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Rate Equations Model for Semiconductor Lasers
With Multilongitudinal Mode Competition

and Gain Dynamics
Mirvais Yousefi, Alberto Barsella, Daan Lenstra, Member, IEEE, Geert Morthier, Senior Member, IEEE,

Roel Baets, Member, IEEE, Stefan McMurtry, and Jean-Pierre Vilcot

Abstract—A novel multilongitudinal-mode rate-equations de-
scription of the semiconductor laser is presented. The model in-
cludes gain interactions among the longitudinal modes due to e.g.,
spatial hole burning. The parameters have been obtained from a
real device, in order to be able to compare with the simulations.
The results are in good qualitative agreement with the measure-
ments.

Index Terms—Dynamics, lasers, multilongitudinal mode, semi-
conductor lasers.

I. INTRODUCTION

T HE semiconductor laser has become a key component
in modern technology. Among other applications, it is

widely used in consumer electronic devices, telecommunica-
tion industry, medicine, spectroscopy, and industrial cutting.
The complexity of the device varies depending on the area
of application, but the general feature is the semiconductor
material and a microscopic laser cavity. A full description and
modeling of the semiconductor laser would involve complex
quantum mechanical level treatment of the semiconductor
heterostructure, but generally this leads to computationally
heavy calculations that, even when accurate, do not give deep
insight into the parameter dependence of such device. Instead,
dynamical system models have been proposed [1]–[5] for
which the tool of bifurcation theory can be used to investigate
the dynamics and its dependence on the parameters. The
semiconductor laser is then described by a set of ordinary
differential equations, the laser rate equations [6], which
capture the most important aspects of the physics of the device,
from a single longitudinal mode point of view. In line with this
approach, we have developed a multilongitudinal-mode model
that describes the semiconductor laser in terms of coupled ordi-
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nary differential equations and takes into account competition
and gain-dynamics effects among the longitudinal modes.

This model has been developed to address the issue of ana-
lyzing the behavior of a semiconductor laser with two laterally
coupled Fabry–Perot stripes, where we were confronted with
complicated multimode dynamics within and across the stripes
[7]. A thorough literature search revealed no fully adequate mul-
timode model applicable to our system.

II. DESCRIPTION OF THEMODEL

It is our goal to present a model that includes the relevant
physics of the device while using a minimum number of param-
eters. Also, the model has to be simple enough to be solvable
on a personal computer. This approach is complementary to the
full Maxwell–Bloch equations, because one can apply bifurca-
tion theory tools to get an insight into the dynamics of the device
and therefore be able to choose the right parameter regions for
a further analysis on the basis of a microscopic approach e.g.,
the complete Maxwell–Bloch model.

We assume that the electrical field inside the device is pre-
dominantly single transverse mode. This condition can be met
in reality either by the specific laser design or by choosing the
correct operation regime for the device, usually by merely ad-
justing the pump current. The electrical field inside the device
can then be written as a longitudinal field

(1)

Here, we have decomposed the total field into its
longitudinal mode components, of which are assumed
to be active, while all remaining longitudinal modes have
negligible power. The frequencies of the modes
can in principle be chosen freely, as long as that choice leads
to field amplitudes that are weakly time-dependent. In
this respect, “weak” means that the dynamics of the resulting
amplitude should fall within a range much smaller than the
longitudinal mode spacing. The frequencies will be
fixed later on [see (4)]. is the longitudinal spatial profile
of the th mode. We assume the to be orthogonal

and normalized, i.e., , where is
the device length. The local number of electron-hole pairs
(inversion) is denoted by . is normalized such that

equals the total number of electron-hole
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pairs in the device. The spatial distribution of the carriers will
depend on the field dynamics and device design. We split the
inversion among the longitudinal modes, so that each slowly
varying envelope has its corresponding inversion moment.
These inversion moments will “feed from a common pot”
and this leads to coupled dynamics that will be treated further
down. The inversion moments are defined as

(2)

where , i.e., the total number of car-
riers at the highest pump current for which no laser action
occurs. The threshold of the lowest loss longitudinal mode is
taken as the reference point, since here the modal frequencies

are uniquely defined. According to (2) the longitu-
dinal modes give rise to aninversion gratingcreated in the de-
vice expressed by the inversion moments .

