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USING CONSTRAINT PRECONDITIONERS WITH REGULARIZED
SADDLE-POINT PROBLEMS

H. S. DOLLAR∗† , N. I. M. GOULD‡ , W. H. A. SCHILDERS§¶, AND A. J. WATHEN∗

Abstract. The problem of finding good preconditioners for the numerical solution of a certain
important class of indefinite linear systems is considered. These systems are of a 2 by 2 block
structure in which the (2,2) block (denoted by −C) is assumed to be nonzero.

In Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl., 21
(2000), Keller, Gould and Wathen introduced the idea of using constraint preconditioners that have
a specific 2 by 2 block structure for the case of C being zero. We shall give results concerning the
spectrum and form of the eigenvectors when a preconditioner of the form considered by Keller, Gould
and Wathen is used but the system we wish to solve may have C 6= 0. Numerical results to validate
our conclusions are also presented.

1. Introduction. The solution of systems of the form
[

A BT

B −C

]

︸ ︷︷ ︸
A

[
x
y

]
=

[
c
d

]

︸ ︷︷ ︸
b

, (1.1)

where A ∈ Rn×n, C ∈ Rm×m are symmetric and B ∈ Rm×n, are often required in
optimization and other various fields. We shall assume that 0 < m ≤ n and B is of
full rank. Dollar and Wathen [6] recently proposed a class of incomplete factorizations
for saddle-point problems where C = 0. Dollar et al. [5] then extend this work to
problems where C is not necessarily equal to 0. In particular, preconditioners of the
form

P =
[

G BT

B −C

]
(1.2)

are produced, where G ∈ Rn×n is some symmetric matrix.
When C = 0, (1.2) is commonly known as a constraint preconditioner [2, 13]. In

practice C is often positive semi-definite (and frequently diagonal).
Example 1.1 (Nonlinear Programming). Consider the convex nonlinear opti-

mization problem

minimize f(x) such that c(x) ≥ 0,

where x ∈ Rn, and f : Rn 7→ R and −c : Rn 7→ Rm̂ are convex and twice differentiable.
Primal-dual interior point methods [17] for this problem aim to track solutions to the
(perturbed) optimality conditions

∇f(x) = BT (x)y and Y c(x) = µe, (1.3)
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where y are Lagrange multipliers (dual variables), e is the vector of ones,

B(x) = ∇c(x) and Y = diag{y1, y2, . . . , ym̂},
as the positive scalar parameter µ is decreased to zero. The Newton correction
(∆x, ∆y) to the solution estimate (x, y) of (1.3) satisfy the equation [3]:

[
A(x, y) −BT (x)
Y B(x) C(x)

] [
∆x
∆y

]
=

[ −∇f(x) + BT (x)y
−Y c(x) + µe

]
,

where

A(x, y) = ∇xxf(x)−
m̂∑

i=1

yi∇xxci(x) and C(x) = diag{c1(x), c2(x), . . . , cm̂(x)}.

It is common to eliminate the variables ∆y from the Newton system. Since this may
introduce unwarranted ill conditioning, it is often better [9] to isolate the effects of
poor conditioning by partitioning the constraints so that the values of those indexed
by I are “large” while those indexed by A are “small”, and instead to solve

[
A + BT

I C−1
I YIBI BT

A
BA −CAY −1

A

] [
∆x
−∆yA

]
=

[ −∇f + BT
AyA + µBT

I C−1
I e

−cA + µY −1
A e

]

where, for brevity, we have dropped the dependence on x and y. The matrix CAY −1
A is

symmetric and positive definite; as the iterates approach optimality, the entries of this
matrix become small. The entries of BT

I C−1
I YIBI also become small when close to

optimality.
Example 1.2 (Stokes). Mixed finite element (and other) discretisation of the

Stokes equations

−∇2~u +∇p = ~f in Ω
∇ · ~u = 0 in Ω,

for the fluid velocity ~u and pressure p in the domain Ω ⊂ R2 or R3 yields linear
systems in the saddle-point form (1.1) (for derivation and the following properties of
this example see [7]). The symmetric block A arises from the diffusion terms −∇2~u
and BT represents the discrete gradient operator whilst B represents its adjoint,
the (negative) divergence. When (inf-sup) stable mixed finite element spaces are
employed, C = 0, however for equal order and other spaces which are not inherently
stable, stabilised formulations yield symmetric and positive semi-definite matrices
C which typically have a large-dimensional kernel - for example the famous Q1–P0

element which has piecewise bilinear velocities and piecewise constant pressures in
2-dimensions, C typically has a kernel of dimension m/4.

In Section 2, we shall give an overview of the known spectral properties for P−1A.
In interior-point methods a sequence of such problems are solved with the entries in
C generally becoming small as the optimization iteration progresses. That is, the
regularization is successively reduced as the optimizer gets closer to the minimum.
For the Stokes problem, the entries of C are generally small since they scale with the
underlying mesh size and so reduce for finer grids. This motivates us to look at the
spectral properties of P̃−1A, where

P̃ =
[

G BT

B 0

]
, (1.4)
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but C 6= 0, Section 3.
The obvious advantage in being able to use such a constraint preconditioner is as

follows: if B remains constant in each system of the form (1.1), and we choose G in our
preconditioner to remain constant, then the preconditioner P̃ will be unchanged. Any
factorizations required to carry out the preconditioning steps in a iterative method
will only need to be done once and then used during each execution of the iterative
method of choice, instead of carrying out the factorizations at the beginning of each
iterative method.

