and unary predicates ~..; for each a E A.

First we list some preliminaries for completeness sake.

We recall that the meaning or semantics of an equational specification
(E, E) is given by a model or an algebra A. Such an algebra consists of a set
of elements U (called the universe or domain of A) together with constants
in U and functions from un to U. We call A a E-algebra when there is
a correspondence between the constant symbols in E and the constants
in U, and between the function symbols in E and the functions in A (of
the same arity). We call such a correspondence an interpretation. Now if A
is a E-algebra of the equational specification (E, E), then an equation s =
t over (E, E) has a meaning in A, when we interpret the constant and
function symbols in sand t by the corresponding constants and functions
in A. Moreover, the variables in sand t are universally quantified. So
when for all variables in sand t we have that the statement s = t is true
in A we write A 1= s = t and we say A satisfies s = t or s = t holds
in A. We call 1= the satisfiability relation. If a L:-algebra A satisfies all
equations s = t over (L:, E) we write A 1= (L:, E) (or A 1= E) and we say

14 J.C.M. Baeten and C. Verhoef

that A is an algebra for E, or a model of E. We also say that E is a sound
axiomatization of A. See remark 2.2.34 and theorem 2.2.35 for an example.

Definition 2.2.19. A term deduction system is a structure (L, D) with L
a signature and D a set of deduction rules. The set D = D(Tp, Tr) is
parameterized with two sets, which are called respectively the set of pred­
icate symbols and the set of relation symbols. Let P E Tp and R E Tn
and s, t, u E D(L). We call expressions Ps and tRu formulas. A deduction
rule d E D has the form

H
C

with H a set of formulas and C a formula. We call the elements of H the
hypotheses of d and we call the formula C the conclusion of d. If the set
of hypotheses of a deduction rule is empty we call such a rule an axiom.
We denote an axiom simply by its conclusion provided that no confusion
can arise. Notions such as "substitution", "var", or "closed" extend to
formulas and deduction rules as expected.

Example 2.2.20. Let T(BPA) be the term deduction system consisting
of the signature of BPA and the deduction rules of table 5. As relation
symbols we have the transition relations and as predicate symbols we have
the successful termination predicates. The intuitive idea of s...!!.....s' is that,
for example, a machine in state s can evolve into state s' by executing
step a. The intended meaning of s...!!.....J is that this machine in state s
can terminate successfully by executing a; the symbol J (pronounced tick)
stands for successful termination.

Next, we give the definition of a proof of a formula from a set of deduc­
tion rules. This definition is taken from [Groote and Vaandrager, 1992].

Definition 2.2.21. Let T = P:, D) be a term deduction system. A proof
of a formula 'IjJ from T is a well-founded upwardly branching tree of which
the nodes are labelled by formulas such that the root is labelled with 'IjJ and
if X is the label of a node q and {Xi : i E I} is the set of labels belonging

Table 5. Derivation rules of T(BPA).

a ,
x----+x

a ,
X + y----+x

x...!!.....J

X + y...!!.....J
a ,

x----+x
a ,

xy----+x y

y...!!.....y'
a ,

X + y----+y

y...!!.....J

X + y...!!.....J

x...!!.....J
a xy---+y

Concrete process algebra 15

Fig. 2. A proof

to the nodes {qi : i E I} directly above q (I some is index set) then there
is a deduction rule

{rpi : i E I}
rp

and a substitution u : V ---+ O(L) such that 0'(rp) = X and u(rp;) = Xi
for i E I.

If a proof of ¢ exists, we say that ¢ is provable from T, notation T r ¢.

Example 2.2.22. It is not difficult to verify that the tree in figure 2 is a
proof of the transition (a + b)c~c.

Next, we define the notion of a deduction graph. It generalizes the
well-known notion of a labelled state transition diagram in the sense that
it can also handle unary predicates on states. First, we need a reachability
definition.

Definition 2.2.23. Let T be a term deduction system and let sand t be
terms. We define a binary relation p as the transitive reflexive closure of
the binary relation {(s,t) I 3R : T r sRt}. If spt we say that from s we
can reach t, or that t is reachable from s.

Definition 2.2.24. Let T be a term deduction system. The deduction
graph of a closed term s is a labelled graph that is obtained as follows.
The nodes of this graph are the terms that can be reached from s; the
labels of nodes are sets of predicate symbols. The edges of a deduction
graph are labelled by relation symbols. Let t be a node of the deduction
graph of s; then there is a label {P : T r Pt} attached to this node. Let t
and t' be nodes of the deduction graph of s. Then there exists an edge
labelled by R from t to t' in the deduction graph of s if and only if we
have T I- tRt'. See figure 3 for examples. Observe that we are a bit sloppy
there: we identify the edges of the graph with its labels; that is, we render
an edge

16 J. C.M. Baeten and C. Verhoef

a
-->

l

simply as ~. Moreover, we depict a predicate ...!!.......; as a b-labelled edge
to a node .,;.

Next, we define the notion of a structured state system [Baeten and
Verhoef, 1993). It is a generalization of the well-known notion of a labelled
transition system.

Definition 2.2.25. A structured state system is a triple (8, Sp, Sr) where
S is a set of states, 8p is a subset of the power set of 8 and Sr is a subset
of the power set of 8 x S. The sets Sp and Sr are called respectively the
set of predicates and the set of relations.

A term deduction system induces in a natural way a structured state
system.

Definition 2.2.26. Let T = (~, D) be a term deduction system and
let D = D(Tp,Tr). The structured state system G induced by T has as its
set of states S = C(~); the predicates and relations are the following.

{ { t E C(~) I T ~ Pt } I P E Tp },

{ { (s, t) E C(~) x C(~) I T ~ sRt} IRE Tr }.

Example 2.2.27. Let L = L(BPA) be the structured state system induced
by the term deduction system T(BPA) from example 2.2.20. In figure 3 we
depict two deduction graphs of the terms ab + a(b + b) and abo

Both terms represent the same behaviour: first a is executed, then b,
and then both systems terminate successfully. However, they do not have
the same deduction graphs as we can see in figure 3. So the set of deduction
graphs is not directly a model of BPA since in that system we want the
alternative composition to be idempotent.

Many different equivalence notions have been defined in order to identify
states that have the same behaviour; see [Glabbeek, 1990J and [Glabbeek,
1993] for a systematic approach. The finest among them is the so-called
strong bisimulation equivalence of [Park, 1981]. We will take the formula­
tion of [Baeten and Verhoef, 1993J for this well-known notion.

It will turn out that the two deduction graphs of example 2.2.27 are
bisimilar.

Definition 2.2.28. Let G = (S, Sp, Sr) be a structured state system. A
relation B ~ S x S is called a (strong) bisimulation if for all s, t E S
with sBt the following conditions hold. For all R E Sr

\Is' E S(sRs' => 3t' E 8: tRt' II s'Bt'),

\It' E S(tRt' => 3s' E S : sRs' II s' Bt'),

Concrete process algebra 17

ab ab + a(b + b)

"1 /~
b b b+ b

'1 ~/
vi vi

Fig. 3. Two deduction graphs.

and for all P E Sp
Ps {:} Pt.

The first two conditions are known as the transfer property. Two states s
and t in S are bisimilar in the structured state system G if there exists
a bisimulation relation containing the pair (s, t). The notation is s "'G t
or s ~ t provided that no confusion can arise.

Note that bisimilarity is an equivalence relation, called a bisimulation
equivalence.

Example 2.2.29. Let L = L(BPA) be the structured state system of
example 2.2.27. It is not hard to see that the two states ab + a(b + b)
and ab are bisimilar. We graphically depict the bisimulation relation by
connecting its pairs with a dashed line as in figure 4.

When two states in a deduction graph are bisimilar, we also call the
corresponding terms bisimilar.

An example of two deduction graphs that are not bisimilar can be found
in figure l.

Considered as deduction graphs, the two processes x = ab and y = ab +
a(b + b) are not equal, but from a process algebraic point of view, we want
them to be. That is, they both first execute the atomic process a and then
the b. So we would like to have a model for which ab = ab + a(b + b). The
usual approach to obtain this is to work with an equivalence relation and to
identify equivalent objects. We then say that the objects are equal modulo
this equivalence relation. If x is a process and ~ denotes bisimulation
equivalence, the equivalence class is defined [xl = {y : x ~ y}. So, in the
above example the two processes x = ab and y = ab + a(b + b) are equal
modulo bisimulation equivalence: [xl = [yl. Now it would be very nice if
the equivalence class is independent of the chosen representative. If this is
the case, we can easily define our process algebra operators on these classes.

18 J. C.M. Baeten and C. Verhoef

Fig. 4. Bisimilar deduction graphs.

For instance, the alternative composition can be defined as [x]+[y] = [x+y].
In general, the assumption that a relation is an equivalence relation is too
weak for this purpose. The additional property that does the job is called
congruency. In the next definition we define this well-known notion.

Definition 2.2.30. Let ~ be a signature. An equivalence relation R on
the set of closed ~ terms is called a congruence if for all n-ary function
symbols f E ~ we have

where Xl, YI, ... , X n , Yn are closed ~ terms.

Next, we define some syntactical constraints on the rules of a term
deduction system for which it can be proved that if a term deduction system
satisfies these constraints then strong bisimulation equivalence will always
be a congruence. Below we discuss the so-called path format; this stands
for "predicates and tyft/tyxt hybrid format" and is proposed by [Baeten
and Verhoef, 1993]. It is a modest generalization of the tyft/tyxt format
originating from [Groote and Vaandrager, 1992]. The name tyft/tyxt refers
to the syntactical form of the deduction rules.

We refer to [De Simone, 1985] for the first paper that discusses syntacti­
cal constraints on operational rules. Nowadays, the syntactical constraints
formulated in that paper are often referred to as the "De Simone format".

Definition 2.2.31. Let T = (~, D) be a term deduction system with D =
D(Tp, Tr). Let I and J in the following be index sets of arbitrary cardinal­
ity, let ti, Sj, t E O(~) for all i E I and j E J, let Pj , P E Tp be predicate
symbols for all j E J, and let Ri, R E Tr be relation symbols for all i E I.
A deduction rule d E D is in path format if it has one of the following four
forms:

Concrete process algebra

{PjS j : j E J} U {tiRiYi : i E I}
f(xI,· .. , xn)Rt

19

with f E ~ an n-ary function symbol, X = {Xl, ... ,xn }, Y = {Yi : i E I},
and X U Y ~ V a set of distinct variables;

{PjS j : j E J} U {tiRiYi : i E I}
xRt

with X = {X}, Y = {Yi : i E I}, and X U Y C V a set of distinct variables;

{PjSj : j E J} U {tiRiYi : i E I}
Pf(x!, ... ,xn)

with f E ~ an n-ary function symbol, X = {Xl> ... ,xn }, Y = {Yi : i E I},
and X U Y ~ V a set of distinct variables or

{PjS j : j E J} U {tiRiYi: i E I}
Px

with X = {x}, Y = {Yi : i E I}, and X U Y C V a set of distinct variables.
If in the above four cases var(d) = Xu Y we say that the deduction

rule d is pure.
We say that a term deduction system is in path format if all its deduction

rules are in path format. We say that a term deduction system is pure if
all its rules are pure.

Next, we formulate the congruence theorem for the path format. It is
taken from [Baeten and Verhoef, 1993). There the so-called well-founded
subcase is proved. [Fokkink, 1994) showed that this requirement is not
necessary, thus yielding the following result. Note that we do not use the
notion pure in the theorem below. We just define it since we will need this
notion later on when we will have our second excursion into the area of
general SOS theory.

Theorem 2.2.32. Let T = (~, D) be a term deduction system in path for­
mat. Then strong bisimulation equivalence is a congruence for all function
symbols occurring in ~.

Lemma 2.2.33. Let T(BPA) be the term deduction system that we defined
in example 2.2.20. Then bisimulation equivalence is a congruence on the
set of closed BPA terms.

Proof. It is easy to see that the operational semantics given in table 5 is
in path format, so with theorem 2.2.32 we immediately find the proof of
this lemma. •

Remark 2.2.34. It follows from lemma 2.2.33 that we can take the quo­
tient of the algebra of closed BPA terms with respect to bisimulation equiv­
alence and that the operators of BPA can be defined on this quotient by

20 J.C.M. Baeten and C. Verhoef

taking representatives. Next, we will show that this quotient algebra is a
model of BPA. We recall that this property is called soundness; that is, if
two closed terms x and yare provably equal, BPA f- x == y, then we also
have that x and yare bisimilar, x ~ y.

Theorem 2.2.35. The set of closed BPA terms modulo bisimulation equiv­
alence is a model of BPA.

Proof. Since bisimulation equivalence is a congruence, we only need to
verify the soundness of each separate axiom. We check Al (see table 1).
Let x and y be closed BPA terms. We have to show that x + y is bisimilar
with y + x (using the rules of table 5). It is not hard to see that the
relation that contains the pair (x + y, y + x) and the diagonal of S x S
is a bisimulation. The cases A2-4 are treated analogously. It remains to
check A5. It is easy to see that the relation containing all the pairs of the
form ((xy)z,x(yz») and the diagonal of S x S is a bisimulation. •

Next we will show that BPA is a complete axiomatization of the set of
closed terms modulo bisimulation equivalence. We recall that an axiom­
atization is complete if bisimilar x and yare provably equal with these
axioms. Note that we only talk about closed process terms here: complete
axiomatizations for open terms are much more difficult, see, e.g. [Groote,
1990al. But first we will need some preliminaries to prove this; they are
listed in the next lemma.

Lemma 2.2.36. Let x and y be closed BPA terms and let n(z) be the
number of symbols of a closed BPA term z. Then we have:

(i) T(BPA) f- x"'!!""'y' =} BPA f- x == a + x,

(ii) T(BPA) f- x"'!!""'y =} BPA f- x == ay + x,

(iii) T(BPA) f- x"'!!""'y =} n(x) > n(y).

Proof. Easy. Use induction on the depth of the proof. •

Theorem 2.2.37. The axiom system BPA is a complete axiomatization
of the set of closed BPA terms modulo bisimulation equivalence.

Proof. Let x and y be bisimilar closed BPA terms, notation x ~ y. We
have to prove that BPA f- x == y. With the aid of proposition 2.2.6 and
theorem 2.2.35 it is enough to prove this for basic terms. By symmetry, it
is even enough to prove that for basic terms x and y

x + y ~ y =} BPA f- x + y == y.

We will prove this with induction on n = n(x) + n(y). First, let x == a.
Then y"'!!""'y', so with lemma 2.2.36 we find that x + y = y. This proves the
basis of our induction. Now suppose that x == ax' . Then x+y"'!!""'xl , so there
is a yl with y"'!!""'yl and Xl ~ yl. But then also Xl + yl ~ yl and yl + Xl ~ Xl

Concrete process algebra 21

and with induction we find x' + y' = y' and y' + x' = x'. SO x' = y'.
Now x + y = ax' + y = ay' + y = y with lemma 2.2.36. Finally, suppose
that x = x' + x". Since x + y '" y, we also have x' + y '" y and x" + y '" y.
By induction x' +y = y and x" +y = y. So x+y = x' +x" +y = y+y = y .•

2.3 Recursion in BPA
In this subsection we will add recursion to the theory BPA.

Definition 2.3.1. Let V be a set of variables. A recursive specifica­
tion E = E(V) is a set of equations

E = {X = sx(V) : X E V},

where each sx(V) is a BPA term that only contains variables of V. These
equations are called recursion equations. A recursion equation is called a
recursive equation if it has the form X = s(X) where s(X) only contains
the variable X. By convention, we use capital letters X, Y, ... for variables
bound in a recursive specification.

Example 2.3.2. El = {X = Xa + a} and E2 = {Y = aY} are examples
of recursive specifications.

Definition 2.3.3. A solution of a recursive equation is a process in some
model of BPA such that its substitution in the recursive equation yields a
true statement in that model.

A solution {(X I E) : X E V} of a recursive specification E(V) is a
set of processes in some model of BPA such that replacing each variable X
by (XI E) in the recursion equations of E(V) yields true statements in
that model. Mostly, we are interested in one particular variable X E V.
Abusing terminology we call (X I E) the solution of E. Moreover, abusing
notation we often write X for (X I E).

Remark 2.3.4. In ecs [Milner, 1980; Milner, 1989] and CSP [Hoare,
1985] the so-called J.l notation is used: if x = t(x) is a recursive equation,
then J.lx.t(x) is a process satisfying this equation.

Definition 2.3.5. Let E = E(V) be a recursive specification and let t be
an open BPA term. Then (t I E) is the process t with all variables X both
occurring in t and V replaced by the processes (X I E).

At this point we have all the necessary definitions to define the equa­
tional specification BPArec, in which rec is an abbreviation for recursion.
The signature of BPArec consists of the signature of BPA plus for all re­
cursive specifications E(V) and for all X E V a constant (X I E). The
axioms of BPArec consist of the axioms of BPA plus for all recursive spec­
ifications E(V) = {X = Sx : X E V} and for all X E V an equation
(X I E) = (sx I E).

Definition 2.3.6. Let s be a term over BPA containing a variable X. We

22 J.C.M. Baeten and C. Verhoef

call an occurrence of X in s guarded if s has a subterm of the form a· t
with t a BPA term containing this occurrence of X; in this case we call the
atomic action a E A a guard (of X in s). Otherwise we call the occurrence
of X in s unguarded.

Definition 2.3.7. We call a term completely guarded if all occurrences of
all its variables are guarded.

We call a term guarded if we can rewrite it to a completely guarded
term by use of the axioms. Otherwise, a term is called unguarded.

ExaUlple 2.3.8. The term aX + bX is completely guarded, (a + b)X is
guarded but not completely guarded, and X a + Xb is unguarded.

Definition 2.3.9. We call a recursive specification completely guarded if
the right-hand sides of its recursion equations are completely guarded.

We call a recursive specification guarded if we can rewrite it to a com­
pletely guarded recursive specification by use of the axioms and/or its re­
cursion equations. Otherwise, a recursive specification is called unguarded.

ExaUlple 2.3.10. In example 2.3.2, the recursive specification EJ is un­
guarded and E2 is completely guarded.

The next two definitions are taken from [Bergstra and Klop, 1986].

Definition 2.3.11. The (restricted) recursive definition principle is the
assumption that every (guarded) recursive specification has a solution. We
refer to this assumption as RDP(-).

Definition 2.3.12. The recursive specification principle (RSP) is the as­
sumption that every guarded recursive specification has at most one solu­
tion.

Note that RSP contains the guardedness demand from the beginning (as
opposed to AlP and RDP); this is due to the fact that having at most one
solution is not feasible for unguarded specifications, take for example {X =
X}.

Together, RDP- and RSP say that a guarded recursive specification
has a unique solution.

Semantics The semantics of BPArec can be given completely analogously
to the semantics for BPA that we gave in subsection 2.3.

We consider the term deduction system T(BPArec) with as signature
the signature of BPArec and as rules the rules in table 5 together with those
in table 6. Bisimulation equivalence is a congruence on the structured state
system L(BPArec) induced by T(BPArec); see 2.2.32. So on the quotient of
the algebra of closed BPArec terms with respect to bisimulation equivalence
we can define the operators of BPArec by taking representatives. The next
theorem states that this quotient algebra is a model of BPArec.

TheoreUl 2.3.13. The set of closed BPArec terms modulo bisimulation

Concrete process algebra

Table 6. Derivation rules for recursion (X = Sx E E).

/ a v ..

a

{sx I E)...!!....."j
{X I E)...!!....."j

X
...

{sx I E)"'!!""'y
(X I E)"'!!""'y

... ...
a

a a a ___ a2 ___ a3 _----

23

Fig. 5. Two deduction graphs of the processes X and Y that can be found
in example 2.3.2.

equivalence is a model of BPArec. Moreover, it satisfies RDP and RSP.

Proof. As bisimulation equivalence is a congruence we only need to check
the soundness of each axiom. The axioms A1-5 are treated in exactly the
same way as in theorem 2.2.35. Equations concerning recursion are treated
in the same way as AI.

Let E(V) be a recursive specification. Then ([{X I E)] : X E V} is a
solution. See below example 2.2.29 for the [.J notation.

The proof that this model satisfies RSP wiIl be postponed until we
have discussed the combination of recursion and so-called projections. See
theorem 2.4.36 for a proof. •

Example 2.3.14. In figure 5, we depict two deduction graphs of the solu­
tions of the two recursive specifications of example 2.3.2. It is not hard to
see that X ...!!....."j and X ...!!.....an for all n > 1. We can think of the process X
as the infinite sum Ln<w an and we can think of the process Y as the
infinite product aW

• Note that X + Y and X are not bisimilar since X + Y
can do infinitely many a steps, whereas X can perform only finitely many
a steps.

2.4 Projection in BPA
In subsection 2.3 we introduced guarded recursive specifications. They
are mainly used to specify infinite processes such as a counter: see exam­
ple 2.14.5. With the principles RDP and RSP we can prove statements in­
volving such infinite processes. See example 3.6.1 for an application ofRSP.
In this subsection we will introduce another method for this purpose. The
idea is that we approximate an infinite process by its finite projections. The

24 J.C.M. Baeten and C. Verhoef

Table 7. Projection.

7rn (a) = a PRI

7rl(ax)=a PR2

7rn +l(ax) = a7rn (x) PR3

7rn (x + y) = 7rn (x) + 7rn (Y) PR4

finite projections for their part turn out to be closed terms and they can
therefore be taken care of by structural induction (see also 2.2 for struc­
tural induction). This material is based on the paper [Bergstra and Klop,
1982].

We will define the equational specification BPA + PR, in which PR is
an abbreviation for projection.

The signature of BPA + PR consists of the signature of BPA plus for
each n 2: 1 a unary function 7r n that is called a projection operator of order
n or the nth projection. The axioms of BPA + PR consist of the axioms
of table 7 and the axioms of BPA; we call the axioms PRl-4. In table 7
we have n 2: 1, the letter a ranges over all the atomic actions, and the
variables x and yare universally quantified.

We will now discuss the axioms of table 7.
The idea of projections is that we want to be able to cut off a process

at a certain depth. An atomic action is intrinsically the most "shallow"
process so we cannot cut off more. Axiom PR1 expresses this: a projection
operator is invariant on the set of atomic actions.

The subscript n of the projection operator serves as a counter for the
depth of a process. Axioms PR2 and PR3 illustrate how this counter can
be decremented.

Axiom PR4 says that the projection operator distributes over the al­
ternative composition: choosing an alternative does not alter the counter
of the projection operator.

Proof rule We will discuss a proof rule expressing that a process is de­
termined by its finite projections. This rule is due to [Bergstra and Klop,
1986].

Definition 2.4.1. Let x and y be processes. The approximation induc­
tion principle (AlP) is the following assumption. If for all n 2: 1 we
have 7rn (x) = 7rn (Y) then x = y.

Remark 2.4.2. In the presence of recursion we will define a more restric­
tive version of this principle; see definition 2.4.28.

The following theorem states that projection operators can be elim­
inated from closed terms. To prove this we will use a method that we

Concrete process algebra 25

briefly explained in subsection 2.2.2. First, we define what we mean by the
elimination of operators.

Definition 2.4.3. Let L = (~, E) and Lo = (~o, Eo) be two equational
specifications with ~o ~ ~. If for all s E C(~) there is atE C(~o) such
that L I- s = t we say that L has the elimination property (for Lo).

Theorem 2.4.4. The equational specification BPA + PR has the elimina­
tion property for BPA.

Proof. It is not hard to show that the term rewriting system of table 8 is
strongly normalizing with the lexicographical variant of the recursive path
ordering that we treated in subsection 2.2.2. We confine ourselves to giving
a partial ordering < on the elements of the signature of BPA + PR.

+ < . < 7rl < 7r2 <

Moreover, we give the sequential composition· the lexicographical status
for the first argument. It is straightforward to show that the left-hand
side of each rewrite rule is >/po than its right-hand side. Now, apply
theorem 2.2.18.

Now it is not hard to see that a normal form (with respect to the term
rewriting system in table 8) of a closed BPA + PR term must be a basic BPA
term, which proves the theorem. •

Next, we formulate a traditional theorem in process algebra. It states
that the term rewriting system associated to the equational specification
BPA + PR behaves neatly: it terminates modulo the equations without a
clear direction (viz. the commutativity and the associativity of alternative
composition) and it is confluent modulo these equations. In term rewrit­
ing theory, this is expressed by saying that the term rewriting system is
complete. Incidentally, note that we proved in theorem 2.4.4 that the asso­
ciated term rewriting system terminates, but not that it terminates modulo
the equations Al and A2.

Table 8. A term rewriting system for BPA + PR.

x+x-+x RA3

(x + y)z --+ xz + yz RA4

(xy)z -+ x(yz) RA5

7rn(a) -+ a RPRI

7rIC ax) --+ a RPR2

7rn +l (ax) --+ a7rn(x) RPR3

7rn(x + y) --+ 7I"n(x) + 7rn (Y) RPR4

26 J. C.M. Baeten and C. Verhoef

The main application of the next result is that it is usually used to prove
the conservativity of BPA + PR over BPA (an extension is conservative if
no new identities can be derived between original terms in the extended
system). The proof of this term rewriting theorem requires much term
rewriting theory, which is beyond the scope of this chapter. For more
information on these term rewriting techniques we refer to [Jouannaud and
Munoz, 1984] and [Jouannaud and Kirchner, 1986]. Nevertheless, we want
to mention the theorem anyway, since it has an importance of its own, for
instance for implementational purposes. We will prove the conservativity
with an alternative method that we will explain in the next subsection; see
subsection 2.4.l.

Theorem 2.4.5. The term rewriting system of table 8 is confluent modulo
the equations A1 and A2. Therefore, it has unique normal forms modulo
the equations A1 and A2.

The next theorem states that for a closed term s the sequence

converges to the term s itself. It is a nice example of the use of structural
induction.

Proposition 2.4.6. Let t be a closed BPA + PR term. Then' there is
an n > 1 such that for all k ~ n we have BPA + PR f- 1l"k(t) = t.

Proof. It suffices to prove this proposition for basic BPA terms (use the­
orem 2.4.4). We will use the technique of structural induction that we
discussed on page 8. So, we will use the inductive definition of a basic
term (2.2.4).

Let t be an atomic action. Take n = 1 and use axiom PRl.
Let t = a's with a E A and s. Suppose that the proposition holds for s.

Then there is an n' ~ 1 with 1l"ds) = s for all k ~ n'. Take n = n' + 1 and
use axiom PR3.

Let t = s+r. Suppose that the proposition holds for sand r. Then there
are n' and nil with the desired properties for sand r. Take n = max(n', nil)
and use axiom PR4. •

Semantics The semantics of BPA + PR can be given in the same way as
the semantics for BPA.

Table 9. Derivation rules for projections.

a ,
x--->x

a ,
x-->x

Concrete process algebra 27

We consider the term deduction system T{BPA + PR) with as signature
the signature of BPA + PR and as deduction rules the rules in tables 5
and 9. Bisimulation equivalence is a congruence on the structured state
system induced by T{BPA + PR); see 2.2.32. So the quotient of closed
BPA + PR terms with respect to bisimulation equivalence is well-defined;
that is, the operators of BPA + PR can be defined on this quotient by taking
representatives. The following theorem states that this quotient is a model
ofBPA + PR.

Theorem 2.4.7. The set of closed BPA + PR terms modulo bisimulation
equivalence is a model of BPA + PR and AlP.

Proof. Strong bisimulation equivalence is a congruence, so to prove the
soundness of the axiomatization BPA + PR we just need to check the sound­
ness of the separate axioms. The axioms Al-5 are treated exactly the same
as in theorem 2.2.35. So we only need to check the axioms of table 7. The
relation between 7rn {a) and a is a bisimulation, so PRl holds. Axiom PR2
is treated analogously. Axioms PR3 and PR4 are treated as AI.

With proposition 2.4.6 we see that AlP holds. •

2.4.1 Conservativity

Here, we will explain how to prove the conservativity of BPA + PR over
BPA without using theorem 2.4.5. We recall that the main application of
theorem 2.4.5 is that we can prove that adding the projection operators
does not yield new identities between BPA terms. This important property
is called conservativity. We did not give a proof of theorem 2.4.5, but
instead we will provide an alternative powerful method for proving the
conservativity of BPA + PR over BPA (and all the other conservativity
theorems in this chapter). This method is based on the format of the
operational rules of both systems rather than on a term rewriting analysis.
So, we will make a second expedition into the area of general theory on
structured operational semantics and we will illustrate the theory with a
running example. This example will yield, of course, the conservativity of
BPA + PR over BPA. We will base ourselves on [Verhoef, 1994bl.

First we formalize how we can join two given signatures.

Definition 2.4.8. Let I:o and I:l be two signatures. If for all operators
f E I:o n I:l the arity of f in I:o is the same as its arity in I:l then
the sum of I:o and I:1, notation I:o E& I:1, is defined and is equal to the
signature I:o U I:1 .

Example 2.4.9. Let I:o == AU {+,.} and I:J == I:o U {7rn : n ~ I} be
signatures. Then the sum I:o E& I:l is defined and equals the signature of
BPA + PR. Note that these signatures are not disjoint.

Next, we define how to "add" two operational semantics.

Definition 2.4.10. Let Ti == (I:i' D i) be term deduction systems with

28 J.C.M. Baeten and G. Verhoef

predicate and relation symbols T; and T; respectively (i = 0,1). Let
Eo EEl El be defined. The sum of TO and Tl, notation TO EEl Tl, is the
term deduction system (Eo EEl E1 , Do U D 1) with predicate and relation
symbols Tg U T~ and T~ U T; respectively.

Example 2.4.11. Let To be the term deduction system with Eo of our
running example and with the rules oftable 5. Let Tl be the term deduction
system with El of the running example and with deduction rules that can
be found in table 9. The sum To EEl Tl is defined and is the operational
semantics of the theory comprising basic process algebra and projections:
BPA+PR.

Next, we define what we will call operational conservativity. This def­
inition is taken from [Verhoef, 1994b], but this notion is already defined
by (Groote and Vaandrager, 1992] for the case without extra predicates on
states.

Definition 2.4.12. Let Ti = (Ei, Di) be term deduction systems (i = 0, 1)
with T = (E, D) := TO E9 Tl defined. Let D = D(Tp, Tr). The term
deduction system T is called an operationally conservative extension of TO
if for all s, u E G(Eo), for all relation symbols R E Tr and predicate
symbols P E Tp , and for all t E G(E) we have

T I- sRt ¢=> TO I- sRt

and

Before we can continue with a theorem that gives sufficient conditions
when a term deduction system is an operationally conservative extension
of another such system, we need one more definition. This definition orig­
inates from [Groote and Vaandrager, 1992J.

Definition 2.4.13. Let T = (E, D) be a term deduction system and let F
be a set of formulas. The variable dependency graph of F is a directed graph
with variables occurring in F as its nodes. The edge x -> y is an edge of
the variable dependency graph if and only if there is a relation tRs E F
with x E var(t) and y E var(s).

The set F is called well-founded if any backward chain of edges in its
variable dependency graph is finite. A deduction rule is called well-founded
if its set of hypotheses is so. A term deduction system is called well-founded
if all its deduction rules are well-founded.

Example 2.4.14. Definition 2.4.13 expresses that a rule is well-founded
if the set of premises does not contain cyclic references to variables (in case
this set is finite). So, for instance, if there is a premise xRx then there is
a cyclic reference to the variable x. Also the two premises xRy and ySx
comprise a cyclic reference to x. Since we do not have such premises in the

Concrete process algebra 29

operational semantics of BPA, it is not hard to verify that the deduction
rules of table 5 are well-founded.

Now, we are in a position to state a theorem providing us with sufficient
conditions so that a term deduction system is an operationally conservative
extension of another one. This theorem is based on a more general theorem
of [Verhoef, 1994b]. A more restrictive version of this theorem was first
formulated by [Groote and Vaandrager, 1992].

Theorem 2.4.15. Let TO = (1:0, Do) be a pure well-founded term deduc­
tion system in path format. Let T1 == (1:1, D 1) be a term deduction system
in path format. If there is a conclusion sRt or Ps of a rule d1 E D1
with s == x or s = f(X1, ... ,xn) for an f E 1:0, we additionally require
that d1 is pure, well-founded, t E D(Eo) for premises tRy of d1, and that
there is a premise containing only Eo terms and a new relation or pre­
dicate symbol. Now if T = TO EB T1 is defined then T is an operationally
conservative extension of To.

