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Abstract:
In a manufacturing environment with volatile demand, inventory management can be

coupled with dynamic capacity adjustments for handling the fluctuations more effectively.
In this study, we consider the problem of integrated capacity and inventory management
under non-stationary stochastic demand and flexible capacity uncertainty. The capacity
planning problem is investigated from the workforce planning perspective where the ca-
pacity can be temporarily increased by utilizing contingent workers from an external labor
supply agency. The contingent capacity received from the agency is subject to an uncer-
tainty, but the supply of a certain number of workers can be guaranteed through contracts.
We formulate a dynamic programming model to make the optimal capacity decisions at a
tactical level (permanent workforce size and contracted number of workers) as well as the
operational level (number of workers to be requested from the external labor supply agency
in each period), integrated with the optimal operational decision of how much to produce
in each period. We analyze the characteristics of the optimal policies and we conduct an
extensive numerical analysis that helps us provide several managerial insights.
Keywords: Inventory, Capacity Management, Flexible Capacity, Workforce Availability, Sup-
ply Uncertainty

1 Introduction

Production and capacity decisions of manufacturing firms are significantly affected by de-

mand volatility. In some industries, dynamic capacity adjustments arise as an effective tool
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for handling this volatility. The production capacity can be temporarily increased by ac-

quiring external capacity resources such as outsourcing, renting machinery, hiring contingent

workers, etc. Effective utilization of such resources results in increased demand responsive-

ness and reduced operational costs. However, external capacity may not always be available

at the desired quantity and/or quality in the environment. Therefore the uncertainty of

external capacity supply should be considered in production planning. In this study, we

consider the integrated planning of production/inventory and capacity under demand and

external capacity supply uncertainties.

Capacity can be defined as the maximum amount of production that can be achieved by

utilizing internal and external resources, whereas capacity flexibility stands for the ability

to change the capacity temporarily. Especially when the inventory holding and/or back-

ordering costs are high, capacity flexibility may prove to be an efficient tool for meeting

the volatile demand. We consider labor intensive manufacturing environments and hence

we consider capacity in terms of the workforce. Throughout the text, we use the terms

“workers” and “capacity” interchangeably. We classify the production capacity under two

main categories: Permanent capacity and contingent capacity. Permanent capacity is formed

by the company’s own workforce under a steady payroll, whereas the contingent capacity

is formed by the workers that can be acquired temporarily from an external labor supply

agency (ELSA). Manufacturer’s request for contingent workers may be totally or partially

unmet by the ELSA due to the lack of availability and/or skill requirements. In case there

is a high demand for contingent workers in the market at the time of the request, or if the

manufacturer requires the workers in short notice, the risk of the request not being met in

full terms is higher. Moreover, ELSAs may not be willing to fulfill a specific request at a

specific time, considering potentially better options. Therefore, the availability of contin-

gent workers may be a major concern when the manufacturer relies on external capacity for

production.

A labor supply contract between the manufacturer and the ELSA is a possible way of

alleviating the impacts of labor supply uncertainty on the manufacturer where the manufac-

turer pays a certain fee per contracted worker per period (reservation cost), and the ELSA is

committed to provide the required number of workers up to the contracted quantity to the

manufacturer with certainty with an additional fee per worker requested (utilization cost).

Note that this type of contracting is known as “option contracting”. The manufacturer may

still request temporary workers in addition to the contracted workers, but the supply of those
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workers are subject to uncertainty. Under this setting, we classify contingent workers under

two categories: contracted workers and temporary workers.

Dynamic adjustments of the permanent capacity, such as hiring or firing, are generally

too costly. Moreover, such adjustments tend to have negative effects on the efficiency of

workers due to the social and motivational effects. Therefore we consider the determination

of the permanent capacity level as a tactical decision that is made at the beginning of the

planning horizon and not changed until the end of it. Utilizing flexible capacity is a means

of overcoming these issues, and we consider this as one of the two main operational tools of

coping with fluctuating demand, along with holding inventory. Consequently, the decisions

that we consider are the determination of the permanent workforce size and the number of

contracted workers from the ELSA at the beginning of the planning horizon, as well as the

number of temporary workers to request from the ELSA and the production quantity in each

period.

There exists a significant usage of flexible workforce in many countries. For example,

6.6% of the active labor force of the Netherlands was composed of flexible workers (tempo-

rary, standby, replacement, and such other workers) in 2003 (Beckers, 2005). US Bureau of

Labor Statistics (2006) indicates that in February 2005 there were 14.8 million flexible work-

ers (independent contractors, on-call workers, temporary help agency workers, and workers

provided by contract firms) constituting 10.7% of total employment. Aside from the work-

ers with alternative work arrangements as indicated above, contingent workers accounted

for 4.1% of the total US employment. In March 2006, 7.9% of the active labor force in

Turkey was composed of contingent workers (Turkish Statistical Institute, 2006). Contin-

gent workers can be hired anytime and are generally paid for labor hours. The wage rate

for contingent workers tend to be lower than that of their permanent counterparts, however

their costs to the hiring firms are generally higher. Productivity of contingent workers may

vary for industries requiring different levels of skills, with the productivity loss increasing in

skill requirements.

2 Literature Review

Capacity planning has been analyzed extensively in all levels of decision making. An in

depth review, presenting the formulation and solution of strategic capacity problems, is

provided by Van Mieghem (2003). Holt et al. (1960) pioneered the research in the field of
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workforce planning and flexibility, with their seminal work analyzing the trade-off between

keeping large permanent workforce levels and frequent capacity adjustments. Our model is

considering the same problem in essence, extending it to the case of demand and capacity

supply uncertainty. Wild and Schneeweiss (1993) analyze manpower capacity planning with

a hierarchical approach using stochastic dynamic programming.

In a particularly relevant work, Milner and Pinker (2001) consider the problem of design-

ing labor supply contracts between firms and ELSAs under demand and temporary labor

supply uncertainty. The authors consider a single period setting where the supply uncer-

tainty is either in terms of productivity loss or unavailability. In the former case, if the labor

request that is placed after demand materialization exceeds the contracted quantity, it is met

with certainty by the ELSA at a higher cost. In the latter case the unavailability is a function

of the number of temporary workers available in the market and the fee the firm pays to

the ELSA per temporary worker. In our work, we consider a multi-period setting and we

focus on several unavailability structures of labor supply. Moreover, in our model, capacity

decisions are made before the demand is materialized, which implicitly takes the supply lead

time into account since it can be considered that contingent workers are requested at the

end of the previous period.