For symmetric (and in general normal) matrix systems, the convergence of an
applicable iterative method is determined by the distribution of the eigenvalues of
the coefficient matrix. It is often desirable for the number of distinct eigenvalues
to be small so that the rate of convergence is rapid. For non-normal systems the
convergence is not so readily described, see [12, page 6].

2. Spectral properties of P−1A. The spectral properties of P−1A for the case
C = 0 where analyzed by Keller, Gould, and Wathen [13]. The proof of the following
theorem can be found in [13].

Theorem 2.1. Let A ∈ R(n+m)×(n+m) be a symmetric and indefinite matrix of
the form

A =
[

A BT

B 0

]
,

where A ∈ Rn×n is symmetric and B ∈ Rm×n is of full rank. Assume Z is an
n× (n−m) basis for the nullspace of B. Preconditioning A by a matrix of the form

P =
[

G BT

B 0

]
,

where G ∈ Rn×n is symmetric, and B ∈ Rm×n is as above, implies that
• the matrix P−1A has

1. an eigenvalue at 1 with multiplicity 2m, and
2. n − m eigenvalues λ which are defined by the generalized eigenvalue

problem ZT AZxz = λZT GZxz,
• the dimension of the Krylov subspace K(P−1A, b) is at most n−m + 2.

Keller, Gould and Wathen [13] also define the form of the eigenvectors for such
preconditioned systems.

Theorem 2.2. Let A ∈ R(n+m)×(n+m) be a symmetric and indefinite matrix of
the form

A =
[

A BT

B 0

]
,

where A ∈ Rn×n is symmetric and B ∈ Rm×n is of full rank. Assume the precondi-
tioner P is defined by a matrix of the form

P =
[

G BT

B 0

]
,

where G ∈ Rn×n is symmetric, and B ∈ Rm×n is as above. Let Z denote an n ×
(n−m) basis for the nullspace of B and suppose that ZT GZ is positive definite. The
preconditioned matrix P−1A has n + m eigenvalues as defined by Theorem 2.1 and
m + i + j linearly independent eigenvectors. There are
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1. m eigenvectors of the form [ 0T 0T yT ]T that correspond to the case λ =
1;

2. i (0 ≤ i ≤ n) eigenvectors of the form [ xT
z xT

y yT ]T arising from Aw =
σGw with w = [ xT

y xT
z ]T linearly independent, σ = 1, and λ = 1; and

3. j (0 ≤ j ≤ n−m) eigenvectors of the form [ xT
z 0T yT ]T that correspond

to the case λ 6= 1.

If either ZT AZ or ZT GZ are positive definite, then the indefinite preconditioner
P applied to the indefinite saddle point matrix A with C = 0 yields a preconditioned
matrix P−1A which has real eigenvalues, [13]. If both ZT AZ and ZT GZ are positive
definite, then we can use a projected preconditioned conjugate gradient method to
find x and y, see [10].

Analogous results for the case C 6= 0 can be found in [4]: in particular, the
preconditioned matrix P−1A is shown to have at least 2m−rank (C) unit eigenvalues.

3. An alternative preconditioner for the case C 6= 0. Suppose that instead
of preconditioning A by P, we precondition A by P̃, where P̃ is defined in (1.4). The
decision to investigate this form of preconditioner is motivated in Section 1.

Theorem 3.1. Let A ∈ R(n+m)×(n+m) be a symmetric and indefinite matrix of
the form

A =
[

A BT

B −C

]
,

where A ∈ Rn×n, C ∈ Rm×m are symmetric and B ∈ Rm×n is of full rank. We shall
assume that C has rank p and is factored as EDET , where E ∈ Rm×p has orthogonal
columns and D ∈ Rp×p is non-singular, Z ∈ Rn×(n−m) is a basis for the nullspace of
B and Y ∈ Rn×m is such that [ Y Z ] spans Rn. Preconditioning A by a matrix of
the form

P̃ =
[

G BT

B 0

]
,

where G ∈ Rn×n is symmetric, and B ∈ Rm×nis as above, implies that the matrix
P̃−1A has at most j + k + 1 distinct eigenvalues as defined below:

• at least 2(m− p) eigenvalues at 1,
• at most n−m eigenvalues defined by the generalized eigenvalue problem

ZT AZxz = λZT GZxz

subject to there existing some yf such that [Y T HZ − λY T GZ]xz = (λ −
1)RFyf . Of these eigenvalues, j (0 ≤ j ≤ n−m) are non-unit,

• at most n−m + 2p eigenvalues defined by the generalized eigenvalue problem

0 = λ2BT ED−1ET Bw − λ(G + 2BT ED−1ET B)w + (A + BT ED−1ET B)w,

where w = [ xT
y xT

z ]T , subject to ET BY xy 6= 0. Of these, k (0 ≤ k ≤
n−m + 2p) are not equal to 1,

• 0 ≤ j + k ≤ n−m + 2p.