Example 2.4.16. We already gave the definition of a pure term deduction
system in definition 2.2.31. It is not hard to see that the term deduction
system To of our running example is pure. It is also not difficult to see
that T1 of our running example is in path format. Moreover, since there is
no deduction rule in T1 with an old function symbol or a variable on the
vital position, we do not need to check the additional requirements. So,
since the sum is defined we conclude with the above theorem that To EB T1
is an operationally conservative extension of To.

Now that we have the operational conservativity, we need to make
the connection with the usual conservativity. Following [Verhoef, 1994b],
henceforth we will call this well-known property equational conservativity
to exclude possible confusion with the already introduced notion of opera­
tional conservativity. As an intermediate step, we will first define the notion
of operational conservativity up to '{J equivalence. Here, '{J equivalence is
some (semantical) equivalence that is defined in terms of relation and pre­
dicate symbols only. Strong bisimulation equivalence is an example of an
equivalence that is definable exclusively in terms of relation and predicate
symbols. This definition was first formulated by [Groote and Vaandrager,
1992] for the case of operational conservativity up to strong bisimulation
equivalence. Roughly, if original terms sand tare bisimilar in the extended
system, if and only if they are bisimilar in the original system we call the
large system a conservative extension up to bisimulation equivalence of the
original one. The next definition expresses this for any equivalence.

Definition 2.4,17. Let Ti = (Ei' Di) be term deduction systems (i == 0, 1)
with T == (E,D):= TO EB T1 defined. If we have for all s,t E C(Eo)

30 J.C.M. Baeten and C. Verhoef

we say that T is an operationally conservative extension of To up to cp equiv­
alence, where cp is some semantical equivalence that is defined in terms of
relation and predicate symbols only. By s =<p t we mean that sand tare
in the same cp equivalence class. The superscripts EB and 0 are to express
the system in which this holds.

Remark 2.4.18. Many equivalences are definable in terms of relation
and predicate symbols only: for instance, trace equivalence, completed
trace equivalence, failure equivalence, readiness equivalence, failure trace
equivalence, ready trace equivalence, possible future equivalence, simula­
tion equivalence, complete simulation equivalence, ready simulation equiva­
lence, nested simulation equivalence, strong bisimulation equivalence, weak
bisimulation equivalence, 1J bisimulation equivalence, delay bisimulation
equivalence, branching bisimulation equivalence, and more equivalences.
We refer to Van Glabbeek's linear time - branching time spectra [Glabbeek,
1990; Glabbeek, 1993] for more information on these equivalences.

Next, we formulate a theorem stating that if a large system is an op­
erationally conservative extension of a small system, then it is also an op­
erationally conservative extension up to any equivalence that is definable
in terms of relation and predicate symbols only. This theorem is taken
from [Verhoef, 1994b]. This theorem was formulated by [Groote and Vaan­
drager, 1992] for the case of strong bisimulation equivalence.

Theorem 2.4.19. Let Ti = (Ei' Di) be term deduction systems (i = 0, 1)
and let T = TO EB T1 be defined. If T is an operationally conservative
extension of To then it is also an operationally conservative extension up
to cp equivalence, where cp is an equivalence relation defined exclusively in
terms of predicate and relation symbols.

Example 2.4.20. For our running example it will be clear that the term
deduction system of the sum To EB T1 is an operationally conservative ex­
tension up to strong bisimulation equivalence of the base system To.

Now that we have the intermediate notion of operational conservativity
up to some equivalence, we will come to the well-known notion that in this
chapter we will call equational conservativity. We recall that an equational
specification is a pair consisting of a signature and a set of equations over
this signature. First we define how we combine equational specifications
into larger ones.

Definition 2.4.21. Let L; = (E;, Ed be equational specifications (i =
0,1). Let Eo EB E1 be defined. Then the sum Lo EB L1 of Lo and L1 is the
equational specification (~o EB ~r, Eo U Ed.
Example 2.4.22. Let Lo be the equational specification that consists of
the signature Eo of our running example and the equations Eo of BPA that
we already listed in table 1: the axioms AI-A5. Let L1 be the equational

Concrete process algebra 31

specification with as signature El of our running example and with equa­
tions that we presented in table 7: PR1-PR4. Now the sum Lo EB Ll is
defined and equals the equational specification that we baptized BPA + PR.

Next, we define the notion of equational conservativity.

Definition 2.4.23. Let Li = CEi, Ei) be equational specifications (i
0,1) and let L = Lo EB Ll be defined. We say that L is an equationally
conservative extension, or simply a conservative extension of Lo, if for
all s, t E C(Eo)

L f- s = t ¢:::::> Lo f- s = t.

We recall that f- stands for derivability in equational logic as defined in
definition 2.2.2.

Now we have all the prerequisites to formulate the equational conser­
vativity theorem. This theorem is taken from [Verhoef, 1994bl.

Theorem 2.4.24. Let Li = CEi , Ed be equational specifications Ci = 0, 1)
and let L = CE, E) = Lo E9 Ll be defined. Let Ti = CE i , Dd be term
deduction systems and let T = To E9 T1 • Let cp be an equivalence that is
definable in terms of predicate and relation symbols only. Let Eo be a
. complete axiomatization with respect to the cp equivalence model induced
by To and let E be a sound axiomatization with respect to the cp equivalence
model induced by T. If T is an operationally conservative extension of To
up to cp equivalence then L is an equationally conservative extension of Lo.

Now, we can apply the equational conservativity theorem to prove the
conservativity of BPA + PR over BPA.

Theorem 2.4.25. If t and s are closed BPA terms, then we have

BPA f- t = s ¢:::::> BPA + PR f- t = s.

Proof. On the way to this proof we checked all the conditions of the theo­
rem in the example paragraphs except for the soundness and completeness
of BPA and the soundness of BPA + PRo Fortunately, we already proved
these conditions. The soundness and completeness of BPA is proved in
theorems 2.2.35 and 2.2.37 respectively and the soundness of BPA + PR is
proved in theorem 2.4.7. So, we can apply theorem 2.4.24 and conclude
that BPA + PR is an equationally conservative extension of BPA. •

Now that we have the conservativity of BPA + PR, we can immediately
prove its completeness from the completeness of the subsystem BPA. We
will not do this directly, but we will formulate a general completeness the­
orem that can be found in [Verhoef, 1994bj; it is a simple corollary of the
equational conservativity theorem. This completeness theorem states that
the combination of conservativity, elimination of extra operators, and the

32 J. C.M. Baeten and C. Verhoef

completeness of the subsystem yields the completeness of the extension.
For the formulation of the next theorem, we stick to the notations and
assumptions stated in theorem 2.4.24.

Theorem 2.4.26. If in addition to the conditions of theorem 2.4.24 the
equational specification L has the elimination property for Lo (see defini­
tion 2.4.3) then we have that E is a complete axiomatization with respect
to the cp equivalence model induced by the term deduction system T.

Theorem 2.4.27. The axiom system BPA+PR is a complete axiomatiza­
tion of the set of closed BPA + PR terms modulo bisimulation equivalence.

Proof. We apply theorem 2.4.26. We already know that the conditions
of the conservativity theorem are satisfied. So we only need to check the
additional one. According to theorem 2.4.4 the elimination condition is
satisfied. So the conditions of theorem 2.4.26 are satisfied and we are done.

I

2.4.2 Recursion and projection

In this subsection we will add recursion and projections to the theory BPA.
We will define the equational specification BPArec + PR by means of a

combination of BPArec and BPA + PR.
The signature of BPArec + PR consists of the signature of BPArec plus

for each n > 1 a unary function 7rn (projections). The axioms of BPArec +
PR are the axioms of BPArec and the axioms of table 7.

Proof rule We will discuss a proof rule expressing that a process that can
be specified with the aid of a guarded recursive specification is determined
by its finite projections. This rule is a restricted version of the rule that is
defined in definition 2.4.1 and is also due to [Bergstra and Klop, 1986].

Definition 2.4.28. Let x and y be processes such that x or y (or both) can
be specified with the aid of a guarded recursive specification. The restricted
approximation induction principle (AIP-) is the following assumption. If
for all n 2: 1 we have 7rn (x) = 7rn (Y) then x = y.

Remark 2.4.29. The principle AIP- is more restrictive than necessary.
A more general approximation induction principle is defined in [Glabbeek,
1987].

Theorem 2.4.30. Let x be a solution of a guarded recursive specification.
Then 7r n (x) can be rewritten into a closed BPA term for all n > 1.

Proof. Without loss of generality we may assume that x is a solution of a
completely guarded recursive specification. Let the right-hand side of the
recursion equation of x be called S1' Suppose that we have defined Sn. Then
we obtain Sn+1 as follows: substitute for each variable in Sn the right-hand
side of its recursion equation. It is not hard to see that for every n > 1

Concrete process algebra 33

we have 7rn {x) = 7rn{sn) and that the latter term can be rewritten into a
closed BPA term. •

The following corollary is called the projection theorem.

Corollary 2.4.31. Suppose that we have two solutions Xl and X2 of a
guarded recursive specification belonging to the same recursion equation.
Then for all n > 1 : 7rn {xd = 7rn {X2) .

. Proof. This follows immediately from the proof of theorem 2.4.30. •

Theorem 2.4.32. The principle AIP- implies the principle RSP.

Proof. This follows immediately from corollary 2.4.31. •
Semantics The semantics of BPArec + PR is given by means of a term de­
duction system T{BPArec+ PRJ with as signature the signature of BPArec+
PR and as rules the rules in tables 5, 6, and 9. Bisimulation equivalence
is a congruence on the structured state system L{BPArec + PRJ induced
by T{BPArec+PR); see 2.2.32. So the quotient of closed BPArec+PR terms
modulo strong bisimulation equivalence is well-defined; that is, the opera­
tors of BPArec + PR can be defined on this quotient by taking representa­
tives. The next theorem states that this quotient is a model of BPArec+PR.

Theorem 2.4.33. The set of closed BPArec + PR terms modulo bisimu­
lation equivalence is a model of BPArec + PR.

Proof. Since strong bisimulation equivalence is a congruence, we only need
to verify the soundness of each axiom. This has been done in the proofs of
theorems 2.3.13 and 2.4.7. •

Theorem 2.4.34. The model of closed BPArec + PR terms modulo bisim­
ulation equivalence satisfies RDP, AIP-, and RSP.

Proof. The principle RDP is proved as in theorem 2.2.35. With the aid
of theorem 2.4.32 it suffices to prove that the model satisfies AIP-. This
proof is taken from [Glabbeek, 1987].

So let X and y be closed BPArec + PR terms such that for all n > 1
we have 7rn (x) ~ 7rn (Y) (the symbol ~ stands for the bisimulation rela­
tion). Suppose that y can be specified with the aid of a guarded recursive
specification. We have to prove that x and yare bisimilar. We relate u
and v, notation u R v, if and only if v can be specified with the aid of a
guarded recursive specification and if for all n > 1 : 7rn (u) ~ 7rn (v). Note
that x R y. We will prove that R is a bisimulation relation. So we have to
distinguish three cases.

Suppose that u R v and u~u'. Define for n 2:: 1

To prove that there is a v' with v~v, and u' R v' it suffices to show that
the intersection of the Sn contains an element. Firstly, every Sn contains

34 J. C.M. Baeten and C. Verhoef

an element since 7rn+l(U) ~ 7rn+l(V). Secondly, each Sn is finite. For v can
be specified with the aid of a guarded recursive specification, so there is
a completely guarded term t with v = t. We can rewrite this term using
the rewrite rules RA3, RA4, and RA5 of table 8 to a sum of terms. The
summands are either atomic actions or products t' . til and t' is not a sum
or a product. Since t is completely guarded it must be an atomic action.
So v has the form

n m

v = Lai 'Vi + Lbj.
i=1 j=1

This means that the set Sn is finite. Thirdly, we have Sn+l ~ Sn for
all n > 1, since 7rn +l(U') ~ 7rn+dv*) implies 7rn (u') ~ 7rn (v*). From
these three observations we can conclude that the sequence SI, S2, ... must
remain constant from some index onwards. Thus, the intersection of the Sn
is not empty.

Now suppose u R v and V~V'. Define, as above, for all n > 1

We can again observe that every Sn contains an element and that the
sequence SI,S2,." is decreasing (but not that each Sn is finite). So we
can choose for each n ~ 1 an element Un E Sn. By the first part of the
proof we know that there are Vn with v~vn and Un R Vn. But since v can
be specified with the aid of a guarded recursive specification there is a v*
that occurs infinitely many times in the sequence VI, V2, Let v· = Vk

for some index k. We show that Uk R v', which proves the second case.
So fix an n > 1. Then there is an index m > n with v* = Vrn and we
find 7rn (um) ~ 7rn(v'), since Urn E Sm ~ Sn. Moreover, we have Uk R v·
and Urn R v*. So 7rn (Uk) ~ 7rn (um) and we find 7rn (Uk) ~ 7rn (v'). So we
have Uk R v', since n ~ 1 was arbitrarily chosen.

Finally, note that if U R v then we have

So R is a bisimulation. This finishes the proof. •
Theorem 2.4.35. The principle AlP does not hold in the model of closed
BPArec + PR terms modulo bisimulation equivalence.

Proof. Consider the two recursive specifications that we defined in exam­
ple 2.3.2. Let x = (X I El) and y = (Y I E2)' With the aid of figure 5 we
can see that for all n > 1 we have that 7rn (x+y) '" 7rn (x) but that x+y f x.
Note that El is not guarded so x + y and x are not specified with the aid
of a guarded recursive specification. •

Concrete process algebra 35

The following theorem concerns the theory BPArec. The result was
already stated in theorem 2.3.13. We postponed the proof of this until
now, since we want to use the fact that RSP holds in BPArec + PR.

Theorem 2.4.36. The model of closed BPArec terms modulo bisimulation
equivalence satisfies RSP.

Proof. Let E(V) be a guarded recursive specification and suppose that we
have two solutions, say x and y, belonging to the same recursion equation.
We have to show that x ~ y. Since x and yare also BPArec+PR terms we
find with the aid of theorem 2.4.34 that x ~ y, which proves the theorem .•

2.5 Deadlock
Usually deadlock stands for a process that has stopped its executions and
cannot proceed. In this subsection we will extend the theory BPA with a
process named deadlock. We can distinguish between successful and unsuc­
cessful termination in the presence of deadlock. This subsection is based
on [Bergstra and Klop, 1984aj Bergstra and Klop, 1995].

Let x . y be a sequential composition of two processes. The process y
starts if x has terminated. But if x reaches a state of inaction due to
deadlock, we do not want y to start: we want it only to start when x
terminates successfully. We will axiomatize the behaviour of a deadlocked
process called Ii in table 10.

The signature of the equational specification BPAc5 is the signature
of BPA extended with a constant Ii ¢ A called deadlock, or inaction. The
axioms of the equational specification BPA6 are the axioms of BPA in ta­
ble 1 plus the two axioms in table 10 CA6 and A7). We will discuss th~m
now.

Equation A6 expresses that 6 is a neutral element with respect to the
alternative compositionj it says that no deadlock will occur as long as there
is an alternative that can proceed. Axiom A7 says that the constant 6
is a left-zero element for the sequential composition. It says that after
a deadlock has occurred, no other actions can possibly follow. Actually,
inaction would be a better name for the constant 6, for a process a+ 6 (a E
A) contains no deadlock. Deadlock only occurs if there is no alternative
to 6, as in a . 6.

So using the process 6 we can distinguish between successful and un­
successful termination. Thus, the process a6 terminates unsuccessfully
whereas a. terminates successfully.

Structural induction In BPAc5 we can use the technique of structural in­
duction just like in BPA (compare page 8). We will adjust the definition
of a basic term (see definition 2.2.4) and we will mention the result that
every closed term over BPAc5 can be written as a basic term.

Definition 2.5.1. The constant 6 is a basic term over BPA6 . An atomic

36 J. C.M. Baeten and C. Verhoef

action is a basic term. If t is a basic term and a E A, then a . t is a basic
term. If t and s are basic terms, then t + s is a basic term.

We recall that a closed term over BPA. is a BPA. term without variables.

Remark 2.5.2. If we consider terms t and s to be identical if

AI,A2 f- t = s,

we can see that basic terms have the following form:

n m

La;. t; + Lbj ,

;=1 j=l

where a; E A, bj E Au {o}, I <i ~ n, I ~ j < m, and n + m 2: 1.

Proposition 2.5.3. Let t be a closed BPA. term. Then there is a basic
term s such that BPA. f- t = s.

Proof. The proof of this proposition can be given along the same lines as
the proof of proposition 2.2.6. •

Semantics As usual, we give the semantics by means of a term deduction
system. Take for the signature of T(BPA.) the signature of BPA. and
for the set of rules just the ones of BPA of table 5. Since bisimulation
equivalence is a congruence (2.2.32), the quotient of closed BPA. terms
modulo bisimulation equivalence is well-defined so the operators of BPA.
can be defined on this quotient using representatives. This quotient is a
model of BPA •.

Theorem 2.5.4. The set of closed BPA. terms modulo bisimulation equiv­
alence is a model of BPA •.

Proof. It suffices to check the soundness of each axiom, since bisimula­
tion equivalence is a congruence. Axioms AI-A5 are treated as in theo­
rem 2.2.35 since there are no transitions for o. Axiom A6 is treated as AI.
For axiom A7 take the relation that only relates 5x and 5. •

Theorem 2.5.5. The axiom system BPA. is a complete axiomatization of
the set of closed BPA. terms modulo bisimulation equivalence.

Proof. Since there are no new transitions for the constant 8, this is proved
as theorem 2.2.37. •

Table 10. Deadlock.

x + 8 = x A6

8x = 0 A7

Concrete process algebra 37

2.5.1 Extensions of BPA.

In this subsection we will discuss the extensions of BPA. with recursion
and/or projections.

Recursion We can add recursion to BPA. in exactly the same way as we
did for BPA. The equational specification BPA.rec contains the signature
of BPArec and a constant 8 rt A. The axioms of BPA.rec are the axioms
of BPArec plus the axioms of table 10.

Note that 8 rt A so it cannot serve as a guard: 8X is not completely
guarded but it is guarded since 8X == 8.

The semantics of BPA.rec can be given by means of the term deduction
system T(BPA.rec) that has as its signature the signature of BPA.rec and
as rules the rules of tables 5 and 6. Since bisimulation equivalence is a con­
gruence (2.2.32), the operators of BPA.rec can be defined on the quotient
algebra of closed BPA.rec terms with respect to bisimulation equivalence.
This quotient is a model of BPA.rec and it satisfies RDP. To prove this,
combine the proofs of theorems 2.3.13 and 2.5.4. Moreover this model satis­
fies RSP, which can be proved when we combine BPA.rec with projections.

Projection We can extend BPA. with projections in exactly the same way
as we did for BPA. The equational specification BPA. + PR has as its
signature the signature of BPA + PR and a constant 8 rt A. Its axioms are
the axioms of BPA + PR and the ones concerning deadlock (tables 1, 7,
and 10). We assume that a ranges over AU {8} in table 7 on projections.

The following theorem states that projection operators can be elimi­
nated from closed terms.

Theorem 2.5.6. For every closed BPA. +PR term t there is a basic BPA.
term s such that BPA. + PR f- t == s.

Proof. Use the term rewriting system that consists of the rules in table 8
and in addition the rewrite rule 8· x --> 8 and show that this term rewriting
system is terminating. Hint: use theorem 2.2.18. The rest of the proof is
straightforward and therefore omitted. •

Proposition 2.5.7. Let t be a closed BPA. + PR term. Then there IS

an n > 1 such that for all k > n we have BPA. + PR f- 7rdt) == t.

Proof. With theorem 2.5.6 it suffices to prove the proposition for basic
BPA. terms t. So we can use structural induction on t to prove the propo­
sition. •

The semantics of BPA. + PR can be given with the term deduction
system T(BPA. + PR) that has as its signature the signature of BPA. + PR
and as rules the rules of tables 5 and 9. Since bisimulation equivalence is
a congruence (2.2.32), it follows that the operators of BPA. + PR can be

38 J.C.M. Baeten and C. Verhoef

defined on the quotient algebra of closed BPA. + PR terms with respect to
bisimulation equivalence. This quotient is a model of BPA6 + PR and it
satisfies AlP. To prove this, combine the proofs of theorems 2.4.7 and 2.5.4.
Moreover, according to theorem 2.4.24 we have that BPA6 + PR is a conser­
vative extension of BPA •. So with theorem 2.4.26 we find that BPA. + PR
is a complete axiomatization of this model (use also theorem 2.5.6).

Recursion and projection Here we extend BPA6 with recursion and pro­
jections. The equational specification BPA6rec + PR has as its signature
the signature of BPA6rec plus for each n :::: 1 a unary function 7rn • The
axioms are the axioms of BPA.rec and the axioms concerning projections
(table 7). We assume that a ranges over A U {8} in this table.

The standard facts (and their proofs) of subsection 2.4.2 are easily trans­
posed to the present situation. Their translation is, in short: every pro­
jection of a solution of a guarded recursive specification can be rewritten
into a closed BPA6 term; the projection theorem 2.4.31 holds; and AIP­
implies RSP.

The semantics of BPA.rec + PR is given by means of a term deduction
system T(BPA6rec+PR). Its signature is the signature of BPA6rec+PR and
its rules are those of T(BPA. + PR) plus the rules concerning recursion that
are presented in table 6. Since bisimulation equivalence is a congruence, the
quotient algebra of closed BPA6rec + PR terms with respect to bisimulation
equivalence is well-defined, and the operators of BPA6rec + PR can be
defined on this quotient. This quotient is a model of BPA.rec + PR and it
satisfies RDP, RSP, and AIP-, but not its unrestricted version AlP. We
can prove that BPA6 rec satisfies RSP. This is proved in the same way as
theorem 2.4.36.

2.6 Empty process
In many situations it is useful to have a constant process that stands for
immediate successful termination. In this subsection we will extend the
equational specifications BPA and BPA. with a process that is only capable
of terminating successfully. We will call such a process the empty process
and we will denote it by E. This constant originates from [Koymans and
Vrancken, 1985]. Another reference to this constant is [Vrancken, 1986].

The empty process is a counterpart of the process deadlock. The process
deadlock stands for immediate unsuccessful termination while the empty
process stands for immediate successful termination. Moreover, the combi-

Table 11. Empty process.

XE == x A8

EX == X A9

Concrete process algebra 39

nation of the two axioms AS and A9 of table 11 express that c; is a neutral
element with respect to the sequential composition whereas axioms Al
and A6 express that 8 is a neutral element with respect to the alternative
composition. Note that successful termination (not in a sum context) after
the execution of at least one action can already be expressed in systems
without c;, as a· c; = a (a E A).

The equational specifications BPA. and BPA •• are defined as follows.
The signature of BPA. consists of the signature of BPA extended with

a constant c; ¢ A called the empty process. The equations of BPA. are the
axioms of BPA and the axioms AS and A9 of table II.

The signature of BPA •• consists of the signature of BPA. extended with
a constant c; ¢ Au {8}. The axioms of BPA •• are the ones of BPA. plus AS
and A9.

Structural induction In BPA. and BPA.. we can use the technique of
structural induction just like in BPA or BPA. since every closed term can
be written as a basic term. We will adjust the definitklll of a basic term
to the present situation and we will mention that closed terms over BPA.
or BPA •• can be written as basic terms.

Definition 2.6.1. A basic term over BPA. is defined as follows.
An atomic action is a basic term over BPA •. The constant c; is a basic

term over BPA.. If t is a basic term over BPA. and a E A, then a . t is a
basic term over BPA.. If t and s are basic terms over BPA., then t + s is
a basic term over BPA •.

A basic term over BPA •• is defined as follows.
An atomic action is a basic term over BPA... The constants 8 and c;

are basic terms over BPA... If t is a basic term over BPA •• and a E A,
then a· t is a basic term over BPA ••. If t and s are basic terms over BPA •• ,
then t + s is a basic term over BPA ••.

We recall that a closed term over BPA. /BPA •• is a BPA. /BPA •• term
without variables.

Remark 2.6.2. If we consider terms identical that only differ in the order
of the summands, basic terms over BPA. or BPA .. are of the form

n m

La;. t; + Lbj ,

i=1 j=1

where ai E A, bj E A U {(6,)c;}, 1 ~ i ~ n, 1 ~ j < m, and n + m > I.

Proposition 2.6.3. Let t be a closed BPA./BPA •• term. Then there is a
basic term s such that BPA./BPA •• r t = s.

Proof. The proof of this proposition can be given along the same lines as
the proof of proposition 2.2.6. •

40 J.C.M. Baeten and C. Verhoef

Semantics We give the semantics of BPA< and BPA6< by means of term
deduction systems. We handle both cases at the same time. Take for the
signature of T(BPA(6)<) the signature of BPA(6)< and for the set of rules
the ones that are presented in table 12. This operational semantics is taken
from [Baeten and Glabbeek, 1987].

The term deduction systems that we consider here differ from the ones
that we treated before: instead of successful termination predicates!!......J
we now have a termination option predicate; it is denoted postfix: . 1. Since
they both are unary predicates on states we can still use the general theory
on structured operational semantics that we treated in subsection 2.2.3.
In particular we can use theorem 2.2.32 to prove that bisimulation equiv­
alence is a congruence. So, the quotient algebra of closed BPA(6)< terms
with respect to bisimulation equivalence is well-defined for the operators of
BPA(6)<' This quotient is a model for BPA(6)<'

Theorem 2.6.4. The set of closed BPA(6)< terms modulo bisimulation
equivalence is a model of BPA(o)<'

Proof. Easy. A1-A7 are treated as usual, A8 as A5, and A9 as AI. •

Theorem 2.6.5. The axiom system BPA(6)< is a complete axiomatization
of the set of closed BPA(6)< terms modulo bisimulation equivalence.

Proof. This is proved along the same lines as theorem 2.2.37 if we rephrase
lemma 2.2.36 as follows. First, redefine the function n: nee) = nCo) = 1,
n(a) = 2 for all a E A, and n(x + y) = n(xy) = n(x) + n(y). Secondly,
replace the first case of 2.2.36 by T(BPA(6)<) f- x 1 ::=} BPA(6)< f- x = e+X .

•
2.6.1 Conservativity

In this subsection we will explain how to prove that BPA< is a conserva­
tive extension of BPA. We cannot immediately use the theory of subsec­
tion 2.4.1, since the operational semantics of BPA< presented in table 12
is not an operationally conservative extension of the operational semantics
of BPA that we listed in table 5. For we can prove in the extended system
that a...!!.....e, whereas in the subsystem we can prove that a...!!......J. So we can

, Table 12. Derivation rules of T(BPA(o)<)'

a 1 x-->x
a 1

X + y-->x

a 1 1 y-->y X
-,--,-:-",

X + y...!!.....y' (x + y) 1
al 1 al 11 x-->x x, y-->y x, Y

xy...!!.....x'y xy...!!.....y' (xy) 1

y 1
(x + y) 1

Concrete process algebra 41

"reach" a new term if we start with an original term. A possible solution
for this problem is to give an alternative operational semantics for BPA,
than the one that we present in table 12.

The special behaviour of the constant c: is expressed in the operational
semantics of BPA, as it is presented in table 12. Another possibility is
to express the special behaviour of the empty process with the aid of the
equivalence relation. A well-known example of this kind is observational
congruence due to [Milner, 1980]. There, Milner's silent action T is treated
as a normal atomic action in the operational rules and its special behaviour
is expressed with the equivalence relation: observational congruence. In the
case of the empty process a similar approach is reported on by [Koymans
and Vrancken, 1985]. In that paper a graph model was constructed fea­
turing the empty process as an ordinary atomic action. A notion called
c: bisimulation was defined to express the special behaviour of the empty
process. With the approach of [Koymans and Vrancken, 1985] we can use
the theory of subsection 2.4.1 to prove the conservativity of BPA, over BPA.
We will sketch the idea and leave the details as an exercise to the interested
reader. For the operational rules we just take the operational semantics
of BPA where we let a also range over c:. This means that we have, for
instance, the rule c:~.J. Note that this adds a new relation ~ and a
new predicate ~.J to the operational rules for BPA. Now with the aid of
theorem 2.4.15 it is not hard to see that this term deduction system is an
operationally conservative extension of the term deduction system in ta­
ble 5. By way of an example we will check the conditions of theorem 2.4.15
for one deduction rule in the extended system:

, I
x--+x

X+y~X"

The crucial place to look at is the left-hand side of the conclusion: x + y.
There an original function symbol occurs: +. Now we need to check that
this rule is pure and well-founded. This is easy. Also the terms x and x'
must be original terms; this is the case since they are variables. And there
must be a premise containing only original terms and a new relation or
predicate symbol. This is also the case. The other rules are treated equally
simply. So, we may apply theorem 2.4.15 and find the operational conser­
vativity. Now this notion termed c: bisimulation can be defined exclusively
in terms of relation and predicate symbols. So with theorem 2.4.19 we find
that the term deduction system belonging to BPA, is an operationally con­
servative extension up to c: bisimulation equivalence of the term deduction
system belonging to BPA (note that c: bisimulation becomes normal strong
bisimulation for BPA where no c: is present). Now we can apply the equa­
tional conservativity theorem 2.4.24 if we know in addition that the model
induced by the operational rules modulo c: bisimulation equivalence is sound

42 J. C.M. Baeten and C. Verhoef

with respect to the axioms of BPA. that we listed in tables 1 and 11. This
is shown for the graph model by [Koymans and Vrancken, 1985] and this
proof transposes effortlessly to the situation with operational rules that we
sketched above. This proves that BPA. is a conservative extension of BPA.

2.6.2 Extensions of BPA(6).

In this subsection we will discuss the extensions of BPA(6). with recursion
and/or projections.

Recursion We can add recursion to BPA(6). in exactly the same way as
we did for BPA(6). The equational specification BPA(6).rec contains the
signature of BPArec and (8,)0: ¢ A. The axioms are the ones of BPArec
and the axioms of table 11 (and table 10).

Since 8,0: ¢ A, they cannot serve as a guard. For instance, o:X is neither
completely guarded nor guarded.

The semantics of BPA(6).rec can be given by means of a term deduction
system T(BPA(6).rec) that has as its signature the signature of BPA(6),rec
and as its rules the ones of T(BPA(6).) plus the rules of table 13. Since
bisimulation equivalence is a congruence (2.2.32), we can define the opera­
tors of BPA(6).rec on the quotient algebra of closed BPA(6).rec terms with
respect to bisimulation equivalence. This quotient is a model of BPA(6).rec
and it satisfies RDP and RSP.

Projection We extend the theory BPA(6). with projections. The equa­
tional specification BPA(6). +PR has as its signature the one of BPA(6) +PR
plus a constant 0: ¢ A (and 0: =1= 8). The axioms of BPA(6). + PR are the
axioms of BPA(6) + PR plus the axioms of table 11. Moreover, we assume
for axiom PRI (table 7) that a may also be c.

The results that we inferred for BPA(6) + PR also hold for BPA(6). +
PR: we can eliminate projections occurring in closed terms and the se­
quence 7rl(t), 7r2(t), ... has t, t, ... as its tail. We can also prove many
conservativity results using subsection 2.4.1. We can, for instance, show
that BPA(6), + PR is conservative over BPA(6),. We already showed that
BPA(6). is a conservative extension of BPA, so with transitivity we find that
BPA(6), + PR is a conservative extension of BPA. We use the transitivity
argument here since the proof that BPA(6). is a conservative extension of
BPA uses another semantics. See subsection 2.6.1 for more information.

The semantics of BPA(6). + PR can be given by means of a term deduc-

Table 13. Derivation rules for recursion and empty process.

(sx I E) 1
(X I E}l

(sx I E)~y
(X I E}~y

Concrete process algebra 43

Table 14. Derivation rules for projections with empty process.

xL X~x'

tion system T(BPA(6)e + PR). Its signature is the signature of BPA(6), + PR
and its rules are the rules of tables 12 and 14. We can define the quotient
algebra of closed BPA(6), + PR terms with respect to bisimulation equiva­
lence and the operators of BPA(6), + PR as usual. The quotient is a model
of BPA(6), + PR and it satisfies AlP. The theory BPA(6), + PR is complete.

Recursion and projection Here we discuss the combination of recursion,
projection, and the empty process. The theory BPA(6),reC + PR has as
its signature the signature of BPA(6)reC + PR and a constant e ¢ A (and
e # 8). The axioms of BPA(6),reC + PR are the ones of BPA(6)reC + PR
and the axioms of table 11. Moreover, we assume for axiom PRI (table 7)
that a may also be e.

The standard facts (and their proofs) of subsection 2.4.2 are easily trans­
lated to the present situation.

