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0. I • Background 

CHAPTER 0 

INTRODUClïON 

I • 

In order to place the subject of this thesis in the proper perspective we 

shall first devote a few words to the research project of which it is a part. 

The aim of the latter project is the systematic construction of correct 

compilers based on formal definitions of both souree and' target language. 

Let us make this more precise: 

If we want to construct a compiler from a souree language SL to a target 

language TL we have to take into account at least the following aspects: 

1. The definition of SL. 

2. The definition of TL. 

3. The construction of a "meaning preserving" mapping from SL to TL. 

4. The construction of a program that realizes that mapping. 

To a mathematically inclined person the dependencies between these aspects 

are obvious: 3 depends on I and 2, and the specifications used in 4 are 

based on 3. It is also clear that the correctness concerns of 3 and 4 can 

be separated and that the reliability of the resulting compiler ultimately 

depends on the rigour of I and 2. In practice, mainly due to bistorical 

causes, the situation is different.however: 

Compiler construction is a relatively old branch of computing science~ 

whereas the mathematica! theory of programming and programming lan

guages bas not matured until the last decade. Consequently the formal

ization of many programming concepts has lagged far bebind their 

implementation. To implementers (and many others) the operational view 

still prevails and formal definitions have been considered, in the 

terminology of [Ashcroft], descriptive rather than prescriptive. 

The few research efforts in compiler correctness have concentrated on 

formal roodels of translatars that have been used in elaborate proofs 

of completely trivial language mappings. Attention has been paid to 
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correctness proofs of given mappings rather than to the construction 

of correct mappings. Moreover, the conneetion between such an abstract 

mapping and a concrete compiler has not always been clear. 

At present compiler construction often proceeds by the construction of 

a parser which is subsequently augmented with various symbol table 

manipulation and code generation routines. Thus the language mapping 

realized by such a compiler is only specified implicitly. Explicit 

compiler specifications are rare and as a consequence the programming 

discipline where program and correctness proof are developed hand in 

hand is seldom applied to compilers. 

We are convineed that at present formàl language theory and programming 

methodology have developed sufficiently to make an intellectually more 

satisfying approach to compiler construction feasible. To turn that convic

tion into fact we have set as our goal the construction of a compiler along 

the lines of points 1-4 above. More specifically, this includes the follow

ing tasks: 

Design and formal definition of a souree language SL and a target 

language TL. This task involves the development of formal definition 

methods to the extent that languages can be defined completely, i.e. 

that both language-theoretical results, implementations, and program

mer-oriented aspects such as proof rules may be derived from the 

formal definition. 

The systematic derivation of a mapping from SL to TL. This task in

volves the development of some theory concerning correctness of trans

lations as well as application of that theory to the problem at hand. 

Specificatien of a compiler based on the derived mapping, foliowed by 

construction of a program conforming to that specification. 

It has turned out that the main difficulties are in the first task. It is 

this task that is the subject of the thesis. In section 0.2 we shall 

describe it in more detail. The remainder of the project will be described 

iq a subsequent report. 



0.2. Subjeèt of the thesis 

As already mentioned, the subject of this thesis is the design and. formal 

definition of a souree language SL and a target language TL, tagether with 

the development of supporting definition methods. Our aim is to obtain 

language definitions which present programs as mathematica! objects free 

of reference or commitment to particular implementations, but which are 

also sufficiently complete and precise to derive correct implementations 

from. From the background sketched insection 0.1 it will be clear that 

this thesis should not be considered as an isolated and self-contained 

study on formal language definition. The major part of the work reported 

bere is intended as theoretica! foundation of the aforementioned work on 

compiler correctness. We emphasize this background because it may no~ be 

obvious from the outer appearance of this thesis, although it is of sig

nificant influence on its subject matter, e.g. in the following respects: 

This thesis is concerned neither with development of general defini

tion methods, nor with general theory concerning such methods. 

3. 

Rather it is concerned with development of formal tools which are bath 

theoretically well-founded and practically usable. The mathematica! 

apparatus needed for this purpose is only developed as far as necessary. 

Most work on formal definition of programming languages is concerned 

with either syntax or semantics; in order to obtain compiler specifica

tions we have to consider both. We also pay much attention to context

dependent syntax, a subject which is usually considered semantic in 

studies on syntactic analysis and syntactic in studies on semantics. 

Context-dependent syntax plays an important role in compiler construc

tion, but also affects the semantics of constrncts invalving changes 

of context, such as blocks and procedures. 

In chapter 5 we develop predicate transfarmer semantics [Dijkstra 1, 

Dijkstra 2] for typical machine language sequencing primitives such as 

jumps. We do so not to liberate these constructs from their "harmful" 

reputation, but to facilitate the derivation of mappings from SL- to TL

programs from correspondences between their semantics. 

We hope to have made clear in what light this thesis sbould be seen. We 

continue with an overview of its contents: 
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In chapter I we consider the role of formal definitions of progrsmming 

languages, we formulate some principles and criteria regarding their use, 

and we motivate the form and design choices of the definitions in subsequent 

chapters. 

In chapter 2 we investigate how the principles of chapter I can be applied 

to the definition of the syntax of the souree language. The main subject óf 

the chapter is the development of a variant of the well-known attribute 

grammars [Knuth] which is primarily aimed at language specification. The 

main components of this variant are a collection of parameterized production 

rules and a so-called attribute structure by means of which properties of 

parameters can be derived from given axioms. On the one hand an attribute 

grammar of this kind may be viewed as a self-contained formal system based 

on rewrite rules and logical derivations. On the other hand the attribute 

structure, which corresponds to an algebraic data type specification in the 

sense of [Goguen, Guttag], can be used directly as specification of ,the 

context-dependent analysis part of a compiler. 

In chapter 3 we lay the basis for the semantic definitions of both souree 

and target language. The semantic definition metbod we employ is essentially 

that of Dijkstra's predicate transfermers [Dijkstra 1, Dijkstra 2]. First we 

provide a foundation for this metbod by means of a variant of Scott's 

lattice theory ['Scott 2] and infinitary logic [Back 1, Karp]. Subsequently 

we study predicate transfermers for the kernel language in this lattice

theoretical framework. Finally we use these results to develop partial and 

total correctness logies in the style of [Hoare l, Hoare 2], and we prove 

soundness of these logies with respect to predicate transformer definitions. 

In chapter 4 the application of the methods of chapters 2 and 3 is extended 

to other constructs of the souree language, viz. blocks and procedures, for 

which both syntax, semantics, and proof rules are developed. The various 

aspects of procedures are considered in isolation as much as possible. In 

section 4.1 we discuss blocks to investigate the effects of the introduetion 

of local names. Beetion 4.2 deals with so-called abstractions which are used 

to study the effects of parameterization. Beetion 4.3 concentrates on 

recursion, which can be handled rather easily by means of the lattice 

theory of section 3.1. Finally, insection 4.4 the various aspects are 

merged, resulting in a treatment of parameterized recursive procedures, 
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In chapter 5 we consider some aspects of the formal definition of the target 

language TL, viz. those that have to do with sequencing, The main goal of 

this work is to obtain predicate transformer semantics for machine instruc

tions, which can be uaed in compiler correctnesa arguments. First we 

develop predicate transformer semantica based on the lattice theory of 

sectien 3.1 and the continuatien technique of denotational semantica 

[Strachey]. Thereafter we derive an equivalent operational description by 

means of an interpreter. This derivation can be considered both as a con

sistency proof of two definitions and as a derivation of an implementation 

from a non-operational definition. In addition, it also gives an impression 

of the semantics preserving transformations that will be used in the trans

lation from souree language to target language. 

Chapter 6 containa some concluding remarks. 

Appendix A contains proofs of some lemmas. 

Appendix B contains the collected definitions of the souree language. 
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0.3. Some notational conventions 

Definitions and theorems may consist of several clauses, and are 

numbered sequentially per chapter. E.g. "definition 3.37.4" refers to 

clause 4 of definition 3.37, which, is contained in chapter 3. 

The symbol "0" is used tomark the end of definitions, theorems, 

proofs, examples, etc •• 

In definitions and theorems phrases like "let x be an element of V" 

are abbreviated to "let x E. V", etc •• 

This thesis contains many proofs of properties of the ferm x ~ y, 

where x and y areelementsof a partially ordered set (C,~). These 

proofs are given by means of a sequence a0 , ... ,an such that 

ao = x 

for all i: 0 ~ i < n: ai ~ ai+l 

We present these proofs in the eorm 

ao 

~ {hint why ao ~al} 

an-1 

~ {hint why an-I ~ an} 

a 
n 

or 

Proofs of implications of the form x • y are presented in the same way. 

This way of presentation has been taken from [Dijkstra 3]. 

Universa! ánd existential quantification are denoted by the symbols 

"!:::_" and "~", respectively. The symbol "I" separates domain, auxiliary 

condition, and quantified expression, e.g. (!:::_x lN I x> 7 I x> 3). 

A similar notatien is used for lambda expressions, e.g. the expression 

(Àx E V I x) denotes the identity function with domain V. In many 

cases domain indications are omitted when they are clear from context. 
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Apart from logical expressions at the meta level we will also encounter 

logical expressions as elements of formal language·s, e.g. in the "rule 

conditions" defined in chapter 2 and the condition language defined in 

section 3.2. Although we maintain a strict separation between these 

language levels we use the Same set of logical symbols to form expres

sions. It can always be determined from context to which level an 

expression belongs. 

Some additional notational conventions will be given in sections 2.1.2 and 

2.2.2, and in notes following some definitions. 
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CHAPTER 1 

ON FORMAL DEFINITIONS OF PROGRAMMING LANGUAGES 

In this chapter we consider the role of formal definitions of programming 

languages, we formulate some principles and criteria regarding their use, 

and we motivate choice and form of the definition methods used in chapters 

2 to 5. 

Definitions of programming languages still have not reached the status of 

definitions in other branches of mathematica. Although it is generally 

acknowledged that definitions should be exact, complete and unambiguous, 

the obvious means rnathematics offers to achieve these goals - viz. formali

zation - still has not been generally accepted. This is regrettable, as a 

formal definition of a programming language can be of considerable value to 

designers, programroers and implementers. Let us consider these categories 

separately: 

Formalization of a language at its design stage can help to expose and 

remave syntactic and semantic irregularities. If the formalism is 

based on solid mathematica! theory it can also help to evaluate design 

alternatives. 

Although the formal definition of a programming language may be too 

complex for programmers, it can be used to develop specialized pro

gramming tools, such as proof rules or theorems concerning certain 

program structures (see e.g. the "Linear Search Theorem" in [Dijkstra 

2]). 

A formal definition of a programming langua~e can be used to develop 

exact, complete and unambiguous implementation specifications. 

When we consider the present situation we must conclude that these potential 

possibilities have only partly been realized. A formalism like context-free 

grammars, wbicb can be used to specify part of the syntax of programming 

languages, bas gained almast universa! acceptance. Altbough we shall not go 

into a detailed analysis of this success, influential factors seem to have 

been that context-free grammars can provide exact and unambiguous language 
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specifications, that they are relatively simple and amenable to mathematica! 

treatment, that they have been used in the definition of a major programming 

language (ALGOL 60) befare implementations of that language existed, and 

that they can be used to derive parts of implementations - viz. parsers -

systematically and even automatically. 

Formalization of context-dependent syntax and semantics has been less 

successful, however. On the one hand, for context-dependent syntax we find 

formalisros like van Wijngaarden grammars [van Wijngaarden]. These provide 

exact and complete syntactic specifications, are of some use in language 

desîgn, but provide little or no support for implementations. On the other 

hand we find formalisros like attribute grammars [Knuth], which have mainly 

been used in compiler specifications and consequently suffer from over

specificatien and implementation bias when used for definition purposes. 

Formalization of semantics has long been a very complex affair. Gradually 

some usable formalisros have emerged, such as denotational semantics [Stoy] 

and axiomatic methods [Hoare 1, Dijkstra 2]. These methods are gaining 

influence on both language design [Tennent] and programming methodology 

[Dijkstra 2], but have little affected implementations, which are still 

based on informal operational interpretations of programming languages. 

As a general remark we can add that bath formalization of context-dependent 

syntax and formalization of semantics have often been used only descrip

tively, i.e. to describe languages defined in some other way rather than to 

define languages. See [Ashcroft] for an illuminating discussion of this 

subject. 

Apparently, if we want to imprave the situation just sketched, we should 

adhere to the following principles. 

Just as in other parts of mathematics, the formal definition of a 

programming language should be the only souree of information con

cerning that language. In the terminology of [Ashcroft], it should be 

used prescriptively rather than descriptivély. 

Formal definitions should be based on well-founded and well-developed 

mathematica! theory. The availability of such theory facilitates both 

language design and derivation of additional information about the 

defined objects. 
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Overspecificatien should be avoided. Language definitions often contain 

'too much irrelevant detail, which makes it difficult to isolate the 

essential properties. 

As a special case of the preceding principle, implementation bias 

should be avoided. Language constructs are often designed with a 

particular implementation in mind, which pervades their formal defini

tion. As in the previous case this makes it difficult to isolate the 

essential properties of the constructs, but it may also block the way 

to completely different and unenvisaged implementations. 

Last but not least, we should keep in mind that programming languages 

are artefacts and that we are free to design them in such a way that 

they obtain a simple syntactic and semantic structure. 

Let us now turn to the question what formalisms to use in our compiler 

correctness project. From the preceding discussion it will be clear that 

existing formalisms only partially conform to the principles we have 

formulated. The context of the project does not allow for development of 

new formalisms with supporting theor~, which is a task of formidable size 

and complexity. Therefore we will content ourselves with adaptation of 

existing formalisms by means of simplification, providing better founda

tions, etc •• 

As far as context-dependent syntax i~ concerned, most of the formalisms 

proposed, such as van Wijngaarden grammars [van Wijngaarden], production 

systems [Ledgard], dynamic syntax [Ginsburg], offer little opportunity for 

adaptation in the sense mentioned above. The best candidate is the metbod 

of attribute grammars [Knuth], which has proven to be very useful in com~ 

piler construction, but which contains too much implementation-oriented 

aspects for language definition. In chapter 2 we will develop a version of 

attribute grammars which is primarily aimed at language definition and 

which is free from implementation considerations. 

Selection of a suitable semantic definition metbod is more complicated. 

In the literature on program semantics there has emerged a kind of tricho

tomy into operational, denotational,1 and axiomatic methods. Roughly 

speaking, these methods can be characterized as fellows: 
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Operational methods relate the meaning of programs to state transitions 

of a more or less abstract machine; see e.g. [Wirth 1, Wegner]. 

In denotational semantics thé meanings of language constructs are 

explicated in terms of.mathematical objects like functions. The main 

part of a denotational language definition consists of a set of 

semantic equations. The underlying theory guarantees existence of 

solutions of these equations; see e.g. [Stoy, de Bakker]. 

Axiomatic methods are based on the fact that a set of states of a 

computation can. be characterized by a logical formula in terms of 

program variables. The meaning of a language construct, especially a 

statement, can be defined by means of a relation between such formulae. 

[Floyd, Hoare I, Dijkstra 2]. 

In the literature the opinion prevails that operational, denotational and 

axiomatic methods are most suited for implementers, language designers, and 

programmers, respectively. In our opinion this is a misconception, at least 

as far as suitability for implementers is concerned. In the computational 

models of operational definitions too many implementation decisions have 

already been made, and too much irrelevant detail has crept in. These 

definitions conflict with the principles of avoiding overspecificatien and 

implementation bias formulated earlier. Because of this we have decided not 

to base our work on operational definitions. Other considerations in the 

choice of a definition metbod have been the following: 

Axiomatic and denotational definitions are the only methods that avoid 

overspecificatien and implementation bias. 

The theory of denotational semantics is well developed. Although the 

metbod is suited for language design based on mathematica! principles 

[Tennent], it has mainly been used descriptively. The fact that 

"everything" can be described denotationally does nbt help to obtain 

simple language designs. 

Axiomatic methods have not often been used as definitions. Usually 

they are considered as a proof system subsidiary to some other defini

tion (operational, denotational, or informal). This somewhat secundary 

status conflicts with the original aims of [Hoare 1, Dijkstra 2]. 
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Some early experiments we have taken, see e.g. [Hemerik], suggested 

that implementation proofs based on axiomatic definitions would be 

simpler than proofs based on denotational definitions. 

The claim that axiomatic definitions provide sufficient information to 

derive implementations from has never been justified in practice. The 

literature contains hardly any references on this subject. 

These considerations have led us to the decision to base our work in com

piler correctness on an axiomatic method. Of those methods, predicate 

transfermers [DijkstFa 1, Dijkstra 2] provided most grip on the subject. 

But even though this method has been developed sufficiently for programming 

purposes, its use in compiler construction required a more elaborate 

theoretica! framework, to the extent that it has become one of the main 

topics of this thesis. 



CHAPTER 2 

FORMAL SYNTAX AND THE KERNEL LANGUAGE 

2.0. Introduetion 

In chapter I we have formulated some principles regarding formal 

definition of programming languages. In this chapter we will apply 

these principles to the formal definition of the syntax of the kernel 

language. Our aim is to investigate how the syntax of a programming 

language can be specified in a manner that is devoid of implementation 

aspects. The discussion is based upon two well-known (though not 

always well-understood) formalisme, viz. context-free grammars and 

attribute grammars. 

Insection 2.1 we first recollect some definitions concerning context

free grammars and related notions, and we describe the way in which we 

will present context-free grammars in the remainder of this thesis. 

Subsequently, we point out how even in the case of such a simple and 

elegant formalism implementation concerns may easily creep in and 

influence both the definition and the definiendum. The main purpose of 

this section, however, is to prepare for the discuesion of attribute 

grammars in section 2.2, which proceeds along similar lines. Tradi

tional definitions of attribute grammars have been very implementation 

oriented, and the language definitions in which they have been used 

even more. Insection 2.2 we present a'definition of attribute gram

mars that is primarily aimed at language specification, and that is 

free of implementation considerations. The addition of implementation 

considerations relates our version to the traditional version. 

Finally in section 2.3 the formalism is applied to the syntax of the 

~ernel language, resulting in a clear and concise language specifica

tien. 

At a first superficial glance it may seem that this chapter does not 

contain much news, since attribute grammars have been used before to 

define the syntax of programming languages. The novelty mainly resides 

in the separation of the implementation concerns from the aspects 

13. 
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essential to language specification, and in the simplicity resulting 

from it. 

"Qu on ne di fe pas que Je n ay rien dit de 
nouueau; la difpofition des matieres eft 
nouuelle." 

Pascal, Pensées, 22. 

2.1. Context-free grammars 

2.1.1. Definition of context-free grammar and related notions. 

Definition 2.1 {context-free grammar} 

A context-free grammar G is a 4-tuple (VN,VT,P,Z), where 

VN is a fini te set. 

- VT is a fini te set. 

- VN nvT = 0. 
is a finite * p subset of VN x (VN u VT) • 

z <- VN. 

D 

VN is the nonterminal vocabulary of G. 

VT is the terminal vocabulary of G. 

VN u VT is the vocabulary of G. 
p is the set of production rules of G. 

z is the start symbol of G, 

Definition 2.2 {>>, +>>, *>>} 

Let G = (VN,VT,P,Z) be a context-free! grammar, and let V = VN u VT. 

On v* the relation >> is defined by: 

For all A € VN' a,B,y E v*: 

BAy >> Bay fif (A,a) E P • 

The relation +>> is the transitive closure of >>, 

The relation *>> is the reflexive and transitive closure of >>. 

D 
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Definition 2.3 {L, language generated by a cfg} 

Let G = (VN,VT,P,Z) be a context-free grammar, and let V = VN u VT. 

* * I. The function L: V + P(VT) is defined by: 

For all V E v*: LG(V) = {w E v; I V *>> w}. 

2. The language generated by G, denoted L(G), is the set L(Z). 

0 

Informally, a string w E v; is an element of L(G) if it can be obtained 

by means of a systematic rewriting process on elements of v* that 

begins with the start symbol Z and in which repeatedly a left-hand part 

of a production rule is replaced by a right-hand part until no non

terminal remains. The essentials of this rewriting process can be 

recorded by means of a derivation tree. The notion of a derivation tree 

is formalized by the following three definitions which are relative to 

a context-free grammar G = (VN,VT,P,Z). 

Definition 2.4 {derivation tree} 

The predicate D(t,X) {t is a derivation tree with root X} is defined 

recursively by 

D(t,X) ~ (X E VT and t X) 

or 

(XE VN and (! x1, ••• ,Xn,t 1, .•• ,tn 

(X,<X 1, ••• ,Xn>) EP and 
n 
A D(t. ,X.) and 

i=l ~ ~ 

t = (X,<t 1, ••• ,tn>) 

) . 
DT is the set of all derivation trees, i.e. DT { t I (E x I 0 ( t ,X))}. 

0 

Definition 2.5 {frontier} 

* The function f: DT + VT {frontier of a derivation tree} is defined 

recursively by 
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f(t) = <t> if t E VT 

f((X,<t 1, ... ,tn>)) = f(t 1) e ... e f{tn) 

Jhere e is the concatenation operator. 

0 

Definition 2.6 {full derivation tree for a string} 

The predicate FD: DT x v; ~ Bool is defined by 

FD(t,w) * D(t,Z) and f(t) = w . 

0 

Theorem 2.7 

Let G = (VN,VT,P,Z) be a context-free grammar, and let V = VN u VT. 

I. For all XE V, wE v;, (X *>> w) * t E DT I D(t,X) and f(t) = w). 

2. For all wE v;, (wE L(G)) *(~tE DT I FD(t,w)). 

0 

Proof 

Omitted. 

0 

Definition 2.8 {ambiguity} 

A context-free grammar G = (VN,VT,P,Z) is ambiguous fif 

0 

* (~ w E VT (! t E DT I FD(t,w)) > !) • 

2.1.2. Presentation 

The definitions given insection 2.1.1 are sufficient to characterize 

context-free grammars as formal systems. For practical purposes, 

however, it will be convenient to use a somewhat more redundant nota

tion and to "prune" the less interesting parts of a large grannnar. In 

this section we will describe the way in which we will present context

free grammars in the remainder of this thesis. 

Often a considerable part of a context-free grammar is devoted to the 

definition of rather uninteresting constructs like identifiers, 



17. 

constants, etc. The syntax of identifiers e.g. requires the following 

production rules 

Id +Letter 

Id + Id Letter 

Id + Id Digit 

Letter + a 

Letter + z 

Digit + 0 

Digit ..,. 9 

merely to define identifiers as sequences of letters and digits 

starting with a letter. In order to shorten the grammar we can perform 

the following transformations. 

Remove the production rules for Id, Letter and Digit from the set 

of production rules. 

Remove the nonterminals Letter and Digit from the set of non

terminals. 

Introduce two subsets of VT by 

Letter 

Di git 

{"a", .•• ,"z"} 

{"0", ••• ,"9"} 

Extend the definition of the relation >> with: 

For all wE Letter(Letter u Digit)*: Id >> w • 

The net effect of these transformations is a significant reduction of 

the number of production rules, whereas L(Id) remains the same (viz. 

Letter(Letter u Digit)*). In the transformed grammar the nonterminal Id 

acts like a terminal. We will call such nonterminals pseudo terminals. 

We will now describe how context-free grammars (transformed as above) 

will henceforth be presented. 
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Nonterminals will be denoted by sequences of letters and digits 

starting with a capita! letter. The set VN will be given by 

enumeration; e.g. 

VN {Stat,Var,Expr,Id} 

The set VT of terminals will be defined as the union of a finite 

number of sets, each of which is given by enumeration. In these 

enumerations the individual terminal symbols will be enclosed 

between quotes; e.g. 

Letter {"a","b","c"} 

Digit {"0","1"} 

Token = {": =", "+", n*n, "div":} 

VT • Letter u Digit u Token 

The set of pseudo terminals (a subset of VN) will be given by 

enumeration. The corresponding sublanguages will be given as set

theoretica! expressions; e.g. 

L(Id) = Letter(Letter u Digit)* 

The set of production rules will be given by enumeration. Each 

element of the enumeration is presented in the format: a rule 

number, an element of VN, the symbol ::=, an element of v*, the 

symbol •· 

E.g. 

I. Prog : : = I [ Dec Stat ]I • 

The first example of a context-free grammar presented in the way above 

is given in section 2.2.3. 

2. 1.3. Implementation concerns 

A language specificatien by means of a context-free grammar 

G = (VN,VT,P,Z) can be interpreted in two more or less complementary 

ways. The first interpretation, the classica! one strongly suggested 

by definition 2.3, is that of a pure generative system by means of 

which any sentence of the language L(G) can be generated. The second 

interpretation, justified by theorem 2.7.2, is that of an accepting 



mechanism: a given string w E v; is an element of L(G) fif it is 

possible to construct a full derivation tree t: FD(t,w). 
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From a formal point of view the two interpretations are equivalent but 

for practical purposes important differences may result. The second 

interpretation is closely related to the problem of constructing a 

parser for L(G), a mechanism that attempts to construct at: FD(t,w) 

* for any w E VT it receives as input. Several efficient parsing methods 

exist, such as 11(1), SLR(I), LALR(I), but their application usually 

requires the grannnar to be in some special form. The danger with the 

second interpretation is that the language designer presents bis 

grannnar in a form that favours a certain parsing method. Such a pre

mature choice may not only preclude the application of a different 

parsing method, it may also have a detrimental effect on other aspects 

of the formal specificatien and thereby on the language design itself. 

The following example may help to clarify this point. 

Example 

Let us consider the formal specification of a progrannning language that 

contains statements and in which sequential composition by means of ";" 

is one of the structuring mechanisms. Presumably a context-free grannnar 

for this language contains a nonterminal S and some production rules of 

the form S ~ a to define the syntactic category of statements. One of 

those production rules could be 

(1) S-+ S;S 

which expresses that sequential composition of two statements by means 

of ";" results in a statement. Usually such a rule is disallowed 

because it leads to syntactic ambiguities. Instead a new syntactic 

category "statement list" is introduced by means of a nonterminal SL 

and a pair of production rules like 

(2) {SL _,. S 
SL _,. SL;S 

or 

(3) rL .... s 
SL ~ S;SL 
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where the choice between (2) and (3) is often influenced by considera

tions of the kind that (2) reduces the stack size in bottom-up parsers 

or that (3) has no left-recursion. The desire to use an LL(l) parser 

may even lead to the following form: 

j
SL + S RSL 

(4) RSL + c: 

RSL + S RSL 

The disadvantages of (2), (3) and (4) with respect to (l) are obvious: 

more nonterminals and production rules are required to define the same 

language and the simplicity and elegance of (I) are lost. The situation 

becomes even worse when we take other aspects of the formal specifica

tien into account, such as semantics. The semantics of a statement can 

be defined by means of a function f that maps a statement into its 

"meaning" (e.g. a predicate transfarmer or a state transformation). 

Form (l) leadstoa defining clause like f(s 1;s2) = f(s 1) o f(s 2) in 

which syntax and semantics neatly match. Thanks to the associativity 

of function composition the syntactic ambiguity does not result in 

semantic ambiguity. Forms (2), (3) and (4) on the other hand either 

require the introduetion of additional functions for syntactic catego

ries that serve no semantic purpose, or the introduetion of "abstract 

syntax" [McCarthy, BjtSrner] which adds a level of indirection to the 

specification. 

The objection could be raised- that use of form (l) in a language 

specificatien complicates the implementation of that language since 

the ambiguous grammar bas to be transformed into one tbat suits a 

particular parsing method. This is not always true however; e.g. a 

parser generator of the LR-family will generate a parser with a state 

containing the items [S + S;S •] and [S + S 111 ;S]. This state bas a 

shift-reduce conflict for the symbol ";". The conflict can be resolved 

in several ways. Resolving in favour of "reduce" will result in a 

deterministic parser that yields left-associative derivation trees for 

ambiguous constructs; resolving in favour of shift will result in a 

parser that yields right-associative derivation trees. It is also 

possible to resolve the conflict nondeterministically during parsing; 

such a nondeterministic parser may yield any possible derivation tree 



for an ambiguous construct. For none of these solutions any trans

formation of the grammar is required. 

D 
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Earlier we have formulated the general principle that language speci

fications should not be influenced by the requirements of particular 

techniques. Application of this principle in the context of context

free syntax specificatien means that in a context-free grammar used as 

a language specificatien no commitment to a particular parsing metbod 

should be made. The grammar should be in a form that supports the 

definition of semantics, thus promoting simplicity and clarity. This 

does not mean to say that in language design implementation aspects 

should be ignored, however. It may be advantageous to design a language 

in such a way that it belongs to the class of LL(I)-languages, but the 

grammar used in its formal specificatien should first of all be oriented 

towards the specificatien of semantics and not towards the LL(I) parsing 

method. 

2.2. Attribute grammars 

2.2.0. Introduetion 

In sectien 2.1 we have seen that the generation of a string w of the 

language L(G) defined by a context-free grammar G = (VN,VT,P,Z) can be 

considered as a rewriting process on elements of (VN u VT)*. The . 

essential property is that replacement of a nonterminal A by a string 

a satisfying (A,a) E P may be performed regardless of the context in 

which A occurs. Consequently the form of a terminal production of A is 

completely independent of the context in which it occurs. For most 

nontrivial languages however properties of a construct and of its 

context may influence each other. Typical examples of these context

dependent properties are types and collections of definitions in force. 

A popular formalism for the description of context dependencies is 

that of attribute grammars, introduced in [Knuth] and discussed in 

many places in the literature (see [Räihä] for an extensive biblio

graphy). Usually an attribute grammar is viewed as a specificatien of 
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a computation to be performed on derivation trees. The idea is that 

the nodes of a derivation tree for a string can be supplied with 

"attributes" the values of which are determined by functions applied to 

attributes of surrounding nodes. The (partial) order in which these 

evaluations are to be performed is indicated by classifying the attrib

utes as "inherited" or "synthesized" respectively. Most of the litera

ture on attribute grammars is concerned with the design of efficient 

evaluation strategies, the automatic generation of evaluators and 

their use in compilers. 

In the form just sketched attribute grammars have proved to be very 

useful as compiler specifications. They have also been used in language 

definitions. For the latter purpose, however, we re-encounter in a 

magnified form the problem of implementation bias discussed in section 

2.1.3. As with context-free grammars there is the danger of orientation 

towards a particular parsing method for the construction of derivation 

trees. In addition there is the danger of orientation towards a partic

ular evaluation strategy. The fact that by a proper classification of 

attributes as inherited of synthesized an efficient traveraal scheme 

for a "tree-walking evaluator'! can be obtained may be important for 

implementations; for language definitions the only things that matter 

are the relations that hold between attributes of adjacent nodes. For 

the latter purpose we do not need the machinery of computation on 

derivation trees at all; the simple notion of a parameterized produc

tion rule suffices. 

There is still a second kind of overspecificatien involved however. 

The attributes are used to eneode contextual information concerning 

types, collections of defined names, parameter correspondence, etc •• 

Judging from the literature the choice of a suitable formalism in 

which to express these properties appears to be a problem. Approaches 

vary from undefined operations with suggestive names [Bochmann] via 

more or less abstract pieces of program and data structures [Ginsburg] 

to formulations in terms of mathematica! objects like sets, tuples, 

sequences, mappings, etc. [Simonet, Watt]. Even in the latter case 

operations are often only defined verbally due to the fact that it is 

difficult to express them in terms of the chosen domains and their 

standard operations. [Simonet] is a typical example. 
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The essence of the problems mentioned above is that attribute domains 

and operations are defined by giving an implementation of them, either 

in terms of mathematica! objects or in terms of a programming language, 

but in both cases in terms of a model, and such an approach invariably 

introduces too many irrelevant implementation details: it is over

specific. In this respect there is a great analogy with the specifica

tien of abstract data types, or rather: the problem of the specifica

tien of an attribute system is the same as that of the specificatien 

of an abstract data type. In both cases we are not interested in any 

particular model or implementation of the objects and operations. All 

that matters are relations that hold between them and in order to 

determine these all we need is a way to derive them from a given set 

of basic properties. In other words: all we need is a proof system 

with a set of axioms specific to the attribute domains under considera

tion. 

We have now isolated the aspects of an attribute grammar that are 

essential for language definition: a context-free grammar with para

meterized production rules and a proof system to derive properties of 

these parameters from given axioma. Insection 2.2.1 we will develop a 

formal system based on these aspects. Section 2.2.2 deals with the 

presentation of such a system in a readable form. Section 2.2.3 con

tains an example to illustrate various notions and the power of the 

formalism. Section 2.2.4 deals with implementation concerns and relates 

our version of attribute grammars to the traditional version. 

2.2.2. Definition of attribute grammar and related notions 

The first concept we introduce is that of an attribute structure, 

which is very similar to an algebraic specification.of an abstract 

data type in the sense of [Goguen, Guttag]. lts most important com

ponent is a set AX of axioms. The expressions occurring in these 

axioms are formed from a set B of variables and a set F of function 

symbols; nullary function symbols serve as constants. Each expression 

bas a certain domain ("sort" in the terminology of [Goguen] or "type 

name" in programming language terminology) which is determined recursi

vely from the signature sf of function symbols and the signature sb of 
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variables. The set of domains D is also a component of the attribute 

structure. Attribute structures are defined in definition 2.9. 

The attribute structures used in attribute grammars are of a special 

kind called boolean attribute structures. They contain the distin

guished domain BooZ corresponding to boolean expressions and they are 

defined relatively to a logic L, which we assume to have been pre

defined. Boolean attribute structures are defined in definition 2.10. 

We areaware of the fact that definitions 2.9 and 2.10 still contain 

some gaps that might cause problems in more fundamental studies. For 

our purposes, which are of a more practical nature, these definitions 

will turn out to be sufficiently precise. 

Definition 2.9 {attribute structure} 

An attribute structure A is a 7-tuple (D,F,B,sf,sb,se,AX) where 

0 

D is 

F is 

B is 

sf is 

sb is 

se is 

AX is 

D is a set. 

F is a set. 

B is a set. 

B n F = 1'. 
sf E F +D * x D. 

sb .;: B + D. 

Let E be the set of expressions over elements of F and B {see 

note I below}. 

se E E + D. 

AX is a set of formulae of the form e 1 
that se(e 1) = se(e2). 

the set of domains of A. 

the set of function symbols of A. 

the set of attribute variables of A. 

the function signature of A. 

the variable signature of A 

the expression signature of A. 

the set of nonlogical axioma of A. 
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Note I 

We will not go into the details of the syntactic structure of elements 

of E or the definition of se. We assume that se has been defined by 

means of sf, sb, and recursion on the syntactic structure of expres

sions in the usual way. 

E.g.: for all b <: B: se(b) = sb(b). 

for all f E: F, eI' ••• ,en E: E: 

if sf(f) = (seo<e 1, ••• ,en>,d), then se(<f,e 1, ••• ,en>) 

D 

Note 2 

For the elements of AX universal quantification over all attribute 

variables occurring in them is assumed. 

D 

Note 3 

d. 

We assume that some usual classical first order predicate logic L has 

been defined previously. 

D 

Definition 2.10 {boolean attribute structure} 

An attribute structure A= (D,F,B,sf,sb,se,AX) is a boolean attribute 

structure fif 

D 

D contains the distinguished domain Bool 

F contains the function symbols of L 

for each function symbol of L: sf specifies the usual signature 

{i.e. sf(true) = (€,Boot)~ sf(A) = (<Bool,Bool>,Bool), etc.} 

for each a € AX: se(a) = BooZ. 

In the forthcoming sections we will often need the set of all expres

sions with a certain domain. This need motivates the following defini

tion: 

Definition 2.11 {~, set of expressions with domain D} 

For all D E D, D denotes the set of expressions e over F u B such that 

se(e) = D. 

D 
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Definition 2.12 {attribute grammar} 

An attribute grammar AG is a 6-tuple (VN,VT,Z,A,sv,R} wbere 

D 

VN is a fini te set. 

VT is a fini te set. 

VN n VT = 0. 
z EiVN. 

A is a boolean attribute structure, say A= (D,F,B,sf,sb,se,AX). 

* sv E VN ~ D such that sv(Z) = e. 

Let ANF = {(v,~) E VN x B* I sv(v) = sbox}. 