Proof. Let QR = [ Y Z ][ RT 0T ]T be an orthogonal factorization of BT ,
where R ∈ Rm×m is upper triangular, Y ∈ Rn×m, and Z ∈ Rn×(n−m) is a basis for
the nullspace of B. We can therefore write any x ∈ Rn as x = Zxz + Y xy, where
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xz ∈ Rn−m, xy ∈ Rm are unique vectors. Similarly, by our assumptions, any y ∈ Rm

can be written as y = Fyf + Eye where yf ∈ Rm−p, ye ∈ Rp are unique vectors.
Premultiplying the generalized eigenvalue problem

[
A BT

B −C

] [
x
y

]
= λ

[
G BT

B 0

] [
x
y

]
. (3.1)

by the nonsingular and square matrix



ZT 0
Y T 0
0 FT

0 ET




and using the substitution above gives



ZT AZ ZT AY 0 0
Y T AZ Y T AY RF RE

0 FT RT 0 0
0 ET RT 0 −D







xz

xy

yf

ye


 = λ




ZT GZ ZT GY 0 0
Y T GZ Y T GY RF RE

0 FT RT 0 0
0 ET RT 0 0







xz

xy

yf

ye


 ,

(3.2)
where we made use of the the equalities BZ = 0, CF = 0, ET E = I and R = (BY )T .
Expanding out the general eigenvalue problem (3.2) yields

ZT AZxz + ZT AY xy = λ[ZT GZxz + ZT GY xy], (3.3)
Y T AZxz + Y T AY xy + RFyf + REye = λ[Y T GZxz + Y T GY xy

+RFyf + REye], (3.4)
FT RT xy = λFT RT xy, (3.5)

ET RT xy −Dye = λET RT xy. (3.6)

From (3.5), it may be deduced that either λ = 1 or RT xy ∈ Null(FT ). In the former
case, (3.6) implies that ye = 0, whilst (3.3) and (3.4) simplify to

ZT AZxz + ZT AY xy = ZT GZxz + ZT GY xy,

Y T AZxz + Y T AY xy = Y T GZxz + Y T GY xy,

which can consequently be written as

QT AQw = QT GQw, (3.7)

where Q = [ Y Z ] and w = [ xT
y xT

z ]T . Since Q is orthogonal, the general
eigenvalue problem (3.7) is equivalent to considering

Aw = σGw, (3.8)

where w 6= 0 if and only if σ = 1. There are m− p linearly independent eigenvectors
[ 0T 0T yT

f 0T ]T corresponding to w = 0, and a further i (1 ≤ i ≤ n) linearly
independent eigenvectors (corresponding to eigenvalues σ = 1 of (3.8)).

Now, suppose that λ 6= 1, in which case RT xy ∈ Null(FT ). Equation (3.6) also
implies that

(1− λ)ET RT xy = Dye. (3.9)
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We have two cases, either Cy = 0 or Cy 6= 0. If the former holds, then ye = 0 and
(3.9) implies that RT xy ∈ Null(ET ), as well as RT xy ∈ Null(FT ). Hence, xy = 0.

From (3.3) and (3.4) we obtain

ZT AZxz = λZT GZxz, (3.10)
Y T AZxz + RFyf = λ[Y T GZxz + RFyf ]. (3.11)

The generalized eigenvalue problem (3.10) defines n−m eigenvalues, where j (1 ≤ j ≤
n−m) of these are not equal to 1 and for which two cases have to be distinguished.
If xz 6= 0, yf must satisfy

[Y T AZ − λY T GZ]xz = (λ− 1)RFyf ,

which follows that the corresponding eigenvectors are defined by [ xT
z 0T yT

f 0T ]T .

If xz = 0, then from (3.11) we deduce that yf = 0 since λ 6= 1. As [ xT
z xT

y yT
f yT

e ]T =
0 in this case, no extra eigenvalues arise.

Suppose that Cy 6= 0, then any y satisfying this can be written as y = Fyf +Eye,
where ye 6= 0. The fact that the matrix D is non-singular along with (3.9) implies
that

ye = (1− λ)D−1ET RT xy. (3.12)

Equations (3.3) and (3.4), along with λ 6= 1 imply that yf = 0. Substituting this and
(3.12) into (3.4), and rearranging, gives

0 = λ2

[
Y T BT ED−1ET BY 0

0 0

] [
xy

xz

]

−λ

[
Y T (G + 2BT ED−1ET B)Y Y T GZ

ZT GY ZT GZ

] [
xy

xz

]

+
[

Y T (A + BT ED−1ET B)Y Y T AZ
ZT AY ZT AZ

] [
xy

xz

]
. (3.13)

Using the fact that Q = [ Y Z ], BZ = 0 we can show that

QT BT ED−1ET BQ =
[

Y T BT ED−1ET BY 0
0 0

]
.

We therefore obtain the quadratic eigenvalue problem

0 = λ2QT BT ED−1ET BQw − λQT (G + 2BT ED−1ET B)Qw

+QT (A + BT ED−1ET B)Qw, (3.14)

where w = [ xT
y xT

z ]T . Once again, the orthogonality of Q implies that the quadratic
eigenvalue problem (3.13) is equivalent to

0 = λ2BT ED−1ET Bw − λ(G + 2BT ED−1ET B)w
+(A + BT ED−1ET B)w. (3.15)

The generalized quadratic eigenvalue problem (3.15) defines at most n−m + 2p
eigenvalues for which RT xy ∈ Null(FT ), and Cy 6= 0 are also satisfied, but at most
p linearly independent eigenvectors. Of these, k (0 ≤ k ≤ n − m + 2p) correspond
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to the case λ 6= 1. It follows that the corresponding eigenvectors are defined by
[ xT

z xT
y 0T yT

e ]T . Note that (3.10) is a subproblem of (3.13) when (3.11) is only
satisfied with yf = 0. But this would then correspond to xy = 0 and ye = 0, so
0 ≤ j + k ≤ n−m + 2p.

The definition of some of the eigenvalues through a quadratic eigenvalue problem
is very interesting and shall be examined in more detail later on.