The semantics of BPA(6),reC + PR is given by means of a term de­
duction system T(BPA(6),reC + PR). Its signature is the signature of
BPA(6),reC + PR and its rules are those of T(BPA(6), + PR) plus the rules
concerning recursion that are presented in table 13. Since bisimulation
equivalence is a congruence, we can define the operators of BPA(6),rec+PR
on the quotient algebra of closed BPA(6),reC + PR terms with respect to
bisimulation equivalence. This quotient is a model of BPA(6)erec+ PRand
it satisfies RDP, RSP, and AIP-, but not its unrestricted version AIP. As
a consequence, we can prove that BPA(6),reC satisfies RSP. This is proved
in the same way as theorem 2.4.36.

2.6.3 CCS termination

A variant of the empty process is given by the CCS process NIL [Milner,
1980]. We can extend the signature of BPA by the constant NIL, and
formulate the operational rules in table 15. These rules are taken from
[Aceto and Hennessy, 1992].

The crucial difference between the necessary termination predicate ..;
and the termination option predicate L is in the rule for +: for ..;, both
components must terminate in order for the sum to terminate. As a result,
NIL satisfies the laws for e but at the same time the law x + NIL = x. A
consequence is that the law A4 (distributivity of . over +) does not hold
for all processes, and so BPANIL cannot be axiomatized using the axioms
of BPA. The following complete axiomatization is taken from [Baeten and
Vaandrager, 1992]; for more information, we refer to this paper.

44 J.C.M. Baeten and C. Verhoef

Table 15. Derivation rules of T{BPANIL)'

a~NIL NILv'
x~x' a I y-->y xv',yv'

X+y~x' a I x + y-->y (x + y)v'
a I x---->x v' a I X ,y-->y xv',yv'

xy~x'y a I xy---->y (xy)v'

As before, we can add {j without any operational rules. Its axioms have
to be adapted in the presence of NIL, though. We show this in table 17.

2.7 Renaming in BPA
Sometimes it is useful to have the possibility of renaming atomic actions.
The material of this subsection is based on [Baeten and Bergstra, 1988a]
with improvements by [Vaandrager, 1990a]. Renaming operators occur in
most concurrency theories; see, for example, [Milner, 1980; Milner, 1989],
[Hennessy, 1988], and [Hoare, 1985].

The signature of the equational specification BPA + RN consists of the
signature of BPA plus for each function I from the set of atomic actions to
itself a unary operator PI called a renaming operator. Such a function I is
called a renaming function. The axioms of BPA + RN are the ones for BPA
plus the axioms concerning renaming operators displayed in table 18.

Structural induction In BPA + RN we can use structural induction just as
in BPA, since closed BPA+RN terms can be rewritten into basic BPA terms.
To that end, we will first prove that the term rewriting system associated to
BPA + RN is strongly normalizing. We display the rewrite rules concerning
the renaming operators in table 19. Note that, in rule RRN1, I{a) stands

Table 16. BPANIL.

X +y = y + x Al

(x+y)+z=x+{y+z) A2

x+x=x A3

(ax + by + z)w = axw + (by + z)w A4'

(xy)z = x(yz) AS

X + NIL = x A6'

X· NIL = x A8'

NIL· x = x A9'

Concrete process algebra 45

Table 17. 0 in the presence of NIL.

ax + 0 = ax A6**

O·x=O A7

for the atomic action that a is renamed into.

Theorem 2.7.1. The term rewriting system associated to BPA + RN is
strongly normalizing. The rewrite rules are those of table 2 and the rules
in table 19.

Proof. We will apply theorem 2.2.18 to prove that the rewrite rules are
terminating. For that, we first give a partial ordering of the signature.

V/,a E A: Pf > . > +,Pf > a.

Moreover, we give sequential composition the lexicographical status for the
first argument. Now straightforward calculations will show that each left­
hand side of a rewrite rule is strictly greater in the >/po ordering than its
right-hand side. •

With the aid of the above termination result, we can show the elimina­
tion theorem for basic process algebra with renaming operators.

Theorem 2.7.2. For every closed BPA + RN term t there is a basic BPA
term s such that BPA + RN I- t = s.

Proof. Consider the term rewriting system presented in table 19. Accord­
ing to theorem 2.7.1, this term rewriting system is strongly normalizing.
Now let t be a closed BPA + RN term and rewrite this into a normal
form s with respect to the term rewriting system of table 19. With propo­
sition 2.2.6 it suffices to show that s is a closed BPA term. Suppose that s
contains a renaming operator and consider the smallest subterm containing
this occurrence. The subterm has the form Pf(u) with u a closed BPA term.
This contradicts the normality of 5, since now we can rewrite the subterm
using RRN1, RRN2, or RRN3. So 5 is a closed BPA term. •

Proposition 2.7.3. Let I, g : A --+ A. Let x be a closed BPA + RN term.
Then we have the following:

Table 18. Renaming.

pj(a) = I(a) RN1

pj(X + y) = pt(x) + pj(Y) RN2

Pt(xy) = Pt(x)Pf(Y) RN3

46 J.C.M. Baeten and C. Verhoef

(i) pI(X) = x,

(ii) Pt{pg(x») = Ptog(x).
Here, the function fog: A --+ A is defined by f 0 g(a) = j{g(a») and

the function I : A --+ A is defined by I(a) = a for all a E A.

Proof. With the aid of theorem 2.7.2 it suffices to prove the theorem for
basic BPA terms. For these terms the proof is trivial. •

Semantics We give the semantics for BPA + RN by means of a term de­
duction system T(BPA + RN), whose signature is the one of BPA + RN and
whose rules are the rules of tables 5 and 20. Bisimulation equivalence is a
congruence, so the quotient of closed BPA+RN terms modulo bisimulation
equivalence is well-defined. This means that the operators of BPA + RN
can be defined on this quotient, which is a model of BPA + RN.

Theorem 2.7.4. The set of closed BPA + RN terms modulo bisimulation
equivalence is a model of BPA + RN.

Proof. Axioms AI-A5 are treated as in 2.2.3S. For RNI take the relation
that only relates pt(a) and f(a). RN2 goes like AI. RN3 goes like AS. •

At this point we have all the ingredients necessary to state and prove
that BPA + RN is a conservative extension of BPA.

Theorem 2.7.5. The equational specification BPA + RN is a conservative
extension of the equational specification BPA. That is, if t and s are closed
BPA terms, then we have

BPA I- t = s -¢=} BPA + RN I- t = s.

Proof. The operational semantics of BPA can be operationally conser­
vatively added to the operational rules concerning the renaming opera­
tor. This follows immediately from theorem 2.4.1S. The sum of these

Table 19. A term rewriting system for BPA + RN.

pt(a) -t f(a)

Pt(x + y) Pt(x) + Pt(Y)

Pt(xy) Pt(x)Pt(Y)

RRNI

RRN2

RRN3

Table 20. Derivation rules concerning renaming operators.

a ,
x--+x

PI(X) I(a),,,; Pt(X) t(a) 'PI(X')

Concrete process algebra 47

operational rules is precisely the operational semantics of BPA + RN. Now
with theorem 2.4.19 we find that modulo strong bisimulation equivalence
BPA + RN is an operationally conservative extension of BPA. So with the­
orem 2.4.24 we find with the soundness of the equational specification
BPA + RN and the soundness and completeness of BPA that basic pro­
cess algebra with renamings is an equationally conservative extension of
B~. •

With the aid of the above conservativity result and the elimination
theorem for BPA + RN, we find the completeness of BPA + RN.

Theorem 2.7.6. The axiom system BPA + RN is a complete axiomatiza­
tion of the set of closed BPA + RN terms modulo bisimulation equivalence .

Proof. Apply theorem 2.4.26.

2.7.1 Extensions of BPA + RN

•
In this subsection we will discuss the extensions of BPA + RN with recursion
and/or projections.

Recursion We can add recursion to BPA + RN in the same way as we
added recursion to BPA. The equational specification BPArec + RN has as
its signature the signature of BPArec plus for all functions f from A to A
a renaming operator PI' The equations of BPArec + RN are the axioms
of BPArec plus the axioms concerning renaming; see table 18. We can turn
the set of closed BPArec + RN terms into a model of BPArec + RN that
satisfies RDP and RSP as usual.

Projection Projections can be added in an obvious way to BPA+RN: just
add the projection functions and their axioms to the equational specifica­
tion BPA + RN to obtain BPA + RN + PRo The standard facts that hold
for BPA + PR also hold for BPA + RN + PRo As we did for BPA + PR
we can infer that BPA + RN + PR is sound and complete, and that AlP is
valid.

Recursion and projection The extension with both recursion and projec­
tion of BPA + RN, called BPArec + RN + PR, can be obtained just like in
the case of BPA.

2.7.2 Renaming in basic process algebra with deadlock

In this subsection we will extend the BPA6 family with renaming operators.
We begin with BPA6 itself. The equational specification BPA6 + RN has as
its signature the one of BPA6 and for each function f : AU {8} -+ Au {8},
with f(8) = 8, a unary operator PI called a renaming operator. The axioms
of BPA6 + RN are the axioms of BPA + RN plus the axioms concerning
deadlock; see table 10. We assume for axiom RN1 (table 18) that a ranges
over AU {8}. Note that we have PI(8) = f(8) = 8, for all renaming

48 J. C.M. Baeten and C. Verhoef

operators. This is necessary: it is easy to derive a contradiction if we allow
5 to be renamed into an atomic action.

Structural induction We can use structural induction as before, SInce
closed BPA. + RN terms can be rewritten into basic BPA. terms. This
follows from the next elimination theorem.

Theorem 2.7.7. For every closed BPA.+RN term t there is a basic BPA.
term s such that BPA. + RN f- t = s.

If t and s are closed BPA. terms, then we have

BPA. f- t = s ~ BPA. + RN f- t = s.

Proof. Add the extra rewrite rule f(5) --> 8 to table 19 and reiterate the
proof of theorem 2.7.2. •

Remark 2.7.8. Note that proposition 2.7.3 also holds for BPA. + RN.

Semantics The semantics for BPA. + RN can be given just like the seman­
tics for BPA + RN. Let T(BPA. + RN) be the term deduction system with
the signature of BPA. + RN and with the rules of tables 5 and 20. In the lat­
ter table we further assume that f(a) E A. Since bisimulation equivalence
is a congruence, the quotient of the set of closed BPA. + RN terms with re­
spect to bisimulation equivalence is well-defined. This quotient is a model
of BPA. + RN; from this, the completeness of BPA., and the elimination
result, the completeness of BPA. + RN follows.

2.7.3 Extensions of BPA. + RN and BPA.

In this subsection we discuss the extensions of BPA. + RN with recursion
and/or projections and we discuss the extension of BPA. with a particular
renaming operator.

Recursion and/or projection The extensions of BPA. + RN with recursion,
projection, or a combination of both are obtained in the same way as these
extensions without deadlock; see section 2.7.1.

Encapsulation In most concurrency theories in which a form of deadlock is
present there usually is the notion of an encapsulation or restriction opera­
tor; this is a renaming operator that renames certain atomic actions into 5.
The notion of encapsulation and the notation aH stem from [Bergstra and
Klop, 1984b]. The notion named restriction is due to [Milner, 1980].

In this subsection we will add the encapsulation operator to BPA •.
The equational specification BPA. + aH has as its signature the one

of BPA. plus for each H ~ A a unary operator aH called the encapsulation
operator. The axioms of BPA. + aH are the equations of BPA. and the
equations defining aH in table 21. We assume in this table that a ranges
over AU {5}, so in particular we find with D1 that 8H(8) = 8.

Concrete process algebra 49

Table 21. The encapsulation operator.

OR(a) == a, if a rf. H D1

OR(a) == 8, if a E H D2

OR(X + y) == OR(X) + OH(Y) D3
OR(XY) == OH(X)OH(Y) D4

The semantics of BPAo+OR can be derived just like in the case of BPAo+
RN. We can take OH == PIH with

fH(a) == {~ if a rf. H;
u otherwise.

For completeness sake, we give the operational rules for the encapsulation
operator in table 22.

It is also straightforward to extend BPA. + OR with recursion and/or
projections.

2.7.4 Renaming in basic process algebra with empty process

In this subsection we will add renaming operators to both BPA, and BPAo•
with extensions. We will simultaneously refer to both of them as before
with parentheses: BPA(o),. Arbitrary combinations of renaming operators
and the empty process introduce a form of abstraction, which is beyond
the scope of concrete process algebra. Therefore, we will restrict ourselves
to the concrete subcase that prohibits renaming into the empty process.

The signature of the equational specification BPA(o). + RN is the signa­
ture of BPA(o) + RN plus a constant e: rf. A (e: f:. 8). We do not allow renam­
ing into e: so for the functions f we assume (moreover) that f(a) E A(o)
if a E A(6) and (J(8) == 8,) fee:) == e:. The axioms of BPA(o), + RN are
the ones of BPA(o). and the equations for renaming; see table 18. Note
that PI (e:) == e: (and PI(o) == 0).

Abstraction We have an abstraction mechanism if we allow renaming into
the empty process. For instance, suppose that we have two atomic actions,
say a and b. Let f(a) == a and feb) == e:. Then PI(ab) == a and we have
abstracted from b.

Table 22. Derivation rules for the encapsulation operator.

a I
x~x

50 J. C.M. Baeten and C. Verhoef

Structural induction We can use structural induction as before, since
closed BPA(6)e + RN terms can be rewritten into basic BPA(6)< terms. This
can be shown along the same lines as the elimination theorem for the theory
without the empty process; see, for instance, theorem 2.7.2.

Note that proposition 2.7.3 also holds for BPA(6)e + RN.

Semantics The semantics of BPA(6)e + RN will be given by means of a
term deduction system. Let T(BPA(8)e +RN) be the term deduction system
with BPA(6)< + RN as its signature and with rules displayed in tables 12
and 23. Bisimulation equivalence is a congruence, so we can define the
operators of BPA(8)e + RN on the quotient of closed BPA(6)< + RN terms
modulo bisimulation equivalence. It is straightforward to prove that this
is a model of BPA(6)e + RN. The completeness of BPA(8)e + RN is also
standard to prove.

Look-ahead If we allow renaming into the empty process, we need two
more derivation rules that concern renaming; they introduce a look-ahead
as can be seen in table 24. The operational rules that we list in this table
are due to [Baeten and Glabbeek, 1987].

We will give an example. Suppose that f(a) = c and feb) = b. Then
we can derive PI(anb)~c, for each n > 1.

2.7.5 Extensions of BPA(6)< + RN and BPA(6)<

In this subsection we discuss the extensions of BPA(6)< + RN with recursion
and/or projections and we discuss the extension of BPA(8)e with a particular
renaming operator.

Recursion and/or projection The extensions of BPA(8)e + RN with recur­
sion and/or projection can be obtained just like before. However, if we
allow renaming into the empty process the definition of a guarded recur­
sive specification has to be adapted. We will show in an example that
RSP no longer holds with the present definition. This example is taken
from [Baeten et ai., 1987]. Suppose that we have at least three elements in

Table 23. Derivation rules for renaming operators and empty process.

X~X' xl
PI(x) ! I(a) , I(a) E A

PI(X) 'PI(x')

Table 24. Extra rules when we allow renaming into c.

X....!!:.....y, PI(Y)!
()

, I(a) = c
PI x !

a () b ,
x~Y, PI Y ~x

b ' I(a) = c
PI(X)~X'

Concrete process algebra 51

the set of atomic actions, say a, i, and j. Let Ci resp. C j be the renaming
operators that rename i resp. j into C and further do nothing. Then the
guarded recursive specification

{X = i· Cj(Y), Y = j . ci(X)}

has the solution {ian,jan} for all n ?: 1. So RSP cannot hold.
A possible solution can be to prohibit the occurrences of renaming op­

erators in the body of guarded recursive specifications. Also more sophis­
ticated solutions can be obtained in terms of restrictions on the renaming
operators that do occur in the body of a guarded recursive specification.

Encapsulation The extension of BPAc5e with the encapsulation operator
can be obtained in the same way as in the case without the empty process;
see subsection 2.7.3.

2.8 The state operator
In this subsection we extend BPA with the (simple) state operator, which
is a generalization of a renaming operator. It is a renaming operator with a
memory to describe processes with an independent global state. We denote
the state operator by As; the subscript is the memory cell containing the
current state s. This subsection is based on [Baeten and Bergstra, 1988a].
Another treatment of state operators can be found in [Verhoef, 1992].

Next, we will discuss the signature of BPA>.. It consists of the usual
signature of BPA extended with for each m E M and s E S a unary
operator ..\;' called the (simple) state operator. M, S, and A are mutually
disjoint. The set S is the state space and M is the set of object names; the
M stands for machine.

We describe the state operator by means of two total functions action
and effect. The function action describes the renaming of the atomic ac­
tions and the function effect describes the contents of the memory. We
have

action: A x M x S ---> A, effect : A x M x S ---> S.

Mostly, we write a(m,s) for action(a,m,s) and s(m,a) for effect(a,m,s).
Intuitively, we think of the process A;'(X) as follows: m represents a

machine (say a computer), s describes its state (say the contents of its
memory), x is its input (say a program). Now A;'(X) describes what hap­
pens when x is presented to machine m in state s.

Now we discuss the equations of BPA>.. They are the axioms of BPA
(see table 1) and the axioms of table 25. The first axiom SOl gives the
renaming part of the state operator. The second axiom S02 shows the
effect of renaming an atomic action on the current state. Note that if a
renaming has no effect on states we obtain an ordinary renaming oper-

52 J. C.M. Baeten and C. Verhoef

Table 25. The axioms defining the state operator.

A:"(a) = a(m, s) SOl

A:,,(ax) = a(m,s»).:(m,a)(x) S02

A:"(X + y) = A:"(X) + A:"(Y) S03

ator. Axiom S03 expresses that the state operator distributes over the
alternative composition.

2.8.1 TerInination and elimination

Next, it is our aim to show that the state operator can be eliminated.
Therefore, we will use that the term rewriting system associated to BPA),
is strongly normalizing. We will prove the latter fact with the aid of the
method of the recursive path ordering. However, we cannot apply this
method immediately. This is due to the fact that we cannot hope to find
a strict partial ordering on the signature of BPA), that does the job. The
problematical rule is the rewrite rule RS02 (see table 26). Suppose that
we have one atomic action a. Let us have two different states, which shall
remain nameless. Take an inert action function, that is it does nothing, and
let the effect function act as a switch. This yields the following instantiation
for the rewrite rule RS02:

A(ax)

A' (ax)

--t aA'(x),

--t aA(x).

For the first rewrite rule the ordering that works is A > ,\'. But for the
second rule, the ordering should be the opposite, thus yielding an incon­
sistency. We solve this by giving the state operator a rank; the rank of a
state operator depends on the weight of its operand. This idea is taken from
[Verhoef, 1992]; he based this idea 011 a method that [Bergstra and Klop,
1985] give for the termination of a concurrent system (see theorem 3.2.3
where we treat their method).

Definition 2.8.1. Let x and Y be terms and let a be an atomic action.

Table 26. The rewrite rules for the simple state operator.

A:"(a) --t a(m,s)

A:,,(ax) --t a(m, S)A:(m,a)(x)

A:"(X + y) --t).:,,(x) +).:"(Y)

RSOl

RS02

RS03

Concrete process algebra 53

The weight of a term x, notation lxi, is defined inductively as follows.

• lal = 1,
• Ix + yl = max{lxl, Iyl},
• Ix, yl = Ixl + Iyl,

• 1>';'(x)1 = IxI-
Definition 2.8.2. The rank of a state operator is the weight of the sub­
term of which it is the leading operator. So, if Ixl = n, we write >';:' sex). ,

Theorem 2.8.3. The term rewriting system associated to the equational
specification of BPA>. is strongly normalizing. The rewrite rules are the
ones listed in tables 2 and 26.

Proof. Take the following precedence for the elements of the signature of
BPA>.:

\In > 1, m E M, 5, s' E S, a E A: >';:'+I,s > >':'., > . > +, >':'s > a.

Moreover, give the sequential composition the lexicographical status for the
first argument. Now it is not hard to see that each left-hand side of the
rewrite rules is strictly greater than its right-hand side in the> lpo ordering.
We will treat an example. Let a' = a(m, s), >'n = >';:' s' and >.~ = >.m ().

I n,B m,a

Suppose that Ixl = n.

>'n+1 (ax) >lpo >'~+l (ax)

>lpo >'~+l (ax) . >'~+l (ax)

>lpo a' . >.~ (>.~+ 1 (ax))

>lpo a'·>'~(ax)

>lpo a' . >'::(ax)

>/po a' . >'~(a .* x)

>lpo a'·>'~(x).

The other inequalities are checked analogously. With theorem 2.2.18 it
follows that the system is terminating. •

Now, we can state the elimination theorem for basic process algebra
with the state operator.

Theorem 2.8.4. For every closed BPA>. term t there is a basic BPA term s
such that BPA>. f- t = s.

Proof. Straightforward. •
Semantics We give the semantics for BPA>. by means of a term deduction
system T(BPA>.). Its signature is that of BPA>. and its rules are the rules
of tables 5 and 27. According to theorem 2.2.32 bisimulation equivalence

54 J.C.M. Baeten and C. Verhoef

Table 27. Derivation rules of T(BPA,\).

oX:"'(x) a(m,s) 'V

a ,
x---+x

\ ms (x) a(m,s) oX m (')
A • s(m,a) X

is a congruence so the operators of BPA,\ can be defined on the quotient of
the closed BPA", terms modulo bisimulation equivalence. Moreover, it is a
model of BPA,\. With the aid of the method explained in subsection 2.4.1,
it is not hard to see that BPA", is a conservative extension of BPA. Then
it easily follows with theorem 2.4.26 that the axioms in tables 1 and 25
constitute a complete axiomatization of BPA",.

Extensions The extensions of BPA", with recursion and/or projection are
obtained in the same way as those of BPA.

The extension of BPAo with the state operator is obtained in the same
way as the extension of BPA with it. We also allow a(m, s) = 0 so the action
function can rename into /5. There is only one extra axiom: we need to know
what the state operator should do with the extra constant /5. Therefore, we
need to know how the functions action and effect are extended to AU {/5}.
We define /5(m, s) = /5 and s(m, /5) = s. The extra axiom is

oX:",(o) = o.

The extensions of BPA6,\ with recursion and/or projection are obtained
in the same way as those of BPA6.

The following example is due to Alban Ponse [Ponse, 1993].

Example 2.8.5. We describe an edit session with the aid of the state
operator. We will use the theory BPA", with recursion.

The characters that can be typed are the lower case characters a, b, ... , z
with the usual meaning, and two special characters D and P. We call the
set of characters that can be typed C. The character D stands for the
deletion of the last character from the memory; if the memory is empty
pressing the D will cause a beep. The P sends the contents of the memory
to a printer device. We have a user U that wants to type characters from C.
The user is specified as follows:

U = L type(c) . U + L type(c).
cEC cEC

The state space is S = {a, b, ... , z}·; we denote the empty word by c:. The
set A of atomic actions is

{type(c), typed(c) , deleted(c) : c E C} U {printed(a) : a E S} U {beep}.

Concrete process algebra 55

We give the action and effect functions implicitly, by giving the relevant
axioms for our specific state operator. We assume that c E {a, b, ... , z}
and U E S.

A«type(D)· x)

Auc(type(D)· x)

Au(type(c)· x)

Au (type(P) . x)

beep· A.(X)

deleted (c) . .Au (x)

typed(c)· Auc(X)

printed(u) . Au(X).

For the other atomic actions in A we define the action and effect functions
to be inert. Now the process A«U) describes an edit session. Since we
have only one object name, we left out the superscripts.

Note that the following choice for the last equation of the above display
also works:

Au(type(P)· x) = printed(u)· A.(X).

However, we did not choose this option to separate different concerns: if
we want to empty the memory, it may be more appropriate to define an
atomic action that empties the memory.

2.9 The extended state operator
In the following, we will discuss BPA with the extended state operator,
which is a generalization of the simple state operator. We denote the
extended state operator by A;'. The difference with the (simple) state
operator is that we can rename an atomic action into a closed term of a
particular form, namely a finite sum of atomic actions. With this extra
feature it is possible to translate an instruction like read (x) into process
algebra.

This subsection is based on [Baeten and Bergstra, 1988aJ.
We discuss the signature of BPAA • It consists of the usual signature

of BPA extended for each m E M and s E S with a unary operator A~'
called the extended state operator. M, S, and A are mutually disjoint.
The set S is the state space and M is the set of object names; the M
stands for machine.

We describe the extended state operator by means of two functions ac­
tion and effect. The function action describes the renaming of the atomic
actions and the function effect describes the contents of the memory. We
have

action : A x M x S --+ 2A \ {0}, effect: A x M x S x A --+ S.

We write a(m,s) for action(a,m,s) and s(m,a,b) for effect(a,m,s,b).
The axioms of BPAA are those of BPA and the axioms of table 28.

Next, we discuss them. The first axiom GSI states that an atomic action

56 1. C.M. Baeten and C. Verhoef

Table 28. The axioms defining the generalized state operator.

A:"(a) = L b GSI
bEa(m,s)

A:"(ax) = Lb. A:(m,a,b) (x) GS2
bEa(m,s)

A:"(x + y) = A:"(x) + A:"(Y) GS3

Table 29. Derivation rules of T(BPAA).

x-'!:....,J
---b;--' bE a(m, s)
A:"(x)->J

is renamed into a sum of atomic actions. Axiom GS2 shows the side effects
of the renaming on the state space. Axiom GS3 expresses that the extended
state operator distributes over the alternative composition.

Termination In the previous subsection (2.8) we mentioned that we can­
not use the method of the recursive path ordering immediately. The same
phenomenon occurs with the extended state operator. Fortunately, the so­
lution of the problems is the same as for the simple state operator. We
have to define ranked extended state operators and prove the termination
of this system. We omit the details and refer to subsection 2.8 for more
information. We only mention the main result.

Theorem 2.9.1. The term rewriting system that is associated to BPAA IS

strongly normalizing. The rewrite rules are those of tables 2 and 30.

Semantics We give the semantics for BPAA by means of a term deduc­
tion system T(BPAA). Its signature is that of BPAA and its rules are the
rules of tables 5 and 29. According to 2.2.32 bisimulation equivalence is a
congruence so the quotient of the closed BPAA terms modulo bisimulation
equivalence is well-defined. Moreover, it is easily seen that the quotient is
a model of BPAA . With the theory of section 2.4.1, we find that BPAA is a
conservative extension of BPA. With the termination theorem 2.9.1 and an
elimination result, similar to 2.8.4, we find using theorem 2.4.26 that the
axioms of tables 1 and 28 constitute a complete axiomatization of BPAA •

Extensions The extensions of BPAA and BPAOA with recursion and/or
projection are obtained in the same way as those with BPA,X and BPAo'x.
The only difference is that we can now allow a(m, s) = 0 if in addition we
define

Concrete process algebra 57

Table 30. The rewrite rules for the extended state operator.

A:"(a) -> L b RGSI
bEa(m,s)

A:"(ax) -> Lb. A:(m,a,b) (x) RGS2
bEa(m,s)

A:"(x + y) -> A:"(x) + A:"(Y) RGS3

As before, we have A:"(8) == 8.

Example 2.9.2. In this example we describe a gambling session of a fruit
machine player with the aid of the extended state operator. We use the
theory BPAA with recursion, again leaving out superscripts.

The player P is specified as follows:

P == pull· win· P.

Note that P has a serious gambling problem. With the extended state
operator we specify what actually will happen during the gambling session.
First we give the state space S == F x F x F where

F == {bar, bell, grape, melon, orange, cherry}.

The set of atomic actions A is

{pull, win, lost} u {won(J) : / E F} U {pulled(f,g, h) : /,g, hE F}.

We define the action and effect functions implicitly by giving the relevant
instances of axiom GS2. The first equation expresses that if P pulls the
fruit machine it will give one of the possible triples. The second equation
describes that win is renamed into lost if the obtained triple contains dif­
ferent "fruits". If the triple contains only one symbol, say melon, we have
that win is renamed into won(melon).

pulled(f, g, h) . A(f,9,h) (x)
(f,9,h)ES

A(f,9,h) (win . x) L won(f)· A(f,9,h)(X) + L lost· A(f,9,h) (x)
f=9=h ft9

+ L lost· A(f,9,h)(X) + L lost· AU,9,h)(X).
9#h f#h

58 J.C.M. Baeten and C. Verhoef

For the other actions in A we define both functions action and effect to
be inert. The process A(J,g,h)(P) with f, g, h E F describes a gambling
seSSlOn.

2.10 The priority operator
In this subsection we introduce BPA6 with the priority operator that orig­
inates from [Baeten et al., 1986].

The signature of the equational specification BPA6 with the priority
operator, BPA60, consists of the signature of BPA6 plus a unary operator 9
and an auxiliary binary operator <l pronounced "unless". Furthermore,
a partial ordering <, called the priority ordering on the set of atomic
actions A is presumed. The axioms of the equational specification BPAc50

are the usual axioms of BPA6 (see tables 1 and 10) and the axioms of
tables 31 and 32. The axioms that we present in these tables make use
of O. We can imagine a system without 0 (BPAo) but such a system has a
laborious axiomatization; see [Bergstra, 1985] for such an axiomatization.

Next, we will discuss the axioms concerning priority.
The axioms of table 31 define the auxiliary unless operator. It is used

to axiomatize the priority operator. The intended behaviour of the unless
operator is that the process x <l y filters out all summands of x with an
initial action smaller than some initial action of y. So, one could say that
the second argument y is the filter. If, for instance, a > b> c then we want
that

(ax + by + cz) <l (bp + cq) = ax + by.

To model the filter behaviour we use the constant process 0 to rename the
unwanted initial actions of x into O. The axioms Ul and U2 essentially
define the mesh of the filter: they say which actions can pass the filter and
which cannot. Axiom U3 expresses the fact that the initial actions of y

are the same as the initial actions of yz. Axiom U4 says that it is the
same to filter the initial actions of x with filter y + z as to filter first the

Table 31. The axioms defining the unless operator.

a<lb=a if ...,(a < b) U1

a<lb=o if a < b U2

X<lyz = X<ly U3

x <l (y + z) = (x <l y) <l z U4

xy <l z = (x <l Z)y U5

(x + y) <l Z = X <l Z + Y <l Z U6

Concrete process algebra 59

Table 32. The axioms defining the priority operator.

B(a) = a TH1

B(xy) = B(x) ·O(y) TH2

B(x +y) = O(x) <ly+B(y) <IX TH3

initial actions of x with filter y and filter the result with filter z. Axiom U5
expresses that z is a disposable filter: once in xy the process x is filtered
through z, the process y can freely pass. Axiom U6 expresses that filtering
a sum is the same as adding the filtered summands.

The priority operator uses the unless operator to filter out the sum­
mands with low priority. Thus, the priority operator is invariant under
atomic actions and sequential composition. This is expressed in the ax­
ioms TH1 and TH2. The priority operator does not distribute over the
alternative composition, since in a prioritized sum O(x + y) there is an
interaction between the restrictions concerning the priorities imposed on
each other by x and y, whereas in O(x) + B(y) we do not have such an
interaction. Axiom TH3 states that the prioritized sum equals the sum of
the prioritized summands with the remaining alternatives as filters. So, for
instance, we have

O(a + b + c) = O(a) <l (b + c) + O(b) <l (a + c) + O(c) <l (a + b).

Intuition The partial order < is used in order to describe which actions
have priority over other actions. If for instance a < band band care
not related we want to have that O(a + b) = band O(b + c) = b + c.
The priority operator thus respects the alternative composition for actions
without priority but gives the alternative with the highest priority, in the <
hierarchy, if the sum contains prioritized actions. A typical example of a
low priority action is an atomic action expressing time-out behaviour: as
long as there are alternatives with a higher priority no time-out will be
performed within the scope of the priority operator. The priority operator
has been used to specify and verify time critical protocols in an untimed
setting; see, for instance, [Vaandrager, 199Gb].

Next, we list some properties of the unless operator and the priority
operator that can be derived from BPA6o. The first identity expresses that
the ordering of filtering does not matter. The second equation expresses
that when a process is filtered once, a second application of the same filter
has no effect. The third one expresses that a prioritized process O(x) IS

automatically filtered with its subprocess x without priority.

60 J. C.M. Baeten and C. Verhoef

Table 33. Rewrite rules for the unless operator.

-.(a < b) ==> a<lb -> a RUl

a<b==>a<lb->t5 RU2

x <l yz -+ X <l Y RU3

x <l (y + z) -> (x <l y) <l Z RU4

xy <l Z -+ (x <l Z)y RU5

(x + y) <l Z -> X <l Z + Y <l Z RU6

(X<lY)<lY -> X<ly RU7

Lemma 2.10.1. The following identities are derivable from BPA69 :

• (X<lY)<lz=(X<lz)<lY,

• (X<lY)<lY=X<lY,

.8(x)<lx=8(x).

