EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Formal definitions of programming languages as a basis for
compiler construction

Citation for published version (APA):

Hemerik, C. (1984). Formal definitions of programming languages as a basis for compiler construction. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Hogeschool
Eindhoven. https://doi.org/10.6100/IR55705

DOI:
10.6100/IR55705

Document status and date:
Published: 01/01/1984

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR55705
https://doi.org/10.6100/IR55705
https://research.tue.nl/en/publications/ced9de3f-9d2b-4289-9691-52b47e715452

FORMAL DEFINITIONS
OF PROGRAMMING LANGUAGES
AS A BASIS
FOR COMPILER CONSTRUCTION

C. HEMERIK

FORMAL DEFINITIONS OF PROCRAMMING LANGUAGES
AS A BASIS FOR COMPILER CONSTRUCTION

Druk: Dissertatie Drukkerij Wibro, Helmond, Telefoon 04920-23981.

FORMAL DEFINITIONS
OF PROGRAMMING LANGUAGES
AS A BASIS
FOR COMPILER CONSTRUCTION

PROEFSCHRIFT

TER‘ VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE
TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCHE
HOGESCHOOL EINDHOVEN, OP GEZAG VAN DE RECTOR
MAGNIFICUS, PROF.DR. S.T.M. ACKERMANS, VOOR
EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE
VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP
DINSDAG 15 MEI 1984 TE 16.00 UUR

DOOR

CORNELIS HEMERIK

GEBOREN TE LEIDEN

Dit proefschrift is goedgekeurd
door de promotoren

prof.dr. F.E.J. Kruseman Aretz
en

prof.dr. E.W. Dijkstra

CONTENTS

0. Introduction

0.1,
0.2,
0.3.

Background
Subject of the thesis

Some notational conventions

On formal definitions of programming languages

Formal syntax and the kernel language

2.0,
2.1,

2.2,

2.3.

Introduction
Context-free grammars

2.1,1, Definition of context-~free grammar and related notions

2.1.2. Presentation

2,1.3. Implementation concerns

Attribute grammars

2.2.0. Introduction

2.2,1. Definition of attribute grammar and related notions
2.2.2. Presentation

2.2.3. Example: Satisfiable Boolean Expressions

2.2.4, Implementation concerns

Formal syntax of the kernel language

2.3.1. A context—free grammar for the kernmel language

2.3.2. An attribute grammar for the kernel language

Predicate transformer semantics for the kernel language

3.0.
3.1.

Introduction

Some lattice theory

3.1.1. General definitions

3.1.2. Strictness

3.1.3. Monotonigity

3.1.4. Conjunctivity and disjunctivity
3.1.5. Continuity

3.1.6. Fixed points

3.1.7. Fixed point induction

13
13
14
14
16
18
21
21
23
30
32
37
40
40
43

50
50
54
54
60
61
62
63
70
72

3.2, The condition transformers wp and wlp
3.2.0. Introduction
3.2.1. Conditions
3.2.2. The logic D
3.2.3. The ccl's of conditions and condition transformers
3.2.4. Definitions and some properties of wp and wlp

3.3. Logics for partial and total correctness

Blocks and procedures
4.0. Introduction
4,1, Blocks
4.1,0. Introduction
4.1.1. Blocks without redeclaration
4.1.2, Substitution in statements
4.1.3. Blocks with the possibility of redeclaration
4.1.4. Proof rulesg
4.2. Abstraction and application
4.2.0. Introduction
4,2,1, Syntax
4.2.2. Semantics
4.2.3. Proof rules :
4.3. Parameterless recursive procedures
4.3.0, Introduction
4.3.1. Semantics
4.3.2, Proof rules
4.3.2.1. Proof rules for partial correctness
4.3.2.2. Proof rules for total correctness
4.3,2.3. A note on the induction rules and their proofs
4.4, Recursive procedures with parameters '
4.4.0, Introduction
4.4.1. Syntax
4.4.2. Semantics
4.4.3, Proof rules
4.4.3,1. Proof rules for partial correctness

4,4.3.2. Proof rules for total correctness

74
74
75
79
82
84
100

107
109
109
109
114
117
118
121
121
121
124

131
131
131
140
141
144
148
150
150
150
153
157
157
163

5. Some aspects of the definition of the target language 167

5.0. Introduction 167
5.1, Informal description of TL ’ 169
5.2, Version 1: Condition transformer semantics of TL 171
5.3. Version 2: Introduction of program store 182
5.4. Version 3: Introduction of return stack 185
5.5. Version 4: Derivation of an interpreter 188
6. Epilogue . 7 193
Appendix A, Proofs of some lemmas 195
Appendix B. Collected definition of the source language 199
Index of definitions . 212
References 215
Samenvatting 220

Curriculum vitae 223

CHAPTER 0
INTRODUCTION

0.1. Background

In order to place the subject of this thesis in the proper perspective we

shall first devote a few words to the research project of which
The aim of the latter project is the systematic construction of
compilers based on formal definitions of both source and target

Let us make this more precise:

If we want to comstruct a compiler from a source language SL to

language TL we have to take into account at least the following

I. The definition of SL.
2. The definition of TL.
3. The construction of a "meaning preserving" mapping from SL

4. The construction of a program that realizes that mapping.

it is a part.
correct

language.

a target

aspects:

to TL.

To a mathematically inclined person the dependencies between these aspects

are obvious: 3 depends on 1 and 2, and the specifications used in 4 are

based on 3. It is also clear that the correctness concerns of 3

be separated and that the reliability of the resulting compiler

and 4 can

ultimately

depends on the rigour of 1 and 2. In practice, mainly due to historical

causes, the situation is different however:

~ Compiler construction iz a relatively old branch of computing science,

whereas the mathematical theory of programming and programming lan—

guages has not matured until the last decade. Canséquently the formal—-

ization of many programming concepts has lagged far behind

their

implementation. To implementers (and many others) the operational view

still prevails and formal definitions have been considered,

in the

terminology of [Ashcroft], descriptive rather than prescriptive.

~ The few research efforts in compiler correctness have concentrated on

formal models of translators that have been used in elaborate proofs

of completely trivial language mappings. Attention has been paid to

correctness proofs of given mappings rather than to the construction
of correct mappinng Moreover, the connection between such an abstract

mapping and a concrete compiler has not always been clear.

At present compiler construction often proceeds by the construction of
a parser which is subsequently augmented with various symbol table
manipulation and code generation routines. Thus the language mapping
realized by such a compiler is only specified implicitly. Explicit
compiler specifications are rare and as a consequence the programming
discipline where program and correctness proof are developed hand in

hand is seldom applied to compilers.

We are convinced that at present formal language theory and programming

methodology have developed sufficiently to make an intellectually more

satisfying approach to compiler construction feasible. To turn that convie-

tion into fact we have set as our goal the construction of a compiler along

the lines of points I-4 above. More specifically, this includes the follow—

ing tasks:

Design and formal definition of a source language SL and a target
language TL. This task involves the development of formal definition
methods to the extent that languages can be defined completely, i.e.
that both language~theoretical results, implementations, and program-
mer-oriented aspects such as proof rules may be derived from the

formal definition,

The systematic derivation of a mapping from SL to TL. This task in-
volves the development of some theory concerning correctness of trans-—

lations as well as application of that theory to the problem at hand.

Specification of a compiler based on the derived mapping, followed by

construction of a program conforming to that specification.

It has turned out that the main difficulties are in the first task. It is

this task that is the subject of the thesis. In section 0.2 we shall

describe it in more detail. The remainder of the project will be described

in a subsequent report.

0.2. Subject of the thesis

As already mentioned, the subject of this thesis is the design and formal
definition of a source language SL and a target language TL, together with
the development of supporting definition methods. Our aim is to obtain
language definitions which present programs as mathematical objects free
of reference or commitment to particular implementations, but which are
also sufficiently complete and precise to derive correct implementations
from. From the background sketched in section 0.1 it will be clear that
this thesis should not be considered as an isolated and self-contained
study on formal language definition., The major part of the work reported
here is intended as theoretical foundation of the aforementioned work on
compiler correctness. We emphasize this background because it may not be
obviocus from the outer appearance of this thesis, although it is of sig-

nificant influence on its subject matter, e.g., in the following respects:

This thesis is concerned neither with development of general defini-
tion methods, nor with general theory concerning such methods. k
Rather it is concerned with development of formal tools which are both
theoretically well~founded and practically usable. The mathematical

apparatus needed for this purpose is only developed as far as necessary.

Most work on formal definition of programming languages is concerned
with either syntax or semantics; in order to obtain compiler specifica-
tions we have to consider both, We also pay much attention to context=
dependent syntax, a subject which is usually considered semantic in
studies on syntactic analysis and syntactic in studies on semantics.
Context—dependent syntax plays an importanf role in compiler comstruc~
tion, but also affects the semantics of constructs involving changes

of context, such as blocks and procedures.

In chapter 5 we develop predicate transformer semantics [Dijkstra 1,
Dijkstra 2]‘for typical machine language sequencing primitives such as
jumps. We do so not to liberate these constructs from their "harmful®
reputation, but to facilitate the derivation of mappings from SL- to TL-

programs from correspondences between their semantics,

We hope to have made clear in what light this thesis should be seen. We

continue with an overview of its contents:

4,

In chapter | we consider the role of formal definitions of programming
languages, we formulate some principles and criteria regarding their use,
and we motivate the form and design choices of the definitions in subsequent

chapters.

In chapter 2 we investigate how the principles of chapter ! can be applied
to the definition of the syntax of the source language. The main subject of
the chapter is the development of a variant of the well-known attribute

- grammars [Knuth] which is primarily aimed at language specification. The
main components of this variant are a collection of parameterized production
rules and a so-called attribute structure by means of which properties of
parameters can be derived from given axioms. On the one hand an attribute
grammay of this kind may be viewed as(a self-contained formal system based
on rewrite rules and logical derivations. On the other hand the attribute
structure, which corresponds to an algebraic data type specification in the
sense of [Coguen, Gﬁttag], can be used directly as specification of .the

context—dependent analysis part of a compiler.

N

In chapter 3 we lay the basis for the semantic definitions of both source
and target language. The semantic definition method we employ is essentially
that of Dijkstra's predicate transformers [Dijkstra 1, Dijkstra 2]. First we
provide a foundation for this method by means of a variant of Scott's
lattice theory [Scott 2] and infinitary logic [Back 1, Karpl. Subsequently
we study predicate transformers for the kernel language in this lattice-
theoretical framework. Finally we use these results to develop partial and
total correctness logics in the style of [Hoare !, Hoare 2], and we prove

soundness of these logics with respect to predicate transformer definitions.

In chapter 4 the application of the methods of chapters 2 and 3 is extended
_ to other constructs of the source language, viz, blocks and procedures, for
which both syntax, semantics, and proof rules are developed. The various
aspects of procedures are considered in isolation as much as possible, In
section 4.! we discuss blocks to investigate the effects of the introduction
of local names. Section 4.2 deals with so-called abstractions which are used
to study the effects of parameterization. Section 4.3 concentrates on
recursion, which can be handled rather easily by means of the lattice

theory of section 3.1. Finally, in section 4.4 the various aspects are

merged, resulting in a treatment of parameterized recursive procedures,

3.

In chapter 5 we consider some aspects of the formal definition of the target
language TL, viz. those that have to do with sequencing. The main goal of
this work is to obtain prediéate transformer semantics for machine instruc~
tions, which can be used in compiler correctness arguments. First we
develop predicate transformer semantics based on the lattice theory of
section 3.1 and the continuation technique of denotational semantics
[Strachey]. Thereafter we derive an equivalent operational description by
means of an interpreter. This derivation can be considered both as a con—
sistency proof of two definitions and as a derivation of an implementation
from a non-operational definition. In addition, it also gives an impression
of the semantics preserving transformations that will be used in the trans-

lation from source language to target language.

Chapter 6 contains some concluding remarks.
Appendix A contains proofs of some lemmas.

Appendix B contains the collected definitions of the source language.

6.

0.3. Some notatiomal conventions

~ Definitions and theorems may consist of several clauses, and are
numbered sequentially per chapter. E.g. "definition 3.37.4" refers to

clause 4 of definition 3.37, which is contained in chapter 3.

~ The symbol "[' is used to mark the end of definitions, theorems,

proofs, examples, etc..

~ 1In definitions and theorems phrases like "let x be an element of V"

are abbreviated to "let x ¢ V", ete..

- This thesis contains many proofs of properties of the form X E vy,
where x and v are elements of a ﬁartially ordered set (C,t). These

proofs are given by means of a sequence agseresdy such that

- = x
29
- forall i: 0 < i <n: a. € a, or a., = a.
ra i % Fn i i+1
- a_ = .
,on M

We present these proofs in the form

)

{hint why a; € a,}

[ial

|

e

g1

i

{hint why a & an}

a_ .
n

Proofs of implications of the form x = y are presented in the same way.

This way of presentation has been taken from [Dijkstra 3].

- Universal dnd existential quantification are denoted by the symbols
"A" and "E", respectively. The symbol """ gepgrates domain, auxiliary
cqndition, and quantified expression, e.g. (A x ¢ m|lx>7 | x> 3.
A similar notation is used for lambda expressions, e.g. the expfession
(0% ¢ V | %) denotes the identity function with domain V. In many

cases domain indications are omitted when they are clear from context.

|

7.
— Apart from logical expressions at the meta level we will also encounter
logical expressions as elements of formal languages, e.g. in the "rule
conditions” defined in chapter 2 and the condition language defined in
section 3,2, Although we maintain a strict separation between these
language levels we use the same set of logical symbols to form expres~

sions. It can always be determined from context to which level an

expression belongs.

Some additional notational conventions will be given in sections 2.1.2 and

2.2.2, and in notes following some definitions.

CHAPTER 1
ON FORMAL DEFINITIONS OF PROGRAMMING LANGUAGES

In this chapter we consider the role of formal definitions of programming

languages, we formulate some principles and criteria regarding their use,

and we motivate choice and form of the definition methods used in chapters
2 to 5.

Definitions of programming languages still have not reached the status of
definitions in other branches of mathematics. Although it is generally
acknowledged that definitions should be exact, complete and unambiguous,
the obvious means mathematics offers to achieve these goals - viz. formali-
zation — still has not been generally accepted. This is regrettable, as a
formal definition of a programming language can be of considerable value to
designers, programmers and implementers. Let us consider these categories

separately:

-~ Formalization of a language at its design stage can help to expose and
remove syntactic and semantic irregularities, If the formalism is
based on solid mathematical theory it can also help to evaluate design

alternatives.

- Although the formal definition of a programming language may be too
complex for programmers, it can be used to develop specialized pro-
gramming tools, such as proof rules or theorems concerning certain
program structures (see e.g. the "Linear Search Theorem" in [Dijkstra

2.

- A formal definition of a programhing language can be used to develop

exact, complete and unambiguous implementation specificarions.

When we considef the present situation we must conclude that these potential
possibilities have only partly been realized. A formalism like context-free
grammars, which can be used to specify part of the syntax of programming
languages, has gained almost universal acceptance. Although we shall not go
into a detailed analysis of this success, influential factors seem to have

been that context-free grammars can provide exact and unambiguous language

9.

specifications, that they are relatively simple and amenable to mathematical
treatment, that they have been used in the definition of a major programming
language (ALGOL 60) before implementations of that language existed, and
that they can be used to derive parts of implementations - viz. parsers -

systematically and even autematically.

Formalization of context—dependent syntax and semantics has been less
successful, however. On the one hand, for context-dependent syntax we find
formaiisms like van Wijngaarden grammars [van Wijngaardenl]. These provide
exact and complete syntactic specifications, are of some use in»language
design, but provide little or no support for implementations. On the other
hand we find formalisms like attribute grammars [Knuth], which have mainly
been used in compiler specifications and consequently suffer from over-
specification and implementation bias when used for definition purposes.
Formalization of semantics has long been a very complex affair. Gradually
some usable formalisms have emerged, such as denotational semantics [Stoyl
and axiomatic methods [Hoare 1, Dijkstra 2]. These methods are gaining
influence on both language design [Tennent] and programming methodology
[Dijkstra 2], but have little affected implementations, which are still
based on informal operational interpretations of programming languages.

As a general remark we can add that both formalization of context—dependent
syntax and formalization of semantics have often been used only descrip-
tively, i.e. to describe languages defined in some other way rather than to
define languages. See [Ashcroft] for an illuminating discussion of this

subject.

Apparently, if we want to improve .the situation just sketched, we should

adhere to the following principles.

- Just as in other parts of mathematics, the formal definition of a
programming language should be the only source of information con-

cerning that language. In the terminology of [Ashcroft], it should be
used prescriptively rather than descriptively.

- Formal definitions should be based on well-founded and well-developed
mathematical theory. The availability of such theory facilitates both
language design and derivation of additional information about the

defined objects.

10,

~ Overspecification should be avoided. Language definitions often contain
‘too much irrelevant detail, which mgkes it difficult to isolate the

essential properties.

- As a special case of the preceding principle, implementation bias
should be avoided. Language constructs are often‘designed with a
particular implementation in mind, which pervades their formal defini-
tion. As in the previous case this makes it difficult to isolate the
essential properties of the comstructs, but it may also block the way

to completely different and unenvisaged implementations.

- Last but not least, we should keep in mind that programming languages
are artefacts and that we are free to design them in such a way that

they obtain a simple syntactic and semantic structure.

Let us now turn to the question what formalisms to use in our compiler
correctness project. From the preceding discussion it will be clear that
existing formalisms only partially conform to the priumciples we have
formulated. The context of the project does not allow for development of
new formalisms with supporting theor&, which is a task of formidable size
and complexity. Therefore we will content ourselves with adaptation of
existing formalisms by means of simplification, providing better founda-

tions, etc..

As far as contexit~dependent syntax is concerned, most of the formalisms
proposed, such as van Wijngaarden grammars [van Wijngaarden], production
systems [Ledgard], dynamic syntax [Ginsburgl, offer little opportunity for
adaptation in the sense mentioned above. The best candidate is the method
of attribute grammars [Knuth], which has proven to be very useful in com
éiler construction, but which contains too much implementation-oriented
aspects for language definition. In chapter 2 we will develop a version of
attribute grammars which is primarily aimed at language definition and

which is free from implementation considerations.

Selection of a suitable semantic definition method is more complicated.
In the literature on program semantics there has emerged a kind of tricho-
tomy into operational, denotationalj and axiomatic methods. Roughly

speaking, these methods can be characterized as follows:

1.

Operational methods relate the meaning of programs to state transitions

of a more or less abstract machine; see e.g. [Wirth 1, Wegner].

In denotational semantics the meanings of language constructs are
explicated in terms of mathematical objects like functions. The main
part of a denotational language definition consists of a set of
semantic equations. The underlying theory guarantees existence of

solutions of these equations; see e.g. [Stoy, de Bakkerl.

Axiomatic methods are based on the fact that a set of states of a
computation can be characterized by a logical formula in terms of
program variables. The meaning of a language construct, especially a
statement, can be defined by means of a relation between such formulae.

[Floyd, Hoare !, Dijkstra 21.

In the literature the opinion prevails that operational, denotational and

axiomatic methods are most suited for implementers, language designers, and

programmers, respectively. In our opinion this is a misconception, at least

as far as suitability for implementers is comcerned., In the computational

models of operational definitions too many implementation decisions have

already been made, and too much irrelevant detail has crept in, These

definitions conflict with the principles of avoiding overspecification and

implementation bias formulated earlier. Because of this we have decided not

to base our work on operational definitions. Other considerations in the

choice of a definition method have been the following:

Axiomatic and denotational definitions are the only methods that avoid

overspecification and implementation bias.

The theory of denotational semantics is well developed. Although the
method is suited for language design based on mathematical principles
[Tennent], it has mainly been used descriptively. The fact that

"everything" can be described denotationally does not help to obtain

simple language designs.

Axiomatic methods have not often been used as definitiomns. Usually

they are considered as a proof system subsidiary to some other defini~-

tion (operational, denotational, or informal). This somewhat secundary

status conflicts with the original aims of [Hoare 1, Dijkstra 2].

12.

- Some early experiments we have taken, see e.g. [Hemerik], suggested
that implementation proofs based on axiomatic definitions would be

simpler than proofs based on denotational definitioms.

- The claim that axiomatic definitions provide sufficient information to
derive implementations from has never been justified in practice. The

literature contains hardly any references on this subject.

.

These considerations have led us to the decision to base our work in com—
piler correctness on an axiomatic method. Of those methods, predicate
transformers [Dijkstra 1, Dijkstra 2] provided most grip on the subject.
But even though this method has been developed sufficiently for programming
purposes, its use in compiler construction required a more elaborate
theoretical framework, to the extent that it has become one of the main

topics of this thesis.

13.

CHAPTER 2
FORMAL SYNTAX AND THE KERNEL LANGUAGE

2.0. Introduction

In chapter | we have formulated some principles regarding formal
definition of programming languages. In this chapter we will apply
these principles to the formal definition of the syntax of the kermel
language. Our aim is to investigate how the syntax of a programming
language can be specified in a manner that is devoid of implementation
aspects. The discussion is based upon two well-known (though not
always well-understood) formalisms, viz. context-free grammars and’
attribute grammars.

In section 2.1 we first recollect some definitions concerning context-
free grammars and related notions, and we describe the way in which we
will present context-free grammars in the remainder of this thesis.
Subsequently, we point out how even in the case of such a simple and
elegant formalism implementation concerns may easily creep in and
influence both the definition and the definiendum. The main purpose of
this section, however, is to prepare for the discussion of attribute
grammars in section 2.2, which proceeds along similar lines, Tradi-
tional definitions of attribute grammars have been very implementation
oriented, and the language definitions in which they have been used
even more. In section 2.2 we present a definition of attribute gram-
mars that is primarily aimed at language specification, and that is
free of implementation considerations. The addition of implementation
considerations relates our version to the traditional version.

Finally in section 2.3 the formalism is applied to the syntax of the
kernel language, resulting in a clear and concise language specifica-

tion.

At a first superficial glance it may seem that this chapter does not
contain much news, since attribute grammars have been used before to
define the syntax of programming languages. The novelty mainly resides

in the separation of the implementation concerns from the aspects

14,

essential to language specification, and in the simplicity resulting

from it.

“Qu on ne dife pas que Je n ay rien dit de
nouueau; la difpof[ition des matieres eft
nouuelie.”

Pascal, Pensées, 22.

2.1. Context—free grammars

2.1.1, Definition of context-free grammar and related notions.

Definition 2.1 {context~free grammar}

A context-free grammar G is a 4-tuple (V P,2), where

N’VT’

- VN is a finite set.

- VT ig a finite set,

- Vg N Vp = 8.

~ P is a finite subset of VN x (VN u v,

Z ¢ VN'

C*
T) :

0

Yy is the ponterminal vocabulary of G.

VT is the terminal vocabulary of G.

Vg v VT is the vocabulary of G.
P is the set of production rules of G.
Z is the start symbol of G. :

Definition 2.2 {>>, +>>, *>>}

Let G = (VN,VT,P,Z) be a context-free grammar, and let V = VN u ?T.
on V¥ the relation >> is defined by:

For all A ¢ VN’ a,B,y € v

BAy >> Bay Ffif (A,a) e P .

The relation +>> is the tramsitive closure of >>,

The relation *>> ig the reflexive and transitive closure of >>.

0

5.

Definition 2.3 {l, language generated by a cfg}l

Let G = (VN,VT,P,Z) be a context-free grammar, and let V = VN U VT'

1. The function L: v - P(V;) is defined by:
For all v ¢ V: LG(V) = {w ¢ V; | v %> wl.

2. The language generated by G, denoted L(G),'is the set L(Z).
0

*

T
: P *
by means of a systematic rewriting process on elements of V that

Informally, a string w ¢ V.. is an element of L{G) if it can be obtained
begins with the start symbol Z and in which repeatedly a left-hand part
of a production rule is replaced by a right—-hand part until no non~
terminal remains. The essentials of this rewriting process can be
recorded by means of a derivation tree. The notion of a derivation tree
is formalized by the following three definitions which are relative to

a context-free grammar G = (VN,VT,P,Z).

Definition 2.4 {derivation tree}
The predicate D(t,X) {t is a derivation tree with root X} is defined

recursively by

D(t,X) & (X ¢ VT and

t
i

X)

or

preeeaty |

(X,<X},..‘,Xn>) € P and

(X e Vg and (E X;,..-,X ,t

n
A D(ti,Xi) and
i=1

t (X’<tl"“’tn>)

Y .

DT is the set of all derivation trees, i.e. DT = {t | (E X | D(e, X))}
0

Definition 2.5 {frontier}
The function £: DT ~ V; {frontier of a derivation tree} is defined

recursively by

16.

flty = <t> 1if t ¢ VT

f((X,<t‘,...,tn>)) = f(tl) ® ... 0 f(tn)

4 - »
where ® is the concatenation operator.

0

Definition 2.6 {full derivation tree for a string}

The predicate FD: DT x V# -+ Bool is defined by

T

FD(t,w) ® D(t,Z) and f{t) = w .
0

Theorem 2.7

let G = (VN’VT’P’Z) be a context-free grammar, and let V = VN U VT‘

*

1. For all X e V, we V, (X »>> w) @ (E t ¢ DT | D(t,X) and £(t) = w).

T’
2. For all w e v;, (w € L(G)) » (E t e DT | FD(t,w)).
O
Proof
Omitted.
a

Definition 2.8 {ambiguity}

A context-free grammar G = (VN,VT,P,Z) is ambiguous fif

(EweVy| (eteDdT | FD(e,w)>1) .

2.1.2. Presentation

The definitions given in section 2.1.1 are sufficient to characterize
context-free grammars as formal systems. For practical purposes,
however, it will-be convenient to use a somewhat more redundant nota-
tion and to “prune" the less interesting parts of a large grammar. In
this section we will describe the way in which we will present context-

free grammars in the remainder of this thesis.

Often a considerable part of a context—free grammar is devoted to the

-definition of rather uninteresting constructs like identifiers,

17.

constants, etc. The syntax of identifiers e.g. requires the following

production rules

1d - Letter
Id +~ 1d Letter
Id >~ Id Digit

Letter ~ a

»
.
.

Letter > z
Digit = O
Digit » 9

merely to define identifiers as sequences of letters and digits
starting with a letter. In order to shorten the grammar we can perform

the following transformations.
~ Remove the production rules for Id, Letter and Digit from the set
of production rules.

~ Remove the nonterminals Letter and Digit from the set of non—

terminals.
~ Introduce two subsets of VT by
Letter = {"a",...,"z"}
bigit = {"0",...,"9"} .
- Extend the definition of‘the relation >> with:

For all w ¢ Letter(Letter y Digit)*: Id »>> w .,

The net effect of these transformations is a significant reduction of
the number of production rules, whereas L(Id) remains the same (viz.

s e .
Letter(Letter u Digit)). In the transformed grammar the nonterminal Id

acts like a terminal. We will call such nonterminals pseudo terminals.

We will now describe how context—free grammars (transformed as above)

will henceforth be presented.

-~ Nonterminals will be denoted by sequences of letters and digits

starting with a capital letter. The set V_ will be given by

N
enumeration; e.g.

Vg = {Stat,Var,Expr,Id}

- The set VT of terminals will be defined as the union of a finite
number of sets, each of which is given by enumeration. In these
enumerations the individual terminal symbols will be enclosed

between quotes; e.g.

Letter = {"a","bn’ncn}
Digit - {non’n 1"}
Token = [";x"’“q-"’“;k"’"div“,}

VT = Letter u Digit u Token

~ The set of pseudo terminals (a subset of VN) will be given by
enumeration. The corresponding sublanguages will be given as set~-

theoretical expressions; e.g.

L(1d) = Letter(Letter u Digit)* .

~ The set of production rules will be given by enumeration. Each
element of the enumeration is presented in the format: a rule
*
number, an element of VN, the symbol ::=, an element of V , the
symbol m.

E.g.

1. Prog ::= |[Dec ; Stat]|]

The first example of a context-free grammar presented in the way above
is given in section 2.2.3.

2.1.3. Implementation concerns

A language specification by means of a context~free grammar

G = (VN,VT,P,Z) can be interpreted in two more or less complementary
ways. The first interpretation, the classical one strongly suggested
by definition 2.3, is that of a pure generative system by means of
which any sentence of the language L(G) can be generated. The second

interpretation, justified by theorem 2.7.2, is that of an accepting

mechanism: a given string w ¢ V; is an element of L(G) fif it is
possible to construct a full derivation tree t: FD(t,w).

From a formal point of view the two interpretations are equivalent but
for practical purposes important differences may result. The second
interpretation is closely related to the problem of constructing a

parser for L(G), a mechanism that attempts to construct a t: FD(t,w)
*

T
exist, such as LL(1), SLR(1), LALR(1), but their application usually

for any w ¢ V_ it receives as input. Several efficient parsing methods
requires the grammar to be in some special form. The danger with the

~ second interpretation is that the language designer presents his
grammar in a form that favours a certain parsing method. Such a pre-
mature choice may not only preclude the applicatioﬁ of a different
parsing method, it may also have a detrimental effect on other aspects
of the formal specification and thereby on the language desgign itself.

