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ABSTRACT 
 
Conformal transformations are often applied to solve 2D Laplacian problems. We present results for a few examples in 
the field of electromagnetic compatibility. First we derive the mutual inductances M for a printed circuit board and the 
straight tracks, above a metal cabinet plane. Secondly, metal conduits protect cables inside them. A good measure is the 
transfer impedance Zt , which is dominated by a position dependent mutual inductance M above a few kHz. Finally a 
cover on a conduit is calculated. All results compare well with the measurements, which have been reported elsewhere. 
 
INTRODUCTION 
 
The technique of conformal transformations is often applied to solve many two-dimensional (2D) Laplacian fields, 
which occur for instance in a quasi-static analysis of tracks on long printed circuit boards or other elongated sets of 
conductors. For boundaries of limited complexity, the transformations involve elementary analytical functions [1,2]. 
The inversion of the transformation often requires numerical procedures. The general Schwarz-Christoffel integral 
formula also allows more complex boundaries. In the last few years powerful tools [3] have been developed to 
numerically solve for the corresponding pre-vertices for singly connected regions. Simple approximations such as 
rapidly converging sums of elementary functions, can be derived from the accurate results. Often these approximations 
suffice for many practical engineering problems. Several applications are discussed hereunder. 
 
PCB EXAMPLE 
 
A printed circuit board has tracks on either side of a continuous ground plane (GP). The straight tracks are at various 
positions with respect to that GP, at the same side and on opposite sides. The tracks form closed circuits with the GP 
and the terminations at the track ends; in EMC terminology there circuits are called the differential mode (DM) circuits. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Side-view and cross-section of a PCB in precompliance setup 
 
The GP and the environment form a second circuit, the common mode (CM) circuit. Another plane, for instance a 
cabinet plane under the GP, can be a part of the environment. The induction coefficients M are calculated for a wide 
range of track positions and other parameters of the boards, and approximate expressions are formulated for a) the DM-
DM or track-to-track coupling and b) the track to CM coupling. Figure 1 shows the so-called precompliance setup and 
also defines the parameters of geometry. The DM to CM transfer impedance Zt is the ratio VCM / I1,2  where VCM is 
measured over the gap g between the GP and the vertical side b, as indicated by the voltmeter in Fig. 1. The current I1,2 
is injected into port 1 or 2, where both tracks are shorted to the GP at the far end. 
 
First the CP is regarded very far away. Then the Joukowski transform provides the M-coupling between two track 
circuits. Assume the GP to be located at the real axis in the complex z-plane between w x w− < < , and two tracks at 
position z1 and z2. The transform J:  / 1 / 1/ z w z wt z w + ⋅ −= +  maps the z-plane outside the plate onto the t-space 



outside the unit circle. The rotation s = exp j(π − α1) brings t1 to the negative real axis; α1 is the argument of t1. The 
current I1 through track 1 returns through the GP. The complex potential Ω due to I1 at s1 and its image in the unit circle 
result in the Md between the tracks: 
 

[ ]2 1 1( ) ( / 2 ) log( | |) log( 1/ | |)s jI s t s tπΩ = + − −   and [ ]0 2 1( / ) Im ( ) 1/(2 ) log | |dM I s tµ π= − Ω − . (1) 
 
Real explicit expressions for Md cannot be obtained from (1), but the transformations only require elementary complex 
arithmetic. In case of the the CM to DM coupling, one assumes a current I  through the GP with the return far away. In 
this case, Ω and the resulting Mc are simpler 
 

( ) ( / 2 ) logt jI tπΩ = −  and 0 2( / ) Im ( )cM I tµ= Ω .   (2) 
 

When the CP approaches the GP, two cases can be considered, first a very wide CP or 2p → ∞, and secondly a CP with 
2p of the same magnitude as 2w. The CM to DM Mc-coupling can be described by transforming the GP and the CP in 
the z-plane into two opposite sides of a K-K′ rectangle in the ζ-plane; this rectangle is then regarded as a part of an 
infinitely wide transmission line. For the first case, the very wide CP, one has ( , )z Z mς= . Here K and K′  are the 
complete elliptic integrals with modulus m and its complement; Z is the Jacobi ζ-function. The value of m depends on 
the ratio hCP / w (see Fig. 1). The determination of m and the inversion of the track position z still require numerical 
procedures. Simple approximations hold if hCP / w < 1, e.g. for the mid-position (0,h1) of the track above the GP: 