Theorem 3.2. Let A, P̃ ∈ R(n+m)×(n+m) and their sub-blocks be as defined in
Theorem 3.1 (using the same notation and assumptions). Suppose that ZT GZ is
positive definite. Then the matrix P̃−1A has n + m eigenvalues and m− p + i + j + k
linearly independent eigenvectors. There are

1. m− p eigenvectors of the form [ 0T 0T yT
f 0T ]T that correspond to the

case λ = 1;
2. i (0 ≤ i ≤ n) eigenvectors of the form [ xT

z xT
y yT

f 0T ]T arising from
Hw = σGw with w = [ xT

y xT
z ]T linearly independent, σ = 1, and λ = 1;

3. j (0 ≤ j ≤ n −m) eigenvectors of the form [ xT
z 0T yT

f 0T ]T that cor-
respond to the case λ 6= 1 and Cy = 0 with y = Fyf + Eye;

4. k (0 ≤ k ≤ n −m + p) eigenvectors of the form [ xT
z xT

y 0T yT
e ]T that

correspond to the case λ 6= 1 and Cy 6= 0 with y = Fyf + Eye;
5. 0 ≤ j + k ≤ n−m + p.

Proof. We need only prove that the m−p+ i+j +k eigenvectors of P̃−1A defined
in the proof of Theorem 3.1 are linearly independent.

We need to show that



0 · · · 0
0 · · · 0

y
(1)
f1 · · · y

(1)
f(m−p)

0 · · · 0







a
(1)
1
...

a
(1)
m−p


 +




x
(2)
z1 · · · x

(2)
zi

x
(2)
y1 · · · x

(2)
yi

y
(2)
f1 · · · y

(2)
fi

0 · · · 0







a
(2)
1
...

a
(2)
i


 (3.16)

+




x
(3)
z1 · · · x

(3)
zj

0 · · · 0
y
(3)
f1 · · · y

(3)
fj

0 · · · 0







a
(3)
1
...

a
(3)
j


 +




x
(4)
z1 · · · x

(4)
zk

x
(4)
y1 · · · x

(4)
yk

0 · · · 0
y
(4)
e1 · · · y

(4)
ek







a
(4)
1
...

a
(4)
k


 =




0
...
0




implies that the vectors a(l) (l = 1, . . . , 4) are zero vectors. Multiplying (3.16) by
A and P̃−1, and recalling that in the previous equation the first matrix arises from
λl = 1 (l = 1, . . . ,m), the second matrix from the case that λl = 1 and ωl = 1
(l = 1, . . . , i), the third matrix from λl 6= 1 (l = 1, . . . , j) and Cy = 0, and the last
matrix from λl 6= 1 (l = 1, . . . , k) and Cy 6= 0, gives




0 · · · 0
0 · · · 0

y
(1)
f1 · · · y

(1)
f(m−p)

0 · · · 0







a
(1)
1
...

a
(1)
m−p


 +




x
(2)
z1 · · · x

(2)
zi

x
(2)
y1 · · · x

(2)
yi

y
(2)
f1 · · · y

(2)
fi

0 · · · 0







a
(2)
1
...

a
(2)
i


 (3.17)

+




x
(3)
z1 · · · x

(3)
zj

0 · · · 0
y
(3)
f1 · · · y

(3)
fj

0 · · · 0







λ
(3)
1 a

(3)
1

...
λ

(3)
j a

(3)
j


 +




x
(4)
z1 · · · x

(4)
zk

x
(4)
y1 · · · x

(4)
yk

0 · · · 0
y
(4)
e1 · · · y

(4)
ek







λ
(4)
1 a

(4)
1

...
λ

(4)
k a

(4)
k


 =




0
...
0


 .
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Subtracting (3.16) from (3.17) gives



x
(3)
z1 · · · x

(3)
zj

0 · · · 0
y
(3)
f1 · · · y

(3)
fj

0 · · · 0







(λ(3)
1 − 1)a(3)

1
...

(λ(3)
j − 1)a(3)

j


+




x
(4)
z1 · · · x

(4)
zk

x
(4)
y1 · · · x

(4)
yk

0 · · · 0
y
(4)
e1 · · · y

(4)
ek







(λ(4)
1 − 1)a(4)

1
...

(λ(4)
k − 1)a(4)

k


 =




0
...
0


 .

(3.18)
The linear independence of x

(4)
yl (l = 1, . . . , k) in (3.15) gives rise to (λ(4)

l −1)a(4)
l =

0 (l = 1, . . . , k). The eigenvalues λ
(4)
l (l = 1, . . . , j) are non-unit which implies that

a
(4)
l = 0 (l = 1, . . . , j). The assumption that ZT GZ is positive definite implies that

x
(3)
zl (l = 1, . . . , j) in (3.18) are linearly independent, and hence a

(3)
l = 0 (l = 1, . . . , j).

We also have linear independence of [ x
(2)T
zl x

(2)T
yl

]T (l = 1, . . . , i), and thus

a
(2)
l = 0 (l = 1, . . . , i). Equation 3.16 simplifies to




0 · · · 0
0 · · · 0

y
(1)
f1 · · · y

(1)
f(m−p)

0 · · · 0







a
(1)
1
...

a
(1)
(m−p)


 =




0
...
0


 .

However, y
(1)
fl (l = 1, . . . ,m− p) are linearly independent giving a

(1)
l = 0.

Remark 3.3. P̃−1A has at least 2(m − p) unit eigenvalues, but there is no
guarantee that the associated eigenvectors are all linearly independent. However, we
can divide these eigenvectors into two groups such that all the eigenvectors in a group
are linearly independent and each group has at least m− p members.

3.1. Analysis of the quadratic eigenvalue problem. We note that the
quadratic eigenvalue problem (3.15) can have negative and complex eigenvalues. The
following theorem gives sufficient conditions for general quadratic eigenvalue problems
to have real and positive eigenvalues.