Ris a finite set of pairs (rf,rc), where 

* rf E ANF x (ANF U VT) 

re is an expression over the attribute variables in rf and 

over F such tbat se(rc) = Bool. 

VN is the nonterminal vocabul&ry of AG. 

·VT is the terminal vocabulary of AG. 

Z is the start symbol of AG. 

sv is the nonterminal signature of AG. 

ANF is the set of attributed nonterminal forms of AG. 

R is the set of grammar 

If (rf,rc) E R, then 

of AG. 

rf is the rule form of (rf,rc) 

re is the rule condition of (rf,rc). 

An attribute grammar can be seen as a context-free grammar with para

meterized nonterminals and production rules. Like a context-free 

grammar it contains a set VN of nonterminals, a set VT of terminals, 

and a start symbol Z E VN. Unlike context-free grammars, the nonter

minals have some parameters - "attributes" - associated with them. For 

each nonterminal the number and doma~ns of its attributes are deter

mined by the nonterminal signature sv. Likewise, production rules are 

parameterized. Grammar rules, as we call them, are pairs (rf,rc) where 

rf is a rule form and re is a rule condition. From a rule form produc

tion rules can be obtained by means of uniform substitution of expres

sions for the attribute variables. The number and domains of expres

sions should be in accordance with the signature of nonterminals 
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(definition 2.13). Nonterminals with expressions substituted for 

attribute variables are called attributed nonterminals (definition 

2.14). The process just outlined requires a definition of substitution 

in rule forms etc. (definition 2.15). The essential property of 

attribute grammars is that the expressions to be substituted in a rule 

form rf must satisfy the rule condition; stated more precisely: that 

the rule condition with expressions substituted for attribute variables 

is derivable from the axioms of the attribute structure (definition 

2.16). 

The short summary given above is intended as clarification for defini

tions 2.12-2.16, The remaining definitions are very similar to those 

for context-free grammars. 

Definition 2.13 {es, expression sequences corresponding toa domain 

sequence} 
* For all d € D : 

es(~) 

0 

{e ~is a sequence of expressions over F, 

dom(~) =dom(~), 

d = se o ~ 

} 

Definition 2.14 {AN, attributed nonterminals} 

AN = {(v,~) I v € VN and e € es(sv(v))} , 

Definition 2.15 {substitution in rule conditions, attributed nontermi

nal forms, terminals, rule forms} 

Let x= <x1, ••• ,xn> € B* such that the xi are pairwlse different. 

Let e = <e 1, ••• ,en> € es(sbox). 

I. For all rule conditions re, re~ is defined as usual. 
e 

where, for j: I $ j $ k: ij is such that xij = yj. 
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3 F 11 V 
,X 

• or a v E T: v~ = v. 

(u x <u x u ~>) 
0 !• I ë•···· k e 

0 

Definition 2.16 {pr, set of production rules derivable from a grammar 

rule} 

For all r = (rf,rc) E R: 

Let x E B* contain each attribute variabie of rf exactly once. 

pr(r) 

0 

No te 

rf~ 
e 

x 
e E es(sbo~) and AX ~L re~ 

x In definition 2.16 we used the notatien AX r1 rcë for provability in 

L of re from AX. In the sequel we will abbreviatë this to r re~. This 
e 

should cause no confusion as other oc.currence of the symbol "!-" will 

always be indexed. 

0 

Definition 2.17 {>>, +>>, *>>} 

* For all A E AN, a,8,y E (AN u VT) : 

8Ay » 8ay fif (! r E R I (A,a) E pr(r)) • 

+>> is the transitive ciosure of >>. 

*>> is the reflexive and transitive ciosure of >>, 

0 

Definition 2.18 {L, language generated by an attribute grammar} 

1. The function L: (AN u VT)* ~ P(v;) is defined by: 

* * I For all v E (AN u VT) : L(v) = {wE VT v *>> w}. 

2. The language generated by AG, denoted L(AG), is the set L((Z,e)). 

0 

It will be clear that the power and limitations of an attribute grammar 

are determined by its attribute structure and its rule conditions. It 
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is not hard to prove that the formalism is sufficiently powerful to 

define any recursively enumerable language. Without further precautions 

it is even possible to define undecidable languages. We do not intend 

to impose further restrictions however. In subsequent chapters it 

will become clear how attribute grammars can be used to define decid

able languages, not only in a theoretica! but also in a practical sense. 

Just as with context-free grammars the essentials of the derivation of 

a string w E L(AG) can be recorded by means of a tree which we will 

call an attributed derivation tree. The notion of an attributed deriva

tion tree is formalized by the following definitions, which are very 

similar to definitions 2.4-2.6. 

Definition 2.19 {attributed derivation tree} 

The predicate AD(t,X) {t is an attributed derivation tree with root X} 

is defined recursively by: 

AD(t,X) * (X E VT and t X) 

or 

(XE AN and (E x
1

, ••• ,x ,t
1

, ••• ,t I - n n 

rE R I (X,<X
1

, ••• ,Xn>) E pr(r) 
n 

and 1\ AD(t.,X.) 
-- i=l ~ ~ 

and t = (X,<t 1 , ••• ,tn>) 

ADT is the set of all attributed derivation tree, i.e. 

ADT = {t_i {Ex I AD{t,X))} 

D 

Definition 2.20 {frontier} 
* . The function f: ADT + VT ~s defined recursively by: 

f(t) = <t> if t E VT 

f((X,<t 1, .•• ,tn>)) = f(t 1) $ ••• $ f(tn) • 

D 
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Definition 2.21 {full attributed derivation tree for a string} 

* On ADT x VT the predicate FAD is defined by: 

FAD(t,w) ~ AD(t,Z) and f(t) = w . 

0 

Theorem 2.22 

(X *» w) ~ 

* 2. For all w € VT: 

t " ADT I AD(t,X) and f(t) = w) • 

w" L(AG) * (E t " ADT I FAD(t,w)) 

0 

Proof 

Omitted. 

0 

2.2.2. Presentation 

As we did for context-free grammars insection 2.1.2, we will in this 

section describe tbe format in wbich attribute grammars will be pre

sented henceforth. 

Let AG 

let A 

(VN,VT,Z,A,sv,R) be an attribute grammar, and 

(D,F,B,sf,sb,se,AX) be its attribute structure. 

- D - the set of domains - will be given by enumeration. The domains 

will be written in italics, e.g.: 

{Name,Type,Env}. 

B and sb - attribute variables and their signature - will be given 

like variable declarations in certain programming languages. E.g. 

ifB Name, we 

write: 
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F, sf and AX - function symbols, their signature and the non

logica! axioms - will be given in the style of algebraic Specifi

catiens [Goguen, Guttag]. I.e. if f E F and sf(f) = (<D1, .•. ,Dn>,D) 

we write it in the form f: D1 * ••• * Dn + D. Function symbols.may 

be in various styles ("mixfix"): the places of the arguments are 

indicated by dots. E.g.: 

[ . . ] 
' D 

Narnes * Type + Deas 

• \Q; • Deas * Deas + Deas 

Name * Type * Deas + BooZ. 

For the axioms universa! quantification over all free variables is 

assumed. Function symbols and axioms are grouped according to 

their "domain of interest" (cf. (Glj.ttag]). 

In some cases it is more convenient to define the set D of all 

expressions e with se(e) = D; e.g.: 

Name= Letter(Letter u Digit)* 

We will omit the axioms for certain well-known domains such as 

Int, the domain of integer expressions. 

se - the signature of expressions - will not be mentioned explic

itly. 

VN and sv - the nonterminals and their signature - will be given 

by enumeration. If X € VN and sv(X) = <D1, ••• ,Dn> we write 

X<D1, •.• ,Dn>. E.g.: 

{Id <Name>,Expr <Env,Prio,Type>, ••• } 

VT- the terminals- will be given as in sectien 2.1.2. 

The elements of R - the grammar rules - will be presented in the 

format: a rule number, an attributed nonterminal form, the symbol 

::=, a sequence of attributed nonterminal forms and terminals, 

the symbol •, a possibly empty sequence of formulae with domain 

BooZ. The conjunction of these formulae is the rule condition of 

the grammar rule. E.g.: 
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No te 

4. Decs <d> ::= Ids <ns> : Type <t> • 

d = [ns,t]D 

As insection 2.1.2 we will use pseudo-terminals in order to 

compress the grammar. Suppose that X <D> € VN. There will be a 

certain correspondence between an attribute d € D and the set 

{w € v; I X <d> *>> w}. That correspondence can be described by 

means of arelation RonD x v;. Similarly to section 2.1.2 the 

attribute grammar can be transformed by: 

removal of the grammar rules for X from R 

definition of a relation R on D x * VT 

extension of the relation >> by: 

for all d E D, w * 
€ VT: X <d> >> w fif dRw 

The net effect of these transformations is that X <d> can be 

considered as an attributed terminal, and that L(X <d>) = 
= {w € v; I dRw}. In the presentation we will only mention the 

sets L(X <d>) that differ from 0. 

Some other notations, such as that for L {see definition 2.18} will be 

adapted accordingly. I.e. if X <D 1, •• ,,Dn> E VN and, for i: l ~ i ~ n: 

d. € D., we write L(X <d
1

, ••• ,d >) insteadof L((X,<d 1, ••• ,dn>)). 
1 -1 n 

In addition we will write L(X <d
1

, ••• ,D., ••• ,d >) for 
1 n 

0 

2.2.3. Example: Satisfiable Boolean Expresslons 

In this section we present an examplf\ of an attribute grammar in order 

to illustrate some of the notions introduced in the previous sections, 

to illustrate the power of the formalism, and to give an impression of 

the parsing problem. As such it is also an introduetion to section 

2.2.4, which deals with implementation concerns. Not all aspects of 

attribute grammars are illustrated bere. We pay no attention to axiom

atic specifications; the first application thereof can be found in 

section 2.3.2. In this example we on1y make use of some standard 
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domains. Apart from Bool we use Nat, which corresponds to the language 

of natural numbers, and B, which corresponds to some language of set 

theory in which partial functions f~om natural numbers to booleans can 

bedescribed by expressions like {(l,true),(2,false),(3,false)}. We. 

consider these languages, their function symbols and axioms as given. 

A well-known problem in complexity theory is the satisfiability problem 

(Cook 1]: Let w be a boolean expression in conjunctive normal form over 

the boolean variables x 1, ••• ,xn' i.e.wis a conjunction of a number of 

factors each of which is a disjunction of the variables x 1, ••• ,xn or 

their negations, e.g. (x
1 

v x2 v x
3

} A (-,x
1 

v ..,x
2 

v 1x
3
). Findan 

assignment of boolean values to x
1

, ••• ,xn such that n evaluates to true. 

It is not hard to construct an attribute grammar that generates the 

language of all satisfiable boolean expressions in conjunctive normal 

form. As starting point we take the following context-free grammar 

G = (VN,VT,P,Z): 

VN = {Z,C,D,I} 

Terminals 

{"x"} Letter 

Digit {"0","1","2","3","4","5","6","7","8","9"} 

VT =Letter U Digit u {"(",")","A","v","ï"} 

{I} 

L(I) = Letter Digit+ 

Start symbol 

z 

I. z : := c. 
2. c : := c A c. 
3. c ::= (D) • 
4. D : := D V D • 
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5. D : := I • 

6. D ::= ïl • 

L(G) is the language of boolean expressions in conjunctive normal form. 

From G we will now construct an attribute grammar AG which rastricts 

L(G) to satisfiable expressions over x 1, ... ,xn (n ~I), With the pseudo

terminal I we associate an attribute i E Nat, its index, such that 

L(I <i>) = {xv E Letter Digit+ I v is decimal representation of i}. 

With the nonterminals C and D we associate an attrtbute b E which 

corresponds to a mapping from indices to boolean values. The correspon

dence between an attributed nonterminal X <b> and each of its terminal 

productions v is, that the set of indices of variables contained in v 

is dom(b), and that assignment of b(i) to x., for all iE dom(b), 
l. 

satisfies v. 

AG is given as follows: 

Domains 

{Bool,Nat,B} 

Attribute variables 

i: Nat; 

b,b 1,b2: B, 

Nonterminals 

VN = {Z,C <B>,D <B>,I <Nat>} 

Terminals 

Letter 

Digit 

{"x"} 

{"0","1","2","3","4","5","6","7","8","9"} 

VT =Letter u Digit u {"(",")","A","v","ï"} 

Start symbol 

z 

\ 
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Pseudo-terminals 

{I <Nat>} 

For all i E Nat: 

L(I <i>) = {xv E Letter Digit+ I v is decimal representation of i} . 

Grammar rules 

I. Z : := C <B> • 

(! n: Nat n > 0 dom(b) {l, ... ,n}) 

2. c <b> : := c <b> 1\ c <b> • 

3. c <b> : :: (D <b>) • 
4. D <b> : := D <b 1> V D <b2> • 

dom(b 1) n dom(b2) lP 

dom(b 1) u dom(b2) dom(b) 

b/dom(b 1) = b 1 ~ b/dom(b2) bz 

s. D <b> : := I <i> • 

b {(i,true)} 

6. D <b> : := .,I <i> • 

b = {(i,false)} 

The picture on page 36 corresponds to an attributed derivation tree t: 

FAD(t,(x
1 

v x2 v x
3

) A (-,x1 v -,x2 v -,x3)). We can see from this tree 

that the expression (x 1 v x2 v x
3

) A (-, x1 v -, x2 v ..., x3) is satisfied 

by the assignment x 1,x2 ,x3 := true,false,false. 

Several important observations can be made with respect to this example. 

The first observation is that the attribute grammar is ambiguous, i.e. 

there exist other attributed derivation trees for the same expression. 

E.g. the node marked with * might equally well be labelled with either 

of the attributed nonterminals D <{(2,f),(3,t)}> or D <{(2,t),(3,f)}>. 

This ambiguity is a consequence of the fact that the rule condition of 

grammar rule 4 can be satisfied in several ways that lead to identical 

terminal strings. In fact there exist even more attributed derivation 

trees for the same expression, due to the ambiguity of the context-free 

grammar G. 



z 

I 
C<{(l,t),(2,f),(3,f)}> ------r--

C<{(l,t),(2,f),(3,f)}> 

D<{(l,t),(2,f),(3,f)}> D <{ (I, t), (2, f), (3, f)} > 

* 
D<{(l,t)}> D<{(2,t),(3,t)}> D<{(I,f)}> D <{ (2,f), (3,f) }> 

D<{(2,f)}> D<{(3,f)}> 

r Î1<2> Î1<3> 

D<{(2,t)}> D<{ (3,t) }> 

r I 
I <I> I <2> I <3> 

I 
XI V x2 V x3 A V V 

{For comrnent on the node marked with a "*" see page 35} 

{"true" and "false" have been abbreviated to "t" and "f" respectively} 
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The secoud observation concerns the complexity of the parsing problem 

for this example. Since L(AG) is the set of all satisfiable boolean 

expressions it follows that satisfiability of a string w can be deter

mined by ~n attempt to construct at: FAD(t,w). Since the satisfiabil

ity problem is NP-complete it fellows that for this example the 

parsing problem is NP-complete. 

2.2.4 Implementation concerns 

Definitions 2.12-2.21 and theorem 2.22 have been presented in a way 

closely resembling definitions 2.1-2.6 and theerem 2.7 in order to 

stress the analogies and differences with context-free grammars. 

Definitions 2.12-2.18 embody a generative interpretation of attribute 

grammars, whereas theerem 2.22.2 justifies the accepting interpretation 

that a string w belengs to L(AG) fif a t: FAD(t,w) can be constructed 

for it. Here we will concern ourselves with additional aspects that 

make such a construction practically feasible and that relate our view 

of attribute grammars to the more traditional view. 

Let us first present some definitions that enable us to relate the 

parsing problem for attribute grammars to that for context-free 

grammars. All these definitions are relative to an attribute grammar 

AG= (VN,VT,Z,A,sv,R). 

Definition 2.23 {bs, base symbol} 

bs E (ANF u AN u VT) + (VN u VT) such that 

for all (v,~) E (ANF u AN): bs ((v ,~)) 

for all V E VT: bs(v) = v. 

0 

Definition 2.24 {br, base rule} 

* br E R + VN x (VN u VT) such that 

for all r = ((u0 ,<u 1, ••• ,uk>),rc) ER: 

0 

=V 
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Definition 2.25 {base grammar} 

The base grammar of AG is the 4-tuple (VN,VT,R',Z), where 

R' = {br(r) I r E R}. 

0 

Definition 2.26 {bt, base tree} 

Let ADT be the set of all attributed derivation trees of AG. Let DT be 

the set of all derivation trees of the base grammar of AG. 

bt E ADT + DT such that 

for all v E VT: bs(v) = v 

D 

The definitions above suggest a way to attack the parsing problem for 

attribute grammars. Let AG be an attribute grammar and let G be its 

base grammar. In order to construct a t: FAD(t,w) for a string w E VT' 

first construct at': FD(t',w). Second,; augment the nodesof t' with 

attributes in such a way that the rule conditions of the corresponding 

grammar rules are satisfied. If this process succeeds the result is a 

t: FAD(t,w) and bt(t) = t'. 

The complexity of the attribution process can be reduced by imposing a 

partial order on attribute evaluations as follows: Each attribute 

position of an attributed nonterminal is classified as either inherited 

or synthesized. In the presentation of the attribute grammar this can 

be indicated by a '-' or '+' respectively. A rule form which first 

appeared as 

then appears as 

::= V
1
<-i

1
,+s

1
> ••• V <-i ,+s > • - - n -n -n 

where for each j: 0 :<: j S: n the couple i.,s. is a "partition" of x •• 
-J -J -J 

The corresponding rule condition P(~o····•!n) can be transformed to an 

evaluation rule by writing it as: 
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which is to he interpreted as: "determine s0,i 1, ••• ,i from i 0 ,s 1, ••• ,s - - -n - - -n 
such that P(i0 ,~0 , ••• ,in'~n) holds. We see that the synthesized attrib-

utes from the left-hand part and the inherited attributes from the 

right-hand part must he computed from the other attributes. In order to 

avoid conflicts some well-formedness conditions have to be imposed. An 

occurrence of an attribute variabie among io•~ I' ... '~n is called a 

~~==~ occurrence; among !o•it••··•in it is called an applied occur

rence. In each grammar rule each attribute may have at most one de

fining occurrence. Furthermore, to ensure that the implied evaluation 

order is a partial order indeed there may be no cycles. Algorithms to 

verify the absence of cycles have been described in [Knuth, Jazayeri]. 

Thus extended our notion of attribute grammar comes quite close to the 

traditional notion. There is an important difference in the form of 

the evaluation rules, however. In our version evaluation rules are of 

the form 

(1) z: P(~,z) , where P(~,z) is a condition, 

whereas the traditional form is 

where F is a function. 

Form (2) suffices for traditional applications as intended by Knuth 

[Knuth] where the sole purpose is to compute a function of the strings 

of a context-free language. The application of attribute grammars as 

language acceptars however binges on the fact that rule conditions may 

or may nothave a solution. That fact is easily catered for by form (l), 

whereas form (2) would require provisions to deal with partial func

tions, such as domain restrictions or error values, which soon pro

liferate through the entire grammar. Many publisbed attribute grammars 

show deficiencies in this respect, 

Last but not least there is the important aspect of correct implementa

tions. We reeall from chapter 0 that we have set as our goal the 

derivation of a correct compiler from formal definitions of both souree 

and target language. A major subtask is the construction of a correct 

acceptor for the language defined by an attribute grammar. We will not 

concern ourselves with evaluation strategies; enough is known about 

that problem. What remains is the construction of the code for the 
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individual attribute evaluations, a significant part of the total 

compiler code. Our version of attribute grammars supports this task in 

two respects: 

the rule conditions of the grammar rules may be used directly as 

post-conditions for the code to be constructed; 

since attribute structures correspond to algebraic specifications 

of abstract data types all of the programming methodology avail

able in that field can be applied directly to the implementation 

of attribute domains and their associated operations. 

Here we will not elaborate on these as,pects. They will be treated 

extensively in a subsequent report [Hemerik]. 

Above we have described how by additidn of "implementation aspects" 

from our version of attribute grammar an attribute grammar in the 

traditional sense may be obtained. These aspects have often unneces

sarily influenced and complicated language specifications. We hope to 

have made clear that they can, and should, be separated from language 

definition aspects. 

2.3. Formal syntax of the kemel language 

In this sectien we will develop the formal syntax of the kemel 

language. In sectien 2.3.1 we present as first approximation a context

tree grammar. In section 2.3.2 this grammar is extended to an attribute 

grammar that captures all context dependent properties as well. 

2.3.1. A context-free grammar for the kernel languages 

The kemel language is much like the language fragment contained in 

[Dijkstra 2]. Roughly speaking it consistsof the following ingredients: 

the statements abort, skip, multiple assignment, alternative 

statement, repetitive statement, bleek; 

integer and boolean expressions; 

explicit deelaratien of variables. 



With the exception of blocks and declarations the constructs have the 

same appearance as in [Dijkstra 2]. Variable declarations are similar 

to those in Pascal. The rest of the grammar should speak for itself. 

Nonterminals 

VN = {Prog,Block,Decs,Stat,Type,Ids,Id,Vars,Var,Exprs,Expr,Gcs, 

Dop,Hp,Con} 

Terminals 

Letter {"a", ••• ,"z"} 

Digit {"0", ••• ,"9"} 

Opl {"+", "-", "-."} 

Op2 {"*","+","-","=",":f","<",":$:",">",";;:::","A","v","=>","~"} 

Typesym {"int","bool"} 

Consym {"true","false"} 

Statsym {"skip","abort"} 

Sym {"I[","] l","l",",",":",";", "0","+",":=","(",")", 

"if","fi","do","Od","var"} 

VT Letter u Digit u Op! u Op2 u Typesym u Consym u Statsym u Sym. 

Start symbol 

Prog 

Pseudo terminals 

{Id,Dop,Hop,Con,Type} 

L(Id) = Letter(Letter u Digit)* \ (Typesym u Consym u Statsym) 

L(Dop) 

L(Hop) 

L(Con) 

Op2 

Op! 
.. + D1.gl.t u Consym 

L(Type) = Typesym 

41. 
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\ 

Production rul es 

I. Prog .. Block • 

2. Block : := I [ var Decs Stat l I • 
3. Decs ::= De es • Decs • 
4. Decs ::= Ids Type • 

s. Ids : := Ids • Ids • 
6. Ids : := Id • 

7. Stat ::= abort • 
8. Stat ::= skip • 

9. Stat : := V ars := Exprs • 
10. Stat : != Stat Stat • 
IJ. Stat : := if Gcs fi• 

12. Stat : := do Gcs od • 

13. Stat : := Block • 

14. V ars : := V ars 
' 

V ars • 
IS. V ars .. Var • 

16 Exprs : := Exprs ' Exprs • 

17. Exprs ::= Expr • 

18. Expr .. Expr Dop Expr • 

19. Expr ::= Uop Expr • 

20. Expr : : == ( Expr ) • 
21. Expr ::= Var • 

22. Expr ::= Con • 

23. Var : := Id • 

24. Gcs : := Gcs 0 Gcs • 

25. Gcs : := Expr + Stat • 



2.3.2. An attribute grammar for the kernel language 

Upon the·language defined insection 2.3.1 a number of context condi

tions are imposed in order to exclude programs like the following: 

I[ var x: int I 
I[ var x bool, i : int, i,b bool I 

x,z : 3,4; 
do true > (3 A4 * b) 7 b, b :~ 3 od 

]I; 

b := x > 3 

1 I 

Informally stated the context conditions are as follows: 

Within a declaration part of a block each variabie may occur at 

most once. 

Each variabie occurring in a statement must be declared in some 

surrounding block. 

Redeclaration of variables in nested blocks is allowed. This 

point will be reconsidered in chapter 4. 

Expressions should be well-formed with respect to priorities of 

operators and types of operands. 
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Left part and right part of assignments should be of corresponding 

lengtbs and types. 

Within the left part of an assignment each variabie may occur at 

most once. 

For the formal rendering of the above we will introduce a number of 

domains and operations. Below we provide some informal explanation con

cerning their purpose. This explanation may help in reading the language 

specification but is not part of it. 

Bool, Int: 

Need no further explanation. 

Pvio: 

Used to indicate the priorities of operators and expressions. The 

elements of Pvio are those of Int corresponding to the numbers 1, ••• ,7. 
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Type: 

Used to indicate the type of expressions and variables. We take 

Tyr;e = Typesym. 

Name: 

Used to distinguish between various identifiers. We take 

* Name = Letter(Letter u Digit) • 

Names: 

Used to indicate the colleetien of narnes occurring in a deelaratien 

part or in the left part of an assigrunent. An expression ns E Narnes 

either of the ferm [n]N' where n E f!ame, or of the ferm ns 1 ~ ns2, 

where {ns
1 
,ns

2
} ~ Names. ns may be thought of as a bag of narnes, in 

is 

which case the ether operations ~ and #N correspond to memhership 

and number of occurrences respectively. From the axioms it is easy to 

prove that (n inN ns) = (#N(n,ns) ~ 1). 

Types: 

Used to indicate the sequence of types corresponding to the left part 

or right part of an assignment. An expression ts E Types is either a 

singleton of the ferm [t]T, where t E Type, or of the ferm ts 1 ~T ts 2, 

where {ts 1,ts2 } ~Types. To compensate for the ambiguities in de pro

duction rules for Vars en Exprs there is an axiom which states 

associativity of ~T. 

Decs: 

Used to record the essential information of a deelaratien part, viz. a 

colleetien of (name,type) associations. An expression d E Decs is 

either of the ferm [ns,t]D' where ns E Narnes and t E Type, or of the 

ferm d 1 \EY d2, where {d 1,d2} ~ Decs. d may be thought of as a bag of 

pairs (name,type), in which case the eperation inD corresponds to 

memhership and the operatien #D to number of occurrences of a name. 

Env: 

Used to record the environment of a construct, i.e. the essential 

information of all declarations occurring in bleeks surrounding the 

construct, taking into account the nesting of bleeks. An expression 

e E Env is either Empty, \vhich corresponds to an empty colleetien of 



declarations, or of the form Ext(e,d), where e € Env and d € 

which corresponds to an ordered extension of an environment with a 

colleetien of declarations. 
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After this informal presentation reading of the grammar should pose no 

serious problems. The presentation follows. 

Domains 

{BooZ,Int,Name,JYpe,Prio,Names,Types,Deas,Env} 

Attribute variables 

n,n1 ,n2: Name; 

t,t0,t 1,t
2

: Type; 

p,pO,pl,p2: Prio; 
ns,ns

0
,ns

1
,ns2: Names; 

ts,ts
0
,ts

1
,ts2: Types; 

d,d0,d 1,d2: Deas; 

~.e0 ,e 1 : Env. 

on Prio 

Frio {e € Int I the integer value corresponding to e is an element 

of { 1, ••• , 7} } • 

= Typesym. 

Operatiens on Name 

Name = Letter(Letter u Digit)*. 

Operatiens on Names 

[.] 
N 

Name + Names 

. \!I . Names * Names + Names 

. ~. Name * Narnes + BooZ 
11 N( • '•) Name * Narnes + Int 
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n 1 ~ [n2 ]N = (n 1 ~ n2) 

n1 ~ (ns 1 ~ ns 2) ~ (n1 ~ ns 1) v (n1 ~ ns2) 

Operatiens on Types 

[•]T Type +Types 
• <& 

T 
Types * Types + Types 

Operatiens on Deas 

[ •' • ]D Names * Type + Deas 
. IJV . De as * Deas + Deas 

(.'.) i~. Name * Type * Deas + BooZ 
# D ( •' •) Name * Deca + Int 

#N(n,ns) #
0

(n, [ns, t]
0

) 

#D(n,dl @d2) #D(n,dl) + #D(n,d2) 

Operatiens on Env 

Empty 

Ext(•,•) 

(n, t) 

(n, t) 

Env 

Env * Deas + Env 

Name * Type * Env + Boot 

Empty ·= false 

Ext(e,d) = (n,t) in0 d v (#0 (n,d) 0 A (n,t) ~ e) 
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Nonterminals 

VN = {Prog,Block <Env>,Decs <Dees>,Stat <Env>,Type <Type>,Ids <Names>, 

Id <Name>,Vars <Env,Names,Types>,Var <Env,Name,Type>, 

Exprs <Env,Types>,Expr <Env,Prio,Type>,Gcs <Env>, 

Dop <PY.io, ,Type,Type>,Mop <Type,Type>,Con <Type>}. 

Terminals 

Letter {"a", ••. , "z"} 

Digit {"0", ••• ,"9"}. 

Opl {"+","-","-,"} 

Op2 {"*", "+","-","=u.,"/","<", n~u, ">",";::::'*,u A", "v", "=*u, nf:!:!'ln} 

Typesym {"int","bool"} 

Consym {"true","false"} 

Statsym = {"skip", "abort' .. } 

Sym {'' 1 [tt, '']I", trI'' ,n, 11, ••:n, ";", "0'', ''-+'', '':='', ''(", '')''; 

"if","fi","do","od","var"} 

VT Letter u Digit u Opl u Op2 u Typesym u Consym u Statsym u Sym. 

Start symbol 

Prog. 

Pseudo terminals 

{Id <Name> ,Dop <Prio,Type ,Type ,Type>,Mop <Type ,Type>,Con <T::rpe>, 

Type <Type>}. 

For all n E Name: 

L(Id <n>) = {n} \ (Typesym u Consym u Statsym) 

L(Dop <l,bool,bool,bool>) {' ... ". "*"} 

L(Dop <2,bool,bool,bool>) {"v"} 

L(Dop <3,bool,bool,bool>) {"A"} 

L(Dop <4,bool,int,int>) {"=",":J:.","<n,n::s;n,n>n,n~tt} 

L(Dop <S,int,int,int>) = {"+","-"} 

L(Dop <6,int,int,int>) {"*"} 
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L(Mop <int, int>) {"+","-"} 

L(Mop <bool,bool>) {"•"} 

L(Con <int>) Digit 
+ 

L(Con <bool>) Consym 

L(Type <int>) = {"int"} 

L(Type <bool>) {"bool"} 

I. Prog ::::::::: Block <e> • 
e = Empty 

2. Block <eo> : := I [ var Decs <d> I Stat <el> 1 I • 
(A n: Name I # 

0 (n,d) ::;; I) 

el = Ext(e0 ,d) 

3. Decs <do> . . Decs <dl> ' 
De es <dz> • 

do = dl 0V d2 

4. De es <d> : ::;::; Ids <ns> : Type <t> • 
d = [ns,t]D 

s. Ids <ns
0

> : := Ids <ns 1> 
' 

Ids <ns2> • 

nso = ns 1 \IV ns2 

6. Ids <ns> ::; Id <n> • 

ns = [n]N 

7. Stat <e> : := abort • 

8. Stat <e> : := skip • 

9. Stat <e> : := V ars <e,ns,ts> := Exprs <e,ts> • 
(A n: Name I # N(n,ns) ::;; I) 

JO. Stat <e> ::= Stat <e> ; Stat <e> • 

11. Stat <e> : := if Gcs <e> fi• 

12. Stat <e> ::=do Gcs <e> od • 
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13. Stat <e> : :"' Block <e> • 

14. Vars <e,ns0,ts0> ::"' Vars <e,ns 1,ts 1> Vars <e,ns2 ,ts2> • 

ns
0 

ns
1 
~ ns 2 

15. Vars <e,ns,ts> 

17. Exprs <e,ts> 

21. Expr <e,p,t> 

22. Expr <e,p,t> 

23. Var <e,n,t> 

24. Gcs <e> 

25. Gcs <e> 

ts0 ts 1 eT ts2 

: := Var <e,n, t > • 
ns = [n]N 

ts [t ]T 

::= Exprs <e,ts
1
> 

' 
ts0 = ts

1 @T ts2 

::= Expr <e,p,t> • 

ts = [t]T 

Exprs <e,ts2> • 

::= Expr <e,p 1,t 1
> Dop <p

0
,t

0
,t

1
,t

2
> Expr <e,p

2
,t2> • 

Po 5o pI 

Po < Pz 

: := 

::= ( Expr <e,p 1,t>) • 

Po = 7 

::=Var <e,n,t> • 

p "' 7 

::=Con <t> • 

p "' 7 

: := Id <n> • 

(n,t) in e 
--€: 

Gcs <e> D Gcs <e> • 

::= Expr <e,p,t> +Stat <e> • 

b = bool 
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CHAPTER 3 

PREDICATE TRANSFORMER SEMANTICS 
FOR THE KERNEL LANGUAGE 

3.0. Introduetion 

In [Dijkstra I, Dijkstra 2] it has been proposed to define the seman

tica of programming languages by means of so-called predicate trans

farmers. The idea is that a set of states of a computation can be 

characterized by a predicate in terros of the program variables and 

that all relevant aspects of a statement are captured by its predicate 

transformer, a function from predicates to predicates. Two kinds of 

predicate transfermers are discussed, viz. the "weakest pre-condition" 

wp and, to a lesser extent, the "weakest liberal pre-condition" wlp. 

For a certain mechanism S and a post-condition R the corresponding 

weakest pre-condition wp(S,R) is defined as follows (we quote from 

[Dijkstra 2]): 

"The condition that characterizes the set of all initial states 

such that activatien will certainly result in a properly termi

nating happening leaving the system in a final state satisfying 

a given post-condition is called 'the weakest pre-condition 

corresponding to that post-condition'.". 

Experience bas shown that predicate transfermers are a suitable vehicle 

for discussing issues of program correctness. Hhen dealing with ques

tions of semantica or implementation correctness further elaboration is 

required, however. Let us mention a few problems: 

As remarked by [Plotkin) the definition quoted above "is admirably 

clear and perfectly precise once we know what conditions and 

mechanism~ are". In [Dijkstra 2] several mechanisms (statements) 

are defined but no definition of conditions is given. The result 

is that of the central concept of the language definition, the 

predicate transformer, two important aspects, its domain and its 

range, are left undefined. That such an omission may lead to 

complications can be illustrated as follows. 
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Let C be a set of conditions that serves as domain and range of 

predicate transformers. Two statements s1 and s2 may be considered 

equivalent fif for all Q E C: wp(S 1,Q) = wp(s2,Q). 

In the extreme case that C = ~ it follows that all statements 

are equivalent. 

In [Dijkstra 2] the predicate transfarmers of the statements 

skip and x := E are defined by wp(skip,R) = R and 

wp(x := E,R) = ~~· respectively. In case that C contains 

no conditions that depend on x these statements are equiva

lent, otherwise they are not. 

Simple and artificial as these examples may seem, they suffice to 

show that the degree to which statements can be distinguished 

depends on the "richness" of the set of conditions C, which 

therefore is an essential component of a language definition. 

Another point of concern is the nature of conditions. In 
I 

[Dijkstra 2] the distinction between formal expressions and the 

objects they denote is simply done away with as a "mannerism". 

We just cannot afford such an attitude in language translation: 

the very existence of the notion of translation is based on the 

fact that different formal expressions may denote the same object. 

In the literature on predicate transformer semantics we find both 

an intensional point of view, where conditions are considered as 

elements of a formal language [Back 2, de Bakker, t1ilne], and an 

extensional point of view, where conditions are identified with 

the sets of states they characterize [Plotkin, Wand]. Both ap

proaches are feasible, but each has its specific problems and 

there are marked differences, e.g. with regard to the lattice

theoretical framework required to deal with recursively defined 

conditions. 

The last remark above hints at a different problem. The definition 

of wp(DO,R) in [Dijkstra 2] essentially employs a fixed point 

approximation, although this is not stated explicitly. Since in 

further development of predicate transformer semantics we will not 

only encounter recursively defined predicates but also various 

kinds of recursively defined predicate transformers it seems wise 
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to employ a general theory to deal with recursive definitions, 

such as Scott's lattice theory [Scott 2]. 

A final point concerns the expressibility of conditions. In 

general, the pre-condition of a statement will depend on the 

variables and expressions occurring in that statement and the 

language of conditions should be rich enough to express these 

dependencies. A good candidate for a condition language seems to 

be the set of first order predicates in terms of the variables and 

operations of a program. Yet it appears that this language is not 

sufficiently powerful to express pre-conditions of repetitions. 