The gain profile depends on the frequency, which drifts with
the operation parameters, and on the inversion, which varies
with the dynamical state of the device. Ideally, a full dynam-
ical description of the gain would require using a self-consis-
tent analysis, in which the device gain is recalculated at each
integration step using the current states of field and carriers as
the input. However, since we focus on relatively slow dynamics
( , i.e., ) compared to the intraband carrier
relaxation dynamics of the semiconductor material (
i.e., ), it is reasonable to assume that the polarization,
i.e., induced dipole-moment density, is in quasiequilibrium, so
that it can be eliminated adiabatically from the equations. Spa-
tial diffusion of carriers is present and, ideally again, should be
described by a diffusion equation. However, this will complicate
the model too much and we choose instead, to account for the
diffusion through an effective description as introduced below.
We linearize the gain with respect to the inversion and neglect
frequency dependence of the parameters for the dynamical re-
gion of interest( ) . The gain of the th mode can then
be expressed as [17]

(3)

where is the differential gain coefficient of theth mode,
its linewidth-enhancement factor that accounts for the self-

phase modulation effects of semiconductor laser, andis the
modal gain at the threshold of the lowest loss-mode.

We fix now the modal frequencies introduced above
(1). They will vary as the operation parameters (temperature,
pump-current) are changed. We assume that the device is in
thermal equilibrium and attribute all frequency drifts within the
interval of interest to the pump current through the empirical re-
lationship

(4)

where is a positive dimensionless parameter accounting for
the total pump-dependent frequency drift of theth mode which
includes both band-gap-shrinkage effects, temperature-induced
drift and changes due to variations in the index of refraction.
This parameter can be measured by using a reference frequency

and recording the pump-induced modal-frequency drift. In (4),
, where is the pump rate and is the

threshold pump rate of the lowest loss mode. Finally,is the
reference optical frequency of modemeasured at the threshold
of the lowest loss mode.

The rate equations for the slowly varying envelope of each
longitudinal mode and its inversion moments can now be written
as

(5)

(6)

Here, the pump rate above threshold is assumed to be the
same for all modes (uniform pumping), whereis the spon-
taneous-recombination carrier decay lifetime and is the
cavity lifetime of the photons (losses) in mode. As a conse-
quence of our definition of the reference point, the threshold
gain of the lowest loss mode exactly compensates for the optical
losses in that mode, i.e., , while for all other modes, the
losses will be greater than the threshold gain,

. The first term in (5) accounts for the real and imagi-
nary part of the stimulated emission gain, while the second term
accounts for the net optical loss of mode. By definition, the
latter term vanishes for . ’s are the weights describing
the modal inversion dynamics and are usually dependent on the
specific laser design. The main difference between our model
and that presented in [14] is that the latter model has fixed gain
dynamics where the inversion moment of modeonly feels it-
self and the total output power. In (6), the inversion moments are
coupled toall other inversion moments. This makes gain com-
petition and mode suppression possible and highly nontrivial.
However, we strongly believe that our model as expressed by
(6) is more realistic as to the mode competition dynamics. Ac-
cording to (5), the gain of modeis provided by the th inver-
sion moment, while (6) describes the fact that theth inversion
moment suffers from depletion not only due to its own corre-
sponding mode ( ) but, since all other modes are eating from
the total inversion as well, also from the feeding of the other
modes ( ).

The gain suppression co-efficients ’s are defined as

(7)

and can be evaluated when the spatial profiles are
known. In the special case of sine functions, i.e.,

, , it is straightfor-
ward to show that , where is the
Kronecker delta. Since the spatial profiles are generally not
sine waves, we will use the above result as an indication on the

values and restrict these to . It is interesting
to note that by deviating from the sine values of the ’s,
one also effectively accounts for carrier diffusion. The effect
of diffusion is to “wash out” the inversion grating and thus
effectively change the couplings between the slowly varying
envelopes of the field and their inversion moments.
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It should be noted that (5) can be derived from the paraxial
equations for the semiconductor laser [17] and that in deriving
(6) we have performed certain approximations. For example,
we have assumed that one set of ’s is sufficient to describe
the gain-dynamics, while a full derivation results in two sets of

’s. One set that multiplies the in the sum and the other
set of ’s appear in a product with the term within the
sum in (6). To some extent, we can correct eventual errors in-
troduced by this approximation in the values of. In this sense,
we will calibrate the ’s to measurements and use the’s as
“free parameters”.