Proof. The proofs of these identities are easy. To illustrate the usage of
the axioms we provide full proofs. Here is the first one:

(X <l y) <l Z = X <l (y + z) = X <l (z + y) = (x <l z) <l y.

For the second one, take Z = Y in the above deduction and use the fact
that Y + Y = y. The third identity is derived as follows:

O(X) <l X = 8(x) <l X + 8(x) <l X = 8(x + x) = 8(x).

Note the double use of the idem potency of the alternative composition in
this inference. •

Next, we formulate a term rewriting result for basic process algebra with
priorities. It states that the term rewriting system associated to BPA69 is
strongly normalizing. To prove this we use the method of the recursive
path ordering that we introduced in subsection 2.2.2. We need the lexico­
graphical variant of this method. Note that the rewrite rules concerning
the unless operator (table 33) form a conditional term rewriting system.
We can, however, see the rewrite rules RUl and RU2 as a scheme of rules;
for all a and b there is a rule. So, in fact, this term rewriting system is un­
conditional. Thus, we may use the method of the recursive path ordering.

Theorem 2.10.2. The term rewriting system that is associated to BPA69
is strongly normalizing. This term rewriting system consists of the rewrite
rules listed in table 2, table 33, and table 34.

Concrete process algebra

Table 34. The rewrite rules for the priority operator.

8(a) -+ a

8(xy) -+ 8(x) ·8(y)

8(x+y)-+8(x)<3y+8(Y)<3x

8(x) <3 X -+ 8(x)

RTH1

RTH2

RTH3

RTH4

61

Proof. We use the lexicographical variant of the recursive path ordering
that we treated in subsection 2.2.2. Take as precedence for the elements of
the signature of BPA.6 the following partial ordering:

8 > <3 > . > +, \;fa E A : a > O.

Furthermore, we give the sequential composition the lexicographical status
for the first argument and we give the unless operator the lexicographical
status for the second argument. We will treat a typical case: we treat the
case RU4 where we use the lexicographical status of the unless operator.

X<3(Y+Z) >/po x <3* (y + z)

>Ipo (x <3* (y + z») <3 (y + * z)

>Ipo (X<3(y+* z») <3z

>Ipo (X<3Y)<3z.

The other cases are dealt with in a similar way. This means that we find
with theorem 2.2.18 that the term rewriting system is strongly normalizing,
which ends the proof of the theorem. •

Next, we formulate the elimination theorem for basic process algebra
with priorities.

Theorem 2.10.3. The equational specification BPA.6 has the elimination
property for BPA.. That is, for every closed BPA.6 term t there is a basic
BPA. term s such that BPA.9 f- t = s.

Proof. Easy.

2.10.1 Semantics of basic process algebra with priorities

In this subsection we discuss the operational semantics of BPA.9 •

•
The operational semantics of the priority operator can be found in

[Baeten and Bergstra, 1988b]. A more accessible reference is, for instance,
[Groote, 1990b] or [Baeten and Weijland, 1990]. In table 35 we give the
characterization presented in [Baeten and Weijland, 1990]. In [Bol and
Groote, 1991] we find rules that operationally define the unless operator,

62 J.C.M. Baeten and C. Verhoef

Table 35. Derivation rules for the priority operator.

x~x', {x4,x4J I b> a}
f)(x)~f)(x')

x~J, {x4,x4v'1 b> a}
f)(x)~J

Table 36. Derivation rules for the unless operator.

x~x', {y4,y4J I b> a}
x <ly~x'

x~J, {y4,y4v'1 b> a}
X<ly~J

essentially as in table 36 (but we follow the approach of [Baeten and Weij­
land, 1990]).

We note that it is possible to operationally characterize the priority
operator without the use of the unless operator. The latter one is used for
the axiomatization of the priority operator. However, [Bergstra, 1985) gives
a not so well-known finite axiomatization of the priority operator without
the unless operator. Moreover, in this approach the special constant 8
is not necessary. For more information on this axiomatization we refer
to [Bergstra, 1985).

We also note that on the basis of an operational semantics for the pri­
ority operator it is possible to find the unless operator in a systematical
way. This can be done with the paper [Aceto et at., 1994) where an algo­
rithm is given to generate a sound and complete axiomatization from a set
of operational rules that satisfy a certain SOS format (the so-called GSOS
format, see further on).

An interesting point concerning the operational rules of the priority
operator and the unless operator is the appearance of negative premises in
them. Clearly, such rules do not satisfy the path format. Therefore, in this
subsection we will make a third journey to the area of general theory on
operational semantics. Next, we will generalize the theory that we already
treated in subsection 2.2.3. As a running example we take the operational
semantics of basic process algebra with priorities. This subsection is based
on [Verhoef, 1994a).

In the following definition we generalize the notion of a term deduction
system (cf. definition 2.2.19) in the sense that deduction rules may also
contain negative premises. [Bloom et al., 1988) formulated the first format
with negative premises; it is called the GSOS format. [Groote, 1990b) gen­
eralized this substantially and he proposed the so-called nty/t/ntyxt format.

Concrete process algebra 63

Definition 2.10.4. A term deduction system is a structure (E, D) with E
a signature and D a set of deduction rules. The set D = D(Tp, Tr) is pa­
rameterized with two sets, which are called respectively the set of predicate
symbols and the set of relation symbols. Let s, t, and u E O(E), P E Tp ,

and R E T r • We call expressions Ps, ..,Ps, tRu, and toR formulas. We
call the formulas Ps and tRu positive and ..,Ps and toR negative. If S is
a set of formulas we write PF(S) for the subset of positive formulas of S
and NF(S) for the subset of negative formulas of S.

A deduction rule d ED has the form

H
G

with H a set of formulas and G a positive formula; to save space we will
also use the notation HIG. We call the elements of H the hypotheses of d
and we call the formula G the conclusion of d. If the set of hypotheses of a
deduction rule is empty we call such a rule an axiom. We denote an axiom
simply by its conclusion provided that no confusion can arise. The notions
"substitution", "var", and "closed" extend to formulas and deduction rules
as expected.

Example 2.10.5. A typical example of a term deduction system with
negative premises is the operational semantics of BPA69 . The term deduc­
tion system T(BPA69) has as signature that of the equational specifica­
tion BPA69 and its rules are the rules of tables 5, 35, and 36.

Next, we formalize the notion when a formula holds in a term deduction
system with negative premises.

Definition 2.10.6. Let T be a term deduction system. Let F(T) be the
set of all closed formulas over T. We denote the set of all positive formulas
over T by PF(T) and the negative formulas by NF(T). Let X ~ PF(T).
We define when a formula cp E F(T) holds in X; notation X f- cp.

X f- sRt if sRt E X,

X f- Ps if Ps E X,

X f- s..,R if \;It E G(E) : sRt ¢ X,

X f- ..,Ps if Ps ¢ X.

The purpose of a term deduction system is to define a set of positive
formulas that can be deduced using the deduction rules. For instance, if
the term deduction system contains only positive formulas then the set
of deducible formulas comprises all the formulas that can be proved by a
well-founded proof tree. If we allow negative formulas in the premises of
a deduction rule it is no longer obvious which set _of positive formulas can
be deduced using the deduction rules. [Bloom et al., 1988] formulate that

64 J. C.M. Baeten and C. Verhoef

a transition relation must agree with a transition system specification. We
will use their notion; it is only adapted in order to incorporate predicates.

Definition 2.10.7. Let T = (~,D) be a term deduction system and
let X C PF(T) be a set of positive closed formulas. We say that X agrees
with T if a formula cp is in X if and only if there is a deduction rule in­
stantiated with a closed substitution such that the instantiated conclusion
equals cp and all the instantiated hypotheses hold in X. More formally: X
agrees with T if

cp EX-¢=} 3HIC E D,u: F ---> C(~): u(C) = cp, Vh E H: X I- u(h).

[Groote, 199Gb] showed that if for each rule the conclusions are in some
sense more difficult than the premises, there is always a set of formulas
that agrees with the given rules. [Verhoef, 1994a] generalized this to the
case where predicates come into play. Next, we will formalize this notion
that is termed a stratification.

Definition 2.10.8. Let T = (~, D) be a term deduction system. A map­
ping S : PF(T) ---> Q for an ordinal Q is called a stratification for T if
for all deduction rules H IC E D and closed substitutions u the following
conditions hold. For all h E PF(H) we have S(u(h)) < S(u(C)); for
all s..,R E NF(H) we have for all t E C(~) : S(u(sRt)) < S(u(C)); for
all..,Ps E NF(H) we have S(u(Ps)) < S(u(C)). We call a term deduction
system stratifiable if there exists a stratification for it.

Relllark 2.10.9. Next, we will give a recipe for finding a stratification. In
most cases we can find a stratification (for which the two conditions hold)
by measuring the complexity of a positive formula in terms of counting
a particular symbol occurring in the conclusion of a rule with negative
premises.

Example 2.10.10. As an example of the use of the above rule of thumb,
we give a stratification for the term deduction system T(BPA6o). The rules
containing negative premises have in their conclusion a (J or an <I. We define
a map that counts the number of 8's and the number of <I'S as follows: let t
be a closed term with no occurrences of 8's; and nl occurrences of <l'S then
S(t~s) = S(t~';) = no + nj. Now we check the two conditions for the
first rule of table 35. Replace each x and x' by closed terms t and t'. Since
the number of 8's plus the number of <l'S occurring in B(t) is one greater
than the number of B's plus the number of <l'S occurring in t we are done.
The other rules are equally simple.

Next, it is our aim to define a set of positive formulas that agrees
with a given term deduction system. Therefore, we will use the following
notion. Just think of it as a uniform upper bound to the number of positive
premises in a given term deduction system. In general, it is not the least

Concrete process algebra 65

upper bound.

Definition 2.10.11. Let V be a set. If 0 ~ IVI < No we define the degree
of V, denoted by d(V) to equal Woo If IVI = Na for an ordinal a ~ 0 we
define d(V) = WaH'

Let T = (E, D) be a term deduction system. The degree d(H/C) of a
deduction rule H /C E D is the degree of its set of positive premises; in
a formula: d(H/C) = d(PF(H)). Let w'" = sup{d(H/C) : H/C ED}.
The degree d(T) of a term deduction system T is Wo if a = 0 and W",+l

otherwise.

Example 2.10.12. It is not hard to see that the degree of our running
example is Woo In fact, we will only treat term deduction systems with
degree Wo in this survey. See, for instance, [Klusener, 1993] for rules that
contain infinitely many premises.

Next, we will define this set of positive formulas for which it can be
shown that it agrees with a given term deduction system. This definition
originates from [Groote, 1990b] and is adapted to our situation by [Verhoef,
1994a].

Definition 2.10.13. Let T = (E, D) be a term deduction system and
let S : PF(T) ---+ a be a stratification for an ordinal number a. We define
a set Ts C PF(T) as follows.

Ts = U Tl, Tl = U Ti~i'
i<a i<d(T)

It will be useful to introduce the following notations for certain unions
over TF and Ti~i:

ul = U Tl (i ~ a), US. = U T S., (J' < d(T)).
ttJ t,J-

i'<i i'<i

We drop the sub- and superscripts S and, for instance, render ul as Ui

and Ts r <.p as T r <.p, provided no confusion arises. Now we define for
all i < a and for all j < d(T) the set Ti,j = Ti~i:

{<.p I S(<.p) =i, 3H/C E D,u: V ---+ C(E) : u(C) = <.p,

'if hE PF(H) : Ui •i U Ui r u(h), 'if hE NF(H) : Ui r u(h)}.

The next theorem is taken from [Verhoef, 1994a] but its proof is essen­
tially the same as a similar theorem of [Groote, 199Gb]. It states that for
a stratifiable term deduction system the set that we defined above agrees
with it. Moreover, this is independent of the choice of the stratification.

66 J. C.M. Baeten and C. Verhoef

Theorem 2.10.14. Let T = (~, D) be a term deduction system and let 8 :
PF(T) ---> Q be a stratification for an ordinal number Q. Then Ts agrees
with T. If 8' is also a stratification for T then Ts = Ts'.

Example 2.10.15. Since our running example is stratifiable it follows
from the above theorem that the term deduction system T(BPAoo) deter­
mines a transition relation (with predicates) on closed terms.

So, now we only know that when a term deduction system has a strati­
fication there exists some set of positive formulas that agrees with it. Next,
we are interested in the conditions under which strong bisimulation equiv­
alence is a congruence relation. Just as in subsection 2.2.3 we define a
syntactical restriction on a term deduction system. We will generalize the
path format to the so-called panth format, which stands for "predicates and
ntyft/ntyxt hybrid format". The ntyjt/ntyxt format stems from [Groote,
1990bj.

Definition 2.10.16. Let T = (~, D) be a term deduction system with
D = D(Tp, Tr). Let in the following K, L, M, and N be index sets of
arbitrary cardinality, let Sk, t/, Urn, vn , t E O(~) for all k E K, I E L,
mE M, and n E N, let Pk , Pm, P E Tp be predicate symbols for all k E K
and m E M, and let R/, R n , R E Tr be relation symbols for all 1 E L
and n E N.

A deduction rule d E D is in panth format if it has one of the following
four forms:

{PkS k : k E K}u{t/R/y/: I E L}U{,Pmu",: m E M}u{vn,Rn: n E N}
C

• with C = f(Xl,"" xn)Rt, f E ~ an n-ary function symbol, X =
{XI, ... ,Xn }, Y = {y/: IE L}, and XuY ~ Vaset of distinct
variables;

• with C = xRt, X = {x}, Y = {y/ : I E L}, and X U Y ~ V a set of
distinct variables;

• with C = Pj(XI,""Xn), X = {XI,""X n }, Y = {y/ : I E L},
and X U Y ~ V a set of distinct variables; or

• with C = Px, X = {x}, Y = {y/ : IE L}, and Xu Y ~ Va set of
distinct variables.

A term deduction system is in panth format if all its rules are.

Example 2.10.17. It is not hard to verify that the deduction rules of our
running example satisfy the panth format.

Next, we define the notion of strong bisimulation for term deduction
systems with negative premises. In definition 2.2.28 we gave the positive
case. This definition is based on [Park, 1981] and its formulation is taken
from [Verhoef, 1994aj.

Concrete process algebra 67

Definition 2.10.18. Let T = (E, D) be a term deduction system with
stratification S and let D = D(Tp,Tr). A binary relation B C G(L) x C(L)
is called a (strong) bisimulation if for all s, t E C(E) with sBt the following
conditions hold. For all R E Tr

Vs' E C(E) (Ts f- sRs' => 3t' E G(L) : Ts f- tRt' /\ s' Bt'),

Vt' E G(E) (Ts f- tRt' => 3s' E C(L) : Ts f- sRs' /\ s' Bt'),

and for all P E Sp

Ts f- Ps ¢} Ts f- Pt.

The first two conditions are known as the transfer property. Two states s
and t E C(L) are bisimilar if there exists a bisimulation relation containing
the pair (s, t). If sand tare bisimilar we write s ~ t. Note that bisimilarity
is an equivalence relation, called bisimulation equivalence.

At this point we have all the ingredients that we need to formulate the
theorem that is interesting for our purpose: the congruence theorem for
the panth format. It states that in many situations strong bisimulation
equivalence is a congruence. The congruence theorem is taken from [Ver­
hoef, 1994a] albeit that there the well-founded subcase is proved. [Fokkink,
1994] showed that this condition is not necessary. Thus, we dropped the
extra assumption.

Theorem 2.10.19. Let T = (L, D) be a stratifiable term deduction system
in panth format. Then strong bisimulation equivalence is a congruence for
all function symbols.

Example 2.10.20. Since the deduction rules of our running example are
in panth format and since the term deduction system has a stratification,
we find with the congruence theorem that strong bisimulation equivalence
IS a congruence.

According to the above example we find that the quotient of the closed
BPAoo terms modulo bisimulation equivalence is well-defined; this means
that the operators of BPAo9 can be defined on this quotient. By a straight­
forward proof we can show that it is a model of BPAoo .

We postpone the proof of the completeness of BPAoo until we have
shown that it is a conservative extension of BPAo'

2.10.2 Conservativity

In this subsection we take care of the conservativity of BPA69 over BPA. We
are used to proving this via the conservativity theorem for the path format
but since the operational rules of BPAo9 do not fit this format, we cannot
simply apply this theorem. Just as with the conservativity of BPAoo (see
subsection 2.10.1) over BPA we will generalize below the theory that we
already treated on conservativity-yet another trip into the general theory

68 J.G.M. Baeten and G. Verhoef

on operational semantics. This time we will mainly extend the theory
of section 2.4.1 so that we can also deal with negative premises. This
subsection is based on [Verhoef, 1994b].

Since we treated some theory on negative premises and some theory
on conservative extensions, their combination will be not too much work.
We have to update the notions of pure, well-founded, and operationally
conservative extension. Then only the operationally conservative extension
theorem for the path format needs a little modification.

Below, we give the update of the notion pure. It was defined in the
positive case in definition 2.2.31.

Definition 2.10.21. A deduction rule containing negative premises is
pure if this rule is already pure when the negative premises are discarded.
A term deduction system with negative premises is pure if all its deduction
rules are pure.

Example 2.10.22. It is not hard to see that the term deduction sys­
tem T(BPA69) is pure.

Now, we update the definition of well-founded. This notion is defined
in definition 2.4.13 for the positive case. The update is in the same vein as
the one for the purity.

Definition 2.10.23. Let T = (E, D) be a term deduction system and
let F be a set of formulas. The variable dependency graph of F is a directed
graph with variables occurring in F as its nodes. The edge x --+ y is an
edge of the variable dependency graph if and only if there is a positive
relation tRs E F with x E var(t) and y E var(s).

The set F is called well-founded if any backward chain of edges in its
variable dependency graph is finite. A deduction rule is called well-founded
if its set of hypotheses is so. A term deduction system is called well-founded
if all its deduction rules are well-founded.

Example 2.10.24. It is not hard to see that the term deduction sys­
tem T(BPA68) is well-founded.

Next, we update the notion of an operationally conservative extension.
Also this definition does not look very different from its positive counter­
part. Note that in the positive case proofs are well-founded trees, whereas
in the negative case we use the notion of agreeing with. More information
on this can be found in subsection 2.10.1. We also refer to this subsection
for the definition of stratifiabili ty.

Definition 2.10.25. Let Ti = (Ei, Di) be term deduction systems with
T == (E, D) := TO Ell Tl defined. Let D == D(Tp, Tr). The term deduction
system T is called an operationally conservative extension of TO if it is
stratifiable and for all s, u E G(I:o), for all relation symbols R E Tr and
predicate symbols P E Tp , and for all t E G(E) we have

Concrete process algebra 69

T s f- s Rt ¢::::::> T~o f- s Rt

and

Ts f- Pu ¢::::::> T~o f- Pu,

where S is a stratification for T and SO is a stratification for TO (take for
instance SO to be the restriction of S to positive formulas of TO).

Now we have all the updates of the definitions that we need in order to
state the operationally conservative extension theorem for the panth format.
The following theorem is taken from [Verhoef, 1994bj.

Theorem 2.10.26. Let TO = (Eo, Do) be a pure well-founded term deduc­
tion system in panth format. Let Tl = (El' D 1) be a term deduction sys­
tem in panth format. If there is a conclusion sRt or Ps of a rule d 1 E Dl
with s = x or s = f(Xl, ... , xn) for an f E Eo, we additionally require
that d1 is pure, well-founded, t E O(Eo) for premises tRy of d1 , and that
there is a positive premise containing only Eo terms and a new relation or
predicate symbol. Now if T = TO EB Tl is defined and stratifiable then T is
an operationally conservative extension of To.

Example 2.10.27. In subsection 2.10.1 we already showed that the term
deduction system that belongs to BPAo8 is stratifiable. It is easy to verify
the other conditions of the above theorem so we may conclude that BPAo8

is an operationally conservative extension of BPA.

In the above example we have shown the operational conservativity of
BPAo8 over BPA. We are in fact interested in the equational conservativity.
The other theorems, in particular the equationally conservative extension
theorem, that we treated in subsection 2.4.1, do not need any updates,
since in those theorems we only refer to term deduction systems and we do
not specify which ones. [Verhoef, 1994bj showed that these theorems hold
for term deduction systems with negative premises.

So, we can formulate and prove the following theorem.

Theorem 2.10.28. The equational specification BPAo8 is an equationally
conservative extension of BPA.

Proof. Straightforward: check the conditions of theorem 2.4.24 and use
example 2.10.27. •

Now that we have the conservativity result, the completeness of BPA68
follows more or less from the completeness of BPAo. We will see this in the
following theorem.

Theorem 2.10.29. The equational specification BPAo8 is a complete ax­
iomatization of the set of closed BPAo8 terms modulo bisimulation equiva­
lence.

70 J.C.M. Baeten and C. Verhoef

Proof. Easy: use theorem 2.4.26.
eliminated; see theorem 2.10.3.

2.10.3 Extensions of BPA69

Note that the priority operator can be •
In this subsection we discuss extensions of BPA69 with the notions of re­
cursion, projections, renaming, and/or the encapsulation operator, and the
state operator. In fact, all extensions but the one with recursion can be
obtained just as for the BPA or BPA. case.

Recursion The problem with the extension of BPAoo with recursion is
purely technical. Since there are negative premises in the operational char­
acterization of the priority and unless operators, we introduced the notion
of a stratification to ensure that the semantical rules indeed define a tran­
sition relation. We recall that in example 2.10.10 we give a stratification
for the operational semantics of BPA.o. The map defined there counts the
total number of occurrences of () and <I. This approach no longer works
in the presence of the operational rules for recursion that we presented in
table 6. We illustrate this with a simple example. Suppose that we have
the following recursive specification:

E = {X = a· X + ()(a)}.

In this case, the operational rule takes the form

a· (XIE) + ()(a)~(XIE)
(XIE}~(XIE)

So with the above stratification we have that the stratification of the
premise is not less than or equal to the stratification of the conclusion.
To solve this problem we use infinite ordinals. We adapt the stratification
as follows:

S(t~t') = w . n + m,

where n is the number of unguarded occurrences of (and m is the total
number of occurrences of () and occurrences of <1 (so the m part is the
original stratification). With the modified stratification, the problem is
solved. We leave it as an exercise to the reader to check the details.

Projection The extension of BPA.o with projection is obtained in the same
way as this extension for BPA; see subsection 2.4.

Renaming and encapsulation It is straightforward to extend the equa­
tional specification BPA69 with renaming operators or the encapsulation
operator; cf. subsection 2.7.3.

State operator The extension of the theory BPA60 with either the simple or
extended state operator is obtained in the same way as for the theory BPA;
see subsections 2.8 and 2.9.

Concrete process algebra 73

Proof. Since bisimulation equivalence is a congruence, we only need to
check the soundne!\s of the axioms of BPA *. The first five axioms are already
treated in the soundness theorem for BPA (see 2.2.35). So it suffices to prove
the soundness of the three remaining equations. The case BKS1 is proved
analogously to the case A1: take as relation the pair (x(x*y) + y, x*y) and
the diagonal. Now it is not hard to show that this is a bisimulation relation.
For the equation BKS2 we have the following relation: relate all terms of
the form x*(yz) with (x*y)z; relate each term of the form x' . (x*(y . z»)
with (x'·(x*y») ·z; and relate each term with itself. We leave it to the reader
to verify that this relation is a bisimulation relation. The verification of the
soundness of Troeger's axiom is obtained analogously to the verification of
equation BKS2. •

It is easy to see that BPA * is a conservative extension of BPA; see sub­
section 2.4.1. However, we cannot eliminate Kleene's binary star operator.
See subsection 2.14 where we discuss expressivity results. This can be easily
seen as follows. Call a term deduction system T operationally terminating
if there are no infinite reductions

possible. It is easy to see by inspection of the operational rules for BPA that
its term deduction system is operationally terminating (cf. lemma 2.2.36
where a "weight" function is defined). It is also easy to see that the term
deduction system belonging to BPA * is not operationally terminating. We
have, for instance, the infinite reduction

*b a *b a *b a a --+a ----+oa --t

Now suppose that Kleene's binary star operator can be eliminated in favour
of the operators of BPA. Then a*b must be bisimilar to a BPA term, say t.
Because of the bisimilarity with a* b we must have that t can mimic the
above steps that a*b is able to perform. So t must have an infinite reduc­
tion. This contradicts the fact that the semantics of BPA is operationally
terminating.

Table 38. Operational rules for Kleene's binary star operator.

a I x---->x
* a * X y---->x Y

y"'!!:""'..j
x*y~V

Concrete process algebra 71

Inconsistent combinations Remarkably, if we combine recursion with the
equational specification BPAo9 plus renaming operators we will find an in­
consistency. [Groote, 1990b) gives the following example. Take a renaming
function f such that

• f(b) = a,
• f(a) = c,
• f(d) = d for all dE A \ {a,b}.

Consider the recursive equation

Now it can be shown that

if we take a > b as the partial ordering on the atomic actions.
Observe also that the combination of recursion with BPA69 plus state

operators is inconsistent since state operators are a generalization of re­
namings.

2.11 Basic process algebra with iteration
In this subsection we extend basic process algebra with an iterative con­
struct. This construct is, in fact, Kleene's star operator, a binary infix
operator denoted *. We will call this operator Kleene's binary star opera­
tor, since there are two versions of Kleene's star operator: one unary and
one binary. The binary construct originates from [Kleene, 1956) and its
more commonly known unary version is due to [Copi et al., 1958). This
subsection is based on the papers [Bergstra et aI., 1994a) and [Fokkink and
Zantema, 1994).

We want to note that using iteration we can also define infinite pro­
cesses. We already discussed recursion, the standard way to define infinite
processes, in subsection 2.3. The advantage of the approach that we explain
in this subsection is that there is no need for proof rules like the recursive
definition principle or the recursive specification principle, to guarantee
that a recursive specification has a possibly unique solution. In this set­
ting, the recursive construct is just some binary operator that we may add
to a process language.

The theory The equational specification BPA· consists of the signature of
BPA and a binary infix operator *, called Kleene's binary star operator.
Its equations are the ones of BPA plus the axioms in table 37.

We will comment on these axioms. The first one BKS1 is the defining
equation for the star operator that [Kleene, 1956) gives in the context of

72 J.C.M. Baeten and C. Verhoef

Table 37. The axioms defining Kleene's binary star operator.

x(x*y) + y = x*y

x*(yz) = (x*y)z

x*(y((x+y)*z) +z) = (x+y)*z

BKS1

BKS2

BKS3

finite automata. Only the notation is adapted to the present situation.
The second equation originates from [Bergstra et al., 1994al; it is a simple
equation needed for the completeness. The third axiom BKS3 is more
sophisticated; it stems from [Troeger, 1993]. Troeger used this equation for
a slightly different process specification formalism.

Next, we will show some properties that can be derived from the equa­
tional specification BPA * . For instance, if we apply Kleene's axiom to
the first term in the display below we find a term to which we can apply
Troeger's axiom with x+y substituted for y. Thus, this yields the following
identity:

x*((x+y)*z) x*((x+y)((x+y)*z) +z)

(x+y)*z.

The next identity expresses that applying the star operator in a nested way
for the same process reduces to applying it once. First, we apply Kleene's
axiom, then we use the idem potence of the alternative composition, then
we use Troeger's identity, and then one application of idem potence finishes
the calculation. We display this below.

x*(x*y) - x*(x(x*y) + y)

- x*(x((x+x)*y)+y)

- (x + x)*y

- * x y.

Semantics We give the semantics of the equational specification BPA * by
means of a term deduction system T(BPA *). Its signature is the signature
of BPA *. Its deduction rules are the rules for BPA that we met many times
before (see table 5) plus the rules that characterize Kleene's binary star
operator. We list them in table 38.

TheoreIll 2.11.1. The set of closed BPA" terms modulo strong bisimula­
tion equivalence is a model of BPA * .

74 J.C.M. Baeten and C. Verhoef

Table 39. The axioms defining the discrete time unit delay.

aAx) + Ud(Y) = Ud(X + Y) DT1

Ud(X) . Y = Ud(X . y) DT2

As a corollary, we cannot use the completeness theorem 2.4.26 to prove
the completeness of BPA·. The proof that our axiomatization is neverthe­
less complete is due to [Fokkink and Zantema, 1994] and is beyond the
scope of this chapter. The reason for this is that the proof makes use of a
sophisticated term rewriting analysis. Below, we will list their main result.

Theorem 2.11.2. The equational specification BPA" is a complete axiom­
atization with respect to strong bisimulation equivalence.

Proof. See the paper [Fokkink and Zantema, 1994]. •
Extensions of BPA" The extension of BPA" with deadlock (BPA6) is as
usual. This system is obtained by taking the syntax of BPA8 plus Kleene's
binary operator *. The axioms of BPA6 are the ones of BPA' plus those
for deadlock.

Since BPA6 is more expressive (see subsection 2.14) than BPA" we can­
not use the usual machinery to prove basic properties such as completeness.
There is no completeness result for the system BPA6 so we will not discuss
the extensions of BPA" (or BPA6) with the notions that we usually extend
our systems with. Moreover, at the time of writing this survey the only
studied extensions of BPA' are those with abstraction, fairness principles,
deadlock, and parallel constructs. We will discuss some of these extensions
after we have introduced such parallel constructs.

2.12 Basic process algebra with discrete relative time
Now, we treat an extension of BPA with a form of discrete relative time; we
abbreviate this as BPAdt. We speak of discrete time since the system works
with so-called time slices. It is called relative since the system refers to the
current time slice, the next time slice, and so on. BPAdt stems from [Baeten
and Bergstra, 1992a]. For other approaches to discrete time process algebra
we refer to [Moller and Tofts, 1990] and [Nicollin and Sifakis, 1994].

Theory The equational specification BPAdt has as its signature the one
of BPA and a unary function called discrete time unit delay, which is de­
noted Ud. The U is some fixed symbol, which is a measure for the delay.
The axioms of BPAdt are the ones of BPA that we listed in table 1 plus the
equations defining the discrete time unit delay; see table 39.

We denote the atomic action a in the current time slice by~. We
distinguish ~ from a because also other embeddings of BPA into BPAdt

Concrete process algebra 75

are possible, where a is interpreted as a occurs at some time, that is, we
have a = ~+O"d(a). The intended interpretation ofthe unary operator O"d(X)
is that it pushes a process x to the next time slice. The length of a time
slice is measured with the positive real 0". This is operationally expressed
by the rule O"d(X)~X, where ~ is a special relation that describes the
pushing behaviour. Note that the label 0" is not part of the signature of
BPAdt·

Axiom DTI is called "time factorizing axiom". It expresses that the
passage of time by itself cannot determine a choice. We note that the form
of choice here is called "strong choice" (the other two approaches mentioned
above have weak choice), so in ~ + O"d(!!.) both a in the current time slice
and b in the next time slice are-possibk. We do have in the closed term
above that by moving to the next time slice, we disable a.

Next, we will show that the term rewriting system associated to BPAdt
is terminating. Although this result has importance of its own, we cannot
use it to prove an elimination result. For the discrete time unit delay cannot
be eliminated.

Theorem 2.12.1. The term rewriting system that is associated to BPAdt
is strongly normalizing. This system consists of the rules in tables 2 and 40.

Proof. We use the method of the recursive path ordering that we treated in
subsection 2.2.2. Take as precedence for the operations in the signature· >
+ > O"d and give the sequential composition the lexicographical status for
the first argument. As an example, we treat RDT2.

O"d(X) . y >Ipo O"d(X)'*Y

>Ipo O"d(O"d(X)'* y)

>Ipo lTd (O";i(x) . y)

>Ipo O"d(X . y).

The other rule is dealt with just as simply. •
Now that we know that the term rewriting system associated to BPAdt

is terminating, we discuss what form the normal forms can take. Following
[Baeten and Bergstra, 1992a], we define these normal forms, called basic
terms.

Definition 2.12.2. In order to define inductively the set of basic terms,

Table 40. The rewrite rules for the discrete time unit delay.

O"d(X) + O"d(Y) O"d(X + y)

O"d(X) . Y lTd(X . y)

RDTI

RDT2

76 J. C.M. Baeten and C. Verhoef

we need the auxiliary notion of an A-basic term: a BPAdt term with no
leading O'd. We define both notions simultaneously.

• every A-basic term is a basic term;

• for each a E A, g is an A-basic term;

• if a E A and t is a basic term, then g' t is an A-basic term;

• if t and s are A-basic terms, then t + s is an A-basic term;

• if t is a basic term, then O'd(t) is a basic term;

• if t is an A-basic term and s is a basic term, then t + O'd(S) is a basic
term.