[Back I] gives a simple counter-example. Either a largersetof 

operations should be employed (which raises the problem of deter

mining whether the condition language is closedunder that set), 

or a more powerful logic should be employed such as the infinitary 

logic L (Back l, Karp, Scott 1]. [Back l] shows that this logic 
WJW 

is sufficiently powerful to express the weakest pre-conditions for 

the language of [Dijkstra 2]. 

It is the purpose of this chapter to provide a firm foundation for 

predicate transformer semantics by presenting additional definitions 

and by making the connections with other branches of matbematics such 

as lattice theory and more explicit. In doing so we will also 

pave the way for the development of a predicate transformer semantics 

for language constructs ether than statements in chapters 4 and 5. 

The first important decision we take in this respect is to adopt an 

intensional view of conditions, i.e. to consider them as elements of a 

formal language. The grammatica! tools developed in chapter 2 enable us 

to define very precisely the condition language to be used with a set 

of statements, in particular as regards the contextual properties. 

These properties play an important role in chapter 4, where constructs 

involving changes of context are considered, such as blocks and proce

dures. The close connections between programming language and condition 

language also make it easier to study Hoare-like correctness formulae 

and proof rules, as statements and the conditions associated with them 

can be considered at the same language level, and transitions between 

syntactic and semantic domains can be kept to a.minimum. 
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Imposing a suitable lattice structure on the condition language 

requires some provisions. On the one hand we will introduce infinitary 

formulae and proof rules as in L00100 • On the other hand we will develop 

some theory for a special kind of lattices which we call countably

complete lattices and which provide the desired structure to deal with 

recursive functions of conditions. This chapter therefore has the 

following structure. Insection 3.1 we collect both old and new results 

from lattice theory that will frequently be used in the current and 

following chapters. In section 3.2 we first define a condition language 

and subsequently study the predicate transfermers wp and wlp in a 

lattice-theoretical framework. In section 3.3 we use these definitions 

to develop logies in the of [Hoare 2] for proving partial and 

total correctness of programs. 

No te 

Thus far we have used the term "predicate transformer" introduced by 

Dijkstra. Because the notion of condition differs considerably from the 

notion of predicate as used in logic, we will henceforth use the term 

"condition transformer". 

0 
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3.1. Some lattice theory 

In this section we collect some results concerning complete partially 

ordered sets, (countably) complete lattices, continuous functions, 

fixed points, etc. These results form the basis for the study of condi

tion transfarmer semantics in subsequent sections. Part of the material 

presented here is well-known and has mainly been included for complete

ness's sake. Lemmas and theorems that appear without proof have been 

taken over literally or with slight adaptations from [de Bakker), as 

have some definitions. Less-known and new results appear with full 

proofs. The proofs of some subsidiary results have been delegated to 

Appendix A. 

3.1. I. General definitions 

The central notions of our summary are those of a complete partially 

ordered set (cpo) and of a countably-complete lattice (cel). Since both 

of them are special forms of partially ordered sets we begin our 

sequence of definitions with that of the latter notion. 

;;;;..;;..=;;;.;;:.;:.=:..::.....=3..:.. • ..:..1 {partially ordered set} 

A partially ordered set is a pair (C,!;.), where Cis an arbitrary set 

and ~ is a binary relation on C satisfying 

No te 

(A x E C x ~ x) 

(~ x,y E C (x ~ y A y ~ x) ~ x = y) 

(~ x,y,z E C I (x ~ y A y ~ z) ~ x ~ z) 

{reflexivity} 

{antisymmetry} 

{transivity} 

Occasionally we will also use the relations c and ~. given by 

(~ x,y E C I x·C y ~x~ y A x I y) and (~ x,y E C I x 2 y ~ y ~x), 

respectively. 

0 

A subset of a partially ordered set may have a greatest lower bound or 

a least upper bound: 



-=-=-===-=-==-'3...:.'...:.2 { gl b , 1 ub } 

Let (C,~) be a partially ordered set, and let X ~ C. 

I. y € Cis called the greatest lower bound (glb) of X if 

(A X E X y !;': x) 

(!!; Z E C (!!;; x E X z t:;. x) '* z !:: y) 

The glb of a set X will be denoted by nx. 

2. y E C is called the least upper bound (lub) of X if 

(!!; X E x x Ë y) 

<!! z E C (!! X E x x !:: z) '* y !: z) 

The lub of a set X will be denoted by u x. 
00 

3. The glb and lub of a sequence <x
0

,x
1

, ••• > are denoted by F=o x. 
l 

00 

and i~O xi' respectively. 

0 

No te 

From the definitions above it follows that if for X 

exist, they must be unique. 

c nx or ux 

0 

Definition 3.3 {chain} 

Let (C,t:;_) be a partially ordered set. 

Cl 

I. An ascending chain in (C,!:) is a sequence <x0,x
1

, ••• > such that 

(!!;;i I i~ 0 I xi ~ xi+l). 

2. A deseending chain in (C,t:;_) is a sequence <x0 ,x
1

, ••• > such that 

(A i I i ~ 0 I x. 'J x. I). 
- l.- J.+ 
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We will primarily be interested in a special kind of partially ordered 

sets, viz. countably-complete lattices. lt will be useful to relate 

that notion to some better-known notions, however. Hence the following 

definitions. 
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Definition 3.4 {cpo} 

A complete partially ordered set (cpo) is a partially ordered set (C,~) 

such that 

the glb of C exists, 

each ascending chain <x0 ,x1, ••• > bas a lub i~O xi. 

0 

Definition 3.5 {uccl, deel} 

(uccl) is a partially ordered 

set (C,~) with the property that each countabl·e subset has a lub 

and each finite subset bas a glb. 

IJ 

2. A downward countably-complete lattice (deel) is a partially 

ordered set (C,~) with the property that each countable subset has 

a glb and each finite subset has a lub. 

Definition 3.6 {cel} 

A countably-complete lattice (cel) is a partially ordered set (C,~) 

with the property that each countable subset has both a lub and a glb. 

IJ 

Definition 3.7 {cl} 

A complete (cl) is a partially ordered set (C,~) with the 

property that each subset bas both a lub and a glb. 

0 

No te 

In definition 3.7 it would suffice to require that each subset X C 

bas a lub. It can easily be shown that in that case it also has a glb, 

viz. u { y E C (~ x E X I y ç_ x)}. 

0 

Lemma 3.8 

Let (C,~) be a uccl. 

D 

I. C has a glb, viz. uÇL 

2. C has a lub, viz. n0. 



Proof 

D 

I. ~ is a countable subset of C, hence by definition 3.2.2: 

(!!: X E ~ 

uQI !: z) 

x g z) =~> u0!;. z), i.e. 

{a} 

Let w E C be such that (!!: z E C I w ~ z). Then in particular: 

w !; u 0 {b} 

From a, b and definition 3.2.1 it fellows that nc = u~. 

2. 0 is a finite subset of C. The remainder of the proof is a dual 

version of I. 

From definitions 3.4-3.7 and lemma 3.8 it fellows immediately that 

every cl is a cel; 

every cel is both a uccl and a deel; 

every uccl is a cpo; 

the dual of a cl is a cl; 

the dual of a cel is a cel; 

the dual of a uccl is a deel. 

57. 

In the sequel we will frequently make use of these relations; e.g. if 

we have proven a property of cpo's we will use the fact that it also 

holds for uccl's and that the dual property holds for dccl's. 

No te 

If (C,!;.) is a cpo (uccl, deel, cel, cl) its glb n C will be written as 

1 {pronounced as "bottom"}. If (C,!;.) is a uccl (deel, cel, cl) its 

lub u C will be written as T {pronounced as "top"}. 

D 

Our interest will focus on functions on lattices of the kinds just 

introduced. An important property of certain classes of these functions 

is that under a suitably defined order they also have a lattice struc

ture. That order is defined by 
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Definition 3.9 {standard order on functions} 

Let c1 be a set and (C2 ,~) be a partially ordered set. The standard 

order ~ on cl + c2 is defined by: 

(! f. g E c I + c2 I f !;. g * (! x E c I I f (x) t;.2 g (x)) • 

D 

It can easily be verified that the standard order is a partial order 

indeed. 

Theorem 3. I 0 

Let c 1 be a set and (c2,t;.) be a partially ordered set. Let ~ be the 

standard order on cl + c2. 

I. If (c
2

,t;.2 ) is a cpo, then 

(c 1 +C2 ,~) is a cpo. 

- ie +C = (Àx I ie ). 
· I 2 2 

for each ascending chain <fi>:=O in c1 + c2 : 

00 

i~O fi (Àx I 

(C 1 +C2 ,~) is a uccl. 

for each countable F s c1 -+ c2 : UF 

for each finite 

0 

Corollary 3. 11 

If c1 is a set and (c2 .~2 ) is a uccl: 

0 

I. See [de Bakker]. 

(ÀX fiF f (x)) 

(ÀX ilF f(x)) 



D 

2. I. Let F be a countable subset of c1 + c2• From the fact that 

(C2 ,~2) is a uccl it follows that for all x E c1: 

f~F f (x) E c2 • 

Let g = (h I u f(x)). We show that g = UF, 
fEF 

=t (! f E F I (! x E C 1 I f (x) ~2 f~F f (x))) 

=t {definition 3.9, definition of g} 

(! f E F I f ~ g) 

(A f E F I f ~ h) 

=t {definition 3.9} 

(!:_ f E F I (!:_x € cl I f(x) [;_2 h(x)) 

{interchange quantifiers} 

<!x E cl I (! f E F I f(x) ~2 h(x))) 

• {definition lub in c2} 

f(x) ~2 h(x)) 

{definition 

(!x E cl I g(x) ~2 h(x)) 

{definition 3.9} 

g ~ h • 

59. 

2. The proof that each finite subset of c1 + c2 has a glb is a 

dual version of the proof above. 
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3.1.2. Strictness 

Definition 3.12 {strictness} 

l. Let (c 1 ,~ 1 ) and (C
2
,s

2
) be cpo's (uccl's, dccl's, ccl's, cl's), 

and let f E c
1 
~ c

2
• 

f is called ~-strict if f(~c 1 ) = ~c2 • 

2. Let (c 1 ,~ 1 ) and (c2 ,~2 ) be uccl's (dccl's, ccl's, cl's), and let 

f E c
1 

... c
2

• 

f is called T-strict if f(Tc
1
) Tc

2
• 

D 

For the determination of the strictness of a composite function in 

C + C the following theorem may be useful. 

Theerem 3.13 

Let (C,~) be a cpo. 

Let s! = {f E c ... c I f is !-strict}. 

I. (\x 1) E s ~ 

2. (À x x) E S 
1 

3. for all f,g E S~ fog E S1 , 

If, moreover, (C,S) is a uccl, then 

4. for each countable subset F c S (Àx I U f(x)) E s1 - ~ f,;:F 

5. for each finite nonempty subset F ~ S1: (Àx f(x)) E: s! 

0 

Pro of 

1,2,3: trivia!. 

4. (ÀX u f (x)) (i C 1 ) "' u füc ) u ~c 1c2 fEF fEF I fEF 2 

5. (\x I n f(x))(!c ) n f(!c ) n ~c {F nonempty} ~c fEF I f,;:F I fEF 2 2 



3.1.3. Monotonicity 

Definition 3.14 {monotonie function} 

Let (c 1 ,~ 1 ) and (c2 ,~2 ) be partially ordered sets. A function 

f E c1 + c2 is called monotonic if 

(~ x,y " c1 I x ç_1 y .. f(x) s2 f(y)) 

The set of monotonic functions from c1 to c2 is denoted by c
1 

+m c2 • 

D 

Lemma 3.15 

Let (c
1
,s

1
) and (C2 ,~2 ) be partially ordered sets, and let s be the 

standard order on cl + c2. 

61. 

If (c2 ,~2 ) is a cpo (uccl, deel, cel, cl), then (c 1 +m c2,s) is a cpo 

(ueel, deel, cel, cl). 

D 

Proof 

We only prove the upward case for uccl's; the other proofs are similar. 

Let F be a countable subset of c
1 

+m c2 • 

(A f E F x,y E cl x ~1 y .. f(x) E2 f(y)) 

(~ f E F x~~ y.., f(x) ~ 2 f(y)) 

x El y • (Af E F I f(x) ~2 f(y))) 

.. (~ x,y E cl I x y .. u f(x) s2 u f(y)) 
fE:F fEP 

(~ x,y E cl I x y.., (UF)(x) ~ 2 (UF)(y)) 

D 
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3. 1.4. Conjunctivity and disjunctivity 

Definition 3.16 {n and u as infix operators} 

Let (C,ç;.) be a uccl. 

The infix operators n,u: C x C ~ C are defined by: 

1. for all x,y E C: xn y = n {x,y} • 

2. for all x,y E C: x u y =u {x,y} 

D 

In terms of these operators we can define the notions conjunctivity and 

disjunctivity. In lattice theory these notions are usually called 

multiplicativity and additivity, respectively. 

Definition 3.17 {conjunctivity, disjunctivity} 

Let (c 1 ,~ 1 ) and (c2 .~2 ) be uccl's, and let f E c1 + c2 • 

0 

if (~ x,y E C] 

2. f is called .;;;..;;;."-"'..:.;.;;...;;;..;;;._:_.c:.. if (~ x,y E Cl 

Lemma 3.18 

f(xn
1

y) 

f(xu
1

y) 

Let (c 1 ,~ 1 ) and (c2 ,~2 ) be uccl's, and let f E c1 ~ c2
• 

IJ 

I. if fis conjunctive, then fis monotonie; 

2. if f is disjunctive, then f is monotonie. 

Pro of 

Let x,y E c1 such that x ~~ y. 

1. f(x) = f(x n 1 y) f(x) f(y) !:.
2 

f(y) 

2. f(y) = f(x u 1 y) = f(x) u 2 f(y) .22 f(x) • 

D 

f(x) n
2 

f(y)) 

f(x) u
2 

f(y)). 



3.1.5. Continuity 

Definition 3.19 {continuity} 

I. Let (c
1
,ç

1
) and (c2 ,~2 ) be cpo 1 s. 

A monotonic function f E c1 ~mc2 is called ~~~~~~~~ 

for each ascending chain <xi>i=O in c1: 

f(.Ü
0 

x.) 
~= ~ 

f(x.) • 
~ 

if 

The set of upward continuous functions in c1 ~ c2 is denoted by 

cl ~uc c2. 

2. Let (C 1 ,~ 1 ) and (C2 ,~2 ) be dccl 1 s. 

A monotonic function f e c
1 
~ c

2 
is called 

for each deseending chain <x.>~ 
0 

in c
1

: 
~ ~= 

63. 

0 

The set of downward continuous functions in c1 + c2 is denoted by 

cl +de c2. 

No te 

In definition 3.19.1 it would be sufficient to require that 

f(~Ü",0 x~) f(x.), because f(.Ü0 x.) .Ü0 f(x.) follows from 
~ ~ ~ ~= ~ ~= ~ 

the monotonicity of f. A complementary remark applies to definition 

3.19.2. 

0 

No te 

Since continuity is a stronger property then monotonicity it follows 

that all properties of monotonic functions also hold for continuous 

functions. In some of the forthcoming proofs use will be made of this 

fact without explicit reference. 

0 

As preparatien for some important theorems ccincerning continuity we 

first present some lemmas. 
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Lemma 3.20 

1. Let (C,~) be a cpo. Let, for iE {0,1, ••• }, jE {0,1, ••• }, x .. be 
~J 

elements of C. If 

(~ i,j,k,1 0 s i $; k A 0 s j s 1 I xij ~ ~1 ) 

then 

00 "' 00 "" 00 

i'=!o j'=!o xij j'=!o i'=!o xij = k'=!o ~k • 

2. Let (C,~) be a uccl. Let R,S be two countab1e sets. Let, for 

i € R, j E S, x .. be elements of C. Then 
lJ 

0 

Pro of 

I. See [de Bakker]. 

2. See Appendix A. 

0 

Lemma 3.21 

Let <xi>7=o and <yi>:=O be two ascending ebains in a uccl (C,~). 

I. <x. n y.>~ 0 is an ascending chain. 
~ ~ ~= 

[] 

Proof 

See Appendix A. 

D 

Lenuna 3.22 

Let (C,b) be a uccl. Let S be a finite set. Let, for i E S, 

jE {0,1, ••• }, x .. be elementsof C. If 
~J 

(~ i,j,k I i E SA 0 S j s k xij Ç xik) 

then 



00 

j\;!0 i~S xij 

D 

Pro of 

See Appendix A. 

D 

Theorem 3.23 

00 

i~S j~O xij 

Let (c 1 ,~ 1 ) and (c
2

, 

cl + cz. 

be cpo's, and let c be the standard order on 

D 

I. (Cl + c2, is a cpo; uc 

l.c + cz (Àx I .Lc ) 
I uc 2 

for each ascending chain <f.>~ 0 l. ].= 

00 

(ÀX I 
00 

fi(x)} il;;lo f. = il;;lO l. 

2. If, moreover, (c2,E2) is a uccl, then 

(C 1 +uc c2 ,~) is a uccl; 

for each countable F ~ c1 

for each finite 

+ uc 

+ uc 

Proof 

I. See [de Bakker]. 

in cl + uc 

(ÀX 

(ÀX 

C2: 

fiF f(x)) 

f:iF f(x)) 

65. 

2. In view of theorem 3.10 it suffices to show that (ÀX I 
and (Àx I iiF f(x)) are upward continuous. 

f(x)) 

Let <x.>~ 0 be an ascending chain in c1• 
l. ].= 

I. (ÀX I f~F f(x)) x i) 

{13-reduction} f(i~O x i) 

{F ~ c1 cz} 
00 

f(x.) + ï'=!o uc l. 
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"" • {lemma 3.20.2} i~O f~F f(xi) 

= {a-expansion} 1.~_""0 (Àx I u f(x})(x.) 
f"F l 

2. The proof that (Àx I n f(x)} is upward continuous is 
f"F 

similar to the one given above, the main difference being 

that lemma 3.22 rather than lemma 3.20.2 bas to be applied. 

D 

For the determination of the continuity of a compesite function in 

C ~ C the follewing theerem may be useful: 

Theerem 3.24 

Let (C,~) be a uccl. 

I. For all y E C: (ÀX y) E C ~ c. 
uc ' 

2. (Àx I x) E C -+uc C ; 

3. fer all f,g E C -+uc C: fog E c ~ c ; uc 

4. fer each ceuntable F s c .... C: (ÀX 
uc 

u f(x)) E C ~ 
fEF uc 

c . 
' 

5. fer each finite 

0 

F c C ~ C: (ÀX n f(x)) E C ~ C • 
- UC fEF uc 

Proef 

Let <x.>~ 0 be an ascending chain in c. 
l. ].= 

(ÀX y} (i~O xi) 
co co 

(ÀX I Y;}(xi) I. - y = i'=!o Y i'=!o 

2. (ÀX I x)(i~O xi) 
co "" (ÀX I x) (x.) = i'=!o x. i'=!o ; 

l. l. 

= .u
0 

(fog} (x.} 
l.= l. 

4, 5 immediately by theerem 3.23.2 and theerem 3.10.2. 

0 
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ExamEle 

Let (C,!;;) be a uccl. 

I. For i: ~ i ~ n: let c. 
l. 

E c ; 

2. for i: ~ i ~ n: let d. E c ; 
l. 

3. for i: ~ i ~ n: let f. E c .... c 
l. ue 

We show that 

(Àx 

4. {by I' th. 3.24. 1} for i: ~ i ~ n: (I, x I ei) E c .... c ue 

5. {by 4, th. 3. 24.4} (Àx I n 
ei) c c i';;! I E .... 

ue 

6. {by 2, th. 3. 24. 1} for i: ~ i ~ n: (À x di) E C + c ; ue 

7. {by 3,6, th. 3. 24 .• 4} for i: ~ i ~ n: (ÀX di u fi (x)) E C + c . 
' ue 

8. {by 7, th. 3.24.5} (À x 
n 

ir:!J (di u fi (x))) E C + c . 
uc ' 

3.24.5} 
n n 

(di u 9. {by 5,8, th. (Àx (i';;! I c.) n .n
1 fi(x))) E c c . 

l. 1.= 
D 

No te 

In the sequel we will not give proofs like the one above in detail. 

Instead we will simply refer to "repeated application" of theorem 3.24. 

D 

The following lemma is used in the proof of theerem 3.26. 

Lemma 3.25 

Let (C,~) be a ueel. Let D = C + C, uc 

I. If gE D and <hi>~=O is an aseending ehain in D, then 

g 0 (Lill h.) 
i=O 1 
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0 

Pro of 

See Appendix A. 

0 

Let (C,~C) be a uccl, and let D = C +uc C. With ~D being the standard 

order on D we have, by theorem 3.23.2, that (D,~0) is also a uccl. In 

the sequel we will often be concerned with functions F E D + D which 

will usually be given in the form F (Àf E D I E(f)), where E(f) is an 

expression in terms of f, usually in the form (Àx E C I G(f,x)). For 

the determination of the continuity of such a function from its com

position the following theorem will be useful. 

Theorem 3.26 

Let {C,~c) be a uccl, and let D = C +uc C. 

I. For all c E C: (H I (Àx I c)) E D + D uc 

2. {Àf I (Àx I x)) E D + D uc 

3. if (Àf I E1(f)) E D + D and (Àf I E2(f)) E D + D, then uc uc 

4. if for all i: s i s n: (H I {ÀX I E.)) E D + D, then 
~ uc 

(u n 
I (À x [_gJ E.)) E D + D ; 

i= I ~ uc 

5. if for all i: :S i :S n: (H I (ÀX I E.)) E D+ D, then 
~ uc 

(u n 
Ei)) E I <ÀX I lël D + D • 

i=l uc 

0 



Proof 

I. 

2. 

3. 

Letc E C. 

C E C 

=> {theorem 3.24.1, D = C + uc 
C} 

(Àx I c) E D 

• {theorem 3.24.1} 

(H I (Àx I c)) E D + D uc 

true 

=> {theorem 3.24.2} 

(Àx I x) E D 

=> { theorem 3. 24. 1} 

(H I (:\x I x)) E D + D uc 

00 

Let <fi>i=O be an ascending chain in D. 

= {S-reduction} 

{for i: I :> i :>: 2: (H j E
1
• (f)) E D + D} 

uc 

{lemma 3.25.2} 

{13-expansion} 

69. 
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4. (ü I (ÀX I wE.)) 
i=l l. 

{theorem 3.23.2} 

(Àf n 
(ÀX I Ei)) Ll2J 

i= I 

Üheorem 3.23.2} 

n 

l~ucDI (H I (ÀX I E.)) • 
l. 

1=1 

5. (u I (ÀX 1 m E.)) 
i=l 1 

= {theorem 3.23.2} 

(u I rm (ÀX IE.)) 
i=l 1 

{theorem 3.23.2} 

n 
ID~UCDI (H I (Àx I E.)) • 1 

i= I 
0 

3.1.6. Fixed points 

Definition 3.27 {fixed point} 

Let (C,S) be a cpo, f E C ~ C, x E C 

0 

I. x is called a fixed point of f if f (x) = x. 

2. x is called the least (greatest) fixed point of f if x is a fixed 

point of f and, moreover, for each fixed point y of f, x~ y 

(x .2 y). 

If f has a least (greatest) fixed point it is denoted by ~f (vf). 

Theerem 28 

I. Let (C,~) be a cpo. 

lf a function f E C + C is upward continuous it nas a least fixed 
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point satisfying 

Jlf = 

where f 0 = (Àx I x), fi+l fofi for i 2: 0. 

2. Let (C,~) be a deel. 

If a function f E C + C is downward continuous it has a greatest 

fixed point vf satisfying 

vf 

where f 0 (Àx I x), fi+l 

0 

Pro of 

I. See [de Bakker]. 

2. By I and duality. 

0 

fof. for i 2 0. 
~ 

The following simple lemma will be used in several places in combina

tion with the fixed point property y = f(y). Together they form the 

basis for the inductive proof rules for repetitions and recursive 

procedures. 

Lemma 3.29 

Let (C,~) be a uccl. Let {xi I i 2 0} s C, y E C. If 

<~ i I i 2: o 1 < u x. c y > .. <x. c. y > > 
O~j<i J - ~ -

then 

"' il:!o i: Y • 

D 

Proof 

(~ i I i 2: 0 I ( ~ . x. ~ y) ". (xi !;. y)) 
0~]<1 J 

{definition lub} 

i I i 2: 0 I (~ j I 0 ~ j < i x. !; y) .,. (x. t: y)) 
J ~ -: 
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{math. ind.} 

<~ i I i ~ o I xi ~ y) 

{definition lub} 

0 

3.1.7. Fixed point induction 

1. Let (C,~) be a epo. 

In order to prove a property P of the least fixed point ~f of an 

upward continuous function f: C + C, the following induction rule 

may be used: 

P(~), (~x I P(x) • P(f(x))) 

2. Let (C,~) be a deel. 

In order to prove a property P of the greatest fixed point vf of a 

do~rnward eontinuous funetion f: C + C, the following induction 

rule may be used: 

P(T), (A x P(x) • P(f(x))) 

P(vf) 

In both cases it is necessary that the propertyP is "admissible". 

Definition 3.30 {admissible predieate} 

0 

1. Let (C,~) be a epo. 

A predieate P on C is called admissible for least fixed 

induetion if for all aseending ehains <x.>~ 0 : 
1 1= 

(A i I i ~ 0 I P(x.)) • P(.u0 x.) . 
- 1 1= 1 

2. Let (C,~) be a deel. 

A predicate P on C is called admissible greatest fixed point 
00 

induetion if for all deseending ebains <xi>i=O: 

(_A i I i ~ 0 I P(x.)) .. P(.no x.) 
1 1= 1 



The fixed point induction rule can easily be extended to systems of 

functions: 
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Let, for n ~ l, (C1,!;.1), ••• ,(Cn'~) be ccl's, and let C c1 x ••• x Cn. 

On C we define the ordering ~ by: 

* (!:_ i I I ~ i ~ n x. 
l,. 

It can easily be verified that (C,~) is also a cel. 

Let k: 0 ~ k ~ n. 

Let for i: ~i ~ k: fi E C +uc Ci. 

Let for i: k+l ~ i $ n: fi E C +de Ci' 

In order to prove a property of the least fixed points vf 1, ••• ,vfk and 

the greatest fixed points vfk+J'''''vfn the following induction rule 

may be used: 

P((ll '''' 'l.k' Tk+l '''' 'Tn))' 

<!:.x E c 1 P(x) • P((f 1(x), •.. ,fn(i)))) 

P((vf 1, ••• ,vfk,vfk+J'''''vfn)) 

We will refer to this version of fixed point induction as simultaneous 

fixed point induction 

The notion of admissibility has to be extended accordingly: P is 

admissible for simultaneous fixed point induction if 

"" for all i: ~ i ~ k: for all ascending chains <xij>j=O in Ci and 

for all i: k+l ~i~ n: for all deseending chains <x •. >~ 0 in C~: 
l,.J J= • 
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3.2. The condition transfarmers wp and wlp 

3.2.0. Introduetion 

In this section we will develop a condition transfarmer semantics for 

the kernel language. The form of this semantics is determined by two 

requirements. 

For reasans already mentioned in section 3.0, we want to consider 

conditions as elements of a formal language. 

Fora proper treatment of recursion we want to"avail of a suitable 

lattice structure on sets of conditions, sets of condition trans

farmers, etc. 

The design of a semantica with these properties requires some care. As 

starting point for such a design let us consider the attribute grammar 

for the kemel language presented in section 2.3.2, with the exception 

of grammar rule 13: nested blocks will be dealt with in chapter 4. 

We reeall from section 2.3.2 that for an attributed nonterminal Stat <e> 

the attribute e E Env determines the c~llection of variables, tagether 

with their types, that may occur in elements of L(Stat <e>). A good 

candidate for a corresponding condition language seems to be the set of 

first-order formulae over the same variables and over the operators of 

the kemel language. Unfortunately that set does not possess a suitable 

lattice structure. As the partial order should correspond to the im

plication, the least upper bound of a set of conditions would correspond 

to the disjunction of those conditions. In ge~eral such a disjunction 

cannot be represented by an element of the aforementioned condition 

language, however. Consider e.g. thesetof conditions {n = I, n = 1*2, 

n = 1*2*3, .•• }. The least upper bound of this chain would be the in

finite disjunction 

First order formulae equivalent to this disjunction would be 

(! i I i ~ I I n = i!) 

or 

(~ j I I :> j A j :> i I j)) 

but both contain operators nat present in the kernel language itself. 
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Extension of the first order language with additional operators raises 

the problem of determining whether the extended language is closed 

under infinite disjunction or conjunction. A simpler way out was shown 

by Back [Back I, Back 2], who proposed to allow infinite disjunctions 

and conjunctions as elements of the condition language. This gives rise 

to formulae of the so-called infinitary logic L • This logic is much 
--- WIW 

like ordinary first-order logic, but in addition allows for disjunc-

tions and conjunctions over countable sets of formulae, and for proof 

rules to handle these formulae. In [Back I] it is shown that the logic 

L is sufficiently rich to express the conditions required for the 
WIW 

guarded commands. For increasingly extensive discussions of L we 
WIW 

refer to [Back 1], [Back 2], [Scott I] and [Karp], respectively. 

From L it is not difficult to obtain a set of conditions that has a 
WIW 

cel structure. Insection 3.2.1 we will define the condition language 

corresponding to an attribute e E Env. In section 3.2.2 we mention the 

essential features of a logic D capable of handling such conditions. 

In section 3.2.3 we define a cel structure for conditions and condition 

transformers. In section 3.2.4 we reconsider the conditions transfarm

ers wp and wlp of [Dijkstra 2] in this framework. 

3.2. I. Conditions 

The condition language corresponding to an attribute e E Env can be 

defined by means of an attribute grammar which is very similar to that 

of the kernel language itself. The main difference is in the descrip

tion of infinite formulae, which requires some extensions to the 

grammatica! tools of chapter 2. Here we will only give a short sketch 

of these extensions. Their feasibility follows from the definitions of 

substitution and concatenation for infinite sequences given in [Karp]. 

We only mention the extensions for context-free grammars; those for 

attribute grammars are similar. 

First, we introduce production rules with an infinite right-hand 

side. These will be given in the form A : := oo a. •, where a. is an 

infinite sequence of nonterminals and terminals. 

Second, we extend the definition 2.2 of the relations >> and *>> 

to infinite sequences. Let w1 and w2 be two finite or infinite 
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sequences; then w1 >> w2 holds fif w2 can be obtained from w1 by 

replacing each occurrence Ai of a nonterminal A by a finite or 

infinite sequence ai such that A::= ai • or A::= oo ai • is a 

production rule. The relation *>> is the reflexive and transitive 

closure of >>, (Note that in this way a derivation consists of a 

finite number of steps, each of which may involve an infinite 

number of substitut~ons. In terms of derivation trees this corre

sponds to trees of finite height, the nodes of which may have an 

infinite number of branches.) 

Third, for each (finite or infinite) sequence w1 the set L(w1} is 

the set of all (finite or infinite) sequences w2 of terminal 

symbols such that w1 *>> w2. 

With the extensions sketched above it is not hard to define an infini

tary condition language. As already said the attribute e E Env deter

mines the context of statements in L(Stat <e>), i.e. thesetof admis

sible variables with their types. It is our intention that the eerre

sponding condition language consists of infinitary first-order formulae 

over the same variables. In principle we could define such a condition 

language by means of a second attribute grammar, but as this grammar 

has much in camman with that of the kernel language it~elf it will be 

easier to extend the latter grammar with some nonterminals, terminals 

and grammar rules. The extensions are as follows: 

Nonterminals 

{Cond <Env>, Cexpr <Env,Prio,Type>, Conj <Env>, Disj <Env>, Quant} • 

Terminals 

Grammar rules 

CLI. Cond <e> ::= Cexpr <e,p,t> • 

t = bool 

Cl2. Cexpr <e,p0 ,t0> ::= Cexpr <e,p 1,t 1> Dop <p
0
,t0,t

1
,t2> 

Cexpr <e,p2,t2> • 



CL3. Cexpr <e,p0 ,t0> ::=Mop <t0,t 1> Cexpr <e,p 1,t 1> • 

Po 7 
PI = 7 

CL4. Cexpr <e,p
0

,t> ::= (Cexpr <e,p 1,t>) • 

Po = 1 

CL5. Cexpr <e
0

,p
0

,t> ::= (Quant Decs <d> I Cexpr <e
1
,p

1
,t> 

I Cexpr <e 1,p2 ,t> • 

CL6. Cexpr <e,p,t> 

CL7. Cexpr <e,p,t> 

CL8. Cexpr <e,p,t> 

CL9. Cexpr <e,p,t> 

t = bool 

(! n: Name I #D (n,d) $ I) 

::=Var <e,n,t> • 

p = 7 

::=Con <t> • 

p = 7 

: := Disj <e> • 

p = 2 

t bool 

: := Conj <e> • 

p 3 

t = bool 

CLIO. Let a be such that dom(a) = IN and for all i: 0 $ i: 

a2i = Cexpr <e,p,t>, a2i+l = v 

Disj <e> ::==-co (l. 
p > 2 

t bool 

CLII. Let a be such that dom(a) =IN and for all i: 0 $i: 

a 2i = Cexpr <e,p,t>, a 2i+l = A • 

Conj <e> ::=co a• 
p > 3 

t bool 

77. 
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CLI2. Quant : := A o 

CLI3. Quant : := E o 

The condition language that may be used with L(Stat <e>) is now simply 

defined as L(Cond <e>)." By induction it is nothard to prove that for 

all e E Env, p E Prio: 

L(Expr <e,p,bool>) ~ L(Cond <e>) • 

Example 

Let d E Deas, e = Ext(Empty,d) be such that 

Prog 

I[ var Decs <d> I Stat <e> ] I 

I[ var x,y: int,b: bool I Stat <e> ]I 

The set L(Stat <e>) contains elements like 

skip 

b := x > 3 

x,y := 0,0; do x~ 10 +x:= x+ I; y := y +x* x od 

but not 

c := 3 

b := x + l 

x + skip fi • 

The set L(Cond <e>) contains elements like 

true 

b V X > y 

<~ z: int I z < x I z < y) 

but not 



x 

b > 3 

(~ a: bool I true I a > 3) • 

0 

No te 

In the sequel we will usually abbreviate conditions of the form 

(~ x: t true I q) or (!:_ x: t I true I q) to (A x: t 11 q) and 

(~x: t 

0 

No te 

q), respectively. 
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We will often have to reason about conditions that are conjunctions or 

disjunctionsof the elementsof a countable set Q ~ L(Cond <e>). We 

will denote such conditions by /\Q and VQ respectively. 

In case Q is a finite set such as {qi E l(Cond <e>) ~ i ~ n} we 

will also write [(\i I I ~ i "; n I q.) and [V i I I s i ~ n I q.] 
l. l. 

respectively. 

In case Q is an infinite set such as {qi E L(Cond <e>) I I s i} we 

will also write [/\i I I si I q.] and [Vi I I si I q.], respectively. 
l. l. 

It should be borne in mind that these notations are just abbreviations 

and do not themselves belong to the condition language! 

0 

3.2.2. The logic D 

Calculations with conditions will be based upon a logic called D. The 

logic D differs from ordinary first-order predicate logic in two 

respects. First, like L it allows for infinitary formulae and proof 
WJW 

rules to handle these. Second, it reflects that conditions are only 

meaningful relative to a certain context. The formulae of D are of the 

form cjp, where c is a sequence of declaration parts corresponding to 

an attribute e E Env and p is an element of L(Cond <e>). More precisely, 

the set of formulae is the set L(Form <Env>) defined by the extensions 

below to the attribute grammar for the condition language. As prepara-' 

tion for manipulations with contexts in theorem 3.54 and in chapter 4 

these extensions also contain two operations, new and rep, on environ

ments. new(x,e) indicates that a name x does not occur in an environ-
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ment e. rep(e,e',x,x') indicates that e' differs from e only in that 

each occurrence of x is replaced by x'. It will only be used with x' 

such that new(x',e) holds. The extensions follow. 