In (5) and (6), the specific device properties are reflected
in the parameter set:
where . It is beyond the scope of this paper to
analyze the dependence of the dynamics on the whole parameter
set. Instead, in the next chapter we will present an overview of
how the most important parameters affect the dynamics. First,
we set the gain dynamics by adjusting and
choose the modal losses equal for all modes, normally a good
approximation. Then the type of laser is decided on by adjusting
the values so as to achieve correct mode-resolved pump-in-
tensity (PI) characteristics. To make this procedure transparent,
we start the analysis by paying special attention to the two-ac-
tive-mode scenario, so as to identify the different steps in the
calibration process in a very simple environment.

III. T HEORETICAL ANALYSIS

For a single-mode semiconductor laser with and
, (5) and (6) reduce to the standard laser rate equations

[6] as follows:

(8)

(9)

where we have dropped the index for simplicity. Let us give a
short summary of the single-mode case before we address the
situation with two modes. The single-longitudinal-mode semi-
conductor laser model is well understood [1]–[4]. Steady-state
analysis shows that there are two possible states of operation: the
on state and the off state. Below threshold (i.e., ), the
off state is the only state and it is stable. Above threshold, the off
state has one positive (unstable) and one negative (stable) eigen-
value, meaning that the slightest fluctuation in power and/or in-
version will drive the system to the on state, which has two neg-
ative eigenvalues. The laser-threshold transition is an example
of the transcritical bifurcation [12].

A. The Case of Two Modes

It is instructive to pay special attention to the two-mode case
in order to clarify the relevance of the different parameters. We
will first determine the fixed points for this case and their sta-
bility. We consider the two-mode case to be a first approxima-
tion for multimode operation. In this spirit, the condition for the
onset of two-mode operation that will be derived, should be seen
as a crude indication of the multimode situation.

For the fixed-point analysis, it is convenient to rewrite (5)
and (6) in terms of power and phase ,

. corresponds to the total number of pho-
tons in mode . In terms of these variables, (5) and (6) read

(10)

(11)

(12)

where . From (11), it clearly follows that for each mode,
the phase is not an independent variable but a follower of the
inversion moment. The nontrivial dynamics takes place in the
four-dimensional phase space spanned by the modal powers and
the inversion moments. We define the states of CW operation
as the fixed points of our system, since during CW operation,
the power and the inversion do not change (
), while the frequency is fixed, i.e., , where

is the frequency shift of theth mode with respect to . The
fixed-points ansatz reads

(13)

(14)

where , , , , and , 2. This cor-
responds to continuous-wave (CW) operation of theth mode
with output power corresponding to photons in the cavity
with frequency . Inserting (13) and (14) into (10) and (12)
will result in four distinct situations:

i) both modes off;
ii) mode 1 on and mode 2 off;
iii) mode 2 on and mode 1 off;
iv) both modes on.
To perform a stability analysis, for each fixed-point solution

we calculate the Jacobian matrix. The eigenvalues of this Jaco-
bian reveal the stability properties of the system at that fixed
point. Since the method is standard, we briefly summarize the
outcome of the analysis.

Intuitively, it is clear that the off-state [case (i)] will be
stable below threshold and destabilize once the pump current
is above threshold. The eigenvalues confirm this and, in fact,
they show that a second eigen-direction will become unstable
once the pump current is large enough to compensate the
losses in the second mode and pull it above its threshold, i.e.,

. Hence, solution 1) is stable below
threshold and for the dynamics of the system will
drive the laser into one of the scenarios 3)-4).