Next, we formulate some facts from [Baeten and Bergstra, 1992al. They
can be easily proved.

Theorem 2.12.3.

• Let t be a closed BPAdt term. Then there exists a basic term s such
that BPAdt f- t = s.

• An A-basic term takes the form: 2:i<n gi ·ti + 2:j <m gj with n+m > 0,
ai, bj E A, and ti basic.

• A basic term is either an A-basic term or of the form t + O'd(S) with t
and s A-basic terms.

Semantics Next, we formally define the semantics by way of a term de­
duction system for BPAdt . The signature of this system consists of the one
for the equational specification BPAdt. The deduction rules are those for +
and· of BPA in table 1, and the rules for constants and the discrete time
unit delay in table 4l.

Note the appearance of negative premises in the operational rules. By
means of the theory that we discussed in subsection 2.10.1, we can find
that this system indeed defines a set of positive formulas. We recall that
we, therefore, have to find a stratification. Let n be the number of + signs
that occurs in a closed BPAdt term t. Then we define a stratification S by
assigning to t~s and to t~j the number n. For the other formulas 'P
we simply define S('P) = O. It is not hard to see that this function is a
stratification. So the term deduction system is well-defined.

Table 41. The operational semantics for the discrete time unit delay.

r:7 , U I
x--+x , y--+y

X +y~x' +y'

<T I --"L. x--+x , y---r'
U I X + y--+x

<T I x· y--+x . y
-.!!..L..,. cr I x---r', y--+y

X+y~y'

Concrete process algebra 77

It is easy to see that the deduction rules are in panth format (see sub­
section 2.10.1), so we find with theorem 2.10.19 that strong bisimulation
equivalence is a congruence.

Theorem 2.12.4. The equational specification BPAdt is a sound axioma­
tization of the set of closed BPAdt terms modulo strong bisimulation equiv­
alence.

Proof. We can give the soundness proof along the usual lines: the sound­
ness of the BPA axioms is already done and the soundness of the equations
DTI-2 can be obtained just as the case AI. •

Theorem 2.12.5. The equational specification BPAdt is a complete ax­
iomatization of the set of closed BPAdt terms modulo strong bisimulation
equivalence.

Proof. Usually, we prove the completeness with theorem 2.4.26. However,
in this case we cannot apply our routine approach. This is due to the
fact that the discrete time unit delay cannot be eliminated; for instance,
the term Ud(g) cannot be reduced any further. So we cannot apply our
completeness theorem 2.4.26, since there we assume that extra operators
can be eliminated.

To prove the completeness we follow [Baeten and Bergstra, 1992al.
Their idea is to define a bijective mapping between BPAdt terms and
BPA terms; the completeness of BPAdt now follows from the completeness
of BPA. Next, we will work out their idea.

The equational specification BPAdt is parameterized with a set of atomic
actions A; we write BPAdt(A). Similarly, the theory BPA is parameterized
in this way. Since there is mostly no confusion with which set our systems
are equipped, we omit them often-but not in this case, since we param­
eterize BPA with Au = A u {u}, where U i A is an atomic action (with
a suggestive name). So let <p from BPAdt(A) to BPA(Au) be inductively
defined as follows:

• <peg) = a,
• <p(x+y)=cp(x)+<p(y),
• <p(x· y) = <p(x) . <p(y),
• <P(Ud(X)) = U· <p(x).

Now, suppose that we have two bisimilar BPAdt terms sand t .. With
the aid of theorem 2.12.3 we may assume that sand t are basic terms.
So we find that <pes) and <pet) are also bisimilar. With the completeness
theorem 2.2.37 for BPA we find that BPA(Au) I- <p(s) = <pet). Using the
inverse mapping of cp, we can mimic each step of this proof by a step in
BPAdt . So we find that BPAdt I- s = t. •

Next, we formulate a conservativity result for BPAdt.

78 J. C.M. Baeten and C. Verhoef

Theorem 2.12.6. The equational specification BPAdt ~s a conservative
extension of BPA (using g instead of a).

Proof. This can be easily shown using the theory that we discussed in
subsection 2.10.2.

We note that this result is due to [Verhoef, 1994b]. •

2.12.1 Extensions of BPAdt
We will only discuss the extension of BPAdt with deadlock and recursion.
We will not treat the other extensions that we usually have. The reason
for this is that at the time of writing this survey these have not been
formulated.

First, we will discuss how to extend BPAdt with deadlock and then we
discuss the extension with recursion.

Deadlock We can extend BPAdt with deadlock in the usual way. We ab­
breviate this equational specification as BPAodt. The axioms for ~ are the
usual ones for deadlock; see table 10. The termination proof is a combina­
tion of these proofs for BPAdt and BPAo. The notion of a basic term needs
a little modification: ~ is an A-basic term. The operational semantics is the
same as the one for BPAdt . The soundness and completeness are proved
along the same lines as the case BPAdt . The conservativity of BPAodt over
BPA(o) is obtained as usual.

Recursion The extension of BPAdt with recursion has the same technical
problem as the extension of BPAolI with recursion. We recall that the
problem is that we need to define a new stratification on the operational
rules of BPAdt with recursion in order to guarantee that the transition
relation is well-defined. For a solution we refer to subsection 2.10.3 where
extensions of BPA6/I are discussed.

2.13 Basic process algebra with other features
When we want to describe parallel or distributed systems, the most im­
portant extensions are the ones with some form of parallel composition.
We devote section 3 to such extensions. Below, we list a number of other
extensions that we will not cover in this survey. We remark that this list
is incomplete and in random order.

Abstraction In this survey we only treat concrete process algebra, hence
any extension of the systems that we discuss with some notion of abstrac­
tion will not be covered by this survey. For more information on process
algebras that incorporate abstraction we mention [Bergstra and Klop, 1985]
that treats an extension of BPA with abstraction. Other systems that fea­
ture abstraction are ees [Milner, 1980; Milner, 1989], Hennessy's system
[Hennessy, 1988], and esp [Hoare, 1985). We note that the latter two sys­
tems are not extensions of BPA but treat basic notions in a different way.

Concrete process algebra 79

But also ees is not an extension of BPA because there is no sequential
composition in ces.

There are many other process algebras (with abstraction) such as CIR­
CAL [Milne, 1983], MEIJE [Austry and Boudol, 1984], sees [Milner, 1983],
and the 7r-calculus [Milner et al., 1992] to mention some.

Backtracking A well-known notion in logic programming is backtracking.
[Bergstra et al., 1994c] extended process algebra with this notion. They
discuss an algebraic description of backtracking by means of a binary oper­
ator. For more details on this extension we refer to [Bergstra et al., 1994c].

Combinatory logic In [Bergstra et al., 1994b], process algebra is extended
with combinatory logic. An interesting point of this combination is the
possibility to verify the well-known alternating bit protocol without any
conditional axiom, that is, the verification is purely equational. For more
information on this combination and the equational verification we refer to
[Bergstra et al., 1994b].

Real-time In recent years, much effort has been spent on the extension of
several process algebras with a notion of time. We discuss in this survey just
one such extension: process algebra with relative discrete time. However,
there are many more (concrete) extensions present in the literature. We
mention the distinction between relative and absolute time, and the choice
of the time domain: discrete or dense. We refer to [Klusener, 1993] for
more information on real time process algebra in many and diverse forms.

Real-space In [Baeten and Bergstra, 1993] a form of real time process
algebra is extended with real space. The paper surveys material from
former reports on this topic. We refer the interested reader to [Baeten and
Bergstra, 1993] for more information.

Nesting In this survey, we discuss the extension of process algebra with
iteration, or Kleene's binary star. An extension that we do not discuss
is one with an operator called the nesting operator. Like Kleene's binary
star operator, the nesting operator also is a recursive operator (though it
defines irregular recursion). We refer to [Bergstra et al., 1994a) for more
information on this topic.

Signals In [Baeten and Bergstra, 1992b) process algebra is extended with
stable signals. These are attributes of states of a process. They introduce
a signal insertion and a signal termination operator to be able to describe
signals with a certain duration. A typical example that can be described
with this theory is a traffic light system. For more information on the
extension with signals we refer to [Baeten and Bergstra, 1992b].

Conditionals An extension with conditionals or guards can be found in
the just mentioned paper [Baeten and Bergstra, 1992b]. They introduce
an if-then-else operator in the notation of [Hoare et al., 1987). [Baeten and

80 J.C.M. Baeten and C. Verhoef

Bergstra, 1992b] also introduce a variant of this conditional operator, called
the guarded command that originates from [Baeten et al., 1991]. [Groote
and Ponse, 1994] developed a substantial amount of theory for a similar
conditional construct called a guard.

For more information on the extension of BPA with conditional con­
structs we refer to the above papers.

Invariants and assertions Often, it is useful to have a connection between
algebraic expressions and expressions in a logical language. Logical formu­
las can be used to express invariants (see [Bezem and Groote, 1994]) or as
assertions (see [Ponse, 1991]).

Probabilities Often, systems exhibit behaviour that is probabilistic or sta­
tistical in nature. For example, one may observe that a faulty communi­
cation link drops a message 2% of the time. Algebraic formulations of
probabilistic behaviour can be found in [Baeten et al., 1992], [Giacalone et
al., 1990], [Larsen and Skou, 1992], and [Tofts, 1990], to mention some.

2.14 Decidability and expressiveness results in BPA
In this subsection we briefly mention decidability and expressiveness issues
for the family of process algebras that we have introduced thus far.

2.14.1 Decidability

In our case, the decidability problems concern the question whether or
not two finitely specified processes in, for instance BPArec, are bisimilar;
see [Baeten et al., 1993], [Caucal, 1990], and [Christensen et al., 1992].
Informally, we refer to this as the question whether or not BPArec is de­
cidable. It turns out that BPArec is decidable for all guarded processes;
see [Christensen et al., 1992]. For almost all extensions of BPA the de­
cidability problem is open. Only for some extensions of BPArec with the
state operator we have some information at the time of writing this survey.
We refer the interested reader to [Baeten and Bergstra, 1991] and [Blanco,
1995] for more details on the systems A(BPAbrec) and BPAb>.rec and their
decidability problems.

The following theorem is taken from [Christensen et al., 1992]. The
proof of this theorem is beyond the scope of this survey.

Theorem 2.14.1. Bisimulation equivalence is decidable for all BPArec
processes that can be specified with a finite guarded recursive specification.

2.14.2 Expressiveness

For the family of systems that we introduced it is natural to address the
question of expressivity. The result that is known states that BPArec can
express non-regular processes. So, we first need to know what exactly are
regular processes. This well-known definition is formulated below and is

Concrete process algebra 81

taken from [Baeten and Weijland, 1990]. Roughly, a process is regular if it
has a finite graph.

First, we define when a process is regular in some model.

Definition 2.14.2. Let x be a process in some model M of BPArec. Define
the relations .~. on this model as follows:

• x~y ¢::::::} M F x = x + ay,

• x~J ¢::::::} M F x = x + a.

A process y is called a subprocess of x if y is reachable from x; reach ability
means that there is a path of the following form that begins in x and ends
In y:

See also the definition of reachability in a term deduction system 2.2.23.
We say that x is a regular process (for the model M) if x has only

finitely many subprocesses.

Next, we define when a guarded recursive specification is linear. It will
turn out that a regular process can always be specified by a finite linear
specification.

Definition 2.14.3. Let E be a recursive specification with variables from
the set V. The specification E is called linear if every recursion equation
in E is of the form:

i<n j<m

for certain atomic actions ai and bj and variables X, Xi E V (n + m > 0
and n,m EN).

We call a recursion equation linear if it takes the above form. Note that
every linear specification is guarded.

Lemma 2.14.4. Let M be a model ofBPArec. A process x is regular for M
if and only if there exists a finite linear specification with x as solution.

Proof. Sketch. We can turn each model into a graph model with defini­
tion 2.14.2. Now given a regular process x, we turn it into a finite graph.
This graph determines a finite linear specification of which x is a solution.

Vice versa, let E be a finite linear specification. We can easily associate
a finite graph to E, which in turn represents a regular process. (For in­
stance, in the next example we turn a recursive specification into a graph
using the above method.) •

Next, we show that there is a non-regular process that is finitely ex­
pressible in the theory BPArec, namely a counter.

Example 2.14.5. Consider the following guarded recursive specification.
We call the process C a counter.

82 J.C.M. Baeten and C. Verhoef

+ + + ,,-

',-

Fig. 6. The deduction graph of the counter e.

e T·e
T plus· T'

T' minus + T· T'.

We give the deduction graph (see definition 2.2.24) of C in figure 6. Note
that we use + for plus and - for minus.

It is well known that the counter is a non-regular process. It has in­
finitely many distinct states, since for each n there is a state where n
consecutive minus steps can be executed but not n + 1.

Recursion versus iteration In subsection 2.3 we discussed the extension of
BPA with recursion. In subsection 2.11 we discussed a similar construct:
iteration. We can compare both approaches in the following sense: BPA·
is less expressive than BPAlin. BPAlin is BPArec where only finite linear
specifications are allowed!. In other words, BPA· does not contain non­
regular processes. In [Bergstra et al., 1994aJ a simple example is given
that shows the strictness of the inclusion. Consider the following regular
process:

x
Y

a·Y+b,

c·X+d.

In figure 7 we give the graph that belongs to this process. This process is
not definable in BPA·. In the next theorem we summarize the results. For
the proof we refer to [Bergstra et al., 1994aJ.

Theorem 2.14.6. BPA· is strictly less expressive than BPAlin. There is
a regular process that cannot be defined in BPA· .

Remark 2.14.7. We refer to theorem 3.7.8 for more expressivity results
concerning BPA· and BPA~ and systems that we have not seen yet. For
now we state that, in general, BPA· is less expressive than BPA~.

3 Concrete concurrent processes
Up to now, we have discussed the language BPA with many of its extensions.
Next, we want to discuss an extension of such significance that we devote a

1 Note that each recursively specifiable process over ACP can also be specified with a
possibly infinite number of linear equations. Hence the finiteness constraint.

Concrete process algebra 83

a

Fig. 7. The deduction graph of a regular process.

new section to it. It is the notion of parallelism or concurrency that we add
to our family of basic systems that we treated in the previous section. We
will restrict ourselves to concrete concurrency; that is, we do not consider
abstraction.

We follow the ACP approach of [Bergstra and Klop, 1984b]. For other
approaches to concurrency we refer to Milner's CCS [Milner, 1980; Milner,
1989], [Hennessy, 1988], and Hoare's CSP [Hoare, 1985].

3.1 Introduction
In this section, we first extend the BPA family with a parallel construct
without interaction; that is, processes can be put in parallel by means of
this operator but they cannot communicate with each other. This system
is called PA. Then we will extend this theory with extensions that we
discussed in the case of BPA (and new extensions). It will turn out that in
most cases the extensions can be obtained in the same way as in the BPA
case.

Secondly, we extend the parallel construct itself such that communi­
cation between parallel processes is also possible, that is, we discuss the
system ACP. Then we discuss extensions of ACP, which is in most cases
an easy job since they can be obtained in the same way as the extensions
for BPA.

Finally, we discuss decidability and expressiveness issues for various
systems.

3.2 Syntax and semantics of parallel processes
In this subsection we will describe the syntax and semantics of concrete
concurrent processes.

3.2.1 The theory PA

We will discuss the equational theory PA = (I:PA, EpA). This section is
based on [Bergstra and Klop, 1982].

The signature ~PA consists of the signature of BPA plus two binary oper­
ators II and lL. The operator II is called (free) merge or parallel composition
and the operator lL is called left merge. The left merge was introduced
in [Bergstra and Klop, 1982] in order to give a finite axiomatization for

84 J.C.M. Baeten and C. Verhoef

the free merge. [Moller, 1989] proved that it is impossible to give a finite
axiomatization of the merge without an auxiliary operator.

The set of equations EpA consists of the equations of BPA in table 1
and the axioms concerning the merge in table 42. We assume in this table
that a ranges over the set of atomic actions. So axioms M2 and M3 are in
fact axiom schemes: for each atomic action there are axioms M2 and M3.

We assume that sequential composition binds stronger than both merges
and they in turn bind stronger than the alternative composition. So, for
instance, the left-hand side of M3 stands for (a . x) lL y and the brackets in
the left-hand side of M4 are necessary.

Intuition Before we provide the semantics of PA, we give an intuitive
meaning to the non-BPA part of PA: the part concerning both merges.
We already discussed the BPA part informally in 2.2.1. We recall that we
consider the execution of an atomic action to occur at (or to be observed
at) a point in time. We start with the signature and then we treat the
axioms.

We think of the merge of two processes x and y as the process that
executes both x and y in parallel. We think of the left merge of x and y

as precisely the same, with the restriction that the first step of the pro­
cess x lLy comes from its left-hand side x. We disregard the simultaneous
execution of atomic actions here (but see subsection 3.5 where communica­
tion comes into play). This leads to the so-called interleaving view, which·
clarifies the behaviour of the left merge.

This intuition clarifies that axiom M1 is defined in terms of the left
merge: the merge of two processes starts either with the left-hand side or
with its right-hand side.

The remaining axioms M2-4 define the left merge following the struc­
ture of basic terms.

The parallelism in axiom M2 collapses into sequential composition since
the first step at the left-hand side is also the last one. After the first step
in M3, we obtain full parallelism for the remainders. Axiom M4 simply
says that the left merge distributes over the alternative composition. Note
that, in general, (x + y) II z t= x II z + y II z. So, here we describe an inter­
leaving parallel composition. Also, other forms of parallel composition can
be formulated. We already mentioned interleaving extended with simul­
taneous execution, to be discussed from subsection 3.5 on, but also want
to mention so-called synchronous parallel composition, by which we can
describe clocked systems, where all components proceed in lock-step. A
well known process algebra with synchronous parallel composition is sees
[Milner, 1983], two references using the present framework are [Bergstra
and Klop, 1984b] and [Weijland, 1989].

Structural induction We can use structural induction for PA as before
for BPA, since basic PA terms are just basic BPA terms. This follows

Concrete process algebra 85

Table 42. Axioms for the free merge.

xl/y=x[ly+y[lx Ml

a \Lx = ax M2

ax [ly = a(x 1/ y) M3

(x+y)[lz=x[lz+y[lz M4

immediately from the theorem to follow (theorem 3.2.4). It states that
parallel composition can be eliminated from closed PA terms.

Termination Next, it is our aim to prove that the term rewriting system
associated to the equational specification PA is strongly normalizing. In
subsection 2.2.2 we already discussed the powerful method of the recursive
path ordering. Indeed, we will use this method to prove the desired result
but we cannot apply it immediately. We recall that the termination prob­
lem more or less reduces to finding the appropriate strict partial ordering
on some operators in the signature. The problem that we have with this
particular system is that we cannot define a consistent partial ordering on
the elements of the signature. First, we will explain this problem and then
we will see that a possible solution can be obtained in the same way as for
the termination of BPAA; see section 2.8.1. The problematical pair consists
of the rules (RMl,RM3). Analysing this pair we find that if we take the
rule RMI on the one hand, the ordering that does the job is 1/ > [l.
On the other hand, if we look at RM3, the right choice is the other way
around: [l > II. This particular problem is tackled by [Bergstra and Klop,
1985]. More detailed information on this problem can be found in a survey
on term rewriting that appeared in this series [Klop, 1992, remark 4.11(ii)].
The idea of [Bergstra and Klop, 1985] was to equip the operators 1/ and [l
with a rank. Thus yielding a ranked signature for which it is possible to
define the desired strict partial ordering. To formalize the ranked signature
we first need a notion termed "weight". Its definition stems from [Bergstra

Table 43. A term rewriting system for PA.

(x+y)z-+xz+yz RA4

(xy)z -+ x(yz) RA5

xl/y-+x[ly+y[lx RMI

a [lx -+ ax RM2

ax [ly -+ a(x 1/ y) RM3

(x+y) [lZ -+ x lLz+y lLz RM4

86 J. C.M. Baeten and C. Verhoef

and Klop, 1985]. Note that we already defined this notion in the case of
BPA with the state operator; see definition 2.8.l.

Definition 3.2.1. Let x and y be terms and let a be an atomic action.
The weight of a term x, notation lxi, is defined inductively as follows:

• lal = 1
• Ix + yl = max{lxl, Iyl}
• Ix, yl = Ixl + Iyl

• Ix II yl = Ixl + Iyl
• Ix lLYI = Ixl + Iyl·

Below we give the definition of a ranked operator as defined by [Bergstra
and Klop, 1985]. And we list the new signature.

Definition 3.2.2. The rank of an operator II or lL is the weight of the
subterm of which it is the leading operator. The signature for the term
rewriting system associated with PA is the following:

where the subscripted n stands for the sum of the weights of the arguments.

Now that we are equipped with the right tools we formulate the termi­
nation theorem for the system PA.

Theorem 3.2.3. The term rewriting system associated to PA (see table
43) is strongly normalizing.

Proof. We will give the partial ordering so that we can use the method of
the recursive path ordering. We use the following ordering on the signature;
this ordering is taken from [Bergstra and Klop, 1985].

+ < . < lL2 <Ib< lL3 <Ib<

Moreover, we give' the lexicographical status for the first argument. We
will treat RM1 and RM3 to show the use of the ranked operators. First, we
display the calculations that lead to the desired inequality concerning RMl.
Let Ixl + Iyl = n. Notice that we are to show that

x lin y >lpo X lLn y +y lLnx.

We will make use of the fact that lin> + and that lin > lLn.

x lin y >lpo X II~ y

>Ipo X II~ y + X II~ y

>Ipo (x II~ y) lLn(x II:' y) + (x II~ y) lLn(X II~ y)

Concrete process algebra

Now we handle the case RM3. Let Ixl + Iyl = n.

(a· x) Il.n+l y >lpo (a· X)\L~+l y

>lpo (a. x) 1l.~+1 y) . (a. x) Il.~+l y)

>lpo (a· x)· (((a. x) 1l.~+1 y) lin (a· x) 1l.~+1 y))

>lpo (a·* x)· (a. x) lin y)
>lpo a· (a·* x) lin y)
>lpo a· (x lin y).

The other cases are verified along the same lines.

87

•
By means of the termination of PA we can now formulate the following

elimination theorem, which states that the merge and the left merge can
be eliminated for closed terms.

Theorem 3.2.4. For every closed PA term t there is a basic BPA term s
such that PA I- t = s.

Proof. According to theorem 3.2.3 we find that the term rewriting system
of table 43 is strongly normalizing. Let t be a closed PA term and let s
be its normal form with respect to the term rewriting system of table 43.
With proposition 2.2.6 it suffices to show that s is a closed BPA term.
Suppose that s contains a merge; then we can use RMl, which contradicts
the normality of s. Now suppose that s contains a left merge and consider
the smallest subterm containing it. Due to this minimality, it is of the
form u 11. v with u and v closed BPA terms. Rewrite u into its BPA normal
form. Then RM2, RM3, or RM4 can be applied, which again contradicts
the normality of s. So s must be a closed BPA term. •

Standard concurrency Some properties concerning both merges cannot be
derived from PA, but can only be proved for closed PA terms, for instance
the associativity of the merge. In many applications these properties are
useful and thus assumed to hold. Hence, following [Bergstra and Tucker,
1984], they are often referred to as axioms for standard concurrency. In
the next theorem we will treat two such equalities.

Theorem 3.2.5. Let x,y, and z be closed PA terms. Then the following
two statements hold:

(i) (x Il.Y) Il. z = x Il.(y II z),

(ii) (x II y) II z = x II (y II z).

Proof. We prove both equalities with induction on the sum s of the num­
ber of symbols occurring in x, y, and z. The case s = 3 is trivial so we

88 J. C.M. Baeten and C. Verhoef

only treat the case s + 1. In accordance with theorem 3.2.4, we may as­
sume that x is a basic BPA term. This gives three trivial cases for the first
equality.

To prove the second equality use the fact that the first equality holds
for s + 1 and use the (derivable) fact that the merge is commutative. •

Expansion An important result in PA with standard concurrency is the
so-called expansion theorem, which is a generalization of axiom M1 (see
[Bergstra and Tucker, 1984]). It tells us how the merge of more than two
processes can be evaluated. For instance, the merge of three processes x, y,
and z yields

x !L(y II z) + y !L(x II z) + z !L(x II y).

Theorem 3.2.6. In PA with standard concurrency we have the following
for all open PA terms Xl, X2, • .. , Xn and n > 2.

n

Xl II X2 II ... II Xn = L Xi ~ (Xl II ... II Xi-l II Xi+l II ... II Xn).

i=l

Proof. Straightforward induction on n. •
3.2.2 Semantics of PA

We will give the semantics of PA by means of a term deduction sys­
tem T(PA). Take for its signature the one of PA and for its rules the ones
of BPA in table 5 and the rules concerning the merge in table 44. Bisimu­
lation equivalence is a congruence; see 2.2.32. So the operators of PA can
be defined on the quotient of closed PA terms with respect to bisimula­
tion equivalence. The following theorem says that this quotient is a model
ofPA.

Theorem 3.2.7. The set of closed PA terms modulo bisimulation equiva­
lence is a model of PA.

Table 44. Derivation rules of T(PA).

a ,
x--->x

X II y-.!!.....x' II y

x-.!!.......j

X II y-.!!.....y
a ,

x--->x

X !L y-.!!.....x' II y

a ,
y--+y

X II y-.!!.....x II y'

y-'!!""'..j

X II y-.!!.....x

x-.!!.......j

X !L y-.!!.....y

Concrete process algebra 89

Proof. AI-A5 are treated as in 2.2.35. M2-M4 are proved as AI. Take
for Ml the relation between the left- and right-hand sides of MI, that
relates all pairs (xiII y', y' II x'), and that contains the diagonal. •

Next, we take care of the conservativity of PA over BPA.

Theorem 3.2.8. The equational specification PA is a conservative exten­
sion of the equational specification BPA.

Proof. With the aid of theorem 2.4.15 it is very easy to see that the term
deduction system T(PA) is an operationally conservative extension of the
term deduction system T(BPA) (listed in table 5). With theorem 2.4.19 we
also find that this holds up to strong bisimulation equivalence. With the
above theorem we know that PA is sound with respect to the model induced
by T(PA), so according to theorem 2.4.24 we find the conservativity. •

Below we give the completeness theorem for PA.

Theorem 3.2.9. The axiom system PA is a complete axiomatization of
the set of closed PA terms modulo bisimulation equivalence.

Proof. With the aid of theorem 2.4.26 and the conservativity of PA over
BPA we find the completeness of PA (use also theorems 2.2.37 and 3.2.4) .•

3.3 Extensions of PA
In this subsection we will discuss extensions of PA with various features.
We already met these extensions when we discussed BPA. We treat the
extension of PA with recursion, projections, renaming, the state operator,
and iteration. We postpone the extensions of PA with the priority operator
and discrete time until we extended the theory PA with deadlock. We deal
with PAD in subsection 3.3.2. In subsection 3.3.3, we present an application
of PAD with the state operator, namely in the description of asynchronous
communication. We explain in 3.3.4 why we do not treat PA with the
empty process.

An extension that is new here is the extension of PA with a process
creation mechanism. The reason we did not discuss this extension before,
is that this extension makes essential use of the parallel operator. We
discuss this extension in subsection 3.3.I.

Recursion Here we will add recursion to PA. This is done in the same way
as we did for BPA.

The equational specification PArec has as its signature the signature
of BPArec plus the two binary operators II and ~ present in the signature
of PA. The axioms of PArec are the ones of BPArec plus the axioms of
table 42.

The definition of a guard and a guarded recursive specification are
the same as in subsection 2.3. Note that there are more guarded terms
and recursion equations (thus guarded recursive specifications) in PA than

90 J. C.M. Baeten and C. Verhoef

in BPA. For example, a(X II Y) is a guarded term and the recursion equa­
tion X = a ~ X is guarded because of axiom M2.

The semantics of PArec can be given with a term deduction system
T(PArec): take for its signature the one of PArec and for its rules the rules
of PA plus the rules concerning recursion; see table 6. Since bisimulation
equivalence is a congruence (2.2.32), we can define the operators of PArec
on the quotient algebra of the set of closed PArec terms with respect to
bisimulation equivalence. This quotient is a model of PArec and it satis­
fies RDP, AIP-, and RSP.

Projection We can extend the equational specification PA with projections
as we did for BPA. The equational specification PA+PR has as its signature
the one of BPA + PR plus the two binary operators II and ~ present in the
signature of PA. Its axioms are the ones of PA plus the axioms concerning
projections; see table 7.

The results that we obtained in subsection 2.4 translate effortlessly to
the present situation.

Recursion and projection Here we will extend PA with both recursion
and projection. This extension is obtained analogously to the extension
of BPA with recursion and projection. The specification PArec + PR has
as its signature the one of PArec plus the unary operators 7l"n that occur
in the signature of PA + PR. Its axioms are the ones of PArec plus the
axioms concerning projection; see table 7. The results that we obtained
for BPArec + PR in subsection 2.4.2 also hold for PArec + PR. We will not
mention them here.

The semantics of PArec+ PR can be given by a combination of the term
deduction system of PArec and PA + PRo

Renaming It is not difficult to extend the equational specification PA, and
its extensions, with renaming operators; see subsections 2.7 and 2.7.l.

State operator We can extend the theory PA with either the simple or
extended state operator in the same way as we did for the theory BPA. For
details we refer to subsections 2.8 and 2.9.

Iteration We can extend PA with iteration by just adding the defining
axioms for • in table 37 to the ones for PA. For this theory there is no
completeness result present at the time of writing this survey.

3.3.1 Process creation

In this subsection, we discuss an extension of PA with an operator that
models process creation. This extension is not present in BPA since it
is defined using the parallel composition II. This subsection is based on
[Bergstra, 1990]. We refer to [America and Bakker, 1988] and to [Baeten
and Vaandrager, 1992] for other approaches to process creation.

We refer to [Bergstra and Klint, 1994] for an application of process

Concrete process algebra

Table 45. Axioms for the process creation operator.

E",(a) = a, if a f= cr(d) for d E D

E",(cr(d») = cr(d) . E",(¢(d»), for d E D

E",(a' x) = a' E",(x), if a f= cr(d) for d ED

E", (cr(d) . x) = cr(d) . E", (¢(d) II x), for d E D

E",(x + y) = E",(x) + E",(y)

creation.

PCRI

PCR2

PCR3

PCR4

PCR5

91

The theory The equational specification PA + PCR (process algebra with
process creation) is defined in stages. First we take the theory PA where
we assume that the set of atomic actions A contains some special actions:
for all d in some data set D we assume that cr(d) E A and cr(d) E A.
We moreover assume the existence of a function, the process creation func­
tion, ¢ on D that assigns to each d E D a process term ¢(d) over PA with
the above set of atomic actions A. Using the function ¢ we add a unary
operator E", to the signature, thus obtaining the signature of PA + PCR.
The operator E", is called the process creation operator.

The equations ofPA+PCR are those ofPA plus the ones that define E",.
We list these equations in table 45.

Intuition We provide some intuition for PA + PCR. We will compare pro­
cess creation with the UNIX2 system call fork; see [Ritchie and Thompson,
1974]. We recall that with fork we can only create an exact copy (child
process) of its so-called parent process. We note that with the process cre­
ation operator we are able to create arbitrary processes but to provide an
intuition for process creation the system call fork is illustrative.

The atomic action cr(d) can be seen as a trigger for E",; compare cr(d)
to the system call fork. The operator E", initiates the creation of a process
when a cr(d) is parsed; think of it as a program that invokes the system
call fork. The action cr(d) indicates that a process creation has occurred;
this action can be interpreted as the return value of the system call fork
to the parent process (which is the unique process ID of the newly created
process). Maybe this intuition is best illustrated by axiom PCR4. There
we see that from E",(cr(d) . x) a process ¢(d) is created that is put in
parallel with the remaining process x, while leaving a trace cr(d).

Next, we formulate a simple lemma that states that process creation
distributes over the merge.

Lemma 3.3.1. For all closed PA terms x and y we have

2UNIX is a registered trademark of UNIX System Laboratories (at least at the time
of writing this survey).

92 J.C.M. Baeten and C. Verhoef

Table 46. Operational rules for the process creation operator.

x~v
E¢(x)~v,a:j:. cr(d)

cr(d) /
X 'Y

Proof. Use structural induction on both x and y. •
Example 3.3.2. Let D = {d} and let ¢(d) = cr(d). If x = E¢{cr(d)),
then x = cr(d) . x. So we see that even the simplest examples give rise to
recursive equations.