Theorem 3.4. Consider the quadratic eigenvalue problem
(
λ2K − λL + M

)
x = 0, (3.19)

where M, L, KRn×n. are symmetric positive definite, K ∈ Rn×n is symmetric positive
semidefinite. Define γ(M, L, K) to be

γ(M, L, K) = min
{
(xT Lx)2 − 4(xT Mx)(xT Kx) : ‖x‖2 = 1

}
.

If M, L are symmetric positive definite, K is symmetric positive semidefinite and
γ(M, L, K) > 0, then the eigenvalues λ are real and positive.

Proof. From [16, Section 1] we know that under our assumptions the quadratic
eigenvalue problem

(
µ2M + µL + K

)
x = 0

has real and negative eigenvalues. Suppose we divide this equation by µ2 and set
λ = −1/µ. The quadratic eigenvalue problem (3.19) is obtained, and since µ is real
and negative, λ is real and positive.
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We would like to be able to use the above theorem to show that, under suitable
assumptions, all the eigenvalues of K̃−1H are real and positive. Let

D̃ = BT ED−1ET B, (3.20)

where D and E are as defined in Theorem 3.1. If we assume that A + D̃ is positive
definite, then we may write A + D̃ = RT R for some nonsingular matrix R. The
quadratic eigenvalue (3.15) is similar to

(
λ2R−T D̃R−1 − λR−T (G + 2D̃)R−1 + I

)
z = 0,

where z = Rw. Thus, if we assume that A + D̃ and G + 2D̃ are positive definite, and
can show that

γ(I, R−T (G + 2D̃)R−1, R−T D̃R−1) > 0,

where γ(·, ·, ·) is as defined in Theorem 3.4, then we can apply the above theorem to
show that (3.15) has real and positive eigenvalues.

Let us assume that ‖z‖2 = 1, then
(
zT R−T

(
G + 2D̃

)
R−1z

)2

− 4zT zzT R−T D̃R−1z

=
(
zT R−T GR−1z + 2zT R−T D̃R−1z

)2

− 4zT R−T D̃R−1z

=
(
zT R−T GR−1z

)2
+ 4zT R−T D̃R−1z

(
zT R−T GR−1z + zT R−T D̃R−1z − 1

)

=
(
wT Gw

)2
+ 4wT D̃w

(
wT Gw + wT D̃w − 1

)
, (3.21)

where 1 = ‖z‖2 = ‖Rw‖2 = ‖w‖A+D̃ . Clearly, we can guarantee that (3.21) is positive
if

wT Gw + wT D̃w > 1 for all w such that ‖w‖A+D̃ = 1,

that is

wT Gw + wT D̃w

wT
(
A + D̃

)
w

>
wT

(
A + D̃

)
w

wT
(
A + D̃

)
w

for all w 6= 0.

Rearranging we find that we require

wT Gw > wT Aw

for all w 6= 0. Thus we need only scale any positive definite G such that wT Gw
wT w

> ‖A‖22
for all w 6= 0 to guarantee that (3.21) is positive for all w such that ‖w‖A+D̃ = 1. For
example, we could choose G = αI, where α > ‖A‖22 .

If G + 2D̃ and A + D̃ are positive definite, then ZT GZ and ZT AZ are positive
definite. Using the above in conjunction with Theorem 3.1 we obtain:

Theorem 3.5. Suppose that A, B, C, D, E, G, and Z are as defined in Theo-
rem 3.1 and D̃ is as defined in (3.20). Further, assume that A + D̃ and G + 2D̃ are
symmetric positive definite, D̃ is symmetric positive semidefinite and

min
{

(zT Gz)2 + 4(zT D̃z)(zT Gz + zT D̃z − 1) : ‖z‖A+D̃ = 1
}

> 0,

then all the eigenvalues of P̃−1A are real and positive.
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4. Convergence. In the context of this paper, the convergence of an iterative
method under preconditioning is not only influenced by the spectral properties of the
coefficient matrix, but also by the relationship between m, n and p. We can determine
an upper bound on the number of iterations of an appropriate Krylov subspace method
by considering minimum polynomials of the coefficient matrix.

Definition 4.1. Let A ∈ R(n+m)×(n+m). The monic polynomial f of minimum
degree such that f(A) = 0 is called the minimum polynomial of A.

Krylov subspace theory states that iteration with any method with an optimality
property, e.g. GMRES, will terminate when the degree of the minimum polynomial
is attained, [15]. In particular, the degree of the minimum polynomial is equal to the
dimension of the corresponding Krylov subspace (for general b), [14, Proposition 6.1].

Theorem 4.2. Let A ∈ R(n+m)×(n+m) be a symmetric and indefinite matrix of
the form

A =
[

A BT

B −C

]
,

where A ∈ Rn×n, C ∈ Rm×m are symmetric and B ∈ Rm×n is of full rank. We shall
assume that C has rank p. Let the preconditioner P̃ be defined by a matrix of the form

P̃ =
[

G BT

B 0

]
,

where G ∈ Rn×n is symmetric, G 6= A, and B ∈ Rm×n is as above. Suppose that
ZT GZ is positive definite. The dimension of the Krylov subspace K(P̃−1A, b) is at
most min{n−m + 2p + 2, n + m}.