In case (ii), the lowest loss mode is on,
above threshold, while the other is off, . The inversion

moment of mode 1 is clamped to zero and the off-mode inver-
sion is given by

(15)
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Since the ratio of the ’s will turn out to be decisive for the
stability in general, we define

(16)

Note that the quantity of interest for mode 1 is while that of
mode 2 is . The stability analysis shows that two of the four
eigenvalues for case (ii) are a conjugate pair and can become
complex-valued, but they correspond to stable behavior since
their real parts are always negative. One eigenvalue is always
negative while the last one is negative as long as

(17)

If this inequality is broken, then one of the eigenvalues becomes
positive, leading to an instability. Therefore, the fixed-point sce-
nario 2) will be stable so long as the pump current and are
such that (17) holds.

In case (iii) mode 1 is off, , and the values of the other
variables are

(18)

(19)

(20)

Since , an expression for the threshold of the second
mode can be derived from (18)

(21)

If the pump current is larger than , then the losses of
the second mode can be overcome and operation in this state
becomes possible. The stability analysis reveals that in accor-
dance with case (ii), two of the four eigenvalues are conjugate
pairs with a negative real part which do not change sign as the
pump current or is varied above the threshold of mode 2
( ). The third eigenvalue is always negative, but the fourth
can change sign.

For the stable operation in scenario 3), i.e., negative eigen-
values and , the pump current must obey the following
two inequalities at the same time:

(22)

(23)

where the upper limit has been derived from the stability anal-
ysis. Note that this limit differs from (17) and that (23) states
that case (iii) can only be stable for negative .

In multimode operation [case (iv)], both inversion moments
will be clamped to the threshold value of the specific mode
, . Due to its lower losses, mode 1 will

start lasing first and grow with the pump current, while mode 2

Fig. 1. Regions of different dynamics in the (�f ;�J)-plane as derived
from the analysis in Section III-A. The symbols (i)-(iv) identify different
operation (see text).

will lase once its threshold losses have been overcome. This is
expressed as

(24)

(25)

which implies that the lower stability limit of case (iv) coincides
with (17).

Fig. 1 summarizes the stability boundaries of all four fixed
points-cases as identified from (17), (21), (22), and (23) and
the eigenvalue analysis. In this figure, we have restricted the
analysis to the special symmetric case of and

in order to be able to display the results in the
( )-plane rather than the ( )-space. All
other parameter values are listed in Table I.

Below threshold ( ), case (i) is the only stable solution,
while for only mode 1 can be excited and this
correspond to operation in case (ii). Once , there are
enough carriers in the device to potentially maintain operation
in both modes, but for our choice of parameters this does not
happen immediately, since according to (15) the on-mode ac-
tually reduces the off-mode’s inversion, and thus increases the
effective threshold for mode 2.

Let us now study the stability boundaries from right to left in
Fig. 1 for . At the far right ( ), each mode
is not coupled to the inversion moment of the other mode, while
it is strongly coupled to its own inversion moment. This cor-
responds to two independently lasing modes in the laser. Now,
moving further to the left the first boundary one encounters is
the border between regions (ii) and (iv). Only multimode opera-
tion can be sustained in region (iv). At , each mode is
equally strongly coupled to the inversion moments of all other
modes including its own. This implies that all modes feed from
one “global” inversion moment, meaning that no intra-modal
suppression occurs. Most existing multimode models are re-
stricted to this region. Until the next boundary to
the left, only case (ii) is stable.
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Fig. 2. Simulated pump-intensity curves for two active modes (a) and (b) and
three active modes (c). In (b) and (c), spontaneous emission noise has been
included. The noise induces spontaneous switching between the stable states
and thus illustrates the bistability.

Continuing further to the left we encounter the boundary de-
fined by (23) and case (iii) stabilizes. This is a bistable region
where both (ii) and (iii) are stable. Here, the final state of op-
eration will depend on the initial conditions. The single-mode
bistable region is restricted to the negative values which
can be understood as follows: when is negative, the spe-
cific mode is using more of the neighboring modes carriers than
its own. Therefore, once a mode is excited in this region, it will
suppress the other mode by consuming its carriers. In a simu-
lation, the initial conditions will be decisive for the final state,
(ii) or (iii). Fig. 1 shows that even in the simple scenario of two
active modes, the model shows rich dynamics and complicated
mode-competition together with a large parameter range with
multistable behavior. The boundaries between the different re-
gions can experimentally be investigated by varying the pump
current at fixed . This corresponds to a straight vertical line
in Fig. 1.