Termination The above example shows that the term rewriting system
associated to PA + PCR (by orienting the axioms of PA + PCR from left
to right) is, in general, not terminating. For, in case of the above example,
we have the following infinite sequence of rewritings:

E¢{cr(d)) -t cr(d)· E¢{cr(d)) -t cr(d)· cr(d)· E¢{cr(d)) -t

Semantics We discuss the operational semantics of PA + PCR. It is ob­
tained by means of a term deduction system. The signature is that of
PA + PCR; the operational rules are those of PA plus the rules that opera­
tionally define the process creation operator E¢. We list them in table 46.
The rules of this table originate from [Baeten and Bergstra, 1988b}.

The soundness of PA + PCR is easily established.

Theorem 3.3.3. The set of closed PA + PCR terms modulo bisimulation
equivalence is a model of PA + PCR.

Proof. For the equations of PA we refer to theorem 3.2.7. So we only
need to show the soundness of the equations PCRI-5. This is easy. We
only give the bisimulation relations and leave the calculations to the reader.
For PCRI, relate the left-hand side and the right-hand side of PCRI. For
PCR2-5 also take such a pair and join this with the diagonal. •

Next, we state that PA + PCR is a conservative extension of PA.

Theorem 3.3.4. The equational specification PA + peR is a conservative
extension of the equational specification PA.

Concrete process algebra 93

Proof. As usual. •
From example 3.3.2 it follows that the process creation operator intro­

duces recursion. So we do not have a completeness theorem.

3.3.2 Deadlock in PA

It is straightforward to add deadlock to the theory PA. The equational
specification PAD has as its signature the one of PA plus a constant (j ~ A.
Its axioms are the ones of PA plus the axioms concerning deadlock listed
in table 10. We assume for axioms M2 and M3 that a ranges over the
set AU {8}.

Structural induction We can use structural induction for PAD as before
for BPA., since basic PAD terms are just basic BPA. terms. This follows
immediately from the fact that both merges can be eliminated from closed
PAD terms. This can be shown by means of a term rewriting analysis just
as in theorem 3.2.3 and the following elimination theorem.

Theorem 3.3.5. For every closed PAD term t there is a basic BPA. term s
such that PAD I- t = s.

Proof. This is proved along the same lines as theorem 3.2.4. •

Also the conservativity of PAD over BPA. and the completeness of PAD
can be proved along the same lines as these results for PA without exten­
sIOns.

Standard concurrency Standard concurrency in PAD is dealt with com­
pletely analogously to the situation without deadlock, so we refer to theo­
rem 3.2.5 for standard concurrency. Below, we will mention some properties
about the connection of deadlock and parallel composition. The proof of
these properties is elementary and therefore omitted.

Theorem 3.3.6.

(i) PA61-8\Lx=8.

Let x be a closed PAD term. Then we have

(ii) xIl8=x\L8=x8.

Let x and y be closed PAD terms. Then we have

(iii) x II y8 = (x II y)8 = x8 II y.

Remark 3.3.7. We mention that if in addition we have standard concur­
rency, the proof of (iii) follows easily using (ii):

x II y8 = x II (y II 8) = (x II y) II 8 = (x II y)8.

Expansion For PAD with standard concurrency we have the same expan­
sion theorem as for the theory without deadlock, so for expansion we refer
to theorem 3.2.6.

94 J. C.M. Baeten and C. Verhoef

Semantics The semantics of PAD can be given by means of a term deduc­
tion system T(PAo), which is just T(PA) with h added to its signature. The
operators of PAD can be easily defined by taking representatives on the quo­
tient of the set of closed PAD terms modulo bisimulation equivalence, since
this relation is a congruencej see 2.2.32. The quotient is a model for PA.,
which can be easily checked by combining the soundness proofs for BPA.
and PA. Moreover, the axiom system PAD is a complete axiomatization of
this quotient. This follows immediately from the completeness of PA since
we did not introduce any new transitions.

3.3.3 Asynchronous communication

It is straightforward to extend PAD with any of the features mentioned in
the beginning of subsection 3.3. Here, we consider an application of PAD
with the (simple) state operator. We describe mail through a communi­
cation channel. Let D be a finite data set and let c be a communication
channel. We assume that for each d E D we have the following special
atomic actions:

• c i d

• c'lf d

• c 1 d

• cJJ.d

send d via Cj potential action

send d via Cj realized action

receive d via Cj potential action

receive d via Cj realized action.

The state operator will turn potential, intended actions into realized ac­
tions. The state space will keep track of outstanding messages.

We consider the case where the communication channel behaves like a
queue, i.e. the order of the messages is preserved. Without much trouble,
descriptions for other kinds of channels can be generated (for instance, a
bag-like channel). Thus, the state space is D*, the set of words over D.
Let u, p range over D*, and let c: denote the empty word. We denote the
concatenation of words u and p simply by up. Note that D ~ D* so ud
is the concatenation of the words u and d (for dE D). Let last(u) be the
last element of word u, if u i= t.

We define the action and effect functions implicitly, by giving the rele­
vant instances of axiom S02.

A~ (c i d . x)

A~d(c 1 d· x)

A~{cL d· x)

C 1t d· Adq(x)

c.ij. d· A~{X)

h, if u = c: or last{ u) i= d.

The action and effect functions are inert for all other atomic actions. Now
suppose 0 E Dj then we can describe two communication partners:

S = c i 0,

Concrete process algebra

R L c 1 d· print(d).
dED

Some easy calculations show that

'\~(S II R) cit o· '\~(R) = cit o· c.JJ. 0 . >.~ (print(O))

cit 0 . c.JJ. 0 . print(O).

95

Asynchronous communication in the setting of PA was introduced in [Berg­
stra et ai., 1985]. The present formulation is taken from [Baeten and Weij­
land, 1990].

3.3.4 Empty process in PA

We will not discuss the combination of parallel composition and the empty
process, since this combination is not (yet) standardized. At this moment
there are two possible ways to combine the merge and the empty process.
These options originate from the various interpretations of the term c lL x.
It may seem natural to demand that this equals x, since c is only capable
of terminating successfully, but this perspective leads to a non-associative
merge, which is rather unnatural and therefore unwanted [Vrancken, 1986].
The intended interpretation of the left merge is that of the merge with the
first action from the left process, so the term c lL x cannot proceed, since c
cannot perform an action. One of the options is that c lL x equals 6 ex­
cept if x = c: then it equals c; see [Vrancken, 1986] for more information.
The other option drops this exception and uses a unary operator indicat­
ing whether or not a process has a termination option to axiomatize the
merge [Baeten and Glabbeek, 1987].

3.4 Extensions of PAD
In this subsection we will discuss the extensions of PAD with recursion, pro­
jections, renaming, and/or the encapsulation operator, the state operator,
the priority operator, iteration, process creation, and discrete time.

Recursion and/or projection The extensions of PAD with recursion, pro­
jection, or a combination of both are obtained by simply merging these
extensions for BPA. and PA; see subsections 2.5 and 3.3.

Renaming and encapsulation It is straightforward to extend the equa­
tional specification PA., and its extensions, with renaming operators or
the encapsulation operator; d. subsection 2.7.3.

State operator The extension of the theory PAD with either the simple or
extended state operator is obtained in the same way as for the theory PA;
see subsections 2.8 and 2.9.

Priority operator We can extend the theory PAD with the priority operator
in the same way as the extension of BPA. with that operator. For details

96 J. C.M. Baeten and C. Verhoef

Table 47. The interaction between the left merge and the discrete time
unit delay.

lTd(X) Ii g = g
lTd(X) Ii (g, + Y) = lTd(X) IiY

lTd(X) Ii (g,. Y + z) = lTd(X) liz
lTd(X) Ii lTd(Y) = lTd(X liy)

of that extension we refer to section 2.10.

DTM1

DTM2

DTM3

DTM4

Iteration We can extend PAc with iteration by just adding the defining
axioms for· in table 37 to the ones for PAc. Only for BPA * is the com­
pleteness proved at the time of writing this survey.

Process creation We can extend PAc with the process creation operator E",
in the same way as we did for PA. For details we refer to subsection 3.3.l.

3.4.1 Discrete time

In this subsection, we extend PAc with discrete time. With the interaction
between the discrete time unit delay lTd and the left merge Ii we have to be
a bit careful. We recall that x Ii Y is x and y in parallel but the first action
stems from x. With discrete time present, the question arises if that is
possible at all. For instance, lTd(g) lig equals g in this system as we cannot
move to the next time slice in order to let a happen, since b must occur in
the current time slice. The material of this subsection is based on [Baeten
and Bergstra, 1992aJ.

The theory We discuss the equational specification PA6dt . Its signature
is the one of PAc (with g instead of a for a E A6) plus the discrete time
unit delay operator (J"d that we first introduced in BPAdt . The equations of
PAcdt are the ones of BPADdt plus the equations for the merge that we listed
in table 42 (again with g instead of a) and the equations that represent the
interaction between the left merge and the discrete time unit delay; we list
the latter axioms in table 47. Incidentally, this axiomatization is new here.

Termination Next, we discuss the termination of a term rewriting system
associated to the equational specification PADdt. Since we have the left
merge in our signature we use the ranked operators that we also used for
the termination of PA; cf. subsection 3.2.l.

Theorem 3.4.1. The term rewriting system associated with PAcdt con­
sisting of the rewrite rules for PAD, the rules of table 40, and the equations
in table 47 oriented from left to right is strongly normalizing.

Proof. Let us use the theory of subsection 2.2.2. As usual we confine
ourselves to giving a partial ordering on the signature. In addition to the

Concrete process algebra 97

ordering that we gave in the termination proof for PA6

+ < . < lL2 < 112 < lL3 < 113 < ... ,

we have the following precedence:

The rest of the proof consists of straightforward calculations. •
Elimination With the above theorem we can obtain an elimination result
for closed terms. However, we cannot obtain this result directly. This is
due to the fact that we did not consider a term rewriting analysis modulo
the axioms without a clear direction such as Al and A2. We make the
problems a bit more concrete with the following term rewriting modulo Al
and A2.

-+

-+

Ud(~) lL (~+ (Ud(g) + Ud(~)))
Ud(~) lL Ud(g +~)

Ud(g, lL (Q + f)) - - -
U d (~ . (g + ~)) .

So, we see that for the elimination of the left merge we need more than
just the termination result above. We will solve this problem in the next
theorem.

Theorem 3.4.2. The equational specification PA6dt has the elimination
property for BPA6dt.

Proof. Let t be a PA6dt term. Rewrite t with the term rewriting system
associated with PA6dt to a normal form to. It is possible that left merges
still occur in the resulting term. Take the minimal subterm of to that
contains a left merge s lL S1. Both 8 and 81 are BPA6dt terms. We may
assume that s is of the form Ud(SO) (otherwise to would not be in normal
form). With the aid of theorem 2.12.3 we know that 81 can be written in
one of the following forms:

· L ~i . ti + L gj'
i<n j<m

• t + Ud(S) with t of the above form.

Now replace S1 with one of the above forms and rewrite the resulting new
term to a normal form and repeat this procedure until all left merges have
been eliminated. •

Semantics Now we discuss the operational semantics of PA6dt. The se­
mantics of the system PA6dt is quite straightforward. In table 48 we list the

98 J.C.M. Baeten and C. Verhoef

Table 48. The additional rules for the merge and the left merge.

x...!!.....x', y...!!.....y'

x II y...!!.....x' II y'

x...!!.....x', y...!!.....y'

x ~ y...!!.....x' h'

additional operational rules for the merge and the left merge. The entire
semantics of PAodt consists of the one of BPA6dt plus the rules in tables 44
and 48.

Theorem 3.4.3. The set of closed PAodt terms modulo bisimulation equiv­
alence is a model of PAodt ·

Proof. Since bisimulation equivalence is a congruence, we only need to
check the soundness of the axioms of PAodt . We already treated all the
axioms except DTMI-4. For these we give the bisimulation relations. For
DTMI relate the left-hand side and the right-hand side. For DTM2-4 also
relate the left- and right-hand sides and add the diagonal. •

Theorem 3.4.4. The equational specification PAodt is a conservative ex­
tension of the equational specification BPAodt.

Proof. Easy. •
Now we have all the prerequisites to state the completeness theorem for

PAodt ' The proof is as usual and therefore omitted.

Theorem 3.4.5. The axiom system PAodt is a complete axiomatization of
the set of closed PAodt terms modulo bisimulation equivalence.

3.5 Syntax and semantics of communicating processes
In this subsection we will extend the meaning of the parallel operator II
that we introduced in subsection 3.2. We will call the ensuing operator II
the merge or parallel composition. We use the name free merge for the
merge without communication, that is the merge of PA.

We use the extended merge to model synchronous communication be­
tween processes.

3.5.1 The theory ACP

We define the syntax of the equational specification ACP = (~ACP, EAcp)
of [Bergstra and Klop, 1984b].

The signature ~ACP consists of the one of PAD plus a binary operator I,
called the communication merge and the encapsulation operator 8H that we
already discussed in subsection 2.7.3 (we recall that H ~ A). Moreover, we
fix a partial function 'Y : A X A --+ A, where A is the set of atomic actions.
We call 'Y the communication function. The communication function is,
like A, a parameter of the theory. It is meant to model the communication

Concrete process algebra 99

Table 49. Axioms for the merge with communication.

a I b = 'Y(a, b), if,,(a, b) defined; CFl

a I b = 6 otherwise. CF2

xlly=x~y+y~x+xly CM1

a~x=ax CM2

ax h = a(x II y) CM3

(x+y)~z=xlLz+YlLz CM4

(a,x)lb=(alb)·x CM5

al(b·x)=(alb)·x CM6

(a·x)l(b·y)=(alb)· (x II y) CM7

(x + y) I z = x I z + y I z CM8

x I (y + z) = x I y + x I z CM9

between processes. In fact, the communication merge I is the extension
of the communication function to processes. We require that 'Y is both
commutative and associative; that is, if 'Y(a, b) is defined, it equals 'Y(b, a)
and if {(a,{(b,c)) is defined it equals {({(a,b),c) and vice versa. So, we
can leave out the brackets in such formulas and render the latter expression
as {(a, b, c).

Now we give the set of equations I:ACP. This set consists of the equa­
tions for BPAo +8H that we discussed in subsection 2.7.3 and the equations
that we list in table 49. See table 21 for the defining axioms of the encap­
sulation operator. Observe that the equations CM2-4 are the same as the
ones that we discussed when we introduced PA. We recall them for the sake
of ease.

Now we discuss the axioms of ACP. The most important one is CM1
where a third possibility for the merge is added. The intended interpreta­
tion of this summand x I y is that it is the parallel composition of the two
processes x and y but that the first step must be a communication. Both
processes must be able to perform an action for which 'Y is defined.

Terminology We say that two atomic actions do not communicate if the
communication function is not defined for them. We say that an atomic
action a is a communication action if a = feb, c) for atomic actions band c.
A communication action 'Y(b, c) is called a binary communication; likewise
'Y(a, b, c) is called ternary if defined. However, most of the time just using
binary communication is enough in applications. See also later on when we
discuss so-called handshaking.

100 J. C.M. Baeten and C. Verhoef

Read/send communication An important case of binary communication
is called read/send communication. The idea is that in the set of atomic
actions we have read actions ri(d), send actions si(d), and communication
actions ci(d). The intended meaning of ri(d) is to read datum d E D at
port i, where the set D is some finite data set. For 8i(d) a similar intuition
holds. Now ci(d) is the result of a communication of ri(d) and si(d): it
means transmit the datum d by communication at port i. The appropriate
communication function is I'(ri(d),si(d)) = I'(si(d),ri(d)) = ci(d) and l'
is not defined otherwise on ri(d), sj(e), and Ck(J) (for ports i,j, k and data
elements d, e, j). For other atomic actions it is permitted to have some
communications defined. The above conventions are due to [Bergstra and
Klop, 1986). An example of the use of read/send communication is given
in section 3.6.

Structural induction As before we can use structural induction for ACP,
since basic ACP terms are just basic BPA6 terms. This follows from the­
orem 3.5.5 that states that parallel composition and encapsulation can be
eliminated from closed ACP terms.

3.5.2 TerInination

As before we prove the termination of a term rewriting system associated
to ACP (see table 50) with the aid of the theory of subsection 2.2.2. The
proof of this fact will more or less be the same as the proof for PA. There we
have given some operators a weight to avoid problems with the left merge.
Note that in table 50, we rewrite a I b to an atomic action c or {j in order
to eliminate the communication merge.

Next, we give the definition of the weight function. It is an extension
of definition 3.2.l.

Definition 3.5.1. Let x and y be terms and let a be an atomic action.
The weight of a term x, notation Ixl is defined inductively as follows.

• lal = 1
• Ix + yl = max{lxl, Iyl}

• Ix· yl = Ixl + Iyl

• Ix II yl = Ixl + Iyl

• Ix ILYI = Ixl + Iyl

• Ix I yl = Ixl + Iyl

• 18H (x)1 = Ixl·

Below we give the definition of a ranked operator as defined by [Bergstra
and Klop, 1985). And we list the new signature. This definition is an
extension of definition 3.2.2.

Definition 3.5.2. The rank of an operator II, iL, or I is the sum of the
weights of its arguments. The signature for the term rewriting system

Concrete process algebra 101

Table 50. Term rewriting rules for the merge.

a I b -+ c, if -y(a, b) = c; RCFl

a I b -+ 8 otherwise. RCF2

x II y -+ x lLY + y lLx + x I y RCM!

a lLx -+ ax RCM2

ax lLy -+ a(x II y) RCM3

(x + y) lLz -+ x lL z + y lLz RCM4

(a· x) Ib -> (alb)· x RCM5

al(b·x) -> (alb)·x RCM6

(a . x) I (b . y) -> (a I b) . (x II y) RCM7

(x + y) I z -> x I z + y I z RCM8

x I (y + z) -> x I y + x I z RCM9

associated with ACP is the following:

AU {+,',8H} u {lin, lLn' In: n > 2},

where the subscripted n stands for the weight of the subterm.

Definition 3.5.3. Let the term rewriting system associated to ACP con­
sist of the following rules: the term rewriting system associated to BPA6 +
8H and the rules in table 50. For completeness sake, we note that the term
rewriting system associated to BPA6 + 8H consists of the rewrite rules of
table 2 and the equations in tables 10 and 21 oriented from left to right.

Theorem 3.5.4. The term rewriting system associated to ACP is strongly
normalizing.

Proof. The proof can be given along the same lines as the proof of the
termination of the system PA; d. theorem 3.2.3. We use the partial ordering
of the signature in figure 8 and leave the calculations to the reader. •

With the aid of the above termination result for ACP we can easily
prove the following elimination theorem.

Theorem 3.5.5. The equational specification ACP has the elimination
property for BPA6 .

Proof. Easy. •
Standard concurrency As for PA we have standard concurrency. That is,
there are some properties concerning the merge, left merge, and communi­
cation merge that are not derivable for arbitrary open terms, but can be

102 J. C.M. Baeten and C. Verhoef

A

+

Fig. 8. Partial ordering of the operators in the term rewriting system
associated to ACP.

shown to be valid for closed terms (or even for solutions of guarded recur­
sive equations). In many applications these properties are useful and thus
these properties are assumed to be valid. This is why these properties are
often referred to as axioms for standard concurrency. In the next theorem
we list them for ACP. See theorem 3.2.5 for standard concurrency in PA.

Theorem 3.5.6. Let x, y, and z be closed ACP terms. Then the following
statements hold. They are called axioms of standard concurrency.

(i) xly==ylx,

(ii) x II y = y II x,

(iii) (xly)lz== xl(ylz),

(iv) (x ~y) lLz == x lL (y II z),

(v) xl(yli.z)==(xIY)li.z,

(vi) (x II y) II z = x II (y II z).

Concrete process algebra 103

Table 51. Handshaking axiom.

xlylz=8 HA

Proof. We will not give the details of the proof. They can be found in
[Bergstra and Tucker, 1984]. Instead, we explain the proof strategy.

Because of theorem 3.5.5, we only need to prove the properties for
basic BPA6 terms. It is easy to show that the first two properties hold
by induction to the sum of symbols that occur in both x and y. Then it
remains to show with a simultaneous induction to the number of symbols
occurring in x, y, and z that the other properties also hold. •

Expansion A useful application of standard concurrency in ACP is the
so-called expansion theorem. This theorem states how the merge of more
than two processes can be evaluated. For the expansion theorem of PA we
refer to theorem 3.2.6. In contrast to the PA expansion theorem, we need
an extra proviso for the expansion of the merge in case the communication
merge is present. We need a so-called handshaking axiom (HA). We give
it in table 51. It states that there is only binary communication present.

Theorem 3.5.7. Suppose that ,(a, b, c) is undefined for all atomic ac­
tions a, b, and c. Then for all closed ACP terms x, y, and z we have HA .

Proof. Easy. •
Next, we formulate the expansion theorem for ACP. The notation that

we use in this theorem can be defined inductively in the obvious way.

Theorem 3.5.8. In ACP with standard concurrency and the handshaking
axiom presented in table 51 we have the following for all open ACP terms
Xl,X2, ... ,Xn andn > 2.

Proof. Straightforward induction on n. See [Bergstra and Tucker, 1984]
for a detailed proof. •

3.5.3 Semantics of ACP

In this subsection we give the semantics of ACP. In fact, this is now an easy
job, since almost all the constructs that ACP contains have been discussed
before. The only notion that we did not characterize operationally is the
communication merge. In table 52 we present the operational rules for this
concept.

104 J. C.M. Baeten and C. Verhoef

Table 52. The operational rules for the communication merge.

a I b I x---+x , y---+y
II C 'II ' , [(a, b) = c x y---+x y
a , b /

x---+x , y---+y
II C , ,[(a,b) = c

x y---+x
a / b ,

X---+y , y---+y

II
C , ,[(a,b)=c

X y---+y

x~V,y~V
xllY~v ,[(a,b)=c

a I b I x---+x , y---+y
I C 'II ,,[(a,b)=c

X y---+x y
a , b /

x---+x ,y---+y Ie, , [(a, b) = c
X y---+x
a / b ,

X---+y ,y---+y Ie, ,[(a,b)=c
X y---+y

x~V,y~V
I

e / ,[(a,b)=c
X y---+y

The complete operational semantics for ACP is given by a term deduc­
tion system T(ACP) that has as its signature the one of ACP and the rules
are the ones of table 5 (the BPA part), the rules of table 22 (the encapsu­
lation part), the rules of table 44 (the PA merge part), and the new rules
that we list in table 52. As usual, bisimulation equivalence is a congru­
ence; see 2.2.32. So the operators of ACP can be defined on the quotient of
closed ACP terms with respect to bisimulation equivalence. The following
theorem says that this quotient is a model of ACP.

Theorem 3.5.9. The set of closed ACP terms modulo bisimulation equiv­
alence is a model of ACP.

Proof. We have already treated the equations that comprise BPA6 ; see
theorem 2.5.4. We have also seen the soundness of BPA + RN, which
is BPA with renaming operators. Since the encapsulation operator is a
special case of a renaming operator, the soundness of the equations D1-4
can be proved in the same way as the soundness proof of BPA + RN; see
theorem 2.7.4. '''Ie have also seen the soundness of the equations CM2-4,
since these axioms are the same in PA; see theorem 3.2.7. So it remains
to prove that the other equations are sound. We confine ourselves to only
giving the bisimulation relations. We begirt with CFl. Take the relation
that relates both sides of CFl. Equation CF2 is treated exactly the same.
Now we treat CMl. Take for CM1 the relation that relates both sides of
CMI, that relates x' II y' and y' " x' for all closed ACP terms x' and y', and
that contains the diagonal. We recall that CM2-4 are treated the same as
M2-4 of PA. So we continue with CM5-9. These are proved analogously
to AI; that is, relate both sides of an equation and add the diagonal. This
ends the soundness proof for ACP. •

At this point, we are able to prove the conservativity of ACP over BPA6 •

Concrete process algebra 105

Theorem 3.5.10. The equational specification ACP is a conservative ex­
tension of the equational specification BPA6.

Proof. With the aid of theorem 2.4.15 it is very easy to see that the term
deduction system T(ACP) is an operationally conservative extension of the
term deduction system T(BPA6) (for the definition ofT(BPA6) we refer to
the soundness theorem 2.5.4 for BPA6). With theorem 2.4.19 we also find
that this holds up to strong bisimulation equivalence. With theorem 3.5.9
we know that ACP is sound with respect to the model induced by T(ACP),
so according to theorem 2.4.24 we immediately find the equational conser­
vativity. •

Below we give the completeness theorem for ACP.

Theorem 3.5.11. The axiom system ACP is a complete axiomatization
of the set of closed ACP terms modulo bisimulation equivalence.

Proof. With the aid of theorem 2.4.26 and the conservativity of ACP over
BPA6 we find the completeness of ACP (use also theorems 2.5.5 and 3.5.5) .

•
3.6 Extensions of ACP
In this subsection we will discuss extensions of ACP with the features that
we already met when we discussed extensions of both BPA and PA. We
treat the extension of ACP with recursion, projections, renaming operators,
the state operator, the priority operator, iteration, process creation, and
discrete time. We will also treat two examples to illustrate the use of two
of the extensions. We do not discuss the extension of ACP with the empty
process. We explained why in subsection 3.3.4.

Recursion and/or projection The extensions of ACP with recursion, pro­
jection, or a combination of both are obtained by simply merging these
extensions for BPA6 and ACP; see subsection 2.5.

Example 3.6.1. In ACPrec, we can describe communicating buffers using
the read/send communication function defined in subsection 3.5.1. Let D
be a finite data set. A one-place buffer over D, with input port 1 and
output port 2, is given by the recursive equation

B L rl(d)· s2(d)· B.
dED

Likewise, a one-place buffer with input port 2 and output port 3 is given
by

C L r2(d) . s3(d) . C.
dED

106 i.C.M. Baeten and C. Verhoef

Now if H = {r2(d), s2(d) : d ED}, then expression

8H(B " C)

describes a system of two communicating buffers. Some calculations, and
using RSP, show that this system is a solution of the following recursive
specification:

X L rl(d) . c2(d)· Xd,
dED

Xd s3(d)· X + L rde) . s3(d) . c2(e)· Xe.
eED

This definition can be seen as defining a two-place buffer.

Renaming and encapsulation It is straightforward to extend the equa­
tional specification ACP, and its extensions, with renaming operators;
cf. subsection 2.7.3.

State operator The extension of the theory ACP with either the simple or
extended state operator is obtained in the same way as for the theories BPA
or PA; see subsections 2.8 and 2.9.

Priority operator We can extend the theory ACP with the priority oper­
ator in the same way as we extended BPA6 with that operator. For the
details we refer to subsection 2.10.

In the system ACPe, we can describe forms of asymmetric communi­
cation. Notice that ACP itself features symmetric communication: both
'halves' of a communication action must be present before either one can
proceed.

Example 3.6.2. A put mechanism describes a sending action that does
not wait for a corresponding receiving action; the message is lost if it cannot
be received. If a receiving action is present, then communication should
occur.

For a port i and message d, we have actions put;(d), r;(d), c;(d) with
communication function given by

I'(put i (d), r;(d)) = c;(d) I' not defined otherwise.

The priority ordering is given by put;(d) < c;(d) for all d. Then, if S has
actions put;(d), and R actions r;(d), put communication is described by
the expression

8H 0 B(S II R),

where H = {r;(d) : d ED}.

Concrete process algebra 107

Table 53. An extra axiom for Kleene's binary star operator.

BKS4

Similarly, we can describe a get mechanism, where a process tries to
receive a message. When no message is available, an error message 1. will
be read. We have actions geti(d), si(d), ci(d) (d E D), and an action
get i (1.). Communication is given by

,(si(d),geti(d)) = ci(d) , not defined otherwise,

and a priority ordering get;(1.) < ci(d) for all d. The system is described
as

8H 0 B(S II R),

where H = {geti(d), si(d) : d ED}, and R typically has the form

R = L geti(d) . Xd + geti(J..) . X.L.
dED

This material on put and get communication is based on [Bergstra, 1985],
more information can also be found in [Baeten and Weijland, 1990].

Iteration We can extend ACP with iteration by adding the defining axioms
for • in table 37 to the ones for ACP and one more axiom that gives the
relation between Kleene's star and the encapsulation operator. We give
this axiom in table 53. We denote this system by ACp·. Only for BPA·
the completeness is proved at the time of writing this survey.

Process creation We discuss the extension of ACP with the process cre­
ation operator Eq, (for the basic definitions we refer to subsection 3.3.1). We
recall that the process creation operator is defined in terms of the parallel
composition. So it will not be surprising that we need to impose restric­
tions on the communication behaviour of the special atomic actions cr(d).
The restrictions are that cr(d) does not communicate and is not the re­
sult of any communication (cr(d) is not a communication action). In a
formula: cr(d) I a = 6 and for all a, b E A : a I b =f. cr(d). We note that
lemma 3.3.1 only holds when the communication function is trivial; that
is, for all a, b E A : ,(a, b) is undefined.

Furthermore, the only difference with the discussion in subsection 3.3.1
is the restrictions on the cr(d)-actions with respect to the communication.
So for more details we refer to that subsection.

Inconsistent combinations If we combine unguarded recursion with ACPe
we will find an inconsistency. We show this with an example that originates

108 J.C.M. Baeten and C. Verhoef

Table 54. The interaction between Ud and communication and encapsu­
lation.

~I Ud(X) == ~
ud(x)I~==g

(~. x) I Ud(Y) == g
Ud(X) I(~· y) == ~

Ud(X) I Ud(Y) == Ud(X I y)

8H (Ud(X)) == ud(8H(X))

DTM5

DTM6

DTM7

DTM8

DTM9

DTD

from [Baeten and Bergstra, 1988b]. Suppose that there are three atomic
actions r, s, and c and r I s == c. Let c > s be the partial ordering. Now
consider the following recursion equation:

With the operational rules we can infer that X~.j <==> X!f..j.

3.6.1 Discrete time

In this subsection we add relative discrete time to ACP. In subsection 3.4.1,
we already extended PAo with this feature. So we only need to clarify the
interaction between the discrete time unit delay Ud and the communication
merge and the relation between (Td and the encapsulation operator.

The theory The equational specification ACP dt consists of the signature
that is the union of the signatures of ACP (with ~ instead of a for a E Ao)
and PAodt. The equations of this specification are the ones of ACP (again
with g instead of a) plus the rules of table 47 (they represent the interaction
betw~n (Td and the left merge) and some new axioms that we present in
table 54; they express the interaction between the discrete time unit delay
operator and the communication merge and the interaction between Ud and
the encapsulation operator.

Termination The termination of a term rewriting system associated to
ACP dt can be obtained with the aid of the method that we discussed in
subsection 2.2.2. We can prove the termination by merging the termination
proofs of ACP and PAodt and a small addition.

Theorem 3.6.3. The term rewriting system consisting of the rewrite rules
for ACP (see definition 3.5.3) plus the axioms listed in tables 47 and 54
oriented from left to right is strongly normalizing (or terminating).

Proof. The partial ordering on the signature is as follows. Take the one
for ACP; see figure 8. Now add the following to this partial ordering:

Concrete process algebra 109

Table 55. The additional rules for the communication merge and the en­
capsulation operator.

• + > Ud,

• C!d > g,
• C!d > 8H •

U I " , x--+x,y--+y

x I y"'!!""'X' I y'

IT I X--+X

With the proofs of theorems 3.5.4 and 3.4.1 we find that the term rewriting
system associated to ACP dt is strongly normalizing. We omit these infer­
ences as they are straightforward. •

With the above theorem it is easy to obtain an elimination result for
closed terms.

Theorem 3.6.4. The equational specification ACP dt has the elimination
property for BPA6dt.

Proof. Easy. •
Semantics The semantics of ACP dt can be given with a term deduction
system T(ACPdt). Its signature is that of ACPdt. The rules are those of
ACP (with g instead of a for a E A6), those in table 48 (they concern the
merge and the left merge), and the operational rules that we present in
table 55. The two rules in table 55 define what kind of C! transitions the
communication merge and the encapsulation operator can perform.

Theorem 3.6.5. The set of closed ACP dt terms modulo strong bisimula­
tion equivalence is a model of ACP dt.

Proof. Bisimulation equivalence is a congruence, so we only need to check
the soundness of the axioms. The only axioms that we have not checked
yet in other soundness proofs are the ones of table 54. They are all very
easy. For DTM5-8 we only need to relate the left- and right-hand side. For
DTM9 and DTD we additionally include the diagonal. •

Theorem 3.6.6. The equational specification ACP dt is a conservative ex­
tension of the equational specification BPA6dt.