The following example may help to clarify this point,

Example

Let us consider the formal specification of a programming language that
contains statements and in which sequential composition by means of ™"
is one of the structuring mechanisms. Presumsbly a context-free grammar
for this language contains a nonterminal 8 and some production rules of
the form S - a to define the syntactic category of statements. One of

those production rules could be
(1) s -+ 838

which expresses that sequential composition of two statements by means
of ";" results in a statement. Usually such a rule is disallowed
because it leads to syntactic ambiguities. Iﬁstead a new syntactic
category "statement list™ is introduced by means of a nonterminal SL

and a pair of production rules like

¥
(%)

(2) {SL
SL > SL;$

or

6)) {SL > 8
SL + $3SL

+

20,

where the choice between (2) and (3) is often influenced by considera~
tions of the kind that (2) reduces the stack size in bottom—up parsers
or that (3) has no left-recursion. The desire to use an LL(1) parser

may even lead to the following form:

SL - § RSL
(4) {RSL = ¢
RSL - ; S RSL

The disadvantages of (2), (3) and (4) with respect to (1) are obvious:
more nonterminals and production rules are required to define the same
language and the simplicity and elegance of (1} are lost. The situation
becomes even worse when we take other aspects of the formal specifica-
tion into account, such as semantics. The semantics of a statement can
be defined by means of a function f that maps a statement into its
"meaning"” (e.g. a predicate transformer or a state transformation).
Form (1) leads to a defining clause like f(sl;sz) = f(sl) o f(sz) in
which syntax and semantics neatly match. Thanks to the associativity
of function composition the syntactic ambiguity does not result in
semantic ambiguity. Forms (2), (3) and (4) on the other hand either
require the introduction of additiomal functions for syntactic catego-
ries that serve no semantic purpose, or the introduction of "abstract
syntax" [McCarthy, Bjérner] which adds a level of indirection to the
specification.

The objection could be raised- that use of form (1) in a language
specification complicates the implementation of that language since
the ambiguous grammar has to be transformed into one that suits a
particular parsing method. This is not always true however; e.g. a-
parser generator of the LR-family will generate a parser with a state
containing the items [S + S;S s] and [S + S #3;5]. This state has a
shift-reduce conflict for the symbol ";". The conflict can be resolved
in several ways. Resolving in favour of “reduce" will result in a
deterministic parser that yields left-associative derivation trees for
ambiguous constructs; resolving in favour of shift will result in a
parser that yields right~associative derivation trees. It is also
possible to resolve the conflict nondeterministically during parsing;

such a nondeterministic parser may yield any possible derivation tree

21.

for an ambiguous construct. For none of these solutions any trans-

formation of the grammar is required.

0

Earlier we have formulated the general principle that language épeci—
fications should not be influenced by the requirements of particular
techniques. Application of this principle in the context of context=-
free syntax specification means that in a coutext-free grammar used as

a language specification no commitment to a particular parsing method
should be made., The grammar should be in a form that supports the
definition of semantics, thus promoting simplicity and clarity. This
does not mean to say that in language design implementation aspects
should be ignored, however. It may be advantageous to design a language
in such a way that it belongs to the class of LL{1)-languages, but the
grammar used in its formal specification should first of all be oriented
towards the specification of semantics and not towards the LL(!) parsing

method.

2.2. Attribute grammars

2.2.0. Introduction

In section 2.1 we have seen that the generation of a string w of the
T,P,Z) can be

.) *
considered as a rewriting process on elements of (VN v VT) . The

language L{G) defined by a context~free grammar G = (VN,V

essential property is that replacement of a nonterminal A by a string
o satisfying (A,a) ¢ P may be éerformed regardless of the context in
which A occurs. Consequently the form of a terminal production of A is
completely independent of the context in which it occurs. For most
nontrivial languages however properties of a construct and of its
context may influence each other. Typical examples of these context-

dependent properties are types and collections of definitions in force.

A popular formalism for the description of context dependencies is
that of attribute grammars, introduced in [Knuth] and discussed in

many places in the literature (see [RAihZ] for an extensive biblio-

graphy). Usually an attribute grammar is viewed as a specification of

22,

a computation to be performed on derivation trees. The idea is that

the nodes of a derivation tree for a string can be supplied with
"attributes" the values of which are determined by functions applied to
attributes of surrounding nodes. The (partial) order in which these
evaluations are to be performed is indicated by classifying the attrib-
utes as "inherited™ or "synthesized” respectively. Most of the litera~-
ture on attribute grammars is concerned with the design of efficient
evaluation strategies, the automatic generation of evaluators and

their use in compilers. k

In the form just sketched attribute grammars have proved to be very
useful as compiler specifications, They have also been used in language
definitions. For the latter purpose, however, we re-encounter in a
magnified form the problem of implementation bias discussed in section
2.1.3. As with context~free grammars there is the danger of orientation
towards a particular parsing method for the construction of derivation
trees. In addition there is the danger of orientation towards a partic-
ular evaluation strategy. The fact that by a proper classification of
attributes as inherited of synthesized an efficient traversal scheme
for a "tree-walking evaluator" can be obtained may be important for
implementationg; for language definitions the only things that matter
are the relations that hold between attributes of adjacent nodes. For
the latter purpose we do not need the machinery of computation on
derivation trees at all; the simple notion of a parameterized produc-

tion rule suffices.

There is still a second kind of overspecification involved however.
The attributes are used to encode contextual information concerning
types, collections of defined names, parameter correspondence, etc..,
Judging from the literature the choice of a suitable formalism in
which to express these properties appears to be a problem. Approaches
vary from undefined operations with suggestive names [Bochmann] via
more or less abstract pieces of program and data structures [Ginsburg]
to formulations in terms of mathematical objects like sets, tuples,
sequences, mappings, etc. [Simomet, Watt]. Even in the latter case
operations are often only defined verbally due to the fact that it is
difficult to express them in terms of the chosen domains and their

standard operations. [Simonet] is a typical example.

23.

The essence of the problems mentioned above is that attribute domains
and operations are defined by giving an implementation of them, either
in terms of mathematical objects or in terms of a programming language,
but in both cases in terms of a model, and such an approach invariably
introduces too many irrelevant implementation details: it is over~
specific. In this respect there is a great amalogy with the specifica-
tion of abstract data types, or rather: the problem of the specifica-
tion of an attribute system is the same as that of the specification
of an abstract data type. In both cases we are not interested in any
particular model or implementation of the objects and operations. All
‘that matters are relations that hold between them and in order to
determine these all we need is a way to derive them from a given set
of basic properties. In other words: all we need is a proof system
with a set of axioms specific to the attribute domains under considera-

tion.

We have now isolated the aspects of an attribute grammar that are
essential for language definition: a context—free grammar with para-
meterized production rules and a proof system to derive properties of
these parameters from given axioms. In section 2.2.1 we will develop a
formal system based on these aspects. Section 2.2.2 deals with the
presentation of such a system in a readable form. Sectiom 2.2.3 con-
tains an example to illustrate various notions and the power of the
formalism. Section 2.2.4 deals with implementation concerns and relates

our version of attribute grammars to the traditional version.

2.2.2, Definition of attribute grammar and related notions

The first concept we introduce is that of an attribute structure,

which is very similar to an algebraic specification of an abstract

data type in the sense of [Goguen, Guttagl]. Its most important com
ponent is a set AX of axioms. The expressions occurring in these

axioms are formed from a set B of variables and a set F of function
symbols; nullary function symbols serve as constants., Each expression
has a certain domain ("sort" in the terminology of [Goguen] or "type
name" in programming language terminology) which is determined recursi-

vely from the signature sf of function symbols and the signature sb of

24,

variables. The set of domains D is also a component of the attribute

structure. Attribute structures are defined in definition 2.9.

The attribute structures used in attribute grammars are of a special
kind called boolean attribute structures. They contain the distin-
guished domain Bool corresponding to boolean expressions and they are
defined relatively to a logic L, which we assume to have been pre-

defined. Boolean attribute structures are defined in definition 2.10.

We are aware of the fact that definitions 2,9 and 2.10 still contain
some gaps that might cause problems in more fundamental studies., For
our purposes, which are of a more practical nature, these definitions

will turn out to be sufficiently precise.

Definition 2.9 {attribute structure}

An attribute structure A is a 7~tuple (D,F,B,sf,sb,se,AX) where

- D is a set.

~ F is a set.

- B is a set.

-~ BnF =@,

- sfeF>D" xD,

-~ sb e B~>D.

- Let E be the set of expressions over elements of F and B {see
note | below}.

-~ se ¢ E-» D,

~ AX is a set of formulae of the form e; = e,, where e],éz e E such

that se(e]) = se(ez).

D is the set of domains of A.

F is the set of function symbols of A,

B is the set of attribute variables of A,

sf is the function signature of A.

sb is the variable signature of A

se is the expression signature of A.

AX is the set of nonlogical axioms of A.

25.

Note 1

We will not go into the details of the syntactic structure of elements
of E or the definition of se. We assume that se has been defined by
means of sf, sb, and recursion on the syntactic structure of expres—

sions in the usual way.

E.g.: for all b € B: se(b) = sb(b).
for all £ ¢ F, STERRETL Es
if sf(f) = (se°<el,...,en>,d), then se(<f,e],...,en>) = d,

0

Note 2
For the elements of AX upiversal quantification over all attribute

variables occurring in them is assumed.

0

Note 3
We assume that some usual classical first order predicate logic L has

been defined previously.

0

Definition 2.10 {boolean attribute structure}

An attribute structure A = (D,F,B,sf,sb,se,AX) is a boolean attribute

structure fif

D contains the distinguished domain Bool
=~ F contains the function symbols of L
- for each function symbol of L: sf specifies the usual signature
{i.e. sf(true) = (e,Bool), sf{a) = (<Bool,Bool>,Bool), etc.}
- for each a ¢ AX: se(a) = Bool.
0

In the forthcoming sections we will often need the set of all expres—
sions with a certain domain. This need motivates the following defini-

tion:

Definition 2.11 {D, set of expressions with domain D}

For all D € D, D denotes the set of expressions e over F v B such that
se(e) = D.
0

26,

Definition 2,12 {attribute grammar}

An attributé grammar AG is a 6~tuple (VN,VT,Z,A,SV,R) where

- VN is a finite set.
- VT igs a finite set.
- VN n VT =@,

- Z eV,

- Ais i boolean attribute structure, say A = (D,F,B,sf,sb,se,AX).
- 8V € VN - D* such that sv(Z) = e.
« Let ANF = {(v,x) ¢ Vg ¥ B | sv(v) = shox},
R is a finite set of pairs (rf,rc), where
. rf e ANF x (ANF u V)"
. rc is an expression over the attribute variables in rf and

over F such that se(rc) = Bool.

O

Ve is the nonterminal vocabulary of AG.

'VT is the terminal vocabulary of AG.

Z is the start symbol of AG.

sv is the nonterminal signature of AG.

ANF is the set of attributed nonterminal forms of AG.

R is the set of grammar rules of AG.
If (rf,rc) ¢ R, then

rf is the rule form of (rf,rc)

re is the rule condition of (rf,rc).

An attribute grammar can be seen as a context—free grammar with para-
meterized nonterminals and production'rules. Like a context-free
grammar it contains a set VN of nonterminals, a set VT of terminals,
and a start symbol Z ¢ Vi Unlike context-free grammars, the nonter-
minals have some parameters — "attributes™ - associated with them. For
each nonterminal the number and domains of its attributes are deter-
mined by the nonterminal signature sv. Likewise, production rules are
parameterized. Grammar rules, as we call them, are pairs (rf,rc) where
rf is a rule form and rec is a rule condition. From a rule form produc—
tion rules can be obtained by means of uniform substitution of expres—~
sions for the attribute variables. The number and domains of expres-

sions should be in accordance with the signature of nonterminals

27.

(definition 2,13)., Nonterminals with expressions substituted for
attribute variables are called attributed nonterminals (definition
2.14). The process just outlined requires a definition of substitution
in rule forms etc. (definition 2.15). The essential property of
attribute grammars is that the expressions to be substituted in a rule
form rf must satisfy the rule condition; stated more precisely: that
the rule condition with expressions substituted for attribute variables
is derivable from the axioms of the attribute structure (definition
2.16).

The short summary given above is intended as clarification for defini-
tions 2,12-2,16, The remaining definitions are very similar to those

for context-free grammars.

Definition 2.13 {es, expression sequences corresponding to a domain

sequence}
For all d ¢ D*:

es{d) = {e | e is a sequence of expressions over F,
dom(d) = dom(e),

d =sec° e

¥

Definition 2.14 {AN, attributed nonterminals}

AN = {(vye) | v e Vg and e € es{sv(v))} .

Definition 2.15 {substitution in rule conditions, attributed nontermi-

nal forms, terminals, rule forms}

* » » +
Let x = HygesssX > € B such that the x; are pairwise different.

Let e = @pseres€ > € es{sbex).

s X . .
1. For all rule conditions re, reg is defined as usual.

2. For all (v,<y1,...,yk>} ¢ ANF such that {yl,...,yk} < {xl,...,xn}:

<KygenssX >
| s

(V,<y],..-,yk>) = (v,<eil,...,ei>)

<@ pyeese >

where, for j: | £ j < k: ij is such that xij = yj.

28.

[

3. Forall veV: v

T =V

i

4. For all rule forms (u0,<u1,...,uk>):

x_ .3 p: P
(u0,<u1,...,uk>)g = (u0 g,<u1 g,.n,uk §>) .

Definition 2.16 {pr, set of production rules derivable from a grammar

rule}
For all r = (rf,re) ¢ R:

* K3 ¥ .
- Let x ¢ B contain each attribute variable of rf exactly once.

- prir) = rfg e ¢ es{sbex) and AX %L rc§

g

Note

In definition 2.16 we used the notation AX %L rci for provability in

L of rc from AX. In the sequel we will abbreviate this to F rcz. This
should cause no confusion as other occurrence of the symbol "} will

always be indexed.

|

Definition 2.17 {»>, +>», #>>}

For all A ¢ AN, o,B,y ¢ (AN u VT)*:

- BAy >> Bay Fif (Er e R | (A,@) ¢ pr(r)) .

+>> is the transitive closure of >>.

#>> is the reflexive and transitive closure of >>.

O

Definition 2.18 {l, language generated by an attribute grammar}

1. The function L: (AN u VT}* - P(V;) is defined by:
For all v e (AN u VT)*: Liv) = {w ¢ V; | v %> w}.
2. The language generated by AG, denoted L(AG), is the set L{{Z,e)).
O

It will be clear that the power and limitationms of an attribute grammar

are determined by its attribute structure and its rule conditions., It

29.

is not hard to prove that the formalism is sufficiently powerful to
define any recursively enumerable language. Without further precautions
it is even possible to define undecidable languages. We do not intend
to impose further restrictions however. In subsequent chapters it

will become clear how attribute grammars can be used to define decid-

able languages, not only in a theoretical but also in a practical sense.

Just as with context-free grammars the essentials of the derivation of
a string w ¢ L(AG) can be recorded by means of a tree which we will
call an attributed derivation tree. The notion of an attributed deriva-
tion tree is formalized by the following definitions, which are very

similar to definitions 2.4-2.6.

Definition 2.19 {attributed derivation tree}

The predicate AD(t,X) {t is an attributed derivation tree with root X}

is defined recursively by:

AD(t,X) @ (X € V; and £ = X)
(X e AN and (E S T |
(EreRr| (X’<XI""’Xn>) e pr(r)
n
and ‘!\ AD(ti’xi)

i=]
and t = (X,<tl,...,tn>)

ADT is the set of all attributed derivation tree, i.e.

apT = {t.] (E X | AD(t,X))}
O

Definition 2.20 {frontier}

The function f: ADT - V; is defined recursively by:

£(t) = <t> if t ¢ VT

f((X,<t1,...,tn>)) = f(tl) ® ... ® f(tn) .

30.

Definition 2.21 {full attributed derivation tree for a string}

*

On ADT x VT the predicate FAD is defined by:

FAD(t,w) & AD(t,Z) ggé.f(t) = W .
O

Theorem 2,22

*
1. For all X ¢ (AN v VT)’ W€ VT:
(X *>> w) @ (E t ¢ ADT | AD(t,X) and £(t) = w) .

2. For all w ¢ V;:

we L(AG) @ (E t ¢ ADT | FAD(t,w))
0

Proof
Omitted.
|

2.2.2. Presentation

As we did for context-free grammars in section 2.1.2, we will in this
section describe the format in which attribute grammars will be pre~

sented henceforth.
Let AG = (VN,VT,Z,A,SV,R) be an attribute grammar, and
let A

(b,F,B,sf,sb,se,AX) be its attribute structure.
- D - the set of domains - will be given by enumeration. The domains
will be written in italics, e.g.:
{Vame ,Type ,Env} .
- B and sb — attribute variables and their signature - will be given
like variasble declarations in certain programming languages. E.g.

if B = {el,ez,n}, sb(el) = Env,‘sb(ez) = Eny, sb(n) = Name, we

write:

e},ezz Envy n: Name.

31.

F, sf and AX - function symbols, their signature and the non-
logical axioms = will be given in the style of algebraic specifi~-
cations [Goguen, Guttagl. I.e. if £ ¢ F and sf(f) = (<Dl,...,5%>,D)
we write it in the form f£: Dl X L., % Dn -+ D, Function symbols. may
be in various styles ("mixfix"): the places of the arguments are
indicated by dots. E.g.:

Leye1y : Names * Type ~ Decs

Dy : Decs * Decs »> Decs

("')EED s Name * Type % Dess -~ Bool.

For the axioms universal quantification over all free variables is
assumed, Function symbols and axioms are grouped according to
their "domain of interest" {cf. [Guttagl).

In some cases it is more convenient to definme the set D of all

expressions e with se(e) = D; e.g.:
TR
Name = Letter(Letter u Digit) .

We will omit the axioms for certain well-known domains such as

Int, the domain of integer expressions.

se - the signature of expressions - will not be mentioned explic-

itly.

VN and sv — the nonterminals and their signature - will be given

by enumeration. If X ¢ V
X<%,U.J%x E.g.:

y and sv(X) = <Dysere,D > we write

{14 <Name>,Expr <Env,Prio,Type>,...}

V, - the terminals - will be given as in section 2,1,2.

The elements of R - the grammar rules - will be presented in the
format: a rule number, an attributed nonterminal form, the symbol
1:=, a sequence of attributed nonterminal forms and terminals,
the symbol ®, a possibly empty sequence of formulae with domain
Bool. The conjunction of these formulae is the rule condition of

the grammar rule. E.g.:

32.

4, Decs <d> ::= Ids <ns> : Type <t> #

d = [ns,t]D

- As in section 2.1.2 we will use pseudo~terminals in order to
compress the grammar. Suppose that X <> ¢ VN' There will be a
certain correspondence between an attribute d ¢ D and the set
{we V; | X <d> %>> w}. That correspondence can be described by

means of a relation Ron D x V.. Similarly to section 2.1.2 the

*
T
attribute grammar can be transformed by:

. removal of the grammar rules for X from R
*

. definition of a relation R on D x Vo

. extension of the relation >> by:

for all d € D, w ¢ V;: %X <«d> »>> w fif dRw

The net effect of these transformations is that X <d> can be
considered as an attributed terminal, and that L(X <«d>) =

= {w ¢ V; | dRw}. In the presentation we will only mention the
sets L(X <d>) that differ from §.

Note
Some other motatioms, such as that for L {see definition 2.18} will be

adapted accordingly. I.e. if X <Dl"'?’Dn> € V, and, for i: 1 £ i < n:

N
d, € D;, we write L(X <d;,...,d >) instead of L((X’<dl""’dn>))'
In addition we will write L(X <dl,...;Di,...,dn>) for

U LK <d),ennyd,een,d).

deD.

%

O

2.2.3. Example: Satisfiable Boolean Expressions

In this section we present an example of an attribute grammar in order
to illustrate some of the notions introduced in the previous sections,
to illustrate the power of the formalism, and to give an impression of
the parsing problem. As such it is also an introduction to section
2.2.4, which deals with implementation concerns. Not all aspects of
attribute grammars are illustrated here. We pay no attention to axiom—
atic specifications; the first application thereof can be found in

section 2.3.2. In this example we only make use of some standard

33.

domains. Apart from Bool we use Nat, which corresponds to the language
of natural numbers, and B, which correspondé to some language of set
theory in which partial functions from natural numbers to booleans can
be described by expressions like {(1,true),(2,false),(3,false)}. We

consider these languages, their function symbols and axioms as given.

A well-known problem in complexity theory is the satisfiability problem
[Cook 1]: Let w be a boolean expression in conjunctive normal form over

the boolean variables KyseeesX i.e. w is a conjunction of a number of

n’
factors each of which is a disjunction of the variables Ky sene,X O
‘their negations, e.g. (x1 v X, v x3} A (*}xl VR, v —1x3). Find an

assignment of boolean values to KissorsX such that n evaluates to true.

It is not hard to construct an attribute grammar that generates the
language of all satisfiable boolean expressions in conjunctive normal
form. As starting point we take the following context-free grammar

G = (Vy,Vp,P,2):
Nonterminals
vy, = {2,6,D,1}
Terminals

Letter = {"x"}
Digit = {“O‘l"‘!l'l,l‘z’!,313""'!&“’!’5“'”’6"’C'7"’"8""‘9'i}
VT = Letter u Digit U {"(",")","A“,“V","““"}

Pseudo~terminals

{1}
L(I) = Letter Digit+

Start symbol
Z

Production rules

I, Z s:=Cm

2. Cii=CACH
3.C::= (D) =
4, D:t=DVDm

.
sz

D Is
6. D ::=—"Im

L(G) is the language of boolean expressions in conjunctive normal form.
From G we will now construct an attribute grammar AG which restricts
L{G) to satisfiable expressions over KpseresXy (n 2 1), With the pseudo-

terminal I we associate an attribute i ¢ Nat, its index, such that
S o u,F
I{TI <i>) = {xv € Letter Digit | v is decimal representation of i} .

With the nonterminals C and D we associate an attribute b ¢ B, which
corresponds to a mapping from indices to boolean values, The correspon-
dence between an attributed nonterminal X and each of its terminal
productions v is, that the set of indices of variables contained in v
is dom(b), and that assignment of b(i) te X for all i ¢ dom(b),

satisfies v.
AG is given as follows:

Domains

{Bool,¥at ,B}

Attribute variables

iy Nat;
b,b],bzz B,
Nonterminals

vy = {z,C ,D ,I <Nat>}

Terminals

Letter = {"x"}

Digit = {“O“,"l“,“z“,"3","4","5","6","7","8","9"}
v = Letter U Digit U {"("’")","A","V","—'"}
Start symbol

Z

35,

Pseudo~terminals

{I <Hat>}
For all i ¢ Nat:

P
L(I <i>) = {xv ¢ Letter Digit | v is decimal representation of i} .

Grammar rules

C m
(E n: Nat | n >0 | dom(b) = {1,...,n])

#

1. 2 ::

2, C ::

#

C A C <h>m

3. C 1:= (D) =

4, D ;=D <b}> v D <b2> n
dom(b,) n dom(b,) = ¢
dom(bl) u dom(bz) = dom(b)

bfdom(b]) = b1 or bfdom(bz) = b2

5. D 1:= 1 <i> m
b = {(i,true)}

6, D 1= =1L <i> m

b = {(i,false)}

i}

The picture on page 36 corresponds to an attributed derivation tree t:
FAD(t,(xI voxy Vv x3) A (-1x1 Vg, v -1x3)}. We can see from this tree
that the expression (x; v x, Vv x3) A (~1x] Vg, v —1x3) is satisfied

by the assignment X sXg Xy 1% true,false,false.

Several important observations can be made with respect to this example.
The first observation is that the attribute grammar is ambiguous, i.e.
there exist other attributed derivation trees for the same expression.
E.g. the node marked with » might equally well be labelled with either
of the attributed nonterminals D <{(2,f),(3,t)}> or D <{(2,t),(3,£}}>.
This ambiguity is a consequence of the fact that the rule condition of
grammar rule 4 can be satisfied in several ways that lead to identical
terminal strings. In fact there exist even more attributed derivation
trees for the same expression, due to the ambiguity of the context—free

grammar G.

Z
C<{(1,£3,(2,6),(3,6)}>
//,_,
C<{(1,t),(2,£),(3,6)}> c<{{(1,t),(2,6),3,0) >
/
D<{(1,£),(2,£),(3,6)}> D<{(1,t),(2,£),(3,f)}>
p<{(1,t)}> D<{(2,£),(3,0)}> D<{(1,£)}> D<{(2,£},(3,6)}>
I
p<{(2,0}>| D<(3,0)}> p<l(Z,63>1 D<l(3,D)}>
I<1> T<2> I<3> I<l> I<2> I<3>
{ X v X,y v x3) A { — x] vV - XZ v — x3

{For comment on the node marked with a "*" see page 35}
pag

{"crue™ and “false" have been asbbreviated to "t" and "f" respectively}

"9t

37.

The second observation concerns the complexity of the parsing problem
for this example. Since L(AG) is the set of all satisfiable boolean
expressions it follows that satisfiability of a string w can be deter-
mined by an attempt to construct a t: FAD(t,w). Since the satisfiabil-
ity problem is NP-complete it follows that for this example the

parsing problem is NP-complete.

N

2.2.4 Implementation concerns

Definitions 2.12-2.21 and theorem 2.22 have been presented in a way
‘closely resembling definitions 2.1-2,6 and theorem 2.7 in order to
stress the analogies and differences with context—-free grammars.
Definitions 2.12~2.18 embody a generative interpretation of attribute
grammars, whereas theorem 2.22.2 justifies the accepting interpretation
that a string w belongs to L(AG) fif a t: FAD(t,w) can be constructed
for it. Here we will concern ourselves with additional aspects that
make such a construction practically feasible and that relate our view

of attribute grammars to the more traditiomal view.

Let us first present some definitions that enable us to relate the
parsing problem for attribute grammars to that for context~free
grammars. All these definitions are relative to an attribute grammar
AG = (VN,VT,Z,A,BV,R).

Definition 2.23 {bs, base symbol}

bs € (ANF v AN v VT) - (VN U VT) such that

- for all (v,x) ¢ (ANF u AN): bs({v,x)) = v
- for all v ¢ Vo: bs(v) = v.
J

Definition 2.24 {br, base rule}
x
br € R » Vg * (YN U VT) such that

for all r = ((u0,<u1,...,uk>),rc) € R:

br(r) = (bs(uo),<bs(u]),...,bs(uk)>).

38.

Definition 2.25 {base grammar!}

The base grammar of AG is the 4-tuple (V
= {br(r) | r ¢ R}L

N T,R',Z), where

0

Definition 2.26 {bt, base tree}

Let ADT be the set of all attributed derivation trees of AG. Let DT be
the set of all derivation trees of the base grammar of AG.
bt € ADT + DT such that

~ for all v ¢ VT: bs(v) = v

- for all ty = (u,<t1,...,tn>) € AN x ADT:

be(ey) = (bs(u),<bt(t1),...,5t(tn)>))
O

The definitions above suggest a way to attack the parsing problem for
attribute grammars. Let AC be an attribute grammar and let € be its
base grammar. In order to construct a t: FAD(t,w) for a string w ¢ Voo
first construct a t': FD{t',w). Second, augment the nodes of t' with
attributes in such a way that the rule conditions of the corresponding
grammar rules are satisfied. If this process succeeds the result is a

t: FAD(t,w) and bt(t) =

The complexity of the attribution process can be reduced by imposing a
partial order on attribute evaluations as follows: Each attribute
position of an attributed nonterminal is classified as either inherited

or synthesized. In the presentation of the attribute grammar this can

ot

be indicated by a or '+' respectively. A rule form which first

appeared as

v <x0> 1= V]<§]> e Vn<§n> []

then appears as

V. <-1i

05" ipstgg 1= V<l

148> co0 Vo<mi ¥g > W

where for each j: 0 < j € n the couple ij’gj is a "partition" of X5
The corresponding rule condition P(go,...,gn) can be transformed to an

evaluation rule by writing it as:

50’11""’1n’ P{lo,so,...,l 28,)

39,

which is to be interpreted as: “determine gO’il""’in from iO’gl""’En
such that P(§0,§0,...,in,§n) holds. We see that the synthesized attrib-
utes from the left-hand part and the inherited attributes from the
right-~hand part must be computed from the other attributes. In order to
avoid conflicts some well-formedness conditions have to be imposed. An

occurrence of an attribute variable among io*ﬁx""’ﬁn is called a

defining occurrence; among gﬂ’il""’in it is called an applied occur-
rence. In each grammar rule each attribute may have at most one de-

fining occurrence. Furthermore, to ensure that the implied evaluation
order is a partial order indeed there may be no cycles. Algorithms to

verify the absence of cycles have been described in [Knuth, Jazayeril.