In the following, we will present simulations for which we
have used a fourth-order Runge–Kutta to integrate (5)–(6) and
a second-order Runge–Kutta method when noise was included.
The integration step size was set to 0.1 ps. At each pump cur-
rent value, an average is taken over 50 ns after a 50-ns tran-
sient has been disregarded. The results will be presented as PI
curves such as Fig. 2(a). Noise has been included by means
of Langevin force in the standard manner [13]. It is assumed

TABLE I
PARAMETER VALUES USED IN FIG. 1

that the shot noise and the spontaneous emission noise are un-
correlated, which is reasonable since the spontaneous emission
rate into the lasing mode is usually very small ( ) .
Each longitudinal mode feels an independent noise event, which
corresponds to a spontaneously emitted photon into the lasing
mode. The spontaneous emission rate is set to
and the inversion diffusion rate is set to
and . We also assume that all inver-
sion moments feel thesamenoise event. The noise is gener-
ated by a standard Gaussian-noise generator [15] that returns a
Gaussian-distributed random number with zero mean and stan-
dard deviation of 1.

In Fig. 2(a), the pump-intensity curve is shown for
(and due to our choice of symmetric pa-

rameters) and . The rest of the parameters are stated
in Table I. This choice of parameters means that
and that the two modes will have equal gain meaning that in
Fig. 1 the boundary coincides with the line and
that the two other boundaries will asymptotically approach the
-axis. Therefore, it is the settings alone that will decide

the intra-modal dynamics. Physically, this corresponds to a mul-
timode Fabry–Perot type laser where two modes are active at
threshold and the gain dynamics is such that both modes try to
compete by depleting each others inversions, e.g., .
But since the difference is so small, i.e., , sev-
eral dynamical behaviors can be expected and the laser is on the
edge of multimode operation.

As the laser approaches threshold in Fig. 2(a), the multimode
region is entered at once. When the pump current is increased
further, the laser enters the bistable (ii)-(iii) region where the
final state of operation is decided by the initial conditions. Since
no noise is included in the simulations for Fig. 2(a), the system
remains on the same fixed point and no mode switching is
present. In Fig. 2(b), noise has been included in the simulation
while the rest of the parameters are the same as Fig. 2(a). Noise
effectively extends the multimode region over a larger current
range ( ). Thereafter, spontaneous switching occurs
between the two possible states of operation [cases (ii) and (iii)]
as the pump current is increased further. Since spontaneous
emission provides excess photons to each mode, the power
of the second mode remains positive in a larger region than
expressed by (25). The boundaries between region (iv) and
(iii) as well as between (ii) and (iii) are not sharp anymore and
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smooth transitions take place [see in Fig. 2(b)]. In
any case, in regions just above threshold, the presence of noise
is known to alter the configuration of fixed points and their
stability. Even for a single-mode situation, noise drastically
changes the bifurcation structure near threshold: while a
transcritical bifurcation occurs at threshold without noise, no
bifurcation at all occurs with noise. Thus, similar things are
expected to happen in the two-mode case near the bifurcation
lines in Fig. 1 when noise is present.

In general, a real laser is much more complex than the simple
two-mode analysis presented here. But this section illustrates
the richness of the model even for a two-active-modes scenario.
As the number of modes increases, the map as presented in
Fig. 1 becomes more complex, but that analysis will be be-
yond the scope of this paper. As an example of that complex
dynamics, we present in Fig. 2(c) a PI curve for three active
modes, where the ’s have been chosen such that a bistability
exists between mode 1 and mode 3 while mode 2 is unstable.
Noise has been included in the simulations to illustrate the spon-
taneous switching between the two stable states.

IV. A PPLICATION TO REAL LASERS

Our device is a typical ridge structure Fabry–Perot laser. Its
epilayers are grown on type InP substrate by gas source
molecular beam epitaxy. The active medium is composed of six
GaInAsP, compressively strained ( ). The top type InP
confinement layer is 2.5 thick. The ridge structure is ob-
tained by etching this confinement layer down to 0.4 above
the active layer. The ridge width is 4 and is delimited by
wet etching and using the previously deposited-type electrode
mask. A Dow Chemicals Cyclotene™ resin (BCB 4626–46) is
used as planarization layer. Contact pad is then deposited in
order to connect -type electrode. Backside thinning and met-
allization end the fabrication process. The wafer is then cleaved
into 300- -long bars which delimit the Fabry–Perot cavities.
A more detailed description of the fabrication process can be
found in [16].