Among the papers that consider integrated production and capacity planning, the fol-

lowing papers are relevant to our work. Pinker and Larson (2003) consider the problem of

managing permanent and contingent workforce levels under uncertain demand where inven-

tory holding is not allowed. The sizes of regular and temporary labor are decision variables

that are fixed throughout the planning horizon, but the capacity level may be adjusted by

setting the number of shifts for each class of workers. Dellaert and de Kok (2004) investigate

the integrated flexible capacity and production planning problem considering a production

capacity composed of long-term contract workers and temporary workers. The approach

of planning capacity and production in an integrated manner outperforms the decoupled

approach. Hu et al. (2004) also investigate an integrated flexible capacity and production

planning problem on a continuous-time framework under Markov-modulated demand. In a

similar problem, Tan and Gershwin (2004) study production and subcontracting strategies

with limited production capacity and fluctuating demand, considering lead time sensitive

customers. Atamturk and Hochbaum (2001) focus on the integrated capacity and produc-

tion planning problem under a non-stationary deterministic demand setting exploiting the

trade-offs between capacity expansions, subcontracting and carrying inventory. Angelus
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and Porteus (2002) present a simultaneous capacity and production planning problem for

short life-cycle products, considering capacity expansions as well as contractions. Yang et

al. (2005) consider a production/inventory system under Markovian internal capacity levels

and outsourcing option, where the outsourcing decision is made after observing the realized

capacity and the demand.

Our work is closely related to the problems considered by Tan and Alp (2005), Alp and

Tan (2007), and Mincsovics et al. (2006). These three papers consider settings similar to

ours, ignoring the labor supply uncertainty. Tan and Alp (2005) focus on the operational

decisions under the existence of fixed costs for initiating production and for using contingent

capacity. Alp and Tan (2007) extend this analysis by including the tactical level decision

of determining the permanent capacity levels. Finally, Mincsovics et al. (2006) model and

analyze the problem under a lead time associated with the acquisition of contingent capacity.

Considering the field of production/inventory planning under random capacity/yield,

Yano and Lee (1995) provide an extensive review of the literature on lot sizing under ran-

dom production or procurement yields. Ciarallo et al. (1994) analyze the optimality of

extended myopic policies under uncertain capacity and uncertain demand in a periodic re-

view setting. Kouvelis and Milner (2002) analyze the joint effects of demand and supply

uncertainty on capacity and outsourcing decisions in multi-stage supply chains. Authors in-

dicate that as the supply uncertainty increases capacity investments increase. In a problem

relevant to ours, Schmitt and Snyder (2006) consider a system with supply disruptions. The

concept of reservation from a reliable supplier is similar to the contracting concept in our

study. Different than this stream of research, we also consider a fixed permanent capacity.

Moreover, the capacity decision which is subject to uncertainty and the production decisions

are separate variables in our model.

3 Model Formulation

In this section, we provide a dynamic programming model that can be used to solve the in-

tegrated capacity and inventory management problem under consideration. We first present

our basic definitions, assumptions and settings.

We define capacity position, w, as the total amount of capacity requested by the manu-

facturer. Capacity level is defined as the production capacity observed after the labor supply

uncertainty is resolved. If the capacity position is less than or equal to the permanent pro-
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duction capacity plus the contracted capacity (w ≤ U + V ), the capacity level is equal to

the capacity position. On the other hand, if w > U + V then the capacity level will be

between U + V and w. The permanent and contracted capacity levels are determined at

the beginning of the planning horizon and they are fixed and fully available throughout the

planning horizon. The unmet demand is fully backlogged. The costs under consideration

are inventory holding and backordering costs, and unit costs of permanent, contracted and

temporary capacity, which are all non-negative. We assume that there are no shortages of

raw material and the lead time of production and acquiring external capacity can be ne-

glected. There are no fixed costs for initiating production and no material related costs are

considered in the model. The notation is summarized in Table 1. Further explanation of

notation will be provided as need arises.

Table 1: Summary of Notation
T : Number of periods in the planning horizon
U : Size of available permanent capacity
V : Size of available contracted capacity
cp : Unit cost of permanent capacity per period
cr : Unit reservation cost of contracted capacity per period
cu : Unit utilization cost of contracted capacity per period

ccw : Total unit cost of contracted capacity (ccw = cr + cu)
ctw : Unit cost of temporary capacity per period

h : Inventory holding cost per unit per period
b : Penalty cost per unit of backorder per period
α : Discounting factor (0 < α ≤ 1)

wt : Capacity position in period t
ηt : Capacity level in period t
Nt : Temporary capacity requested in period t
mt : Temporary capacity realized in period t
Qt : Number of items produced in period t
Zt : Random variable denoting the demand in period t

Gt(z) : Distribution function of Zt

Pt(mt, Nt) : Probability function of receiving mt workers when Nt workers are requested
xt : Inventory position at the beginning of period t before production
yt : Inventory position in period t after production

ft(xt) : Minimum total expected cost of operating the system
in periods t, t + 1, ..., T , given the system state xt

The cost of permanent capacity is independent of the production quantity and paid each

period even if there is no production. The unit cost of permanent capacity is cp per period.

Therefore the total permanent capacity cost for a workforce of size U is cpU per period.
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In the particular contract type that we consider, each contracted worker costs c′r per pe-

riod, independent of the utilization. There is also an additional cost component c′u for each

contracted worker utilized in production per period. Consequently, the cost of a utilized

contracted worker per period, c′cw, is c′cw = c′r + c′u. Also let c′tw be the cost of a hired

temporary worker per period. In order to synchronize the production quantity with the

number of workers, we redefine the “unit production” as the number of actual units that an

average permanent worker can produce per period. We also define the cost of production by

contingent workers in the same unit basis, where the cost for contingent workers is related

to their productivity. Consequently, the term “N workers are requested” stands for request-

ing workers that are sufficient to produce N units. Considering that productivity rates of

permanent, contracted and temporary workers may differ, let λcw and λtw be the average

productivity rates of contracted workers and temporary workers, respectively, relative to the

productivity of permanent workers. The model is valid for all values of λcw > 0 and λtw > 0,

however it is likely that 0 < λtw ≤ λcw ≤ 1. Assuming that the productivity rates remain

approximately unchanged in time, the unit production cost by contracted workers, ccw, can

be written as ccw = c′cw/λcw, where the production-equivalent unit reservation and utiliza-

tion costs by contracted workers, cr and cu, being cr = c′r/λcw and cu = c′u/λcw, respectively.

Hence, the total reservation cost of contracted workers is crV for a total contracted capacity

of V production units. Similarly, the unit production cost by temporary workers, ctw, can

be written as ctw = c′tw/λtw.

The amount of temporary workers received in period t, mt, depends on the requested

quantity, Nt, with a probability function of Pt(mt, Nt). While Pt(mt, Nt) is a mass function,

we denote it as a density function in our model for notational simplicity. The total cost of

temporary workers is ctwmt if the firm observes mt temporary workers, regardless of whether

they are utilized or not. Demand in period t, Zt, has distribution Gt(z). We consider a

planning horizon of T periods.