Thus extended our notion of attribute grammar comes quite close to the
traditional notion. There is an important difference in the form of
the evaluation rules, however. In our version evaluation rules are of

the form
(1) y: P(x,y) , where P(x,y) is a conditiocn,
whereas the traditional form is

(2) y=F(x) , where ¥ is a function.

Form (2) suffices for traditional applications as intended by Knuth
[Knuth] where the sole purpose is tc compute a function of the strings
of a context-free language. The application of attribute grammars as
language acceptors however hihges on the fact that rule conditions may

“ or may not have a solution. That fact is easily catered for by form (1),
whereas form (2) would require provisions to deal with partial func~
tions, such as domain restrictions or error values, which soon pro-—
liferate through the entire grammar. Many published attribute grammars

show deficiencies in this resgpect.

Last but not least there is the important aspect of correct implementa-
tions. We recall from chapter 0 that we have set as our goal the
derivation of a correct compiler from formal definitions of both source
and target language. A major subtask is the construction of a correct
acceptor for the language defined by an attribute grammar. We will not
concern ourselves with evaluation strategies; enough is known about

that problem, What remains is the construction of the code for the

40,

individual attribute evaluations, a significant part of the total
compiler code. Our version of attribute grammars supports this task in

two respects:

-~ the rule conditions of the grammar rules may be used directly as
post~conditions for the code to be constructed;

~ since attribute structures correspond to algebraic specifications
of abstract data types all of the programming methodology avail-
able in that field can be applied directly to the implementation

of attribute domains and their associated operations.

Here we will not elaborate on these aspects. They will be treated

extensively in a subsequent report [Hemerik].

Above we have described how by addition of "implementation aspects"
from our version of attribute grammar‘an attribute grammar in the
traditional sense may be obtained. These aspects have often unneces~
sarily influenced and complicated language specifications. We hope to
have made clear that they can, énd should, be separated from language

definition aspects.

2.3, Formal syntax of the kermel language

In this section we will develop the formal syntax of the kernel
language. In section 2.3.1 we present as first approximation a context—
free grammar. In section 2.3.2 this grammar is extended to an attribute

grammar that captures all context dependent properties as well.

2.3.)1. A context—free grammar for the kernel languages

The kernel language is much like the language fragment contained in

[Dijkstra 2]. Roughly speaking it consists of the following ingredients:

- the statements abort, skip, multiple assignment, alternative
statement, repetitive statement, block;
— 1integer and boolean expressions;

~ explicit declaration of variables.

41.

With the exception of blocks and declarations the constructs have the
same appearance as in [Dijkstra 2]. Variable declarations are similar

to those in Pascal. The rest of the grammar should speak for itself.

Nonterminals

VN = {Prog,Block,Decs,Stat,Type,Ids,Id,Vars,Var,Exprs,Expr,Ges,
Dop,Mp,Con}

Terminals

Letter = {"a",...,"2"}

Digit = {"0",...,"9"}

oOpl - {n_'_n,n__u’n_'n }
O,pz = {"*","+",""'"’"=","#"’"<","S",">"’"Z"’“/\","V"’"=>"’"€$"}
Typesym = {"int","bool"}

Consym {"true","false"}
Statsym = {"skip","abort"}

{"l ["’"] lll’ll|"’H,ll’ll:",ll;"’ "D"’"_>"’":="’ll("’")ll’

Ili_f"’ llﬁ",'td—'g" ’"ﬂi‘"’ "Var"}

Sym

VT = Letter u Digit u Opl v Op2 u Typesym u Consym u Statsym u Sym.

Start symbol

Prog

Pseudo terminals

{1d,Dop,Mop,Con,Type}

L(Id) = Letter(Letter u Digit)* \ (Typesym u Consym y Statsym)
L(Dop) = 0p2

L (Mop) Op!

L(Con) = Digit+ u Consym
L(Type) = Typesym

T 42,

- 4
Production rules

Block ®»

#

. Prog ::
2. Block ::= [var Decs | Stat 1|l =

3, Decs ::= Decs , Decs m

4. Decs ::= Ids : Type m

5. Ids s1= Ids , Ids =
6. Ids si= Id m

7. Stat ::= gbort ®

8. Stat ::= skip m

9. Stat ::= Vars := Exprs ®
10. Stat ::= Stat ; Stat m
T1. Stat ::= if Ges fi ®

12, Stat ::= do Ges od W

13. Stat ::= Block m

14. Vars ::= Vars , Vars ®

i15. Vars ::= Var m

16 Exprs ::= Exprs , Exprs ®

17. Exprs ::= Expr ®

18. Expr ::= Expr Dop Expr =
19. Expr ::= Mop Expr m

20. Expr ::= (Expr)'n

21. Expr :3=Var m

22. Expr i:= Con ®

23, Var 3= Id =

24, Ges ii= Ges [| Ges w
25, Ges t:= Expr = Stat =

43,
2.3.2, An attribute grammar for the kernel language

Upon the language defined in section 2.3.! a number of context condi~

tions are imposed in order to exclude programs like the following:

{[var x : int |
[var x : bool, i : int, i,b : bool |
X,2 = 3,43

do true > (3 A4 xDb) >b, b =3 od

11

Informally stated the context conditions are as follows:

- Within a declaration part of a block each variable may occur at
most once.

~ Each variable occurring in a statement must be declared in some
surrounding block.

~ Redeclaration of variables in nested blocks is allowed. This
point will be reconsidered in chapter 4.

- Expressions should be well-formed with respect to priorities of
operators and types of operands.

- Left part and right part of assignments should be of corresponding
lengths and types.

- Within the left part of an assignment each variable may occur at

most once.

For the formal rendering of the above we will introcduce a number of
domains and operations. Below we provide some informal explanation con-
cerning their purpose. This explanation may help in reading the language

specification but is not part of it.

Bool, Int:

Need no further explanation.

Prio:
Used to indicate the priorities of operators and expressions. The

elements of Prio are those of Int corresponding to the numbers !,...,7.

44,

Type:
Used to indicate the type of expressions and variables. We take

Type = Typesym.

Name:
Used to distinguish between various identifiers. We take

*
Name = Letter(Letter u Digit) .

Names: ’

Used to indicate the collection of names occurring in a declaration
part or in the left part of an assignment. An expression ns ¢ Names is
eithér of the form [n]N, where n ¢ Name, or of the form ns, N ns,,
where {nsl,nsz} ¢ Names. ns may be thought of as a bag of names, in
which case the other operations iEN and #N correspond to membership
and number of occurrences respectively. From the axioms it is easy to
prove that (n ing ns) = (#N(n,ns) > 1),

Types:

Used to indicate the sequence of types corresponding to the left part
or right part of an assignment. An expression ts ¢ Iypes is either a
singleton of the form [t]T, where t ¢ Type, or of the form ts; @, ts,,
where {ts],tsz} c Types. To compensate for the ambiguities in de pro-
duction rules for Vars en Exprs there is an axiom which states
associativity of ®.
Decs:

Used to record the essential information of a declaration part, viz. a
collection of (name,type) associations. An expression d ¢ Decs is
either of the form [ns,t]D, where ns ¢ Names and t e Type, or of the
form d, \D, d,, where {dl,dz} c Decs. d may be thought of as a bag of

pairs (name,type), in which case the operation in. corresponds to

D
membership and the operation #D to number of occurrences of a name.

Env:

Used to record the environment of a construct, i.e. the essential
information of all declarations occurring in blocks surrounding the
construct, taking into account the nesting of blocks. An expression

e € Env is either Empty, which corresponds to an empty collection of

45,

declarations, or of the form Ext(e,d), where e ¢ Env and d ¢ Decs,
which corresponds to an ordered extension of an environment with a

collection of declarations.

After this informal presentation reading of the grammar should pose no

serious problems. The presentation follows.

Domains

{BooZ,Int,Name,Type,Prio,Names,Types,Dees,Env}

Attribute variables

n,ny .0, Name 5
t,to,tl,tzz Type;
PsPysPysPyi Prio;
n8,N8,, N8, ;NS ,: Names

ts,tso,tsi,ts : Types;

2
d,do,d],dz: Decs;
e,eq,8! Env.

Operations on Prio

Prio = {e ¢ Tnt | the integer value corresponding to e is an element
of {1,...,7} 1} .

Operations on fyvé

Type = Typesym.

Operations on Name

Name = Letter(Letter u Digit)*.

Operations on Names

[-1 1 Name - Names

Ny + : Names * Names > Names
. EBN * 3 Name % Hames ~ Bool
#N(-,') 2 Neme * Names + Int

46.

oy Aoy [nply = (n) = np)
n, EEN (ns1 Qv nsz) = (nl iﬂu ns]) A (n‘ iﬂu nsz)

gl =ifny =0, > 100 #0)>0£i

= #
N(nl,nsI\ﬁ,nsz) N(n:ns]) + N(n,nsz)

Operations on Types

(-1 : Type » Types
« 8 + : Types » Types - Types

T
(ts] eT tsz) &, sy = s @y (ts2 & ts3)
Operations on Decs
[,-15 : Names » Type - Decs
A : Decs » Decs - Decs
(+,) in + : Name » Type » Decs - Bool
#,(5*) & Name x Decs + Int

(n,t,) ip_D [ns,tZ]D =n in ns A (g, = t2)

it

(n,€) ing (@;W/dy) = ((n,8) inp d)) v ((n,e) imy dy)

]

#D(n,[ns,tln) #N(n,ns)

k3 #
#D(n,d}\?jdz) p(msd)) + #,(n,d,)

Operations on Env

Empty : Bnv
Ext{(=,*) ¢ Eny * Decs ~ Ewv
(+,*) in, * : Name » Type » Ewv > Bool

(n,t) iEE Empty = false

.

{n,t) ing Ext(e,d) = (n,t) injd v (#D(n,d) =0 A (n,t) iﬂg e)

47.

Nonterminals

Vy = {Prog,Block <Env>,Decs <Decs>,Stat <Env>,Type <Type>,Ids <Names>,
Id <Name>,Vars <Env,Names,Types>,Var <Env,Name,Type>,
Exprs <Env,Types>,Expr <Env,Prio,Type>,Ges <Bnv>,
Dop <Prio,f@pe,fype,Type>,Mop <Type,Type>,Con <Type>}.

Terminals

Letter = {"a",...,"z"}
Digit = {"0",...,"9"}
Opl c= {I'+f"'l_'l’ll—‘!' }

R OV T I L L IR T T 0 1L PO TR T T TN TR TN T I LI TN LI T I AR 1
Op2 - { KT, s T s % s Sy ST, T T AT TV T, e }

¥

Typesym = {"int","bool"}

Consym = {"true","false"}
Statsym = {"skip","abort"}

{"l["’"] ‘","l",",'l’ll:"’ﬂ;", HU","_)",":2"’“("’")"’

"if"’ "fi‘"’“doﬂ”’od"’"var"}

"

Sym

VT = Letter u Digit u Opl v 0p2 v Typesym u Consym u Statsym U Sym.

Start symbol
Prog.

Pseudo terminals

{1a <Wame>,Dop <Pric,Type,Type,Type>,Mop <Type,Type>,Con <Type>,
Type <Type>}.

For all n & Name:

L(Id <n>) = {n} \ (Typesym u Consym u Statsym) .

L(Dop <1,bool,bool,bool>) = {"=M, "a"}
L{pop <2,bool,bool,bool>) = {"v"}

L(Dop <3,bool,bool,bool>) = {"A"}
L(Dop <4,bool,i&t,int>) - {ngn,"#n’n<n’nsu’n>n’nZN}
L(Dop <5,int,int,int>) = Mg M)

= {"x"}

L{Dop <6,int,int,int>)

48.

L(Mop
L (Mop

L{Con
L{Con

<int,int>)

<bool,bool>)

<int>)
<bool>)

L{Type <int>)

L(Type <bool>)

Grammar rules

I.

10.

11,

12.

Prog

L

I . nony

{"_., 1

Digit®

Consym

Block <e0> HH

. Decs

Decs

Ids <ns,>

<d0

<d>

0

Ids <ns>

. Stat

Stat

Stat

Stat

Stat

Stat

<e>

<@>

<e>

<@e>

<e>

<g>

.
H

.
H

= {"int"}

= {"bool"}

Block <e> ®m

e = Empty

I{ var Decs <d> | Stat <e> e
(A n: Name | #y(n,d) < 1)

e, = Ext(eo,d)

1
Decs <d1> , Decs §d2> "
do =4\ 4y

Ids <ns> : Type <t> =

d = [ns,t]D

Ids s>, Ids ms,> @

ns0 = ns, \ﬁj ns,

Id <n> =

ns = [n]N
abort ®
skip ®

Vars <e,ns,ts> := Exprs <e,ts> ®m

(A n: Name |#N0unm < 1)
Stat <e> ; Stat <e> ®
if Ges <e> fi m

do Gcs <e> od w

13,

14.

15.

16.

17.

18.

19.

20.

21,

22.

23.

24,

25,

Stat

Vars <e,nso,tso>

Vars

<e>

<e,ns,ts>

Exprs <e,tso>

Exprs <e,ts>

Expr

Expr

Expr

Expr

Expr

<e,P0,tO>

<€>P0,t0>

<e>P0’t>

<e,p,t>

<e,p,t>

Var <e,n,t>

Ges <e>

Ges <e>

.

.
.

ae

.

we

..

.
tim

49,

Block <e> m

Vars <a,ns],ts > , Vars <e,n52,ts2> -

1
nsy = ns] \§/ ns,
tSO = ts1 $T t82

Var <e,n,t> = :

ns = [n}N

ts = [tlT

Exprs <e,ts]> ., Exprs <e,tsz> []
tso = tsl QT tsz

Expr <e,p,t> ®
ts = [t]T

Expr <e,p1,t1> Dop <p0,t0,t],t2> Expr <e,py,ty> W
Po = Py

Py < Py

Mop <to,t)> Expr <e,p],t]> "

Py © 7

py =7

(Expr <e,p ,t>) =

Pg * 7

Var <e,n,t> ®

p=7

Con <t> ®

p=7

Id <n> =

t) in
(n,t) in_ e
Ges <e> [| Ges <e> m

Expr <e,p,t> + Stat <e> w
t = bool

50.

CHAPTER 3

PREDICATE TRANSFORMER SEMANTICS
FOR THE KERNEL LANGUAGE

3.0. Introduction

In [Dijkstra 1, Dijkstra 2] it has been proposed to define the seman-
tics of programming languages by means of so-called predicate trans=-
formers. The idea is that a set of states of a computation can be
characterized by a predicate in terms of the program variables and
that all relevant aspects of a statement are captured by its predicate
transformer, a function from predicates to predicates. Two kinds of
predicate transformers are discussed, viz. the "weakest pre-condition"
wp and, to a lesser extent, the "weakest liberal pre-condition" wlp.
For a certain mechanism S and a post-condition R the corresponding
weakest pre-condition wp(S,R) is defined as follows (we quote from
[Dijkstra 21):

"The condition that characterizes the set of all initial states
such that activation will certainly result in a properly termi-
nating happening leaving the system in a final state satisfying
a given post-condition is called 'the weakest pre-condition

corresponding to that post-conditiom'.".

Experience has shown that predicate transformers are a suitable vehicle
for discussing issues of program correctness. When dealing with ques—
tions of semantics or implementation correctness further elaboration is

required, however. Let us mention a few problems:

~ As remarked by [Plotkin] the definition quoted above "is admirably
clear and perfectly precise once we know what conditions and
mechanisms are”. In [Dijkstra 2] several mechanisms (statements)
are defined but no definition of conditions is given. The result
is that of the central concept of the language definition, the
predicate transformer, two important aspects, its domain and its
range, are left undefined. That such an omission may lead to

complications can be illustrated as follows.

51.

Let € be a set of conditions that serves as domain and range of

predicate transformers. Two statements S, and S2 may be considered

1
equivalent fif for all Q « C: wp(S],Q) = wp{Sz,Q).

. In the extreme case that C = § it follows that all statements

are equivalent.

. In [Pijkstra 2] the predicate transformers of the statements
skip and x := E are defined by wp(skip,R) = R and
wp(x := E,R) = Rzex’ réspectively. In case that C contains
no conditions that depend on x these statements are equiva-

lent, otherwise they are not.

Simple and artificial as these examples may seem, they suffice to
show that the degree to which statements can be distinguished
depends om the "richness" of the set of conditions C, which

therefore is an essential component of a language definition.

Another point of concern is the nature of conditions. In
[Dijkstra 2] the distinction between formal exﬁressions and the
objects they denote is simply done away with as a “mannerism"”.

We just cannot afford such an attitude in language translation:
the very existence of the notion of tramslation is based on the
fact that different formal expressions may denote the same object.
In the literature on predicate transformer semantics we find both
an intensional point of view, where conditions are considered as
elements of a formal language [Back 2, de Bakker, Milnel, and an
extensional point of view, where conditions are identified with
the sets of states they characterize [Plotkin, Wand]. Both ap~
proaches are feasible, but each has its specific problems and
there are marked differences, e.g. with regard to the lattice-
theoretical framework required to deal with recursively defined

conditions.

The last remark above hints at a different problem. The definition
of wp(DO,R} in [Dijkstra 2] essentially employs a fixed point
approximation, although this is not stated explicitly. Since in
further development of predicate transformer semantics we will not
only encounter recursively defined predicates but also various

kinds of vecursively defined predicate transformers it seems wise

52.

to employ a general theory to deal with recursive definitioms,

such as Scott's lattice theory [Scott 21].

- A final point concerns the expressibility of conditions. In
general, the pre-condition of a statement will depend on the
variables and expressions occurring in that statement and the
language of conditions should be rich enough to express those
dependencies. A good candidate for a condition language seems to
be the set of first order predicates in terms of the variables and
operations of a program. Yet it appears that this language is not
sufficiently powerful to express pre~conditions of repetitions.
[Back 1] gives a simple counter-example. Either a larger set of
operations should be employed (which raises the problem of deter-
mining whether the condition language is closed under that set),
or a more powerful logic should be employed such as the infinitary
logic Lm§m [Back 1, Karp,‘Scott 11. [Back 1] shows that this logic
is sufficiently powerful to express the weakest pre-conditions for

the language of [Dijkstra 2].

It is the purpose of this chapter to provide a firm foundation for
predicate transformer semantics by presenting additional definitions
and by making the connections with other branches of mathematics such
as lattice theory and logic more expiicit. In doing so we will also
pave the way for the development of a predicate transformer semantics

for language comstructs other than statements in chapters 4 and 5.

The first important decision we take in this respect is to adopt an
intensional view of conditions, i.e. to consider them as elements of a
formal language. The grammatical tools developed in chapter 2 enable us
to define very precisely the condition language to be used with a set
of statements, in particular as regards the contextual properties.
These properties play an important role in chapter 4, where constructs
involving changes of context are considered, such as blocks and proce=-
dures. The close connections between programming language and condition
language also make it easier to study Hoare-like correctness formulae
and proof rules, as statements and the conditions associated with them
can be considered at the same ‘language level, and transitions between

syntactic and semantic domains can be kept to a minimum.

53.

Imposing a suitable lattice structure on the condition language
requires some provisions. On the one hand we will introduce infinitary

formulae and proof rules as in L .. On the other hand we will develop

Wy
some theory for a special kind ofllattices which we call countably-
complete lattices and which provide the desired structure to deal with
recursive functions of conditions. This chapter therefore has . the
following structure., In section 3.1 we collect both old and new results
from lattice theory that will frequently be used in the current and
following chapters. In section 3.2 we first define a condition language
and subsequently study the predicate transformers wp and wlp in a
lattice-theoretical framework. In section 3.3 we use these definitions
to develop logics in the style of [Hoare 2] for proving partial and

total correctness of programs.

Note

Thus far we have used the term "predicate transformer" introduced by
Dijkstra. Because the notion of condition differs considerably from the
notion of predicate as used in logic, we will henceforth use the term
"condition transformer™.

O

54,

3.1, Some lattice theory

In this section we collect some results concerning complete partially
ordered sets, (countably} complete lattices, continuous functionms,
fixed points, etc. These results form the basis for the study of condi~
tion transformer semantics in subsequent sections. Part of the material
presented here is well-known and has mainly been included for complete~
ness's sake. Lemmas and theorems that appear without proof have been
taken over literally or with slight adaptations from [de Bakker], as
have some definitions. Less-known and new results appear with full
proofs. The proofs of some subsidiary results have been delegated to

Appendix A,

3.1.1. Ceneral definitions

The central notions of our summary are those of a complete partially
ordered set {cpo) and of a countably-complete lattice (ccl). Since both
of them. are special forms of partially ordered sets we begin our

sequence of definitions with that of the latter notion.

Definition 3.1 {partially ordered set}

A partially ordered set is a pair (C,c), where C is an arbitrary set

and L is a binary relation on C satisfying

- (AxeC | x ¢ ®) {reflexivity}
- (é x,y € C i (XL yAYEX)=X=y) {antisymmetry}

- (Ax,y,z ¢C | kg yaycz)=xg2) {transivity}

Note

Occasionally we will also use the relations © and 3, given by
(Ax,yeC [xcyexcyAx#y) and (A x,y¢C | x3yeyer x),
respectively.

0

A subset of a partially ordered set may have a greatest lower bound or

a least upper bound:

55.

Definition 3.2 {glb, lub}
Let (C,Z) be a partially ordered set, and let X ¢ C.

1. y € C is called the greatest lower bound (glb) of X if

- axexlyew,
- (ﬁzecl(éxexlzgx)ﬁ%zgy).
The glb of a set X will be denoted by nNX.

2. y € C is called the least upper bound (lub) of X if

i

(éxéXlXEy),

i

AzeC|l(AxeX|xpz)=>yga2).

The lub of a set X will be denoted by UX.

M, X
= 1

3. The gib and lub of a sequence <KgaX),...> are denoted by T

o0

and fio Xy respectively.

0

Note
From the definitions above it follows that if for X ¢ € nX or LX

exist, they must be unique.

0
Definition 3.3 {chain}
Let (C,C) be a partially ordered set.

1. An ascending chain in (C,z) is a sequence KyaXyses o> such that

).

Aai | iz20| R X

2. A descending chain in (C,g) is a sequence <KgaKypese> such that

).

(Ai|izo0] X 30X

0

We will primarily be interested in a special kind of partially ordered
sets, viz. countably-complete lattices. It will be useful to relate
that notion to some better~known notions, however. Hence the following

definitions.

56.

Definition 3.4 {cpo}

A complete partially ordered set (cpo) is a partially ordered set (C,r)
such that

- the glb of C exists,

. 2 hed
- each ascending chain KysXyseo> has a lub ige X .

O

Definition 3.5 {uccl, decl}

1. An upward countably-complete lattice (uccl) is a partially ordered

set (C,t) with the property that each countable subset has a lub

and each finite subset has a glb.

2. A downward countably-complete lattice (decl) is a partially

ordered set (C,L) with the property that each countable subset has

a glb and each finite subset has a lub.

a

Definition 3.6 {ccl}

A countably-complete lattice {ccl) is a partially ordered set (C,g)

with the property that each countable subset has both a lub and a gib.
0

Definition 3.7 {cl}

A complete lattice {(cl) is a partially ordered set (C,c) with the

property that each subset has both a lub and a glb,
0

Note

In definition 3.7 it would suffice to require that each subset X c C
has a lub. It can easily be shown that in that case it also has a glb,
viz. Ui{y e €| AxeX|yoxlh

[

Lemma 3.8
Let (C,L) be a uccl.

1. C has a glb, viz. u@.
2. C has a 1lub, viz. N@.
a

57.

Proof
1. @ is a countable subset of C, hence by definition 3.2.2:
Az eC | Axed lxogz)=udcaz), ie.

(ézeC*u(égz) {a}

Let w ¢ C be such that (A z ¢ C | w & 2z). Then in particular:

wit ug {b}
From a, b and definition 3.2.1 it follows that NC = u@.

2. @ is a finite subset of C. The remainder of the proof is a dual

version of 1.

From definitions 3.4-3.7 and lemma 3.8 it follows immediately that

- every cl is a cclj

- every ccl ig both a uccl and a decl;
- every ueccl is a cpo;

- the dual of a ¢l is a cl;

- the dual of a ccl is a ccl;

- the dual of a ucel is a decl.

In the sequel we will frequently make use of these relations; e.g. if
we have proven a property of cpo's we will use the fact that it also

holds for uccl's and that the dual property holds for dccl's.

Note

If (C,r) is a cpo (ucecl, deel, ccl, cl) its glb MC will be written as
L {pronounced as "bottom"}. If (C,c) is a uccl (deel, ccl, c¢l) its

lub UC will be written as T {pronounced as "top"}..

a

Our interest will focus on functions on lattices of the kinds just
introduced. An important property of certain classes of these functions
is that under a suitably defined order they also have a lattice struc-
ture. That order is defined by

58. o

Definition 3.9 {standard order om functions}
Let C, be a set and (02,52) be a partially ordered set. The standard

order € on C; > C is defined by:

2

(A f,g € C1 + C frge(Ax eC f(x) gy g(x)) ;

) | 11

O

It can easily be verified that the standard order is a partial order

indeed.

Theorem 3.10
Let Cl be a set and (Cz,g) be a partially ordered set. Let g be the

standard order on Cl . CZ’
1. 1f (Cz,gz) is a cpo, then
- (C1+C2,g) is a ecpo.
”,LC]+CZ = {x l ch).
-~ for each ascending chain <fi>:=O in C, ~» Cz:
o £ = Ox |y £,60) .

2, 1f (82,52) is a ueccl, then

(€,»C,y,E) is a ucel.

n
o
+
o

- for each countable F ¢

-
b
[

Ox | géF £{x)) .

- for each finite F c C] > C

3
rri
i

= (Ax | £r £(x)) .
0

Corollary 3.11
If C, is a set and (Cz,gz) is a uccl:

1CI¢02 = {Ax | LCQ}.
TC]+C2 = (x| TCQ).
{1
Proof.

1. See [de Bakker].

59.

2. 1. Let F be a countable subset of C1 +~Cz. From the fact that

(CZ’EZ) is a ucecl it follows that for all x ¢ C¢
géP f(x) € Cye
Let g = (x| gJF f(x)). We show that g = WF,

€

1. (Cz,gz) is a uccl

=(AfeF | @AxeC |f()C £

)
2 feF
= {definition 3.9, definition of g}

(AfeF | frCg

2, Let h ¢ C] > Cz.
(AfeF | fch
= {definition 3.9}

(AfeF | (Axe Cl | £(x) L, h(x))

{interchange quantifiers}

#

AxeC | Afe¥F | fx) £, h(x)))

1

3

{definition lub in C2}

(AxecC Up £() gy h(x)

] | fe

[

{definition g}

axec | g g, h(x)

{definition 3.9}

gt h.

2. The proof that each finite subset of C, » Cy has a glb is a

1
dual version of the proof above.

60.

3.1.2, Strictness

Definition 3.12 {strictness}

I. Let (Cl’El) and (02,52) be cpo's (uccl's, decl's, cel's, clts),
and let f ¢ C1 - C2'
f is called I-striet if f(LC]) = 102.

2. Let (CI’EI) and {Cz,gz) be uccl's (decel's, ccl's, cl's), and let

f e C1 > Cz.

f is called 7-strict if f(TCI) = Tgye
a

For the determination of the strictness of a composite function in

C - C the following theorem may be useful.

Theorem 3.13

Let (C,E) be a cpo.

Let §, = {fcCc>C /| fis 1-strict}.
1. (Ax | 1) ¢ SL y
2. (Ax l x) € S_L R

3. for all f,g ¢ Sl: fog € Sl.

1f, moreover, (C,C) is a uccl, then

4. for each countable subset F c § : (ix l W f(x)) € § ,
L feF . 4
5, for each finite nonempty subset F ¢ SL: (Ax | fmF f(x)) e Sl.
€
0
Proof

1,2,3: trivial.

= 1

4. A) =) = .
(x| Mo f(x))(ic]) . f(icl) . lcz cy

|
[
i

- I = = .
5. (x| iy f(x))(icl} {2? f(Lcl} {F nonempty} lCZ

i
feF "Gy

61.
3.1.3. Monotonicity

Definition 3.14 {monotonic function}

Let {C)’El) and (Cz,gz) be partially ordered sets. A function

fe Cl > C2 is called monotonic if

(Ax,yecC |x L,y = £(x) g, £(y))

}

The set of monotonic functions from €, to Cy is denoted by C1 " Cy.

a

Lemma 3.15

Let (CI’EI) and (02,52) be partially ordered sets, and let ¢ be the
standard order on C1 > C2'

1f (62,52) is a cpo (ucel, decel, ccl, el), then (C] +m Cz,g) is a cpo
(ucel, deel, cecl, cl).

O

Proof
We only prove the upward case for uccl’s; the other proofs are similar.

Let F be a countable subset of C +ﬁ C

I 2

(AfeF | (A x,y ¢ ¢ | x £, 7= f(x) E, £(Gy»

#

(A x,y ¢ ¢, | (AfeF | x g, vy = f(x) £, £{y))

(A x,y € C| | x B, y=>(AfcF | £(x) £, £(¥)))

£(y))

= (A x,y ¢ C1 l xl:] y»fLesF f(x) £,y fLéF

(A x,y ¢ C, | = £, y= (U () £, (4B (y))

UF ¢ CI > 02 .