A. Setup

The device is mounted on a temperature-controlled support,
which is cooled by a Peltier junction to ensure a constant oper-
ation temperature of 20 . A stabilized current source is used
to apply the bias current to the device. The diode’s output is
sent through an objective to shape the beam and couple it into a
GRIN-lens single-mode fiber. An optical isolator is placed be-
fore the fiber entry point to prevent external cavity feedback ef-
fects. The fiber can be connected to a multitude of measure-
ment equipment to examine the device’s behavior. In particular,
we used relative intensity noise (RIN) measurements to obtain
the relaxation oscillations frequency, and the optical spectrum
to track the longitudinal mode wavelength and power distribu-
tion. By scanning the current source, we have recorded the evo-
lution of those variables as a function of the bias current. All
the instruments were connected to a PC for data recording and
subsequent analysis.

The PI curves were extracted from the optical spectrum by
first identifying the active longitudinal modes, seven in our case.

Fig. 3. Measured pump-induced frequency drift of the seven active modes in
the laser.

Fig. 4. Measured relaxation oscillation frequency of the main mode squared
versus the pump rate relative to threshold. The slope of the curve is� (the
differential gain coefficient).

The powers were then assumed to be proportional to the am-
plitude of the spectral line of the specific longitudinal mode,
and these lines were tracked through the current-dependent op-
tical spectrum to create mode-resolved PI curves as presented
in Fig. 6. The limitation of our accuracy is set by the resolu-
tion of the spectrum analyzer and the number of currents points
we choose to investigate. Also, the choice ofactivelongitudinal
modes is very subjective, which can be realized from the slightly
uneven PI curve for the total power in the bottom panel of Fig. 6.

B. Extraction of Parameters and Simulations

The measurements described in the previous section are
shown in Figs. 3–6. From the full optical spectrum (not shown),
we identify seven main longitudinal modes and a total of
approximately 25 active longitudinal modes in the device.
The dominant modes are clustered around the same frequency
region and they drift to lower frequencies as the pump current
is increased from 35 mA (threshold) to 70 mA.
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Fig. 5. ASE spectra measured at 30 mA. It is assumed that the modes drift
negligibly in the interval up to threshold, and thereforef! g can be
extracted from this plot.

Fig. 6. Experimental mode-resolved PI curves of the laser. The seven modes
have been divided between the three panels for the sake of clarity. In the lowest
panel, the total power (sum of the seven active modes) is also indicated.

To simplify the analysis, we will “guess” some of the pa-
rameters and fix them to realistic values. We set ,

, with , and .
Other parameters will be extracted from mea-
surements and at the end we will adjust the’s so as to achieve
the correct PI characteristics.

As mentioned, from the full optical spectrum above threshold,
we identify seven active modes in the range [35,70] mA. Since
the optical spectrum has been measured at each 1 mA interval
within this range, we can extract the pump-induced frequency
shift. In Fig. 3, we show the wavelength dependence of the dom-
inant modes as a function of the bias current. Fitting a linear

TABLE II
PARAMETER VALUES DERIVED FROM THE MEASUREMENTS(q = 1; 2 . . . 7).

FOR THEIR DESCRIPTION, SEETABLE I

TABLE III
f -VALUES USED TOPRODUCEFIG. 7

curve to the different modes indicates that a linear approxima-
tion with the same radians per carrier, the co-
efficient for all modes correctly reproduces the measurements.

The relaxation oscillation frequency of a single-mode laser
(8)–(9) is related to the pump rate as [17]. In
Fig. 4, is plotted versus the pump rate above threshold.
Again, by a linear fit to this curve, we obtain .
We set the differential gain coefficient of the main mode at 2351

and will calibrate the side modes relative to this value by
means of the amplified spontaneous emission (ASE) spectrum.
The gain of the device is reflected in the ASE spectrum below
threshold (Fig. 5). We use this ASE figure to set and to
calibrate the rest of the ’s relative to . The resulting values
are listed in Table II, where we have used the relative amplitudes
of the peaks in Fig. 5 to arrive at the gain spectrum of this table.