( ) 1
1 0 2 / ' /(0, )c CPK K h hM h πµ −

− × in which '/ / {1 ln(2 / )} /CP CPK K w h w hπ π+ + , and where 0 / 2 'CML K Kµ=  
is the selfinductance of the CM circuit. The field between the GP and CP is nearly homogeneous for 2w > hCP . This 
results in 1 0 1( , ) / 2cM x h h wµ  for most x-positions except near the edges. The mapping for the second case 2 2p w≈  
is discussed in the literature, but the parameters are difficult to evaluate; see [4] and references therein. The MATLAB 
Schwarz-Christoffel toolbox [3] solves the required prevertices numerically up to the desired accuracy; this software 
also allows easy inversion of the position z. In Fig. 2 we present Mc as a function of hCP for a 2w = 50 mm wide GP 
above a 2p = 200 mm wide CP, for various track position at 1.5 mm distance from the GP. The solid line shows the 
conformal mapping results; the circles are obtained by the Method of Moments (MoM). The DM to DM coupling 
requires the Schwarz-Christoffel analysis for multiply connected regions. Numerical techniques exist, but their 
discussion is outside the scope of this contribution. However, MoM  and experimental results are presented in [4]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Left: Magnetic field lines at high frequency, for a current I through the CM loop GP-CP. Right: Mutual inductance Mc between 
the CM loop and the DM circuit of a track at the indicated positions with respect to the GP. The 50 mm wide GP is at the distance 
hCP above a 200 mm wide CP. The solid lines are the conformal mapping results, the circles result from the Method of Moments. 
 
CONDUITS 
 
Metallic conduits provide protection for cables placed inside against electromagnetic interference caused by a CM 
current through the conduit. A good measure for this protection is the conduit transfer impedance Zt , which depends on 
the shape of the conduit and on the position of the cable in it. Figure 3 shows how this Zt = V / I can be defined for a U-
shaped conduit. Already at not too high frequencies, usually a few kHz, a constant mutual inductance M starts to 
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dominate the Zt ;  ref. [5] discusses the transition from the resistively dominated Zt and the associated changes in current 
distribution in the conduit wall. The conformal transformation for the flat plate is again the Joukowski transform 
mentioned before. The transformation for the U and H-shape are an extension of the Jacobi ζ-function [2]: D maps the 
rectangle between ζ = ±(K+jK’) onto the conduit and C maps the ζ-rectangle onto the unit-circle in the t-plane (Fig. 3): 
 

   
cn dn

: ( ) snD z Z f
ς ς

ς ς= + −      and    
21 sn 1 cn

: sn
f f

C t f
ς ς

ς
− + −

= −   (3)    

in which ( 1 )/f G m mG= − +  for the U shape and  f  =  0 for the symmetrical H-shape. The functions sn, cn and 

dn are the Jacobi elliptic functions ; G = E/K with E the complete elliptic integral of the second kind. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Left: A U-shaped conduit with a lead to define the transfer impedance Zt . Upper right: The U and H-shape conduit with 
parameters. Lower right: The three spaces z, ζ and t for the conformal mapping. 
 
Three magnetic field lines around conduits  are depicted in Fig. 4. Inside the conduit a simple series expansion holds: 
 

a
0,1,2,..

( , ) ( 1) ( / )cos(m x)sinh( )/sinh( ) (2 1) /2m
m a a a

m
M x y p h w m y m h m m wπ

∞

=
= − = +∑ , (4) 

which has been derived from a projection of each term in the sum onto the M(x,y) at the straight line between the upper 
conduit edges. Table I gives numerical values of pm for h / w  =  0.5, 1.0, and 2.0. The pm values only depend on the 
conduit shape; interpolation between the values given results in about 10 percent accuracy for M, except near the edges 
where the field diverges. For higher accuracy, expressions (3), or the numerical procedures of [3] should be used. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Magnetic field lines as equi-M curves for 100, 50 and 20 nH/m 
In case of a U and H-shaped conduit with h / w = 1. 
 