62.

3.1.4, Conjunctivity and disjunctivity

Definition 3.16 {M and U as infix operators}

Let (C,£) be a uccl,

The infix operators M,ul: C x C + C are defined by:

1. for all x,y € C: xy =1 {x,v},

[}

2. for all x,y e C: xu vy =u {x,y}.

i

In terms of these operators we can define the notions conjunctivity and
disjunctivity. In lattice theory these notions are usually called

multiplicativity and additivity, respectively,

Definition 3.17 {conjunctivity, disjunctivity}

Let (CI’EI) and (CZ’EZ) be uccl's, and let f ¢ c, +—Cz.

I. £ is called conjunctive if (A x,y € C, | £(x nyy) = £x) m, £Gy))

2. £ is called disjunctive if (A x,y € C, | £(x U, y) = £(x) u, £(y)).
N

Lemma 3.18

Let (C]’El) and (Cz,gz) be ucecl's, and let f ¢ c, > CZ'

1. if £ is conjunctive, then f is monotonic;

2. if f is disjunctive, then f is monotonic.

O

Proof

Let x,y ¢ C, such that x g] Y.

I

1. £(r) = F(x M, vy = £(x) n, £(y) £, £(y) ;

1

2. £(y) = £z U, y) = £(x) u, £{y) 3, £(x) .
0

63.

i

3.1.5. Continuity

Definition 3.19 {continuity}

1. Let {C],gl) and {Cz,gz) be cpo's.

A monotonic function f ¢ ¢, ~> ¢ is called upward continuous if

in C,:

@
for each ascending chain K:>e g 1

£G4, x) = Uy £x) .

The set of upward continuous functions in C

Cl éﬁc C2'

i »‘CZ is denoted by

2. Let (CI’EI) and (Cz,gz) be decl's.

A monotonic function f ¢ C] -+ C2 is called downward continuous if

in C,:

for each descending chain <x.>;
i i=0 1

£y xp) = g £0xp)

The set of downward continuous functions in C] - C2 is denoted by

c, -~ C,.
0 I de 72

Note

In definition 3.19.1 it would be sufficient to require that

f(fzo Xi) £y fgﬂ f(xi), because f(fzo xi) 3, fzo f(xi) follows from
the monotonicity of f. A complementary remark applies to definition
3.19.2,

a

Note

Since continuity is a stromger property then monotonicity it follows

that all properties of monotonic functions also hold for continuous

functions. In some of the forthcoming proofs use will be made of this
fact without explicit reference.

O

As preparation for some important theorems concerning continuity we

first present some lemmas.

64.

Lemma 3.20

1. Let (C,C) be a cpo. Let, for i ¢ {0,1,...}, § ¢ {0,1,...}, xij be
elements of C. If

(éi,j,k,ll(}sisk/\OSjsl|x..cxk1}

then

O, .0 = .0 .0 g
i20 320 *ij T ;=0 i=0 *ij T k=0 kk °
2, Let (C,t) be a uccl. Let R,S be two countable sets. let, for
ie€R, jes, xij be elements of C. Then
.. Pl =, . P
iéR.J%S xl] 3%5 féR XIJ
0

Proof

1. See [de Bakker].
2. See Appendix A.
0

Lemma 3.21

«< w 03 . .
Let X:>ig and <Yi%i-=0 be two ascending chains in a ucel (C,C).

w . » I3
1. <x, M y,>, is an ascending chain.
i i i=0
o o= o
2. . x, O y.) = (U, x,)2n0 (U) I
i=0 (i y1) (1=0 1) (1=0 y1>

]

Proof

See Appendix A.
N

Lemma 3,22
Let (C,g) be a uccl. Let S be a finite set. Let, for i ¢ S,

je {0,1,...1, 53 be elements of C. If
(Ai,j,k | iesa0sjsk]|x,

then

65.

&g .n = 1. .40

j20 is *ij T i'és jHo *ij
O
Proof

See Appendix A.
. ,

Theorem 3.23
Let (CI,EI) and (02’52) be cpo's, and let ¢ be the standard order on

Cl > C?_.
[(Cl e Cz,g) is a cpo;
- L = (x| L.
€ e ©2)

- for each ascending chain <f.>§! in C, » C,:
i7i=0 1 Tue 72

o £5 = Ox | Uy £;60)

2. 1If, moreover, (Cz,gz) is a ucel, then

- (e Cz,E) is a ucel;

- for each countable F ¢ C, - C,: WF
1 'ue 72

Ox | ¢p £(x)) 3

- for each finite FecC,~ C,: NF
=71 ue "2

Ox | fp £ -

1. See [de Bakkerl].

2. In view of theorem 3.10 it suffices to show that {ix | &r £(x))
and (Ax |€2F £(x)) are upward continuous.

Let <xi>‘;= be an ascending chain in C,.

0

1. (x| Hp £ (U, %)

{8~reduction} &y f(fzo xi}

={Fe C1 Tue 02} ééF 2o f(xi)

66.
= {lemma 3.20.2} o géF f(xi)
= {f-expansion} o (x| géF,f(x))(xi) .

2. The proof that {ix | fEF £{x)) is upward continuous is
similar to the ome given above, the main difference being
that lemma 3.22 rather than lemma 3.20.2 has to be applied.

g

For the determination of the continuity of a composite function in

C =+ C the following theorem may be useful:

Theorem 3,24
Let {C,t) be a uccl.

l.FPorall ye C: (x| y) ¢ C *e C

2. (XX.I x) el C;

3. for all £,g e C Tae C: fog ¢ C * e C;

4, for each countable F ¢ C +» C: (ix i gJ f(x)) € C *u C

uc eF <

: n .
C o>y € Ox | T £(x)) eC» C

5. for each finite F

O

in

Proof

o
Let K To be an ascending chain in C.

O

o

Lo Ox [(g %) =y = gy = o Ox | x5
2. . (x| 0 (g %) = My % = Uy Ox | x)(x) 3

3. (£o) (M, %) = f(g(’ilzo x)) = £ 8(x;) = dy £(g(x;)
= Gy (Fee) (xp)

4, 5 immediately by theorem 3.23.2 and theorem 3.10.2.
0

67.
Example
Let (C,£) be a uccl.
1, For i: 1 £ i £ n: let ¢, ¢ C;
2. for i: 1 €1 € n: let di e C3;

3. for i: 1 € i € n: let £, e C» C.
i uc

We show that

Ox | (O, e)n 8 @ni@)ecs _c.

4, {by 1, th. 3.24.1} for i: 1 <1 < n: (x| ci) eC» C

e

5. {by 4, th. 3.24.4) Ox | 8, c) e C;

! uc

6. {by 2, th. 3.24.1} for i: 1 £ i < n: (Ax | d) eC> C3

IA

7. {by 3,6, th. 3.24.4) for i: 1 < i

n: (x l di u fi(x)) e C Yue C

8. {by 7, th. 3.24.5) Ox | 8, (4, u £, e € C3

n n
9. {by 5,8, th. 3.24.5} (ix | (Hyedm a, (uiE (D) ec C.

i
0

Note

In the sequel we will not give proofs like the one above in detail.

Instead we will simply refer to "repeated application" of theorem 3.24.

]

The following lemma is used in the proof of theorem 3.26.

Lemma 3.25
Let (C,£) be a uccl., Let D = C > C
1. If g € D and <hi>z=0 is an ascending chain in D, then

g e (L_D.} h~> = |D} (geh,) 3
i=o ! *

i=0

o€ o0 . 0 !
2. If <€:”i0 and <hj>j=0 are ascending chains in D, then

68,

(LSJ gi) ° (Iﬁl hj) = kéo_(l) (g, °hy) -
0

Proof
See Appendix A.
g

Let (C,£.) be a uccl, and let D = C “ue C. With 5 being the standard
order on D we have, by theorem 3.23.2, that (D,ED} is also a uccl. In
the sequel we will often be concerned with functions F ¢ D - D which
will usually be given in the form F = (Af ¢ D | E(f)), where E(f) is an
expression in terms of f, usually in the form (Ax ¢« C | 6(£,x)). For
the determination of the continuity of such a function from its com—

position the following theorem will be useful.

Theorem 3.26 .

Let (C,;C) be a ucel, and let D = C Tae C.
1. For all c € €z (Af | (ax | e)) ¢ D > D
2, (AF | Ox] %)) eD e D3

3, if (Af | E((£)) e D> D and (XE‘[Ey(f)) ¢ D » D, then

(f | Bj(6) 2 By() ¢ D>, D3 /

4, if for all i: 1 € i £ n: (Af | (Ax | Ei)) € D=+ D, then
'n
(Af | (ax Lc] Ei)) eD> D
i=] .
5. if for all i: 1 2 1 € n: (A f | Ox | E;)) € D> D, then

{ = '
\Af | x| el Ei}) eD> D.

1=1

Proof

1.

2.

Let ¢ € C.
ceC

= {theorem 3.24.1, D = C » C}
uc

(Ax l c) €D
= {theorem 3.24.1}

Gf | Gx | e)) en-xcny

true
= {theorem 3.24.2}
(Ax | x) € D
= {theorem 3.24.1}
Gf] Ox |) eDd e D

C

oG . s
Let <fi>i=0 be an ascending chain in D.

(f | Ej(6) o (), £))
= {g~reduction}
By (o £5) © By £))
= {for i: 1 <1 <2: (Af | E;(D)) ¢ D “ue D
(o By (F9)) o (g Bp(£;))
= {lemma 3.25.2}
Ho B (£ By (£))
= {B~expansion}

ido (A | E (D) o By(EN(E)) o

69.

70.

4, (A% | (x| éﬁ Ei))

i=1 ’

{theorem 3.23.2}

.n
(Af bl (x| Ei))

i=] ‘

{theorem 3.23.2}

n
D>, D] G | (x| E))) .

1=]
n
5. (xf | (x| 1€ Ei)>
i=1

= {theorem 3.23.2}

(Af | .g Ox | Ei})

i=1

= {theorem 3.23.2}

n
D>, Of | Ox | E))) .

i=1

3.1.6, Fixed points

Definition 3.27 {fixed point}
Let (C,c) be a cpo, fe¢ C>C, x e C

1. x is called a fixed point of f if f{x) = x.

2. x is called the least (greatest) fixed point of f if x is a fixed

point of f and, moreover, for each fixed point y of £, X £ ¥

(x 397,

If f has a least (greatest) fixed point it is denoted by uf (vf).
g

Theorem 3.28

1. Let (C,g£) be a cpo.

If a function f ¢ C »+ C is upward continuous it has a least fixed

71.

point satisfying

kad

i
].kf = i';*(} f (LC) 3

where £0 = Ox | ©), £ = for! for i 2 0.

2. Let (C,E) be a deccl.
If a function f € C » C is downward continuous it has a greatest

fixed point vf satisfying
= 2 4l
vf = fgo f (TC) ,

where f0 = (A% [x), fl+] = fofi for 1 2 0.

0

Proof

1. See [de Bakker].
2, By 1 and duality.
0

The following simple lemma will be used in several places in combina-
tion with the fixed point property y = £(y). Together théy form the
basis for the inductive proof rules for repetitions and recursive

procedures.

Lemma 3.29
Let (C,r) be a uccl. Let {xi li20ce, vecC. If

. P> U X . $
(a4 i [i=20] (O$j<i %, Ly = (X1 coy))

then

Proof
Ai i20] . C = {x. L
(aili | (Osj<i x B = G EY)
= {definition lub}

<§i|izo}(éj}@sj<1;xj;y)»(xi;y)>

72.

{math. ind.}

#

(ailizo]x ey

{definition 1lub}

W]
. -
i=0 *1 =Y

3.1.7. Fixed point induction

1. Let (C,£) be a cpo.
In order to prove a property P of the least fixed point uf of an
upward continuous function f: C + C, the following induction rule

may be used:

P(1), (A x | P(x) = P(£(x)))
P(uf)

2. Let (C,c) be a dccl.
In order to prove a property P of the greatest fixed point vf of a
downward continuous function f: C -+ C, the following induction

rule may be used:

P(T), (A x | P(x) = P(f(x)))
P(VE)

In both cases it is necessary that the property P is "admissible".

Definition 3.30 {admissible predicate}

1. Let (C,t) be a cpo.
A predicate P on C is called admissible for least fixed point

= » . 3 - x
induction if for all ascending chains Kot

(ailizo]px) = p{iﬁ;’o x;)

2. Let (C,c) be a dccl.

A predicate P on C is called admissible for greatest fixed point

» . 2 . » ©
induction if for all descending chains X gt

(ailizo|P(x)) = P(ﬁo x)

73.

The fixed point induction rule can easily be extended to systems of

functions:

let, for n 2 1, (CI’EI)”"’<Cn’En) be cel's, and let C = C] X-y.o X C

On C we define the ordering g by:

(& %057, € Clhueeyx v € C) | CCHPINN D AT A

@ Ai]1<i<n] X L, yi)) .

It can easily be verified that (C,r) is also a cel.

Let k: 0 £k < n.

Let for i: 1 £1i<k: £, e C» C,.
i uc i
Let for iz k+1 € i <n: £, ¢ C >, C..
i de 1

In order to prove a property of the least fixed points uf},...,ufk and

the greatest fixed points vf ..,vfn the following induction rule

k+1’°
may be used:

P((ll,...,ik,Tk+1,...,Tn)},

AxecC|P® =P &,...,f G
P((uf],...,ufk,vfk+],...,vfn))

.

We will refer to this version of fixed point induction as simultaneous

fixed point induction

The notion of admissibility has to be extended accordingly: P is

admissible for simultaneous fixed point induction if

for all i: 1 €1 < k: for all ascending chains <Xij>
for all i: k+] € i € n: for all descending chains <xij>

=0 in Ci and

in C,:
=0 i

v Bwis 8

(éJ ! j=z0 1 P(Klj""’ij’x(k«!-l,j)”"’xn))r

X .} .

= P(jlai0 xlj""’ju 0 *nj

o0 O o
sy 1 cnsgemayall
=0 xk3’3=0 X(k+1,3)’ j=

74.

3.2. The condition transformers wp and wlp

3.2.0. Introduction

In this section we will develop a condition transformer semantics for
the kernel language. The form of this semantics is determined by two

requirements.

-~ For reasons already mentioned in section 3.0, we want to consider
conditions as elements of a formal language.

- For a proper treatment of recursion we want to avail of a suitable
lattice structure on sets of conditions, sets of condition trans—

formers, etc.

The design of a semantics with these properties requires some care. As
starting point for such a design let us consider the attribute grammar

for the kernel language presented in section 2.3.2, with the exception

of grammar rule 13: nested blocks will be dealt with in chapter 4.

We recall from section 2.3.2 that for an attributed nonterminal Stat <e>
the attribute e ¢ Env determines the collection of variables, together
with their>types, that may occur in elements of L(Stat <e>). A good
candidate for a corresponding condition language seems to be the set of
first-order formulae over the same variables and over the operators of
the kernel language. Unfortunately that set does not possess a suitable
lattice structure. As the partial order should correspond to the im~
plication, the least upper bound of a set of conditions would correspond
to the disjunction of those conditions. In general such a disjunction
cannot be represented by an element of the aforementioned condition
language, however. Consider e.g. the set of conditions {n = I, n = %2,
n = 1%x2%3,,,,}. The least upper bound of this chain would be the in-
finite disjunction '

n=1va=1%x2 vn=1%2%x3 v ,,, .
First order formulae equivalent to this disjunction would be

E i fiz1la=1iD

or

Eilizt]ln=

Ea
S

il 1r=siaisilin

but both contain operators not present in the kernel language itself.

75.

Extension of the first order language with additional operators raises
the problem of determining whether the extended language is closed
under infinite disjunction or conjunction. A simpler way out was shown
by Back [Back 1, Back 2], who proposed to allow infinite disjunctions

and conjunctions as elements of the condition language. This gives rise

to formulae of the so-called infinitary logic Lwlw' This logic is much
like ordinary first-order logic, but in addition allows for disjunc-
tions and conjunctions over countable sets of formulae, and for proof
rules to handle these formulae. In [Back 1] it is shown that the logic
Lwlw is sufficiently rich to express the conditions required for the

guarded commands. For increasingly extemsive discussions of Loiw ¥e
1

refer to [Back 1], [Back 2], [Scott 1] and.[Karp], respectively.

From L it is not difficult to obtain a set of conditions that has a
ccl structure. In section 3.2.1 we will define the condition language
corresponding to an attribute e ¢ Env. In section 3.2.2 we mention the
essential features of a logic D capable of handling such conditions.

In section 3.2.3 we define a ccl structure for conditions and condition
transformers. In section 3.2.4 we reconsider the conditions transform—

ers wp and wilp of [Dijkstra 2] in this framework.

3.2.1. Conditions

The condition language corresponding to an attribute e ¢ Env can be
defined by means of an attribute grammar which is very similar to that
of the kernel language itself. The main difference is in the descrip—
tion of infinite formulae, which requires some extensions to the
grammatical tools of chapter 2. Here we will only give a short sketch
of these extensions. Their feasibility follows from the definitions of
substitution and concatenation for infinite sequences given in [Karpl.
We only mention the extensions for context-free graﬁmars; those for

attribute grammars are similar.

- First, we introduce production rules with an infinite right-hand
side. These will be given in the form A ::= » o B, where a is an

infinite sequence of nonterminals and terminals.

- Second, we extend the definition 2.2 of the relations >> and *>>

to infinite sequences. Let v and v, be two finite or infinite

76.

sequences; then w, >> w, holds fif w, can be obtained from w, by
replacing each occurrence A; of a nonterminal A by a finite or
infinite sequence o such that A ::= o, ®or A = o a, ® is a
production rule. The relation *>> is the reflexive and transitive
closure of >>. {(Note that in this way a derivation consists of a
finite number of steps, each of which may involve an infinite
number of substitutions. In terms of derivation trees this corre~
sponds to trees of finite height, the nodes of which may have an

infinite number of branches.)

Third, for each {finite or infinite) sequence w,; the set L(W]) is
the set of all (finite or infinite) sequences w, of terminal

symbols such that W, %> W,

With the extensions sketched above it is not hard to define an infini-

tary condition language. As already said the attribute e ¢ Env deter—

mines the context of statements in L(Stat <e>), i.e. the set of admis-

sible variables with their types. It is our intention that the corre-~

sponding condition language consists of infinitary first-order formulae

over the same variables, In principle we could define such a condition

language by means of a second attribute grammar, but as this grammar

has much in common with that of the kernel language itself it will be

easier to extend the latter grammar with some nonterminals, terminals

and grammar rules. The extensions are as follows:

Nonterminals

{Cond <Env>, Cexpr <Env,Prio,Tyve>, Conj <Env>, Disj <Eny>, Quant} .

Terminals

{r"a" vE")
-— 4 - M

Grammar rules

CLt.,

ci2.

Cond <e> 1= Cexpr <e,p,t> =

t = bool

Cexpr <e,p0,t0> ::= Cexpr <e,py,t > Dop <p0,t0,tl,t2>
- Cexpr <e,py,t,> W
Pgspl
Po < P2

CL3.

CL4.

CL5.

CL6.

cL7.

CL8.

CL9.

CL10.

CL11.

77.

Cexpr <e,p0,t0> ::= Mop <t0,t‘> Cexpr <e,pl,t1> L
Py =7
Py =7

Cexpr <e,pg,t> :i= (Cexpr <e,p1,t>) =
Pg * 7

Cexpr <eo,p0,t> :i= (Quant Decs <d> ! Cexpr <e],p},t>
| Cexpr <el,p2,t> L

t = bool

(A n: Name | #D {n,d) < 1)
e, = Ext(eo,d)

Pg =7

Cexpr <e,p,t> i= Var <e,n,t> W

p=7
Cexpr <e,p,t> ::= Con <t> ®
p=7

Cexpr <e,p,t> ::= Disj <e> ®
p=2
t = bool

Cexpr <e,p,t> ti= Conj <e> ®

p=3
t = bool
Let o be such that dom(a) = W and for all i: 0 £ 1i:
Oy = Cexpr <e,p,t>, Cospp = v
Disj <e> ti=w oo M
p>2
t = bool
Let o be such that dom(a) = I and for all i: 0 < i:
Gos = Cexpr <e,p,t>, Ooiey = A e
Conj <e> 1m0 o M
p>3
t = bool

76.

CL1Z. Quant =

15
o

CL13. Quant -

[
K]
[u}

The condition language that may be used with L(Stat <e>) is now simply
defined as L(Cond <e>), By induction it is not hard to prove that for

all e ¢ Env, p € Prio:

L(Expr <e,p,bool>) ¢ L{Cond <e>) .

Example
Let d € Decs, e = Ext{Empty,d) be such that

Prog

*>>

1{ var Decs <d> | Stat <e>]|

x>

Il var x,y: int,b: bool | Stat <e> 1|
The set L(Stat <e>) contains elements like

skip
bi=x >3

%,y = 0,05 dox#10»x :1=x+1;y :=y+x*%xod
-but not

¢ =3
b = x + |

if x > skip fi .
The set [(Cond <e>) contains elements like

true
be>y

(Az:int | z<x|z<y)

but not

79.

%

b>3

(A a: bool | true | a > 3) .
g
Note

In the sequel we will usually abbreviate conditions of the form
(A x:t | true | q) or (E x: ¢ | true | q) to (Ax: tll q) and
(A x: t§ q), respectively.

d

Note

We will often have to reason about conditions that are conjunctions or
disjunctions of the elements of a countable set Q ¢ L(Cond <e>). We
will denote such conditions by AQ and VVQ respectively.

In case Q is a finite set such as {qi e L(Cond <e>) | 1

N

i £ nl we
will also write ALl 1<ci<n | qi] and [Vi | 151<n] qi]

respectively.

A

In case Q is an infinite set such as {qi € L{Cond <e>) | I < i} we
will also write [AL | 1 < i | qi] and [Vi | 1 <1] qi}, respectively.
It should be borne in mind that these notations are just abbreviations

and do not themselves belong to the condition language!

O

3.2.2, The logic D

Calculations with conditions will be based upon a logic called D. The
logic D differs from ordinary first-order predicate logic in two
respects, First, like Lwlw it allows for infinitary formulae and proof
rules to handle these. Second, it reflects that conditions are only
meaningful relative to a certain context. The formulae of D are of the
form clp, where ¢ is a sequence of declaration parts corresponding to
an attribute e € Env and p is an element of L(Cond <e>). More precisely,
the set of formulae is the set L{(Form <Fny>) defined by the extensions
below to the attribute grammar for the condition language. As prepara~
tion for manipulations with contexts in theorem 3.54 and in chapter 4
these extensions also contain two operations, new and rep, on environ—

ments. new(x,e) indicates that a name x does not occur in an environ-—

80.

ment e, rep(e,e’,x,x') indicates that e' differs from e only in that
each occurrence of x is replaced by x'. It will only be used with x'

such that new(x',e) holds. The extensions follow.

Operations on Fnv

new(s,* : Name * B > Bool

rep(*,*,*,*): Env = Enp * Name » Name - Bool
new(x,e) = M (E t: Type | (x,t) iﬂg e)

rep(e,e',x,x') = (A y: Name,t: Type |
y#Ex Ay #x | (,t) ingre » (v,0) ing e’)
A (At Sypg [(x,t) EEE e o (x',t) iEE e') .
Nonterminals

{Form <Enu>, Cont <Fnv>}

Terminals

{ "D“}
Grammar rules
Form <e> ::= Cont <e> | Cond <e> m

Cont <e> :1:= ®

e = Empty

Cont <eg> = Cont <e,> > Decs <«d> m

ey = Ext(e],d)

Examples

> x,y: int » b: bool | b= x >y

» x,y: int | (A b: bool Il b= x > y)

| (A =x,y: int | (A b: bool | b=x > y))

b x,y: int | x > y

a

81.

For formulae of the form ¢ » d | p the order and grouping of variables

in d is irrelevant; e.g. the formula

c v x],...,xm: t], y!,...,yn: tz ' o]

is equivalent to the formula
CP YT by, Y T Eyy XD L X g T l'p .

If a declaration x: t occurs in the part d of a formula c v d [p, then
within p x stands for an arbitrary value of type t. This is reflected
in the axiom that ¢ » ...,x: t | p is equivalent to ¢ » ... | (A x: t Il p).

In particular the example formulae are all equivalent.

The proof rules of D are of the form
cO ‘ poa?}:ﬂ"
)] P

and may contain a countable number of premises.

Most proof rules have direct counterparts in first-order predicate
logic. We will only mention the axioms and proof rules for infinitary

formulae:

Let {qj | 0 5 i} be a countable set of conditions in a context c

DAl. For all j: O

A

j:c|[/\il()£i|qi}=qj

DA2. For all j: 0 < j: ¢ | a; =[Vi]|o0osi)] qi]

DRI. ¢ | P =>q0, P Qys +re
ERASIEEENER.

o

pr2. ¢ | 95 = p, q; = p, ...
INAAEEIENEL

0

Provability of a formula ¢ | p in D will be indicated by: FD ¢ | p.

82.
3.2.3. The ccl's of conditions and condition transformers

In this section we will impose a suitable lattice structure on condi-
tions and condition transformers, respectively. First we will partition

a condition language into equivalence classes:

Definition 3.31 {eq!

For all e ¢ Env the condition eq, on L(Cond <e>) is defined by:

for all p,q ¢ L(Cond <e>), ¢ e L{Cont <e>):

peq q fif tyc|peq.

o
Example
Let e ¢ Env be such that F{x,int) iBE e and |}(y,int) in, e.
x>y eq, - {x s y)
% = x+] eq_ false
—ie
x>y eq (Az:int | z=x | 2 >9) . ‘

d

Definition 3.32 {Ce}

For all e € Bw: C, = L{Cond <e>) / eq, -
0

The partitioning into equivalence classes serves to get rid of the
complications stemming from the fact that different conditions may
characterize the same set of states (viz. when p # ¢, but p eq, q).
Henceforth we will identify Ce with L(Cond <e>) and freely replace

conditions by equivalent ones.

Definition 3.33 {Ee}

For all e ¢ Env, the relation £, on Ce is defined by:

for all p,q ¢ C,,ce L{Cont <e>):

PE,q fif bpc|p=q.

Examgle

Let e be as in the previous example.
: e
x>y B, ¥ > y~1
x> ycg, (4z:int ly>z | x>a2)

false ge X >y .

0

It can easily be verified that £, is a partial order on Ce‘ In fact:

Theorem 3,34
For all e € Env: (Ce,ge) is a cel.
il

Proof
Let Q be a countable subset of Ce'

U Q= \/Q, on account of definition 3.33, axiom DAZ and rule DR2Z.

n Q= AQ, on account of definition 3.33, axiom DAl and rule DRI,
0

Note that, in particular:

L, =L P = false

—
L]

n ¢ = true.
Next we will impose a lattice structure on condition transformers.

Definition 3,35 {Te}

For all e € Env:

T =C ~»~C_ .
e e e

O

Theorem 3.36
Let e € Env. Let L. be the standard order on Te.

(Te,QT) is a cel.
D e

Proof

Immediately by theorem 3.10.2.
0

83.

84.
3.2,4, Definitions and some properties of wp and wlp

The fact that for any e ¢ Env both Ce and Te are ccl's enables us to
discuss the condition transformers wp and wlp inh a lattice-theoretical
framework. We begin with presenting our versions of the definitions of

wp and wlp.

Definition 3.37 {wp}

For all e ¢ BEnv the function wp, € L{stat <e>) > T, is defined by:

i

1. wp,(abort) = (Aq ¢ C, | false)

]

2. wp (skip) = (AgeC, | @
3. wpe(v 1= E} = (v + E) {see first note below}
4, wPe(SI;SZ) = wp,(5)) ° Wpe(Sz}
5. wp (if By »s, 0 ... 0 B >s_ fi)-=
(Aq € ¢, | IVi | 1sisn | Bi]~A [Ai | Isisn | B, n-wpe(si)(q)])
6. wp (do B, >S5, 0 ... 10 B S, 0d) =uF,

where F = (Af ¢ T, | (A\q ¢ c, [(Ivi | 1gicn | Bi] v gq)

A TAL | 1sisn | By = wp_(5) (£@)]) .