Proof. As in the proof to Theorem 3.1, the generalized eigenvalue problem can
be written as



ZT AZ ZT AY 0 0
Y T AZ Y T AY RF RE

0 FT RT 0 0
0 ET RT 0 −D







xz

xy

yf

ye


 = λ




ZT GZ ZT GY 0 0
Y T GZ Y T GY RF RE

0 FT RT 0 0
0 ET RT 0 0







xz

xy

yf

ye


 ,

(4.1)
where E, F, R, Y and Z are also defined in Theorem 3.1. Performing a simultaneous
sequence of row and column interchanges on both matrices in (4.1) reveals two block
triangular matrices

Â =




Y T AY Y T AZ RE RF
ZT AY ZT AZ 0 0
ET RT 0 −D 0
FT RT 0 0 0


 , P̂ =




Y T GY Y T GZ RE RF
ZT GY ZT GZ 0 0
ET RT 0 0 0
FT RT 0 0 0


 ,

and, hence, the preconditioned matrix P̃−1A is similar to

P̂−1Â =
[

Θ1 0
Θ2 I

]
, (4.2)

where the precise forms of Θ1 ∈ R(n+p)×(n+p) and Θ2 ∈ R(m−p)×(n+p) are irrelevant
for the argument that follows.
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From the eigenvalue derivation in Section 3, it is evident that the characteristic
polynomial of the preconditioned linear system (4.2) is

(P̂−1Â − I)2(m−p)

n−m+2p∏

i=1

(P̂−1Â − λiI).

In order to prove the upper bound on the Krylov subspace dimension, we need to show
that the order of the minimum degree polynomial is less than or equal to min{n −
m + 2p + 2, n + m}.

Expanding the polynomial (P̂−1Â− I)
∏n−m+2p

i=1 (P̂−1Â−λiI) of degree n−m+
2p + 1, we obtain

[
(Θ1 − I)

∏n−m+2p
i=1 (Θ1 − λiI) 0

Θ2

∏n−m+2p
i=1 (Θ1 − λiI) 0

]
.

The eigenvalues of Θ1 are 1 (with multiplicity m−p) and {λi}, i = 1, . . . , n−m+
2p. Since Θ1 has a full set of linearly independent eigenvectors, Θ1 is diagonalizable.
Hence, (Θ1 − I)

∏n−m+2p
i=1 (Θ1 − λiI) =0. We therefore obtain

(P̂−1Â − I)
n−m+2p∏

i=1

(P̂−1Â − λiI) =
[

0 0
Θ2

∏n−m+2p
i=1 (Θ1 − λiI) 0

]
. (4.3)

If Θ2

∏n−m+2p
i=1 (Θ1−λiI) = 0, then the order of the minimum polynomial of P̂−1Â

is less than or equal to min{n−m+2p+1, n+m}. If Θ2

∏n−m+2p
i=1 (Θ1−λiI) 6= 0, then

the dimension of K(P̃−1A, b) is at most min{n−m+2p+2, n+m} since multiplication
of (4.3) by another factor (P̂−1Â − I) gives the zero matrix.

4.1. Clustering of eigenvalues when ‖C‖ is small. When using interior-
point methods to solve optimization problems, the matrix C is generally diagonal and
of full rank. In this case, Theorem 4.2 would suggest that there is little advantage
of using a constraint preconditioner of the form P̃ over any other preconditioner.
However, in interior-point methods the entries of C also become small as we grow
close to optimality and, hence, ‖C‖ is small. In the following we shall assume that
the norm considered is the `2 norm, but the results can be generalized to other norms.

Theorem 4.3. Let ζ > 0, δ ≥ 0, ε ≥ 0 and δ2 + 4ζ(δ − ε) ≥ 0 then the roots of
the quadratic function

λ2ζ − λ(δ + 2ζ) + ε + ζ = 0

satisfy

λ = 1 +
δ

2ζ
± µ, µ ≤

√
2max

{
δ

2ζ
,

√
|δ − ε|

ζ

}
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Proof. The roots of the quadratic equation satisfies

λ =
δ + 2ζ ±

√
(δ + 2ε)2 − 4(ε + ζ)

2ζ

= 1 +
δ

2ζ
±

√
δ2 + 4ζ(δ − ε)

2ζ

= 1 +
δ

2ζ
±

√(
δ

2ζ

)2

+
δ − ε

ζ

If δ−ε
ζ ≥ 0, then

√(
δ

2ζ

)2

+
δ − ε

ζ
≤

√√√√2max

{(
δ

2ζ

)2

,
δ − ε

ζ

}

=
√

2 max

{
δ

2ζ
,

√
δ − ε

ζ

}
.

If δ−ε
ζ ≤ 0, then the assumption δ2 + 4ζ(ε− δ) ≥ 0 implies that

(
δ

2ζ

)2

≥ δ − ε

ζ
≥ 0.

Hence,
√(

δ

2ζ

)2

+
δ − ε

ζ
≤ δ

2ζ

<
√

2max

{
δ

2ζ
,

√
ε− δ

ζ

}
.

Remark 4.4. If ζ À δ and ζ À ε, then λ ≈ 1 in Theorem 4.3.

Theorem 4.5. Let A, P̂ ∈ R(n+m)×(n+m) and their sub-blocks be as defined in
Theorem 3.1 (using the same notation and assumptions). We shall assume that A,
B, and G remain fixed, but C may change so long as E also remains fixed. Further,
assume that A + D̃ and G + 2D̃ are symmetric positive definite, D̃ is symmetric
positive semidefinite and

min
{

(zT Gz)2 + 4(zT D̃z)(zT Gz + zT D̃z − 1) : ‖z‖A+D̃ = 1
}

> 0,

then all the eigenvalues of P̃−1A are real and positive.
The eigenvalues λ of (3.15) subject to ET BY xy 6= 0, will also satisfy

|λ− 1| ≤ O(‖C‖).