The order of events is as follows. At the beginning of the planning horizon, permanent

and contracted capacity levels, U and V , are determined. At the beginning of each period

t = 1, . . . , T , the inventory level xt is observed, and the capacity position decision is made

as wt. If the capacity position wt > U +V , then a temporary capacity of Nt = wt−U −V is

requested from the ELSA, which delivers a realization, mt, bringing the capacity level, ηt, to

ηt = U +V +mt. If wt ≤ U +V , then Nt = mt = 0. A production decision Qt ≤ U +V +mt

is made to raise the inventory level to yt = xt + Qt. At the end of the period, the demand zt
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is realized and met. Remaining inventory is carried to the next period at a cost of h per unit

and any unmet demand is backordered at a unit cost of b. The minimum cost of operating

the system from period t until the end of the planning horizon is denoted by ft(xt, U, V ),

where we drop U and V from the notation for brevity whenever appropriate. We assume an

ending condition of fT+1 = 0. We model our integrated capacity and inventory management

problem as follows:

ft(xt, U, V ) = Ucp + V cr + min wt≥0{Ht(wt|xt, U, V )} for t = 1, 2, ...T

and f0(x1, U, V ) = min U≥0, V≥0{f1(x1, U, V )}

where

Ht(wt|xt, U, V ) =





ϕt(wt|xt) if 0 ≤ wt ≤ U
(wt − U)cu + ϕt(wt|xt) if U < wt ≤ U + V
γt(wt − U − V |xt) if U + V < wt

. (1)

In equation (1), ϕt(wt|xt) = minyt:xt≤yt≤xt+wt{Lt(yt) + αE[ft+1(yt − zt)]} is the production

decision function that attains the minimum total expected cost of operations excluding the

immediate labor costs, where Lt(yt) = h
∫ yt
0 (yt−zt)dGt(z)+b

∫∞
yt

(zt−yt)dGt(z) is the regular

convex loss function, and

γt(Nt|xt) = V cu +
∫ Nt

0
(ctwmt + ϕ(U + V + mt))Pt(mt, Nt)dmt (2)

is the expected minimum cost of operations when Nt temporary workers are requested. Hence

we refer Ht(wt|xt, U, V ) as the “decision function” where we drop U and V from the notation

for brevity.

Now we consider the last period problem in particular. Let ŷT be the minimizer of

LT (yT ) and y∗T be the optimal inventory level after production under a realized capacity of

ηT = U + V + mT in the last period. Then we have

y∗T =





xT + ηT if xT + ηT ≤ ŷT

ŷT if xT ≤ ŷT ≤ xT + ηT

xT if ŷT < xT

and

ϕT (wT |xT ) =





JT (xT + wT ) if xT + wT ≤ ŷ
JT (ŷ) if xT ≤ ŷ ≤ xT + wT

JT (x) if ŷ < xT

. (3)

Then substituting (3) in (2), we obtain the cost function for utilizing temporary capacity

as follows:
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γT (NT |xT ) = V cu +
∫ NT
0 mT ctwPT (mT , NT )dmT +

∫ ŷT−U−V
0 L(xT + ηT )PT (mT , NT )dmT

+
∫ NT
ŷ−U−V L(ŷT )PT (mT , NT )dmT .

This implies that if ŷT is less than or equal to the capacity level, xT + U + V + mT , then

it is optimal to produce up to ŷT leaving a portion of the available capacity unutilized. We

note that this property would hold for any period t, if Lt(yt) + αE[ft+1(yt− zt)] was convex,

which does not hold in general.

3.1 Supply Uncertainty Structures

In this section we model different supply uncertainty structures to reflect possible responses

of an ELSA to workforce requests, which may differ according to the factors such as the

size of available temporary worker pool, capability of finding skilled workers, competition in

the environment, demand structure of different customers, and opportunities in alternative

options. We use the following structures for modeling the supply uncertainty, given that N

temporary workers are requested from the ELSA by the manufacturing firm.

All-or-nothing availability: The firm receives N contingent workers with probability

p and does not receive any worker with probability (1 − p). This may happen when the

ELSA has better offers from other firms and therefore rejects the offer of the firm. Here 1−p

can be considered as the probability of ELSA having better alternatives. It may also be the

case that while the ELSA is able to supply the firm’s request partially, such a partial supply

is not acceptable by the firm, which might be the case, e.g., in assembly lines.

Partial availability:

• Uniform availability: Under this model the firm has equally likely chance of acquir-

ing 0 to N workers, where the ELSA attempts to be “fair” to all requests based on

the available temporary labor pool size. Note that the expected number of workers

acquired increases as the number requested increases.

• Normal availability: In this case the number of workers to be received is distributed

approximately with a (discrete) Normal distribution, the realization never exceeding

N .

• Decreasing availability: In this case the ELSA has a limited temporary worker

pool size, K, and a relatively stable market so that as N increases, the probability
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of acquiring each worker decreases. In particular, we model this situation using a

Binomial distribution with a decreasing success probability that equals to Max{K−N,0}
K

.

• Moderate availability: Under this uncertainty structure we model an ELSA with

a limited pool size, K, favoring moderate-sized demand. Lower demands are not pre-

ferred by the ELSA in order to prevent the temporary worker pool size from shrinkage,

while higher demands have a lower chance of being met due to the scarcity of supply.

The number of workers acquired has a Binomial distribution with a success probability

of cos(2ΠN/K−Π)+1
2

, for N ≤ K, and 0 otherwise.

• Increasing availability: Under this setting we model an ELSA that favors larger-

sized requests. The ELSA attempts to avoid the division of its workforce for this

purpose and tries to satisfy larger-sized requests to a great extent, meeting requests

that exceed a certain upper bound, K, with certainty. In particular, we model this

situation using a Binomial distribution with an increasing success probability that

equals to Min{N,K}
K

.

• High-Low availability: This structure of uncertainty models an ELSA favoring re-

quests that are either low or high. The underlying reason for such a preference may be

a competitive environment where the ELSA wants to meet larger-sized requests to a

great extent, meeting requests that exceed a certain upper bound, K, with certainty,

but also does not want to turn down smaller-sized requests that can relatively easily

be met. The ELSA may then deter from committing a moderate size of its workers to

a firm, considering the chance of a larger-sized demands from other customers. The

number of workers acquired by the firm has a binomial distribution with a success

probability of sin(2ΠN/K+Π/2)+1
2

for N ≤ K, and 1 otherwise.

4 All-or-Nothing Type Contingent Capacity Availabil-

ity

In this section we characterize the structure of the optimal policy for the all-or-nothing case

for given U and V . The following theorem characterizes the optimal inventory and capacity

management policy when p is reasonably large (p ≥ cu/ctw). Relatively low values of p would

not be sustainable for the operations anyway, since a certain reliability of ELSA is necessary.