Definition 3.38 {wlp}
For all e € Env the function wlpee L{Stat <e>) - T, is defined by:

1. wlp (abort) = (\q ¢ C_ | true)

2. wlpe(skip) (g « Ce [@
3. wlpe(v i= E) = (v « E) {see first note below}
4, wlpe(Sl;Sz) = Wlpe(sl) ° wlpe(sz)

5, wlp GfE B, »S [...0 B »8 fi) =
e —— "} 1 n f s

(qecy | [AL | 1sisa | B, = wlp (5)()])

85.
6. wlpe(gg B, > 8, 0...10 B > S, od) = G,
where G = (Af e T | (0q ¢ C, | (Ivi | tsisn | Bi] v q)

A AL | 1sisn | B, = wlp () (£ D) .
a

Note

The operator (v <« E} occurring in definitions 3.37.3 and 3.38.3 is an
instance of the substitution operator for conditions, that we assume to
have been defined in the customary way with precautions to avoid name
clashes. See e.g. [Curry, de Bakker].

|

Note

In the sequel we will often omit the brackets around the condition
argument of functions like wp and wlp, writing e.g. wpe(Sl)wpe(Sz)q
instead of wpe(sl)(Wpe(Sz)(q))~

g

In definition 3.37.6 wpe@gBl > 8, o...10 B > S od) is well-
defined only if the least fixed point uF of F indeed exists. According
to theorem 3.28.1 existence of uF is guaranteed if F is upward continu-
ous, which in its turn depends on upward continuity (and well-defined-
ness!) of wpe(Si) for i: 1 £ i € n. A similar remark applies to downward
continuity of G in definition 3.38.6.

Theorem 3.39 simultaneously states the continuity of wpe(S) and F (and
also that of wlpe(S) and (), thereby justifying the definitions above.
This theorem is the first of a number of theorems that express some
important properties of wp and wlp. Some of these are reformulations of
properties mentioned in [Dijkstra 2]. Most of the proofs make use of
both structural induction on the composition of statements and fixed
point induction. Induction hypotheses are indicated by the letter H and

an index.,

86.

Theorem 3.39
For all e ¢ Env, S ¢ L(Stat <e>):
1. wpe(s) € C, Tue Ce.
If S is of the form do B, » 8§ 0...0 B >S5 od, and F is as in

definition 3.37.6, then Fe (C_ ~ €C) > (C_ - C.).
e uc e uc e uc e

2. wlpe(s) € Ce *dc Ce‘

1f 8 is of the form do B, ~ 8, 0...101 B ~8 od, and G is as in
definition 3.38.6, then G ¢ (Ce *de Ce) "de (Ce “de Ce).
0

Proof
We only prove l. The proof of 2 is similar when dual versions of
theorems 3.24 and 3.26 are used.

The proof is by induction on the compdsition of S.
1.1. S :: abort
Immediately by theorem 3.24.1.

1.2, 8 :: skip
Immediately by theorem 3.24.2,

1.3, § :: v := E

Let <q,> . be an ascending chain in C .
9373=0 g e

’wpe(v = EY[vvi | 0<i| qi]

i

{definition 3.37.3}

W*EHViIOSinﬂ

it

[Vilosi| (vemq,]l

§

{definition 3.37.3}

[Vvi]i<o| wp, (v + E)g;] .
1.4. 8 1 81;82

HI. Wpe(Sl) € Ce e Ce.

H2. wpe(Sz) € Ce e Ce

Immediately by theorem 3.24.3.

N

1.5.

87.

§:: if B > S] 0...10 Bn > Sn fi

1

H3. For all i: | £ i £ n: wpe(Si) € C, » . C..

wp, (S)
= {definition 3.37.5}

(Aq € C, | [\vi | 1gisn | B,1 A [AL | isisn | B; = wp,(S;)al)
= {prop. log.}

(Mg € C, P Ivi | 1<izn | Bi] A [AL | tgisn | ~B; v wpe(Si)q}).
From H3 and repeated application of theorem 3.24 it follows that
Wpe(S) € Ce e Ce'

8§ :: do B, » S1 g...0 Bn > Sn od

1

H4, For all i: 1 €1 < n: wPe(Si) € Ce "ue Ce‘

From H4 and repeated application of theorem 3.26 it follows that

Fe (Ce Tue Ce) "ue (Ce “uc Ce)'

Hence uF exists and is an element of Ce *ue Ce’ 80

wpe(s) € Ce "ue Ce.

Corollary 3.40
For all e ¢ Env, S ¢ L(Stat <e>):

O

1. Wpe(S) € Ce “n Ce .

2. wlpe(s) € Ce “n Ce .

Theorem 3.41
For all e ¢ Env, S ¢ L(Stat <e>):

0

1. wp,(8) is t-strict.

2. wlpe(S) is T-strict.

88.

Proof
We only prove 1; the proof of 2 is similar. The proof is by induction

on the composition of S.
I.1. 8 :: abort
Immediately by theorem 3.13.1,

1.2, 8§ :: skip
Immediately by theorem 3.13.2.

1.3, § :: v 1= E
wp{v := E) false

{definition 3.37.3} (v « E) false

1

[}

false.

1.4, 8 :: 8,38

%72
Hi. wpe(Sl) is Lt=-strict.
H2: wpe(Sz) is l=strict.

wp(SI;Sz) false

{definition 3.37.4} wp(S)wp(S,) false

{H2} wp(Sl) false

{H1} false.

1.5. 8 :: if B, > 8, 0 ...0 B »sS fi

H3. For all i: 1 < i € n: wPe(Si) is i=-strict.

wp(if B, - 5, m...10 B+ 8, fi) false

{definition 3.37.5}

[]

[Vi | igisn | Bi] A AL | isign | Bi = wpe(Si) falsel]

it

{3} [Vi | 1sisn | B,1 A [Ad | 1sgicn | B, = false]

it

{prop. log.} false.

1.6. 8 :: doB >80 ...0B +5 od

H4. For all i: 1 £ i € n: wPe(si) is L-strict.

89.

The proof that pF is i-strict is by least fixed point induction.

Admissibility is trivial.

1.6.1. {base step}

lTe (false)

(Aq € Ce | false) false

]

false,

1.6.2. {induction step}
H5. £ is l-strict.

F(f) false

{definition 3.37.6}
(IVi | 15isn | Bi] v false)

A {AL | isiza | B, = wp_(5;)f(false)]

{H5,H4}

([Vi | 1si=n | Bi] v false) A [Ai | Isiza | B, = false]

L]

{prop. log.} Ffalse.
0

Theorem 3.42

For all e € Fnv, $ ¢ L(Stat <e>):
1. wpe(S) is conjunctive,
2, wlpe(S) is conjunctive.

8]

Proof
We only prove 1. The proof is by induction on the composition of 8.

Let p,q € Ce'

1.1. § :: abort

wpe(abort)(p A q)

{definition 3.37.1} false

it

false A false

]

{definition 3.37.1 twicel wpe(abort)p A wpe(abort)q.

90.

1,2,

1.3.

S 1: skip

wp (skip) (p A q)
= {definition 3.37.2} p A q

= {definition 3.37.2 twicel wpe(skip)p A wpe(skip)q.

S :: v :=E

wPe(v = EY(p A q)
= {definition 3.37.3} (v « E)(p A @)
= (v « E)p A (v « E)q

= {definition 3.37.3 twicel wpe(v := E)p A wPe(v := E)q .

S :: sl;s

2
Hl. Wpe(S‘) is conjunctive.

H2. wpe(Sz) is conjunctive.

WP(SI;SZ)(p A Q)

{definition 3.37.4} wpe(S])wpe(Sz)(p A q)

#

{H2} wpe(Sl)(wPe(Sz)p A Wpe(sz)q)

i

{H1} wpe(S])wpe(Sz)p A wPe(SI)WPe(SZ)q

= {definition 3.37.4 twice} wp(S,38,)p A wp(S};SZ)q .

.Sui%*%ﬂm*%ﬂ%g

H3. For all i: | £ i < n: wpe(si) is conjunctive,

wpe(S)(p A q)
{definition 3.37.5}

#

Vi | 1gi<n | B;1 A [AL | 1gizn | B, = wp (5,)(p A @]

{H3}

[Vi | 1sisn | B.] A [AL | 1gi<n | B, = (wp (S)p A wp (5;)q)]

i

{prop. log.}

[vi | isisn | B;] A [AL | 1sisa | B, = wp_(S,)p]

91.

A lvi | 1si=n | B;1 A [AL | 1sisn | B, =wp_(8,)q]

= {definition 3.37.5 twice} wpe(S)p A wpe(S)q .

1.6. 5 :: do B, » S, n... 10 B > S od

1

H4. For all i: | < i < n: wpe(Si) is conjunctive.
The proof that uf is conjunctive is by least fixed point induc-
tion. Admissibility follows from lemma 3.21.
1.6.1. {base step}
See 1.1,
1.6.2. {induction step}
H5. £ is conjunctive.

F(EY(p A q)

[

{definition 3.37.6}
(Ivi | 1sism | B,1 v (pAq))
A [AL] 1gizn | B, = wp, (S;)E(p A q)]

{H5,H4}

[

(Ivi | 1<isn | B,1 v (o A @)

A LAL | 1giza | B, = (wp (8,)fp A wp (S;)£q)]

{prop. log.}

([Vi | 1sizn | B, vp) A [AdL | 1gisn | B, = wp (8;)fp]
A (IVi] 1gisn | B,l v a) A [AL [1gisn | B, = wp,(S,)fq]
= {definition 3.37.6 twicel} F(f)p » F(f)q .

0 ‘

Theorem 3.43
For all e ¢ Env, S ¢ L(Stat <e>), g ¢ Ce:

wpe(S)q = wpe(S)true A wlpe(s)q .
0

Proof

The proof is by induction on the composition of S. Let q ¢ Cq-

92.,

§ :: gbort

wpe(abort)q
= {definition 3.37.1} false
= {prop. log.} false A true

= {definitions 3.37.1, 3.38.1} wpe(abort)true A wlpe(abort)q.

S :: skip

wpe(skip}q
= {definition 3.37.2} g
= {prop. log.} true A q

= {definitions 3.37.2, 3.38.2} wp (skip)true & glpe(skip)q.

S :: v :=E

wpe(v := E)q
= {definition 3.37.3} (v « E)q
= {subst. prop. log.} (v « E)true A (v « E)q

= {definitions 3.37.3, 3.38.4} wp (v := E)true A wlp (v := E)q .

S :1: 5,38

1772
HI, wpe(Sl)q = wpe(S])true A wlpe(S])q.
HZ. wpe(Sz)q = wpe(SZ)true A wlpe(sz)q.

wpe(S];Sz)q

[

{definition 3.37.4} wpe(S])WPe(SZ)q

#

{H1} wpe(Sl)true A wlpe{SI)wpe(SZ)q

{H2} wpe(S])true A wlpe(Sl)(wpe(Sz)true A wlpe(sz)q)
= {theorem 3.42.2}

wp, (8))true A wlpe(sl)wpe(sz)trué A wip (8)wlp,(S,)

{H1} wpe(Sl)wpe(Sz)true A wlpe(S!)wlpe(Sz)q

{definitions 3.37.4, 3.38.4} wp, (8;38,) true A wlp, (8,55,)q .

5.

93.

S0 if B > 0... 08 >s fi

H3. For all i: 1 $ i s n: wpe(Si)q =‘wpe(5i)true A wlpe(Si)q.

wp,(8)q

{definition 3.37.5}

vi { 1gign | Bi] A [AL irlsiﬁn | B, = wp (S;)q]

= {3}

[Vi | 1gizn | Bi] A IAL | isizn | Bi = (wpe(Si)true A wlp(Si)q)]
= {prop. log.}
[Vi | 1sisn | Bi] A AL | 1sizn | B, = wpe(si)true}
A AL]Si;n | Bi = wlpe(Si)qI

= {definitions 3.37.5, 3.38.5}'wpe(8)true A wlp(S)q .

S :: do B, » Sl ob...10 Bn - Sn od

H4, For all i: 1 £ 1 € n: wpe(Si)q = wpe(Si)true A wlpe(Si)q.

The proof that (uF)(q) = (uF)(true) A (VG)(q) is by simultaneous

fixed point induction. Admissibility follows from lemma 3.44 below.

6.1. {base step}

lTe(q)

(g € € | false)q

false

false A true

(Aq ¢ Ce | false)true A {Aq ¢ C, | truel)q

LTe(true) A TTe(q) .

6.2. {induction step} ‘
H5. £{q) = f(true) A g{(g).
F(£) (8)
= {definition 3.37.6}

([\Vi] tsisn | Bl v) a AL | Isisn | B, = wp (8,)f(q)]

94.

= {H4,H5}
(Ivi | 1sisn [B,1 vq) A [AQ | 1sizn | B, =
(wp (8;)true A wlp (S.)(f(true) A g(@N]
= {theorem 3.42.2}
(Ivi | tsisn | B.1 v a[AL | 1<isn | B, =
(wp, (8;)true A wip (S.)(f(true)) A wlp (8;)(g(a)))]
= {H4}
(IVi | 1sisn | B,1va) AL | 1sisn | B, =
(wp,, (8;) (£(true)) A wlp,(S;) (g()))]
= {prop. log.}
(Ivi | 1<izn | B,V g
A IAL] 1sien | B, = wp_(5,) (f(true))]
A (IVi | 1siza | B.1 v @)
A LA | igiza | B; =wlpe($i)(g(q})]
= {definitions 3.37.6, 3.38.6} F(f)(true) A 6(g)(q) .

O

The admissibility for simultaneous fixed point induction in proof 3.43.6

is an immediate consequence of the following lemma.

Lemma 3.44
Let (C,c) be a ccl.

o
Let <fi>i=0 and <hi>: be two ascending chains in (C,c).

=0
Let <gi>220 be a descending chain in {C,C).

If (Ai]izo] £, = h; 1 g), then
[o

[+
o i = 420 M7 1 8 -

Proof
1. {g}

f is ascending

v
[
H’x
(]

=@ailizof @ajili - £.))

i

(taj]i=o0| fj = hj n gj)}

@iliz2o|@ilj

i 3
= {definition glb}
@ilizol@jljzilf ch af
= {definition lub, glb}
N . o el
(él]120§figji_=iihj:\figjrj__igj)
= {h ascending, g descending}
. . @ @
(élilzolfi;‘j“_‘-‘Othfl“nggj)
= {definition glb}
(aifiz20]f,c .0 h,n.A g)
- 1°3=0 7] §=0 7]

= {definition lub}
G, f i
i=0 "i & j=0

= {renaming}

h, m
1

true
= {definition glb}
(Ailfi=20]g; 208
= {definition gib}

Ai|izo0] h; Mg, 3h, 1 1, 8.)

j=0 ©j
={(§1I120|fi=hingi)}

(éll1zoifi;himjg0gj)

v
-t
-
in
ey
|
a9
~r
~—

95.

96.

{definition lub}

i £ 339 My M 0o 8y)
= {lemma 3.21}

0. f. 3.0 h)

igo fp 2 4o M 7 jHo 8y -

Theorem 3.45

Let e ¢ Env, p,q ¢ Coi Syse-es8 € L{Stat <e>);
B]”"’Bn ¢ L(Expr <e,Prio,bool>).

let IF=31if B, >§ 0 ...08 ~»s fi.

I. If for all iz I <i <n:pAB, £ wpe(Si)q, then

p A Vi | isisn | Bi] Eo wpe(IF)q .
2, If for all i: 1 €1 s n: p A Bi £ wlpe(Si)q, then

p Qe Wlpe(IF)q .
W

Proof
We only prove 1. The proof of 2 is similar.

1, Assume

A: for all i: 1 <i < n:pAB g wpe(Si)q.

p A LVi| 1sizn | B;]
= {prop. log.}
(Vi | 1<isn | B;1 A [AL | 1<i<n | B, = p A B]
c {A}
e
[Vi | 1=ign | B, A [N | 1gi<n | B, = wp,(5,)d]
= {definition 3.37.5} wp (IF)q .
a

Theorem 3.46
Let e € Env; p € Ce; sl,...,sn e L{Stat <e>);
B],...,Bn ¢ L(Expr <e,Prico,bool>).

Let DO

Let BB

i

do B

;>80 ... 0B »s od.

[vVi | 1si=n | B, 1.

1

1. If for all i: 1 <i sn: p A B, C wpe(Si)p, then

p A wpe(DO)true c wpe(DO)(p A T BB) .

e

2. If for all i: 1 £i <n: p A B, L wlpe(Si)p, then

PE wlpe(DO)(p A — BB) .

0

Proof

We first prove 2, and subsequently 1.

2, Assume

A2: for all i: 1 s 1 s n: p A B. £, wlpe(si)p .

The proof that p o (vG)(p A 1 BB) is by greatest fixed peint

induction. Admissibility follows from definitiom 3.2.1.

2.1. {base step}

2.2,

[
e

[

P

true
(\q ¢ Cel true)(p A — BB)

TTe (p A ™ BB) ‘.

{induction step}

H:

L3

pEe g(pl\"‘ﬁBB) B

G(g)(p A — BB)

{definition 3.38.6}

(BB V (p A= BB)) A [AL] 1gizn | B, =
WlPe<Si)(3(P A = BB))1

{prop. log.} k

(BB vy A LAL | Igisn | B, = wlp_(S;)(g(p » = BB))]

97.

98.

3, {4, corollary 3.40.2}

(BB vp) A IAL | tsisn | B,= wlpe(Si)pl
1 {a2}
e

88 vp) A IAL | 1sisn | B, =p AB;]

= {prop. log.} p .

1. Assume

Al: for all i: I £ i £n: p A B, £, Qpe(si)p.

By Al and theorem 3.43: for all i: 1 £ 1 < n:

pABC wpe(Si)true A wlpe(Si)p s

hence:

t, : 7 < .
Al': for all 1: 1 € i s n: p A Bi e, wlpe(Si)p.

p A wpe(DO)true
t {AlI",A2}
e

wlpe(DO)(p A -1 BB) A wpe(DO)crue
= {theorem 3.43}

wPe(DO) (p A = BB) .

a0

Theorem 3.47

Let e € Envy q ¢ C,s {pa | @ > 0} a countable subset of Cys SpsessSys

B],...,Bn, IF, DO, BB as in theorems 3.45 and 3.46.
1. wpe(DO)q = {(q A1 BB) Vv wpe(IF)WP(DOEq .
2. If for all a: a 2 O:
a, for all i: 1 s i<n:p B c w (5)[Va' | Oga’<a | Pyr]
b. P, A - BB L ¢q

then [WVa | o 2 0 | pu] . wpe(DO)q.

99.

Proof

1.

wp,, (D0)q
= {definition 3.37.6, fixed point property}

(q vBB) A[AL] tgisn | Bi n»wpe(Si)wpe(DO)q]

i

{definition BB, prop. log.}

(q A1 BB) v (BB A [Ai | Isisn | B, = wp,(8;)wp (DO)q)]

{definition 3.37.5}
(q A= BB) v wp (IF)wp,(DO)q .
Let a: o 2 0. Consider

[Va' | 0sa'<a | p] €, wp, (DO)g
= {corollary 3.40.1}

wpe(IF)[\fa' | 0<a'<a | pa,] E, wpe(IF)wpe(DO)q

= {a, theorem 3.45}

Py A BB Ee wpe(IF)wpe(DO)q

= {b}

(pu A = BB) v (pu A BB) £, (@ ~» m BB) v wpe{IF)wpe(DO)q
= {prop. log., 1}

P, B, WP, (DO)q .
We have shown that for all a: o 2 O
[Va' | Osa’'<a | p (] g, wp (DO)q = (p £, wp (DO)Q) ,
hence by lemma 3.29:

(Ve | a>0]p]c, wp,(D0)q .

100.

3.3. Logics for partial and total correctness

In this section we will extend the logic D with additional formulae and
proof rules that enable us to prove partial and total correctness
properties in the style of Hoare [Hoare 1, Hoare 2]. We will also prove
consistency of these logics with respect to D. To this end we introduce
notions of validity and soundness. It should be noted that our use of
these terms differs from that in program correctness theory

{de Bakker, Cook 2] or formal logic. In the latter fields these notions
pertain to the relations with a model; in our case they pertain to

relations with the logic D.

Partial and total correctness formulae are introduced by the following

extensions to the attribute grammar for D-formulae.

Nonterminals

{Pform <Ewnv>, Tform <Env>}.
Terminals

TR A AP LR A 8
Grammar rules

Pform <e> ::= Form <e> W

Cont <e> | {Cond <e>} Stat <e> {Cond <e>} ®

Pform <e> ::
Tform <e> ::= Form <e> ®

Tform <e> ::= Cont <e> | [Cond <e>] Stat <e> [Cond <e>] m

Definition 3.48 {Pvalid0, Tvalid0} ‘
On L(Pform <Env>) and L(Tform <Ewv>), respectively, the predicates

PvalidO and TvalidO are defined as follows:
For all e ¢ Fnw, c € L{Cont <e>), p,q ¢ L{Cond <e>)}, S ¢ S{Stat <e>):
1.1, Pvalid0(c | p) = Fp € | p .

1.2, Pvalid0(e | {plsiq}) = Fp e | p = wlp_(S)q .

2.1. TvalidO(e | p) = ke | p.

2.2, TvalidO(c | [plIslqD) = by © I'p = wp, (S)q .
3

Definition 3.49 {proof rule}

1. A partial correctness proof rule is a construct of the form

<o l fO""’fn—l
e | fn
where n 2 1, and cg I fo,...,co | fn"}’ € | £ ¢ L(Pform <Fnu>).

2. A total correctness proof rule is a construct of the form

cq I SN

| £

i n

where n 2 1, and c, | £gsenesty | £_10 | £ ¢ L(Tform <Fnu>).
0

Definition 3.50 {Psound(, Tsound0}

1. On partial correctness proof rules the predicate Psound0 is

defined by:

Ch | Fraeeesf
Psound((0 0 L 1)

< ! fn

= (Ai]| Osizn | PvalidO(c, | £;)) = Pvalid0(e, i £) .

2. On total correctness proof rules the predicate Tsound(is defined

by:

{ fo,...,fn_])

c
TsoundO (0
| £

c

"1 n

= (A i | O<isn | Tvalid0(c, | £,)) = TvalidO(c, | £.0) .

102.

Definition 3.51 {PCO, PAI,...,PA P§1=""PR4}

3’

The partial correctness logic PC0 is defined by

#

- Axge Axp v {PA!,PAz,PA3}

0

#

- Pr

PC Pr_u {PRI,PRZ,PR

D PRQ}

0 3

where PA],...,PA3, PRI,...,PR are given below.

4
For all e ¢ Frw ,
¢ ¢ L{Cont <e>) ,
Ps959y59559359, € L(Cond <e>) ,

BiyeeesB € L(Expr <e,Prio,bool>) ,

S,S],...,Sn ¢ L(Stat <e>) ,
v, E such that v := E ¢ L(Stat <e>) :

PA;. ¢ | {true} abort {q}
PA,. ¢ [{q} skip {q}

PA;. ¢ | {(v « E)q} v :=E {q}

e | q =q, {q,} s {3}, gy = q,

PR].
c | {q,} s {q,}
. e | {q,1 s, {q,}, {q,} 8, {qq}
2 c | {q;} 85 8, {ag)
. ¢l ipa B} s, fal ,..., {paB IS {g
PR,.
3 e | {p} iE.B] > 8, I...10 B+ 5 £fi
e | {pa Bl) s, {r} ,eov, {p A Bn} s, {p}
PR, . -
“ el pydoB >80 ... B 5 od{paTlVi | Isisn | B}
o

Theorem 3.52
1. For all ax ¢ : PvalidO(ax) .
e,

2. Por all pr ¢« Pr
£

PCO: PsoundO(pr} .

Proof

We only have to consider PA],...

1. PvalidO(PAl), PvalidO(PAz) and PvalidO(PA3) follow immediately
from definition 3.48.1.2 and definitions 3.38.1, 3.38.2 and

2.1

2.2,

2.3, case PR

3.38.3, respectively.

. case PR]

Assume Al. PvalidO(c | q ”‘qz)-
A2, pvalido(e | {q,} s {a3}) .
A3. Pvalido(c | 43 = q,) .

wlpe(S)qa

3, {A3, corollary 3.40.2} wlpe(s)q3

a, {A2} q,

3 {a1} q,

hence Pvalido(c | {q]} s {qé})'

case PR2

Assume Al. PvalidO(c | {ql} 8, {qz})'
A2, PvalidO(c | {a,} 8, {azh) .
wlp, (8,38,)q,
= {definition 3.39.4} W1pe(sl)W1p(SZ)q3
3, {A2, corollary 3.40.2} wip (8))q,

3, i} q,

hence PvalidO(c | {qI} 8,38, {q3}).

3

Assume for all i: 1 £ i < n: Pvalido(e: | {p A Bi} s, {¢}).

By theorem 3.45.2:

PvalidO(c | {p} if B, > 8, n...n B +s fi{qh).

JPAy, PR ,...,PR,.

103.

104,

2.4, case PR4

Assume for all i: 1 € i < n:r PvalidO(c | {p A Bi} 8; {»hH.
By theorem 3.46.2:

PvalidO(c | {p} do B,»8, 0...0 B S od {p »7[Vi | 1<ign | B, 1}
0

Definition 3.53 {TCO,'TA seresTAy, TR5uve, TR, }

1 32 1

The total correctness logic ICq ig defined by

- Axqe

i

) Axy v (TA,,TA),TA,}

- Prp, =Prju {TR,TR,,TR

TR, }
o 4

3,
where TA;,..,,TA s TRI;...,TR& are given below.

For all e € nv ,
' ¢ € L(Cont <e») ,
P»9s9y29,5q3-9, € L(Cond <e>} ,
Bl""’Bn ¢ L(Expr <e,Prio,bool>) ,
S,S!,...,Sn e L(Stat <e>) ,
v, E such that v := E ¢ L(Stat <e>) ,
a ¢ L(Expr <e,Prio,int>), A € Ngme such that | new(A,e) :

TA,. ¢ | [false] abort [q]

TA,. ¢ | [q] skip [q]
TAy. © | [(v<«Eqlv:=E [q]
¢ | q =a,, [q,]1 8[q,], q,=q
TRI. 1 2 2 3 3 4
¢ | [qI] S [qAI
c | laq,1 s, Iq,1, [q,] 8, [q,]
T, . 1° %1 ' 27 ®y 4,
e | [ql] 5,35, [q3]
TRé. e | Ipa BI] S, [ql ,..., Ip A Bni 8, [q]

0

| Ip A Vi] 1gisn | B,11if By > 8, 0 ...0 B ~-s filql

TR,. c & At int | [p A B, A Osa A a=A]l S, [p A Osa A a<A}

R

[p A B A O<a A a=4] S, [p A Osa A a<al

e | [p a 0sal do B, »§, 0...00B > S od [p A-[Vi | tgien | B, 11
{

Theorem 3.54

1. For all ax ¢ AXTC s TvalidO(ax) .

0

TCO: Tsound0{pr) .

2. For all pr e Pr
{J

Proof
We only prove soundness of TR4; the other proofs are very similar to

those of theorem 3.52.

Let e' = Ext(e,(A,int]D).

for all i: 1 £ 1 < n:

TvalidO(e » A: int | [p A B; A O<a A a=A] S; [p A Osa A a<A])

]

{definition 3.48.2}
for all i: 1 <€ 1 € n:

F.ooec v Ar int | (p A B, A O<a A a=A) = wp_,(5,)(p » Osa A a<A)

D
= {axiom of D}
FD c | (A A: int I (p a B, A O0sa A a=3) = wPe'(Si)(p A Oga A a<A))

= {*see note below}
for all i: 1 € 1 = n:
for all o: 0 £ a:

L

p ¢ I (p A B, A a=g) »»wpe(si)(p A O<a A a<q)

= {definition 3.33, theorem 3.47}

[\/u | 0<a | p A B, A a=q] £, wp, (DO) (p A -1 BB)

i

p A O<a Ee wpe(DO)(p A — BB)

{definition 3.48.2}

TvalidO(c | [p A Os<al DO [p A — BB]) .

106.

Note

In the step marked with a * we have applied the rule for A-elimination,
The notation o stands for an element of L(Con <int>) representing the
value o, As in the resulting conditions the variable A no longer occurs,

WP« may be replaced by WP, . Replacements of the latter kind will be
discussed more extensively in chapter 4.

a

CHAPTER 4
BLOCKS AND PROCEDURES

4,0. Introduction

In this chapter we consider the design and formal definition of some
essential components of the source language, viz. blocks and

procedures. We do so for various reasons:

-~ Blocks and procedures are nontrivial extensions to the kernel

107.

language of chapter 3. They pose many interesting problems with

regard to the construction of correct compilers, which is the

ultimate goal of our studies. -

- In the literature on formal definitions in many cases the treat~

ment of blocks and procedures is either incomplete or very
complex. The incompleteness usually results from considering

either the syntactic or the semantic aspects of the constructs,

whereas their interaction is often essential (e.g. in proof rules

for blocks, which ecritically depend on the scopes of variables)
The complexity usually results from considering an existing

procedure concept as it occurs im, say, ALGOL 60 or Pascal, as
holy, and trying to formalize all its aspects as faithfully as

possible, without questioning the quality of that concept. In

-

contrast, we want to define completely both syntax and semantics,

but we will try to design language constructs in such a way that

their definition is relatively simple.