Proof. That the eigenvalues of P̃−1A are real and positive follows directly from
Theorem 3.5.
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Suppose that C = EDET is a reduced singular value decomposition of C, where
the columns of E ∈ Rm×p are orthogonal and D ∈ Rp×p is diagonal with entries dj

that are non-negative and in non-increasing order.
In the following, ‖.‖ = ‖.‖2 , so that

‖C‖ = ‖D‖ = d1.

Premultiplying the quadratic eigenvalue problem (3.15) by wT gives

0 = λ2wT D̃w − λ(wT Gw + 2wT D̃w)

+(wT Aw + wT D̃w). (4.4)

Assume that v = ET Bw and ‖v‖ = 1, where w is an eigenvalue of the above
quadratic eigenvector problem, then

wT D̃w = vT D−1v

=
v2
1

d1
+

v2
2

d2
+ . . . +

v2
m

dm

≥ vT v

d1

=
1
‖C‖ .

Hence,

1

wT D̃w
≤ ‖C‖ .

Let ζ = wT D̃w, δ = wT Gw and ε = wT Aw, then (4.4) becomes

λ2ζ − λ(δ + 2ζ) + ε + ζ = 0.

From Lemma 4.3, λ must satisfy

λ = 1 +
δ

2ζ
± µ, µ ≤

√
2 max

{
δ

2ζ
,

√
|δ − ε|

ζ

}
.

Now δ ≤ c ‖G‖ , ε ≤ c ‖G‖ , where c is an upper bound on ‖w‖ and w =
[ xT

y xT
z ]T are eigenvectors of (3.15) subject to ET BY xy 6= 0 and

∥∥ET Bw
∥∥ = 1.

Hence, the eigenvalues of (3.15) subject to ET BY xy 6= 0 satisfy

|λ− 1| = O(‖C‖).

This clustering of part of the spectrum of P̃−1A will often translate into a speeding
up of the convergence of a selected Krylov subspace method, [1, Section 1.3].
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4.2. Numerical Examples. We shall verify our theoretical results by consid-
ering some simple saddle point systems.

Example 4.6 (C nonsingular). Consider the matrices

A =




1 0 1
0 1 0
1 0 −1


 , P̃ =




2 0 1
0 2 0
1 0 0


 ,

so that m = p = 1 and n = 2. The preconditioned matrix P̃−1A has eigenval-
ues at 1

2 , 2 − √
2 and 2 +

√
2. The corresponding eigenvectors are

[
0 1 0

]T
,[

1 0 (
√

2− 1)
]T

and
[

1 0 −(
√

2 + 1)
]T

respectively. The preconditioned
system P̃−1A has all non-unit eigenvalues, but this does not go against Theorem 3.1
because m − p = 0. The generalized eigenvalue problem ZT AZxz = λZT GZxz, be-
comes

xz = λ2xz,

thus defining the eigenvalue 1
2 of the preconditioned system P̃−1A. With our choices

of A and P̃ , and setting D = I and E = I (C = EDET ), the quadratic eigenvalue
problem (3.15) is

(
λ2

[
1 0
0 0

]
− λ

[
4 0
0 2

]
+

[
2 0
0 1

])[
xy

xz

]
= 0.

This quadratic eigenvalue problem has three finite eigenvalues, of which two correspond
to the case ET BY xy 6= 0. These are λ = 2 −√2 and λ = 2 +

√
2; the corresponding

eigenvectors have xz = 0.

Example 4.7 (C semidefinite). Consider the matrices

A =




1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 −1


 , P̃ =




2 0 1 0
0 2 0 1
1 0 0 0
0 1 0 0


 ,

so that m = 2, n = 2 and p = 1. The preconditioned matrix P̃−1A has two unit
eigenvalues and a further two at λ = 2 −√2 and λ = 2 +

√
2. There is just one lin-

early independent eigenvector associated with the unit eigenvector; specifically this is[
0 0 1 0

]T
. For the non-unit eigenvalues, the eigenvectors are

[
0 1 0 (

√
2− 1)

]T

and
[

0 1 0 −(
√

2 + 1)
]T

respectively.
Since 2(m−p) = 2, we correctly expected there to be at least two unit eigenvalues,

Theorem 3.1. The same theorem and the fact that n−m = 0 implies that the remaining
eigenvalues will be defined by the quadratic eigenvalue problem (3.15):

(
λ2

[
0 0
0 1

]
− λ

[
2 0
0 4

]
+

[
1 0
0 2

]) [
xy1

xy2

]
= 0,

where D = [1] and E =
[

0 1
]T are used as factors of C. This quadratic eigenvalue

problem has three finite eigenvalues, of which two correspond to the case ET BY xy 6= 0,
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i.e. xy2 6= 0. These are λ = 2 −√2 and λ = 2 +
√

2; the corresponding eigenvectors
have xy1 = 0.

Example 4.8 (C with small entries). Suppose that A and P̃ are as in Example
4.6, but C = [10−a] for some positive real number a. The generalized eigenvalue
problem ZT AZxz = λZT GZxz is unchanged, so one of the eigenvalues will take the
value 1

2 . Setting D = 10−aI and E = I (C = EDET ), the quadratic eigenvalue
problem (3.15) is

(
λ2

[
10a 0
0 0

]
− λ

[
2 + 2× 10a 0

0 2

]
+

[
1 + 10a 0

0 1

])[
xy

xz

]
= 0.

This quadratic eigenvalue problem has three finite eigenvalues, but just two of these
have associated eigenvectors with ET BY xy 6= 0. These two eigenvalues are defined by

λ = 1 + 10−a ± 10−a
√

1 + 10a.