Operations on Env 

new(•,•) Name * Env + Boot 

rep(·,·,•,•): Env * Env *Name* Name+ Boot 

new(x,e) ï (~ t: Type (x,t) e) 

rep(e,e',x,x') = (~ y: Name,t: Type 

y f x A y f x' 

A (~ t: Tyve I (x,t) 

Nonterminals 

{Form <Env>, Cont <Env>} 

Terminals 

{"t>"} 

Grammar rules 

Form <e> ::= Cont <e> I Cond <e> • 

Cont <e> : := • 

e = Empty 

(y,t) i~·e • (y,t) ~ e') 

e • (x',t) inE e') • 

Cont <e0> ::= Cont <e 1> > Decs <d> • 

e0 = Ext(e 1 ,d) 

Examples 

1> x,y: int 1> b: bool I b ~x > y 

1> x,y: int (~ b : boo 1 11 b ~ x > y) 

(~ x,y: int 11 (~ b: bool 11 b,. x > y)) 

1> x,y: int I x > y 

D 
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For formulae of the form c ~ d I p the order and grouping of variables 

in d is irrelevant; e.g. the formula 

is equivalent to the formula 

p • 

If a deelaratien x: t occurs in the part d of a formula c ~ d I p, then 

within p x stands for an arbitrary value of type t. This is reflected 

in the axiom that c 1> ••• ,x: t I p is equivalent to c ~ • • • I (A x: t 11 p). 

In particular the example formulae are all equivalent. 

The proef rules of D are of the form 

cO Po•PJ>''' 

cl I P 

and may contain a countable number of premises. 

Most proof rules have direct counterparts in first-order predicate 

logic. We will only mention the axioms and proef rules for infinitary 

formulae: 

Let {q. I 0 5 j} be a countable set of conditions in a context c 
J 

DAl. For all j: 0 5 j: c [/\i I os i I q.J .. q. 
~ J 

,, DA2. Forallj: Osj: c I q.•(Vi I Os i I q.] 
J ~ 

DRI. c 1 P .. q0 , p .. q1, 

c 1 p .. rA i 1 o s i 1 qi 1 

Dr2. c I q0 =~> p, q1 • p, ••• 

c I [V~ I 0 s l I qi] =I> p 

Provability of a formula c I p in D will be indicated by: ~D c I p. 
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3.2.3. The ccl's of conditions and condition transfarmers 

In this section we will impose a suitable lattice structure on condi

tions and condition transformers, respectively. First we will partition 

a condition language into equivalence classes: 

Definition 3.31 {eq} 

For all e E Env the condition =se on L(Cond <e>) is defined by: 

for all p,q E L(Cond <e>), c E L(Cont <e>): 

p q fif ~D c I p ~ q • 

0 

Example 

Let e E be such that ~(x,int) ~ e and ~(y,int) ~ e. 

x > y =se --, (x s y) 

x x+l =se false 

x > y (A z: int I z x 1 z > y) • 

0 

Definition 3.32 {Ce} 

For all e E Env: C e L(Cond <e>) I =se· 
0 

The partitioning into equivalence classes serves to get rid of the 

complications stemming from the fact that different conditions may 

characterize the sameset of states (viz. when p ~ q, but p =se q). 

Henceforth we will identify with L(Cond <e>) and freely replace 

conditions by equivalent ones. 

Definition 3.33 {c } -e 
For all e E Env, the relation ~e on 

for all p,q € Ce' c E L(Cont <e>): 

p ~e q fif ~D c I p ~ q • 

0 

is defined by: 



Example 

Let e be as in the previous example. 

x > y c: x > y-l -e 

x> y c: (! z: int I y > z I x > z) -e 

false c: x > y -e 
D 

It can easily be verified that ~e is a partial order on Ce. In fact: 

Theorem 3.34 

For all e E Env: (Ce,Ee) is a cel. 

D 

Proof 

Let Q be a countable subset of Ce. 

u Q \IQ, on account of definition 3.33, axiom DA2 and rule DR2. 

n Q AQ, on account of definition 3.33, axiom DAl and rule DRI. 

D 

Note that, in particular: 

J.c = u 0 false 
e 

TC = n 0 true. 
e 

Next we will impose a lattice structure on condition transformers. 

Definition 3,35 {T } 
e 

For all e E Env: 

T C -+ C 
e e e 

D 

Theorem 3.36 

Let e E Env. Let ~T be the standard order on Te. 
e 

(Te'~T ) is a cel. 
D e 

Proof 

Immediately by theorem 3.10.2. 
D 

83. 
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3.2.4. Definitions and some properties of wp and wlp 

The fact that for any e E Env both Ce and Te are ccl's enables us to 

discuss the condition transformers wp and wlp in a lattice-theoretical 

framework. We begin with presenting our versions of the definitions of 

wp and wlp. 

Definition 3.37 {wp} 

Por all e E Env the function wpe E L(Stat <e>) +Te is defined by: 

I. wpe (abort) 

3. wpe(v := E) = (v + E) {see first note below} 

5. 'lvp (if BI +SJ D ... 0 B _,. s fi) e- n n-

(Xq E: C I [Vi I lds:n IB.] A [;\i I l~is:n IB. •wp (S,)(q)]) e 1 1 e 1 

A [;\i I ls:i~n I B. • wp (S.)(f(q))])) • 
l e l 

Definition 3.38 {wlp} 

Por all e E Env the function wlpe E L(Stat <e>) + Te is defined by: 

3. wlpe(v := E) = (v + E) {see first note below} 

(Xq E Ce I [;\i I IS:i~n I B . .,. wlp (S.}(q))) 
1 e 1 
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6. wlp (do B1 + s1 0 ... 0 B + S od) = vG, 
e- n n-

A [/\i I J:<:;i::;n I B • .,. wlp (S.) (f(q)) ])) 
l. e l. 

0 

No te 

The operator {v + E) occurring in definitions 3.37.3 and 3.38.3 is an 

instanee of the substitution operator for conditions, that we assume to 

have been defined in the customary way with precautions to avoid name 

clashes. See e.g. [Curry, de Bakker]. 

0 

No te 

In the sequel we will aften omit the brackets around the condition 

argument of functions like wp and wlp, writing e.g. wpe(S 1)wpe(S2)q 

insteadof wpe(s 1)(wpe(S2)(q)). 

0 

In definition 3.37.6 wp B1 + s1 U ... U B + S od) is weli-
e n n-

defined only if the least fixed point ~f of F iudeed exists. According 

to theerem 3.28.1 existence of uF is guaranteed if Fis upward continu

ous, which in its turn depends on upward continuity (and well-defined

ness:) of wpe(Si) for i: I ::; i s n. A similar remark applies to downward 

continuity of G in definition 3.38.6. 

Theerem 3.39 simultaneously states the continuity of wpe(S) and F {and 

also that of wlpe(S) and G), thereby justifying the definitions above. 

This theerem is the first of a number of theorems that express some 

important properties of wp and wlp. Same of these are reformulations of 

properties mentioned in [Dijkstra 2]. Most of the proofs make use of 

both structural induction on the composition of statements and fixed 

point induction. Induction hypotheses are indicated by the letter H and 

an index. 
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Theorem 3.39 

For all e E 

1 • wpe (S) E C 

S E L(Stat <e>): 

+ c e uc e 

If S is of the form do Bl .,. SI 

definition 3.37.6, then F E (C e 

2. wlpe(S) E ... c . de e 

If S is of the form do B
1 

+ s
1 

definition 3.38.6, then G E (C e 
0 

0 ... 0 B + S od, and F is n n-
... c ) ... (C + Ce). uc e uc e ue 

0 ... 0 B + S od, and G is n n-
+de Ce) ... 

de (Ce +de Ce) . 

We only prove I. The proof of 2 is similar when dual versionsof 

theorems 3.24 and 3.26 are used. 

The proof is by induction on the composition of S. 

I . I . S : : abort 

Immediately by theorem 3.24.1. 

1.2. S :: skip 

Immediately by theorem 3.24.2. 

I. 3. S :: v :s E 

Let <q.>~ 0 be an ascending chain in Ce. 
~ ~= 

wpe(v := E)[Vi I 0 s; i I qi] 

{definition 3.37.3} 

(v + E)[Vi I 0 si I q.] 
~ 

[Vi I 0 Si I (v+E)q.] 
~ 

{definition 3.37.3} 

[Vi I is 0 I wp (v+E)q.] e ~ 

Hl. wp e (SI) E Ce + uc Ce • 

H2. wpe(S2) E Ce +uc Ce. 

Immediately by theorem 3.24.3. 

as in 

as in 
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1.5. s :: if B +SJ D ... D B + s fi 
- n n-

wpe (S) 

{definition 3.37.5} 

(Àq € C I [\/i I J";i";n I B.] A [Ai I J,çi";n I B. "* wp (S.)q]) e 1 1 e 1 

= {prop. log.} 

(Àq € Ce I [\/i I J,.;i,.;n I Bi] A [/\i I J,çisn I <Bi v wpe (Si)q]) 

From H3 and repeated application of theorem 3.24 it follows that 

wp (S) € C + C • 
e e uc e 

From H4 and repeated application of theerem 3.26 it fellows that 

FE (C + Ce)+ (C + C ). e uc uc e uc e 

Hence ~F exists and is an element of C + Ce' so e uc 

For alleE Env, S"' L(Stat <e>): 

D 

D 

I. wpe (S) "' C + C • e m e 

2. wlpe(S) € C + C • e m e 

s € L(Stat 

I. wpe(S) is .1-strict. 

2. wlpe(S) is T-strict. 

<e>): 
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Proof 

We only prove 1; the proof of 2 is similar. Th~ proof is by induction 

on the composition of S. 

I • I. 

l. 2. 

I. 3. 

I , 4. 

s .. abort 

Immediately by theerem 3. 13. 1 • 

s .. skip 

Immediately by theerem 3.13.2. 

s .. V :g E 

wp(v := E) false 

{definition 3.37.3} (v + E} false 

false. 

s .. SI ;S2 

Hl. wpe(Sl) is 1-strict. 

H2: wpe (S2) is 1-strict. 

wp(S 1;s2} false 

{definition 3.37.4} wp(S
1
}wp(S2) false 

{H2} wp(S 1) false 

{Hl} false. 

l. 5. s :: if + SI D ••• D +S fi 
n-

H3. For all i: I s is n: wpe(Si) is L-strict. 

wp B1 + s1 D ••• 0 B + S fi) false 
n n-

= {definition 3.37.5} 

[Vi I lsisn IB.] A [/\i 
1 

{H3} [Vi I lsisn I B.] 11 
1 

{prop. log.} false. 

I lsisn I B. • wp (S.) false] 
1 e 1 

[/\i I lsisn I B. ,. false] 
1 

1.6. S :: do B1 + s1 0 ••• D B + S od - n n-

H4. For all i: I s i s n: wpe(Si) is 1-strict. 



89. 

The proof that ~F is ~-strict is by least fixed point induction. 

Admissibility is trivial. 

0 

1.6.1. {base step} 

~T (false) 
e 

(Àq t C I false) false 
e 

false. 

1.6.2. {induction step} 

HS. f is ~-strict. 

f(f) false 

{definition 3.37.6} 

([Vi I J:s;i<;;n IB.] v false) 
l 

A [;\i I J:s;i:s;n I B. => wp (S.)f(false)] 
1 · e 1 

m {HS,H4} 

([Vi I ISiS:n I B.] v false) A [Ai I ]:s;i:s;n I B. => false] 
l l 

{prop. log.} false. 

Theorem 3.42 

For alleE Env, St L(Stat <e>): 

0 

I. wp (S) is conjunctive. 
e 

2. wlpe(S) is conjunctive. 

Proof 

We only prove I. The proof is by induction on the composition of S. 

Let p,q t Ce. 

l.I. S :: abort 

wpe(abort)(p A q) 

{definition 3.37.1} false 

false A false 

{definition 3.37.1 twice} wp (abort)p A wp (abort)q. e e 
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1. 2. S : : skip 

wp e (skip) (p A q) 

{definition 3.37.2} p A q 

= {definition 3.37.2 twice} wpe(skip)p A wpe(skip)q. 

1.3.S::v:=E 

wpe(v := E)(p A q) 

{definition 3.37.3} (v + E)(p 1\ q) 

(v + E)p A (v + E)q 

{definition 3.37.3 twice} wpe(v := E)p A wpe(v := E)q. 

Hl. wpe(S 1) is conjunctive. 

H2. wpe(s2) is conjunctive. 

wp(s
1
;s

2
)(p 1\ q) 

{definition 3.37.4} wpe(S 1)wpe(S2)(p A q) 

{HZ} wpe(s 1)(wpe<s2)p A wpeCS2)q) 

{Hl} wpe(Sl)wpe(S2)p A wpe(SI)wpe(Sz)q 

= {definition 3.37.4 twice} wp(S
1
;s2)p A wp(s

1
;s2)q 

1.5. s :: ifB, .... SI D ....... B D s fi 
- n n-

H3. For all i: I s i s n: wpe(Si) is conjunctive. 

wpe(S)(p A q) 

{definition 3.37.5} 

(V i I I:S:isn I B.] A [/\i I J:s:i:s:n I B. ""wp (S.)(p A q)] 
1. 1. e 1. 

{H3} 

[Vi lsisn I Bi] A [/\i I IS:isn I Bi"" (wpe(Si)p A wpe(Si)q)] 

{prop. log.} 

[V i I Jsisn I B.] A [/\i I I:S:i:s:n I B. ""wp (S.)p] 
1. 1. e 1. 
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A [V i I l~hn I B.] A [/\i I lSiS1 I B. • wp (S.)q] 
l. l. e l. 

{definition 3.37.5 twice} wpe(S)p A wpe(S)q • 

1,6~ S ::do B
1 

+ s1 0 ••• DB + S od , - n n-

H4. For all i: l ~i ~ n: wpe(Si) is conjunctive. 

The proof that ~F is conjunctive is by least fixed point induc

tion. Admissibility fellows from lemma 3.21. 

1.6.1. {base step} 

See 1. 1. 

1.6.2. {induction step} 

HS. f is conjunctive. 

F(f) (p A q) 

{definition 3.37.6} 

([Vi I lsisn I B.] v (pA q)) 
]. 

A [/\i I 1sisn I B. • wp (S.)f(p A q)] 
l. e l. 

{H5,H4} 

([Vi I Jsisn I B.] v (pA q)) 
]. 

A [ 1\ i I 1 sisn B. • (wp (S.)fp A wp (S.)fq)] 
1 e l. e 1 

{prop. log.} 

([Vi 

A ([Vi 

Jsisn Bi] v p) A [/\i 

I sisn B,] V q) A [ 1\ i 
]. 

l~isn B. • wp (S.)fp] 
l. e l. 

lsisn B. • wp (S.)fq] 
l. e J. 

= {definition 3.37.6 twice} F(f)p A F(f)q 

Theorem 3.43 

For alleE Env, SE L(Stat <e>), q E Ce: 

0 

Proof 

The proof is by induction on the composition of S. Let q E Ce. 



wpe(abort)q 

{definition 3.37.1} false 

{prop. log.} false À true 

{definitions 3.37.1, 3.38.1} wp (abort)true À wlp (abort)q. 
e e 

2. s .. 

wp (skip)q 
e 

{definition 3.37.2} q 

{prop. log.} true À q 

{definitions 3.37.2, 3.38.2} wpe(skip)true À wlpe(skip)q. 

3. S :: V := E 

wpe(v := E)q 

= {definition 3.37. 3} (v + E)q 

• {subst. prop. log.} (v + E)true À (v + E)q 

= {definitions 3.37.3, 3.38.4} wpe(v := E)true À wlpe(v := E}q • 

Hl. wpe(S 1)q = wpe(S 1)true A wlpe(S 1)q. 

HZ. wpe(s2)q = wpe(s 2}true A wlpe(s2)q. 

wpe(SI;Sz)q 

{definition 3.37.4} wpe(S 1}wpe(S2)q 

{Hl} wpe(S 1)true A wlpe(s 1)wpe(s2)q 

{HZ} wpe(S 1)true À wlpe(S 1)(wpe(s2)true À wlpe(s2)q) 

{theorem 3.42.2} 

wpe(S 1)true À wlpe(S 1)wpe(s2)true A wlpe(S 1)wlpe(s2) 

{Hl} wpe(s 1)wpe(s2)true À wlpe(s 1)wlpe(s2)q 

{definitions 3.37.4, 3.38.4} wpe(s 1;s2)true A wlpe(s 1;s2)q. 



5. S :: if B1 + s1 .0 ••• 0 B + S fi 
- n n-

H3. For all i: I ~ i ~ n: wp (S.)q = wp (S.)true A wlpe(S~)q. e ~ e ~ k 

wpe(S)q 

{definition 3.37.5} 

[Vi J l~i~n I 
= {H3} 

] A (/\i I l~i~n I B. ". wp (S.)q] 
1 e ~ 
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[Vi l::;;i::;;n ] A [/\i I )::;;i::;;n I B. ". (wp (S.)true A wlp(S.)q)] 
~ - e ~ ~ -

{prop. log.} 

[Vi I 

A [ 1\ i l~i::;;n B. ".wlp (S.)q] 
~ e ~ 

{definitions 3.37.5, 3.38.5} wpe(S)true A wlp(S}q • 

6. S :: do B1 + s1 0 ... 0 B + S od 
- n n-

H4. For all i: I ~ i ~ n: wpe(Si)q = wpe(Si)true A wlpe(Si)q. 

The proof that (~F)(q) = (~F)(true) A (vG)(q) is by simultaneous 

fixed point induction. Admissibility follows from lemma 3.44 below. 

6.1. {base step} 

.lT (q) 
e 

(Àq E Ce I false)q 

false 

false A true 

(Àq E Ce I false)true A (Àq E Ce I true)q 

.lT (true) A (q) • 
e 

6.2. finduetion step} 

HS. f(q) = f(true) A g(q). 

F(f) (g) 

{definition 3.37.6} 

([Vi I lsisn I B.] v q) A [/\i I lsisn I B. ". wp (S.)f(q)] 
~ ~ e ~ 
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0 

{H4,H5} 

([Vi I tsisn I B.] v q) A [;\i I Isisn I B. • 
1 1 

(wpe(Si)true A wlpe(Si)(f(true) A g(q)))] 

{theorem 3.42.2} 

([Vi I tsisn I B.] v q) A [/\i I tsisn I B. • 
1 1 

(wpe(S
1
.)true A wlp (S.)(f(true)) A wlp (S.)(g(q)))] e 1 ·e 1 

{H4} 

([Vi I tsisn IB.] v q) A [;\i I lsisn IB. • 
1 1 

(wpe(Si)(f(true)) A wlpe(Si)(g(q)))] 

{prop. log.} 

([Vi I Jsisn I B.] v q) 
1 

A [;\i I Jsisn IB. •wp (S.)(f(true))] 
1 e 1 

A ([Vi I tsisn IB.] v q) 
1 

A [/\i I Jsisn IB. :o-wlpe(S.)(g(q))] 
1 1 

{definit.ions 3.37.6, 3.38.6} F(f)(true) A G(g)(q) • 

The admissibility for simultaneous fixed point induction in proof 3.43.6 

is an immediate consequence of the following lemma. 

Lemma 3.44 

Let (C,~) be a cel. 

Let <fi>~=O and <hi>~=O be two ascending chains in (C,~). 
Let <gi>i=o be a deseending chain in (C,~). 

If (A i I i~ 0 I f. = h~ n g.), then 
- 1 1 1 

0 



Pro of 

f is ascending 

<.! i I i :::: o I <.! j I j 2 i I 
j I j ;::: o I r. h. n g.)} 

J J J 

c f.)) 
- J 

<.! i I i :::: o I <.! j I j :::: i I r i !;. h j n g j > > 

{definition glb} 

<.! i I i ;::: o I <.! j 

~ {definition lub, glb} 

j 2 i fl.. ~ hJ. A f. C g.)) 
l. - J 

(_! i I i ;::: 0 I fi E j~i hj A fi ~ jgi gj) 

~ {h ascending, g descending} 

(_! i I i ;::: 0 I fi ~ j~O hj A fi t jQO gj) 

~ {definition glb} 

(_A i I i ;::: 0 I fl.. !: .uo h. n .no g.) 
J"' J J"' J 

~ {definition lub} 

i~O fi ~ j~O hj n jQO gj 

{renaming} 

i~O !:. i~O hi n iQO gi ' 

2. t:û 

true 

{definition glb} 

<A i 1 i 2 o 1 g. ~ .n0 g.) 
- l. ·- J"' J 

~ {definition glb} 

(A i I i 2 0 I h. n g. ~ h. n .no g.) 
- 1 l. - 1 J"' J 

{(A i I i;::: 0 I f. = h. n g.)} 
- l. 1 l. 

(_! i I i 2 o I fi J hi n jQO gj) 

95. 
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0 

{definition lub} 

fi ~ i~O (hi n jQO gj) 

{lemma 3.21} 

Theorem 3.45 

Let e E p,q E Ce; sl, ... ,sn L(Stat <e>); 

B
1

, ••• ,Bn E L(Expr <e,Prio,bool>). 

Let IF = if B
1 

..,. s
1 

0 ••• I] B ..,. S fi . 
- n n 

I. If for all i: I 

D 

s i s n: p A B. c wp (S.)q, then 
l. -e e J. 

\ve only prove I. The proof of 2 is similar. 

D 

I, Assume 

A: for all i: I <:; i $ n: p A Bi Se wpe(Si)q • 

pA [Vi I lsisn I B.] 
]. 

{prop. log.} 

[V i 

{A} 

J<:;i<:;n I B.] A [/\i I J<:;i<:;n I B.-. pA B.] 
l l ]. 

[V i I J<:;isn I B.] A [/\i I t::;;isn I B. -. wp (S. )q] 
1 1 e 1 

{definition 3.37.5} wp (IF)q • e 

Theorem 3.46 

Let e E Env; p E Ce; s 1, ••• ,sn E L(Stat <e>); 

B1, ••• ,Bn E l(Expr <e,Prio,bool>), 



Let BB "" [V i I I ::;i Sn. B. ] • 
~ 

I. If for all i: I::; i::; n: pA Bi 

p wlpe(DO)(p A • BB) • 

0 

Proof 

We first prove 2, and subsequently I. 

2. Assume 

The proof that p (vG)(p A • BB) is by greatest fixed point 

induction. Admissibility follows from definition 3.2.1. 

2.1. {base step} 

p 

c: true -e 

(;\,q E C I true) (p A -, BB) 
e 

TT (p A -. BB) 
e 

2.2. {induction step} 

H: p Se g(p A -,BB) 

G(g)(p A-, BB) 

{definition 3.38.6} 

(BB v (pA ï BB)) A [Ai I Js:i::;n I B.,. 
~ 

{prop. log.} 

wlp (S.)(g(p A-, BB))] e ~ 

(BB v p) A [Ai I l::;i::;n I B.,. wlp (S.)(g(p A-, BB))] 
~ e ~ 

97. 
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D 

~e {H, corollary 3.40.2} 

(BB v p) " [Ai I 1 sisn 

.:1 {A2} -e 

B.<$ wlp (S. )p] 
l. e l. 

(BB v p) " [Ai I Jsisn I Bi • p "Bi] 

{prop. log.} p • 

I. Assume 

By Al and theorem 3.43: for all i: 1 s i s n: 

p AB. c wp (S.)true A wlp (S.)p , 
1 -e e 1. e 1. 

hence: 

p A wpe (DO)true 

c {Al' ,A2} -e 

wlpe(DO)(p A •BB) A wpe(DO)true 

{theorem 3.43} 

wp (DO)(p A •BB) 
e 

Theorem 3.47 

Let e E Env; q E Ce; {p~ I a~ 0} a countable subset of Ce; s 1, ••• ,sn• 

B1, ••• ,Bn, IF, DO, BB as in theorems 3.45 and 3.46. 

I. wpe(DO)q = (q A..., BB) V wpe(IF)wp(DO)q . 

2. If for all a: a ~ 0: 

a. for all i: :5 is n: P~ AB. 1: wp (S.)[Va' l Osa'<a I p ,J 
~ 1. -e e 1. a 

b. Pa A ..., BB ~ q 

then [Va. I a:?: 0 I pa] ~e wpe(DO)q. 

D 



Proof 

D 

I. wpe (DO)q 

{definition 3.37.6, fixed point property} 

(q v BB) A [/\i I J";isn I B. ,. wp (S.)wp (DO)q] 
l e l e 

{definition BB, prop. log.} 

(q 11-,BB) v (BB 11 [/\i lisün IB. ,.wp (S.)wp (DO)q )) 
1 e 1 e 

{definition 3.37.5} 

(q 11 -, BB) V wp (IF)wp (DO)q 
e e 

2. Let ~: ~ ~ 0. Consider 

[\/~' I o~~· <~ I P~·] !;.e wpe (DO)q 

,. {corollary 3.40.1} 

wp (IF) [\/a' I Q";~• <~ I p , ] t: wp (IF)wp (DO)q e ~ -e e e 

• {a, theorem 3.45} 

p~ 11 BB Ëe wpe(IF)wpe(DO)q 

- {b} 

(p~ 11-, BB) v (p~ 11 BB) ~e (q 11-, BB) v wpe(IF)wpe(DO)q 

{prop. log., I} 

wp (DO)q • 
e 

We have shown that for all a: ~ ~ 0: 

hence by lemma 3.29: 

99. 
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3.3. Logies for partial and total correctness 

In this section we will extend the logic D with additional formulae and 

proof rules .that enable us to prove partial and total correctness 

properties in the style of Hoare [Hoare I, Hoare 2]. We will also prove 

consistency of these logies with respect to D. To this end we introduce 

notions of validity and soundness. It should be noted that our use of 

these terms differs from that in program correctness theory 

[de Bakker, Cook 2] or formal logic. In the latter fields these notions 

pertain to the relations with a model; in our case they pertain to 

relations with the logic D. 

Partial and total correctness formulae are introduced by the following 

extensions to the attribute grammar for D-formulae. 

Nonterminals 

{Pform <Env>, Tform <Env>}. 

Terminals 

{ "{","}","[","]" }. 

Grammar rules 

Pform <e> ::= Form <e> • 

Pform <e> ::= Cont <e> {Cond <e>} Stat <e> {Cond <e>} • 

Tform <e> ::= Form <e> • 

Tform <e> ::= Cont <e> [Cond <e>] Stat <e> [Cond <e>] • 

Definition 3.48 {PvalidO, TvalidO} 

On L(Pform <Env>) and L(Tform <EnV>), respectively, the predicates 

PvalidO and TvalidO are defined as follows: 

For all e E Env, c E L(Cont <e>), p,q E L(Cond <e>), S E S(Stat <e>): 

l.I. PvalidO(c I p) = ~D c I p 

1.2. PvalidO(c I {p}S{q}) = ~D c I p ~ wlpe(S)q. 



2. 1. TvalidO(c I p) = ~D c I P • 

2.2. TvalidO(c I [p]S[q]) =~De I p~wpe(S)q. 
0 

Definition 3.49 {proof rule} 

D 

I. A partial correctness proof rule is a construct of the form 

f 
n 

where n ?: I, and c0 I f 0 , ••• ,c0 I fn-l, c 1 I f E L(Pform <Env>). 

2. A total correctness proof rule is a construct of the form 

f 
n 

wh!'!re n::: I, and c0 I f 0 , ••• ,c0 I fn-l' c 1 I f E L(Tform <Env>). 

Definition 3.50 {PsoundO, TsoundO} 

D 

I. On partial correctness proof rules the predicate PsoundO is 

defined by: 

2. On total correctness proof rules the predicate TsoundO is defined 

by: 
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Definition 3.51 {PC0, PAI' .•• ,PA3, P~ 1 , ••• ,PR4 } 

The partial correctness logic PC0 is defined by 

- AxPCO = ~ u {PA1 ,PA2 ,PA3 } 

- PrPC = PrD u {PR1,PR2 ,PR3 ,PR4 } 
0 

For all e E Env , 

c E L(Cont <e>) , 

p,q,q 1 ,q2
,q

3
,q

4 
E L(Cond <e>) , 

B1, ••• ,Bn E L(Expr <e,Prio,bool>) , 

s,sl, ••• ,sn E L(Stat <e>) ' 

v, E such that v := E E L(Stat <e>) 

PA1• c {true} abort {q} 

PA2 • c {q} skip {q} 

PA3. c {(v + E)q} v := E {q} 

c I ql ~ q2• fqzl s {q3}, q3 • q4 
PR 1• ----~--~--~----~--~----~ 

c I { q I } s { q4 } 

c I {pA B
1

} s1 {p} , ... , {pA Bn} Sn {p} 

PR4• -------------------------------------------------------
c I {p} do B1 + s1 0 ••• 0 Bn +Sn od {p A'-~[Vi I l~i~n I Bi]} 

0 

Theorem 3.52 

I . For all ax E ~c : PvalidO(ax) . 
0 

2. For all pr E PrPC : 
0 

PsoundO(pr) 

0 



Proof 

We only have to consider PA1, ... ,PA3, PR1, ••• ,PR4• 

I. PvalidO(PA
1
), Pvalid0(PA2 ) and PvalidO(PA3) follow immediately 

from definition 3.48.1.2 and definitions 3.38.1, 3.38.2 and 

3.38.3, respectively. 

2. I. case PR1 

Assume Al. PvalidO(c ql =I> q2) • 

A2. PvalidO(c {q2} s {q3}) 

A3. PvalidO(c q3•q4). 

wlpe(S)q4 

~e {A3, corollary 3.40.2} wlpe(S)q3 

~e {A2} q2 

{Al} q
1 

hence PvalidO(c I {q
1

} S {q4}) • 

2.2. case PR2 

Assume Al. PvalidO(c {q
1

} S
1 

{q2}) 

A2. PvalidO(c {q2} s
2 

{q3}) 

wlpe(SI;S2)q3 

= {definition 3.39.4} wlpe(S
1
)wlp(S2)q3 

{A2, corollary 3.40.2} wlpe(S
1
)q2 

.:!e {Al} ql 

hence PvalidO(c I {q 1} S1 ;s2 {q3}) • 

2.3. case PR3 

Assume for all i: Is is n: PvalidO(c I {pA B.} S. {q}), 
~ ~ 

By thèorem 3.45.2: 

PvalidO(c I {p} if B1 + s1 ll ••• D Bn + Sn fi {q}) . 

103. 
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2.4. case PR4 

Assume for all i: 1 s i s n: PvalidO(c I {p A B.} S. {p}). 
l. l. 

By theorem 3.46.2: 

PvalidO(c I {p} do B
1

+S
1 

0 ... 0 Bn+Sn od {pA ï[Vi 1 sisn I B.]} 
l. 

0 

Definition 3.53 {TC0 , TA 1, ••• ,TA3, TR1, ••• ,TR4 } 

The total correctness logic TC0 is defined by 

- AxTC = AxD u {TA1,TA2 ,TA3 } 
0 

- PrTCO = PrD u {TR1,TR2 ,TR3 ,TR4 } 

where TA
1

, ••• ,TA
3

, TR 1, ••• ,TR
4 

are given below. 

For all e E Env , 

c E L(Cont <e>) , 

p,q,q 1,q2,q3.q4 E L(Cond <e>) , 

B
1

, ••• ,Bn E L{Expr <e,Frio,bool>) , 

S,S
1

, ••• ,sn E L(Stat <e>) , 

v, E such that v := E E L(Stat <e>) , 

a E L(Expr <e,Frio,int>), A,E Name such that ~ new(A,e) 

TA
1

• c [false] abort [q] 

TA2. c [q] skip [q] 

TA
3

• c [(v + E)q] v := E [q] 

c I ql ~ q2' [q2] s [q3], 
TR1• 

c I [ q I] s [q4] 

c I [ql] SI [q2]' [q2] 5z 
TR2• 

c I [ql] SI; [q3] 

q3 ~ q4 

[q3] 

c I (p A BI] SI [q] , ... ,[pAB] n TR3• 
c I (p A lVi I lsisn I B.]] if B1 l. -

s [q] 
n 

+ SI D ... D B + S fi [q] 
n n-



TR4• c ~A: int [p A B1 A O::;a A a=A) s1 [p A Osa A a<AJ 

[p " " osa " a=A] [p " Osa " a<A] 

0 

Theerem 3.54 

I • For all ax E AxTC : TvalidO(ax) 
0 

2. For all pr E PrTC : TsoundO(pr) 

0 
0 

Proef 

We only prove seundness of TR4; the other proofs are very similar to 

those of theerem 3.52. 

Let e' = Ext(e,[A,int]D). 

for all i: I s i s n: 

TvalidO(c ~ A: int I [p A B. A Osa A a=A] S. [p A Osa A a<A]) 
l. l. 

{definition 3.48.2} 

for all i: I s i s n: 

~D c ~A: int I (p "Bi" Osa" a=A) • wpe,(Si)(p" Osa A a<A) 

{axiom of D} 

105. 

~D c I (!:_A: int 11 (p " Bi A Osa " a=A) • wpe' (Si) (p " Osa " a<A)) 

0 

• {*see note below} 

for all i: I s i s n: 

for all a: 0 s a: 

~D c I (p" Bi " a=a) • wpe(Si)(p A Osa A a<ä) 

• {definition 3.33, theorem 3.47} 

[Vet I Osa I p" B. A a=~] c wp (DO)(p A rBB) 
. 1. -e e 

pA Osa ~e wpe(DO)(p A, BB) 

{definition 3.48.2} 

TvalidO(c J [p A Osa] DO [p A, BB]) • 
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In the step marked with a * we have applied the rule for A-elimination. 

The notation a stands for an element of L(Con <int>) repreaenting the 

value a. As in the resulting conditions·the variabie A no longer occurs, 

wpe' may be replaced by wpe. Replacements of the latter kind will be 

discussed more extensively ·in chapter 4. 

0 



CHAPTER I! 

BLOCKS AND PROCEDURES 

4.0. Introduetion 

In this chapter we consider the design and formal definition of some 

essential components of the souree language, viz. blocks and 

procedures. We do so for various reasons: 

107. 

Blocks and procedures are nontrivial extensions to the kernel 

language of chapter 3. They pose many interesting problems with 

regard to the construction of correct compilers, which is the 

ultimate goal of our studies. 

In the literature on formal definitions in many cases the treat

ment of blocks and procedures is either incomplete or very 

complex. The incompleteness usually results from consiclering 

either the syntactic or the semantic aspects of the constructs, 

whereas their interaction is often essential (e.g. in proof rules 

for blocks, which critically depend on the scopes of variables). 

The complexity usually results from consiclering an existing 

procedure concept as it occurs in, say, ALGOL 60 or Pascal, as 

holy, and trying to formalize all its aspects as faithfully as 

possible, without questioning the quality of that concept. In 

contrast, we want to define completely both syntax and semantics, 

but we will try to design language constructs in such a way that 

their definition is relatively simple. 

It is interesting to investigate to what extent the condition 

transfarmer method, which was designed for statements, can be 

applied to more complex language constructs like recursive 

procedures. 

We will try to separate the various aspects as much as possible, and 

to study their effect on syntax, semantics and proof rules. This 

separation is reflected in the structure of the chapter. In sectien 

4.1 we will discuss blocks, mainly to investigate the effects of the 
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introtluttion of local names. Section 4.2 deals wit.h parameter 

mechanisms. The discussion is oase(! on a J.«ne•.t«g" construct cal led 

ab~tnl'.'t.ion, which resembles the ALGOL 68 routinetext, and whic.h c.an 

b" u~erl to stuóy the effects of paJ:ametrü<ttion, Se ct ion t,. 3 eon~f!n

tr~te~ nn reco~sion~ which c3n be handled rather e~sily by mean~ of 

the L•ttic.~ theory of s~aion :1.1. Fin.•lly, in .•ec.tion 4.4 th" various 

a..sreC'.ts ;1.re merged ~ re sult ing i.n a tr-er-~tment of parametrized recursivri! 

proC'.edure.s. R;Jch sect:ton follows the S;JTfl.~ p:~.ttex-n of dis~u:!?.sing first 

syntax~ then sem,qntic.c::~ and finally proof rules. 
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4. I. lllocks 

4. l.O. Intro<:luction 

In sf!ction 4. I we <:liscuss the block, a constr\lct which provides the 

rnf!ans for loeal extension of tho< f!rrvironment of statements. Although 

the block is of some interest in its own right, our ~rime motivation 

to discuss it is the desire to sepsrate th.o aspeet of the introduc.tion 

of local nomenclature from other aspects of the proeedure concept. 