~ It is interesting to investigate to what extent the condition
transformer method, which was designed for statements, can be
applied to more complex language constructs like recursive

procedures,

We will try to separate the various aspects as much as possible, and
to study their effect on syntax, semantics and proof rules. This
separation is reflected in the structure of the chapter. In section

4.1 we will discuss blocks, mainly to investigate the effects of the

108.

introduction of local names. Section 4.2 deals with parameter
mechanilsms., The discussion is based on a language construct called
abstraction, which resembles the ALGOL 68 routinetext, and which can
be usad to study the effects of parametrizarion, Section 4.3 concen—
trates on recursion, which can he handled vather eamrily by means of
the lattice theory of section 3.1. Fipally, in zection 4.4 the various
agpects are merged, resulting in a treatment of parametrized recursive
proceduras. Rach section follows the same pattern of discussing first

syntax, then semantica, and finally proof rules.

109.
4,1, Blocks

4.1.3. Tntroduction

In section 4.1 we discusa the bleck, a construct which provides the
means for local extension of the environment of statements. Although
the block is of some interest in its own right, our nrime motivation
to discuss it is the desire to separate the aspect of the introduction

of local nomenclature from other sspects of the procedurs concept.
From section 2.3.2 we recall the grammar rule for blocks:

2. Block <ey> ::= |l var Dees <d» | star e 11w

(A n: Name | #D {n,d) = 1)}

o, - Ext(eo,d)
Throughout sectlion 4.1 we shall restrict ourselves te blocks containing
2 single variable declaration, i.e. blocks of the form

Il var x: t | 5 1l. Generalization to other blacks is straightforward.

In section 4.1.1 we consider the case that vedeclaration is not allowed.

As a prepsration for the treatment of redeclaration in section 4.1.3
and for other sections, section 4.1.2 iz devoted to substitution in
progremming language construects. In section 4.1.4 proof rules for

blocks are presented snd their seundness is proven.

4.1,1, Blocks without redeclaratien

In this section we study the semanties of a block [[var x: & [&]I

e L(Block <e0>) under the additional sszumption that | n2w(x,eo), ie.
that x has not been declared in surrounding blecks. What we need is a
definition of wpeO(l[var xt £ | 8 11) ia terms of wpe, (8). Since it

iz our intention that [[var »: £ | § || and S have the same effect as
far as the varisbles of ej are concerned, a definition of the following

form readily suggests itself:

wp, (I var =: ¢ [811) = (Aq ¢ c, | wp, {(3)q)
Q 0 1

110.

However, this definition is not always correct. Because e is an
extension of eqs CeO is a proper subset of Ce;- Therefore “?el(s) may
be applied to g, but the yield is not necessarily an element of Cee,
since it might still contain x. A little reflection reveals that this
situation will only occur when x has not been initialized by S (where
for the moment we assume that we know what is meant by initializationm).

There are at least two solutions to the problem:

1. Require that S establishes the desired post—condition regardless
of the initial value of X. This boils down to universal quantifi-
cation over x, as a result of which the pre~condition becomes an

element of Ceoz

wpe (Il var x: ¢ s 1D = g ec, | @x: el vp, 9)0))

2. Impose the additionmal context condition that § initializes x.

Solution 1 does not fit well into the framework developed in chanter 3
because the resulting condition transformer is not upward continuous.
In the terminology of [Back 1, Dijkstra 2] a block containing a
variable of an unbounded type would be a construct of "unbounded non-
determinacy"”; e.g. the block {[var y: nat | x t= y+1 1| would be an
implementation of Dijkstra's "set x to any positive integer™

[Dijkstra 2]. Because of this complication we will not adopt solutiom 1.

Solution 2 is in accordance with "disciplined" programming. Systematic-
ally constructed programs will never contain umninitialized variables
and therefore we may as well exclude them syntactically. For the dura-
tion of this chapter context conditions of this kind will be expressed
by means of some auxiliary functions defined below. Eventually they

will be incorporated into the attribute grammar for the source language.

Definition 4.1 {USE}
The function USE

L(stat <Env>) u L(Expr <Ewv,Prio,Type>) u L(Cond <Env>) + P(Name)

is defined recursively by

i1,

1. USE(abort) = §
2. USE(skip) = ¢
3. USE(v := E) = USE(E)

4. USE(SI;Sz) = USE(S]) u USE(Sz)

n n
5. USE(if B, > 8, 0 ... 0 B ~» S fi) = U USE(B;) v U USE(S;)
i=1 i=1
: n
6. USE(do B, > 5, 0 ... 0 B ~>8 od)= ig} USE(B,) u ig] USE(S,)

7. USE(I[var x: t | 8 11) = USE(S) \ {x}

L}

8. USE(E, op E,) = USE(E,) u USE(E,)
for op ¢ L{(Dop <Prio,Tyve,Type,Tyne>)

9. USE(op E) = USE(E) for op ¢ L(Mop <Tyve,Type>)
10. USE((E)} = USE(E)

1. USE(v)

"

{v} for v e L(Var <Bav,Name,Tyve>)

i

12, USE(e) = @ for ¢ ¢ L(Con <Type>)

13. USE((A x: t | E | E,)) = USE(E|) u USE(E,) \ {x}

i

14, USE((E x: t | E| | E;)) = USE(E)) u USE(E,) \ {x]

15. USE([Vi | O<i | q;D = USE(q,)

e

]

0=
16.U%(U\i|0ﬁ_[q§)= U
(1

USE(qi)
O<i

Definition 4.2 {ASSN}

The function ASSN: L(Stat <Env>) + P(Name) is defined recursively by:
I. ASSN(abort) = @
2. ASSN(skip) = §
3. ASSN{(v := E) = {v} .

4, Assx(sl;sz) = ASSN(SI) U ASSN(SZ)

]

5. ASSN(if By ~ S, 0 ... [0 B ~»s f£i)=

1

—

6. ASSN(do By » 5, ... 1 B_ > S od)

L}

1

n
U
k23
¥ ASSN(S.)

i
i=1

112.

7. ASSN(I[{ var x: t | § 1) = ASSN(S) \ {x}
1

Definition 4.3 {INIT}

The function INIT: L{Stat <Env>) - P(Name) is defined recursively by:
1. INIT(abort) = @
2. INIT(skip) = ¢
3. INIT(v := E) = {v} \ USE(E)

4, INIT(Slgsz) = INIT(SI) U‘(INIT(SZ) A\ USE(S]))

L}

n n
1 INIT(S.) \ U USE(B.)
. i . i
i=1 i=]

6. INIT(do By » 8, [... 0 B =5 od) =9

7. INIT(I[var x: £ | 8§ 11) = INIT(8) \ {x}
d

5. INIT(if By » 8, 0 ... 08 -5 fi)

1

Informally, for a comstruct ¢ the set USE{(c) may be interpreted as the
set of variables occurring in an expression in ¢, ASSN{c) as the set
of variables occurring in the left-hand side of an assignment in ¢,
and INIT(c) as the set of variagbles initialized by ¢, i.e. assigned to
by every possible execution of ¢ and not used in any expression before
they have been assigned to. The set USE(c) u ASSN(c) is the set of

“"free" variables of c.

Example

Let S be the statement

x:=0; ifx2zy~+y:=0; 2z :=01 true »w 1= wj 2z := x fi

USE(S) = {x,y,w}
ASSN(S) = {x,y,z,w}
INIT(S) = {x,z} .

113.

Lemma 4.4

For all e ¢ Env, 8 ¢ L(Stat <e>):

1. INIT(S)

n

ASSN(S) .

2. ASSN(S) < {n e Name | (E t ¢ Type. | } (n,t) ing e)} .

3. USE(8) ¢ {n ¢ Name | (E t e Type | F (n,t) iﬂE e)} .
D

Proof

By induction on the composition of statements. Details omitted.
a
Now consider again the proposed definitions

wpeo(l[var x: t | S 11) = (A\q ¢ Ceo| wpel(S)q)

wlpeo(l[var x: t | S 11) = (Aq € Ceo | Wlpe}(S)q) .

By induction on the composition of statements and the nesting depth of
blocks it can easily be seen that these definitions are well-formed
(i.e. wpe](S)q € CeO and wlpel(S)q € Ceo) if we impose the additional

context condition:

x ¢ INIT(S) v x ¢ USE(S)

A similar condition is formulated in [de Bakker].
Por future reference we collect some properties of USE, ASSN, and INIT

in the following lemma.

Lemma 4.5
For all e ¢ Env, S8 ¢ L{Stat <e>), p,q ¢ L(Cond <e>);
1. USE(wpe(S)q) c USE(S) v USE(qg) .
2. USE(wlp (S)q) < USE(S) u USE(Q) .
3. USE(wpe(S)q) n INIT(S) = ¢ .
4. USE(wlp_(8)q) n INIT(S) = @ .
5. If ASSN(S) n USE(p) = @, then wp (8)(p A q) =p A wp,(8)q .

6, If ASSN(S) n USE(p) = @, then wlpe(S)(p Ag) =pA wlpe(S)q.

114,

Proof

By induction on the composition of statements. Details omitted.

b

4,1,2.

Substitution in statements

" In the sequel we will sometimes define the meaning of a comstruct in

terms of the meaning’/of a second construct derived from the first one

by a process involving systematic replacements of variables. Such an

approach requires a precise definition of systematic replacement. Here

we present such a definition, much resembling those in [Curry, de

Bakker]

Definition 4.6 {(x <« y), substitution in statements}

For all x,y ¢ L(Var <Ewv,Name,Type>) the substitution operator (x <+ y)

on L(Stat

. (x
2. (x
3. (x
4, (x

5. {x

<

.

P

<Env>) v L{expr <BEwnv,Prio,Type>) is defined recursively by:

y) abort = abort

y) skip = skip

)y = E) = {x <« y)v 1= (x +‘y)E

¥I(838,) = (x « yIS;5{x « ¥)§,

y»if B, »s 0 ... 08 »s fis=

if (x«yB; > &x<ys0...10 (x « YIB > (x « y)s fi
y) do B, »> S] 0...10 Bn - Sn‘gé =

do (x « y)B, » (x + y)§, 0 ...0 (x+« YIB, > (x « y)S od

if x = w, then

(x < y) i[ngilsll=l‘[g§}:w:t{811
if x # w and y # w, then
x<y) llvarw: t | s 1 =l var w: £ | (x<« y)s 1|

if x # w and y = w, then

#

(x<y) Il varw: t]| sl =I|lvarz: t | (x«yw<z)s]l

where z is the first element (in some suitable ordering) of

115.

L(var <Env,Prio,Type>) such that
2 ¢ {x,y} u USE(S) u ASSN(S) .

8. (x = y)(El op EZ) = (x«y)E, op (x+ y)E2

9. (x « y)(op E) = op (x + y)E
10.
I x+y)z=y if x= z .
z ¢ L(Var <Ewv,Prio,Type>)
2, x<«y)z=2 if x#z
11, x+~y)z =12 2z ¢ L(Con <Type>)
i

We recall from section 3.2.4 that we assume that for conditions sub-
stitution has been defined in the customary way. Without proof we state

the following obvious property.

Lemma 4.7
For all x,y ¢ L(Var <BEwv,¥ame,Type>)}, s ¢ L(Stat <Enw>),
¢ ¢ L(Expr <Bnv,Prio,Type>) u L{Cond <Type>):

-~ if x ¢ USE(s) u ASSN(s), then (x + y)s = 5.

- if x ¢ USE(c), then (x «+ y)c = ¢ .
0

The following lemma relates the condition transformers of a statement
S and a statement S' obtained from § by systematic replacement of a

variable x by a variable x'.

Lemma 4.8

Let e ¢ Env, S ¢ L(Stat <e>).

Let x,x' ¢ Name such that + —new(x,e), F new(x',e).
Let &' ¢ Env such that | rep(e,e’,x,x").

Let S' = (x <« x")8. ‘

1. Wpe(S) = (x' «x) o wpe,(S') o {x «x") .

¥

2. wlpe(S)
0

(x' «x) o wlpe,(s') o {x <« x’} .

116.

Proof

By induction on the composition of statements. Details omitted.

]

The following diagram may help in understanding lemma 4.8:

(x' <« x) '

p ¢ C - {p' € Coe
wp (S).} .T wp 1 (8)
L - - 1
q € Ce' (x < x") q € Ce'

Lemma 4.8 will now be used to prove the following lemma, which states
that the local variable of a block may be replaced by a different
variable without affecting the meaning of the block, provided that the
replacement does not lead to violation of the condition on redeclara-
tion. This replacement is comparable to the a-conversion of lambda

calculus.

Lemma 4.9
Let e € Env, y € Name such that } new(y,e).
Let |[var x: t | § 1l ¢ L(Stat <e>).

lowp, (Il var x: ¢t | s 1D var y: t | (x < y)s 11) .

"
3

®
~~
—

]
£
1

T
[

—

—

2. wlpe(l[var x: t | 8 11)
O

var y: t | (x <« y)}sS 1)

Proof
We only prove 1.

Let e = Ext(e,[x,t]D), e, = Ext(e,[y,tTD). Let q € C,.

wpe(l[var x: t | S 1l)q

{proposed definition in section 4.1.1}
wpe](S)q

{lemma 4.8}

(y < x)wpez((x < ¥)8)(x < y)q

117,

{x ¢ USE(q), lemma 4.7}

vy « X)Wpez((x < ¥)S)q
{y e INIT((x+y)S) Vv y ¢ USE((x+y)S), y ¢ USE(q), lemmas 4.5, 4,7}

Wpe, ((x < y)8)q

{proposed definition in section &4.1.1}

wpe(|[var y: t | x < ¥v)s 1Dq .
n

4.1.3. Blocks with the possibility of redeclaration

Finally we define the semantics of a block [var x: t | 8]I

e L(Block <e0>) without the restriction } new(x,eo). In this case the
proposed definitions of section 4.1.1 are not directly applicable as
they could result in name clashes between the local x of a block and a
nonlocal x. Considering the purport of lemma 4.9, viz. that within
certain limits the meaning of a block is not affected by systematic

replacement of the local variable, we are led to the following solution:

Definition 4.10 {wp and wlp for blocks}

For all e, ¢ Env, Il var x: t | $ 11 € L(Block <ey>) such that
x € INIT(S) v x ¢ USE(8):

i. wpeo(l[var x: t l's1h (Mg « 830 | wpel((x <~ y)8)qQ) ,

#

2. wlpeo(l[var x: t | § J1) = (Aq ¢ ce0 | Wlpe]((x<— M8 ,

where, in both cases,
y ¢ Name such that b new(y,eo) .

e, = Ext(eo,[y,t]n) .
]

Note

It can easily be shown that the theorems of sections 3.2.4 and 3.3
also hold when the kernel language is extended with blocks as defined
in this section. We will not give these proofs, but we will freely use

the theorems where appropriate.
0

118.

4,1.4. Proof rules

In this section we present some proof rules for blocks of the form

i var x: t ‘ § 11, and we prove soundness of these rules. The first
two pairs — i.e. (TR5,PR5)} and (TR6,PR6) ~ are intended for the case
that x has also been declared in some surrounding block. Rule PR5 is
essentially the block rule proposed by Hoare in [Hoare 2], It makes
use of systematic replacement in 8 of the variable x by a fresh
variable x'. Soundness of PR5 follows trivially from definition 4.10.2,
The obvious disadvantage is that its use requires substitutions in the
program text. Rules TR6 and PR6 do not have this disadvantage; they
are based on renaming of the nonlocal x. PR6 is essentially the block
rule proposed by Lauer [Lauer]; it is also discussed in [Cook 2]. In
the absence of redeclaration rules TR5 and PRS5 can be simplified to

TR7 and PR7, respectively.

Definition 4.11 {TR5, PR5, TR6, PR6, TR7, PR7}

For all e € Env ,
Il var x: t | 8 1| ¢ L(Block <e>) ,

t

x' ¢ Name such that F new(x',e) ,

e'

€ Enp such that } rep(e,e',x,x") ,
p,q € L{Cond <e>) ,
¢ ¢ L(Cont <e>), ¢' ¢ L(Cont <e'>) ,

p' = (x+x")p, ' = (x+ x"), 8" = {(x <« x")§ ,

the proof rules TR5, PR5, TR6, PR6, TR7, PR7 are defined by:

ee x":s t | [pl 8" [q]
TRS5.

o

| [p] i1 ggg x: t | s Iq]

crx':t | {p} s {g

PRS
c | {p} Il var x: t | s 11 {q}
' ex: t | [p'l s lq']
TRS6.
e | [p) 1 var x: £ | s 11 [q]
et voxi t | {p'} s {q"}
PR6

[¢]

| {p} Il var x: t | 5 11 {q}

119,

cvx:t| [p]ls [q]
TR7 .» provided | new(x,e)
c | Ipl Il var x: t | 8 11 [q]

cvx:t | {p}s {q}
PR7 , provided |} new(x,e)
| {p} I[var x: t | s 11 {q}

0

0

Theorem 4.12

1. Tsound0 (TR5)

2. Psound0 (PR5)

3. TsoundO (TR6)

4. Psound0 (PR6)

5. TsoundO (TR7)

6. Psound0 (PR7) .
g

Proof
We only prove 1 and 3. The proofs of 2 and 4 are similar.

The proofs of 5 and 6 are special cases of 1 and 3, respectively.

1. Let e, = Ext(e,[x",t]).

1 D
TvalidO(c b x": t | [p] 8" [qD)
= {definition 3.48.2.2}
bp e > x'st | p=wpel(S')q
= {definition 4.10.1}
FD cex':t|p= wpe(l[var x: t | S Il)q
= {x" ¢ USE(p = Wpe(l[var x: t | S 11q)}
FD c| p= wPe(|[var x: t | S 1l)g
= {definition 3.48.2,2}

TvalidO(c | [p] I[var x: t | s 11 [q]) .

3. TvalidO(e' & x: t | [p'] S [q']

¥

{theorem 4.12.1 with x and x' interchanged}

TvalidO(c' | [p'] I[var x: t | s 11 [q']

120.

{definitrion 3.48.2.2}

FD e’ | pt wwpe,(l[var x: t I's 1hq’

{definition 4.6.7.1}

i

bpe' I o' =wp, ((x+x") Il var x: £ | 5 1Dq"

{} new(x,e')}

Fpel & «xp' = &'« xwp,, ((x « x') I[var x: t ['s 1q'

]

{definition p',q"; lemma 4.8.1}

bp e | p=wp (Il var x: £ | 5 1l)g

{definition 3.48.2.2}

TvalidO(c | [p) ![var x: t [s 1t [qD) .

121,

4,2, Abstraction and application

4.2.0. Introduction

Another aspect of the procedure concept we want to study in isolation
is parameterization. To this end we introduce in this section a new
language construct, called abstraction, which somewhat resembles the
lambda expression of lambda calculus and the ALGOL 68 routinetext, An
abstraction is a comstruct like (com x: t,; res y: t2 | 8), which can
be considered as a statement § parameterized with regard to the vari-
ables x and y. We consider two kinds of parameters which are generally
known as constant [Brinch Hansen] and result parameters [Wirth 2]1. An
abstraction may be applied to actual parameters of appropriate kinds.
Such an application is a new form of statement; its meaning is that of
a block obtained in a systematic way from the abstraction and the

actual parameters.

In section 4.2.]1 we define the syntax of abstractions and applications,
partly by means of an attribute grammar and partly by means of the
functions USE, ASSN, and INIT, In section 4.2.2 we define the semantics
by means of the parameterized condition traunsformers pwp and pwlp. In
section 4.2.3 we present some proof rules for applications and we prove

their soundness,

4,2,1, Syntax

In this section we define the syntax of abstractions and applications.
We do so by presenting some extensions to the attribute grammar for the
kernel language given in section 2.3.2. These extensions do not yet
completely define the syntax. An additional context condition will
tentatively be expressed by means of the functions USE, ASSN, and INIT.
Eventually it will be incorporated into the attribute grammar for the

source language. The extensions follow:

Operations on Names, Type, and Tyves

Mts: Names * Type ~ Types

Mes ([nlp,t) = [t];
Mts(nsl\glnsz,t) = Mts(nsl,t) ® Mts(nsz,t).

122.

{Informally, Mts(ns,t) yields a sequence the elements of which all

equal t and the length of which equals the number of names in ns.}

Nonterminals

{Abstr <Types,Tyves>, Pdecs <Decs,Types>}

Terminals

!l "

{"con","res"}

Grammar rules
Al. Stat <e> t:= Abstr <ts,,ts,> { Exprs <e,ts;> 3
Vars <e,ns,ts,>)=

(A n: Name | #N (n,ns) < 1)

A2. Abstr <ts > :3= (con Pdecs <d;

1288, res Pdecs <d2,t52>

[pt8y> 3
| stat <e>) m
(A n: Hame | # (n,d, Wdy) < 1) .

e, = Ext(Empty,dl\Q)dz)

A3. Pdecs <d0,tso t:= Pdecs <di,ts]> , Pdecs <d2,t32>]
dg = 4, W4, v
t8g T t5; B¢ 15
A4, Pdecs <d,ts> ::= Ids <ns> : Type <t> @
d = [nd,t]D
= Mts(ns,t)
Explanation

An abstraction ~ i.e. an element of L(Abstr <Types,Types>) - is a con~
struct of the form (con pd]; ISE.sz | §), where pd, and pd2 are
parameter declarations — i.e. elements of L(Pdecs <Decs,Tynes>)~ and $
is a statement. In the parameter declarations the formal parameters and
their types are listed. By means of the symbols "con" and "res" the
formal parameters are classified as constant and result parameters,
respectively. Their names must be mutually different. These names are

the only variable names that may occur in S. In other words, 8 has no

123,

access to nonlocal variables. Below we will formulate some additional
restrictions. An abstraction may be applied to actual parameters of
corresponding kind and type. An actual constant parameter is an expres—
sion; an actual result parameter is a variable. Actual result parame-
ters must be mutually different.

g

Example
The following is an element of L{Stat <Env>) as defined by the exten~

sions above:

(con b: bool,x,y: int; res z: int 1'32 b>z:=xy [l 9b >z = y-x fi)
(true,3,a+4;c)

a

Abstractions have to satisfy some additional conditions, viz. that the
constituent statement does not assign to the constant parameters, and
that it initializes the result parameters. Like we did for blocks, we
will formulate these conditions in terms of the functions USE, ASSN,
and INIT. Before we do so we have to extend the definitions of these
functions to applications. As preparatibn for section 4.2.2 we also

extend the definition of substitution.

Definition 4,13 {UGE,ASSN,INIT}
For all A(El""’Em;V]”"’Vn) ¢ L(Stat <Env>):

i

m
U USE(E,) .
i=1

2. ASSN(A(El,...,Em;v],...,vn)) = {v],...,vn} .

1. USE(A(EI,...,Em;v],...,vh))

m
3. INIT(A(E],...,Em;vx,...,vn)) = {vl,...,vn} \ .U

USE(E,) .
i=1 .
0

Definition 4.14 {(x <« y), substitution}

For all x,y € L(Var <Env,Name,Tyve>),
A(El”°"Em;V1""’Vn) € L{(Stat <Env>):

(x « y)(A(EI,:..,Em;v],...,vn)) =

= A{(x « y)El,...,(x + y)Em;(x « y)vl""’(x . y)vn) .

124,

Note that no substitution inside the abstraction A is needed because

its statement does not access global variables.

The additional context condition for abstractions is:

: . . . _— . .
For each abstraction (con %yt tl,...,xm. tm, res y,: tl,...,yn. tn [S):

1. {x],...,xm} n ASSN(S) = § .

2. {y],...,yn} = INIT(S) .

4,2,2, Semantics

In this section we will define the semantics of abstractions and
applications. For the sake of simplicity we will restrict ourselves to
abstractions of the form (con x: t;; res y: t, | §), i.e. to abstrac-
tions with one constant parameter and one result parameter only.
Generalization to more parameters is straightforward.

It is our intention that the application

(con x: t; res y: t, | 8)(E;v)

is semantically equivalent to the block

I{ var x: ty, Vi L, | x :=E; 83 v :=y 11

or rather, to the block
I[var x*: t, ¥t | x
where x' and y' are fresh variables and §' = (x,y < x',v")8.

{Note that this block satisfies the context conditions of section 4.1.1.}

This amounts to the identity
wp, ((con x: t ; res y: t, [8)Y(Esv)) =
= (x' + E) o Wpe,(S') o (v y') .
For the language considered thus far this identity could well serve as
: |
definition, but later one we will also encounter isolated occurrences

of abstractions, as well as applications of one and the same abstrac-

tion to different actual parameters. To cdope with such cases we must

125.

define the semantics of an abstraction in isolation. Since an abstrac~
tion can be considered as a parameterized statement it will not come
as a surprise that we define its semantics by means of a parameterized

condition transformer. As preparation we give the following definition.

Definition 4,15 {Pe, EPe}

For all e ¢ Env:
1.P, = L(Exprs <e,Types>) x L(Vars <e,Names,Types>) - T, -
2. £, 1is the standard order on P.

P
0 e

Theorem 4.16
For all e ¢ Env: (P_,&,) is a cel.
puidas =P,

a

Proof
Immediately by theorem 3.10.2 and theorem 3,36.
0

Definition 4.17 {pwp, pwlp}

For all e ¢ Env, (com x: t; res y: t, | S) e L(Abstr <e,Types,Types>):

Let E = L(Expr <e,Pri9,t1>) .
V= L(Var <e,Name,t2>) s
x',¥y" ¢ Name such that | new(x',e), F new(y',e), x' # y' ,
o' = Ext(e,[x',t]}D o/ [y',tzln) s
8' = (x,y « x',¥y")8 .

The functions

PWP,,PWlp, € L{Abstr <Env,Types,Types>) + P,

are defined by:
1. pwpe((con X: t;5 res yi t, | 8)) =
= XEe¢E vel] (x" <« E) cwp_,(8") » (v+y)) .
2. pwlpe((ggg X t); res y: t, | 8)) =

= AEe¢E, vell| (x'+E)o wlpe,(s') o (v+yvy")) .

126.

Definition 4.18 {wp, wlp for applications}

For all e ¢ Fnv, A(E;v) e L(Stat <e>):

1. wPe(A(E;V)) = pre(A)(E,v) .

2. wip (A(E;v)) = pwlp (A)(E,v) .
0

Note

As in section 4.1.3, we note that the theorems of sections 3.2.4, 3.3,
and 4.1 also hold when the kernel language is extended with blocks and

with applications as defined in this section. Proof omitted,

o

4.2.3. Proof rules
In this section we present some proof rules for applications and we
prove their soundness. Given an abstraction

(con x: t,; Ies yi t, I $)

and a correctness formula

x: £, ¥yt | [ql(x)]] [qz(X,Y)]
we Want to be able to derive correctness formulae for particular
applications, e.g.

¢ | [q(B)] (com x: t5 res y: t, | $)(E;v) [q,(E,W],
where the actual pre- and post-conditionsg q‘(E) and qZ(E’V) are obtained
from the formal conditions ql(x) and qz(x,y) by substitution of the
actual parameters E and v for the formal parameters x and y. Substitu~

tions of this kind are not generally applicable, as the following

counter example, adapted from [Hoare 3], shows:

Example

Consider the abstraction

{con x: int; res y: int | y 1= x+1) .

From the assignment axiom TA3 it follows that

127.

b

o X! int, y{ int | [truel y s= x+1 [y = x+11 .
0

For the application

(con x: int; res y: int | y t= x+1)(z;2)

substitution would yield the correctness formula

¢ | {truel (con x: int; res y: int | y 1= x+1)(2;2) [z = z+1]

which is not a valid formula,

0

The problems are essentially due to the fact that substitution is not
a reversible action. To avoid them we present two pairs of rules. One
pair embodies the simple substitutions above but is only applicable

under a certain disjointness condition for the actual parameters. The
other pair is slightly more complex, but generally applicable. Sound-

ness of both pairs can easily be proven.

Definition 4.19 {TR8, PR8, TRY9, PRY}

For all e € Env ,
(con x: t; res y: t, | 8) ¢ L(Abstr <Types,Types>) ,
E ¢ L(Expr <e,§?io,t]>) R
v ¢ L(Var <e,Name,t,>) ,
¢ ¢ L{Cont <e>) ,
C ¢ Name such that } new(C,e) .
eq = Ext(Empty,[x,tl]D D/ [y,tZ]D) s v
9,9 € L(Cond <e0>) such that USE(ql) < {x}
{below we write ql(x) and qz(x,y} to indicate upon which
entities q; and 45 depend}

the proof rules TR8, PR8, TR9, PRY are defined by:

®:t,, yi t, | [q,®]1 5 [q,(&x,]
TRS8, ! 2 ! 2

¢ | [q(B)1 (com x: t3 res y: ty | 8) (E;v) [q,(E,"]

provided v ¢ USE(E).

128.

Xt by, ¥i ot | {qi(x)} s {qz(x,y)}

PRS8. .
c | {q(®)} (con x: t; res y: t, | sy(E;w {qy(E,0)}

provided v ¢ USE(E).

xi to, y: oty | [4,0] 5 [, (x,y)]
TRO. 1 2 1 2

e p Crt, | [E=Ca ql(C)] (con x: t,; res y: t, | 8)(E;v) [qz(C,v)]

1 1’

xt b, v t, | {q,(x)} 8 {q,(x,y)}
PRO. 1 2] 2

ev C:t, | {E=C a q,(©)} (con x: t; res y: t, | 8)(E;v) {q,(C,v)}

i 1*

0

Theorem 4.20

1. Tsound0 (TR8) .
2. Psound0 (PR8) .
3. TsoundO (TR9) .
4. Psound0 (PR9) .
1 .

Proof
We give a combined proof of 1 and 3. The proof of 2 and 4 is similar.