10



Theorem 1 If p ≥ cu/ctw then (i) the multi-period decision function Ht(wt|xt) is convex in

wt, (ii) the optimal production policy is of state-dependent order-up-to type and the optimal

order up-to levels can be stated as:

y∗t (xt) =





y∗tc if xt < y∗tc − U − V
xt + U + V if y∗tc − U − V < xt ≤ y∗tv − U − V
y∗tv if y∗tv − U − V < xt ≤ y∗tv − U
xt + U if y∗tv − U < xt ≤ y∗tp − U
y∗tp if y∗tp − U < xt ≤ y∗tp
xt if y∗tp < x

where y∗tp, y∗tv and y∗tc are three critical numbers that are independent of the starting inventory

levels for each period t, and they refer to production with permanent capacity only, production

with permanent and contracted capacity only, and production with permanent, contracted and

temporary capacity, respectively, and (iii) the optimal capacity ordering decision is given by

w∗
t (xt) = y∗t (xt)− xt.

Proof : See Appendix. 2

Corollary 1 In the special case of V = 0, Ht(wt|xt) is convex in wt for all xt and t.

Theorem 1 states that the optimal production decision determine the capacity ordering

decision. When the starting inventory level is low and use of temporary workers is required for

production, the optimal number of temporary workers to be ordered is as much as necessary

for materializing the optimal production quantity. The realized capacity level is fully used

for production irrespective of whether all of the temporary workers ordered are received or

not.

5 Partial Contingent Capacity Availability

In this section we analyze the partial availability cases mainly based on numerical analysis,

as they are analytically intractable. In the case of uniform supply uncertainty, we show that

the last period’s cost function is convex in the capacity position w for a certain condition on

cost coefficients, while the multi-period cost function is observed to be non-convex. Under

other uncertainty types, we observe that the problem is non-convex both in single- and multi-

period cases. While we presented our model as a finite horizon model, our numerical results

are conducted for the case of T →∞ yielding an infinite horizon model, in order to keep the
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results unaffected from the end-of-horizon condition. In the problem settings we consider,

we observe that the solution of the finite horizon problem converges to that of the infinite

horizon problem rapidly. We drop subscript t when we refer to an infinite horizon solution.

Similarly, we consider a stationary labor supply uncertainty distribution function, P (m,N).

In the results that we present, we use the term “increasing” (“decreasing”) in the weak sense

to mean “non-decreasing” (“non-increasing”). We provide intuitive explanations to all of

our results below and our findings are verified through several numerical studies. However,

like any experimental result, one should be careful about generalizing them, especially for

extreme values of problem parameters.

5.1 Optimal production and capacity ordering policies

In this section, we provide an analysis of the cost functions, ft(xt) and Ht(wt|xt), and the

characteristics of the optimal production and capacity ordering policies for different forms

of supply availabilities. The demand has a Poisson distribution with a mean of 10 in every

period. Mean supply is taken as N/2 in the Normal availability case. We denote the (discrete)

Normal availability case with a Coefficient of Variation of CoV as Normal[CoV]. We take

K = 20 in the availability structures with Binomial distribution.

Our numerical analysis shows that ft(xt) is non-convex. However, in all problem in-

stances that we solved, this function is quasi-convex. On the other hand, the decision func-

tion, Ht(wt), is not necessarily (quasi-)convex (see Figure 1 for an infinite horizon problem

instance). Nevertheless, we show that the last period’s decision function is convex under

Uniform availability when ctw is at least 2cu.

Theorem 2 Under Uniform availability, the last period’s decision function HT (wT |xT ) is

convex for all xT when cu ≤ ctw/2.

Proof: See Appendix.

Corollary 2 In the special case of V = 0, H(w|x) is convex for all x under Uniform avail-

ability.

Recall from Section 3 that if the capacity position is set to values greater than the “en-

sured” capacity (permanent plus contracted) then the optimal production decision depends

on a particular realization of the capacity level (which is a random variable). The uncertainty
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Figure 1: H(w|x = 0) vs. Capacity Position - High-Low Availability, cp = 2.5, ctw = 3.5,
h = 1, b = 5, U = 10

in the capacity level vanishes if the capacity position is lower than the ensured capacity. Ac-

cordingly, we define the expectation of the optimal order-up-to levels, E[y∗(x)]. For different

availability structures, E[y∗(x)] depicts different characteristics considered when the optimal

capacity position requires usage of temporary workers. In all availability structures consid-

ered, there exists a threshold starting inventory level value before which, also temporary

workers are utilized and after which, only ensured capacity is utilized. The latter region can

further be divided into five smaller regions in the optimal policy as follows: (i) all ensured

capacity is utilized for production, (ii) inventory is raised to a fixed critical order-up-to level

where all of the permanent workers and a portion of the contracted workers are used for

production, (iii) only all of the permanent workers are used for production, (iv) inventory

is raised to another fixed critical order-up-to level where a portion of the permanent work-

ers are used for production, and (v) no production takes place. For the special case of no

temporary workers, Tan and Alp (2005) prove that this policy is indeed optimal.

Next, we analyze E[y∗(x)] with respect to lower values of x, where the optimal policy

requires the use of temporary workers. For the special case of V = 0 and deterministic

labor supply, Tan and Alp (2005) show that it is optimal to produce up to a certain value

when temporary workers are utilized. Figures 2a and 2b depict x versus E[y∗(x)] graphs

for two problem instances, one with Uniform and the other with Increasing availability,

respectively. In Figure 2a, we observe that the expected order-up-to level increases as the

starting inventory level increases for low values of x, contrary to the results of Tan and

Alp (2005). This structure is observed for all problem instances considered with Uniform
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availability. This is because Uniform distribution is platykurtic (has negative kurtosis).

The variability increases so high for increased values of N that the system tries to avoid

ordering too high. In Normal, Increasing, and High-Low availability structures, E[y∗(x)]

values fluctuate around a certain level for low values of starting inventory levels, maintaining

a general order-up-to level, in line with the results of Tan and Alp (2005). In Decreasing

availability structure, E[y∗(x)] is increasing in the starting inventory level for very low values

of inventory levels since acquiring large number of workers (larger than K) is not possible in

this structure. As the need for temporary workers decreases, an order-up-to level behavior

is observed similar to the previous cases. In Moderate availability structure, E[y∗(x)] is also

increasing in x for very low inventory levels, as the manufacturer constantly requests the

level yielding the highest expected capacity in order to raise the inventory level. After a

critical level, a similar order-up-to level behavior is observed.