From section 2. 3. 2 we reeall the [:p:amrnar rul<'> for bloc:ks: 

2. Block <e0> r:= I[ var Does <d> I Stat <e 1> )I • 

(!è_ n: Name I #D (n,d) ,; 1) 

c 1 - Ext(~. 0 ,d) 

Throughout section 4. I we shall restriet ourselves to blocks containin~ 

a sin~le variable doclaration, i.e. btocks of the forrn 

I[ var x: t I S ] I. Generalization toother blocks is straightfo~ard. 

In sectien 4. l.l we consider the case that re<:lecl.s>:ation is not allowed. 

As a prepa>:ation for the treatm~nt of redeclaration in sectien 4.1.3 

and for othe~ section~, seçtion 4. 1.2 is devoted to substitution in 

progrsmrning language construct s. In sect ion 4. I. 4 proof ndes for 

b1ncks are presented and their soundness is proven. 

4. I, I, Blocks without >:edeclsration 

In this section we stu<:ly the semantica of a block I[ var x: t I S] I 

~ L(Block <e
0

>) under the additional assumption that ~ new(x,e0 ), i.e. 

that x has not been declarêd in surrounding block~. What we naed is a 

definition of wpe (i[ var x! t I S ] I) in tcrms of ~De (S). Sincc it 0 - . l 
is our intf>ntion that I[ var x: t I S ll and S have thf> sameeffect as 

far AS the variables of e0 are concerned, a definition of the following 

forrn readity suggests itself: 

wp (I[ var x: t 
eo 

wp (S)q) 
el 
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However, this definition is not always correct. Because e 1 is an 

extension of e0 , Ceo is a proper subset of Cel' Therefore wpe 1(s) may 

be applied to q, but the yield is not necessarily an element of Ceo• 

since it might still contain x. A little reflection reveals that this 

situation will only occur when x has not been initialized by S (where 

for the moment we assume that we know what is meant by initialization). 

There are at least two solutions to the problem: 

I. Require that s es tablishes 

of the initial value of x. 

cation over x, as a result 

element of Ceo: 

wpe (I[ var x: tI S Jl) 
0 

the desired post-condition regardless 

This boils down to universal quantifi-

of which the pre-condition becomes 

(A x: t 11 wpe (S)q)) 
l 

an 

2. Impose the additional context condition that S initializes x. 

Solution I does not fit well into the framework developed in chanter 3 

because the resulting condition transfarmer is not upward continuous. 

In the terminology of [Back l, Dijkstra 2] a block containing a 

variabie of an unbounded type would be a construct of "unbounded non

determinacy"; e.g. the block I[~ y: nat I x:= y+l ]I would be an 

implernentat:.ion of Dijkstra's "set x to any positive integer" 

[Dijkstra 2]. Because of this complication we will notadopt salution I. 

Salution 2 is in accordance with "disciplined" programming. Systematic

ally constructed programs will never contain uninitialized variables 

and therefore we rnay as well exclude them syntactically. For the dura

tion of this chapter context conditions of this kind will be expressed 

by means of some auxiliary functions defined below. Eventually they 

will be incorporated into the attribute grammar for the souree language. 

Definition 4. I {USE} 

The function USE 

L(Stat <Env>) u l(Expr <Env,PT'io,Tyve>) u l(Cond <Env>) + P(Name) 

is defined recursively by 
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I • USE(abort) = 11) 

2. USE(skip) = 0 

3. USE(v := E) = USE(E) 

4. USE(S 1;S2) = USE(S 1) u USE(S2) 

n n 
5. USE BI +SI 0 0 B + s fi) n n- u USE(Bi) u u USE(Si) 

i=l i=l 
n n 
u USE(Bi) u u USE(Si) 

i=! i=l 

7. USE(I[ var x: t I S ]I)= USE(S) \{x} 

8. USE(E 1 op E2) USE(E 1) u USE(E2) 

for op € L(Dop <Prio,T.ype,Type,Tyrye>) 

9. USE(op E) = USE(E) for op E L(Mop <Type,Type>) 

10. USE((E)) = USE(E) 

11. USE(v) = {v} for v E L(Var <Env,Name,Tyve>) 

12. USE(c) = ~ for c E L(Con <Type>) 

13. USE((A x: t E
1 

E
2
)) = USE(E

1
) u USE(E

2
) \ {x} 

14. USE((! x: t E
1 

E
2
)) = USE(E

1
) u USE(E

2
) \ {x} 

15. USE([V i q.]) 
l. 

= U USE(q.) 
Od 1 

16. USE([/\ i = U USE(q.) 
Osi 1 

0 

Definition 4.2 {ASSN} 

The function ASSN: L(Stat <Env>) + P(Name) is defined recursively by: 

I. ASSN(abort) = ~ 

2. ASSN(skip) = 0 

3. ASSN(v := E) {v} 

4. ASSN(S 1;s2) = ASSN(S 1) u ASSN(S2) 

n 
5. ASSN(if B1 +SI 0 0 B + S fi) u ASSN(S.) n n- i=l ]. 

n 
6. ASSN(do B1 + s1 0 ... 0 B + S od) = u ASSN(Si) n n- i= I 
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7. ASSN(I[varx: tI S ]I) =ASSN(S) \{x} 

[] 

Definition 4.3 {INIT} 

The function INIT: L(Stat <Env>) 7 P(Name) is defined recursively by: 

I. INIT(abort) = 0 

2. INIT(skip) 0 

3. INIT(v := E) {v} \ USE(E) 

4. INIT(S 1;s
2

) = INIT(S
1
) u (INIT(S

2
) \ USE(S 1)) 

n n 
5. INIT(if BI _.. SJ u u B ... s fi) n INIT(Si) \ u USE(Bi) n n- i= I i=l 

6. INIT(do B
1 -+ SI 0 0 B ... s 0 n n 

7. INIT( I [ var x: t I S ] I) = INIT(S) \ {x} 

0 

Informally, for a construct c the set USE(c) may be interpreted as the 

set of variables occurring in an expression in c, ASSN(c) as the set 

of variables occurring in the left-hand side of an assignment in c, 

and INIT(c) as the set of variables initialized by c, i.e. assigned to 

by every possible execution of c and no~ used in any expression befare 

they have been assigned to. The set USE(c) u ASSN(c) is the set of 

"free" variables of c. 

Example 

Let S be the statement 

D 

x : 0; if x ~ y -+ y := 0; z := 0 0 true -+ w := w; z := x fi 

USE(S) 

ASSN(S) 

INIT(S) 

{x,y,w} 

{x,y,z,w} 

{x,z} • 



Lemma 4.4 

For alleE Env, SE L(Stat <e>): 

I. INIT(S) ~ ASSN(S) • 

2. ASSN(S) ~ {n E Name I (~ t e: ~·I ~ (n,t) inE e)} • 

3. USE(S) s {n E Name (~tE I ~ (n,t) e)}. 

0 

Proof 

By induction on the composition of statements. Details omitted. 

0 

Now consider again the proposed definitions 

wp (I[ var x: t I S ]I); (Àq E Ce I wpe (S)q) eo - 0 I 

wlpe (I[ var x: tI S ]I)= (Àq e: Ce I wlp (S)q) 
0 - 0 el 
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By induction on the composition of statements and the nesting depth of 

blocks it can easily be seen that these definitions are well-formed 

(i.e. wpe (S)q E C and wlpe
1

(S)q E Ce
0

> if we impose the additional 
I eo 

context condition: 

I x E INIT(S) V x t USE(S) I 
A similar condition is formulated in [de Bakker]. 

For future reference we collect some properties of USE, ASSN, and INIT 

in the following lemma. 

Lemma 4.5 

For alleE Env, SE L(Stat <e>), p,q E L(Cond <e>): 

I. USE(wpe(S)q) ~ USE(S) u USE(q) • 

2. USE(wlpe(S)q) S USE(S) u USE(q) 

3. USE(wpe(S)q) n INIT(S) = 0 . 

4. USE(wlpe(S)q) n INIT(S) = 0 . 

5. If ASSN(S) n USE(p) ; 0, then wp (S)(p A q) =pA wp (S)q. 
e e 

6. If ASSN(S) n USE(p) = 0, then wlp (S) (p A q) = p A wlp (S)q. e e 
0 
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Pro of 

By induction on the composition of statements. Details omitted. 

[j 

4.1.2. Substitution in statements 

In the sequel we will sametimes define the meaning of a construct in 

terros of the meaning:of a second construct derived from the first one 

by a process invalving systematic replacements of variables. Such an 

approach requires a precise definition of systematic replacement. Here 

we present such a definition, much resembling those in [Curry, de 

Bakker]. 

Definition 4.6 {(x+ y), substitution in statements} 

For all x,y E L(Var <Env,Name,Type>) the substitution operator (x+ y) 

on L(Stat <Env>) u L(expr <En1J,Prio,Type>) is defined recursively by: 

I. (x+ y) abort = abort 

2. (x + y) skip & skip 

3. (x+ y)(v := E) = (x+ y)v := (x+ y)E 

4. (x+ y)(S
1
;s

2
) = (x+ y)S

1
;(x + y)S

2 

5. (x+ y) if B
1 

+ s
1 

D ••• 0 B + S fi = n n-

if (x+ y)B 1 +(x+ y)S 1 D ... D (x+ y)Bn +(x+ y)Sn fi 

6. (x+ y) do B1 + s 1 D •.. DB + S od 
n n-

do (x-<- y)B 1 + (x-<- y)S 1 IJ ... D (x+ y)Bn + (x+ y)Sn od 

7. 

I. if x= w, then 

(x + y) I [ var w: t I s 11 I [ var w: t I s ll 

2. ifx 1' w and y 1' w, then 

(x+ y) I [ var w: t I s ] I I [ var w: t I (x + y)S ] I 

3. if x 1' w and y = w, then 

(x +- y) I [ var w: t I s Jl I[ var z: t I (x+ y)(w + z)S ]I 

where z is the first element (in some suitable ordering) of 



L(Var <Env,Prio,Type>) such that 

z i {x,y} u USE(S) u ASSN(S) • 

8. (x+ y)(E
1 

op E
2

) = (x+ y)E 1 op (x+ y)E
2 

9. {x<-y){opE) =op (x+y)E 

10. 

I. (x+y)z y 

2, (x + y)z = z 

IJ. (x+ y)z = z 

0 

if x = z } z 
E L(Var <Env,Prio,Type>) 

if x "' z 

z E L(Con <Type>) 
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We reeall from section 3.2.4 that we assume that for conditions sub

stitution has been defined in the customary way. Without proof we state 

the following obvious property. 

Lemma 4. 7 

For all x,y E L(Var <Env,Name,Tyve>), sE L(Stat <Env>), 

c E L(Expr <Env,Prio,Type>) u L(Cond <Type>): 

if x t/. USE(s) u ASSN(s), then (x+ y)s s • 

if x i USE(c), then (x+ y)c = c. 

0 

The following lemma relates the condition transfermers of a statement 

S and a statement S' obtained from S by systematic replacement of a 

variable x by a variable x'. 

Lemma 4.8 

Let e E Env, S E L(Stat <e>), 

Let x,x' E Name such that ~ -, new(x,e), ~ new(x' ,e). 

Let 'e' E Env such that ~ rep(e,e' ,x,x'). 

Let S' = (x+ x')S. 

0 

I. wpe (S) 

2. wlpe(S) 

(x'+ x) o wp ,(S') o (x+ x') 
e 

(x' +x) o wlpe 1 (S 1 ) o (x+ x') 
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Proef 

By induction on the composition of statements. Details omitted. 

0 

The following diagram may help in understanding lemma 4.8: 

(x' + x) 

1
p E C e~----'---------'----------1 p ' E Ce , 

wp,(s) 1 wp,,(s') 

q E C ef----(,...x_+_x':"'' ),....--_., ... q' E Ce' 

Lemma 4.8 will now be used to prove the following lemma, which states 

that' the local variable of a bleek may be replaced by a different 

variable without affecting the meaning of the bleek, provided that the 

replacement does not lead to violatien of the condition on redeclara

tion. This replacement is comparable to the a-conversion of lambda 

calculus. 

Lemma 4.9 

Let e E Env, y E Name such that ~ new(y,e). 

Let I[ var x: t I S ]I E L(Stat <e>). 

0 

I. wpe (I[ var x: t 

2. wlpe(l[ var x: t 

Pro of 

We only prove I. 

S ]I)= wpe (I[ var y: t 

S ]I) = wlpe (I [ var y: t 

(x + y) S ] I) 

(x + y) S ]I) 

Let e 1 = Ext(e,[x,t]D)' e2 = Ext(e,[y,t]D). Let q E Ce. 

wp (I[ var x: t I S ]l)q e --

{proposed definition in sectien 4 .• I. I} 

wpel (S)q 

{lemma 4.8} 

(y + x)wpe ((x+ y)S)(x + y)q 
2 



{x i USE (q), lemma 4. 7} 

(y + x)wpe
2

((x + y)S)q 
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{y E INIT((x+y)S) v y i USE((x+y)S), y i USE(q), lemmas 4.5, 4,7} 

wpez<<x + y)S)q 

= {proposed definition in sectien 4.1.1} 

wp (I[ var y: t I (x+ y)S ]l)q. e -
D 

4.1.3. Blocks with the possibility of redeclaration 

Finally wedefine thesemantics of a block I[ var x: t IS ]I 

E L(Block <e0>) without the restrietion ~ new(x,e0). In this case the 

proposed definitions of sectien 4.1.1 are not directly applicable as 

they could result in name clashes between the local x of a block and a 

nonlocal x. Considering the purport of lemma 4.9, viz. that within 

certain limits the meaning of a block is not affected by systematic 

replacement of the local variable, we are led to the following solution: 

Definition 4.10 {wp and wlp for blocks} 

For all e0 E Env, I[ var x: t I S ]I E L(Block <e0>) such that 

x E INIT(S) V x i USE(S): 

I. wpe (I [ var x: t I S ] I) 
0 -

2. wlpe
0

(1[ var x: t I S ]I) 

where, in both cases, 

(Àq E CeO wpe
1
((x + y)S)q) 0 

(Àq E CeQ wlpe
1
((x + y)S)q) , 

y E Name such that ~ new(y,e0) 

e 1 = Ext(e0 ,[y,t]D) • 

D 

No te 

It can easily be shown that the theorems of sections 3.2.4 and 3.3 

also hold when the kernel language is extended with blocks as defined 

in this section. We will not give these proofs, but we will freely use 

the theorems where appropriate. 

D 
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4. 1.4. Proof rules 

In this section we present some proof rules for blocks of the form 

I[ var x: t I S ]1, and we prove soundnessof these rules. The first 

two pairs - i.e. (TRS,PRS) and (TR6,PR6) - are intended for the case 

that x has also been declared in some surrounding block. Rule PRS is 

essentially the block rule proposed by· Hoare in [Hoare 2]. It makes 

use of systematic replacement in S of the variabie x by a fresh 

variabie x'. Soundnessof PRS follows trivially from definition 4. 10.2. 

The obvious disadvantage is that its use requires substitutions in the 

program text. Rules TR6 and PR6 do not have this disadvantage; they 

are based on renaming of the nonlocal x. PR6 is essentially the block 

rule proposed by Lauer [Lauer]; it is also discussed in [Cook 2]. In 

the absence of redeclaration rules TRS and PRS can be simplified to 

TR7 and PR7, respectively. 

Definition 4.11 {TRS, PR5, TR6, PR6, TR7, PR7} 

For all e E Env , 

I [ var x: t I s ]I E L(Block <e>) • 
x' E Name such that ~ new(x' ,e) • 
e' E Env such that ~ rep ( e, e' , x, x' ) 

' 
p,q E L(Cond <e>) 

' 
c € L(Cont <e>), c' E L ( Cont <e' >) , 

p' = (x+ x')p, q' = (x+ x'), s• (x + x' )S , 

the proof rules TRS, PRS, TR6, PR6, TR7, PR7 are defined by: 

c t> x': t [p] S' [q] 
TRS. 

c I [p] I [ var x: t I s ]I [q] 

c 1> x': t I {p} S' {q} 
PRS 

c I { p} I [ var x: t I s ] I {q} 

C I I> x: t [p'] s [q'] 
TR6. 

c I [p] I [ var x: t I s ] I [q] 

c' 1> x: t I {p'} s {q'} 
PR6 

c I {p} I [ var x: t I s ]I {q} 



c l> x: t [p] s [q] 
TR7 provided ~ new(x,e) 

c I [p] I [ var x: t I s ] I [q] 

c l> x: t {p} s {q} 
PR7 provided ~ new(x,e) 

c I {p} I [ var x: tiS]I{q} 

0 

Theerem 4.12 

I. TsoundO (TR5) 

2. PsoundO (PR5) 

3. TsoundO (TR6) 

4. PsoundO (PR6) 

5. TsoundO (TR7) 

6. PsoundO (PR7) 

0 

Proof 

We only prove and 3. The proofs of 2 and 4 are similar. 

The proofs of 5 and 6 are special cases of and 3, respectively. 

I. Let e 1 = Ext(e,[x',t]D). 

TvalidO(c 1> x': t I [p] S' [q]) 

{definition 3.48.2.2} 

~D c 1> x': t I p ~ wpe
1
(S')q 

{definition 4.10. I} 

~D c 1> x': t I p ~ wpe(l[ var x: t I S ]l)q 

{x' i USE(p ~ wp (I[ var x: t I S ]l)q)} 
e -

~D c I p~wpe(l[ var x: tI S ]l)q 

{definition 3.48.2.2} 

TvalidO(c I [p] I [ var x: t I S ] I [q]) . 

3. TvalidO(c' 1> x: t I [p'] S [q'] 

~ {theorem 4.12.1 with x and x' interchanged} 

TvalidO(c' I [p'] I[ var x: tI S ]I [q'] 

119. 
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D 

{definition 3.48.2.2} 

~D c' I p' • wpe,(l[ ~x: t I S ]l)q' 

{definition 4.6.7.1} 

1-0 c' I p' • wpe·'((x +x') I[ var x: tI S ]l)q' 

{~ new(x,e 1 )} 

1-0 c I (x'+ x)p' • (x'+ x)wpe,((x +x') I[ var x: tI S ]l)q' 

{definition p',q'; lemma 4.8.1} 

~D c I p • wpe (I [ var x: t I S ] l)q 

{definition 3.48.2.2} 

TvalidO(c I [p] I [ var x: t I S ] I [q]) • 



121. 

4.2. Abstraction and application 

4.2.0. Introduetion 

Another aspect of the procedure concept we want to s·tudy in isolation 

is parameterization. To this end we introduce in this section a new 

language construct, called abstraction, which somewhat resembles the 

lambda expression of lambda calculus and the ALGOL 68 routinetext. An 

abstraction is a construct like (con x: t 1; res y: t 2 I S), which can 

be considered as a statement S parameterized with regard to the vari

ables x and y. We consider two kinds of parameters which are generally 

known as constant [Brinch Hansen] andresult parameters [Wirth 2]. An 
abstraction may be applied to actual parameters of appropriate kinds. 

Such an application is a new form of statement; its meaning is that of 

a block obtained in a systematic way from the abstraction and the 

actual parameters. 

Insection 4.2.1 wedefine the syntax of abstractions and applications, 

partly by means of an attribute grammar and partly by means of the 

functions USE, ASSN, and INIT. In section 4.2.2 we define the semantica 

by means of the parameterized condition transfermers pwp and pwlp. In 

section 4.2.3 we present some proof rules for applications and we prove 

their soundness. 

4.2.1. Syntax 

In this section we define the syntax of abstractions and applications. 

We do so by presenting some extensions to the attribute grammar for the 

kemel language given in section 2.3.2. These extensions do not yet 

completely define the syntax. An additional context condition will 

tentatively be expressed by means of the functions USE, ASSN, and INIT. 

Eventually it will be incorporated into the attribute grammar for the 

souree language. The extensions follow: 

Operations on Names • Type. artd Types 

Mts: Narnes * Type -+ Types 

Mts([n)N,t) = [t]T 

Mts(ns 1 \!:Jins2,t) = Mts(ns 1,t) • Mts(ns2,t). 
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{Infomally, Hts(ns,t) yields a sequence the elements of which all 

equal tand the lengthof which equals the number of narnes in ns.} 

Nonteminals 

{Abstr <Types,Types>, Pdecs <Dees,Types>} 

{"con","res"} 

rul es 

Al. Stat <e> 

A2. Abstr <ts 1,ts2> 

A3. Pdecs <d0,ts0> 

A4. Pdecs <d,ts> 

::= Abstr <ts 1,ts2> ( Exprs <e,ts 1> 

Vars <e,ns,ts2> ) • 

(~ n: Name I #N (n,ns) $ I) 

: ;:::: con Pdecs <d 1,ts 1> res Pdecs <d2,ts2> 

Stat <e 1> ) • 

(~ n: Name I # (n,d 1 \J)/d2) :S I) D 
el = Ext(Empty,d 1 I.QJd2) 

: := Pdecs <d 1,ts 1> 
' 

Pdecs <d2,ts2> • 

do = dl \Wdz 

ts0 = ts 1 61T ts2 

::= Ids <ns> : Type <t> • 

d = [nd,t]D 

ts = Mts(ns,t) 

An abstraction - i.e. an element of L(Abstr <Types,Types>) - is a con

struct of the fom (con pd 1; res pd2 I S), where pd 1 and pd2 are 

parameter declarations- i.e. elementsof L(Pdecs <Deas,Types>)- and S 

is a statement. In the parameter declarations the formal parameters and 

their types are listed. By means of the symbols "con" and "res" the 

formal parameters are classified as constant and result parameters, 

respectively. Their narnes must be mutually different. These narnes are 

the only variable narnes that may occur in S. In other words, S has no 
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access to nonlocal variables. Below we will formulate some additional 

restrictions. An abstraction may be applied to actual parameters of 

corresponding kind and type. An actual constant parameter is an expres

sion; an actual result parameter is a variable. Actual result parame

ters must be mutually different. 

0 

Example 

The following is an element of L(Stat <Env>) as defined by the exten

sions above: 

(con b: bool,x,y: int; res z: int 1· if b + z := x-y 0 ., b + z := y-x fi) 

(true,3,a+4;c) 

0 

Abstractions have to satisfy some additional conditions, viz. that the 

constituent statement does not assign to the constant parameters, and 

that it initializes the result parameters. Like we did for blocks, we 

will formulate these conditions in terms of the functions USE, ASSN, 

and INIT. Before we do so we have to extend the definitions of these 

functions to applications. As preparatien for section 4.2.2 we also 

extend the definition of substitution. 

Definition 4.13 {U~E,ASSN,INIT} 

For all A(E 1, ... ,Em;v 1, ••. ,vn) E L(Stat <Env>): 

m 
U USE(E.) 

i=l ~ 

{vl' ... ,vn} 

m 
{v1, ••• ,v} \ U USE(E.) • 

n i=;1 l 

0 

Definition 4.14 {(x+ y), substitution} 

For all x,y E L(Var <Env,Name,Type>), 

A(E 1, ••• ,Em;v1, ••• ,vn) E L(Stat <Env>): 

(x+ y)(A(E 1, ... ,Em;v 1, ... ,vn)) = 

= A((x + y)E 1, ••. ,(x + y)Em;(x + y)v 1, ••• ,(x + y)vn) 

0 
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Note that no substitution inside the abstraction A is needed because 

its statement does not access global variables. 

The additional context condition for abstractions is: 

For each abs.traction (con x1 : tl' ... ,xm: tm; res y 1: tj , ... ,yn: t~ I S): 

l. {x 1, ••• ,xm} n ASSN(S) ~ • 

INIT(S) 

4.2.2. Semantics 

In this section we will define the semantics of abstractions and 

applications. For the sake of simplicity we will restriet ourselves to 

abstractionsof the form (con x: t 1; res y: t 2 I S), i.e. to abstrac

tions with one constant parameter and one result parameter only. 

Generalization to more parameters is straightforward. 

It is our intention that the application 

(con x: t 1; res y: t 2 S)(E;v) 

is semantically equivalent to the block 

I[ var x: t 1, y: t 2 x:= E; S; V:= y )I 

or rather, to the block 

I[ var x': t
1

, y':,t
2 

I x':= E; s•; v := y' ]I 

where x' and y' are fresh variables and S' = (x,y + x',y')S. 

{Note that this block satisfies the context conditions of section 4. l.I.} 

This amounts to the identity 

wpe((con x: t 1; ~ y: t 2 I S)(E;v)) 

(x' +E) owp ,(S') o (v+y 1
). 

e 

For the language considered thus far this identity could well serve as 
I 

definition, but later one we will also ertcounter isolated occurrences 

of abstractions, as well as applications of one and the same abstrac

tion to different actual parameters. To dope with such cases we must 
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define the semantics of an abstraction in isolation. Since an abstrac

tion can be considered as a parameterized statement it will not come 

as a surprise that we define its semantics by means of a parameterized 

condition transformer. As preparation we give the following definition. 

Definition 4.15 {Pe, tpe} 

For all e E Env: 

D 

I. p . e L(Exprs <e,Types>) x L(Vars <e,Names,Types>) + T 
e 

2. tp is the standard order on Pe. 
e 

Theorem 4. 16 

For all e E Env: (Pe'~P ) is a cel. 
e 

D 

Proof 

Immediately by theorem 3.10,2 and theorem 3.36. 

D 

-------'-- {pwp, pwlp} 

(con x: t 1; res y: t 2 I S) E L(Abstr <e,Types,Types>): 

Let E L(Expr <e,Pria,t 1>) , 

V = L(Var <e,Name,t2>) , 

x',y' E Name such that ~ new(x',e), ~ new(y',e), x'~ y' , 

e' Ext(e,[x',t 1JD IJV [y',t2]D), 

S' (x,y + x',y')S 

The functions 

pwpe,pwlpe E L(Abstr <Env,Types,Types>) + Pe 

are defined by: 

I. pwpe( x: t 1; resy: t 2 1 S)) = 

= (XE E E, v E V I (x'+ E) o wpe 1 (S') o (v + y)) • 

2. pwlpe ((con x: t 1; res y: t 2 S)) = 

= (ÀEE E, VEV I (x' +E) owlpe 1 (S') o (v+y 1
)). 

IJ 
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Definitien 4.18 {wp, wlp fer applicatiens} 

Fer alleE Env, A(E;v) E L(Stat <e>): 

I. wpe(A(E;v)) = pwpe(A)(E,v) 

2. wlpe(A(E;v)) pwlpe(A)(E,v) • 

D 

Ne te 

As in sectien 4.1.3, we note that the theeremsof sections 3.2.4, 3.3, 

and 4.1 also hold when the kernel language is extended with bleeks and 

with applications as defined in this section. Proef omitted. 

0 

4.2.3. Proef rules 

In this sectien we present some proef rules for applications and we 

prove their soundness. Given an abstraction 

and a correctness formula 

we want to be able to derive correctness formulae for particular 

applications, e.g. 

c I [q 1 (E)] {con x: t 1; res y: t 2 I S){E;v) [q2{E,v)] , 

where the actual pre- and post-conditions q 1{E) and q2(E,v) are obtained 

from the formal conditions q 1(x) and q2(x,y) by substitution of the 

actual parameters E and v for the formal parameters x and y. Substitu

tions of this kind are not generally applicable, as the following 

counter example, adapted from [Hoare 3], shows: 

Consider the abstraction 

x: int; res y: int I y := x+l) 

From the assignment axiom TA3 it fellows that 



I-TC x: int, y: int I [true] y := x+ I [y = x+ I] • 
0 

For the application 

(~x: int; ~ y: int I y := x+ I) (z;z) 

substitution would yield the correctness formula 

c I [true] x: int;~ y: int I y := x+l)(z;z) [z 

which is not a valid formula. 

D 
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z+l] 

The problems are essentially due to the fact that substitution is not 

a reversible action. To avoid them we present two pairs of rules. One 

pair embodies the simple substitutions above but is only applicable 

under a certain disjointness condition for the actual parameters. The 

other pair is slightly more complex, but generally applicable. Sound

ness of both pairs can easily be proven. 

Definition 4.19 {TR8, PR8, TR9, PR9} 

For all e e: Env , 

(con x: t 1; res y: t 2 I S) E L(Abstr <Tyves,Tyves>) , 

E E L(Expr <e,Prio,t
1

>) , 

v E L(Var <e,Name,t2>) , 

c E L(Cont <e>) , 

C E Name such that 1- new(C,e) , 

e0 • Ext(Empty,[x,t 1]D \QI [y,t2]D) , 

q 1,q2 E L(Cond <e0>) such that USE(q1) :;:. {x} 

{below we write q1(x) and q2(x,y) to indicate upon which 

entities q1 and q2 depend} 

the proof rules TR8, PR8, TR9, PR9 are defined by: 

TR8. 
S)(E;v) [q2 (E,v)] 

provided v i USE(E). 
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x: t 1, y: t 2 {q1(x)} s {q2(x,y)} 
PR8. 

c I {q
1
(E)} x: t

1
; res y: t 2 I S)(E;v) {q

2
(E,v)} 

provided v i USE(E). 

x: t 1, y: t
2 

I [q
1
(x)] s [q

2
(x,y)] 

TR9. 
c ~ C: t

1 
I [E=C A q

1
(c)] (con x: t

1
; res y: t

2 
I S)(E;v) [q2 (C,v)] 

x: t
1

, y: t
2 

I {q
1
(x)} s {q

2
(x,y)} 

PR9. 

0 

Theorem 4.20 

1. TsoundO (TR8) 

2. PsoundO (PR8) 

3. TsoundO (TR9) 

4. PsoundO (PR9) 

0 

Pro of 

We a combined proof of I and 3. The proof of 2 and 4 is similar. 

Let x' ,y' E Name such that 1- new(x' ,e), 1- new(y• ,e), x' 'I y', x' 'I C, 

y' + c. 

Let e0 = Ext(Empty,[x',t 1]D ® [y',t2]D), 

e
1 

= Ext(e,[C,t 1]D), 

= Ext(el'[x' ,t 1]D \Q/ [y' ,t2]D) • 

Let X E L (Expr <e 
1 
,Prio, t 

1 
>) such that v i USE (X) , 

S' = (x,y+x' ,y' )S • 

TvalidO(x: t
1

, y: t 2 I [q
1
(x)] S [q

2
(x,y)]) 

{definition 3.48.2.2, definition 3.33} 



(I) q
1
(x') c: wp (S')q (x' y') 

-e
2 

e
2 

2 ' 

Consider 

wp ((con x: t
1

; res y: t 2 I S)(E;v))q2 (X,v) 
el-

{definitions 4.18.1, 4.17.1} 

{x' + E)wp (S'){v + y')q2(X,v) 
e2 

{v i USE(X), lemma 4.7, definition 4.6.10.1} 

(x' + E)wp (S')q2(X,y') 
e2 

~e {corollary 3.40.1} 
2 
(x'+ E)wp (S')(x' =X A q2 (x',y')) 

e2 
{ASSN(S') n USE(x' =X) = 0, lemma 4.5.5} 

(x'+ E){x' =X A wpe (S'}q2(x',y')) 
2 

~ {(1), theerem 3.42.1} -ez 
(x'+ E)(x' =X A q 1{x')) 

={x' i USE(X), lemma 4.7} 

E = x A ql (E) 

Under the assumption that 

holds, we have proven 

from which fellows 

(2) 1-D c I> C: tl I (E=X) A q(E} 

= wpe ((con x: t 1, res y: t 2 I S)(E;v))q2(X,v) • 
I 

We are still free to choose X, subject to the condition v i USE{X). 

Two choices are of interest: 

129. 



130. 

D 

a. If we choose X = E, (2) can be simplified to 

x: t 1, res y: t 2 'I S)(E;v))q2 (E,v) , 

i.e. 

TvalidO(c I [q1(E)J (conx: t
1

, resy: t
2 

I S)(E;v) [q
2

(E,v)]) 

provided v i USE(E), hence TsoundO (TR8). 

b. If we choose X = c, v i USE(X) is satisfied, and we obtain from 

(2) 

~D c. C: tl I (E=C) A 9)(E) 

~ wp ((con x: t
1

, res y: t
2 

I S)(E;v))q2(c,v) 
el-

or equivalently: 

~D c. C: tl I (E=C) A qi(C) 

i.e. 

~ wp ((con x: t 1, res y: 
el-

Tvalido(c • C: t 1 

I S)(E;v))q2(C,v) , 

I [E=C A q1(C)] (con x: t 1, ~ y: t 2 I S)(E;v) [q2(C,v)]) , 

hence TsoundO (TR9). 
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4.3. Parameterless recursive procedures 

4.3.0. Introduetion 

The third aspect of the procedure concept we want to study in isolation 

is recursion. In order to concentrata on this subject we will temporar

ily- i.e. throughout section 4.3 - ignore other aspects of the 

language definition, such as precise syntax, scope rules, nes~ed 

declaratións, parameter mechanisms, etc. We stress the point that the 

constructs considered in this section are not part of the souree 

language. They only serve to study the effect of recursion on the 

structure of semantic equations, proof rules, and soundness proofs. 

Accordingly, the scope of definitions and theorems concerning these 

constructs is limited to section 4.3. 

We will study programs of the form 

where the constructs pi = Si (i: I ~ i ~ k) are declarations of 

parameterleas and possibly recursive procedures. We omit a precise 

specification of the syntax of these programs. Suffice it to say that 

the narnes pi are elements of Name, that they are mutually different 

and also different from variabie names, that they may occur as state

ment in s1, ••• ,sk,s, and that the statements s1, ••• ,sk,s contain 

neither blocks nor abstractions. We omit the specification of environ

ments for wp, wlp, C, T, etc. 

Insection 4.3.1 wedefine thesemantics of these programs. Insection 

4.3.2 we present some proof rules and prove their soundness. 

4.3.1. Semantics 

It is our intention, roughly speaking, that a statement p. has the 
l. 

same condition transfarmer as the corresponding statementS .• The 
l 

condition transfarmer of a statement should therefore be defined 

relatively to a set of procedure declatations. This can be achieved by 

means of an extra argument ö for wp and wlp, being a mapping from 

procedure names p. to condition transfarmers of the corresponding 
l. 
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statements Si. As the procedures may be mutually recursive the o eer

responding to a set of procedure declarations will be determined by 

means of fixed point techniques. The intentions just sketched are 

captured by definitions 4.21, 4.23/24, 4.26. In their structure these 
i 

definitions much resembie those encountered in denotational semantics; 

see e.g. [de Bakker]. 

4. 21 {ll} 

I , 1':. Name + T • 

2, is the standard order on 6. 

0 

4.22 

(ö,~;6 ) is a cel. 

0 

Proof 

Immediately by theorem 3.10.2 and theorem 3.36. 

0 

As already said the definitions of wp and wlp will be extended with an 

argument ó E b.. For the statements of the kernel language this argument 

is ignored, but it is essential for the procedure statements. 

We will denote the extended versions by,wp' and wlp', respectively. 

--'-~-"'-'-~-4 .,_2_3 { wp' } 
The function wp' E L(Stat) + (ll + T) is 1defined by: 

I. wp' (abort) o (Àq E c false) 

2. wp'(skip)o (Àq E c q) 

3. wp' (v :: E)ö (v-<- E) 

4. wp' (s 1 ;s2)0 (wp' (S 1 )a) " (wp' (s2)ö) 

5. wp'(ifB+ s 1 U ••• U B + S fi)ö: -I n n-

(Àq E c I [V i I l~i~n I B.] A[Ai 
1 I l!>hn 

6. wp' (do B1 + s1 0 ... D B + s od)o = J.lf • n n-



where F = ( Àf € C + C I O.q e; C I ([\/i I I ~isn I B. ] v q) 
~ 1 

A [/\i I l::>i::>n IB. • (wp'(S.)o)f q])) 
1 1 

7. wp'(p)o = o(p) • 

0 

Definition 4.24 {wlp'} 

The function wlp' € L(Stat) + (~ + T) is defined by: 

I. wlp'(abort)ö (Àq e; C true) 

2. wlp'(skip)ê = (Àq E C q) • 

3. wlp'(v := E)ó (v + E) • 

4. wlp'(S
1
;s

2
)ó (wlp'(S

1
)ó) o (wlp'(S2)ö) 

5. wlp'(if B1 + s1 0 ... 0 B + S fi)ê = 
- n n-

(Àq € c I [/\i I l~i::>n I B. => (wlp' (S.)o)q) ]) • 
1 1 

6. wlp'(do B
1 

+ s
1 

0 ••• DB + S od)o = vG, - n n-

where G = (H E C +de C I (Àq E C I ([V i I l::>i::;n I Bi 1 V q) 

7. wlp'(p)ö o(p) • 

0 

A [/\i I lsisn I Bi=:> (wlp'(Si)ó)f q])) 

As with definitions 3.37 and 3.38 in chapter 3, definitions 4.23 and 

4.24 above are well-formed only if F and G are continuous, which in 

turn depends on continuity of wp' and wlp'. That this is indeed the 

case is stated in the following theorem. 