Let x',vy' ¢ Name such that F new(x',e), F new(y',e), x' # v', x' # C,
y' # C.

i

Let eé Ext(Empty,[x’,tl]D QJ [y’,tz]D),
y = Ext(e,lC,r,1),

e, = Ext(e],[x',t]]D O/ Lyt .

]

e

i

Let X ¢ L(Expr <e],Prio,t]>) such that v ¢ USE(X) ,
8" = (x,y+x',y")S.

TvalidO(x: t, y: t, | [ql(x)] S‘[qz(x,y)])

{definition 3.48.2.2, definition 3.33}

q; () Eeo wpeG(S)qz(x,y)

ql(X') Eev Wpet(s‘)Q2(x"yt)
0 0

129.

m q, ") Eez Wez(s')qz(X',y') .

Consider

'wpel((con X1 t,; Tes y: t, | 8) (E;v))q, (X,v)
{definitions 4.18.1, 4.17.1}

!« B, (SO« ¥, Ew)

L}

{v £ USE(X), lemma 4.7, definition 4.6.10.1}
(x" « E)wp, (8")q,(X,y")
2
3,, {corollary 3.40.1}
2
(x' « B)wp_ (8")(x' = X A qz(x',y'))
€2
= {ASSN(S') n USE(x' = X) = @, lemma 4.5.5}
(x' « E)(x' = X awp, (8")q,(x",y"))
2
3, {(1), theorem 3.42.1}
2
(x' « BE)(x' =X A q]{x’))
= {x' ¢ USE(X), lemma 4.7}

E=X A q](E) .

Under the assumption that

TvalidO(x: t, y: t, | [q}(x)] s [qz(x,y)]

holds, we have proven

E=X A ql(E) gez wpel((con X: t,, res yi t, | S)(E;v))qz(x,v)

from which follows
(2) kye» ity | (E=X) A q(E)

= Wpel((gggvx: t), res y: t, | 8) (E5v))q, (X,v) .

We are still free to choose X, subject to the condition v ¢ USE(X). -

Two choices are of interest:

130.

a. If we choose X = E, (2) can be simplified to

Fp e | qy(B) = wp_((con x: £, res y: t, | 8)(Esv))q,(E,v) ,

D
i.e.

TvalidO(c | [q,(E)] (com x: t, res y: t, | $)(E;v) [q,(E,v)D)

provided v ¢ USE(E), hence Tsound0O (TR8).

. If we choose X = C, v ¢ USE(X) is satisfied, and we obtain from

(2)

bp e > Coot | (E=C) & q, (B)

D
= wpeli(ggg x: ty, res y: t, | §)(E3v))q,(C,v)

or equivalently:

bpe® Gty | (E=C) A q,(©)

D

= wpel((gggvx: t), res y: t, | S)(E;v))qz(c,v) s

i.e.
Tvalido(c & C: t

| [E=C A q;(©)] (con x: t, res y: t, | $)(E;v) [q,(C,]D) ,

hence Tsound0O (TR9).

131.

4.3, Parameterless recursive procedures

4.3.0. Introduction

The third aspect of the procedure concept we want to study in isolation
is recursion. In order to concentrate on this subject we will temporar-
ily = i.e. throughout section 4.3 =~ ignore other aspects of the
language definition, such as precise syntax, scope rules, nested
declarations, parameter mechanisms, etc. We stress the point that the
constructs considered in this section are not part of the source
language. They only serve to study the effect of recursion on the
structure of semantic equations, proof rules, and soundness proofs.
Accordingly, the scope of definitions and theorems concerning these

constructs is limited to section 4,3.

We will study programs of the form

Py = SpseeesP = Sy | s

where the comstructs p; = S, (i: 1 £ i g k) are declarations of
parameterless and possibly recursive procedures. We omit a precise
specification of the syntax of these programs, Suffice it to say that
the names p; are elements of ¥gme, that they are mutually different
and also different from variable names, that they may occur as state-

ment in SI""’S S, and that the statements S],...,S 8 contain

k? k?
neither blocks nor abstractions. We omit the specification of environ-

ments for wp, wlp, C, T, etc.

In section 4.3.1 we define the semantics of these programs. In section

4,3.2 we present some proof rules and prove their soundness.

4,3.1. Semantics

It is our intention, roughly speaking, that a statement p; has the
same condition transformer as the corresponding statement Si' The
condition transformer of a statement should therefore be defined
relatively to a set of procedure declarations. This can be achieved by
means of an extra argument § for wp and wlp, being a mapping from

procedure names p; to condition transformers of the corresponding

132,

statements Si' As the procedures may be mutually recursive the § cor-
responding to a set of procedure declarations will be determined by
means of fixed point techniques. The intentions just sketched are
captured by definitions 4.21, 4.23/24, 4.26. In their structure these
definitions much resemble those encountéred in denotational semantics;

see e.g., [de Bakker].

Definition 4.21 {4}

1. A= Name ~ T .

2. B, is the standard order on A.
0
Theorem 4.22

(A,£,) is a cel,

0

Proof
Immediately by theorem 3.10.2 and theorem 3.36.
D I

As already said the definitions of wp and wlp will be extended with an
argument § ¢ A. For the statements of the kermel language this argument
is largely ignored, but it is essential for the procedure statements.

We will demote the extended versions by wp’ and wlp', respectively.

Definjtion 4.23 {wp'}

The function wp' e L(8tat) » (A »+ T) is defined by:

1. wp'(abort)s = (A\q ¢ C | false) .

2. wp' (skip)6 GgecC| q .

3. wp'(v := E)§ = (v« E) .

4, wp’(SI;Sz)é = (wp'(Sl)G) s (Wp'(sz)ﬁ) .
5. wp'(if B, > 8, 0 ...0 3B s f£fi)s =
(hgec | [Vi| 1gisn | B;1 AIAL | Isisa | B; = (wp'(8,)8)ql) .

6. wp'(do By > 8, 0 ... 0 B >5 od)s =uF,

133.

where F = (Af e € » C | (g ecC | (IVi | 1sisn | B,1 Vv @)
A AL | 1sisn | By ~>(wp'(Si)6)f ql)) .
7. wp'{p)8 = 8(p) .
0

Definition 4.24 {wip'}
The function wlp' ¢ L(Stat) » (A » T) is defined by:

1. wip'(abort)d = {(Ag ¢ C | true) .

2. wlp'(skip)d = (Age C | @) .

3. wip'{v = E)¢$

(v « E) .

4, wlp‘(SI;SZ)S = (wlp'(SI)S) ° (wilp'(5,)8) .

5. wlp'(if By »s; 0 ... 0 B ~»8 fi)§ =

(g ec| [Ai] 1gisa | B, = (wlp' (5)8)) D)
6. wlp'(do By > 8, 0 ... 0 B »5 od)§ =G,
where G = (Af € C », C | Gqec | (Vi | 1giza | B,1va
A AL | 1sisn | B, = (wlp'(8)8)f q])) .

7. wlpt(p)s = 8(p) .
[

As with definitions 3.37 and 3.38 in chapter 3, definitions 4.23 and
4.24 above are well-formed only if F and 6 are continuous, which in
turn depends on continuity of wp' and wlp'. That this is indeed the

case is stated in the following theorem.

Theorem 4.25

{, For all § ¢ L(Stat), § ¢ Name » (C *ge C):
1
wp'(S)§ ¢ C *ue c.

If § is of the form do B, + 8, f...0 B > S, od, and F is as in
definition 4.23.6, then

Fe(C i C) Tue (c 4o c) .

134,

2. For all § ¢ L(Stat), & ¢ Name ~ (C,éac C):

wip'(8)8 ¢ C *de c.

If S is of the form §2_B] > 8, 0 ...10 B +-Sn od, and G is as in
definition 4.24.6, then

(c~>, 0.

Ge(C a&c) de

+dc

0

Proof
We only consider 1.
The proof is by induction on the composition of S. Apart from the §
argument the first six cases are identical to those in the proof of
theorem 3.39.1, Therefore we only consider the case that S is a
procedure statement.
1.7. § :: p
wp' (5)8
= {definition 4.23.7}
8(p)
€ {8 € Bame > (C Yue C)}

C~» C,
, uc
O
For a program p; = Sl""’pk = Sk | s w% will define the condition
transformers wp and wlp in terms of wp' and wlp' respectively, where

the argument § ¢ A depends on the procedure declaration part.

Definition 4.26 {wp and wlp for Pp = Spseaspy = Sy I s}

1.owplpy = S;5eeeupy = S | 8) = wp'(8)8,

where § is the function {(p1,¢1),..,,(pk,¢k)},
(ml,...,mk) = u(@l,...,¢k), and, for i: 1 < i < ks

Qi = (Awi,...,mé e C Te c | WP'(Si}{(pl’wi)""’(?k’mé}}) .

135.

2. wlp(p, = S;5eeespy = S | 8) = wlp'(8)s,

where & is the function {(p1,¢1),...,(pk,¢k)},
(@1,...,¢k} = v(?l,...,wk), and, for it 1 s i < k:

¥oo= fyeensty € C oy € wlp' (8D 1,4, 0u (R4 D)
0

Again, these definitions are well-formed only if the functions o and
Wi are upward continuous and downward continuous, respectively. This

is assured by the following theorem:

Theorem 4.27
For all S ¢ L(Stat):

1. (A@),...,@k eC> ¢C | yp’(S){(pI,Ql),...,(pk,@k)})

k
e (C *ue c) e (C e c) .

20 (Myyennyty € €2y C | wip' ($){(pysd)seees (Pt) 1)

e (C *de C)k +, {C >

de de o .

O

Proof

We only prove 1; the proof of 2 is similar when dual versions of
theorems 3.24 and 3.26 are used.

The proof is by induction on the composition of S. In the scope of

Pyseres € C > Cowe will wyrite & for {(pl,m]),...,(pk,mk)}.

1.1 - 1.3, 8 :: abort, S :: skip, § :: v := E

By definition 4,23,1-3:

for all Praeees®y € c Tue C: wp'(S)6 ¢ C +ﬁc‘c and independent
of Proeetsy.

So, by theorem 3.24.1:

k
¥
(R¢k""’¢k e C e q | wp'(8)6) ¢ (C *e C) * e (c e c) .

136.

H. For all i: 1 €1 £ 2¢

k
1
O | wp (s;)8) € (C *e O 5. (€2, 0 .
(gpseeesp € C o C | wp'(8)8)
= {definition 4.23.4}
(X¢],...,¢k eC» ¢C | (wp'(S])é) o (WP'(SZ)ﬁ))
€ {H, theorem 3.26.3}
k ;
(o +hc © Tae (Zue ¢ .
1.5. 8 :: if B > 8, 0 ... 0 B »s fi
H, For all i: |1 £ 1 < n:
k
1
(Agysevesp € €2 C | wp'(8)8) e (C» C)F = (€ O
(A@yseensp € G C | wp'(8)8)
= {definition 4.23.5} ‘
O%,“.wkec~%cc|
(A ¢ ¢ | [\Vi] 1gizn | B,]
A LAL | 1giza | 7 B, v (wp'(5,)6)q]
)
)
¢ {H, repeated application of theo}em 3,26}
k
(C %uc C) *uc (C +llC C)
1.6. 8 :: do B >80 ...0B »8 od
H. For all i: 1 £ 1 < n:
k
\
(A9 yeesp € Co € | wp (s))8) e (C» €7 > (C» ©) .

We have to prove continuity of

(kml,...,wk € C "uc Clu@GieT] (Agec | A(@l,...,gk)))) .

1.7.

137.
where A(@l,...,@k) stands for

(IVi | 1sisn | B,1vaq)

A DAL | 1sisn | B, = @' () 1(p,50,) 5000, (ps0) D) £ab) .

- ® . . k
Let <¢j>j=0 be an ascending chain in (C "ue c) .

(opseeerpy €€ € [uOE €T | (g eC Ao, enng) GOy 5
= {B-reduction}
AMEeT | Oqec | A, 7.
u(df e T | (A\qg e C | (o #;00)
= {H, repeated application of 3.26}
AMeT| (igec | .0 AG,
BOAE e T | (g e | Uy AGON
= {definition lub}

pQAf e T | Ho

= {definition lub}

Oaec | AG)
u(y Af e T | Gaec | AG)

= {continuity u, see [de Bakker, theorem 5.11]}
o vQE e T | Gaec | AGH)

= {B-expansion}

jgo (AQI""’@kyﬁ C *ucC | (Af €T | (AgeC ’A($1,~--,¢k))))(53) .

S 1= p,
P

(Awl,...,mk €eC> C | wp'($)8)
= {definition 4.23,7}

(@ seves0 € C > C | 6(pj))
= {§ = {(p],wl),...,(pk,wk)}}

(?\‘Pl:”*a(pk € C _’uc C I ‘Pj)
e {theorem 3.24.2}

k

(v e C): e (c ~ue c) .

138.

As already said it is our intention that a statement p; has the same
condition transformer as the corresponding statement Si’ That such is

indeed the case is stated in the following theorem,

Theorem 4.28
Let Py = Sl,...,pk = Sk | 8 be a program.

1. Let & be as in definition 4.26.1,
For all i: 1 < i <k: wp'(p;)é = wp'(Si)é.

2. Let 6 be as in definition 4.26.2.
For all i: 1 £ i < k: wlp'(pi)é =£wlp'(Si)6.
D :

Proof
We only prove 1; the proof of 2 is similar.

Let i: 1 £ 1 € k.

wp’(pi)é

{definition 4.23.7}

6(pi)

{definition 4.26.1, §}

5

{fixed point propery}

i

LFRCIPRERIN

#

{definition 4.26,1, @i}
k4

wp'(8,)6 .

0

The following examples illustrate how certain recursive procedures

relate to statements of the kernel language,

Examples

1.

wp(p =p | p)
{definition 4.26.1}
wp' (p) {(p,»)}
{definition 4.23.7}
¢
{definition 4.26.1}
(o' | wp'(p){(p,9")H
{definition 4.23.7}
u(re' | o")
(Aq | false)
{definition 4.23.1}
wp' (abort){(p,p)} .
wp(p = if B, >S5 p0 ... 0B >5S;0p
§=lvi]l 1gisn | B,] » skip fi |
{definition 4.26.1}
wp' (p){(p,0)}
{definition 4.23.7}
9
{definition 4.26.1}
uOp' | ' GE .o. ED{(y0")D)
u@o' | (g | (Vi | 1sisn | B v IVi | 1sisn’| B.D)
A IAL | By = wp'(S;5p){(p,0")}q]
A (A IVi | Isisn | B.1 = wp' (skip){(p,9")}0)))
{definitions 4.23.4, 4.23.7, 4.23.2, prop. log.}
p(ho' | (aq | [AL | 1gisn | B, = wp'(5;){(p,9")} 0" q]

A (Vi | 1gizn | B, va)))

139.

140.
= {p = u(xg" | glo",9")) is equivalent to ¢ = u{de¢' | gls,0")),
see [de Bakker, p. 1411}
uQo" | (g | [AL | 1sisn | B, = wp'(5){(p,9)} ¢"q]
A (IVi | 1gisn | B.lva))
= {definition 4.23.6}
wp'(do B, 8, 0 ... 1 B »5S od){(p,0)}

O

Note

As the derivation in the second example is independent of the structure
of the statements Si’ it follows that the stated equivalence also holds

in cases where the Si contain occurrences of p.

A

4.3.2, Proof rules

In this section we study proof rules for programs involving parameter—
less recursive procedures. As already mentioned we ignore syntactic
issues etc. Since statements containing procedure variables can only
be interpreted relatively to a set of procedure declarations the
notions of validity and soundness have to be redefined, which forces
us to reconsider the axioms and proof rules of PC, and TC,. Apart from
‘these we will study two kinds of proof rules: for noanrecursive proce-
dures simple rules relating a correctness formula for Si to one for
the corresponding Py suffice; for recursive procedures certain induc-
tion rules are required. As far as the treatment of induction is con-
cerned there is an essential difference between the partial and the
total correctness cases. The partial correctmess induction rule is
based on greatest fixed point induction, whereas the total correctness
induction rule is based on mathematical induction and the fixed point
property. The two cases are treated in sections 4.3.2.1 and 4.3.2.2,
respectively, Section 4.3.2.3 contains a short comparison of the two

induction rules.

141,

4,3.2.1. Proof rules for partial correctness

In this section we discuss the partial correctness logic for programs
involving parameterless recursive procedures. We begin with defini-

tions of validity and soundness.

Definition 4.29 {Pvalidl}

On “partial correctness formulae" x "procedure declarations" the

predicate Pvalidl is defined as:
1. Pvalidi(c | q, (py=S se0spy=S) = by | q .
2. Pvalidl(c | {ql} S {qz}, (p]=Sl,...,pn=Sn)) =
FD c | q, w~w1p'(S){(pl,¢]),...,(pn,¢n)} -

where (¢],...,¢n) = v(W],...,Wn) and ¥ise..,¥ are as in defini-
tion 4.26.2.
il

Definition 4.30 {Psound!}

"X"

On "partial correctness proof rules procedure declarations” the

predicate Psoundl is defined as:

Psound] (fl,...,fn . pd) =
g

(a i 1si<n | Pvalidl(f,,pd)) = Pvalidl(g,pd) .
0

The following theorem states that the partial correctness logic PC,

of chapter 3 is also sound with respect to these revised definitions:

Theorem 4.31

1. (A ac AXPCQ: Pvalidl(a, (?]wsl,...,pn=8n)))

2. (At e Pr,. 1 Psoundli(r, (p1=S],...,pD=Sn))) .

PCO

O

Proof
Similar to that of theorem 3.52. Details omitted.
g

142,

In addition ro PrPCO we need rules to derive properties of procedure
statements. The following theorem states the soundness of a rule for

use with nonrecursive procedures.

Theorem 4.32

(o i| 1sisn | Psound! fc | {q;} S; {ay} s (p=S ,eeeyp =S)Y
c | {q]} s {qz}

]

Proof
Immediately by definitions 4.29 and 4.30 and by theorem 4,28,2,
O

For recursive procedures this rule is insufficient; some form of
induction is required. In the literature [e.g. Hoare 3, Apt 1] an

induction rule of the following form is sometimes used:

e | {q]} D {qz} FPCO ¢ | {q]} S {qz}

e | {ql} p {qz} ’

It should be noted that the form of this rule is misleading. Actually
it is not a proof rule since its premiss is not a correctness formula
but a meta-statement about the derivability of one correctness formula
from another one by means of the axioms and proof rules of PC0 (see
e.g. [Apt 2] for a discussion). Nevertheless we will adopt the above

form, but we will interpret it as the following theorem.

Theorem 4,33

e | Lo p gy by o | fay) 8 fay)

then Pvalidi(e | {ql} P {qz}, p=28).
D .

Note

For simplicity we restrict ourselves to a single procedure., The results

can easily be extended to programs with more procedures.

0

143,

The proof of this theorem requires some extra provisions. The conclu~
sion of the theorem is based on the interpretation of the condition
transformer of p as v¥, viz. FD e | q, = (v?)qz. In order to prove

this result by greatest fixed point induction we have to show that
Ao | hyelay=eg) =yec|aq =¥wg) .

If we want to derive this from the premiss of the theorem it follows
that we also have to consider soundness of PCO with respect to other
interpretations ¢. Therefore, in order to prove theorem 4.33 we first
introduce different notions os validity and soundness and we show that

PCO is sound in terms of these notions as well.

Definition 4.34 {Pvalid2}

On "partial correctness formulae"x (C *de C) the predicate Pvalid2 is

defined as:

1. Pvalid2(c | q,4) =Fpc | q.

2. Pvalid2(c } {ql} s {q2}’¢) = FD c I 9 =»w1p'(S){(Ps¢)}q2 .
0

Definition 4.35 {Psound2}

On "partial correctness proof rules" x (C *dc C) the predicate Psound?2
is defined as:
Psound? (f],...,fn . ¢) =
b4

(Ai] Isisn | Pvalid2(f;,¢)) = Pvalid2(g,¢) .
O

Theorem 4.36
1. (Aac AXPCO’ o e Cay C: Pvalid2(a,¢)) .
2. Ar e PrPCO’ ¢ e C "de C: Psound2(r,¢)) .
a
Proof

Similar to that of theorem 3.52. Details omitted.

O

Y44,

Definitions 4.34 and 4.35 and theorem 4.36 enable us to prove theorem
4,33:

Proof of theorem 4.33

¢ | {q;} p {qz}»PPCO c | {ql} s {q,}
= {theorem 4.36}
(A ¢ | Pvalid2(c | {q;} p {q,},4) = Pvalid2(c i {q;} s {qy},4))
= {definition 4.34}
@4 | (el a=wvip' (1,4l
R
(hy c |) = wip' (9){(p,4)Tay)
)
= {definition 4.23.7, definition 4.26.2, ¥}
@y | Gpelaq =da) = Gyc|aq =¥
{kp ¢ | 4, = (\q | true)q,, g.£.p. induction, admissibility is triviall
by e | gy = O,
= {definition 4.29}
Pvalidi{c | {q;} p {g,}, p=9) .

O

4.3.2.2. Proof rules for total correctness
The structure of this section parallels that of 4.3,2.1. We begin with

definitions of validity and soundness rélative to a set of parameter-—

less recursive procedures:

Definition 4,37 {Tvalidl}

On "rotal correctness formulae" x "procedure declarations” the predi-

cate Tvalidl is defined as:

1. Tvalidi(c | q, (p]=Sl,...,pn=Sn)) = }D clq.

145,
2. Tvalidi{e l [ql] s [q2]9 (Plasl»”'spnzsn)) =
by e by =wp' (8){(p,00),000,(py0,) ey

where (¢1,...,wn) = u(@],...,Qn) and @l,...,@n are as in defini-
tion 4.26.1,
0

Definition 4.38 {Tsoundl}

On "total correctness proof rules" x “procedure declarations" the

predicate Tsoundl is defined as:

Tsound i (fl""’fn s Pd) =
4

(Ai| tsisn | Tvalidl (£;,pd)) = Tvalidi(g,pd) .
{

The following theorem states that the total correctness logic TCO of

chapter 3 is also sound with respect to these revised definitions:
Theorem 4.39 .
1. (Aac AXTCO | Tvalld}(a, (p1=Sl,...,pn=Sn))) .

2. (Ar e PrTCG t Tsoundl (¥, (p]=81,...,pn=8n))) .
0

Proof
Similar to that of theorem 3.54. Details omitted.

0

For nonrecursive procedures we have the following analogue of theorem
4,32:

Theorem 4.40

(Ai | 1gizn | Tsoundl (c
¢

[q]] Si [qZ} Py (p]=31,...,pn=sn))
lay] p; [4,]
O

146,

Proof
Immediately by definitions 4.37 and 4.38 and by theorem 4.28.1.
a

Again we need an induction rule to deal with recursive procedures,

The induction principle employed differs from that in section 4.3.2.1
however. There we had to use fixed point induction and to extend the
notions of validity and soundness. Here ordinary mathematical induction

is sufficient to prove the following theorem.

Theorem 4.41

«< . .
let Q5% be a sequence of conditions.

0
1 ailosi| e [IVi] ogj<i | q,11 p [r] &—TCO ¢ | [q;1 s rD
then Tvalidi(c | [[Vi | 0=i | ;11 plrl, p=s) .

O

Note)
As in section 4.3.2.1, we have restricted ourselves to programs with a

single procedure.
0
Proof
(ai]osife| [IVi]o0si<i| q;1] p [r]
Freg
¢ | lg;1 s [r]
)
= {theorem 4,39}
(Ai] 0<i]| Tvalidi(c | [[Vj | Osj<i | a1 p [rl, p =9
=
Tvalidl(cx§ lq; s [x], p = 5)
)

= {definitions 4.37, 3.33, ¢ and ¢ as in definition 4.26.1}

147,

ailosi| (V)| osj< | qj] =

=

9 € ¢(g)r

n
~—
-3

i

©n
o~
g
o
St

@il osi| vy osi<i | g lcor

)
= {lemma 3.29}

[Vi | osi | qleor
= {definitions 4.37, 3.33, ¢}

Tvalidi(c | [[Vi | 0si | q;11p [x], p=5) .
0

From theorem 4.41 a total correctness induction rule can easily be
derived. If we define q; as g A e = I, where e is an integer expression

and I a symbol sequence representing i, we obtain that
Vi | osj<i | qj] =qAD<eArec<I,
and [Vi | 0si | qi] =gAls<e.

In this case the theorem reduces to:

If (Ai|osi|c|lgr0senec<iI]yplr]
Frc,
c|[qao<enrne=1I] 5 [r]
)

then Tvalidi(e | [q A 0 s el p [£])

which we will write, in analogy to the partial correctness induction

rule, as

148.

c|llgatd<cenec<t] p [r] F [grO0<cene=1]5sI[r]

c |
TCO
¢ | lqgalxel plr]

4.3.2.3. A note on the induction rules and their proofs

It may seem strange that the induction rules for partial and total
correctness, which look so much alike, require rather different proofs.
In this section we summarize the structure of these proofs, so as to
clarify the differences. In fact, these differences were already
present in the proof rules PR4 and TR4 for the DO-construct given in
chapter 3, which were based on theorems 3.46.2 and 3.47.2, respectively.
In theorems 4.33 and 4.11, however, the differences are much more pro-

nounced. Let us reconsider the structure of their proofs.

The proof of theorem 4.33, the partial correctness case, is essentially

of the following form:

Let q; and g, be two conditions.

Let ¥ be as in definition 4.26.2,

From the premiss and the extended soundness notion it follows
that for all ¢: (pC ¢q) = (pc ¥Y(d)q).

As the base step and admissibility:are trivially satisfied, it

follows by greatest fixed point induction that p ¢ (v¥)q.

The proof of theorem 4.41, the total correctness case, is essentially

of the folldwing form:

Let <qi>°i°=0 be a sequence of conditions

Let r be a condition.

Let & be as in definition 4.26.1, and let ¢ = néd.

premiss

M

= (for all i: 0 < i: (0£!3!<i q: & or) = (q, € 3(e)r)) .

i i=
= {fixed point property: ¢ = &(g}}
(for all i: O < i: (0£§<i 94 E gr) = (qi L 9r))
{lemma 3.29}

R

L . C B
is0 4 E T

149.

Note that in the latter proof it is not necessary that ¢ is the least
fixed point of ®; only use has been made of the fixed point property
p = &(e).

150.

4,4, Recursive procedures with parameters

4.4,0. Introduction

In this section we will study programs of the form

Py = Apseeesp = A | B,

where the p; are identifiers, the Ai are abstractions, and B is a
block. The comstructs p; < Ai are to be considered as procedure
declarations. Within the abstractions Ai and the block B statements
may occur of the form pj(EL;VL), where EL is a list of expressions and
VL is a list of variables with types and lengths that match those of
the abstraction A.j corresponding to pj. The semantics will be defined
in such a way that the statement pj(EL;VL) is equivalent to the state-

ment Aj(EL;VL), even if pj has been defined recursively.

The treatment of this subject is essentially a combination of the
treatments of parameterization and recursion in sections 4.2 and 4.3,
respectively. In fact (and intentionally) there is so much correspon-—
dence that in many places we have taken the liberty to replace (parts
of) definitions and proofs by an appeal to the similarity to their
counterparts in those sections. In section 4.4.1 we deal with the
syntactic aspects, in 4.4.2 with the semantics and in 4.4.3 with the

proof rules,

4,4,1. Syntax

Apart from some additional production rules the main syntactic exten-—
sion is the introduction of a new attribute domain Peny to establish
the correspondence between declaration and use of procedure identi-
fiers. The role of Penv-attributes is comparable to that of Env-
attributes. It would have been possible to combine the two, but for
the sake of clarity we have refrained from doing so. Below we give

the extensions, followed by some informal explanation.

Domains

Penv

Operations on Penv

[.,.,.]? : Name % Types * Types ~ Penv
RN/ : Penv x Penv > Penv
#P (" : Name * Penv + Int

(*y*,*) in, *: Name x Types * Types * Peny - Bool

e

#

P (n],[nz,ts],tszly)
‘

p (mope)\B/pey)

iﬁvni =n, > 11 n, # n, > 0 fi

= #, (n,pe)) + #, (n,pey)

(nl,tsl,tsz) ing [nz’ts3’t84]? = (nl =1n, Ats; =tsy Ats,= tsé)

(n,tsl,tsz) iﬁp pe; \B/ Pey = ((n,tsl,tsz) iﬂ@ pel) v

Nonterminals

((n,ts,,ts,) igP pe,)

Procdecs <Penv,Penv>, Abstr <Penv,lypes,Types>, Block <Penv,Env>,

Stat <Penv,Env>», Ges <Penv,Env>.

{see note below}

Grammar rules

we
..