Figure 2: Expected Order-Up-To Level vs. Starting Inventory Level

a. Uniform Availability, cp = 2.5, ctw = 3.5, h = 1, b = 5 U = 10

b. Increasing Availability, cp = 2.5, ctw = 3.5, h = 1, b = 5 U = 10

As pointed out in Section 3, not every worker that is paid for, even a temporary one, is
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utilized in the optimal solution. The decision maker sets the capacity position considering

the expected outcome, consequently the production decision is made after observing the

capacity level. We call the difference between the capacity level and the optimal production

level as the surplus of temporary capacity (STC). In what follows, we examine the effect

of availability structure on the STC. Uniform availability yields the highest STC among

all availability structures, since it is platykurtic. In a particular problem instance, the total

expected STC under Uniform availability is 3.6% of the realized temporary capacity, whereas

this value is 0.4% under Normal availability. The STC values in Increasing, Decreasing, High-

Low, and Moderate availability structures are very close to zero since the level of the capacity

position is set to a value which produces high success probability of acquiring the desired

capacity level value.

We investigate the optimal capacity position decision as a function of the starting inven-

tory under different availability structures in order to develop managerial insights as to the

optimal capacity ordering policy. Under Normal availability, the optimal capacity ordering

decision is following a monotone decreasing pattern in x for small x values (i.e. when tempo-

rary capacity is called for) as illustrated in Figure 3a, so that a certain expected order-up-to

point is reached by making use of (most of) this capacity. Under the availability structures

that assume Binomial distribution, the capacity ordering decision is making the best use of

higher success probabilities to assure sufficient capacity in order to be able to produce the

optimal amount, surplus of temporary capacity being mostly zero. For example, High-Low

availability case avoids moderate sized orders due to low availability rates, therefore the opti-

mal capacity position faces a steep fall at a certain point where a large order would otherwise

result in surplus of temporary capacity. See Figures 3c and 3d for an illustration. Neverthe-

less, such a capacity ordering policy does not hold in the Uniform availability structure, due

to the reason discussed before. See Figure 3b.

In what follows we investigate the impact of labor supply uncertainty, demand variability,

and cost parameters on operational and tactical decisions. In our experimental setting, we

consider an infinite horizon problem with a seasonal demand pattern following a cycle of

4 periods, the expected demands being 10, 15, 10 and 5, respectively. Unless otherwise

noted, we assume that the demand has a Poisson distribution, h = 1, cp = 2.5, cr + cu = 3,

ctw = 3.5, α = 0.99. In addition to the partial availability structures presented in Section

5.1, we also consider three more Normal availability structures, Normal[0.1], Normal[0.15],

and Normal[0.2] with mean values of N/2, and a deterministic labor supply structure. In
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Figure 3: Capacity Position vs. Starting Inventory Level

a. Normal Availability b. Uniform Availability

c. High-Low and Moderate Availability d. Normal Availability

some of our experiments, we assume Normal demand with CoV values of 0.1, 0.2, and 0.3

and Gamma demand with CoV values of 0.5, 1.0, and 1.5, to investigate the effect of demand

variability on flexible capacity management.

5.2 Effect of Labor Supply Uncertainty

In this section, we investigate the effects of labor supply uncertainty on flexible capacity and

production management. Table 2 illustrates the change in average inventory level and the

contribution of temporary workers in production under deterministic labor supply, and Nor-

mal and Uniform availability structures. The average inventory level carried increases as we

switch from deterministic labor supply to uncertain supply. Under Uniform availability, the

average inventory levels carried increase drastically when U = 6. This is because the prob-

ability of observing low capacity levels is much higher when compared to other availability

structures and the system tries to avoid backorders originating from this by holding higher
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Table 2: Comparison of Supply Structures. U = 6, V = 0

U = 6, V = 0 U = 10, V = 2
Parameters Criteria Deterministic Normal[0.15] Uniform Deterministic Normal[0.15] Uniform
ctw = 1.5 Ave. Inv. Lev. 7.38 7.99 11.34 7.44 7.59 8.35

b = 50 % Temporary 40.88 41.22 40.3 7.52 8.49 5.07
ctw = 4.5 Ave. Inv. Lev. 7.58 8.22 12.01 8.73 8.80 9.20

b = 50 % Temporary 40.04 40.05 40.05 2.59 2.9 1.88

inventory levels. Nevertheless, this is not the case when U = 10 and V = 2, since the system

depends less on the temporary workers in this case. Finally, the average production made

with temporary workers is not affected much by different problem parameters considered

when U = 6, since the low permanent capacity level is almost always fully utilized anyway.

When the level of ensured capacity is sufficient to produce the average demand and the

temporary labor supply has high variability, we observe that the manufacturer spreads the

total production among periods, rather than utilizing flexible capacity against the demand

seasonality (see Figure 4).

Figure 4: Periodic Production-Deterministic Supply vs. Uniform Availability. U = 10,
V = 0, ctw = 3.5, b = 50

5.3 Optimal Contracted Capacity Level

In this section we analyze the effects of the problem parameters cr, cu, ctw, b, labor supply

uncertainty, and demand uncertainty on the optimal size of contracted capacity for a given

permanent capacity. This analysis provides insights on the number of contingent workers
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Table 3: Optimal Contracted Capacity Level (V ∗). U = 6, ctw = 3.5

b cr Normal[0.1] Normal[0.15] Normal[0.2] Normal[0.25] Uniform
2.5 0.6 3 4 4 4 5
2.5 1.2 2 2 2 3 4
2.5 1.8 2 2 2 2 3
2.5 2.4 2 2 2 2 3
2.5 3 2 2 2 2 3
5.5 0.6 3 4 4 4 5
5.5 1.2 2 2 2 2 4
5.5 1.8 2 2 2 2 3
5.5 2.4 1 2 2 2 3
5.5 3 1 2 2 2 3
50 0.6 3 3 4 4 7
50 1.2 1 2 2 2 5
50 1.8 1 1 2 2 4
50 2.4 1 1 1 2 3
50 3 1 1 1 2 3

to contract when the manufacturer operates with a suboptimal permanent capacity level.

Table 3 depicts the optimal contracted capacity size under different labor supply uncertainty

structures. First of all, as the reservation cost, cr gets larger, naturally, V ∗ decreases.

Nevertheless, even when cr = ccw (which makes the contracted capacity practically equivalent

to permanent capacity), we observe that keeping contracted workers may still be beneficial

depending on other cost parameters. As the labor supply uncertainty increases, the system

prefers contracting higher capacities as expected. In the Normal availability cases, the system

carries higher safety stock to avoid backorders as the backordering cost increases. This leads

to system’s preference in higher capacity flexibility in order to avoid idle capacity costs.

However, since all system parameters interact in the optimal decisions, this result cannot

be generalized. For example, the uncertainty of the labor supply in the Uniform availability

dominates this affect and the system prefers higher contracted capacity levels in order to

decrease temporary workers usage, as discussed before.