Theorem 4.25 

I. For all SE L(Stat), ö E Name+ (C + C): uc 

wp'(S)ó E C + C uc 

133. 

If Sis of the form do B1 + s1 D ... 0 Bn +Sn od, and Fis as in 

definition 4.23.6, then 

F E (C + C) + (C + C) • uc uc uc 
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0 

2. For all S E L(Stat), o E Name+ (C +de C): 

wlp'(S)ö E C +deC. 

If Sis of the form do B
1 

+ s
1 

D ... D Bn +Sn od, and Gis as in 

definition 4.24.6, then 

G E (C +de C) (C +de C) • 

Proof 

We only consider 1. 

The proof is by induction on the composition of S. Apart from the ö 

argument the first six cases are identical to those in the proof of 

theorem 3.39.1. Therefore we only consider the case.that Sis a 

procedure statement. 

0 

1.7,S::p 

wp' (S)ö 

{definition 4.23.7} 

o(p) 

E {ö E Name+ (C + C)} uc 

c... c . 
uc 

Fora program PI = s,, ••. ,pk = sk I s wi will define the condition 

transfarmers wp and wlp in terms of wp' and wlp' respectively, where 

the argument o E ~ depends on the procedure declaration part. 

Definition 4.26 {wp and wlp for p 1 = s1 ,' ••• ,pk 

where ö is the function {(pl'<pl), .. ,.,(pk,(!)k)}, 

((!) 1, ••• ,<pk) = ~(~ 1 , ••• ,~k)' and, fo~ i: 1 ~ i~ k: 



0 

2. wlp(pl = sl, ••• ,pk = sk I S) = wlp'(S)ö, 

where ö is the function {(p 1 ,~ 1 ), ••• ,(pk'~k)}, 

(~l'''''~k) = v(~ 1 ••••• ~k), and, for i: I $i $ k: 
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Again, these definitions are well-formed only if the functions ~i and 

~. are upward continuous and downward continuous, respectively. This 
~ 

is assured by the following theorem: 

Theorem 4.27 

For all SE L(Stat): 

0 

I. (À~J'''''~k E C +uc C I wp'(S){(pl'~l), ••• ,(pk'~k)}) 

E (C + C)k + (C + C) • 
ue uc ue 

2. (À~ 1 , ••• ,~k E C +deC I wlp'(S){(p 1 ,~ 1 ),.,.,(pk'~k)}) 

E (C +de C)k +de (C +de C) ' 

Proof 

We only prove I; the proof of 2 is similar when dual versionsof 

theorema 3.24 and 3.26 are used. 

The proof is by induction on the composition of S. In the scope of 

~ 1 , •••• ~k E C +ue C we will write ö for {(p 1 ,~ 1 ), ••• ,(pk'~k)}. 

1.1 - 1.3. S :: abort, S :: skip, S :: v := E 

By definition 4.23.1-3: 

for all ~ 1 , ••• ,~k E C +uc 

of , 1, ••• ,~k' 

So, by theorem 3.24.1: 

C: wp'(S)ö E C + C and independent uc 

(À'I''''''k E C +uc C I wp'(S)ö) E (C +uc C)k +ue (C +ue C) • 
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H. Fer ~11 i: I ~ i ~ 2: 

(À~~·····~k E c + c I wp'(SJ..)ö) E (C + C)k + (C + C) • uc uc uc uc 

(À~)' ••. ,<pk E c ..,.uc c I wp' (S)ö) 

{definition 4.23.4} 

(À<tJI' ... ,<tJk E c ..,.uc c 1 (wp'Cs 1)ö) o (wp'(s2)o)) 

E {H, theerem 3.26.3} 

(C + C)k ->- (C ->-uc C) uc uc 

H. For all i: I ~ i ~ n: 

I wp'(S.)ö) E (C + C)k + (C..,. C) • J. uc uc uc 

(Àrp) •••.• ~k E C ->- c I wp' (S)ö) uc 

{definitien 4.23.5} 

(À~, .... ,<pk " c..,. c I uc 

(Àq E C [V i l~i~n B.] J. 

A [A i l~i~n ï B. v (wp' (S.)ö)q] J. J. 

E {H, repeated application of theerem 3.26} 

(C + C)k ->- (C + C) • uc uc uc 

1.6. s .. B1 ->- s
1 

U ••• 0 B ->- S od 
n n-

H. For all i: I ~ i ~ n: 

(À<p
1

, ••• ,~k E C->- C I wp'(S.)ö) E (C->- C)k->- (C->- C) • uc J. uc uc uc 

We have to prove continuity of 



0 

([Vi 

A [ 1\ i 

l~i~n B.] V q) 
l. 

l~i~n Bi • (wp'(S){(p 1 ,q~ 1 ), ••• ,(pk,cpk)}) fq]). 

Let <~.>~ 
0 

be an ascending chain in (C + C)k. 
J J'" uc 
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(Àcp 1, ... ,cpk EC ... c IJJ<H ET 1 (Àq EC 1 A(QJ 1, ••• ,q;k))))(.Ü0 ~.) uc J'" J 

{S-reduction} 

]J(Àf E T I (Àq E c A cü0 <P • ) ) ) ) 
J'" J 

~ {H, repeated application of 3.26} 

]J(Àf E T I (Àq E c .Ü0 A(~.))) 
J'" J 

= {definition lub} 

]J(Àf ET I j~O (Àq E c I A(~j))) 
= {definition lub} 

JJ(.Ü
0 

<H E T I (Àq E c 1 A(~.)))) 
J= J 

= {continuity ]J, see [de Bakker, theorem 5.11)} 

j~O ]J (H E T I (Àq E c I A(~ j))) 

= {S-expansion} 

j~O (À<pt' ... '<pk E C+ucc I (HET I (t..qEC IA<<p 1, ... ,<pk))))(~j). 

1.7. S ::= Pj 

(t..cp 1, ••• ,cpk E C +uc C I wp'(S)ö) 

{definition 4.23.7} 

(À<pl, ••• ,q;k E C +uc C I ó(pj)) 

{ö = {(pl,cpl), ••• ,(pk,cpk)}} 

(À<pl, ••• ,q;k E c ... uc c I q;j) 

E {theorem 3.24.2} 

(C ..,. C)k ..,. (C _,.uc C) uc uc 
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As already said it is our intention that a statement pi has the same 

condition transfarmer as the corresponding statement Si. That such is 

indeed the case is stated in the following theorem. 

Theorem 4.28 

Let PI = SJ'''''pk = sk I s be a program. 

I. Let ó be as in definition 4.26.1. 

For all i: I s; i s k: wp' (p.)ö = wp' (S.)ö. 
~ ~ 

2. Let ö be as in definition 4.26.2. 

For all i: I s i s k: wlp'(pi)ö = wlp'(Si)ö. 

0 

Pro of 

We only prove 1; the proof of 2 is similar. 

Let i: 1 s i s k. 

0 

wp'(pi)ö 

{definition 4.23.7} 

ö(pi) 

{definition 4.26.1, ö} 

<pi 

{fixed point propery} 

<!>i(<pl'"''<pk) 

{definition 4.26.1, <!>i} 

wp' (Si)ö • 

The following examples illustrate how certain recursive procedures 

relate to statements of the kernel language. 



Examples 

I. wp(p = p I p) 

= {definition 4.26.1} 

wp'(p){(p,(j))} 

= {definition 4.23.7} 

= {definition 4.26.1} 

)l(À(j)' I wp' (p){(p,(j)')}) 

= {definition 4.23.7} 

Jl(À{j)' I {j)') 

(Àq I false) 

{definition 4.23.1} 

wp'(abort){(p,(j))} • 

2. wp(p = if B1 + s 1; p D ... D Bn +Sn; p 

D ï [Vi I l!>i!>n I Bi]+ skip fi I p) 

= {definition 4.26.1} 

wp'(p){(p,(j))} 

= {definition 4.23.7} 

= {definition 4.26.1} 

(Àq I ([V i l!>i!>n IB.] Vï[Vi I l!>i!>nÎ B.]) 
L L 

11 [/\i B. *wp'(S.;p){(p,(j)')}q] 
L L 

11 (ï[\/i I l!>i!>n IB.] *wp'(skip){(p,q1 1 )}q))) 
L 

{definitions 4.23.4, 4.23.7, 4.23.2, prop. log.} 

)l(À(j)' I (Àq I [/\i 

" ([\/i 

l!>i!>n B. *wp'(S.){(p,q1 1
)} q1'q] 

L L 

l!>i!>n B.] V q))) 
L 

139. 
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{cp = J.I(Äcp 1 I g(cp' ,qJ')) is equivalent to cp 

0 

No te 

see [de Bakker, p. 141]} 

].I(Ä(jl' I Oq I [/\i 

A ([Vi 

{definition 4.23.6} 

lsün 

ISisn 

B • .,.wp'(S.){(p,cp)} cp 1 q] 
l 1 

B.] V q))) 
l 

As the derivation in the second example is independent of the structure 

of the statements Si, it follows that the stated equivalence also holds 

in cases where the Si contain occurrences of p. 

0 

4.3.2. Proof rules 

In this sectien we study proof rules for programs invalving parameter

less recursive procedures. As already mentioned we ignore syntactic 

issues etc. Since statements containing procedure variables can only 

be interpreted relatively to a set of procedure declarations the 

notions of validity and soundness have to be redefined, which forces 

us to reconsider the axioms and proof rules of PC0 and TC0• Apart from 

these we will study two kinds of proof rules: for nonrecursive proce

dures simple rules relating a correctness formula for Si to one for 

the corresponding pi suffice; for recursive procedures certain induc

tion rules are required. As far as the treatment of induction is con

cerned there is an essential difference between the partial and the 

total correctness cases. The partial correctness induction rule is 

based on greatest fixed point induction, whereas the total correctness 

induction rule is based on mathematica! induction and the fixed point 

property. The two cases are treated in sections 4.3.2.1 and 4.3.2.2, 

respectively. Sectien 4.3.2.3 contains a short comparison of the two 

induction rul es. 
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4.3.2.1. Proof rules for partial correctness 

In this section we discuss the partial correctness logic for programs 

irivolving parameterleas recursive procedures. We begin with defini

tions of validity and soundness. 

On "partial correctness formulae" x "procedure declarations" the 

predicate Pvalidl is defined as: 

IJ 

2. Pvalidl(c {q
1} S {q

2
}, (p 1=s 1, ••• ,pn=Sn)) = 

1-D c ql *wlp'(S){(pl,(j.I), ... ,(pn,q,n)} q2' 

where ((j. 1, ••• ,(j.n) = v(~ 1 , •••• ~n) and ~ 1 , ••• ,~n are as in defini

tion 4.26.2. 

Definition 4.30 {Psoundl} 

On "partial correctness proof rules" x "procedure declarations" the 

predicate Psoundl is defined as: 

Psoundl 

D 

1 ,.~.,fn, pd) = 

l~i~n I Pvalidl(f.,pd)),. Pvalidl(g,pd) • 
"~ 

The following theorem statea that the partial correctness logic PC0 
of chapter 3 is also sound with respect to these revised definitions: 

Theorem 4.31 

D 

. 
I. (~a E AxPC: Pvalidl(a, (p 1=Sl''"'Pn"'Sn))) 

0 

2. (~rE PrPC Psoundl(r, (p 1=s 1, ••• ,pn=Sn))) 
0 

Proof 

Similar to that of theorem 3.52. Details omitted. 

D 
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In addition ro Prpco we need rules to derive properties of procedure 

statements. The following theorem states the soundness of a rule for 

use with nonrecursive procedures. 

Theorem 4.32 

(~i I l$i$n I Psoundl (: 

0 

Pro of 

Immediately by definitions 4.29 and 4.30 and by theorem 4.28.2. 

0 

For recursive procedures this rule is insufficient; some form of 

induction is required. In the literature [e.g. Hoare 3, Apt I] an 

induction rule of the following form is sometimes used: 

It should be noted that the form of this rule is misleading. Actually 

it is not a proof rule since its premiss is not a correctness formula 

but a meta-statement about the derivability of one correctness formula 

from another one by means of the axioms and proof rules of PC0 (see 

e.g. [Apt 2] fora discussion). Nevertheless we will adopt the above 

form, but we will interpret it as the following theorem. 

Theorem 4.33 

If c I {ql} p {q2} ~PC c I {ql} s {q2} 
0 

then Pvalidl(c I {q
1

} p {q
2

}, p = S) • 

0 

No te 

For simplicity we restriet ourselves to a single procedure. The results 

can easily be extended to programs with more procedures. 

0 
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The proof of this theorem requires some extra provisions. The conclu

sion of the theorem is based on the interpretation of the condition 

transfarmer of p as v~, viz. ~D c I q
1 

• (v~)q2 • In order to prove 

this result by greatest fixed point induction we have to show that 

If we want to derive this from the premiss of the theorem it follows 

that we also have to consider soundness of PC0 with respect to other 

interpretations 4. Therefore, in order to prove theorem 4.33 we first 

introduce different notions os validity and soundness and we show that 

PC0 is sound in terms of these notions as well. 

Definition 4.34 {Pvalid2} 

On "partial correctness formulae" x (C +de C) the predicate Pvalid2 is 

defined as: 

1. Pvalid2 (c 

2. Pvalid2(c 

0 

Definition 4.35 {Psound2} 

On "partial correctness proof rules" x (C +de C) the predicate Psound2 

is defined as: 

Psound2 (fl'·~·,fn, 4) = 

(A i I l~i~n I Pvalid2(f.,4)) • Pvalid2(g,4) • - ~ 

0 

Theorem 4 36 

0 

I. (!a E AxPC, 4 E C +deC: Pvalid2(a,4)) • 
0 

2. (! r E PrPC , 4 E C +de C: Psound2{r,4)) 
0 

Proof 

Similar to that of theorem 3.52. Details omitted. 

0 
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Definitions 4.34 and 4.35 and theor~m 4.36 enable us to prove theorem 

4.33: 

Proof of theorem 4.33 

.,. { theorem 4. 36} 

(!::_ $ I Pvalid2(c 

{definition 4.34} 

{definition 4.23.7, definition 4.26.2, ~} 

q, I (f-D c I ql ... <J,q2) .. (f-D c I ql .. '1'(1f)q2)) 

{f-D c I q1 .,. (Àq I true)q2, g.f.p. induction, admissibility is trivial} 

1-D c I ql .,. (v'l')q2 

{definition 4.29} 

Pvalidl(c I {q1} p {q2J, p = S) 

0 

4.3.2.2. Proof rules for total correctness 

The structure of this section parallels that of 4.3.2.1. We begin with 

definitions of validity and soundness relative to a set of parameter

leas recursive procedures: 

Definition 4.37 {Tvalidl} 

On "total correctness formulae" x "procedure declarations" the predi

cate Tvalidl is defined as: 



2. Tvalidl(c [q 1] S [q2], (p 1=s 1, ••• ,pn=Sn)) = 

~D c ql •wp'(S){(pl'~l), ••• ,(pn'~n)}q2 

145. 

where (~ 1 , ••• ,~n) = ~(~ 1 , •••• ~n) and ~ 1 , ••• ,~n are as in defini

tion 4.26.1. 

0 

Definition 4.38 {Tsoundl} 

On "total correctness proof rules" x "procedure declarations" the 

predicate Tsoundl is defined as: 

0 

Tsoundl (f 1 ,.~.,fn, pd) = 

(!:_ i I l:Si:Sn I Tvalidl (f. ,pd)) • Tvalidl (g,pd) • 
l. 

The following theorem states that the total correctness logic TC0 of 

chapter 3 is also sound with respect to these revised definitions: 

Theorem 4.39 

I, (!:_a E AxTC Tvalidl(a, (p 1=s 1, ... ,pn=Sn))) • 
0 

2. (!:_rE PrTC Tsoundl(r, (p1=s1, ••• ,pn=Sn))) 
0 

0 

Similar to that of theorem 3.54. Details omitted. 

0 

For nonrecursive procedures we have the following analogue of theorem 

4.32: 

Theorem 4.40 

(A i I I:Si:Sn I Tsoundl (: 

0 

[ql] 8i [q2J ' (pi'"8 I'''''Pn'"8n)l) 

[qiJ Pi [qz] ) 
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Pro of 

Immediately by definitions 4.37 and 4.38 and by theerem 4.28.1, 

D 

Again we need an induction rule to deal with recursive procedures, 

The induction principle employed differs from that in sectien 4.3.2.1 

however. There we had to use fixed point induction and to extend the 

notions of validity and soundness. Here ordinary mathematica! induction 

is sufficient to prove the following theorem. 

Theerem 4.41 

Let <q.>~ 0 be a sequence of conditions. 
~ ~= 

If (~ i I Osi I c I [[V j I 
thenTvalidl(c I [[Vi I Osi I 
0 

OSj<i I q.]] p [r] 
J ~TC 

0 
c I [q.] S [r]) 

~ 

q.]] p [r], p = S) , 
~ 

No te 

As insection 4.3.2.1, we have restricted ourselves to programs with a 

single procedure. 

0 

Proof 

(~ i I Os i I c I [ [V j I Osj <i I q.] J p [ r] 
J 

~TCo 

c I [q. 1 S [r] 
~ 

• {theorem 4.39} 

(~i I Osi I Tvalidl (c I [[V j I 0Sj<i I q.]J p [r], p = S) 
J 

Tvalidl(c I [q.] S [r], p S) 
~ 

{definitions 4.37, 3.33, ~ and ~as in definition 4.26.1} 
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(!,i I os;i I [Vj I Os;j <i I q. J 
J 

!;;; <pr 

.. 
qi !:: ~(q>)r 

) 

{<p ~(<p)} 

(!,i I O::>i [Vj I O::>j <i I qj J ~ <pr .. 
q. 
~ 

!:. <pr 

,. {lemma 3.29} 

[Vi I 0Si I q.] !:. q>r 
~ 

{definitions 4.37, 3.33, <p} 

Tvalidl(c I [[Vi I Osi I q.]] p [r], p = S) • 
~ 

0 

From theorem 4.41 a total correctness induction rule can easily be 

derived. If we define qi as q A e = I, where e is an integer expression 

and I a symbol sequenèe representing i, we obtáin that 

[V j 

and [Vi 

OSj<i I q.] = q A 0 s e A e < I , 
J 

Osi I q.] = q A 0 ::> e ·• 
~ 

In this case the theorem reduces to: 

If (!, i I OSi I c I [q A 0 ::> e A e < I] p [r] 

I-Tc0 
c I [q A 0 s e A e = I] S [r] 

then Tvalidl (c I [q A 0 s e] p [r] ) 

which we will write, in analogy to the partial correctness induction 

rule, as 
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c I [~ A 0 ~ e A e < I] p [r] ~TC c [q A 0 ~ e A e 
0 

c I [ q A 0 ~ e] p [ r] 

I] S [ r] 

4.3.2.3. A noteon the induction rules and their proofs 

It may seem strange that the induction rules for partial and total 

correctness, which look so much alike, require rather different proofs. 

In this section we summarize the structure of these proofs, so as to 

clarify the differences. In fact, these differences were already 

present in the proof rules PR4 and TR4 for the DO-construct given in 

chapter 3, which were basedon theorems 3.46.2 and 3.47.2, respectively. 

In theorems 4.33 and 4. 11, however, the differences are much more pro

nounced. Let us reconsider the structure of their proofs. 

The proof of theorem 4.33, the partial correctness case, is essentially 

of the following form: 

Let q
1 

and q2 be two conditions. 

Let ~ be as in definition 4.26.2. 

From the premiss and the extended soundness notion it follows 

that for all q,: (p ç !J>q) ,. (p ç ~(q,)q). 

As the base step and admissibility are trivially satisfied, it 

follows by greatest fixed point induction that p ç (v~)q. 

The proof of theorem 4.41, the total correctness case, is essentially 

of the following form: 
co 

Let <qi>i=O be a sequence of conditions 

Let r be a condition. 

Let~ be as in definition 4.26.1, and let~ ~~. 

premiss 

• (for all i: 0 ~ i: (0 LJ • q. c cpr),. (q~ ç Hcp)r)) 
~J<l. J - ~ 

• {fixed point property: cp = ~(cp)} 

(for all i: 0 ~ i: (0<w<. q. c q.t).., (q. ç ~r)) 
-J l. J - l. 

{lemma 3.29} 
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Note that in the latter proof it is not necessary that w is the least 

fixed point of ~; only use has been made of the fixed point property 

w - ~(~). 
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4.4. Recursive procedures with parameters 

4.4.0. Introduetion 

In this section we will study programs of the form 

where the pi are identifiers, the Ai are abstractions, and B is a 

block. The constructs pi = Ai are to be considered as procedure 

declarations. Within the abstractions A. and the block B statements 
l. 

may occur of the form p.(EL;VL), where EL is a list of expressions and 
J 

VL is a list of variables with types and lengths that match those of 

the abstraction A. corresponding 
J 

in such a way that the statement 

top .• Thesemantics will be defined 
J 

p.(EL;VL) is equivalent to the state
J 

ment A.(EL;VL), even if p. has been defined recursively. 
J J 

The treatment of this subject is essentially a combination of the 

treatments of parameterization and recursion in sections 4.2 and 4.3, 

respectively. In fact (and intentionally} there is so much correspon

dence that in many places we have taken the liberty to replace (parts 

of) definitions and proofs by an appeal to the similarity to their 

counterparts in those sections. Insection 4.4.1 we deal with the 

syntactic aspects, in 4.4.2 with the semantics and in 4.4.3 with the 

proof rules. 

4.4.1. Syntax 

Apart from some additional production rules the main syntactic exten

sion is the introduetion of a new attribute domain Penv to establish 

the correspondence between declaration and use of procedure identi

fiers. The role of Penv-attributes is comparable to that of Env

attributes. It would have been possible to combine the two, but for 

the sake of clarity we have refrained from doing so. Below we give 

the extensions, followed by some informal explanation. 

Domains 

Penv 



OEerations on Penv 

[. . . ] 
' ' 'P 

Name *Types *Types + Penv 
. w . Penv * Penv + Penv 
11 p (·,·) Name * Penv + Int 

(·,•,•) .. Name * Types * Types * Penv + Bool 

liP (n 1,[n2,ts 1,ts2]:P) = if n 1 • n2 +I D n1 {< n2 + 0 fi 

liP (n,pe 1 \Jl'pe2) = #P (n,pe 1) + liP (n,pe2) 

(n1,ts 1,ts2) inp [n2,ts3,ts4lp 

(n,ts 1,ts2) inp pe 1 \El pe2 

(n1 = n2 A ts 1 ts3 A ts2 
= ((n,ts 1,ts2) inp pe 1) v 

((n,ts 1,ts2) inp pe2) 

Nonterminals 

Procdecs <Penv,Penv>, Abstr <Penv,Types,Types>, Block <Penv,Env>, 

Stat <Penv,Env>, Gcs <Penv,Env>. 

{see note below} 

Grammar rules 

Prog 

pel • pe2 

(~ n: Name 

e = Empty 

Block <pe 1 ,e> • 

Procdecs <pe0 ,pe 1> ::= Id <n> = Abstr <pe0,ts 1,ts2> • 

pe 1 = [n,ts 1,ts2JP 

con Pdecs <d 1,ts 1> 

res Pdecs <d2,ts2> 

Stat <pe,e> 

) . 
n: Name I #D (n,d 1 @d2) + #p (n,pe) ~ I) 

e = Ext(Empty,d 11Wd2) 

151. 
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Stat <pe,e> 

Explanation 

::= Id <n> (Exprs <e,ts
1
> 

Vars <e,ns,ts2> ) • 

(!:_ n: Name I #N (n,ns) ::::: I) 

(n,ts 1 ,ts2 ) iEp pe 

The Penv-attributes establish the correspondence between procedure 

narnes and the parameter types of the corresponding abstractions. With 

the nonterminal Procdecs two such attributes are associated. The first 

one records information about all procedures declared in the procedure 

deelaratien part of a program; it is used to describe the legitimacy 

of procedure applications. The second one contains information con

cerning the internal procedure declarations. At the outermost level 

these attributes must be equal. The rules for formal-actual parameter 

correspondence are the sameasin sectien 4.2.1. Abstractions have no 

access to global variables. Narnes of formal parameters must differ 

from procedure names (see also note I below). 

D 

No te 

A Penv-attribute bas also been associated with the nonterminals Block, 

Stat, and Gcs. Strictly speaking we should give new versions of the 

grammar rules for these nonterminals, However, as in most of these 

rules the Penv-attribute is merely, "passed on", as e.g. in 

Stat <pe,e> ::=Stat <pe,e>; Stat <pe,e> • 

we will not list them anew. The only exception is the rule for Block, 

which obtains the additional rule condition that variabie narnes must 

differ from procedure names: 

D 

Block <pe,e0> ::= I[ var Decs <d> I Stat <pe,e
1
> ]I • 

(!:_ n: Name I #D (n,d) + #P (n,pe) s I) 

e 1 • Ext(e0 ,d) 
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No te 

As insection 4.2.1, an additional context condition is formulated by 

means of the functions USE, ASSN, and INIT. This part is almost 

identical to definitions 4.13 and 4.14 and the context condition 

following them, and therefore it is not repeated here. 

0 

4.4.2. Semantics 

In this section we define the semantics of programs of the form 

PI = Ap .. ••Pk = ~ I B. Basically this definition has the same struc-

ture as that insection 4.3.1, the main difference being that with 

each name pi a parameterized condition transformer rather than a 

condition transfarmer has to be associated. Similarly to section 4.3.1, 

these associations are established by means of an argument ö added to 

wp, wlp, pwp, and pwlp. Omitting environments for a while, the central 

clauses of the new definitions are: 

wp'(p(E;v))ö ~ pwp'(p)ö(E,v) 

and pwp'(p}ö • ö(p} • 

The ö corresponding to a procedure deelaratien part is determined by 

means of fixed point methods. 

An essential complication is that procedure applications may occur in 

different contexts. We reeall definition 4.15, which defines P as the 
e 

set of parameterized condition transfermers corresponding to an envi-

ronment e E Env. It follows that ö has to be parameterized with regard 

to the environment e of the procedure application, so as to obtain the 

appropriate element of Pe. Hence ó € + Env + U P in such a eEEnv e' 
way that for all procedure names p and e € Env: o (p) (ë)-E P • 

--- . e 

Apart from the points just mentioned, the definitions given in this 

sectionare very similar to those in sections 4.2.2 and 4.3.1, so we 

abstain from further clarification. The definitions follow. 

Definition' 4.42 {X} 

0 

X= {~ E Env + U Pe 
eEEnv 
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Definition 4.43 {ç_x} 

For all <pl,<p2 E X: 

q>l !;:x q>2 fif 

0 

Theorem 4.44 

(X,~X) is a cel. 

0 

Pro of 

(~ e E Env I <pi (e) !:.p QJ2 (e)) . 
e 

That ~X is a partial order follows immediately from definition 4.43, 

theorem 4.15 and theorem 3.10.2. 

Let Y be a countable subset of X. 

u y {;\e E Env ~~ cp(e)) 

q>EY 

n Y (Xe E !Pel q>(e)) 

QJEY 

0 

Definition 4.45 {6} 

6 =Name +X 

Definition 4.46 {wp'} 

For all e E Env the function wp~ E L(Stat <Penv,e>) + 6 + 

by: 

1-6. Similar to definition 4.23.1-6. 

7. wp~(A(E;v))o = pwp~(A)(o)(E,v) 

8. wp~(p(E;v))o pwp~(p)(o)(E,v) 

0 

Definition 4.47 {wlp'} 

is defined 

For all e E Env the function wlp~ E L(Stat <Penv,e>) + 6 +Te is 

defined by: 

1-6. Similar to definition 4.24.1-6. 



7. wlp~(A(E;v))ö = pwlp~(A)(o)(E,v). 

8. wlp'(p(E;v))o = pwlp'(p)(o)(E,v) • e e 
D 

Definition 4.48 {pwp', pwlp'} 

For all e E Env the functions pwp~ and pwlp~ E L(Id <Name>) 

u L(Abstr <Penv,Types,Types>) + 8 + P are defined as fellows: e 

Let (~x: t 1;!!! y: t
2 

I S) E L(Abstr <Penv,Types,Types>), 

E, V, x', y', e', S' as in definition 4.17. 

D 

J.J. pwp~((~ x: t 1; res y: t 2 I S))O = 

(ÀE E E, v E V I (x'+ E) o wp~,(S')o o (v + y')) • 

1.2. pwp~(p)ö = o(p)(e) • 

2.1. pwlp~((con x: t 1; res y: t 2 I S))o = 

(ÀE E E, v.;: V I (x'+ E) o wlp~,(S')o o (v + y'}) • 

2.2. pwlp'(p}o = o(p)(e) 
e 

No te 

Continuity of the functions defined above can be proven similarly to 

theerem 4.25. Details omitted. 

D 

Definition 4.49 {wp and wlp for programs} 

where e0 = Empty, 

ó is the function {(p 1 ,~ 1 ), ••• ,(pk'~k)}, 
(~J'''''~k) = ~(~J'''''~k)' 
and, for i: I s i s k: 

where e0 = Empty, 

wlp' (B)ö , 
eo 

155. 
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0 

No te 

6 is the function {(p 1 ,~ 1 ), ••• ,(pk'~)}, 

(q,,, ••. ,q,k) =\i('!' I' ... ,'l'k)' 

and, for i: I $ i $ k: 

Continuity of the functions ~i and 'l'i can be proven similarly to 

theorem 4.27. Details omitted. 

D 

The following analogue of theorem 4.28 states the equivalence of the 

statements pi(E;v) and Ai(E;v) when pi= Ai is a procedure declaration. 

Theorem 4.50 

Let 

IJ 

e " Env, 
i: $Î$;k, 

E, v such that A.(E;v) "L(Stat <Penv,e>). 
l 

I. Let 6 be as in definition 4.49.1. 

wp 1 (p.(E;v))6 = wp'(A.(E;v))6. e 1 e 1 

2. Let 6 be as in definition 4.49.2. 

Pro of 

We only prove I; the proof of 2 is similar. 

wp' (p. (E;v))6 
e 1 

{definition 4.46.8} 

pwp~(pi)(6)(E,v) 

{definition 4.48.1.2} 

6(pi)(e)(E,v) 

{definition 4.49.1, 6} 



D 

<pi (e) (E,v) 

{fixed point property} 

Wi(<p 1, ••• ,<pk)(e)(E,v) 

{definition 4.49.1, ~.} 
l 

pwp 1 (A.)(ö)(E,v) 
e 1 

{definition 4.46.7} 

wp'(A.(E;v))o. 
e l. 

4.4.3. Proof rules 

4.4.3. I. Proof rules for partial correctness 

157. 

In this section we discuss partial correctness proof rules for programs 

of the form p1 = A1, •.. ,pk = ~ I B. The structure of this section 

resembles that of section 4.3.2.1. First wedefine validity and sound

ness relatively to a set of procedure declarations, and we prove sound

ness of a rule to be used with nonrecursive procedures. Thereafter we 

consider an induction rule for use with recursive procedures. As in 

section 4.3.2.1, the proof of the latter rule requires definitions of 

validity and soundness relatively to an arbitrary interpretation ~ for 

procedure names. 

Definition 4.51 {Pvalid3} 

On "partial correctness formulae" x "procedure declarations" the 

predicate Pvalid3 is defined as: 

D 

I. Pvalid3(c q, (p 1=A1, ••• ,pk=~ I B)) = ~D c I q. 

2. Pvalid3(c {q1} S {q2}, (p1=A1, •.• ,pk=~ I B)) = 

~D c q1 • wlp~(S)(ö)(q2 ) , 

where c ~ L(Cont <e>), q1,q2 E L(Cond <e>), and ö is as in defini

tion 4.49.2. 
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Definition 4.52 {Psound3} 

On "partial correctness proof rules" x "procedure declarations" the 

predicate Psound3 is defined as: 

(~ i I 05i5n I Pvalid3(c0 I fi' pd)) ~ Pvalid3(c 1 I fn, pd) . 

0 

It is easy to prove that the axioms and proof rules considered in 

sections 3.3, 4.1.4, and 4.2.3 are valid c.q. sound" in termsof these 

extended notions as well. For easier reference we collect these axioms 

and rules under the name PC 1: 

Definition 4.53 {PC1} 

The partial correctness logic PC 1 is defined by: 

0 

PrPC u {PR5,PR6,PR7,PR8,PR9} • 
0 

Theorem 4.54 

0 

I. (~a tt:. AxPC 
1 

2. (~ r € PrPC 
I 

Pro of 

Similar to those of theorems 3.52, 4.12, and 4.20. Details omitted. 

0 

Below, for simplicity we restriet ourselves to the case k: I. The 

results can easily be extended to progriams with more procedure declara

tions. First, we present proof rules for use with nonrecursive proce

dures. 



Definition 4.55 {PRlO, PRil} 

Let A= (~x: t 1; ~ y: t 2 I S) ~ L(Abstr <Penv,Types,Types>), 

Let E, v, c, C, q1, q2 be as in definition 4.19. 

The proof rulesPRIO and PRil are defined by: 

PRIO x: tl' y: t 2 I {q1(x)} s {q2(x,y)} 

c I {q1(E)} p(E;v) {q2(E,v)} 

provided v t USE(E). 

PRIJ. x: t 1, y: t 2 I {q1(x)} S {q2(x,y)} 

ct> C: t 1 I {E-C A q1(c)} p(E;v) {q2(c,v)} 

0 

Theorem 4. 56 

0 

l, Psound3(PRIO, p =A) 

2. Psound3(PR11, p =A) , 

Proof 

We only consider I; 2 is similar. 

Assume: 

Pvalid3(x: t 1, y: t 2 I {q1(x)} S {q2(x,y)}, p =A). 

By a proof almost identical to that of theorem 4.20 we obtain: 

Pvalid3(c I {q 1(E)} A(E;v) {q2(E,v)}, p =A) 

provided v I USE(E) . 

Hence, by definition 4.51 and theorem 4.50.2: 

0 

Pvalid3(c I {q1(E)} p(E;v) {q2(E,v)}, p =A) 

provided v I USE(E) • 

159. 

Let us now turn to the induction rule for recursive procedures. The 

treat~ent of this rule is similar to that of the parameterless induc

tion rule insection 4.3.2.1. First wedefine validity and soundness 
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with regard to an arbitrary interpretation 4 for procedure names. By 

means of these notions we prove theorem 4.61, which is finally 

presented as inductive proof rule PR12 • 

Definition 4.57 {Pvalid4} 

On "partial correctness formulae" x X the predicate Pvalid4 is defined 

as: 

1. Pvalid4 (c q, q,) = f-D c I q 

2. Pvalid4(c { q I } S { q2 } ' <!>) 

~D c q1 ~ wlp~(S){(p,q,)}q2 , 

where c E L(Cont <e>), q 1,q2 E L(Cond <e>) . 

D 

On "partial correctness proof rules" x X the predicate Psound4 is 

defined as: 

0 

D 

(A i I 0$i$n I Pvalid4 (c0 I f., q,)) ~ Pvalid4 (c 1 I f , q,) • 
- 1 n 

60 

I. (!a E AxPC , q, EX Pvalid4(a,q,)) 
I 

2. (! r E PrPC , q, E X Psound4(r,q,)) • 
1 

Proof 

Similar to those of theorems 3.52, 4.12, and 4.20. Details omitted. 

0 



Theorem 4.61 

Let A= (con x: t
1

; res v: t
2 

l S) E L(Abstr <Penv,Types,Types>). 