Proof. Easy. •

Now we have all the prerequisites to state the completeness theorem for
ACP dt. The proof is as usual and therefore omitted.

Theorem 3.6.7. The axiom system ACPdt is a complete axiomatization
of the set of closed ACP dt terms modulo bisimulation equivalence.

110 J.C.M. Baeten and C. Verhoef

3.7 Decidability and expressiveness results in ACP
In subsection 2.14 we discussed the decidability of bisimulation equivalence
for BPArec and we showed that BPArec can express non-regular processes.
In this subsection we will briefly discuss decidability and expressiveness
results for the PArec and ACPrec families.

3.7.1 Decidability

At the time of writing this survey the results are that bisimulation equiva­
lence is undecidable for ACPrec and the problem is open for PArec. How­
ever, some results have been obtained in the direction of PArec. For the
so-called Basic Parallel Processes (BPP) [Christensen et al., 1993] the prob­
lem is solved: BPP is decidable. The equational theory of BPP is close to
PA6 rec with prefix sequential composition instead of sequential composi­
tion.

We will formulate these results below.
The next theorem is due to [Bergstra and Klop, 1984b]. For the proof

of this fact we refer to [Bergstra and Klop, 1984b].

Theorem 3.7.1. The bisimulation equivalence problem for finitely recur­
sively defined processes over ACP is undecidable.

For the decidability result on basic parallel processes we briefly intro­
duce the syntax and semantics of this system.

Basic parallel processes We will introduce the syntax and semantics of
BPP below using the notation that we are used to in this survey. We have
a special constant 8, alternative composition +, parallel composition 1/,
and a unary prefix operator a_, called prefix sequential composition, for
all a E A, where A is some set. Now if we also add recursion we have the
syntax of BPP.

The semantics of BPP is given by means of the term deduction system
in table 56. For all the operators we have the usual operational rules but
only the non-predicate parts. We have not seen the well-known operational
characterization of prefix sequential composition before in this chapter. We
give the rules for BPP in one table for the sake of ease.

We note that bisimulation equivalence in this case is just the one that
we defined in definition 2.2.28 without the predicate part.

The next theorem is taken from [Christensen et al., 1993]. For the proof
of this fact we refer to [Christensen et al., 1993].

Theorem 3.7.2. Bisimulation equivalence is decidable for basic parallel
processes (BPP).

3.7.2 Expressiveness

In this subsection we discuss various expressivity results. It turns out that
ACPrec is more expressive than PArec and that the latter is more expressive
than BPArec.

Concrete process algebra 111

o 0

Q Q

1 1 1 1 1 1
0 0

Q Q

1 1 1 1 1 1
0 0

I I
Q

I I Q I I

Fig. 9. A deduction graph of a bag over two datum elements.

The bag We consider a so-called bag of unbounded capacity. A bag is a
process able to input data elements that reappear in some arbitrary order.
Let D be a finite set of such datum elements containing more than one
datum. Suppose that we have atomic actions for all d ED:

• TI (d) means put a d in the bag;
• s2(d) means remove a d from the bag.

The following recursive equation formally defines the bag.

B =: L rl(d)· (B II s2(d)).
dED

It will be clear that B is definable over PArec. In figure 9 we depict the
deduction graph of a bag over two datum elements 0 and 1. Note that we
abbreviate rl(d) to d and s2(d) to d. for d =: 0,1.

Next, we state that PArec is more expressive than BPArec. This theorem
stems from [Bergstra and Klop, 1984a; Bergstra and Klop, 1995]. For its
proof we refer to this paper.

Table 56. The operational semantics of BPP.

Q

ax--->x

X~X'

X + y...!!:.....x'
Q ,

x--->x

x II y...!!:.....x' II y

(sxIE)~y

(XIE)~y
Q ,

y--->y

x+y~y'
Q ,

y--->y

x II y...!!:.....x II y'

112 J. C.M. Baeten and C. Verhoef

1 {~1-_2-..,
Fig. 10. A FIFO queue.

TheoreIn 3.7.3. A bag over more than one datum element cannot be given
by means of a finite recursive specification in BPArec. So, PArec is more
expressive than BPArec.

ReInark 3.7.4. Observe that the bag can also be specified in BPP. But
since there is a process (the stack) that can be defined in BPArec and not
in BPP the systems are incomparable as far as expressivity is concerned.
See [Christensen, 1993] for more details.

Next, we consider the expressivity of ACPrec over PArec. The following
theorem is taken from [Bergstra and Klop, 1984a; Bergstra and Klop, 1995].
For more details on this result and its proof we refer to this paper.

TheoreIn 3.7.5. The process p = ba(ba2)2(ba3)2(ba4)2 ... cannot be de­
fined in PArec with a set of atomic actions {a, b} but p can be defined in
ACPrec with atomic actions {a, b, c, d} and with communication function
i(C,C) = a, i(d,d) = b (other communications yield 0).

Next, we discuss a result that states that ACPrec + RN is more expres­
sive than ACPrec.

The queue A queue is a process that transmits incoming data while pre­
serving their order. See also figure 10. Such a process is also called a FIFO
(First In First Out) queue. First, we describe the queue with input port 1
and output port 2 over a finite data set D by means of an infinite linear
specification. As in 3.3.3, D* is the set of words over D.

It is not hard to see that a queue with input port 1 and output port 2
over the data set D can be specified as follows:

Q =Q< I>I(d)' Qd,
dED

Qud s2(d)· Qu + L rl(e)· Qeud.
eED

We have the last equation for all cr E D* and dE D.
In figure 11 we give a deduction graph of a queue over two datum

elements; note that we abbreviate rl (d) by d and s2(d) by Q for d = 0,1.

The next theorem states that there is no finite specification for the
queue in ACPrec. This result is taken from [Baeten and Bergstra, 1988a];

Concrete process algebra 113

the proof uses results from [Bergstra and Tiuryn, 1987]. For a proof we
refer to [Baeten and Bergstra, 1988a].

Theorem 3.7.6. The queue is not finitely definable over ACPrec using
the usual read/send communication that we discussed in subsection 3.5.1.

In [Baeten and Bergstra, 1988aJ it is shown that in ACPrec + RN there
exists a finite specification of the queue. For details we refer to [Baeten
and Bergstra, 1988a].

Theorem 3.7.7. The queue is finitely definable over ACPrec + RN using
the usual read/send communication that we discussed in subsection 3.5.1.

Next, we list some expressivity results for extensions of PA and ACP
with iteration. These results are taken from [Bergstra et al., 1994a].

Theorem 3.7.S. If there are at least six atomic actions we have the ex­
pressivity results for the systems BPA· I BPA; I PA·, PA;, and ACp· as in
figure 12. The systems BPA; and PA· are incomparable and for the other
systems we have that a line down to a system indicates that the upper sys­
tem is more expressive than the lower one.

Recursion versus iteration In subsection 2.14 we devoted a small para­
graph to the comparison of recursion as treated in subsection 2.3 and itera­
tion (see subsection 2.11). We stated that the system BPAlin (BPA with
finite linear recursion) is more expressive than BPA· (see theorem 2.14.6).
This result is in fact stronger: the regular system of figure 7 cannot be
expressed in ACp·.

In [Bergstra et al., 1994aJ it is shown that the regular process depicted
in figure 7 can be expressed in ACp· with abstraction.

The next theorem is taken from [Bergstra et ai., 1994a]. For the proof
we refer to their paper.

Theorem 3.7.9. Not every regular process can be expressed in ACp· (not
even using auxiliary actions).

Fig. 11. A deduction graph for the queue.

114 J.C.M. Baeten and C. Verhoef

ACP'

PA;

/~
BPA; PA'

~/
BPA'

Fig. 12. Expressivity results for systems with iteration.

More information on the subject of expressiveness in ACP can be found
in [Baeten et at., 1987] and in [Vaandrager, 1993]. For more information
on expressiveness in systems related to ACP we refer to [Ponse, 1992] or
[Glabbeek, 1995].

4 Further reading
For those readers who want to know more about process algebra, we give
some references. First of all, we want to mention a couple of textbooks in
the area. A textbook for CCS-style process algebra is [Milner, 1989], for
CSP style we refer to [Hoare, 1985], and for testing theory, there is [Hen­
nessy, 1988]. In ACP style, the standard reference is [Baeten and Weijland,
1990]. The companion volume [Baeten, 1990] discusses applications of this
theory. We also want to mention the proceedings of a workshop on ACP
style process algebra [Ponse et at., 1995].

When process algebra is applied to larger examples, the need arises to
handle data structures also in a formal way. The combination of processes
and data is treated in the theories LOTOS [Brinksma, 1987], PSF [Mauw
and Veltink, 1993], or ILCRL [Groote and Ponse, 1995].

Tool support in the use of process algebra is provided by most systems; a
few references are [Boudol et al., 1990], [Cleaveland et al., 1990], [Godskesen
et at., 1989], [Lin, 1992], and [Veltink, 1993].

For an impression of the state of the art in concurrency theory we refer
to the proceedings of the series of CONCUR conferences on concurrency
theory: [Baeten and Klop, 1990], [Baeten and Groote, 1991], [Cleaveland,

Concrete process algebra 115

1992), [Best, 1993), and [Jonsson and Parrow, 1994].

References
[Aceto and Hennessy, 1992] L. Aceto and M. Hennessy. Termination, dead­

lock, and divergence. Journal of the ACM, 39(1):147-187, January 1992.
[Aceto et al., 1994] L. Aceto, B. Bloom, and F.W. Vaandrager. Turning

SOS rules into equations. Information and Computation, 111(1):1-52,
1994.

[America and Bakker, 1988] P. America and J.W. de Bakker. Designing
equivalent semantic models for process creation. Theoretical Computer
Science, 60:109-176, 1988.

[Austry and Boudol, 1984] D. Austry and G. Boudol. Algebre de processus
et synchronisations. Theoretical Computer Science, 30(1):91-131, 1984.

[Baeten and Bergstra, 1988a] J.C.M. Baeten and J.A. Bergstra. Global
renaming operators in concrete process algebra. Information and Com­
putation, 78(3):205-245, 1988.

[Baeten and Bergstra, 1988b] J.C.M. Baeten and J.A. Bergstra. Processen
en procesexpressies. Informatie, 30(3):214-222, 1988. In Dutch.

[Baeten and Bergstra, 1991] J.C.M. Baeten and J.A. Bergstra. Recursive
process definitions with the state operator. Theoretical Computer Sci­
ence, 82:285-302, 1991.

[Baeten and Bergstra, 1992a] J.C.M. Baeten and J.A. Bergstra. Discrete
time process algebra (extended abstract). In Cleaveland [1992), pages
401-420. Full version, report P9208b, Programming Research Group,
University of Amsterdam, 1992.

[Baeten and Bergstra, 1992b] J.C.M. Baeten and J.A. Bergstra. Process
algebra with signals and conditions. In M. Broy, editor, Programming
and Mathematical Methods, Proceedings Summer School Marktoberdorf
1991, pages 273-323. Springer-Verlag, 1992. NATO ASI Series F88.

[Baeten and Bergstra, 1993] J.C.M. Baeten and J.A. Bergstra. Real space
process algebra. Formal Aspects of Computing, 5(6):481-529, 1993.

[Baeten and Glabbeek, 1987] J.C.M. Baeten and R.J. van Glabbeek.
Merge and termination in process algebra. In K.V. Nori, editor, Proceed­
ings 7th Conference on Foundations of Software Technology and Theo­
retical Computer Science, Pune, India, volume 287 of Lecture Notes in
Computer Science, pages 153-172. Springer-Verlag, 1987.

[Baeten and Groote, 1991] J.C.M. Baeten and J.F. Groote, editors. Pro­
ceedings CONCUR 91, Amsterdam, volume 527 of Lecture Notes in Com­
puter Science. Springer-Verlag, 1991.

[Baeten and Klop, 1990] J.C.M. Baeten and J.W. Klop, editors. Proceed­
ings CONCUR 90, Amsterdam, volume 458 of Lecture Notes in Com­
puter Science. Springer-Verlag, 1990.

116 J.C.M. Baeten and C. Verhoef

[Baeten and Vaandrager, 1992] J.C.M. Baeten and F.W. Vaandrager. An
algebra for process creation. Acta Informatica, 29(4):303-334, 1992.

[Baeten and Verhoef, 1993] J.C.M. Baeten and C. Verhoef. A congruence
theorem for structured operational semantics with predicates. In Best
[1993], pages 477-492.

[Baeten and Weijland, 1990] J.C.M. Baeten and W.P. Weijland. Process
Algebra. Cambridge Tracts in Theoretical Computer Science 18. Cam­
bridge University Press, 1990.

[Baeten et al., 1986] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax
and defining equations for an interrupt mechanism in process algebra.
Fundamenta Informaticae, IX(2):127-168, 1986.

[Baeten et al., 1987] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On
the consistency of Koomen's fair abstraction rule. Theoretical Computer
Science, 51(1/2):129-176, 1987.

[Baeten et al., 1991] J.C.M. Baeten, J.A. Bergstra, S. Mauw, and G.J.
Veltink. A process specification formalism based on static COLD. In
J.A. Bergstra and L.M.G. Feijs, editors, Algebraic Methods II: Theory,
Tools and Applications, volume 490 of Lecture Notes in Computer Sci­
ence, pages 303-335. Springer-Verlag, 1991.

[Baeten et al., 1992] J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka. Ax­
iomatizing probabilistic processes: ACP with generative probabilities. In
Cleaveland [1992], pages 472-485.

[Baeten et al., 1993] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decid­
ability of bisimulation equivalence for processes generating context-free
languages. Journal of the ACM, 40(3):653-682, July 1993.

[Baeten, 1990] J.C.M. Baeten, editor. Applications of Process Algebra.
Cambridge Tracts in Theoretical Computer Science 17. Cambridge Uni­
versity Press, 1990.

[Bakker and Zucker, 1982] J.W. de Bakker and J.I. Zucker. Processes and
the denotational semantics of concurrency. Information and Control,
54(1/2):70-120, 1982.

[Bergstra and Klint, 1994] J.A. Bergstra and P. Klint. The TOOLBus-a
component interconnection architecture. Report P9408, Programming
Research Group, University of Amsterdam, 1994.

[Bergstra and Klop, 1982] J.A. Bergstra and J.W. Klop. Fixed point se­
mantics in process algebras. Report IW 206, Mathematisch Centrum,
Amsterdam, 1982.

[Bergstra and Klop, 1984a] J.A. Bergstra and J.W. Klop. The algebra of
recursively defined processes and the algebra of regular processes. In
J. Paredaens, editor, Proceedings 11 th ICALP, Antwerpen, volume 172
of Lecture Notes in Computer Science, pages 82-95. Springer-Verlag,
1984. Extended abstract, full version appeared in [Ponse et al., 1995}.

Concrete process algebra 117

[Bergstra and Klop, 1984b) J.A. Bergstra and J.W. Klop. Process algebra
for synchronous communication. Information and Control, 60(1/3):109-
137, 1984.

[Bergstra and Klop, 1985) J.A. Bergstra and J.W. Klop. Algebra of com­
municating processes with abstraction. Theoretical Computer Science,
37(1):77-121,1985.

[Bergstra and Klop, 1986) J.A. Bergstra and J.W. Klop. Verification of an
alternating bit protocol by means of process algebra. In W. Bibel and
K.P. Jantke, editors, Math. Methods of Spec. and Synthesis of Software
Systems '85, Math. Research 31, pages 9-23, Berlin, 1986. Akademie­
Verlag.

[Bergstra and Klop, 1995) J.A. Bergstra and J.W. Klop. The algebra of
recursively defined processes and the algebra of regular processes. In
Ponse et al. [1995), pages 1-25. Full version of [Bergstra and Klop,
1984a) ..

[Bergstra and Tiuryn, 1987) J.A. Bergstra and J. Tiuryn. Process algebra
semantics for queues. Fundamenta Informaticae, X:213-224, 1987.

[Bergstra and Tucker, 1984) J.A. Bergstra and J.V. Tucker. Top down de­
sign and the algebra of communicating processes. Science of Computer
Programming, 5(2):171-199, 1984.

[Bergstra et al., 1985) J.A. Bergstra, J.W. Klop, and J.V. Tucker. Process
algebra with asynchronous communication mechanisms. In S.D. Brookes,
A.W. Roscoe, and G. Winskel, editors, Seminar on Concurrency, volume
197 of Lecture Notes in Computer Science, pages 76-95. Springer-Verlag,
1985.

[Bergstra et al., 1994a) J.A. Bergstra, I. Bethke, and A. Ponse. Process
algebra with iteration and nesting. The Computer Journal, 37(4):243-
258, 1994.

[Bergstra et al., 1994b) J.A. Bergstra, I. Bethke, and A. Ponse. Process
algebra with combinators. In E. Borger, Y. Gurevich, and K. Meinke,
editors, Proceedings of CSL '93, volume 832 of Lecture Notes in Com­
puter Science, pages 36-65. Springer-Verlag, 1994.

[Bergstra et al., 1994c) J.A. Bergstra, A. Ponse, and J.J. van Wamel. Pro­
cess algebra with backtracking. In J.W. de Bakker, W.P. de Roever, and
G. Rozenberg, editors, Proceedings of the REX Symposium itA Decade
of Concurrency: Reflections and Perspectives", volume 803 of Lecture
Notes in Computer Science, pages 46-91. Springer-Verlag, 1994.

[Bergstra, 1985) J.A. Bergstra. Put and get, primitives for synchronous
unreliable message passing. Logic Group Preprint Series Nr. 3, elF,
State University of Utrecht, 1985.

[Bergstra, 1990) J .A. Bergstra. A process creation mechanism in process
algebra. In Baeten [1990), pages 81-88.

118 J. C.M. Baeten and C. Verhoef

[Best, 1993] E. Best, editor. Proceedings CONCUR 93, Hildesheim, Ger­
many, volume 715 of Lecture Notes in Computer Science. Springer­
Verlag, August 1993.

[Bezem and Groote, 1994] M.A. Bezem and J.F. Groote. Invariants in pro­
cess algebra with data. In Jonsson and Parrow [1994], pages 401-416.

[Blanco, 1995] J.O. Blanco. Definability with the state operator in process
algebra. In Ponse et a!. [1995], pages 218-241.

[Bloom et al., 1988] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation
can't be traced: Preliminary report. In Conference Record of the 15th

ACM Symposium on Principles of Programming Languages, San Diego,
California, pages 229-239, 1988. Full version available as Technical
Report 90-1150, Department of Computer Science, Cornell University,
Ithaca, New York, August 1990. Accepted to appear in Journal of the
ACM.

[Bol and Groote, 1991] R.N. Bol and J.F. Groote. The meaning of neg­
ative premises in transition system specifications (extended abstract).
In J. Leach Albert, B. Monien, and M. Rodriguez, editors, Proceedings
18th ICALP, Madrid, volume 510 of Lecture Notes in Computer Science,
pages 481-494. Springer-Verlag, 1991. Full version appeared as Report
CS-R9054, CWI, Amsterdam, 1990.

[Boudol et al., 1990] G. Boudol, V. Roy, R. De Simone, and D. Vergamini.
Process calculi, from theory to practice: verification tools. In Sifakis
[1990], pages 1-10.

[Brinksma, 1987] E. Brinksma. Information processing systems - open sys­
tems interconnection - LOTOS - a formal description technique based
on the temporal ordering of observational behaviour ISO/TC97/SC21/N
DIS8807, International Standardisation Organisation, 1987.

[Brookes et al., 1984] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A
theory of communicating sequential processes. Journal of the ACM,
31(3):560-599, 1984.

[Caucal, 1990] D. Cauca!. On the transition graphs of automata and gram­
mars. Report 1318, INRIA, 1990.

[Christensen et al., 1992] S. Christensen, H. Hiittel, and C. Stirling. Bisim­
ulation equivalence is decidable for all context-free processes. In Cleave­
land [1992], pages 138-147.

[Christensen et al., 1993] S. Christensen, Y. Hirschfeld, and F. Moller.
Bisimulation equivalence is decidable for basic parallel processes. In
Best [1993], pages 143-157.

[Christensen, 1993] S. Christensen. Decidability and decomposition in pro­
cess algebra. PhD thesis, University of Edinburgh, 1993.

[Cleaveland et al., 1990] R. Cleaveland, J. Parrow, and B. Steffen. The
Concurrency Workbench. In Sifakis [1990], pages 24-37.

Concrete process algebra 119

[Cleaveland, 1992] W.R. Cleaveland, editor. Proceedings CONCUR 92,
Stony Brook, NY, USA, volume 630 of Lecture Notes in Computer Sci­
ence. Springer-Verlag, 1992.

[Copi et al., 1958] I.M. Copi, C.C. Elgot, and J.B. Wright. Realization of
events by logical nets. Journal of the ACM, 5:181-196, 1958.

[De Simone, 1985] R. De Simone. Higher-level synchronising devices in
MEIJE-SCCS. Theoretical Computer Science, 37:245-267, 1985.

[Dershowitz and Jouannaud, 1990] N. Dershowitz and J.-P. Jouannaud.
Rewrite systems. In Formal Models and Semantics. Handbook of Theo­
retical Computer Science, volume B, chapter 6, pages 243-320. Elsevier
- MIT Press, Amsterdam, 1990.

[Dershowitz, 1987] N. Dershowitz. Termination of rewriting. Journal of
Symbolic Computation, 3(1):69-116,1987.

[Fokkink and Zantema, 1994] W.J. Fokkink and H. Zantema. Basic pro­
cess algebra with iteration: completeness of its equational axioms. The
Computer Journal, 37(4):259-267, 1994.

[Fokkink, 1994] W.J. Fokkink. The tyft/tyxt format reduces to tree rules.
In M. Hagiya and J.C. Mitchell, editors, Proceedings 2nd International
Symposium on Theoretical Aspects of Computer Software (TACS'94),
Sendai, Japan, volume 789 of Lecture Notes in Computer Science, pages
440-453. Springer Verlag, 1994.

[Giacalone et al., 1990] A. Giacalone, C.-C. Jou, and S.A. Smolka. Alge­
braic reasoning for probabilistic concurrent systems. In M. Broy and C.B.
Jones, editors, Proceedings IFIP Working Conference on Programming
Concepts and Methods, Sea of Gallilee, Israel. North-Holland, 1990.

[Glabbeek and Weijland, 1989] R.J. van Glabbeek and W.P. Weijland.
Branching time and abstraction in bisimulation semantics (extended ab­
stract). In G.X. Ritter, editor, Information Processing 89, pages 613-618.
North-Holland, 1989. Full version available as Report CS-R9120, CWI,
Amsterdam, 1991.

[Glabbeek, 1987] R.J. van Glabbeek. Bounded nondeterminism and the
approximation induction principle in process algebra. In F.J. Branden­
burg, G. Vidal-Naquet, and M. Wirsing, editors, Proceedings STACS
87, volume 247 of Lecture Notes in Computer Science, pages 336-347.
Springer-Verlag, 1987.

[Glabbeek, 1990] R.J. van Glabbeek. The linear time - branching time
spectrum. In Baeten and Klop [1990], pages 278-297.

[Glabbeek, 1993] R.J. van Glabbeek. The linear time - branching time
spectrum ii (extended abstract). In Best [1993], pages 66-81.

[Glabbeek, 1995] R.J. van Glabbeek. On the expressiveness of ACP (ex­
tended abstract). In Ponse et al. [1995], pages 188-217.

[Godskesen et al., 1989] J. Godskesen, K.G. Larsen, and M. Zeeberg.

120 J. C.M. Baeten and C. Verhoef

TAV-tools for autimatic verification. Technical report R89-19, Univer­
sity of Aalborg, 1989.

[Groote and Ponse, 1994] J.F. Groote and A. Ponse. Process algebra with
guards: combining Hoare logic and process algebra. Formal Aspects of
Computing, 6(2):115-164, 1994.

[Groote and Ponse, 1995] J.F. Groote and A. Ponse. The syntax and se­
mantics of p,CRL. In Ponse et al. [1995], pages 26-62.

[Groote and Vaandrager, 1992] J.F. Groote and F.W. ·Vaandrager. Struc­
tured operational semantics and bisimulation as a congruence. Informa­
tion and Computation, 100(2):202-260, October 1992.

[Groote, 1990a] J.F. Groote. A new strategy for proving w-completeness
with applications in process algebra. In Baeten and Klop [1990], pages
314-331.

[Groote, 1990b] J.F. Groote. Transition system specifications with neg­
ative premises (extended abstract). In Baeten and Klop [1990], pages
332-341. Full version appeared as Technical Report CS-R8950, CWI,
Amsterdam, 1989.

[Hennessy, 1988] M. Hennessy. Algebraic Theory of Processes. MIT Press,
Cambridge, Massachusetts, 1988.

[Hoare et al., 1987] C.A.R. Hoare, I.J. Hayes, He Jifeng, C.C. Morgan,
A.W. Roscoe, J.W. Sanders, I.H. Sorensen, J.M. Spivey, and B.A. Surfin.
Laws of programming. Communications of the ACM, 30(8):672-686,
1987.

[Hoare, 1985] C.A.R. Hoare. Communicating Sequential Processes.
Prentice-Hall International, Englewood Cliffs, 1985.

[Jonsson and Parrow, 1994] B. Jonsson and J. Parrow, editors. Proceed­
ings CONCUR 94, Uppsala, Sweden, volume 836 of Lecture Notes in
Computer Science. Springer-Verlag, 1994.

[Jouannaud and Kirchner, 1986] J.-P. Jouannaud and H. Kirchner. Com­
pletion of a set of rules modulo a set of equations. SIAM Journal of
Computing, 15:1155-1194, 1986.

[Jouannaud and Munoz, 1984] J.-P. Jouannaud and M. Munoz. Termina­
tion of a set of rules modulo a set of equations. In R. E. Shostak, edi­
tor, 7th International Conference on Automated Deduction, volume 170
of Lecture Notes in Computer Science, pages 175-193. Springer-Verlag,
1984.

[Kamin and Levy, 1980] S. Kamin and J.-J. Levy. Two generalizations of
the recursive path ordering, 1980. Unpublished manuscript.

[Kleene, 1956] S.C. Kleene. Representation of events in nerve nets and
finite automata. In Automata Studies, pages 3-41. Princeton University
Press, 1956 .

. [Klop, 1992] J.W. Klop. Term rewriting systems. In Handbook of Logic

Concrete process algebra 121

in Computer Science, Volume II, pages 1-116. Oxford University Press,
1992.

[Klusener, 1993) A.S. Klusener. Models and axioms for a fragment of real
time process algebra. PhD thesis, Department of Mathematics and Com­
puting Science, Eindhoven University of Technology, December 1993.

[Koymans and Vrancken, 1985) C.P.J. Koymans and J.L.M. Vrancken. Ex­
tending process algebra with the empty process f. Logic Group Preprint
Series Nr. 1, CIF, State University of Utrecht, 1985.

[Larsen and Skou, 1992) K.G. Larsen and A. Skou. Compositional verifi­
cation of probabilistic processes. In Cleaveland [1992), pages 456-471.

[Lin, 1992) H. Lin. PAM: a process algebra manipulator. In K.G. Larsen
and A. Skou, editors, Proceedings of the 3rd International Workshop on
Computer Aided Verification, Aalborg, Denmark, July 1991, volume 575
of Lecture Notes in Computer Science, pages 176-187. Springer-Verlag,
1992.

[Mauw and Veltink, 1993) S. Mauw and G.J. Veltink, editors. Algebraic
Specification of Communication Protocols. Cambridge Tracts in Theo­
retical Computer Science 36. Cambridge University Press, 1993.

[Milne, 1983) G.J. Milne. CIRCAL: a calculus for circuit description. In­
tegration, 1:121-160,1983.

[Milner et al., 1992) R. Milner, J. Parrow, and D. Walker. A calculus of
mobile processes, Part I + II. Information and Computation, 100(1):1-
77,1992.

[Milner, 1980) R. Milner. A Calculus of Communicating Systems, vol­
ume 92 of Lecture Notes in Computer Science. Springer-Verlag, 1980.

[Milner, 1983) R. Milner. Calculi for synchrony and asynchrony. Theoret­
ical Computer Science, 25:267-310, 1983.

[Milner, 1989) R. Milner. Communication and Concurrency. Prentice-Hall
International, Englewood Cliffs, 1989.

[Moller and Tofts, 1990] F. Moller and C.M.N. Tofts. A temporal calculus
of communicating systems. In Baeten and IGop [1990), pages 401-415.

[Moller, 1989] F. Moller. Axioms for concurrency. PhD thesis, Report
CST-59-89, Department of Computer Science, University of Edinburgh,
1989.

[Nicollin and Sifakis, 1994] X. Nicollin and J. Sifakis. The algebra of timed
processes, ATP: theory and application. Information and Computation,
114(1):131-178,1994.

[Park, 1981] D.M.R. Park. Concurrency and automata on infinite se­
quences. In P. Deussen, editor, 5th GI Conference, volume 104 of Lecture
Notes in Computer Science, pages 167-183. Springer-Verlag, 1981. .

[Peackock, 1830) G. Peackock. A treatise of algebra. Cambridge, 1830.

122 J. C.M. Baeten and C. Verhoef

[Plotkin, 1981] G.D. Plotkin. A structural approach to operational seman­
tics. Report DAIMI FN-19, Computer Science Department, Aarhus Uni­
versity, 1981.

[Ponse et al., 1995] A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, edi­
tors. Algebra of Communicating Processes, Utrecht 1994, Workshops in
Computing. Springer-Verlag, 1995.

[Ponse, 1991] A. Ponse. Process expressions and Hoare's logic: showing
an irreconcilability of context-free recursion with Scott's induction rule.
Information and Computation, 95(2):192-217, 1991.

[Ponse, 1992] A. Ponse. Computable processes and bisimulation equiva­
lence. Report CS-R9207, CWI, Amsterdam, January 1992. To appear
in Formal Aspects of Computing.

[Ponse, 1993] A. Ponse. Personal communication, June 1993.

[Ritchie and Thompson, 1974] D.M. Ritchie and K. Thompson. The UNIX
time-sharing system. Communications of the ACM, 17(7):365-375,1974.

[Sifakis,1990] J. Sifakis, editor. Proceedings of the International Workshop
on Automatic Verification Methods for Finite State Systems, Grenoble,
France, June 1989, volume 407 of Lecture Notes in Computer Science.
Springer-Verlag, 1990.

[Tofts, 1990] C.M.N. Tofts. A synchronous calculus of relative frequency.
In Baeten and Klop [1990], pages 467-480.

[Troeger, 1993] D.R. Troeger. Step bisimulation is pomset equivalence on
a parallel language without explicit internal choice. Mathematical Struc­
tures in Computer Science, 3:25-62, 1993.

[Vaandrager, 1990a] F.W. Vaandrager. Process algebra semantics of
POOL. In Baeten [1990], pages 173-236.

[Vaandrager,1990b] F.W. Vaandrager. Two simple protocols. In Baeten
[1990], pages 23-44.

[Vaandrager, 1993] F.W. Vaandrager. Expressiveness results for process al­
gebras. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors,
Proceedings REX Workshop on Semantics: Foundations and Applica­
tions, Beekbergen, The Netherlands, June 1992, volume 666 of Lecture
Notes in Computer Science, pages 609-638. Springer-Verlag, 1993.

[Veltink, 1993] G.J. Veltink. The PSF toolkit. Computer Networks and
ISDN Systems, 25:875-898, 1993.

[Verhoef, 1992] C. Verhoef. Linear Unary Operators in Process Algebra.
PhD thesis, University of Amsterdam, June 1992.

[Verhoef, 1994a] C. Verhoef. A congruence theorem for structured opera­
tional semantics with predicates and negative premises. In Jonsson and
Parrow [1994], pages 433-448.

[Verhoef, 1994b] C. Verhoef. A general conservative extension theorem
in process algebra. In E.-R. Olderog, editor, Programming Concepts,

Concrete process algebra 123

Methods and Calculi (PROCOMET '94), volume A-56 of IFIP Trans­
actions A: Computer Science and Technology, pages 149-168. North­
Holland, 1994.

[Vrancken, 1986) J.L.M. Vrancken. The algebra of communicating pro­
cesses with empty process. Report FVI 86-01, Dept. of Computer Sci­
ence, University of Amsterdam, 1986.

[Weijland, 1989) W.P. Weijland. Synchrony and asynchrony in process al­
gebra. PhD thesis, University of Amsterdam, 1989.