The effect of demand variability on the optimal contracted capacity heavily interact with

cost parameters. In Normal availability structure, V ∗ decreases as the demand variability

increases when ctw is not much larger than ccw, as illustrated in Table 4 for ctw = 3.5 in order

to avoid unutilized contracted capacity. On the other hand, when ctw is significantly larger

than ccw, the opposite behavior is observed since the system tries to avoid using expensive

temporary labor, as illustrated in Table 4 for ctw = 7.5. However, labor supply uncertainty

structure also plays an important role in this interaction. For example, in Increasing avail-

ability structure, the system reserves higher contracted capacity as the demand variability

increases since acquiring a small number workers from the ELSA is not probable.
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Table 4: Effect of Demand Uncertainty on Optimal Contracted Capacity Level. U = 4,
b = 50.

Demand Distribution
Labor Supply ctw cr Normal[0.1] Normal[0.2] Normal[0.3] Gamma[0.5] Gamma[1.0] Gamma[1.5]

0.6 8 8 7 6 4 2
Normal[0.25] 3.5 1.2 6 5 5 4 2 0

1.8 6 5 4 3 2 0
0.6 10 10 11 11 12 13

Normal[0.25] 7.5 1.2 9 10 10 10 11 12
1.8 7 8 8 9 9 10
0.6 8 9 9 8 11 11

Increasing 3.5 1.2 6 7 8 7 10 10
1.8 6 6 7 6 8 8

Table 5: Effect of Temporary Labor Cost and Uncertainty on Ensured Capacity (U∗, V ∗).
cp = 2.5, cr = 0.6, b = 50

ctw Norm[0.1] Norm[0.15] Norm[0.2] Norm[0.25] Uniform
2.5 (2,0) (4,0) (6,0) (6,0) (8,3)
3.5 (8,1) (8,2) (8,2) (10,0) (8,4)

5.4 Optimal Permanent and Contracted Capacity Decisions

In this section, we investigate the optimal levels of permanent and contracted capacity under

various settings. Table 5 illustrates the effect of temporary labor cost and labor supply

uncertainty on the optimal capacity levels (permanent and contracted). We observe that as

the labor supply uncertainty increases, the level of ensured capacity also increases in line with

the our observation in Section 5.3. When there is no labor supply uncertainty, Alp and Tan

(2007) show that, for cp = ctw the optimal permanent capacity level is zero. Nevertheless,

this does not turn out to be case under labor supply uncertainty in order to hedge against

this uncertainty. Moreover, it may be optimal to reserve contracted capacity even when the

cost of a contracted worker is higher than that of a temporary worker, when the supply

uncertainty is high, as is the case under Uniform availability with V ∗ = 3. Finally we note

that the ensured capacity level increases as ctw increases, as expected.

We observe that the effects of demand variability and backordering cost on the optimal

permanent and contracted capacity levels (see Table 6) are in line with those on the optimal

contracted capacity of Section 5.3.
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Table 6: Effect of Backordering Cost on Ensured Capacity. cp = 2.5, cr = 0.6.

Supply Uncertainty Normal[0.1] Uniform
Demand Uncertainty Normal[0.2] Normal[0.3] Normal[0.2] Normal[0.3]
ctw b (U∗, V ∗) (U∗, V ∗) (U∗, V ∗) (U∗, V ∗)
2.5 2.5 (4,0) (2,0) (8,0) (8,0)
2.5 5.5 (4,0) (0,0) (8,1) (8,1)
2.5 50 (2,0) (0,0) (8,3) (8,3)
3.5 2.5 (10,0) (10,0) (10,0) (8,3)
3.5 5.5 (10,0) (8,1) (10,1) (8,4)
3.5 50 (8,1) (8,0) (8,4) (8,5)

6 Conclusions

In this study, we consider the problem of integrated capacity and inventory management un-

der non-stationary stochastic demand and temporary capacity uncertainty. We investigate

the problem under the workforce planning framework. The focus of the paper is modeling

and analyzing the effects of temporary labor uncertainty. We model a number of possible

availability structures for this purpose: All-or-nothing, Uniform, Normal, Decreasing, In-

creasing, Moderate, and High-Low. Our model and analysis provide insights on the optimal

usage of all capacity means coupled with inventory management in this environment. In the

tactical level, these means are contracting a number of contingent workers whose availability

is ensured by a reservation cost and determining the optimal level of permanent capacity.

In the operational level, the decisions to make are determining the number of workers to

be requested from the external labor supply agency and the quantity of production in each

period.

We show for the all-or-nothing type availability that the resulting cost function is convex

under a reasonable condition and the optimal production policy is of state-dependent order-

up-to type, which dictates the capacity ordering decision. In the case of uniform supply

uncertainty, we show that the last period’s cost function is convex in the capacity position

for a certain condition on cost coefficients, while the multi-period cost function is observed

to be non-convex. Under other uncertainty types, we observe that the cost function is non-

convex both in single- and multi-period cases.

In all availability structures considered, there exists a threshold starting inventory level

value before which, also temporary workers are utilized and after which, only ensured ca-
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pacity is utilized. The latter region can further be divided into five smaller regions in the

optimal policy. For the former region, we observe that for some uncertainty structures the

expected order-up-to level increases as the starting inventory level increases for low values of

x, contrary to the results of Tan and Alp (2005), who show that for the case of deterministic

labor supply it is optimal to produce up to a certain value when temporary workers are

utilized.

We also show that not every temporary worker that is paid for is utilized in the optimal

solution. Such a surplus of temporary capacity is the highest for the Uniform availability

structure, followed by the Normal availability structure. The surplus in Increasing, Decreas-

ing, High-Low, and Moderate availability structures are very close to zero. We observe that

Uniform availability performs worst among all availability structures that we considered in

all of our experiments. This is because Uniform distribution is platykurtic (has negative kur-

tosis). The absence of any “peak” in Uniform distribution makes it difficult to manage this

availability structure, especially when higher number of workers are required. Increasing,

Decreasing, High-Low and Moderate availability structures are easier to manage, since the

level of the capacity position can be set to a value which produces high success probability of

acquiring the desired capacity level in those cases. Nevertheless this holds only as long as the

parameters of the problem are appropriate in the sense that such high success probabilities

are attainable. This explains, for example, why Moderate and Decreasing availability cases

perform worse than Increasing and High-Low cases for low values of x: it is not possible (or

it is very unlikely) to acquire high number of temporary workers. In the Normal availability

case, the performance deteriorates as the variability increases.

Our analysis provides insights on the number of contingent workers to contract for any

given permanent capacity level. This situation might be useful to represent the manufactur-

ers that operate under a suboptimal permanent capacity level. Since all problem parameters

interact in making the optimal contracting decision, it is not possible to derive results that

are valid everywhere, except for the following: The optimal number of contingent workers

to contract increases as (i) reservation cost decreases, (ii) temporary labor cost increases,

and (iii) the labor supply uncertainty increases. Moreover, even when the reservation cost

constitutes 100% of the contracted worker cost, we observe that keeping contracted workers

may still be beneficial.