Let e' = Ext(Empty,[x,t 110 \!ll [v,t2J0), 

q
1
(x),q

2
(x,y) E L(Cond <e'>) • 

For i: ~ ~ i ~ n: 

let ei E Env , 

If 

then 

D 

Pro of 

ei E L(Cont <ei>) , 

Ei E L(Expr <epl'l"io,t 1>) , 

vi E L(Var <ei,Name,t2>) , vi 

~PC 
I 

i USE(E.) • 
l. 

161. 

The proof is by greatest fixed point induction. In the proof we use a 

kind of "phase shift" in that we prove validity of correctness formulae 

invalving S rather than p(E;v) for arbitrary E and v. This phase shift 

leads to shorter formulae. The property we want to prove is: 

where ~ is as in definition 4.49.2. 

base step 

theorem 4.44 

• Tx = (Àe E Env I rp ) 
e 

• {definitions 4.47.8, 4.48.2.2} 
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(A i I J";i:>u I wlp' (p(E.;v.)){(p,T )} (Àq I true)) 
- e. 1. 1. x 

l. 

• {definition 4.57} 

(A i I I~i~n I Pvalid4(c. I {q 1(E.)} p(E.;v.) {q2(E.,v.)}, TX)) 
- l. l. l. l. l. l. 

• {premiss, theerem 4.60} 

induction step 

Let (jJ E X. 

Pvalid4(x: t 1; y: t 2 I {q 1 (x)} S {q2(x,y)}, (j!) 

• {theorem 4.60.2, hence Psound4 (PR8)} 

(A i I J";i";n I Pvalid4(c. I {q 1(E.)} A(E.;v.) {q2(E
1
.,v

1
.)}, (j!)) 

- l. l. l. l. 

{definition 4.57} 

(! i I I ~i";n I 

f-0 c
1
• I q1(E

1
.) •pwlp' (A.){(p,(j!)}(E.,v.)q2(E.,v.) e. l. l. l. l. l. 

l. 

{definition 4.49.2, o/} 

(A i I J";i";n I f-0 c. I q1(E.) •'l'((j!)(e)(E.,v.)q2(E.,v.)) 
- l. l. l. l. l. l. 

{definitions 4.47.8, 4.48.2.2} 

<! i I J";i";n I 
f- 0 c

1
• I q(E.) • wlp' (p(E.;v.)){(p,o/((j!))}q2(E.,v.) 

l. e. l. l. l. l. 
l. 

{definition 4.57} 

• {premiss, theerem 4.60} 

As admissibility is trivial, it fellows by greatest fixed point induc

tion that 
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Pvalid4(x: t 1; y: t 2 I {q1(x)} S {q2(x,y)}, v'l') 

{definitions 4.57.2, 4.51.2} 

Pvalid3(x: t 1; y: t 2 I {q1(x)} S {q2(x,y)}, p =A) 

• {theorem 4.56.1} 

Finally, in analogy with the parameterleas case in theorem 4.33, we 

formulate theorem 4.61 as an inductive proof rule: 

PRI2. 

I-pc 
I 

c I {q
1

(E )} p(E ;v) {q2(E ,v )} n n n n n n 

4.4.3.2. Proof rules for total correctness 

163. 

In this section we discuss total correctness proof rules for programs 

of the form p1 = A1, ••• ,pk =~I B. As this section has much in 

common with sections 4.3.2.2 and 4.4.3.1, we will shorten the presen

tation somewhat. The main theorem of this section is theorem 4.68, the 

induction rule for recursive procedures, also formulated as proof rule 

TR12. The structure of the proof is essentially the same as that of 

theorem 4.41, the parameterleas induction rule. 

Definition 4.62 {Tvalid2} 

Similar to definitions 4.37 and 4.51. 

D 

Definition 4.63 {Tsound2} 

Similar to definitions 4.38 and 4.52. 

D 
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Definition 4.64 {TC 1} 

The total correctness logic TC 1 is defined by 

AxTC = AxTC ' 
I 0 

PrTC u {TR5,TR6,TR7,TR8,TR9} • 
0 

D 

Theorem 4.65 

I. (!a € AxTC Tvalid2(a, (p 1=A 1, ••• ,pk=~)) ._ 
I 

2. (! r € PrTC Tsound2(r, (p 1=A1, ••• ,pk=~)) 
I 

0 

Proof 

Similar to those of theorems 3.54, 4.12, and 4.20. Details omitted. 

D 

Definition 4.66 {TRIO, TRil} 

Let A = (con x: tl; res y: t2 I S) E L(Abstr <Penv,Types,Types>). 

Let E, V' c, c, q), q2 be as in definition 4.19. 

The proof rules TRJO and TRil 

TRIO. x: t 1, y: t2 [ql(x)] 

c I [ql(E)] 

provided v i USE(E) • 

TRI I. x: t), y: 

c I> C: tl 

0 

Theorem 4.67 

I. Tsound2 (TRIO, p =A) 

2. Tsound2 (TRil, p =A) 

0 

Proof 

are defined by: 

S [q2(x,y)] 

p(E;v) [q2(E,v)] 

Similar to that of theorem 4.56. Details omitted. 

0 



Theorem 4.68 

Let A= (con x: t 1; ~ y: t 2 I S) E L(Abstr <Penv,Types,Types>). 

For i: 0 ~i~ n: let ei, ei' Ei' vi be as in theorem 4.61. 

Let <q.(x)>~ 0 be a sequence of conditions in 
J J= 

L(Cond <Ext(Empty,[x,t 1]D)>). 

Let r(x,y) E L(Cond <Ext(Empty,[x,t 1]D© [y,t2]D)>). 

If 

<~ k o~ I 

~TC 
I 

c 1 I [[\Ij 

c I r rv j 
n 

O~j<k 

O~j<k q.(E )]] p(E ;v) [r(E ,v )] 
J n n n n n 

x: t 1, y: t 2 I [qk(x)] s [r(x,y)] 

then 

D 

Proof 

Let k: k ~ 0. 

165. 

Tvalid2(x: t 1, y: t 2 I [[\Ij I O~j<k I qj(x)]] S [r(x,y)], p=A) 

~ {theorem 4.67.1} 

<~ i I 1~i~n I 

Tvalid2(c
1
• I [[Vj I O~j<k I q.(E.)]] p(E

1
·;v.) [r(E.,v.)], p =A) 

J l l l l 

~ {premiss of theorem, theorem 4.65} 

Tvalid2(x: t 1, y: t 2 [qk(x)] S [r(x,y)], p =A) 

By definitions 4.62, 3.33 and lemma 3.29 it follows that 

Tvalid2(x: t 1, y: t 2 I [[\Ik I O~k I qk(x)]] S [r(x,y)], p =A) , 
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hence, by theerem 4.67.1, 

0 

Just as in sectien 4.3.2.2, if we choose qk(x) = (q(x) A h(x) K), 

where K is a symbol sequence representing k and h(x) is an integer 

expression in terms of x, we obtain that 

[Vj O~j<k I q.(E.)] = q(E.) A 0 ~ h(E.) < K 
J l- l- l-

and [Vk O~k 1 qk(E0)] = q(E0) A o ~'h(E0 ) , 

as a result of which the theorem can be formulated as the following 

inductive proof rule: 

TRI2. 

~TC , I 

c
1 

I [q(E
1
) A 0 ~ h(E

1
) < K] p(E

1
;v

1
) [r(Epv

1
)] 

I 

c I [q(E ) A 0 s h(E ) < K] p(E ;v ) [r(E ,v )] n n n nn nn 

x: t 1, y: t 2 I [q(x) A h(x) = K] S [r(x,y)] 
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CHAPTER 5 

SOME ASPECTS OF THE DEFINITION OF THE TARGET LANGUAGE 

S.O. Introduetion 

In this chapter we will consider some aspects of the formal definition 

of the target language TL. TL has a rather conventional structure; it 

contains instructions for loading and storing values, arithmetical 

operations, jumps, conditional jumps, subroutine calls and returns. 

Usually the effect of these instructions is described operationally in 

terms of manipulations with some registers and an instructien pointer. 

For our purposes we would like to have at our disposal a condition 

transformer definition of TL however. Such a definition will allow us 

to derive a mapping from SL to TL from relations between condition 

transfermers of SL- and TL-programs. 

For simple load and store instructions and the like it is easy to 

construct condition transfermers based on that of the assignment. The 

difficulties are in the definition of the sequencing instructions. It 

is this aspect that we would like to consider in the current chapter. 

We shall develop condition transfermers and show their equivalence with 

an operational characterization. Rather than presenting two definitions 

and proving their equivalence however, we shall derive the operational 

description from the condition transformers. This derivation will 

proceed via some intermediate versions in which more and more opera

tional aspects are introduced. This chapter therefore has the following 

structure. 

Insection 5.1 we present an informal description of TL instructions. 

In section 5.2 we develop version I of their condition transformer 

semantics, which bears some relation to that of parameterless proce

dures in sectien 4.3 and to the continuations of denotational seman

tics. In sectien 5.3 we derive from version I a secoud version, which 

is based upon the representation of a TL program as an array of in

structions. In section 5.4 this version is further transformed to 
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version 3, which employs stacks of return addresses to describe the 

subroutine call and return mechanism. Finally, in section 5.5 we 

derive from version 3 an operational characterization by means of an 

interpreting program. This interpreter is constructed in such a way 

that it has the same condtion transformer as that of the TL program in 

version 3, and consequently as that in version I. 

In some derivation steps use is made of the fixed point property in 

order to establish some relation between two versions. Those deriva

tions are given in such a way that it is clear how a full fixed point 

induction proof of the equivalence of the two versions should be given. 
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5.1. Informal description of TL 

For the purposes of this chapter, TL may be thought of as consisti· ry 

of two sets of variables and of a set of instructions. The variabl~~ 

of the first set, called the datà variables, are used to repreaent ~:ne 

values operated upon by TL programs. For our discussion the properties 

of these variables are not very important. For simplicity, let us 

assume that the set consists of 

M 

A and B 

Q 

the store, a linear array of values, 

two general purpose registers, 

a condition register. 

The second set of variables, the control variables, is mainly used for 

sequencing purposes. It consists of 

p the program store, a linear array of instructions, 

ip the instruction pointer, 

rs the stack of return points, 

la a function that maps labels to addresses. 

A TL program is a construct of the form 

where the li are labels and the si are instruction sequences. We dis

tinguish two sorts of instructions, regular and singtilar instructions. 

An instruction is regular if the instruction to be executed after its 

completion is its textual successor; an instruction is singular, if it 

explicitly alters the flow of control, as is the case with jumps, sub

routine calls and returns. 

Typically, the effect of regular instructions can be described by 

means of a few assignments to the data variables; e.g.: 

LDA(a) A := M(a} 

STB(a) M(a) := B 

ADD(A, B) A := A+ B 

GEQ Q := A;;:: B 

The description of singular i~structions is less easy. Their formal 

characterization is the main subject of this chapter, Here we content 

ourselves with a short description in words. 
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UJP(l) 

FJP(l) 

TJP(l) 

CSR(l) 

RET 

jump unconditionally to label 1, 

if Q is false jump to label 1, 

if Q is true jump to label 1, 

record return point, jump to label 1, 

remove last return point r from record; 

jump to r. 

We shall assume that programs are closed, i.e. that each label occur

ring in a singular instruction of a program 10 : s0 ; ••• ; 1 
1

: s 
1

; 1 : n- n- n 
is an element of {10 , ••• ,ln}. 
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5.2. Version I: Condition tránsformer semantica of TL 

In this section we shall develop condition transfarmer semantica for 

closed TL programs. As we are mainly interested in control flow aspects, 

we shall restriet ourselves to the singular instructions and to the 

regular instructien LDA(a), which serves as representative for all 

regular instructions. Throughout the remainder of this chapter (except 

for an example) we shall base our discussion on a given closed program 

consisting of these instructions only. 

Definition 5.1 {Instruction} 

Instructien = {LDA(a),UJP(l},FJP(l),TJP(l),CSR(l),RET} 

0 

Definition 5.2 {Label} 

0 

We assume as given a cel (C,Ec) of conditions in terms of the 

variables of TL. 

Definition 5.3 {T,~T} 

I. T = C + C. uc 

2. is the standard order on T. 

0 

Letllllla 5.4 

(T,~T) is a uccl. 

0 

lllllllediately by theorem 3.23.2. 

0 
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It is our intention to associate with program p a condition transformer, 

i.e. an element of T. To this end we would like to define a function T 

that associates a condition transformer with each instructien sequence. 

In first approximation T would be an element of Instructien + T. For 

regular instructions this would suffice; we could simply define 

T[ LDA(a)] (A+ M(a)) and 

(we use the brackets [ and toenclose instructien sequences). This 

approach does not work for singular instructions; e.g. if in T[s 1 ;s 2J 

the last instructien of s
1 

is UJP(li), Tls 1J should be composed with 

the condition transformer of the instructien sequence following li' 

not with <ls2J. The problem can be solved by applying the continuatien 

technique of denotational semantics [Strachey]: Tls
1
J is supplied with 

two parameters, a "label environment" le and a "normal continuation" 

nc. The parameter nc corresponds to the condition transformer of the 

instructien sequence textually following s 1; if s 1 ends with a regular 

instructien its condition transformer should be composed with nc. The 

label environment le E Label + T is comparable to the function ö of 

definitions 4.23 and 4.24. With each 1'. e Label it associates the con-
l. 

dition transformer of the instructien sequence following li. lf s 1 
contains singular instructions referring toa label 1., the condition 

J 
transformer of s

1 
will depend upon le(lj). Thus, in secend approxima-

tion < is defined by clauses like 

T[ LDA(a)J (le,nc) 

<I UJP(l)D (le,nc) 

(A+ M(a)) o nc , 

le(l) , 

Still this form is insufficient, as it does not handle subroutine calls 

and returns. The condition transformer of the RET instructien should be 

composed neither with that of its textual successor, nor with le(li) 

for some label li, but with the condition transformer of the instruc

tien sequence following the CSR instructien "last executed". This con

dition transformer, the "return continuation", should therefore be 

passed as an additional parameter re to both T and le. In this way the 

condition transformer of RET is simply re, whereas the condition trans

fermer of CSR(l) with a normal continuatien nc is le(l,nc) in order to 
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establish that the condition transfarmer of a subsequent RET is that 

of the instructien sequence following the CSR(l) instruction. Thus we 

obtain, in third approximation, defining clauses like the following: 

<ILDA(a)J (le,rc,nc) 

<[UJP(l)J (le,rc,nc) 

(A + M(a}) o nc , 

le(l,rc) 

<[CSR(l)J (le,rc,nc) = le(l,nc) 

T(RETJ (le,rc,nc) re , 

In principle a definition of this kind could do the job, but for future 

applications it will be more convenient to decompose ' into two func

tions p and cr, such that for single instructions i: 

Tl iJ (le,rc,nc) = pliJ 0 olil (le,rc,nc) , 

where p describes the way the data variables are affected by i, and cr 

takes care of the sequencing. This decomposition gives rise to the 

fourth and final approximation presented in definitions 5.8 and 5.9 

below. As preparatien for these definitions we first define some 

abbreviating functions: 

Definition 5.5 

The functions I,F E T, CF E C x T x T ~ T are defined by 

0 

I. I = (Àq E C 

2. F (Àq E C 

3. CF 

q) 

false) 

The function CF will be used in the definition of the conditional 

jumps. Note that CF(q,f 1,f2) = CF(-,q, f 2,f 1}. 

The function le {"label environment") is an element of the set Labenv 

defined below. In principle Labenv is the set Label x T ~ T, but in 

order to ensure continuity of some other functions to be defined later 

on, we restriet Labenv to functions that are continuous in their secoud 

argument. 
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Definition 5.6 {Labenv} 

D 

I. Labenv = {le E Label x T + T 

!for each 1 E Label, each ascending chain <ti>~=O inT: 

le(l,iQO ti) = iQO le(l,ti) 

2. is the standard order on Labenv. 

Lennna 5.7 

(Labenv,~LE) is a uccl. 

D 

Similar to theerem 3.23.2. 

D 

Definition 5.8 {p, cr} 

p E Instructien + T 

cr E Instructien + Labenv x T x T + T • 

For all le E Labenv, rc,nc E T: 

1.1. p[ LDA(a)J = (A + M(a)) • 

1.2. crlLDA(a)l (le,rc,nc) = nc 

2.1. p(UJP(l)B =I. 

2. 2. o( UJP (l)D (le, re, nc) le(l,rc) • 

3.1. p[FJP(l)J =I. 

3.2. olFJP(l)J (le,rc,nc) CF(Q,nc,le(l,rc)) . 

4.1. p(TJP(l)J =I • 

4.2. crlTJP(l)J (le,rc,nc) "'CF(ïQ,nc,le(l,rc)) 

5.1. p(CSR(l)J =I. 

5.2. o(CSR(l)B (le,rc,nc) le(l,nc) • 
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6. I • p( RETJ = I • 

6.2. o(RETJ(le,rc,nc) re. 

D 

Definition 5.9 {T} 

T E: Instructien * ->- Labenv x T x T ->- T • 

For all leE: Labenv, rc,nc E: T, i E: Instruction, s 1,s2 E: Instruction*: 

2. Tl iJ (le,rc,nc) p[il o cri iJ (le,rc,nc) • 

D 

The following lemma states associativity of T with regard to 

Lemma 5.10 

For all s 1,s2,s3 E: lnstruction*, le € Labenv, rc,nc ET: 

D 

D 

T[ (s 1 ;s2) ;s3J (le,rc,nc) 

{definition 5.9.1} 

, T( s 1 ;s2J (le,rc,T[ s3D (le,rc,nc)) 

{definition 5.9.1} 

T[ s 11 (le,rc,TI s2J (le,rc,tl s31 (le,rc,nc))) 

{definition 5.9.1} 

Tl s 1J (le,rc,Tl s 2;s3J (le,rc,nc)) 

{definition 5.9.1} 

..... 
' . 
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Theorem 5. I I 

0 

I. For all iE Instructien: cr(iJ E Labenv x T x T +uc T 

2. For all s E Instruction*: TlsJ € Labenv x T x T +uc T 

Proof 

We only prove I for the case i :: UJP(l). The other proofs are similar. 

Let <le.>~ 0, <re.>. 
0 

and <nck>k
00 

__ 
0 

be ascending chains in Labenv, T 
1 1= J J= 

and T, respectively. 

n 

criUJP(l)J (i~O lei' j~O rcj' ~O nek) 

{definition 5.8.2.2} 

i~O lei(l,j~O rcj) 

{lei E Labenv, definition 5.6} 

.ü0 .ü0 le.(l,rc.) 
1= J= 1 J 

={lemma 3.20.1} 

.u
0 

le. (1, re. ) 
1= 1 1 

= {definition 5.8.2.2} 

.u0 aiUJP(l)J (le.,rc.,nc.) 
1= 1 1 1 

Finally we define the function ~ which yields the condition transfarmer 

of an entire program 10: s0 ; 1
1

: s 1; ••• ; ln: expressed in those of 

its constituent instructien sequences si. Similarly to o in definition 

4.26, the label environment le of an entire program is defined as 

least fixed point of a function F € Labenv + Labenv. The condition 

transfarmer of the program is that of the instructien sequence follow

ing label 10 , i.e. le(l0,rc) for some suitable re. He choose re = F to 

ensure that a program aborts if it attempts to execute more RET than 

CSR instructions. 

Definition 5.12 {w} 

~ E Program + T 
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where 

1e = JJF • 

and F e: Labenv -+ Labenv is given by 

F = (Ue' E Labenv 

(U E Label, re E T I [1 = 10 .... Tls0J (le',rc,le'(1
1
,rc)) 

' 

1=1 n-1 -+ T( s 11 (le' ,rc,1e 1 (1 ,re)) • n- n 

0 

1 1 + I 
n 

In order for this definition to be well-formed, it is necessary that F 
is continuous. This is ensured by the following theorem. 

Theorem 5. 13 

0 

Proof 

F E (Labenv -+ Labenv) • uc 

Immediate1y by theerem 5.11 and the "pointwise" lub definition in 

Labenv. 

0 

Example 

Consider the programs x, y and z be1ow, which correspond to common 

trans1ations of the SL programs 

p = B .... s
1

; p D -, B ... s
2 

fi p , 

or do B -+ s
1 

od; s2 • 

Let b, s 1 and s2 be regu1ar instructions. 
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x .. 1x0: UJP(lx4); 

lx
1

: b• 
' 

FJP(lx2); 

sI; 
CSR(lx

1
); 

UJP(lx3); 

s2; 

lx3: RET; 

lx4 : CSR(lx
1
); 

lx5: 

y lyo: b; 

FJP(ly
1
); 

si; 
UJP(ly0); 

lyl: s2; 

ly2: 

z = lz0: UJP(lz2); 

lz
1

: SI; 

1z2: b; 

TJP(lz
1
); 

sz; 

lz3: 

By definition 5.12 and the fixed point property we obtain, after 

simplification by means of definitions 5.8 and 5.9: 



lex (U,rc 

[1 

1 

1 

1 

1 

1 

lx
0 

+ lex(lx4 ,rc) 

lx
1 

+ p(b] o CF(Q,pl s
1
J o lex(lx

1
,1ex(lx

3
,rc)), 

lex(lx2,rc)) , 

lx
2 

+ p[ s
2
J " lex(lx

3
,rc) , 

lx
4 

+ lex(lx 1,1ex(lx
5
,rc)) 

lx5 + I 

[1 ly
0 

+ plbl o CF(Q,pls
1
J o lex(ly

0
,rc),lex(ly

1
,rc)) 

1 ly
1 

+ p[ s
2
J o ley(ly

2
,rc) 

1 ly
2 

+ I 
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lez = (Àl,rc 

[1 1z
0 

+ lez(lz
2
,rc) , 

1 = 1z
1 

+pi s
1
1 o lez(1z

2
,rc) 

1 1z
2 

+ p[bJ c CF(ïQ,pls
2
J o 1ez(1z

3
,rc),lez(lz

1
,rc)), 

1 1z
3 

+ I 

From these equations it follows that 
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rr( XI 

lex(lx0,F) 

lex(lx4,F) 

lex(lx
1

, I) 

and 

lex(lx
1
,I) 

plbJ o CF(Q,pl s
1
1 o lex(lx

1
,I) ,p( ) • 

rrl yl 

ley(ly0,F) 

p(bJ o CF(Q,p[s
1
J o ley(ly

0
,F),pls

2
1). 

1T( zl 

lez (lz0 ,F) 

lez(lz2,F) 

and 

lez(lz2,F) 

p[b] o CF(-,Q, p( s21 ,p( s
1
1 o lez(lz2,F)) 

plbl o CF(Q,p[ s 11 o lez(lz2,F),pl s 21) . 

We find that rrl xJ , rr[ yl and 1T[ zJ all equal the least solution of the 

equation 

W: W = plbl o CF(Q,pl s 11 o W,p[ s 2J) , 

hence programs x, y and z are equivalent. 

D 

The following lemma states a property of the label environment le of 

program p which will be used in the derivation of version 2. 
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Let le be as in definition 5.12. 

le = (H € Label, re € T I [1 

l=ln-1 + 1
J(le,rc,I) , 

D 

Proof 

1 1 ->- I 
n 

Immediately from the fixed point property and definition 5.9.1. 

D 
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5.3. Version 2: Introduetion of program store 

In this section we shall develop a semantics for program p based upon 

the representation of p in a program store, i.e. an array of instruc

tions. This representation enables us to refer to arbitrary instruc

tions by means of their index. As a consequence the label environment 

of version I can be eliminated. Version 2 makes use of a program store 

P, a label-to-address function la, and functions T1 and o'. First we 

establish relations between these entities and those of version I. 

Subsequently we derive from these relations and the definitions in 

version 1 an equation system in termsof P, la, T', o' and n alone. 

Let us assume that the instruction sequences s0 , ... ,sn~J of program p 

are stored consecutively in an array P(k: O~k<N) of instructions, where 

N = (~ j: O~j<n: length(si)). 

Let also be given a function la E Label + {0, •· •• ,N} such that: 

for all j: 0 ~ j < n: la(l.) is the index in Pof the first 
J 

It follows 

Rl.l. for 

R1.2. for 

Let le be 

R2. le 

instructien of s .. 
J 

that 

all j: 0 ::;:: j < n: P(k: la(lj) ~ k < la(lj+l)) = s . . 
J 

all j: 0 ::;:: j < n: P(k: la (1.) ::;:: k < N) = sj; ••• ;sn-I 
J 

as in definition 5.12. Fr om R1.2 and lemma 5.14 we 

(:U E Label, re E T I 

[1 10 _,. TIP(k: la(l0) ~ k < NJ (le,rc,I) , 

l=ln_ 1 + dP(k: la(ln-l) ::;:: k < NJ (le,rc,I) , 

1 1 -+ I 
n 

obtain 



Definition 5.15 {T', er'} 

1. T 1 E {0, ••• ,N} x T + T • 

forall j: 0 ~j <N, re ET: 

T'(j,rc) = T[P(k: j:Sk<N)J (le,rc,I) 

T1 (N,rc) =I. 

2. er' E Instructien + {0, .•• ,N} x T + T • 

for all iE Instruetion, j: 0 ~ j < N, reET: 

er'[i](j,re) = aliJ (le,rc,T' (j+1 ,re)) • 

D 

An immediate consequence of relation R2 and definition 5.15.1 is 

R3. for all 1 E Label, reET: le(l,rc) = T1 (la(l),rc). 

Next, we derive arelation between T 1 and a'. 

Let j: 0 ~ j < N, reET. 

r'(j,rc) 

{definition 5.15.1} 

TlP(k: j~k<N)I (le,rc,I) 

{instruetions stored consecutively} 

Tl P(j); P(k: j+1Sk<N)J (le,rc,I) 

{definition 5,9} 

plP(j)J <> alP(j)J (le,rc 0riP(k: j+lsk<N)J (le,rc,I)) 

{definition 5.15.1} 

p(P(j)J o cr[P(j)J {le,rc,r' (j+1 ,re)) 

{definition 5.15.2} 

p(P(j)J <> a'lP(j)l (j,re) 

183. 

The result of this derivation, together with the seeond part of defini

tion 5.15.1, are summarized in: 
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R4. for all j : 0 :> j < N, re E: T: 

T' (j ,re) pfP(j)l o cr'lP(j)l (j,re) 

T'(N,re) I • 

For cr' we derive a relation RS, divided in cases. As the derivations 

of all cases have the same structure, we present the 

followed by the results. The pattern is: 

RS.m. cr'H J(j,re) 
m 

{definition 5.15.2} 

E1(cr,le,T',rc,j) 

{definition 5.8.m.2} 

{R3} 

The results are: 

RS.I. a'ILDA(a)l (j ,re) T 1 (j+l ,re) . 

RS. 2. a'[UJP(l)J (j,rc) = ,• (la(l) ,re) 

R5.3. cr'( FJP(l)] (j ,re) CF(Q,T'(j+I,rc),T'(la(l),rc)) 

R5.4. a'( TJP(l)J (j, re) "'CF{-,Q, T' (j+I.,rc),T 1 (la(l),rc)) 

R5.5. cr'ICSR(l)1 (j,re) T 1 (la(l),T 1 (j+l,re)) 

R5.6. cr'l RETJ (j ,re) re • 

Finally, from definition 5.12 andrelation R3 we obtain 

R6. 1T[pl = t'(la(l
0
),F) 

pattern, 

Taken together, relations R4, R5 and R6 are a semantics for p in terros 

of P, la, T', cr' and 1T. 



185. 

5.4. Version 3: Introduetion of return stack 

A short inspeetion of relations R4, R5 and R6 of version 2 reveals that 

each return continuatien is either F or of the form T'(k,rc), where 

k E {O, ••• ,N} and re is an ether return continuation. As a consequence 

we can characterize return continuations by means of a stack, repre

sented here by a finite sequence over {O, ••• ,N}. We use a function f 

to define the return continuatien represented by such a sequence. 

Definition 5.16 {Stack} 

Stack = {O, ••• ,N}* 

0 

Definition 5.17 {f} 

f E Stack -+ T 

I. f(< >) = F 

2. f(<j> Ell s) T'(j,f(s)) • 

0 

These definitions enable us to replace the equation system of version 

2, in terms on P, la, T', cr' and rr, by an equation system in termsof 

P, la, T", a" and rr, which is basedon stacks instead of return con

tinuations. We begin with definitions of T" and cr". 

Definition 5.18 {T", cr"} 

I. T" E {0, ... ,N} x Stack -+ T • 

for all j: 0 ~ j ~ N, s E Stack: 

T"(j ,s) T'(j,f(s)) 

2. cr" E Instructien -+ {0, ••• ,N} x Stack -+ T • 

for all iE Instruction, j: 0 ~ j < N, reE T: 

a"[ iJ (j ,s) = cr'HJ (j ,f(s)) 

0 

From definition 5.18 andrelation R4 we obtain: 
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R7. for all j: 0 $ j < N, s € Stack: 

T"(j ,s) piP (j )D o cr"l P(j )J (j ,s) 

T"(N,s) I . 

For cr" we derive relation R8 below, divided by cases. The derivations 

of the first four cases follow the pattern: 

RS.m. a" I i ~ (j, s) 
m 

{definition 5.18.2} 

cr'lim1 (j,f(s)) 

= {R5.m} 

E
1 
(j ,f(s), T' ,la) 

{definition 5.18.1} 

For R8.5 the derivation is 

cr"ICSR(l)D (j,s) 

{definition 5.18.2} 

cr'l CSR(l)D (j,f(s)) 

{R5.5} 

T 1 (la(l),T' (j+l,f(s)) 

{definition 5. 17.2} 

T'(la(l),f(<j+l> es)) 

{definition 5.18.1} 

T"(la(l),<j+l> es) 

For R8.6 the derivation is 

cr"l RETJ (j ,s) 

{definition 5.18.2} 

cr'l RETJ (j,f(s)) 



{R5. 6} 

f(s) 

{definition 5.17} 

if s = < > + F 0 s 

{definition 5.18.1} 

<j'> $ s' + T'(j',f(s')) fi 

if s = < > + F 0 s = <j'> ® s' + T"(j',s') fi 

Thus we obtain 

R8. 1. cr"l LDA(a) J (j, s) 

R8.2. cr"IUJP(l)J (j ,s) 

R8.3. cr"[ F JP (l)J (j, s) 

R8.4. cr"[ TJP (1) 1 (j, s) 

R8.5. cr"[CSR(l)J (j,s) 

T"(j+l ,s) • 

T"(la(l) ,s) 

CF(Q, T"(j+l ,s) ,T"(la(l) ,s)) 

CF(oQ,T"(j+l,s),T"(la(l),s)) 

T"(la(l),<j+l> $ s) • 
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R8.6. cr"i RETD (j, s) if s = < > + F 0 s = <j'> es'+ T1 (j',f(s')) fi 

Finally, for p we derive 

Hence 

R9. 

11[ pJ 

{R6} 

T'(la(l0), F) 

{definition 5.17.1} 

T'(la(l
0
),f(< >)) 

{definition 5.18.1} 

11( pJ T"(la(l
0

) ,< >) • 

Relations R7, R8 and R9 characterize thesemantics of pintermsof 

P, la, T", cr" and 11, using stacks instead of return continuations. 



188. 

5.5. Version 4: Derivation of an interpreter 

In this sectien we will derive an operational description of program p 

by means of an interpreter. Apart from the data variables M, A, B and 

Q, this interpreter will also use control variables, which are used 

for sequencing purposes. The control variables are: 

P : array (k: 0 ~ k < N) of Instructien , 

la: Label+ {O, .•. ,N}, 

ip: {O, .•• ,N} 

rs: Stack • 

The variables P and la serve the same purpose as in version 2. The 

variabie ip is the instructien pointer and indicates the location of 

an instructien to be interpreted. The variabie rs is the return stack. 

For the interpreter P and la are to be considered as constants. All 

sequencing has to be performed by appropriate assignments to ip and rs. 

We will code the interpreter in a slight variant of the souree language, 

the semantics of which will be obvious. Our aim is to construct the 

interpreter in such a way that it has the same condition transformer as 

the program p to be interpreted. Relations R7, R8 and R9 will serve as 

guideline in the derivation. 

To begin with, let us try to construct a repetition 

DO = do B + S od 

such that 

RJO. for all sE Stack, j: 0 ~ j < N: 

(ip,rs+j,s) o wp(DO) T"(j,s) 

If we succeed in doing so, it fellows from relation R9 and the wp 

definition for assignment and sequentia! composition (definitions 

3.37.3 and 3.37.4) that the program 

ip,rs := la(t0), < >; DO 

has the same condition transformer as program p, so we may regard it 

as an operaticnat description of p. 



Applying the fixed point property for wp(DO) and some propositional 

calculus to RIO yields the following equivalent relation: 

Ril. for all s E Stack, j: 0 :::; j :::; N: 
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(ip,rs+-j,s) o (Àq I ï B 11 q v B 11 wp(S)wp(DO)q) = <"(j,s) . 

Separation of the case j = N and application of R7 yields that Ril is 

equivalent to (R12.1 11 R12.2), where 

Rl2. I. for all s E Stack: 

(ip,rs+-N,s) o (Àq I ï B 11 q v B 11 wp(S)wp(DO)q) I • 

Rl2.2. for all s E Stack, j: 0:::; j < N: 

(ip,rs+-j,s) o (Àq I ïB 11 q v B 11 wp(S)wp(DO)q) 

p[P(j)J o o"IP(j)J (j,s) 

Relation Rl2.1 is satisfied by B = (ip, N). Substitution in Rl2.2 

yields 

for all sE Stack, j: 0:::; j < N: 

(ip, ,s) o (Àq I ip = N 11 q v ip , N 11 wp(S)wp(DO)q) 

p(P(j)J o o"lP(j)J(j,s) 

which can be simplified to 

Rl3. for all s € Stack, j: 0:::; j < N: 

(ip,rs+j ,s) o wp(S} o wp{DO) = p( P(j}J o a"l P(j)J (j ,s) . 

It follows that we should look for a program 

DO do ip j. N + S 

where, under the assumption that RIO holds - this is in fact the induc-. 

tion hypothesis for fixed point induction - the statement S should 

satisfy relation R13. 

Obviously, relation R13 depends on the value of P(j) for various j. 

Let us therefore rewrite R13 as: 



190. 

Rl4. for all s E Stack, j: 0 ~ j < N: 

(ip,rs+j,s) o wp(S) o wp(DO) 

O.q i [Vi I i E Instrucdon I P{j) i A p( iJ a"( iJ (j ,s)q]) • 

This relation is satisfied by 

wp(S) = (;l.q I [V i I i E Instrucdon I P (ip) 

provided we can find statements Ti such that 

for all i E Instruction, s E Stack, j: 0 ~ j < N: 

(ip,rs+j,s) o wp(Ti) o wp(DO) pi iJ o cr"( iJ (j ,s) 

Let us denote the set Instruction by the k element set {i 1, ••• ,ik} for 

a while. As wp(S) is the condition transfarmer of an alternative state

ment with mutually exclusive guards P(ip) = ik' it follows that we 

should look for a program 

DO = do ip # N ~ if P(ip) 

D 

od 

D P(ip) 

fi 

i
1 

+ T. 
'~] 

where, under the assumption that RIO ho.lds, the statements T. should 
~ 

satisfy relation RIS. 

Let us restriet ourselves to statements T. of the form 
~ 

where the statements Xi do not contain ;assignments to the variables ip 

and rs. In that case relation RIS may be rewritten as: 

RJ6. for all i E Instruction, S E Stack, j: 0 s j < N: 

wp(Xi) 0 (ip,rs+j,s) 0 wp(Yi) o wp(DO) = pi iJ 0 cr"l iJ (j ,s) 

which is implied by (RJ7 A R18), where 

Rl7. for all i E Instruction: wp(Xi) = p( iJ • 



RIS. For all i € Instruction, s € Stack, j: 0 ~ j < N: 

(ip,rs+j ,s) o wp(Yi) o wp(DO) = cr"l iJ (j ,s) . 

Now it is time to consider the individual instructions. Let us first 

deal with the solutions of Rl7. 

If i= LDA(a), then by definition 5.S.I.I: plil (A+- H(a)), 

hence Xi A:= M(a). 

If i is a singular instruction, then by definitions 5.8.2.1-

5.8.6.1: p[iJ =I, hence Xi =skip. 
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Next we derive, under the assumption that RIO holds, statements Yi 

satisfying RIS. For two representative cases we give full derivations. 