Author index
Aceto, L., 43, 62
America, P., 90
Austry, D., 79

Baeten, J.C.M., 4, 13, 16, 18, 19,40,
43, 44, 50, 51, 55, 58, 61,
62, 74-77, 79-81, 90, 92,
95,96, 107, 108, 112-114

Bakker, J.W. de, 4, 90
Bergstra, J.A., 3, 4, 6, 22, 24, 32,

35, 44, 48, 50-52, 55, 58,
61, 62, 71, 72, 74-80, 82-
88, 90, 92, 95, 96, 98, 100,
103, 107, 108, 110-114

Best, E., 115
Bethke, 1., 71, 72, 79, 82, 113
Bezem, M., 80
Blanco, J.O., 80
Bloom, B., 62, 63
Bol, R.N., 61
Boudol, G., 79, 114
Brinksma, E., 114
Brookes, S.D., 3

Caucal, D., 80
Christensen, S., 4, 80, 110, 112
Cleaveland, W.R., 114, 115
Copi, I.M., 71

De Simone, R., 18, 114
Dershowitz, N., 9, 11

Elgot, C.c., 71

Fokkink, W.J., 19, 67, 71, 74

Giacalone, A., 80
Glabbeek, R.J. van, 4, 16, 30, 32,

33, 40, 50, 95, 114
Godskesen, J., 114
Groote, J.F., 13, 14, 18, 20, 28-30,

61,62,64-66,71,80, 114

Hayes, LJ., 79
He, Jifeng, 79
Hennessy, M., 4, 43, 44, 78, 83, 114
Hirschfeld, Y., 4, 110

124

Hoare, C.A.R., 3, 4, 21, 44, 78, 79,
83, 114

Hiittel, H., 80

Istrail, S., 62, 63

Jonsson, B., 115
Jou, C.-C., 80
Jouannaud, J.-P., 9, 26

Kamin, S., 12
Kirchner, H., 26
Kleene, S.c., 71, 72
Klint, P., 90
Klop, J.W., 3, 4, 6, 9, 10,22,24,32,

35, 48, 50, 52, 58, 78, 80,
83-86, 95, 98, 100, 110-
112,114

Klusener, A.S., 65, 79
Koymans, C.P.J., 4, 38, 41, 42

Levy, J .-J., 12
Larsen, K.G., 80, 114
Lin, H., 114

Mauw, S., 80, 114
Meyer, A.R., 62, 63
Milne, G.J., 79
Milner, R., 3, 4, 21, 41, 43, 44, 48,

78, 79, 83, 84, 114
Moller, F., 4, 74, 84, 110
Morgan, C.C., 79
Munoz, M., 26

NicoIIin, X., 4,74

Park, D.M.R., 16, 66
Parrow, J., 79, 114, 115
Peackock, G., 3
Plotkin, G.D., 4, 13
Ponse, A., 54, 71, 72, 79, 80, 82, 113,

114

Ritchie, D.M., 91
Roscoe, A.W., 3, 79
Roy, V., 114

Sanders, J.W., 79

Sifakis, J., 4, 74
Skou, A., 80
Smolka, S.A., 80
Sorensen, LH., 79
Spivey, J.M., 79
Steffen, B., 114
Stirling, C., 80
Surfin, B.A., 79

Thompson, K., 91
Tiuryn, J., 113
Tofts, C.M.N., 4, 74, 80
Troeger, D.R., 72
Tucker, J. V., 87, 88, 95, 103

A uthor index

Vaandrager, F.W., 13, 14, 18, 28-
30, 43, 44, 59, 62, 90, 114

Veltink, G.J., 80, 114
Vergamini, D., 114
Verhoef, C., 13, 16, 18, 19, 27-31,

51, 52, 62, 64-69, 78, 114
Vlijmen, S.F.M. van, 114
Vrancken, J.L.M., 4, 38, 41, 42, 95

Walker, D., 79
Warnel, J.J. van, 79
Weijland, W.P., 4, 61, 62, 81, 84, 95,

107, 114
Wright, J.B., 71

Zantema, H., 71, 74
Zeeberg, M., 114
Zucker, J.I., 4

125

Subject index
abstraction, 49, 78
action

atomic, 7
communication, 99
potential, 94
read, 100
realized, 94
send,100

action function, 51, 55
agree with a term deduction system,

64
algebra, 13

E-,13
alternative composition, 7
approximation induction principle, 24

restricted, 32
arity, 6
associativity, 7
asymmetric communication, 106
asynchronous communication, 94, 95
atomic action, 7
axiom, 6, 14, 63

handshaking, 103
Kleene's, 72
standard concurrency, 87,93,102
time factorizing, 75
Troeger's, 72

axiomatization
sound,14

backtracking, 79
bag, lll, 112
basic parallel processes, 110
basic term, 9, 36, 39, 75
binary communication, 99
bisimilar, 17, 67
bisimulation, 16, 67

strong, 16, 67
bisimulation equivalence, 17, 67
buffer

one-place, 105
two-place, 106

call
system, 91

child process, 91
choice

126

strong, 75
weak,75

clocked system, 84
closed term, 6
combinatory logic, 79
command

guarded,80
communication, 98

asymmetric, 106
asynchronous, 94, 95
binary, 99
get, 107
put, 106
read/send, 100
synchronous, 98
ternary, 99

communication action, 99
communication function, 98
communication merge, 98
commutativity, 7
complete, 25
complete(ness), 20
completely guarded recursive speci­

fication, 22
completely guarded term, 22
composition

alternative, 7
parallel, 83

interleaving, 84
synchronous, 84

prefix sequential, 110
sequential, 7

conclusion, 14, 63
conditional term rewriting system,

60
confluent, 25
congruence, 18
conservative extension, 31

equationally, 31
operationally, 28, 30, 68

constant symbol, 6
context, 6
counter, 81

data structure, 114
De Simone format, 18
deadlock, 35

Subject index 127

decidability, 80, 110
deduction graph, 15
deduction rule, 14, 63

well-founded, 28, 68
degree, 65

~ of a rule, 65
~ of a term deduction system, 65

derivability relation, 6
derivable, 6
discrete time unit delay, 74
distributivity

full, 8
left, 8
right, 8

domain, 13

effect function, 51, 55
elimination property, 25
empty process, 39, 95
encapsulation operator, 48
equation

recursion, 21
recursive, 21

equational specification, 6
sum of two ~s, 30

equationally conservative extension,
31

equivalence
bisimulation, 17, 67

expansion, 88, 93, 103
expressivity, 80, 110
extended state operator, 55

FIFO queue, 112
fork, 91
format

De Simone, 18
GSOS,62
ntyft/ntyxt, 66
panth,66
path, 18
tyft/tyxt, 18

formula, 14, 63
a ~ holds in ... , 63
negative, 63
positive, 63

free merge, 83
full distributivity, 8
function

action, 51, 55
communication, 98
effect, 51, 55

process creation, 91
renaming, 44

function symbol, 6

get communication, 107
get mechanism, 107
graph

deduction, 15
variable dependency, 28, 68

GSOS format, 62
guard, 22, 80
guarded command, 80
guarded occurrence, 22
guarded recursive specification, 22
guarded term, 22

handshaking axiom, 103
hold (a formula ~s in ...), 63
hold (an equation ~s in a model),

13
hypothesis, 14, 63

idempotency, 8
if-then-else operator, 79
inaction, 35
induction

structural, 8
interleaving, 84
interleaving parallel composition, 84
interpretation, 13

Kleene's axiom, 72
Kleene's binary star operator, 71

labelled transition system, 16
left distributivity, 8
left merge, 83
lexicographical path ordering, 12
lexicographical status, 12
linear recursion equation, 81
linear recursive specification, 81
lock step, 84
look-ahead, 50

merge, 83
communication, 98
free, 83
left, 83

model, 13
mu-notation, 21
multiset status, 12

necessary termination predicate, 43

128 Subject index

negative formula, 63
nesting operator, 79
non-deterministic, 8
normal form, 10
ntyft/ntyxt format, 66

object names, 51, 55
OCcurrence

guarded, 22
unguarded, 22

one-place buffer, 105
open term, 6
operationally conservative extension,

28,30,68
operator

encapsulation, 48
extended state, 55
Kleene's binary star, 71
nesting, 79
priority, 58
process creation, 91
projection, 24
rank of an ~, 53, 86, 100
renaming, 44
restriction, 48
signal insertion, 79
signal termination, 79
simple state, 51
unless, 58

ordering
priority, 58

panth format, 66
parallel composition, 83

interleaving, 84
synchronous, 84

parent process, 91
path format, 18
port, 100
positive formula, 63
potential action, 94
predicate

necessary termination, 43
set of ~s, 16
successful termination, 14
termination option, 40

predicate symbol, 14, 63
prefix sequential composition, 110
principle

approximation induction, 24
recursive definition, 22
recursive specification, 22

restricted approximation induction,
32

restricted recursive definition, 22
priority operator, 58
priority ordering, 58
process, 7

child, 91
deadlocked, 35
empty, 39, 95
parent, 91
regular, 81
sum of two ~es, 7

process creation, 91
process creation function, 91
process creation operator, 91
projection operator, 24
proof, 14
property

elimination, 25
transfer, 17, 67

provable, 15
pure rule, 19, 68
put communication, 106
put mechanism, 106

queue, 112
FIFO, 112

rank (~ of an operator), 53, 86, 100
reach, 15, 81
reachable, 15, 81
read action, 100
read/send communication, 100
real space, 79
real time, 79
realized action, 94
recursion equation, 21

linear, 81
recursive definition principle, 22

restricted, 22
recursive equation, 21

solution of a ~, 21
recursive path ordering, 11
recursive specification, 21

completely guarded, 22
guarded, 22
linear, 81
solution of a ~, 21
unguarded, 22

recursive specification principle, 22
regular process, 81
relation

Subject index 129

derivability, 6
satisfiability, 13
set of ~s, 16
transition, 13, 14

relation symbol, 14, 63
renaming function, 44
renaming operator, 44
restricted approximation induction

principle, 32
restricted recursive definition prin-

ciple, 22
restriction operator, 48
rewriting rule, 9
right distributivity, 8
rule

deduction, 14, 63
degree of a ~, 65
pure, 19, 68
rewriting, 9

satisfiability relation, 13
satisfy, 13
semantics, 13
send action, 100
sequential composition, 7
set of predicates, 16
set of relations, 16
set of states, 16
signal

stable, 79
signal insertion operator, 79
signal termination operator, 79
signature, 6

sum of two ~s, 27
simple state operator, 51
solution, 21

. unique, 22
sound axiomatization, 14
soundness, 20
specification

equational, 6
recursive, 21
transition system, 13

stable signal, 79
standard concurrency, 87, 93, 102
state

set of ~s, 16
state space, 51, 55
state transition diagram, 15
status

lexicographical, 12
multiset, 12

step, 7
lock, 84

stratifiable, 64
stratification, 64
strong bisimulation, 16, 67
strong choice, 75
strongly normalizing, 10
structural induction, 8
structure

data, 114
structured state system, 16
subprocess, 81
substitution, 6
successful termination, 35, 38
successful termination predicate, 14
sum

of two equational specifications,
30

of two processes, 7
of two signatures, 27
of two term deduction systems,

28
symbol

constant, 6
function, 6
predicate, 14, 63
relation, 14, 63

synchronous communication, 98
synchronous parallel composition, 84
system

clocked, 84
conditional term rewriting, 60
labelled transition, 16
pure, 19, 68
structured state, 16
term deduction, 14, 63
term rewriting, 9

system call, 91

term, 6
A-basic, 76
basic, 9, 36, 39, 75
closed, 6
completely guarded, 22
guarded, 22
open, 6
unguarded, 22
weight of a ~, 53, 86, 100

term deduction system, 14, 63
agree with a ~, 64
degree of a ~, 65
pure, 19, 68

130

sum of two ~s, 28
well-founded, 28, 68

term rewriting system, 9
conditional, 60

terminating, 10
termination

successful, 35, 38
unsuccessful, 35, 38

termination option predicate, 40
ternary communication, 99
theory, 6
time

discrete, 74
real, 79

time factorizing axiom, 75
tool support, 114
transfer property, 17, 67
transition relation, 13, 14
transition system specification, 13
Troeger's axiom, 72
two-place buffer, 106
tyft/tyxt format, 18

undecidable, no

Subject index

unguarded occurrence, 22
unguarded recursive specification, 22
unguarded term, 22
unique solution, 22
universe, 13
UNIX, 91
unless operator, 58
unsuccessful termination, 35, 38

variable dependency graph, 28, 68

weak choice, 75
weight of a term, 53, 86, 100
well-founded, 28, 68
well-founded deduction rule, 28, 68
well-founded term deduction system,

28,68

Notation index
+: alternative composition, 7
.: sequential composition, 7
II: parallel composition, 83
li.: left merge, 83
/: communication merge, 98
<1: unless operator, 58
>: a well-founded partial ordering

on r:, 11
*: Kleene's binary star operator, 71
>rpo: the recursive path ordering,

11
> /po : the lexicographical path or­

dering, 12
~: transition relation, 14
~.j: successful termination pred-

icate, 14
F: the satisfiability relation, 13
.... : the derivability relation, 6
=<P: 'P equivalence, 30
!: termination option predicate (post-

fix predicate), 40
-+: one-step reduction relation, 10
-++: transitive closure of -+,11
-+>: transitive-reflexive closure of-,

10
.j: tick, 14
Al-5: axioms of BPA, 7
A6-7: deadlock axioms, 35
A8-9: empty process axioms, 39
A-basic term, 76
ACP d': ACP with discrete time, 108,

109
ACPrec + RN: ACPrec with renam­

ing, 112, 113
ACPrec: ACP with recursion, 105,

110, 112, 113
ACP': ACP with iteration, 107, 113,

114
ACPe: ACP with the priority oper­

ator, 106, 107
ACP: algebra of communicating pro­

cesses, 3, 4, 82, 83, 98-
110, 113, 114, 119

action: action function, 51
AlP-: restricted approximation in­

duction principle, 32, 33,
38, 43, 90

131

AlP: approximation induction prin­
ciple, 22, 24, 27, 32-34, 38,
43, 47, 90

ASTP: algebra of sequential timed
processes, 4

A: an algebra, 13
g,: a in the current time slice, 74
A: set of atomic actions, 7
BCCSP: basic CCS/CSP, 4
BKSl-3: iteration axioms, 71
BKS4: iteration/encapsulation ax-

iom, 107
BPA + PR: BPA with projections,

24-28, 31, 32, 37, 47, 90
BPA+RN+PR: BPA+RN with pro­

jections, 47
BPA + RN: BPA with renaming, 44-

48, 104
BPAo + 8H: BPAo with encapsula­

tion, 48, 49, 99, 101
BPA6 + PR: BPA6 with projections,

37,38
BPA(6) + PRo BPA(6) with projec­

tions, 42
BPA6 + RN: BPA6 with renaming,

47-49
BPA(o) + RN: BPA(6) with renam­

ing,49
BPA6dt: BPA6 with discrete time,

78, 96-98, 109
BPA(o)< + PRo BPA(6)< with projec­

tions, 42, 43
BPA(6)< + RN: BPA(6)< with renam­

ing, 49, 50
BPA(6).rec + PR: BPA(6).rec with

projections, 43
BPA(6)<rec: BPA(6)< with recursion,

42, 43
BPA(6)<: BPA. or BPAo<, 40, 42, 49,

50
BPAo<: BPA with deadlock and empty

process, 39, 40, 49, 51
BPAo)..rec: BPAo).. with recursion, 80
BPA6A: BPA6 with the extended state

operator, 56
BPA6>.: BPA6 with the simple state

operator, 54, 56, 80, 131

132 Notation index

BPA6rec + PR: BPA6rec with pro­
jections, 38

BPA(6)rec+PR: BPA(6)reC with pro­
jections, 43

BPA6rec: BPA6 with recursion, 37,
38

BPA;: BPA6 with iteration, 74, 82,
113, 114

BPA60: BPA6 with the priority oper­
ator, 58-61, 63,64, 66-71,
78

BPA6: BPA with deadlock, 35-39,
47, 48, 54, 58, 61, 67, 69,
70, 74, 78, 93-95, 100, 101,
103-106

BPA(6): BPA or BPA6, 42, 43, 78
BPAdt : BPA with discrete time, 74-

78, 96
BPA.: BPA with empty process, 39-

42, 49
BPAA: BPA with the extended state

operator, 55-57
BPA",: BPA with the simple state

operator, 51-54, 56, 85
BPAlin: BPA with finite linear re­

cursion, 82, 113
BPANIL: BPA with NIL, 43
BPArec + PRo BPArec with projec­

tions, 32-35, 90
BPArec+RN+PR: BPArec+RNwith

projections, 47
BPArec + RN: BPArec with renam­

ing,47
BPArec: BPA with recursion, 21-23,

32, 35, 37, 42, 47, 80-82,
89,110-112

BPA': BPA with iteration, 71-74,
82, 96, 107, 113, 114

BPAo: BPA with the priority opera­
tor, 58

BPA: basic process algebra, 4, 6-10,
13, 14, 16, 17, 19-22, 24-
27, 29-33, 35-47, 51, 53-
56, 67, 69-74, 76-80, 82-
84, 86-90, 104-106, 113

BPP: basic parallel processes, 4, 110,
112

E: bisimulation relation, 16
c ! d: potential receive action (infix

predicate), 94
c .JJ. d: realized receive action (infix

predicate), 94

c ; d: potential send action (infix
predicate), 94

c 1r d: realized send action (infix
predicate), 94

CCS: communicating concurrent pro­
cesses, 3, 4, 21, 43, 78, 79,
83,114

CFl-2: communication function ax-
ioms,99

c;(d): communicate d at port i, 100
CIRCAL: a process calculus, 79
CMl-9: axioms for the merge, 99
cr(d): creation action, 91
Cf(d): trace of cr(d), 91
C(2:): closed terms, 6
CSP: communicating sequential pro-

cesses, 3, 21, 78, 83, 114
C: conclusion, 14
Dl-4: encapsulation axioms, 48
OH: encapsulation operator, 48
(j: deadlock, 35
DTl-2: Ud axioms, 74
DTMl-4: discrete time/merge ax-

ioms,96
d(V): degree of V, 65
D: set of deduction rules, 14
EBPA: axioms of BPA, 7
effect: effect function, 51
E",: process creation operator, 91
e: empty process, 39
E(V): recursive specification, 21
E: set of equations, 6
fog: composition of renaming func-

tions, 46
f: renaming function, 44
-y: communication function, 98
get: get action, 107
GSl-3: extended state operator ax­

ioms, 55
G: structured state system induced

by T, 16
HA: handshaking axiom, 103
H: set of hypotheses, 14
I: identity renaming function, 46
>'(BPA6rec): A not allowed in recur-

sion, 80
A~n: extended state operator, 55
A:": simple state operator, 51
L(BPA): structured state system of

BPA,16
Lo Ell L 1 : sum of equational specifi­

cations, 30

Notation index 133

LOTOS: Language of Temporal Or­
dering Specification, 114

LPO: the lexicographical path or-
dering, 12

L: equational specification, 25
Ml-4: axioms for the free merge, 84
MEIJE: a process algebra, 79
f.L notation: notation for recursion,

21
f.Lx.t(x): f.L notation, 21
f.LCRL: micro Common Representa-

tion Language, 114
M: set of objects, 51, 55
n-ary: arity of function symbol, 6
NF(S): set of negative formulas, 63
NIL: a CCS constant, 43, 44
ntyft/ntyxt: a format, 62
n(z): number of symbols in z, 20
O(~): open terms, 6
O·(~): a superset of O(~), 10
PAs: PA with deadlock, 89, 93-98,

108
PA + PCR: PA with process cre­

ation, 91, 92
PA + PR: PA with projections, 90
PA6dt: PA6 with discrete time, 96-

98, 108
PA6rec: PA6 with recursion, 110
PA;: PA6 with iteration, 113, 114
pantk: a format, 66
PArec+PR: PArec with projections,

90
PArec: PA with recursion, 89, 90,

110-112
PA·: PA with iteration, 113, 114
path: a format, 18
PA: process algebra, 4, 83-96, 98-

106, 113
PCRl-5: process creation axioms,

91
PF(S): set of positive formulas, 63
<p: process creation function, 91
<p equivalence: a neat equivalence,

30
7r-calculus: higher order process cal-

culus, 79
7rn : projection operator, 24
PRl-4: projection axioms, 24
PRo projection, 24
PSF: Process Specification Formal­

ism, 114
-,Ps: (negative) formula, 63

Ps: (positive) formula, 14
put: put action, 106
P: predicate symbol, 14
RDP-: restricted recursive defini­

tion principle, 22
RDP: recursive definition principle,

22, 23, 33, 37, 38, 42, 43,
47,90

rec: recursion, 21
PI: renaming operator, 44
p: a reachability relation, 15
T;(d): read d at port i, 100
RNl-3: renaming axioms, 44
RPOl-5: recursive path ordering,

11
RSP: recursive specification princi­

ple, 22, 23, 33, 35, 37, 38,
42, 43, 47, 50, 51, 90, 106

R: relation symbol, 14
R: set of rewrite rules, 9
s :::: t: permuting arguments, 11
s -+ t: s reduces to t, 9
S ~G t, s ~ t: sand tare bisimilar,

17
(S, Sp, Sr): structured state system,

16
SCCS: Synchronous CCS, 79, 84
s;(d): send d at port i, 100
(~, D): term deduction system, 14
(~, E): equational specification, 6
(~, R): term rewriting system, 9
~-algebra: an algebra, 13
~BPA: signature of BPA, 7
Ud: discrete time unit delay, 74
~o El7 ~1: sum of signatures, 27
~: signature, 6
u: substitution, 6
SN: strongly normalizing, 10
S01-3: simple state operator axioms,

51
Sp: set of predicates, 16
Sr: set of predicates, 16
S: set of states, 16
hR: (negative) formula, 63
r: Milner's silent action, 4, 41
T(BPA): term deduction system of

BPA,14
TCCSo: subsystem oftemporal CCS,

4
(t I E): extension of (X I E) to t, 21
TH1-3: priority axioms, 58
6: priority operator, 58

134 Notation index

TO E9 Tl: sum of term ded uction sys-
tems,28

Tp: set of predicate symbols, 14
tRu: (positive) formula, 14
Tr : set of relation symbols, 14
Ts: set of positive formulas, 65
T f--..p: ..p is provable from T, 15
tyft/tyxt: a format, 18
U1-6: unless axioms, 58
U: the universe of A, 13
var(t): variables in a term t, 6
X f-- <p: <p holds in X, 63
(X I E): solution of E, 21
[xl: bisimulation equivalence class,

17
Ixl: weight of x, 53

Computing Science Reports

In this series appeared:

91/01 D. Alstein

91/02 RP. NederpeJt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 RC.Backhouse
PJ. de Bruin
P. Hoogendijk
O. Malcolm
E. Voermans
J. v.d. Woude

91/11 R C. B ackhouse
PJ. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 AJJ.M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
.. if then p. 26.

Parallel Programs for the Recognition of P-invariant
Segments. p. 16.

Performance Analysis of VLSI Programs. p. 3 I.

An Implementation Model for GOOD. p. 18.

SPECIFICATIEMETHODEN. een overzicht. p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p. 49.

Terminology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POLYNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 3 I.

A parallel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The PDB Hypermedia Package. Why and how it was
built. p. 63.

Eldorado: Architecture of a Functional Database
Management System. p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs.
p.25.

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J. C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

Transforming Functional Database Schemes to Relational
Representations. p. 21.

Transformational Query Solving. p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping. p. 21.

Knowledge Base Systems. a Formal Model. p. 21.

Assertional Data Reification Proofs: Survey and
Perspective. p. 18.

Schedule Management: an Object Oriented Approach. p.
26.

Z and high level Petri nets. p. 16.

Formal semantics for BRM with examples. p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness. p. 52.

The GOOD based hypertext reference model. p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy. p. 17.

A compositional proof system for dynamic proces
creation. p. 24.

Correctness of Acceptor Schemes for Regular Languages.
p. 31.

An Algebra for Process Creation. p. 29.

Some algorithms to decide the equivalence of recursive
types. p. 26.

Techniques for designing efficient parallel programs. p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpeet. p. 23.

Specifying fault tolerant programs in deontic logiC.
p. 15.

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Rooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.R.W.v.d.Eijnde

92/05 J.P.H. W. v .d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 RP. Nederpelt

92/08 RP. Nederpelt
F. Kamareddine

92/09 RC. Backhouse

92/tO P.M.P. Rambags

92/11 RC. Backhouse
J .S.C.P.v .d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 RR Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

Asynchronous communication in process algebra. p. 20.

A note on compositional refinement. p. 27.

A compositional semantics for fault tolerant real-time
systems. p. 18.

Real space process algebra. p. 42.

Program derivation in acyclic graphs and related
problems. p. 90.

Conservative fixpoint functions on a graph. p. 25.

Discrete time process algebra. pAS.

The fine-structure of lambda calculus. p. 110.

On stepwise explicit substitution. p. 30.

Calculating the Warshall/Floyd path algorithm. p. 14.

Composition and decomposition in a CPN model. p. 55.

Demonic operators and mono type factors. p. 29.

Set theory and nominaIisation. Pan I. p.26.

Set theory and nominaIisation. Pan II. p.22.

The total order assumption. p. to.

A system at the cross-roads of functional and logic
programming. p.36.

Integrity checking in deductive databases; an exposition.
p.32.

Interval timed coloured Petri nets and their analysis. p.
20.

A unified approach to Type Theory through a refined
lambda-calculus. p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities. p. 36.

Are Types for Natural Language? P. 32.

92/21 F.Kamareddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.J. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 KM. van Hee

93/11 KM. van Hee

93/12 KM. van Hee

93/13 KM. van Hee

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bonum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. IS.

A modelling method using MOVIE and SimCon/ExSpect,
p. IS.

A taxonomy of keyword pattern matching algorithms,
p. 50.

Deriving the Aho-Corasick algorithmS: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real­
Time Executions in DEDaS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 10 1.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

93/14 J.C.M. Baeten
J.A. Bergstra

93/15 J.C.M. Baeten
J.A. Bergstra
R.N. Bol

93/16 H. Schepers
1. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamareddine and
R. Nederpelt

93/29 R. Post and P. De Bra

93/30 J. Deogun
T. Kloks
D. Kratsch
H. Miiller

93/31 W. K6rver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L. Loyens and J. Moonen

On Sequential Composition. Action Prefixes and
Process Prefix. p. 21.

A Real-Time Process Logic. p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems. p. 27

Hard Real-Time Reliable Multicast in the DEDOS system.
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises. p. 22.

The Design of an Online Help Facility for ExSpect. p.21.

A Process Algebra of Concurrent Constraint Program­
ming. p. IS.

Freeness Analysis for Logic Programs - And Correct­
ness? p. 24.

A Typechecker for Bijective Pure Type Systems. p. 28.

Relational Algebra and Equational Proofs. p. 23.

Pure Type Systems with Definitions. p. 38.

A Compositional Proof Theory for Fault Tolerant Real­
Time Distributed Systems. p. 31.

Multi-dimensional Petri nets. p. 25.

Finding all minimal separators of a graph. p. II.

A Semantics for a fine A-calculus with de Bruijn indices.
p.49.

GOLD. a Graph Oriented Language for Databases. p. 42.

On Vertex Ranking for Pennutation and Other Graphs.
p. 11.

Derivation of delay insensitive and speed independent
CMOS circuits. using directed commands and
production rule sets. p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions. p. 17.

ILiAS. a sequential language for parallel matrix
computations. p. 20.

93/34

93/35

93/36

93/37

93/38

93/39

93/40

93/41

J.C.M. Baeten and
J.A. Bergstra

W. Ferrer and
P. Severi

J.C.M. Baeten and
J .A. Bergstra

J. B runekreef
J-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten
E. H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

P.D.V. van der Stok
M.M.M.P.J. Claessen
D. Alstein

A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.w. Watson

93/44 B.W. Watson

93/45 EJ. Luit
J.M.M. Martin

93/46 T. Kloks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.J. Houben
Y. Komatzky

93/48 R. Gerth

94/01 P. America
M. van der Kammen
R.P. NederpeJt
O.S. van Roosmalen
H.C.M. de Swart

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. 11.

Automatic Verification of Regular Protocols in P(f Nets,
p. 23.

A taxomomy of finite automata construction algorithms,
p. 87.

A taxonomy of finite automata minimization algorithms,
p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

The object-oriented paradigm, p. 28.

94/02 F. Kamareddine
R.P. Nederpelt

94/03 L.B. Hartman
K.M. van Hee

94/04 J.C.M. Baeten
J.A. Bergstra

94/05 P. Zhou
J. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

94/07 K.R. Apt
R. Bol

94/08 O.S. van Roosmalen

94/09 J.C.M. Baeten
J .A. Bergstra

94/10 T. verhoeff

94/11 J. Peleska
C. Huizing
C. Petersohn

94/12 T. Kloks
D. Kratsch
H. Miiller

94/13 R. Seljee

94/14 W. Peremans

94/15 RJ .M. Vaessens
E.H.L. Aarts
1.K. Lenstra

94/16 R.C. Backhouse
H. Doornbos

94/17 S. Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 B.W. Watson

Canonical typing and n -conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.
p. 31.

A Comparison of Ward & Mellor's Transfonnation
Schema with State- & AClivitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in
Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus, p. 15.

The perfonnance of single-keyword and multiple­
keyword pattern matching algorithms, p. 46.

94/20 R Bloo
F. Kamareddine
R Nederpelt

94/21 B.W. Watson

94/22 B.W. Watson

Beyond ~-Reduction in Church 's A~, p. 22.

An introduction to the Fire engine: A C++ toolkit for
Finite automata and Regular Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressi­
ons.

94/23 S. Mauw and M.A. Reniers An algebraic semantics of Message Sequence Charts, p.
43.

94/24 D. Dams
O. Grumberg
R. Gerth

94/25 T. KIoks

94/26 R.R. Hoogerwoord

94/27 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Verhoeven

94/29 J. Hooman

94/30 J.C.M. Baeten
lA. Bergstra
Gh. ~tefanescu

94/31 B.W. Watson
RE. Watson

94/32 J.J. Vereijken

94/33 T. Laan

94/34 R. Bloo
F. Kamareddine
R Nederpelt

94/35 lC.M. Baeten
S. Mauw

94/36 F. Kamareddine
R Nederpelt

94/37 T. Basten
R Bol
M. Voorhoeve

94/38 A. Bijlsma
C.S. Scholten

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'v'CTL*, 3CTL* and CTL*, p. 28.

K,.,-free and W,-free graphs, p. 10.

On the foundations of functional programming: a
programmer's point of view, p. 54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A fonnalization of the Ramified Type Theory, p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and n-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

94/39 A. Blokhuis
T. Kloks

94/40 D. Alstein

94/41 T. Kloks
D. Kratsch

94/42 J. Engelfriet
J.J. Vereijken

94/43 R.C. Backhouse
M. Bijsterveld

94/44 E. Brinksma J. Davies
R. Gerth S. Graf
W. Janssen B. Jonsson
S. Katz G. Lowe
M. Poel A. Pnueli
C. Rump J. Zwiers

94/45 G.J. Houben

94/46 R. Bloo
F. Kamareddine
R. Nederpelt

94/47 R. Bloo
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 J.C.M. Baeten
J .A. Bergstra

94/50 H. Geuvers

94/51 T. Kloks
D. Kratsch
H. Miiller

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95/01 J.J. Lukkien

On the equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Real-Time Systems,
p. 34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice M.
Theory: An Illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratie­
ve Logistiek", p. 43.

The A-cube with classes of terms modulo conversion,
p. 16.

On n -conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. II.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Normalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a Small Communication Library,
p. 16.

95/02 M. Bezem
R. Bol
J.F. Groote

Fonnalizing Process Algebraic Verifications in the
Calculus of Constructions, p. 49.

	Contents
	1. Introduction
	2. Concrete sequential processes
	2.1 Introduction
	2.2 Basic process algebra
	2.3 Recursion in BPA
	2.4 Projection in BPA
	2.5 Deadlock
	2.6 Empty process
	2.7 Renaming in BPA
	2.8 The state operator
	2.9 The extended state operator
	2.10 The priority operator
	2.11 Basic process algebra with iteration
	2.12 Basic process algebra with discrete relative time
	2.13 Basic process algebra with other features
	2.14 Decidability and expressiveness results in BPA
	3. Concrete concurrent processes
	3.1 Introduction
	3.2 Syntax and semantics of parallel processes
	3.3 Extensions of PA
	3.4 Extensions of PA-delta
	3.5 Syntax and semantics of communicating processes
	3.6 Extensions of ACP
	3.7 Decidability and expressiveness results in ACP
	4. Further reading
	References
	Author index
	Subject index
	Notation index