When the optimal permanent capacity level can be optimized as well as the contracted

capacity, we observe that the level of ensured capacity (permanent + contracted) increases as
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(i) temporary labor cost increases, and (ii) the labor supply uncertainty increases. When the

cost of temporary labor cost is equal to the cost of permanent labor, the optimal permanent

capacity level may be positive, in order to hedge against supply uncertainty. Moreover, it

may be optimal to reserve contracted capacity even when the cost of a contracted worker is

higher than that of a temporary worker, when the supply uncertainty is high.

This research can be extended by considering the perspective of the external labor sup-

ply agency. In such a context, the optimal capacity planning of the ELSA and the contract

design problem between the ELSA and the manufacturer might be of interest.

Appendix
Proof Theorem 1

We begin by proving the convexity of the single period cost function, H(w|x). In all-or-

nothing availability, H(w|x) can be rewritten as follows:

H(w|x) =





miny:x≤y≤x+w{L(y)} if 0 ≤ w ≤ U
(w − U)cu + miny:x≤y≤x+w{L(y)} if U < w ≤ U + V
V cu + p(ctw(w − U − V ) + miny:x≤y≤x+w{L(y)})
+(1− p) miny:x≤y≤x+U+V {L(y)} if U + V < w

(4)

Let ŷ be the minimizer of the convex function L(y), which is known to be G−1( b
h+b

) from the

classical newsvendor solution. Note that when ŷ ≤ x we have miny:x≤y≤x+w{L(y)} = L(x)

which implies that optimal production quantity is zero. When ŷ ≥ x, we can write H(w|x)

by using equations (3) and (4) as follows:

Case I. (0 ≤ w ≤ U)

H(w|x) =

{
L(x + w) if 0 ≤ w ≤ ŷ − x ≤ U or 0 ≤ w ≤ ŷ − x ≤ U
L(ŷ) if ŷ − x < w ≤ U

Case II. (U < w ≤ U + V )

H(w|x) =





(w − U)cu + L(x + w) if U < w ≤ ŷ − x ≤ U + V
or U < w ≤ U + V ≤ ŷ − x

(w − U)cu + L(ŷ) if U ≤ ŷ − x < w ≤ U + V
or ŷ − x ≤ U < w ≤ U + V

Case III. (U + V < w)

H(w|x) =





V cu + p((w − U − V )ctw + L(x + w))
+(1− p)L(x + U + V ) if U + V < w ≤ ŷ − x

V cu + p((w − U − V )ctw + L(ŷ))
+(1− p)L(ψ(x)) if U + V ≤ ŷ − x < w

or ŷ − x ≤ U + V < w
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where

ψ(x) =

{
x + U + V if x ≤ ŷ − U − V
ŷ otherwise

.

Note that ψ(x) is constant in w. Therefore H(w|x) is convex in w in all of the above regions,

for all values of x, which follows from the convexity of L(·). To conclude the convexity

of H(w|x) we need to show that convexity is preserved in transition points w = U and

w = U + V . We denote the respective regions by the following subscripts: I (0 ≤ w ≤ U),

II (U < w ≤ U + V ) and III (U + V < w). The following first order condition is sufficient:

dHI(w|x)
dw

≤ dHII(w|x)
dw

≤ dHIII(w|x)
dw

For the first transition point we need to check the above inequalities for values of x below

and above ŷ−U . If x+U ≤ ŷ then we have limw→U−
dHI(w|x)

dw
= L′(x+U) from the first region

of Case I, and limw→U+
dHII(w|x)

dw
= cu +L′(x+U) from the first region of Case II. If x+U ≥ ŷ

then we have limw→U−
dHI(w|x)

dw
= 0 from the second region of Case I, and limw→U+

dHII(w|x)
dw

=

cu from the second region of Case II. Since cu > 0, the convexity is preserved at the junction

point U . If x + U + V ≤ ŷ then we have limw→(U+V )−
dHII(w|x)

dw
= cu + L′(x + U + V ) from

the first region of Case II, and limw→(U+V )+
dHIII(w|x)

dw
= pctw + pL′(x + U + V ) from the first

region of Case III. If x+U +V ≥ ŷ then we have limw→(U+V )−
dHI(w|x)

dw
= cu from the second

region of Case II, and limw→(U+V )+
dHII(w|x)

dw
= pctw from the second region of Case III. If

pctw > cu, the convexity is preserved at the junction point U + V since L(x + U + V ) < 0

when x + U + V ≤ ŷ.

After proving the convexity of the decision function, we now characterize the optimal

policy of the single period problem. Recall that,

H(w|x) =





ϕ(w|x) if 0 ≤ w ≤ U
(w − U)cf + ϕ(w|x) if U ≤ w ≤ U + V
V cf + pcc((w − U − V ) + ϕ(w|x))

+(1− p)ϕ(U + V |x) if U + V < w

.

If ŷ − U ≤ x < ŷ then the value of w minimizing H(w|x) is in region (I) and it is the

minimizer of L(x + w). From the classical newsboy solution we derive the optimal capacity

position as:

w∗(x) = ŷ − x = G−1(
b

h + b
)− x = y∗p − x.

We let y∗p = ŷ. If y∗p −U − V < x < y∗p −U , then the minimizer of the function H(w|x) is in

region (II). From the first order condition, we have

0 = cu + L′(x + w).
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Note that the optimality equation may not be satisfied even if x is in the above region,

particularly if cu + L′(x + w) > 0. In that case the optimal policy is to produce at full

permanent capacity, w∗ = U , the resulting order up-to level is x + U . Otherwise using

the solution of the optimality equation the optimal capacity position is found as w∗(x) =

G−1(
b−cf

b+h
)−x and the corresponding order up-to level is y∗v = G−1(

b−cf

b+h
). Note that for non-

negative cf , y∗v ≥ y∗p. The optimal capacity policy for this particular region can be found

as:

w∗(x) =

{
y∗v − x if x ≤ y∗v − U
U if y∗v − U ≤ x < y∗p − U

.

If x < y∗v − U − V then the minimizer of H(w|x) is in region III. Similarly, we obtain

w∗(x) =

{
y∗c − x if x ≤ y∗c − U − V
U + V if y∗c − U − V ≤ x < y∗v − U − V

where y∗c = G−1( b−cc

b+h
). For 0 < cf < cc, the optimal values for the above functions have

the following relation: y∗p > y∗v > y∗c . Using this above property, the single period state

dependent order up-to can be written as

y∗(x) =





y∗c if x < y∗c − U − V
x + U + V if y∗c − U − V < x ≤ y∗v − U − V
y∗v if y∗v − U − V < x ≤ y∗v − U
x + U if y∗v − U < x ≤ y∗p − U
y∗p if y∗p − U < x ≤ y∗p
x if y∗p < x

.