For large values of a, λ ≈ 1 + 10−a ± 10−
a
2 ; the eigenvalues will be close to 1.

The CUTEr test set [11] provides a set of quadratic programming problems.
We shall use the problem CVXQP2 S in the following examples. This problem is
very small with n = 100 and m = 25. “Barrier” penalty terms (in this case 1.1)
are added to the diagonal of A to simulate systems that might arise during and
iteration of an interior-point method for such problems. We shall set G = diag(A),
and C = α×diag(0, . . . , 0, 1, . . . , 1), where α is a positive, real parameter that we will
change.

All tests were performed on a dual Intel Xeon 3.20GHz machine with hyper-
threading and 2GiB of RAM. It was running Fedora Core 2 (Linux kernel 2.6.8) with
Matlab r© 7.0. The linear systems were solved using the Simplified Quasi-Minimal
Residual Algorithm (SQMR) [8] – Matlab r© code for SQMR can be obtained from the
Matlab r© Central File Exchange at http://www.mathworks.fr/matlabcentral/.
We terminate the iteration when the value of residual is reduced by at least a factor
of 10−8.

In Figure 4.1 we compare the performance (in terms of iteration count) between
using a preconditioner of the form P̃ and one of the form P, Equations (1.4) and (1.2)
respectively. The matrix C used in this set of results takes the form αI. As α becomes
smaller, we shall expect the difference between the number of iterations required to
become less between the two preconditioners. We observe that, in this example, once
α ≤ 10−3 there is little benefit in reproducing C in the preconditioner.

In Figure 4.2 we also compare the performance (in terms of iteration count)
between using a preconditioner of the form P̃ and one of the form P, Equations (1.4)
and (1.2) respectively. However, we have now set C = α × diag(0, . . . , 0, 1, . . . , 1),
where rankC = bm/2c . We observe that the convergence is faster in the second
figure - this is as we would expect because of there now being a guarantee of at least
24 unit eigenvalues in the preconditioned system compared to the possibility of none.

5. Conclusion. In this paper, we have investigated a new class of preconditioner
for indefinite linear systems that incorporate the (1,2) and (2,1) blocks of the original
matrix. These blocks are often associated with constraints. We have shown that if C
has rank p > 0, then the preconditioned system has at least 2(m−p) unit eigenvalues,
regardless of the structure of G. In addition, we have shown that if the entries of C are
very small, then we will expect an additional 2p eigenvalues to be clustered around
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Fig. 4.1. Number of SQMR iterations when either (a) P̃ or (b) P are used as preconditioners
for C = αI.
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Fig. 4.2. Number of SQMR iterations when either (a) P̃ or (b) P are used as preconditioners
for C = α× diag(0, . . . , 0, 1, . . . , 1), where rank C = bm/2c .
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1 and, hence, for the number of iterations required by our chosen Krylov subspace
method to be dramatically reduced.

REFERENCES

[1] O. Axelsson and V. A. Barker, Finite element solution of boundary value problems, vol. 35 of
Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2001. Theory and computation, Reprint of the 1984 original.

[2] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numerica, 14 (2005), pp. 1–137.

[3] L. Bergamaschi, J. Gondzio, and G. Zilli, Preconditioning indefinite systems in interior
point methods for optimization, Comput. Optim. Appl., 28 (2004), pp. 149–171.

[4] H. S. Dollar, Extending constraint preconditioners for saddle point problems, Tech. Report
NA-05/02, Oxford University Computing Laboratory, 2005. (Submitted to SIAM J. Matrix
Anal. Appl.).

[5] H. S. Dollar, N. I. M. Gould, and A. J. Wathen, On implicit-factorization constraint
preconditioners, Tech. Report RAL-TR-2004-036, Rutherford Appleton Laboratory, 2004.
(To appear in Large Scale Nonlinear Optimization, G. Di Pillo and M. Roma, eds., Springer
Verlag).

[6] H. S. Dollar and A. J Wathen, Incomplete factorization constraint preconditioners for
saddle-point problems, Tech. Report 04-01, Oxford University Computing Laboratory, Ox-
ford, England, 2004. (To appear in SIAM J. Sci. Comput.).

[7] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers:
with applications in Incompressible Fluid Dynamics, Oxford University Press, Oxford,
2005.

[8] R. W. Freund and N. M. Nachtigal, A new Krylov-subspace method for symmetric indefinite
linear systems, in Proceedings of the 14th IMACS World Congress on Computational and
Applied Mathematics, W. F. Ames, ed., IMACS, 1994, pp. 1253–1256.

[9] N. I. M. Gould, On the accurate determination of search directions for simple differentiable
penalty functions, IMA Journal of Numerical Analysis, 6 (1986), pp. 357–372.

[10] N. I. M. Gould, M. E. Hribar, and J. Nocedal, On the solution of equality constrained
quadratic programming problems arising in optimization, SIAM J. Sci. Comput., 23 (2001),
pp. 1376–1395.

[11] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEr (and SifDec), a constrained and un-
constrained testing environment, revisited, ACM Transactions on Mathematical Software,
29 (2003).

[12] A. Greenbaum, Iterative methods for solving linear systems, vol. 17 of Frontiers in Applied
Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1997.

[13] C. Keller, N. I. M. Gould, and A. J. Wathen, Constraint preconditioning for indefinite
linear systems, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1300–1317.

[14] Y. Saad, Iterative methods for sparse linear systems, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, second ed., 2003.

[15] Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[16] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001),
pp. 235–286.

[17] S. J. Wright, Primal-dual interior-point methods, Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, PA, 1997.