Finally, we use the measured full optical spectrum to create
a mode-resolved PI curve as described in the previous section.
This is shown in Fig. 6. The ’s are now adjusted “by hand”
by identifying the threshold of each mode, as was done for the
two-mode case in (21).

The modal dynamics can now be set by adjusting the’s.
In our case, we have simply “guessed” the ’s since the full
analysis would involve a 21-dimensional stability analysis. The

values are listed in Table III and the resulting PI curves are
shown in Fig. 7. In these calculations, we have set the’s so
as to achieve three active modes with some mode competition at
threshold, two simultaneously active modes at the intermediate
currents (middle panel), and two simultaneously active modes
with asymmetric powers far above threshold. Although the exact
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Fig. 7. Theoretical mode-resolved PI curves of the laser.

power levels do not match the experimental values, the gain-in-
duced mode dynamics of the device can be reproduced quanti-
tatively. For an exact reproduction of the experiment, we believe
that an full stability analysis of the seven-mode case should be
performed and the -parameters set thereafter.

In Fig. 7, spontaneous emission noise was included in the
calculations and an average was taken over 50 ns at each
current step. The system is in CW operation throughout the
scanning range, and the first mode switch is smoother than the
second, abrupt mode switch (panel b to c) which can be seen
from the total power curve which shows a kink at the second
mode switch. The type of switching was chosen by adjusting
the values.

V. CONCLUSION AND DISCUSSIONS

We have presented a new multilongitudinal mode description
for a Fabry–Perot type semiconductor laser in terms of ordi-
nary differential equations, complementary to the more usual
description of multimode dynamics of a semiconductor laser
in terms of partial differential equations that account for spa-
tial effects. We have introduced the concept ofmodal inversion
momentsand removed the spatial dependence from the descrip-
tion. To do this, we used the standard approximation of the spa-
tial profiles of the longitudinal modes as standing waves in the
laser cavity [14]. Once the inversion grating has been defined,
it is straightforward to divide the gain among the longitudinal
modes as in (3) and subsequently formulate the rate equations.

To give an overview of the different dynamics that can be ex-
tracted from the model, we performed a stability analysis for
a two-active modes scenario. It was shown that many different
behaviors are possible, e.g., single-mode CW operation, multi-
mode cooperation in two longitudinal modes, and bistable be-
havior between different CW states (modes). The diversity of

the dynamics was illustrated in Fig. 1, where we indicated the
different dynamical regimes in the ( )-plane.

Then we calibrated the model using measurements from a
real laser constructed in the European FALCON-TMR network.
After demonstrating the calibration/extraction process of the
model parameters, we reproduced a PI curve of the laser, where
the intra-mode dynamics were chosen by adjusting the inver-
sion-modal weights, i.e., the coefficients.

The model presented can be applied to many different types
of semiconductor lasers. As we have shown, the design of the
laser (cavity structure and gain profile) can be accounted for
through the ’s, which also induce the gain dynamics. It was
realized from (16) that the ratio of the modal weights (’s)
will be decisive for the type of mode competition. To repro-
duce a multimode laser, the modal weights must be such that
all the longitudinal modes have a well-defined inversion mo-
ment, i.e., must be larger than , where for all
active modes. In this scenario, each longitudinal mode will be-
have as a Lang–Kobayashi type of mode with a weak coupling
to the side modes through the inversion. To simulate the other
extreme, a strong monomode laser like for example a DFB-type
laser, one needs to define a dominant mode and set the modal
weights such that the dominant mode will deplete the inversion
of all other modes. This can be achieved by setting
for the dominant mode and for the side modes.
Also, the self-modal weight ( ) of the dominant mode must
be larger than the self-modal weight of the side modes. In this
manner, there exists one “global” inversion (that of the domi-
nant mode) and all modes feed from it with the dominant mode
getting the most. In future work, we will apply this model to the
twin-stripe lasers [7], [16] in order to reproduce the high-fre-
quency dynamics that were predicted [18], [19].
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