CONDUIT WITH NON-CONTACTING COVER 
 
Figure 5 shows the conduit and the parameters; the cover carries no net current. This situation can also be analyzed by 
conformal mapping [6]. First the conduit and cover are regarded as a two-conductor transmission line, Ic through the 

U-shape H-shape ↓ m 
    h/w→ 0.5 1.0 2.0 0.5 1.0 2.0 
0 70.3 76.5 67.2 63.4 65.7 54.9 
1 17.3 15.7 13.1 15.3 13.3 10.6 
2 7.7 6.8 5.6 6.8 5.7 4.5 
3 5.1 4.6 3.8 4.5 3.9 3.1 

Table I 
First pm values in nH/m for a U and H-shaped conduit,

at three values for h / w.



conduit and –Ic through the cover. The transformation D maps the inside of a rectangular box in the complex ζ-plane 
upon the half conduit OPQR and half cover ST. In the toolbox of [3] D has 13 vertices when the wall thickness d is 
taken into account, and 11 in the limit d → 0. The flux is Φ = µ0 Ic h' / 2w', where h' / w' results from the determination 
of the vertices. The field distribution inside leads to M(x,y) as in (4), with 4Φ/Icπ(2m+1) substituted for pm. Four 
magnetic field lines are shown in Fig. 5; the conduit profiles are exaggerated for the sake of clarity. The flux and the 
current are concentrated in the slit. For narrow slits (s,t << l) one can approximate Is, the part of Ic in both slits, by Is = 2 
Φ/ Ls with Ls ≈  µ0 s / lPQ the inductance localized in a single slit; lPQ = l + d + (s+t)/2 is the total slit length measured 
midway between cover and conduit from P to Q. Is and Ls are clearly very sensitive to variations in s. The remaining 
part of the distributed current, Ic − Is = Φ / Lc, has been calculated separately for conduits with a 2w wide cover without 
flanges, and with thickness d = 0. For a wide conduit, 2w >> h, one expects an inside contribution proportional to 2w/h. 
The 1/(2m+1) term in pm indicates a slow convergence of the sum in (4) near the corner P, and suggests an ln (t) slit 
contribution. The outside contributes less for larger w/h. A least square fit to 2w'/h' =  µ0 /Lc for 81 shapes with 1 < 2w/h 
< 16 and 0.01 < t/h < 0.2 yields 
 

0 / 1.69ln( / ) 2.03 / 1.16 0.31 /cL t h w h h wµ = − + + −     (5) 
 

The second transformation C provides the ratio of the cover current Ic to the total current I. A circle with unit radius is 
mapped upon the full outer boundary of conduit and cover. Then no net magnetic flux enters the inside region through 
the slit; in fact the slit can be completely neglected, which reduces the number of vertices to eight. The left part of Fig. 5 
shows nine lines corresponding to the current density; the orthogonal magnetic field lines are omitted. The return for the 
current I is assumed to flow at a large distance; the current distribution is then symmetrical with respect to the vertical 
axis. The ratio Ic/I is the arc NSN' in the ζ-plane between N at the mid-slit position and its mirror image N', divided by 
2π. In practice Ic/I will range between 0.5 for l = h/2 overlap and 0.25 for a nonoverlapping cover on a square conduit. 
A fixed value of 0.38 will likely be within 3 dB of the actual Ic/I. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Left: Cut-away view of the conduit with cover, and its parameters. Right: the three spaces and the transformations C and D. 
Several magnetic field lines are indicated inside. 
 
Summarizing, conformal transformation provided mutual inductance values M as a function of position. When 
compared to measurements, agreement was observed to within the accuracy of the measurement or the calculations 
based on the actual parameters. Details have been published elsewhere [4,5,6]. 
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