The other cases are similar. 

cr"l iJ (j , s) 

{RS. I} 

T"(j+l ,s) 

{RIO} 

(ip,rs+j+l,s) o wp(DO) 

{property of substitution} 

(ip,rs+j,s) o (ip+ip+l) o wp(DO) 

{definition wp} 

(ip,rs+j,s) o wp{ip := ip+l) o wp(DO) 

hence Y. 
l. 

ip := ip+l. 

case i CSR(l) 

o"( iJ (j ,s) 

{RS.5} 

T"(la(l) ,<j+l> !9 s) 

{RIO} 
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(ip,rs+-la(l), <j+l > ~ s) o wp(DO) 

{property of substitution} 

(ip,rs+-j ,s) o (ip,rs+-la(l), <j+l >EB s) o wp(DO) 

{definition wp} 

(ip,rs+-j ,s) o wp(ip,rs := la(l), <j+l >EB s) o wp(DO) 

hence Y. = ip,rs := la(l),<j+I> EB s . 
~ 

By similar derivations we find 

case i UJP(l): Y. = ip := la(l) 
~ 

case i FJP(l): Y. = if Q .... ip := ip+l 
~ - 0 ïQ 

case i TJP(l): Y. = if ï Q .... ip := ip+l 0 Q 
~ 

case i RET Y. = if s <j' > EB s' -+ ip,rs 
~ 

.... ip := la(l) 

.... ip := la(l) 

:= j',s' fi 

fi 

fi 

With the .derivation of the statements Xi and Yi we have completed the 

derivation of the interpreter. Combination of the code fragments yields: 

ip,rs := la(10), < >; 

do ip f N -+ 

if P(ip) LDA(a) 

0 P(ip) UJP(l) 

0 P(ip) F JP (1) 

0 P(ip) TJP(l) 

0 P(ip) CSR(l) 

0 P(ip) RET 

fi 

od 

-+A := M(a); ip := ip+l 

.... skip; ,ip := la(l) 

.... skip; 

if Q .... ip := ip+l O•Q-+ ip := la(l) fi 

-+ skip; 

if ï Q .... ip := ip+l 0 Q .... ip := la(l) fi 

.... skip; ip,rs := la(l),<j+l> EB rs 

.... skip; 

if s = <j'> EB s' .... ip,rs := j',s' fi 



CHAPTER 6 

EPILOGUE 
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We conclude this thesis with a short summary and evaluation of the results 

obtained in preceding chapters. 

In chapter 2 we have developed a variant of attribute grammars which is a 

self-contained formal system free of implementation bias. Nevertheless, the 

various components of this system can be used directly as compiler specifi

cations, from which compilers can be derived by means of existing techniques 

for attribute evaluation and data structure implementation. The grammar for 

the souree language is rather compact: it has only 33 grammar rules. 

We have extended the predicate transfarmer methad to a genuine definition 

method by providing it with a firm foundation and extending it to language 

constructs other than statements.In this respect the lattice theory of 

section 3.1 has been of great value. The general framework provided by this 

theory has helped in structuring definitions and in separating general 

lattice-theoretical properties from properties particular to certain language 

constructs. 

We have developed semantics and proof rules for recursive procedures, both 

with and without parameters, constructs the formal treatment of which in 

the literature has often been problematic. We have succeeded in doing so by 

separation of the various aspects of procedures and by making design 

choices leading to simple semantics, e.g. with respect to parameter meeha

nisros and initialization requirements. 

The background of our work has made it necessary to consider both syntax 

and semantics. On the one hand, taking into account context-dependent 

properties has complicated various derivations, and we feel that there is 

room for impravement in this respec,t. On the other hand, it has enabled us 

to derive rather simple conditions for the applicability of certain proof 

rules, e.g. with respect to scope of variables and disjointness of para

meters, a notorious problem area. 
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We have shown that it is possible to give a manageable non-operational 

definition of machi.ne instructions, and that an implementation of these 

instructions can be derived systematically. The latter derivation also 

gives an impression of the way the formalisros developed in this thesis 

will be put to work in the derivation of a translation from SL to TL. 



APPENDIX A 

PROOF OF SOME LEMMAS 

Proof of lemma 3.20.2 

(C,!;) is a uccl 

• {definition 3.5, R, S countable} 

(~ i E R, j E s I x ij 5. j'is x ij A j~S x ij !:: i~R j'is x ij) 

• {transitivity ~. definition 3.2} 

j € s I .UR x .. c: .UR .US x .. ) 
~€ ~J - ~E JE ~J 

• {definition 3.2} 

.US .UR x .. 5. .UR .US x .. 
JE 1E ~J l.E J€ ~J 

Also, by symmetry: 

,US .UR x •. ;:. 
JE ~E ~J - ,US x •• 

JE: 1J 

Hence, by antisymmetry of ~ : 

D 

.us JE 
x •• 

1J 

Proof of lemma 3.21 

• tdefinition n} 

(~i I i~ 0 I l'.:i n Yi!: xi+1 A xi n Yi!;. Yi+l) 

{definition n} 

(~ i I i ~ 0 I x i n y i ;;: x i+ 1 n Y i+ 1 ) 

<xi n yi>:=O is an ascending chain. 

195. 
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2. Let 

We first prove 

I. z ~x n y, and subsequently the stronger assertion 

2. z x n y. 

I. true 

{definition n} 

• {definition u} 

<~ i I i ~ o I 
{definition n} 

{definition u} 

x. n 
~ 

iQO (xi n yi) ~ <iQO xi) n <iQO yi) 

{definition x, y, z} 

z!;xny 

2. z s x n y 

{definition 3.1} 

(z = x n y) v (z c x n y) 

{definition x, y, n} 

(z = x n y) v (z c 

• {definition u} 

(z = x n y) v ( i I i~O I z t: xi) A (!i I i?:O I z c yi)) 

• {<x.>~ 0 and <y.>~ 0 ascending} 
1 1= 1 1= 

(z = x n y) v (! i i <:: 0 I z c xi A z c yi) 

{definition n} 

(z = x n y) v 

{definition U} 

i i~ 0 I z c x. n y.) 
1 1 



"' (z = xn y) v (ze i':lo (xi n yi)) 

{definition z} 

(z = x n y) v (z c z) 

(z = x n y) 

0 

Proof of lemma 3.22 

By induction on the size of S. 

0 

I. ForS 0 the equality holds, because n 0 = T. c 

2. Ind. hyp.: let for some fini te set S' 

"' co 

i'ds• .wo x .. = .wo i'ds' x .. 
J"" l.J J'" l.J 

Let 1 i S' • and s = {1} u S'. 

ro 
.n

5 
.u

0 
x .. 

l.E J= l.J 

{S = {1} u SI} (.uo x .. ) n (.ns, .ü'o x .. ) 
J= l.J l.E J= l.J 

Und. hyp.} ( .ü'o x .. ) n (.uo .ns, x .. ) 
J= l.J J= l.E l.J 

co 
{lemma 3.21.2} .w0 (x .. n .n5, x .. ) 

J= l.J l.E 1.] 

00 

= { s = { 1} u s' } .wo x .. 
J= l.J 

Proof of lemma 3.25 

I. g o (~ hi) 

{definition lQJ } g o ( Àx I ~ hi (x)) 

{functional composition} (Àx I g(t§l hi(x))) 

{gE D} (Àx I ~ g(hi(x))) 

{definition lQJ } lfu (Àx I g(h. (x))) 
i=O 1 

197. 
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0 

= {functional composition} lQJ (g o hi) • 
i=O 

2. (~ gJ 0 (~ hJ 
{functional composition} (Àx I (~ gi)((~ hj)(x))) 

{definition LQJ } ( Àx I ~ gi (~ hj (x))) 

~ J.fJ gi (h. (x))) 
1=0 ]=0 J • 

{lemma 3.20.1} (Àx I~ gk(hk(x))) 

= { definition LQJ } l.fu (Àx gk (~(x))) 
k=O 

{functional composition} Lfu (gk 0 hk) . 
k=O 
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APPENDIX B 

COLLECTED DEFINITION OF THE SOURCE LANGUAGE 

{Collected from sections 2.3.2, 4.1.1, 4.2.1, 4.4.1. The functions USE, 

ASSN, and INIT have been incorporated into the attribute grammar. The 

corresponding attribute variables have names beginning with the letters 

u, a, and i, respectively. Their domain is Nat, which corresponds to sets 

of names.} 

Domains 

{Bool,Int,Name,Names,Nst,Prio,Type,Types,Deas,Env,Penv} 

Attribute variables 

n, n 1, n2 : Name; 

ns, ns0 , ns 1, ns 2: Names; 

u, u0 , u 1, u2 , ug, ug0 , ug 1, ug2 , us, us0 , us 1, us 2 , a, a0 , a 1, a2, 

i, i
0

, i
1

, i
2

: Nst; 

p, Po•PJ•Pz= FPio; 
t, t 0 , t

1
, t 2 : Type; 

ts, ts0 , ts 1, ts2, ts3 , ts4: Types; 

d, d0 , d 1, d2 : Deas; 

e, e
0

, e
1

: Env; 

pe, pe0 , pe 1, pe2, pe3 : Penv. 

Operatiens on Name 

Name =Letter (Letter u Digit)*. 

[.] 
N Name + Names 

• \!!) • Narnes * Narnes + Names 

. ~. Name * Names + Bool 

#N( • '•) Name * Narnes +Int 
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#N (n 1,[n2]N) : if n 1 = n2 +I 0 n 1 ~ n2 + 0 fi 

# 
N 

on Nst 

Net set of Name. Details of set axioms omitted. 

Operatiens on Prio 

Prio = {e E Int the integer value corresponding to e is an element 

of { I , ••• , 7}} • 

Typesym. 

Operatiens on Types 

Type -• Types 

Types * Types + 

Narnes * Type + 

Mts([n)N,t) = [t]T 

Mts(ns 1 ~ns 2 ,t) = Mts(ns 1,t) ~ Mts(ns 2,t) 

on Deas 

[•,•]D Narnes * Type + Deas 
• \!?). De as * Dees + Dees 

(. '.) i~ • Name * Type * Deas + Bool 
# D ( •' •) Name * Deas + Int 



#N (n,ns) #D (n, [ns, t]D) 

#n (n,dl \W dz) #D (n,dl) + #D (n,d2) 

Operations on Env 

Empty Env 

Ext(•,•) Env * Deas + Env 

(•,·) i~ • Name* Type* Env + BooZ 

(n,t) ~ Empty = false 

(n,t) ~ Ext(e,d) = (n,t) d V (#D (n,d) 

Operations on Penv 

Pempty Penv 
[. • • 1 

' ' p 
Name * Types * Types + Penv 

. \V . Penv * Penv + Penv 
# p(•,•) Name * Penv + Int 

0 11 (n, t) 

(•,•,•) inp . Name * Types· * Types * Penv + BooZ 

# (n,Pempty) = 0 p 

#p 

# 
p 

(n1, [n2,ts 1, ts21P) = if n1 = n2 + I D n1 f< n2 + 0 fi 

(n,pe
1 

\g/pe2 ) = #P (n,pe 1) + #P (n,pe2 ) 

(n,ts 1,ts2) ~ Pempty = false 

(n1,ts 1,ts2) ~ [n2,ts3 ,ts4lp 

VN {Abstr <Penv,Types,Types> , 

Block <Penv,Env,Nst,Nst,Nst> , 

Con <Type> , 

Decs <Deas> , 

Dop <FPio,Type,Type,Type> , 

Expr <Env,Prio,Type,Nst> , 

Exprs <Env,Types,Nst> , 
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e) 
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Gcs <Penv,Env,Nst,Nst,Nst,Nst> , 

Id <Name> , 

Ids <Names> 

Mop <Type,Tyve> , 

Pdecs <Decs,Types> , 

Procdecs <Penv,Penv> , 

Prog , 

Stat <Penv,Env,Nst,Nst,Nst> , 

Type <Type> , 

Var <Env,Name,Type> , 

Vars <Env,Names,Types,Nst> 

Terminals 

Letter {"a", ... ,"z"} 

Digit {"0", ... ,"9"} 

Opl {"+", "-", "-."} 

Op2 {"*","+","-","=","=f","<","$u,n).n,n~n,nAn,nyn,n::o.","~"} 

Typesym {"int","bool"} 

Consym {"true","false"} 

Statsym {"skip","abort"} 

Sym ={"I[","] l","l",",",":",";", "IJ","-+",":=","(",")", 

"if","fi","do","od","var","con","res"} 

VT Letter u Digit u Opl u Op2 u Typesym u Consym u Statsym u Sym . 

Start symbol 

Prog. 

Pseudo terminals 

{Id <Name>, Dop <Prio,Type,Type,Tyve>, Mop <Type,Type>, Con <Tyne>, 

Type <Type>} 

For all n E Name: 

L(Id <n>) = {n} \ (Typesym u Consym u Statsym) . 



L(Dop <l,bool,bool,bool>) ., { ....... ' "*'' } 
L(Dop <2,bool,bool,bool>) { "v"} 

L(Dop <3,bool,bool,bool>) a { 11 A11 } 

L(Dop <4,bool,int,int>) {"=",":f."t"<","sn,n>n,n~u} 

L(Dop <5,int,int,int>) {"+","-"} 

L(Dop <6,int,~nt,int>) {"*"} 

L(Mop <int, int>) {"+", "-"} 

L(Mop <bool,bool>) = {"ï"} 

L(Con <int>) Digit+ 

L(Con <bool>) = Consym 

L(Type <int>) 

L(Type <bool>) 

Grammar rules 

1. Prog : := 

{"int"} 

{"bool''} 

Block <pe,e,u,a,i> • 

pe = Pempty 

e = Empty 

2. Prog : := 

Procdecs <pe,pe> 

e • Empty 

(~ n: Name I #p (n,pe) s 1} 

3. Procdecs <pe0,pe1> ::= 

Procdecs <pe0,pe2> 

pel = pe2 \V pe3 

4. Procdecs <pe0,pe 1> ::= 

Block <pe,e,u,a,i> • 

Id <n> Abstr <pe0,ts 1,ts2>,• 

pe 1 = [n,ts1,ts2lp 
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5. Abstr <pe,ts
1
,ts2> ::= 

( con Pdecs <d
1
,ts

1
> 

I Stat <pe,e,u,a,i> } • 

(!!_ n: Name I # D (n,dl \Wdz) + # 
p 

e Ext(Empty,d
1 

'JVd
2

) 

-,(~ n: Name I #
0 

(n,d
1
) + 0 A n 

n: Name I #
0 

(n,d2) ; 0 * n E 

6. Pdecs <d0 ,ts0> ::= 

Pdecs ~d 1 ,ts 1 > 
do .. dt \BI dz 

ts
0 

= ts
1 

e ts
2 

7. Pdecs <d,ts> ::= 

lds <ns> 

d = [ns,t] 0 
ts = Mts(ns,t) 

Type <t> • 

8. Block <pe,e0 ,u0 ,a0,i0> ::= 

I[ var Decs <d> 

ll • 

(n,pe) 

E a) 

i) 

(A n: Name I #
0 

(n,d) + #P (n,pe) $ I) 

e
1 

= Ext(e
0

,d) 

res 

$ I~ 

(!!_ n: Name I #D (n,d) ; 0=> (n E i
1 

v n i u
1
)) 

uo = UI \ {n: 

ao al \ 

ia = i) \ 

9. Decs <d
0

> ::= 

Decs <d
1
> 

{n: 

{n: 

do = dl \!V dz 

JO. Decs <d> ::= 

Ids <ns> 

d = [ns, t] 0 

11. Ids <ns0> ::= 

Ids <ns 1> 

Name 

Name 

Name 

ns0 = ns 1 ~ ns 2 

I # (n,d) # 0} 
D 

I # (n,d) # 0} D 
I #D (n,d) # 0} 

Type <t> • 



12. Ids <ns> ::• 

Id <n> • 

ns = [n]N 

13. Stat <pe,e,u,a,i> ::= 

abort • 

u = 0 
a = 0 
i = 0 

14. Stat <pe,e,u,a,i> ::~ 

skip • 

u = 0 
a = 0 
i 0 

15. Stat <pe,e,u0 ,a0,i0> ::= 

Vars <e,ns,ts,a0> := Exprs <e,ts,u0> • 

<A n: Name I #N (n,ns) ~ I) 

io = ao \ uo 

16. Stat <pe,e,u0 ,a0,i0> ::= 

Stat <pe,e,u
1
,a

1
,i

1
> Stat <pe,e,u2 ,a2,i2> • 

uo UI u uz 

ao = al u a2 
io i! u (i2 \ u)) 

17. Stat <pe,e,u,a,i0> ::= 

if Gcs <pe,e,ug,us,a,i 1> fi • 

U = ug U US 

io .. il \ ug 

18. Stat <pe,e,u,a,i
0

> ::= 

u 

Gcs <pe,e,ug,us,a,i 1> 

ug U US 

19. Stat <pe,e,u,a,i> ::= 

Block <pe,e,u,a,i> • 

• 
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20. Stat <pe,e,u
0

,a
0
,i

0
> ::= 

Abstr <pe,ts 1,ts2> 

Vars <e,ns,ts 2,a0 > ) • 

(~ n: Name I #N (n,ns) ~ I) 

io = ao \ uo 

21. Stat <pe,e,u
0

,a
0
,i

0
> •• 

Id <n> ( Exprs <e,ts
1
,u

0
> 

) . Vars <e,ns,ts2,a
0

> 

(~ n: Name I #N (n,ns) ~ I) 

(n,ts 1,ts2) pe 

io = ao \ uo 

22. Vars <e,ns
0
,ts

0
,a

0
> ::= 

Vars <e,ns,ts
1
,a

1
> 

ns
0 

ns
1 
~ ns2 

ts0 ts 1 eT ts 2 
a

0 
= a

1 
u a

2 

23. Vars <e,ns,ts,a> ::= 

Var <e,n,t> • 

ns [n]N 

ts [t]T 

a {n} 

24. Exprs <e,ts
0

,u0> ::= 

Exprs <e,ts
1
,u

1
> 

ts0 "' ts 1 E9T ts2 
u 0 "' u 1 u u 2 

25. Exprs <e,ts,u> ::= 

Expr <e,p,t,u> • 

ts "' [t)T 

26. Expr <e,p
0
,t0 ,u

0
> ::= 

Expr <e,p 1,t 1,u
1
> 

Po ~ PI 

Po < Pz 
u

0 
u

1 
u u

2 



27. Expr <e,p0,t0 ,u> ::= 

Mop <t
0
,t

1
> Expr <e,p

1
,t 1,u> • 

Po 7 
7 

28. Expr <e,p0 ,t,u> ::= 

Expr <e,p
1
,t,u> ) • 

7 

29. Expr <e,p,t,u> ::= 

Var <e,n,t> • 

p 7 

u {n} 

30. Expr <e,p,t,u> ::= 

Con <t> • 

p 7 

u 0 

31. Var <e,n,t> ::= 

Id <n> • 

(n,t) ~ e 

32. Gcs <pe,e,ug0,us0 ,a0 ,i0> : : == 

Gcs <pe,e,ug1,us 1,a1,s 1> 

u go ugl u ug2 

uso US) u us2 
ao al u a2 

io i I n i 2 

33. Gcs <pe,e,ug,us,a,i> ::= 

Expr <e,p,t,ug> 

t = bool 

Stat <pe,e,us,a,i> • 
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Semantics 

{Collected from definitions 4.46, 4.47, 4.48, 4.49.} 

Definition {wp'} 

For all e E Env the function 

wp' E L(Stat <Penv,e,Nst,Nst,Nst>) + /':, + T e e 

is defined by 

0 

I. wp' (abort) o O.q E c false) e e 

2. wp' (skip) o (Àq E c q) e e 

3. wp' (v := E)o (v + E) e 

4. wp~(S 1 ;s2 )ö (wp~(s 1 )o)o(wp~(s2)o) 

5. wp~(if B1 + s 1 D ... D B ~ s fi)o = n n-

= (Àq E Ce I [V i I l~i::;n I B.] 11 [/\i 
l 

J~i~n Bi~ (wp~(Si)ê)q]) 

6. wp~ (do B
1 
~ s

1 
D ••• D Bn ~ Sn od)ö = ]JF , 

where F = (Àf E C + C I e uc e 

(Àq E. Ce ([Vi 

11 [/\i 

7. wp~(A(E;v))o = pwp~(A)(ê)(E,v) 

8. wp~(p(E;v))ö = pwp~(p)(o)(E,v) 

l$i$n B.] V q) 
l -

l::;i~n B. ~ (wp'(S.)o) f q])) 
1 e 1 

9. wp'( I[ var x: tI S ]I ) (Àq E Ce I (wp' ((x+ y)S)o)q) , e - e
1 

where y E Name such that ~ new (y,e) , 



Definition {wlp'} 

For all e E Env the function 

wlp' E L(Stat <Penv,e,Nst,Nst,Nst>) + à + T 
e e 

is defined by 

D 

I. wlp' (abort) o 
e 

2. wlp~ (skip) a 

3. wlp' (v := E)o 
e 

(),q E Ce true) 

(:\q E Ce q) 

(v +- E) 

4. wlp~(s 1 ;s2 )ä = (wlp~(S 1 )ä)o(wlp~(S2 )o) 

5. wlp~ (if B1 + s 1 D ••• D Bn + Sn 

= (Àq E C I [Ai I Js:;L>n I B. • (wlp'(S.)o}q]}i e ~ e ~ 

6. wlp~(do B1 + s 1 D ... D Bn +Sn od)o = vG , 

where G = (Àf E Ce +de Ce I 
(;\q é C ([\/i Js:;is:;n B.] V q) 

e ~ 

" [Ai lsis:;n B. • (wlp'(S.)o} f q])) 
1. e ~ 

7. wlp~(A(E;v))o = pwlp~(A)(o)(E,v) 

8. wlp~(p(E;v))o = pwlp~(p)(o)(E,v) 

9. wlp'( I[ var x: t I S ]I ) = (Àq E C (wlp' ((x+- y)S)o)q) , 
e e e 1 

where y E Name such that ~ new (y,e) , 

e 1 = Ext(e,[y,t]D) • 

Definition {pwp',pwlp'} 

For all e E Env the functions pwp~ and pwlp~ 

E L(Id <Name>) u L(Abstr <Penv,Tyves,Tynes>) + à+ P 
e 

are defined as follows: 
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Let (~x: t
1

; res y: t
2 

I S) E L(Abstr <Penv,Types,Tyves>),, 

E = L(Expr <e,Prio,t 1,Nst>) , 

0 

V = L(Var <e,Name,t
2

>) , 

x' ,y' E Name such that ~ new (x' ,e), ~ new (y',e), x' 1 y' , 

S' = (x,y +x' ,y')S • 

l.I. pwp~((con x: t 1; res y: t
2 

I S))o 

= (:\E E E, v E V I (x'+ E) o wp',(S')o o (v + y')) • 
e 

1.2. pwp' (p)ó = ö(p)(e) 
e 

2.1. pwlp~((con x: t 1; ~ y: t 2 I S))ö = 

= (ÀE E E, v E V I (x'+ E) <> wlp',(S')o o (v + y')) . 
e 

2.2. pwlp~(p)ö = ö(p)(e) . 

Definition hvp and wlp for programs} 

l.I. wp(B) = wp~(B)6, 

where e = Empty, 6 = 0 

where e = Empty , 

and, for i: ~ i ::; k: 

~i·= (À~i·····~k Ex I 

(Àe E Env I pwp~(Ai){(p 1 .~j), ... ,(pk'~k)})) 



0 

2.1. wlp(B) = wlp'(B)o , 
e 

where e = Empty, o ~ • 

where e = Empty 

B) = wlp' (B)o , e 

ê is the function {(p 1,$ 1), ••• ,(pk,$k)} 

($1, ••• ,$k) v('jll''''''jlk) 

and, for i: ~ i ~ k: 

'jli <Àwj •... ,wk Ex 1 

(Àe E Env I pwlp~(Ai){(p 1 ,wj), .•. ,(pk,$k)})) • 

21 I, 
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INDEX OF DEFINITIONS 

{Unless indicated otherwise, numbers refer to numbers of definitions.} 

admissible 3.30 

ambiguity 2.8 

ascending chain 3.2 

attribute grammar 2.12 

attribute structure 2.9 

attributed derivation tree 2.9 

attributed nonterminal 2.14 

attributed nonterminal form 2.14 

base grammar 2.25 

base rule 2.24 

base symbol 2.23 

base tree 2.26 

boolean attribute 

cel 3.6 

chain 3.3 

cl 3.7 

structure 

complete lattice 3.7 

2.10 

complete partially ordered set 3.4 

conjunctively 3.17 

context-free grammar 2.1 

continuity 3.19 

countably complete lattice 3.6 

cpo 3.4 

deel 3.5 

derivation tree 2.4 

deseending chain 3.2 

disjunctivity 3.17 

domain 2.9 

downward continuous 3.19 

downward countably-complete 

lattice 3.5 

expression signature 2.9 

fixed point 3.27 

frontier 2.5, 2.20 

full attributed derivation tree 2.21 

full derivation tree 2.6 

function signature 2.9 

function symbol 2.9 

glb. 3.2 

grammar rule 2.12 

greatest fixed point 3.27 

greatest lower bound 3.2 

language generated by 

grammar 2.3, 2.18 

least fixed point 3.27 

least upper bound 3.2 

lub 3.2 

monotonicity 3.14 

non-logical axioms 2.9 

nonterminal 2.1, 2.12 

nonterminal signature 2.12 

partial correctness logic 3.51 

partial correctness proef rule 3,49 

partially ordered set 3.1 

production rule 2.1 

proof rule 3.49 

pseudo terminal sections 

rule condition 2.12 

rule form 2.12 

standard order 3.9 

start symbol 2.1 

strictness 3.12 

substitution 2.15 

2. J .2, 

2.2.2 



substitution in conditions 

note following 3.38 

substitution in statements 4.6, 

4. 14 

terminal 2.1, 2.12 

total correctness logic 3.53 

total correctness proof rule 3.49 

{notions pertaining to grammars} 

>> 2.2, 2.57 

+ >> 2.2, 2.17 

* >.> 2.2, 2.17 

L 2.3, 2.18 

D 2. 11 

es 2. 13 

AN 2. 14 

pr 2. 16 

bs 2.23 

br 2.24 

bt 2.26 

{notions pertaining to lattices} 

(C,E,) 3. I 

~ 3. I 

c note following 3.1 

.2 note following 3.1 

n 3.2, 3. 16 

u 3.2, 3. 16 
<X) 

r:1o x. 3.2 
l. 

<X) 

u x. 3.2 
i=O .]. 

.L note on P· 57 

T note on P• 57 

uccl 3.5 

upward continuous 3.19 

upward countably-complete 

lattice 3.5 

variabie signature 2.9 

vocabulary 2.1 

{notions pertaining to condition 

transformers} 

eq 3.31 

Ce 3.32 

1:' 3.33 -e 
T 3.35 e 
p 4. 15 e 
/:; 4. 21' 4.45 

x 4.42 
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wp 3.37, 4. 10, 4.18, 4.26, 4.49 

wp' 4.23, 4.46 

wlp 3.38, 4.1 0, 4. 18, 4.26, 4.49 

wlp' 4.24, 4.47 

pwp 4.17 

pwp' 4.48 

pwlp 4. 17 

pwlp' 4.48 

(v + E) note following 3.38 

(x + y) 4.6, 4.14 

USE 4.1, 4. 13 

ASSN 4.2, 4. 13 

INIT 4.3, 4.13 
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{notions pertaining to proof rules} {notions pertaining to target 

PvalidO 3.48 language} 

Pvalidl 4.29 Stack 5.16 

Pvalid2 4.34 Instruction 5.1 

Pvalid3 4.51 Label 5.2 

Pvalid4 4.57 Labenv 5.6 

PsoundO 3.50 T 5.3 

Psound1 4.30 I,F,CF 5.5 

Psound2 4.35 f 5.17 

Psound3 4.52 p 5.8 

Psound4 4.58 rJ 5.8 

Tv a lidO 3.48 cr' 5. IS 

Tvalidl 4. 37 cr" 5.18 

Tvalid2 4.62 T 5.9 

TsoundO 3.50 TI 5.15 

Tsound1 4.38 , .. 5.18 

Tsound2 4.63 1T 5. 12 

PC0 3.51 

PA1,PA2 3.51 

PR1, ••• 3.51 

PRs,PR6,PR7 4.11 

PRa,PRg 4.19 

PR 10 ,PR1 I 4.55 

PR12 following th. 4.61 

TCO 3.53 

TA1 , TA2, TA3 3.53 

TRI, ••. ,TR4 3.53 

TR5, •.. , TR7 4.11 

TR8,TRg 4.19 

TRIO'TRII 4.66 

TRI2 following th. 4. 68 
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SAMENVATTING 

Het onderzoek waarvan in dit proefschrift verslag wordt gedaan maakt deel 

uit van een meer omvattend project dat tot doel heeft het op systematische 

wijze construeren van correcte implementaties van programmeertalen. De 

volgende aspecten spelen daarbij een rol: 

1. De definitie van de brontaal. 

2. De definitie van de doeltaal. 

3. De constructie van een "betekenis behoudende" afbeelding van brontaal 

naar doeltaal. 

4. De constructie van een programma dat die afbeelding realiseert. 

Het is duidelijk welke afhankelijkheden er tussen deze aspecten bestaan: 

3 is uitsluitend afhankelijk van 1 en 2, en de specificaties van 4 zijn 

gebaseerd op I en 3. Het is ook duidelijk dat de correctheidsoverwegingen 

van 3 en 4 gescheiden kunnen worden en dat de betrouwbaarheid van de 

resulterende vertaler uiteindelijk bepaald wordt door de mate van precisie, 

volledigheid en ondubbelzinnigheid van I en 2. 

Het onderwerp van dit proefschrift is het ontwerp en de formele definitie 

van een brontaal SL en een doeltaal TL, die dienen als uitgangspunt voor 

een implementatieproces zoals boven geschetst. Bovendien worden de daarvoor 

benodigde definitiemethoden zover als nodig ontwikkeld. Gezien de gegeven 

achtergrond zal het echter duidelijk zijn dat dit proefschrift niet be

schouwd dient te worden als een op zichzelf staande studie van taaldefini

tie. Het grootste deel van het beschreven werk is bedoeld als theoretische 

fundering van het genoemde implementatieproces. 

In het proefschrift wordt allereerst kort ingegaan op voorwaarden waaraan 

formele taaldefinities dienen te voldoen, zoals beschikbaarheid van goede 

wiskundige theorie en afwezigheid van overspecificatie en implementatie

aspecten. Vervolgens wordt in hoofdstuk 2 de syntactische definitie van de 

brontaal behandeld. Het belangrijkste onderwerp van dit hoofdstuk is de 

ontwikkeling van een variant van de welbekende attribuutgrammatica's 

{Knuth], die primair gericht is op taalspecificatie. De belangrijkste 
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componenten van deze variant zijn een verzameling geparameteriseerde produk

tieregels en een zogenaamde attribuutstructuur, met behulp waarvan eigen

schappen van parameters uit gegeven axioma's afgeleid kunnen worden. 

Enerzijds kan een attribuutgrammatica van deze soort beschouwd worden als 

een zuiver formeel systeem gebaseerd op herschrijfregels en logische 

afleidingen. Anderzijds kan de attribuutstructuur, die overeenkomt met een 

algebraïsche type-specificatie in de zin van [Goguen, Guttag), direct ge

bruikt worden als specificatie van dat deel van een vertaalprogramma, dat 

de context-afhankelijke analyse uitvoert. 

In hoofdstuk 3 wordt de basis gelegd voor de semantische definitie van bron

en doeltaal. De gebruikte definitiemethode is in essentie die van de 

"predicate transformers" [Dijkstra 1, Dijkstra 2]. Deze methode wordt eerst 

gefundeerd met behulp van een variant van Scott's "theory of continuous 

lattices" [Scott 2] en "infinitary logic" [Back 1, Karp]. Daarna worden de 

predicate transfarmers voor een deel van de brontaal in dit raamwerk be

schouwd. Tenslotte worden deze resultaten gebruikt om logische systemen in 

de stijl van [Hoare 1, Hoare 2] te ontwikkelen voor het bewijzen van par

tiële en totale correctheid. 

In hoofdstuk 4 worden de methoden van hoofdstukken 2 en 3 toegepast op 

andere constructies van de brontaal, te weten blokken en procedures. Voor 

deze construc-ties worden syntaxis, semantiek en bewijsregels ontwikkeld. De 

verschillende aspecten van procedures worden zoveel mogelijk in isolement 

behandeld. De behandeling van blokken in sectie 4.1 dient voornamelijk om 

de effecten van het introduceren van lokale namen te onderzoeken. In sectie 

4.2 worden aan de hand van zogenaamde abstracties de gevolgen van paramete

risering bestudeerd. In sectie 4.3 wordt met behulp van de lattice theory 

van sectie 3.1 een betrekkelijk eenvoudige behandeling van parameterloze 

recursie gegeven. Tenslotte worden in sectie 4.4 de verscheidene aspecten 

samengevoegd, hetgeen resulteert in een behandelin~ van recursieve proce

dures met parameters. 

In hoofdstuk 5 worden enige aspecten van de formele definitie van de doel

taal behandeld, met name die welke betrekking hebben op instructies die de 

volgorde van verwerking beÏnvloeden, zoals sprongen en subroutine-aanroepen. 

Het doel van dit werk is het ontwikkelen van predicate transfarmers voor 

machine-instructies, die vervolgens gebruikt kunnen worden bij het constru-
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eren van correcte implementaties. In eerste instantie wordt met behulp van 

de lattice theory uit sectie 2.1 en de techniek van de "continuations" 

[Strachey] een predicate transfarmer semantiek ontwikkeld. Vervolgens 

wordt uit deze definitie via enige transformaties een equivalente operatio

nele beschrijving door middel ·van een interpretator-programma afgeleid. 

Deze afleiding is zowel een bewijs van de consistentie van twee definities 

als een voorbeeld van het afleiden van een implementatie uit een niet

operationele definitie. Bovendien geeft deze afleiding ook een indruk van 

de semantiek behoudende transformaties die bij de vertaling van brontaal 

naar doeltaal een rol zullen spelen. 

Hoofdstuk 6 bevat een korte nabeschouwing van het werk. 

Appendix A bevat bewijzen van enige lemma's. 

Appendix B bevat de verzamelde definitie van de brontaal. 
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1. El~e recursier opsomb~re taal kan gedefinieerd worden met een attribuut

grammatica ~oals geoef1niêero in hoofdstuk 2 van o~t p~oe{schrift_ 

2. oe in de literatuur overheersende opvatting, dat een operationele 

definitie van een programmeertaal het beste uitgangspunt vormt voor 

implementatie van die taal, is onjuist. 

3. Programmeertalen zijn artefacten. Derhalve verdient het ontwerpen van 

talen met wenselijke eigenschappen meer aandacht dan het bestuderen 

van bestaande talen. 

4. Het is goed te bedenken, dat een aantal belangrijke doorbraken in de 

informatie~ het gevolg zijn van het zorgvuldig beperken van de combi

natorische vrijheid die geboden wordt door het Von Neumann-bere~enings

model. 

5. Het vak programmeren t~ de laatste vijftien jaar onmiskcnb~~r wiskundiger 

van aard geworden. De verworven inzichten ~ijn echter nog onvoldoende in 

de vorm van stellingen vastgelegd. 

6. Informatica i~ bij uitstek een ingenieurswctenschap. 

7_ Het aantre~~en van grote aantallen informaticastudenten schaadt de ~waliteit 

van onderwijs en onder~oe~ in de informatica. 

8. Een informatica-ingenieur dient een zekere rijpheid te bezitten om de ont

wi~kelingen in zijn vakgebied krit~sch te k~nnen beschouwen. Een eerste -

fase opleiding van slechts vier jaar btedt voo~ het benodigde rijpings~ 

proces onvoldoende ruimte. 

9. De veelgenoemàe achterstand van Nederland op het gebied van de in~ormatica 

is slechts vermeend. 

10. Gezien de omstandigheden waaronder proefschriften hunvoltooiingnaderen, 

verdient h~t aanbévcling te onderzoeken of er verband bestaat tussen de 

wet van Parkinson en de paradox van Zeno. 