To conclude the convexity of the multi-period expected total cost function Jt(·) it is sufficient

to show that f(x), single period minimum expected cost of operations for starting inventory

level x, is convex in x. Using y∗(x) we can write f(x) as:

f(x) =





Ucp + V cr + V cu

+p(ctw(y∗c − U − V − x) + L(y∗c ))
+(1− p)L(x + U + V ) if x < y∗c − U − V

Ucp + V cr + V cu + L(x + U + V ) if y∗c − U − V < x ≤ y∗v − U − V
Ucp + V cr + (y∗v − U − x)cu + L(y∗v) if y∗v − U − V < x ≤ y∗v − U
Ucp + V cr + L(x + U) if y∗v − U < x ≤ y∗p − U
Ucp + V cr + L(y∗p) if y∗p − U < x ≤ y∗p
Ucp + V cr + L(x) if y∗p < x

Similar to the convexity of the function H, it is straightforward to show that the function

f(x) is convex. Then by regular inductive arguments, it can be shown that the results also
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hold for any period t. For details, see Pac (2006). 2

Proof Theorem 2

The theorem is proved for a continuous Uniform distribution. Single period cost function

for the uniform contingent labor uncertainty case can be written as:

H(w|x) =





ϕ(w|x) if 0 ≤ w ≤ U
(w − U)cu + ϕ(w|x) if U < w ≤ U + V

V cu +
∫ N
0 (mctw + ϕ(U + V + m|x)) 1

N
dm if U + V < w

To prove that H(w|x) is convex it is sufficient to analyze the case with contingent capacity

region and the corresponding transition point, since for w ≤ U + V the function remains

identical for all labor supply uncertainty types.

For w > U + V

H(w|x) =





V cu + ctw
(w−U−V )

2

+
∫ w−U−V
0

L(x+U+V +m)
(w−U−V )

dm if U + V < w ≤ y∗p − x

V cu + ctw
(w−U−V )

2

+
∫ y∗p−x−U−V
0

L(x+U+V +m)
(w−U−V )

dm

+
∫ w−U−V
y∗p−x−U−V

L(y∗p)

(w−U−V )
dm if y∗p − x < w

We take the first derivative of the function to check the first order condition:

dH(w|x)

dw
=





ctw

2
+ L(x+w)

(w−U−V )
− ∫ w−U−V

0
L(x+U+V +m)

(w−U−V )2
dm if U + V < w ≤ y∗p − x

ctw

2
+

L(y∗p)(y∗p−x−U−V )

(w−U−V )2

− ∫ y∗p−x−U−V
0

L(x+U+V +m)
(w−U−V )2

dm if y∗p − x < w

At the transition point w = y∗p − x the first derivatives are equal, therefore if the second

derivative is non-negative at both sides of the transition point, the first order condition will
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be satisfied.

d2H(w|x)

dw2
=





L′(x+w)(w−U−V )2−2L(x+w)(w−U−V )
(w−U−V )3

+
2
∫ w−U−v

0
L(x+U+V +m)dm

(w−U−V )3
if U + V < w ≤ y∗p − x

2
∫ y∗p−x−U−V

0
L(x+U+V +m)dm

(w−U−V )3

−2L(y∗p)(y∗p−x−U−V )

(w−U−V )3
if y∗p − x < w

It is evident that d2H(w|x)
dw2 is positive for w > y∗p − x, because the first term in the nom-

inator is greater than the second term, since it integrates L(x + U + V + m) over a region

where the values are greater than the optimal L(y∗p), whereas the second term is equivalent

to the integration of L(y∗p) over the same region. For U + V < w ≤ y∗p − x we take the limit

of the second derivative as w → U + V and show that it is positive, and remains positive

throughout the whole domain.

limw→U+V
L′(x+w)(w−U−V )2−2L(x+w)(w−U−V )+2

∫ w−U−v

0
L(x+U+V +m)dm

(w−U−V )3
= 0

0

By using L’Hopital’s Rule we get:
L′′(x+w)(w−U−V )2+2L′(x+w)(w−U−V )−2L′(x+w)(w−U−V )−2L(x+w)+2L(x+w)

3(w−U−V )2
= L′′(x+w)

3
> 0

The second derivative is positive at U + V , we have to ensure that it remains positive for

w > U +V . To do so we check the numerator of the second derivative, since the denominator

is always positive for w > U + V . We take the derivative of the numerator and check if it

is positive. Let us denote the numerator by $(w), then d$(w)
dw

= L′′(x + w)(w − U − V )2,

which is positive for all w, hence the function is convex for w > U + V .

To conclude the convexity of H(w|x), we need to show that the convexity is preserved

at the transition point w = U + V . Since H(w|x) is dependent on the starting inventory

level x, the first order condition should be satisfied for all x. It is sufficient to analyze the

transition point for x < y∗p−U −V and x ≥ y∗p−U −V . Note that we analyze the derivative

of the function on both sides of the transition point. For the initial case H(w|x) takes the

following form near the transition point.

H(w|x) =

{
cu(w − U) + L(x + w) if U < w ≤ U + V,

V cu + ctw
w−U−V

2
+

∫ w−U−V
0

L(x+U+V +m)
w−U−V

dm if U + V < w ≤ y∗p − x.
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The first derivative for this region is:

dH(w|x)

dw
=

{
cu + L′(x + w) if U < w ≤ U + V,
ctw

2
+ L(x+w)

w−U−V
+

∫ w−U−V
0

L(x+U+V +m)
(w−U−V )2

dm if U + V < w ≤ y∗p − x.

The first order condition for the above region is:

cu + L′(x + w) ≤ ctw

2
+

L(x+w)(w−U−v)−
∫ w−U−V

0
L(x+U+V +m)dm

(w−U−V )2
.

Taking the limit as w → U + V we get

cu + L′(x + w) ≤ ctw

2
+ L′(x+w)

2

Note that the above inequality holds if cu ≤ ctw

2
.

For the second case (x ≥ y∗p − U − V ) the cost function takes the following form:

H(w|x) =

{
cu(w − U) + L(y∗p) if y∗p − x < w ≤ U + V
V cu + ctw

w−U−V
2

+ L(y∗p) if U + V < w

The first derivative for this region is in the following form:

dH(w|x)

dw
=

{
cu if y∗p − x < w ≤ U + V
ctw

2
if U + V < w

For the first order condition to hold cu must be less than or equal to ctw

2
. Therefore if cu ≤ ctw

2

then the single period cost function is convex in w for all starting inventory levels x.
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