Prog

Procdecs <pey.pe,> =

Procdecs <pey.pe > ::i=

Abstr <pe,ts,,ts,> ii=

Procdecs <pe,,pe,> | Block <pe. ,e> m

1
Pe; = ey

(A n: Name | #P (n,pe,) < 1)

e = Empty

Procdecs <peg,pe,> , Prodecs <pey,peq>
pe; = pey \B/ pe,
Id <n> = Abstr <pey,tsy,ts,> ®

pe; = {n,ts],tszlP

(con Pdecs <d1,tsl>
7 res Pdecs <d2,t32>
l Stat <pe,e>

) =

(A n: Name | #D (n,d, \yd,) + #P {n,pe) < 1)
e = Ext:(Empty,d1 @/dz)

151.

152,

Stat <pe,e> 1= Id <n> (Exprs <e,ts;> ;

Vars <e,ns,ts,> e
(A n: Name | #N (n,ns) 1)
(n,ts],tsz) EEP pe

Explanation

The Penv-attributes establish the correspondence between procedure
names and the parameter types of the corresponding abstractions. With
the nonterminal Procdecs two such attributes are associated. The first
one records information about all procedures declared in the procedure
declaration part of a program; it is used to describe the legitimacy
of procedure applications. The second one contains information con-
cerning the internal procedure declarations. At the outermost level
‘these attributes must be equal. The rules for formal-—actual parameter
correspondence are the same as in section 4.2.1., Abstractions have no
access to global variables, Names of formal parameters must differ

from procedure names (see also note 1 below).

0

Note 1

A Penv-attribute has also been associated with the nonterminals Block,
Stat, and Gecs. Strictly speaking we should give new versions of the
grammar rules for these nonterminals, However, as in most of these

rules the Penv-attribute is merely. "passed on", as e.g. in
Stat <pe,e> ::= Stat <pe,e>; Stat <pe,e> m

we will not list them anew. The only exception is the rule for Block,
which obtains the additional rule condition that variable names must

differ from procedure names:
Block <pe,ey> ::= |[var Decs <d> | Stat <pe,e> 1l m

(A n: Name | #D (n,d) + #P (n,pe) s 1)

e, = Ext(eo,d)

1

153.

Note

As in section 4.2.1, an additional context condition is formulated by
means of the functions USE, ASSN, and INIT. This part is almost
identical to definitions 4.13 and 4.14 and the context condition

following them, and therefore it is not repeated here.

a

4.4.2, Semantics

In this section we éefine the semantics of programs of the form

Py = As-aa,p = AL | B. Basically this definition has the same struc~
ture as that in section 4.3.1, the main difference being that with
each name p, a parameterized condition transformer rather than a
condition transformer has to be associated. Similarly to section 4.3.1,
these associations are established by means of an argument § added to
wp, wlp, pwp, and pwlp. Omitting environments for a while, the central

clauses of the new definitions are:
wp' (p(E;v))8 = pup' (p)S(E,v)
and pwp'(p)s = S(p) .

The & corresponding to a procedure declaration part is determined by

means of fixed point methods.

An essential complication is that procedure applications may occur in
different contexts. We recall definition 4.15, which defines P, as the
set of parameterized condition transformers corresponding to an envi-
ronment e ¢ Eny. It follows that § has to be parameterized with regard
to the environment e of the procedure application, so as to obtain the

appropriate element of P_. Hence § ¢ Name + Env + U in such a

ecEny Pe’
way that for all procedure names p and e ¢ Enp: 3(p)(e) « P_.

Apart from the points just mentioned, the definitions given in this
section are very similar to those in sections 4.2,2 and 4.3.1, so we

abstain from further clarification. The definitions follow.

Definition 4.42 {X}

X={peBw-> U P | (AeecBEBw | gle) e P)}.
—_— e — e e
eeEny

154,

Definition 4.43 {GX}

For all 950y € X:

o) By 9, fif (AecBw | o (e Zp_ 9p(e)) -

0

Theorem 4.44

(X,E.) is a ccl.

0
Proof
That €, is a partial order follows immediately from definitiom 4.43,

X
theorem 4.15 and theorem 3,10.2,

Let Y be a countable subset of X.

UY= (e e Emw | LEQJ pfe)) .

geY
ny = (e € Env | [?;] vie))
peY

B

Definition 4.45 {A}

A= Nome »~ X

Definition 4.46 {wp'}

FYor all e ¢ Fnv the function wpé e L(Stat <Penv,e>) > A =+ Te is defined
by:

1~6. Similar to definition 4.23.1-6.

7. wp!(A(E;v))S = pwpl (&) (8) (E,v) .

i

8. wpé(p(E;v})é
0

pwp, (p) (8) (E,v) .

Definition 4.47 {wlp'}
For all e ¢ Env the function wlpé ¢ L(Stat <Penv,e>) + A -+ T, is

defined by:

{~6, Similar to definition 4.24.1-6.

155,

7. wlpé(A(E;v))é

pwlp;(A)(G)(E,v) .

8. wlpé(p(E;v))G
O

pwlp] (p) (8) (E,v) .

Definition 4.48 {pwp', pwlp'}

For all e ¢ Env the functions pwp, and pwlpé € L(Id <Name>)
u L(Abstr <Penv,Types,Types>) + & > P, are defined as follows:

Let (com x: t;; res y: t, | $) ¢ L(Abstr <Penv,Types,Types>),

E, V, x', v', e', S' as in definition 4.17.
¥

1.1, pwpé((con X t); res yit, [8))8 =

(AE ¢ E, ve V] (x* «E) o wpl (87)8 o (v« y')) .
1.2, pwpé(p)ﬁ = §(p)(e) .

2.1. pwlpé((con X: €5 res yi t, I 8))6 =

OE ¢ E, vel| (x'«E) owlpl, (86 ¢ (v+7y") .

2.2, pulp (p)§ = &(p)(e) .
|

Note

Continuity of the functions defined above can be proven similarly to
theorem 4.25. Details omitted.
0

Definition 4.49 {wp and wlp for programs}

1.owplpy = Ap,evnsp = A | B) = WpéO(B}S ,

where eq = Empty,
& is the function {(pl,m]),...,(pk,mk)},
(@15vees®) = 1(2;,.00,9),

and, for i: 1 < 1 < k:

o = Qolseees0p € X | Qe e B | pupl(A){(p,,0]) 50 s (py, 000 D))«
2. wip(p) = Aj,eenypy = A | B = wlpéO(B)G y

where e, = Empty,

156.

& is the function {(pl,¢]),...,(pk,¢k)},

(¢1’-."¢k) = V(‘?l,-..,‘yk),

and, for i: 1 €1 < k:

¥ O]ty e X | Qe e Bw | pwlpl (A {54505 (4D D)
0

Note

Continuity of the functions 9, and ¥, can be proven similarly to
theorem 4.27. Details omitted.

a

The following analogue of theorem 4.28 states the equivalence of the

statements pi(E;v) and Ai(E;v) when p; = Ai is a procedure declaration.

Theorem 4.50

Let Py = A],...,pk = Ak | B be a program,
e ¢ Fny,
iyl €1 <k,

E, v such that Ai(E;v} € L{Stat <Penv,e>).

1. Let 8§ be as in defimition 4.49.1].

wPé(pi(E;V))ﬁ = wPé(Ai(E;V))S .

2. Let 6 be as in definition 4.49.2.
' . - [] .
wlpe(pi(E,v))é wlpe(Ai{E,v))S .
{1
Proof
We only prove 1; the proof of 2 is similar.
T -
Wpe(Pi(E,V))G

{definition 4.46.8}

i

pwPé(pi)(§)(E,V)

{definition 4.48.1.2}

8(p;) () (E,W)

i

{definition 4.49.1, &}

157.

wi(e) (E,v)

{fixed point property}

@i(ml,...,@k)(e)(E,V)

i

{definition 4.49.1, &}
pwp, (A,) (8) (E,v)

{definition 4.46.7}

wp, (4, (E5v))8 .

4.4.3. Proof rules
4.4.3.1. Proof rules for partial correctness

In this éection we discuss partial correctness proof rules for programs
of the form p, = Aj,...,p = A | B. The structure of this section
resembles that of section 4.3,2.1. First we define validity and sound-
ness relatively to a set of procedure declarations, and we prove sound-
ness of a rule to be used with nonrecursive procedures. Thereafter we
consider an induction rule for use with recursive procedures. As in
section 4.3.2.1, the proof of the latter rule requires definitions of
validity and soundness relatively to an arbitrary interpretation ¢ for

procedure names.

Definition 4.51 {Pvalid3}

On "partial correctness formulae" x “procedure declarations" the

predicate Pvalid3 is defined as:
1. Pvalid3(c | q, (py=A;s. s Py =hy [B) = kp e | q.
2. pvalid3(e | {q;} S {a,}, (py=A},-..,p,=A, | B)) =

FD c | q = wlpé(s)(ﬁ)(qz) s

where ¢ ¢ L{Cont <e>), 959, € L(Cond <e>), and § is as in defini-
tion 4.49.2,

158.

Definition 4,52 {Psound3}

On "partial correctness proof rules" x "procedure declarations" the

predicate Psound3 is defined as:

Psound3 (¢, | Egoersf | > pd) =
1 ' fn

C

(Ai] Osisn | Pvalid3(c, | £., pd)) = Pvalid3(c, | £, pd) .

|

It is easy to prove that the axioms and proof rules considered in
sections 3.3, 4.1.4, and 4.2.3 are valid c.q. sound in terms of these
extended notions as well. For easier referemce we collect these axioms

and rules under the name PC]:

Definition 4.53 {PC}}

The partial correctness logic PC1 is defined by:

Ape = Mpe s

1 0

PrPCI = ?rPCG v {PR5,PR6,PR7,PRS,PRO} .
U
Theorem 4.54
. (Aace AXPC] | Pvalid3{(a, (PE=A1""’szAk))) .

2. {Ar e PrPCI | Psound3(r, (p]=A1,...,pk=Ak))) .

O

Proof
$imilar to those of theorems 3,52, 4.12, and 4.20. Details omitted.
0

Below, for simplicity we restrict ourselves to the case k = 1. The
results can easily be extended to progriams with more procedure declara-
tions. First, we present proof rules for use with nonrecursive proce-

dures.

159.

Definition 4.55 {PR1Q, PRI}

Let A = (com x: ty; res yi t, | 8) ¢ L(Abstr <Perw, Types, Types>).
Let E, v, ¢, €, q;, qy be as in definition 4,19,

The proof rules PRI10 and PR1! are defined by:

PRIO x: t, yi t, | {q, ()} s {g,(x, 7}
c [{q; ()T pE;v) {q,(E,v)}

provided v ¢ USE(E).

PRIL. x: £, ¥: t, | {ql(x)} 5 {qz(x,y)}
ce Cit [TE=C A ql(c)} p(E;v) {q,(C,v)}

0
Theorem 4,56
1. Psound3(PRIO, p = A) .
2, Psound3(PRIl, p = A) .
0
Proof

We only consider 1; 2 is similar.

Assume:

Pvalid3(x: ty, Vi L, | {ql(x)} s {qz(x,y)}, p = A) .

By a proof almost identical to that of theorem 4.20 we obtain:

Pvalid3(c | {q,(E)} AGE;v) {qy(E,")}, p = &)
provided v ¢ USE(E) .

Hence, by definition 4.51 and theorem 4.50.2:
Pvalid3(c | {q;(B)} p(E;v) {q,(E,)}, p = &)

provided v ¢ USE(E) .
g

Let us now turn to the induction rule for recursive procedures. The
treatment of this rule is similar to that of the parameterless induc-

tion rule in section 4.3.2.1. First we define validity and soundness

160,
with regard to an arbitrary interpretation ¢ for procedure names. By
means of these notions we prove theorem 4.61, which is finally

presented as inductive proof rule PRy,.

Definition 4.57 {Pvalid4}

On "partial correctness formulae" x X the predicate Pvalid4 is defined

as:

1. Pvalidd(c | q, ¢) = FD claq.

2, Pvalida(e | {a;} s {q,}, 4) =

Fp e | ay = wipl(®){(p,4))a, ,

where ¢ ¢ L{Cont <e>), 95,9 € L(Cond <e>) .
0

Definition 4.58 {Psound4}

On "partial correctness proof rules" x X the predicate Psounds is

defined as:

Psound4 (e, | Egoevenf s 4} =
¢ | f
n

I

(Ai| 0Osisn | Pvalidé (c | £5, ¢)) = Pvalidd(c, [£, 4)
a
Theorem 4.60

1. (A ace Ax b ¢ X | Pvalidd(a,¢)) .

2
PC]
2. (At e Prpo» b e X | Psound4(r,¢)) .
1
0
?roof

Similar to those of theorems 3.52, 4.12, and 4.20. Details omitted.
1

161,

Theorem 4.61

Let A= (con x: t; res y: t, | $) e L(aAbstr <Penv,Types,Types>) .
¥ =

Let e Ext(Empty.[x,t}]D W [v.tZ]D) s

q4,(x),q,(x,y) € L(Cond <e'>) .

For i: 0 £ 1 € n:

let e, ¢ Env ,

e, ¢ L(Cont <ei>) .

i
E, ¢ L{Expr <ei5PTi0,tl>) R
v, € L{var <ei,ﬂame,t2>} > V5 4 USE(Ei) .
If
C‘ I {q](El)} p(El;VI) {qZ(ElsV])} s
cn [{Qn(En)} P(Enivn) {Q2(En9vn)}
F
PC1
xt ty, yioty | {q,x)} s {gy(x,3))
then
Pvalid3(ey | {q;(ED} p(Egsvy) {q,(EBpv)l, p = A) .
O
Proof

The proof is by greatest fixed point induction. In the proof we use a
kind of "phase shift" in that we prove wvalidity of correctness formulae
involving S rather than p(Ejv) for arbitrary E and v. This phase shift

leads to shorter formulae. The property we want to prove is:

Pvalid&(x:‘ tl; v t2 i {ql (X)} s {qz(x’y}}’ V‘P) >
where ¥ is as in definition 4,49.2.

base step

theorem 4.44
- Ty = (e ¢ Env | TPe)

= {definitions 4.47.8, 4.48,2,2}

162.

(Ai] 1<isa | wipl (p(E;5v.) {(p, 70} = (Aq | true))
1

= {definition 4.57}

(Ai] 1<i<n | Pvalidé(c, | {q, €D} pE vy {a,(E v),)

= {premiss, theorem 4.60}

Pvalidd(x: t; t: t, | {q; ()} 8 {q, G, 1}, Ty)

induction step
Let ¢ € X,

=

Pvalidé(x: £3 ¥t | {q](x)} S {qz(x,y)}, $)
{theorem 4.60.2, hence Psound4 (PR8)}
(Ai| 1sisn | Pvalid4 (e, | {q(EDY AE vy {4, (B v)Y, 6)
{definition 4.57}
(Ai] 1<isn |
bpeg | g ED = lepéi(Ai){(P,¢)}(Ei,vi)qz(Ei,vi)
)
{definition 4.49.2, ¥}
(Ai] Isisn | — | qy(E;) = ¥(4) () (E;,v,)q,(E;,v,))
{definitions 4.47.8, 4.48.2.2}
(Ai| 1sisn |
bp e | aE) =~"wlpéi(p(Ei;vi)){(p,‘l’(cl»))}qz(Ei,vi)
)
{definition 4.57}
(Ai] 1gizsa | Pvalidé(c,; | {ay (B p(E vy {q,(E; v, ¥(e)))

{premiss, theorem 4.60}

Pvalid4(x: t; y: t, | {ql(x)} S;{qz(x,y)}, v{)) .

As admissibility is trivial, it follows by greatest fixed point induc-

tion that

Pvalid4(x: t;; y: t, | {q](x)} s {qz(x,y)}, v¥)

= {definitions 4,57.2, 4,51,2}

Pvalid3(x: t)3 oyt | {q}(x)} S {qz(x,Y)}, P

- = {theorem 4.56.1}

0

Finally, in analogy with the parameterless case in theorem 4.33, we

formulate theorem 4.61 as an inductive proof rule:

PRI2. ¢; | {q &)Y p(E 5v)) {q,(E),v)}

e | {q®)D) pE sv) {q, (& ,v)}
PC

Xt by, yiot, | {q,)} 5 {q,(x,y)}

<o i {q](EO)} p(EO;VO) {qZ(EO,vG)}

4.4.3.2, Proof rules for total correctness

A)

A)

163.

In this section we discuss total correctness proof rules for programs

of the form Py = Al,...,pk = Ak | B. As this section has much in

common with sections 4.3.2.2 and 4.4.3.1, we will shorten the presen-

tation somewhat. The main theorem of this section is theorem 4.68, the

induction rule for recursive procedures, also formulated as proof rule

TR1Z. The structure of the proof is essentially the same as that of

theorem 4.41, the parameterless induction rule.

Definition 4.62 {Tvalid2}
Similar to definitions 4.37 and 4.51.

N

Definition 4.63 {Tsound2}
Similar to definitions 4.38 and 4.52.

O

164,

Definition 4,64 {TCI}

The total correctness logic TC

1 is defined by

Ax. . = Ax.. ,
TC, TC, .

1c, PrTCO v {TR5,TR6,TR7,TR8,TRY} .

Pr,

a

Theorem 4.65
l. (Aace AxTC1 | Tvalid2(a, (Py=Apseesp =A)) o
2, (Are PrTCl | Tsound2(r, (91’A15ﬂ"’Pk=Ak)) .

o

Proof
Similar to those of theorems 3.54, 4.12, and 4.20. Details omitted.
i

Definition 4.66 {TRI0, TRI1}

Let A = (com x: t,; res y: t, | 8) e L(Abstr <Penv,Types ,Types>).

1
Llet E, v, ¢, C, 9. 9 be as in definition 4,19,

The proof rules TRIO and TRI! are defined by:

| Tq; 01 5 [ay(x,3)]
[[q, 7 pEsV) [q,(E,)]

TR10. x: tys ¥t t2
c

provided v ¢ USE(E) .

TRIL. x: £y, y: ty | [q;®)] 8 [q,(x,)]
cw» C:rt [[E=CA q, (O] p(E;v) [q,(C,v)]

O

Theorem 4.67

1. Tsound2 (TRIO, p

= A) .
2. Tsound2 (TRI!, p = A) .
]
Proof

Similar to that of theorem 4.56. Details omitted.

0

165.

Theorem 4,68
Let A = (com x: ty; res y: t, | 8) e L(Abstr <Penv,Types,Types>).
For i: 0 <i < n: let e., ¢c., E., v, be as in theorem 4.61.

i’ Tiv ti Ui

Let <qj(x)>3°_0 be a sequence of conditions in

L(Cond <Ext(Empty,[x,t]]D)>)-

Let r(x,y) € L(Cond <Ext(Empty,[x,t1h)Qy[y,tZ]D)>).

If
(d k| osk |
c; | V3 | 0gj<k | qj(El)]] p(E;5v)) [r(E ,v)]
c, | [IV] | 0<j<k | qj(En)]] pE 3v) [r(E v)]
I_
TC,
X t), ¥i L, | [q)] s [r(x,y)]
)
then
Tvalid2(cy | [[Vk | Ok | q (EDI] p(Bysvy) [x(Ep,v)], p = A) .
0
Proof
Let k: k 2 0.

Tvalid2(x: t;, y: t, | [[Vj | 0sj<k | qj(X)]] S [r(x,y)]1, p=4)
= {theorem 4.67.1}
(Ai] 1sizn |
Tvalid2(e; | [V [0<i<k [qs(B;)11 p(E53v,) [v(E;,v)], p=A)
)

= {premiss of theorem, theorem 4.65}

Tvalid2 (x: t1, ¥3 £y | [qk(x)] S [r(X,Y)J’ p=4.

By definitions 4.62, 3.33 and lemma 3.29 it follows that

Tvalid2(x: t|, y: t, | [IVk | 0k | 4 @11 s [r(x, 1, p=4) ,

166.

hence, by theorem 4.67.1,

Tvalid2(c | [Ivk | o<k | a4 EPIT pEpsvy) [Eyved], p = 4) .
O

Just as in section 4.3.2.2, if we choose qk(x) = (g(x) A h(x) = KJ,
where K is a symbol sequence representing k and h(x) is an integer

expression in terms of x, we obtain that
[V | osj<k | q;(€)) = q(B) A 0 < h(E;) <K
and [Vk | Osk | 4 (E1 = q(E) A 0 <'h(Ey) ,
as a result of which the theorem can be formulated as the following
inductive proof rule:

TRIZ2. o] [q(El) A0

IA

h(E}) < K];p(El;VI) [xE,v)]

C

n | {q(En) A0 <h(E) < K] p(En;vn) [r(E ,v)]

x: ty, ¥yt | [q(x) A h(x) = K] 8§ [r(x,y)]

co | 19y A 0 < h(ENT pEyvy LrEy vyl .

167,

CHAPTER 5
SOME ASPECTS OF THE DEFINITION OF THE TARGET LANGUAGE

5.0, Introduction

In this chapter we will consider some aspects of the formal definition
of the target language TL. TL has a rather conventional structure; it
' contains instructions for loading and storing values, arithmetical
operations, jumps, conditional jumps, subroutine calls and returns.
Usually the effect of these instructions is described operationally in
terms of manipulations with some registers and an instruction pointer.
For our purposes we would like to have at our disposal a condition
transformer definition of TL however. Such a definition will allow us
to derive a mapping from SL to TL from relations between condition

transformers of SL- and TL-programs.

For simple load and store instructions and the like it is easy to
construct condition transformers based on that of the assignment. The
difficulties are in the definition of the sequencing instructions. It
is this aspect that we would like to consider in the current chapter.
We shall develop condition transformers and show their equivalence with
an operational characterization, Rather than presenting two definitions
and proving their equivalence however, we shall derive the operational
description from the condition transformers. This derivation will
proceed via some intermediate versions im which more and more opera~
tional aspects are introduced., This chapter therefore has the following

structure.

In section 5.1 we present an informal description of TL instructions.
In section 5.2 we develop version ! of their condition transformer
semantics, which bears some relation to that of parameterless proce-
dures in section 4.3 and to the continuations of denotational seman-
tics. In section 5.3 we derive from version 1 a second version, which
is based upon the representation of a TL program as an array of in-

structions. In sectiom 5.4 this version is further transformed to

168.

version 3, which employs stacks of return addresses to describe the
subroutine call and return mechanism. Finally, in section 5.5 we
derive from version 3 an operational characterization by means of an
interpreting program. This interpreter is constructed in such a way
that it has the same condtion transformer as that of the TL program in

version 3, and consequently as that in version 1.

In some derivation steps use is made of the fixed point property in
order to establish some relation between two versions. Those deriva-
tions are given in such a way that it is clear how a full fixed point

induction proof of the equivalence of the two versions should be given.

169.

5.1, Informal description of TL

For the purposes of this chapter, TL may be thought of as consisti-¢

of two sets of variables and of a set of instructions. The variables

of the first set, called the data variables, are used to represent tne
values operated upon by TL programs. For our discussion the properties
of these variables are not very important. For simplicity, let us

assume that the set consists of

M the store, a linear array of values,
A and B two general purpose registers,
Q a condition register.

The second set of variables, the control variables, is mainly used for

sequencing purposes. It consists of

P the program store, a linear array of instructions,
ip the instruction pointer,

s the stack of return points,

la a function that maps labels to addresses.

A TL program is a construct of the form

1

10: Sa3 eex 3 1 : Sa-15 1n

n-1

where the 1i are labels and the s; are instruction sequences. We dig~

tinguish two sorts of instructions, regular and singular imstructioms.
An instruction is regular if the instruction to be executed after its

completion is its textual successor; an instruction is singular, if it
explicitly alters the flow of control, as is the case with jumps, sub-
routine calls and returns. }

Typically, the effect of regular instructions can be described by

means of a few assignments to the data variables; e.g.:

LDA(a) A := M(a)
STB(a) M{a) := B
ADD(A, B) A= A+B
GEQ Qi=Az2B.

The description of singular instructions is less easy. Their formal

characterization is the main subject of this chapter., Here we content

ourselves with a short description in words.

170.

UJr(l) jump unconditionally to label 1,

FJP(1) if Q is false jump to label 1,

TIP(1) if Q is true jump to label 1,

CSR(1) record return point, jump to label 1, \
RET remove last return point r from record;

jump to r.

We shall assume that programs are closed, i.e. that each label occur-

1 s

0; cee 3 -1 1

ring in a singular instruction of a program 1yt s n-1° Int

is an element of {10,...,1n}.

171.

5.2. Version 1: Condition transformer semantics of TL

In this section we shall develop condition transformer semantics for
closed TL programs. As we are mainly interested in control flow aspects,
we shall restrict ourselves to the singular instructions and to the
regular instruction LDA{a), which serves as representative for all
regular instructions. Throughout the remainder of this chapter (except

. for an example) we shall base our discussion on a given closed program

1 :

P= 10: 85 vee 3 1 _.: Sp-13 1y

n-1

consisting of these instructions only.

Definition 5.1 {Instruction}

Instruction = {LDA(a),UJP(1),FIP(1),TJP(1},CSR(1),RET} .
0

Definition 5.2 {Label}

1.1 .

Label = {10,..., a

0

We assume as given a ccl (C,EC) of conditions in terms of the data

variables of TL.

Definition 5.3 {T,ET}

1. T=C~»_ C.
uc

2. Ep is the standard order on T.
D

Lemma 5.4
(T,ET) is a ucel.

a

Proof
Immediately by theorem 3.23.2.
a

172.

It is our intention to associate with program p a condition transformer,
i.e. an element of T. To this end we would like to defime a funmction Tt
that associates a condition transformer with each instruction sequence.
In first approximation t would be an element of Instruction - T. For

regular instructions this would suffice; we could simply define

TiLDA(a)} = (A <« M(a)) and rﬁsl;szl = TlSi] ° Tis,]

(we use the brackets I and] to enclose instruction sequences). This
approach does not work for singular instructions; e.g. if in TL8,;38,]
the last instruction of s, is UJP(li),‘T[sll should be composed with
the condition transformer of the instruction sequence following 1i’

not with tis,1. The problem can be solved by applying the continuation

technique ofzdenotational semantics [Strachey]: tis;} is supplied with
two parameters, a "label environment™ le and a "normal continuation"
nc. The parameter nec corresponds to the condition transformer of the
instruction sequence textually following s,;; if s, ends with a regular
instruction its condition transformer should be composed with nc. The
label enviromment le ¢ Label + T is comparable to the function § of
defihitions 4,23 and 4,24, With each li e Label it associates the con-
dition transformer of the instruction sequence following li‘ 1f s,
contains singular instructions referring to a label lj’ the condition
transformer of s will depend upon 1e(1j). Thus, in second approxima-—

tion v is defined by clauses like

]

TILDA(a)] (le,ne) = (A « M(a)) o nc ,

TIUIP(1L)I (le,ne) le(l) ,

T(sl;szl(le,nc) Tlsl](le,r[szl(le,nc)) .

Still this form is insufficient, as it does not handle subroutine calls
and returns. The condition transformer of the RET instruction should be
composed neither with that of its textual successor, nor with 1e(1i)
for some label'li, but with the condition transformer of the inmstruc-
tion sequence following the CSR instruction "last executed". This con~
dition transformer, the "return continuation™, should therefore be
passed as an additional parameter rc to both 7 and le. In this way the
condition transformer of RET is simply rc, whereas the condition tranms-

former of CSR(1) with a normal continuation ne is le{l,nc) in order to

173.

establish that the condition transformer of a subsequent RET is that
of the instruction sequence following the CSR(1) instruction. Thus we

obtain, in third approximation, defining clauses like the following:

1ILDA(a)} (le,rcyne) = (A « M{a)) o nc ,

TMUJP(1)1 (le,vc,ne) = le(l,re) ,

tICSR(1)1 (le,re,ne) = le(l,nc) ,

TERET} (le,rc,nc) = rec ,

T[si;szl(le,rc,nc) = rls]](le,rc,r{szl(le,rc,nc)) .

In principle a definition of this kind could do the job, but for future
applications it will be more convenient to decompose T into two func=

tions p and o, such that for single instructions i:
11 i} (le,rc,nc) = pfil © ofil(le,rc,nc) ,

vhere p describes the way the data variables are affected by i, and ¢
takes care of the sequencing. This decomposition gives rise to the
fourth and final approximation presented in definitions 5.8 and 5.9
below. As preparation for these definitions we first define some

abbreviating functions:

Definition 5.5
The functions I,F ¢ T, CF ¢ C x T x T » T are defined by

1.I =(qecC| qQ

3%
o]
]

(Aq ¢ C | false)

3. CF = (hqy e C; £,8, ¢ T| gy e €| qp A £,(q)) vagqy A £,(q)) .

The function CF will be used in the definition of the conditional
jumps., Note that CF(q,f],fz) = CF(-xq,fz,fI).

The function le ("label environment™) is an element of the set Labenv
defined below. In principle Labenv is the set Label x T » T, but in
order to ensure continuity of some other functions to be defined later
on, we restrict Labenv to functions that are continuous in their second

argument.

174,

Definition 5.6 {Labenv}
I. Labenv = {le ¢ Label x T » T
[for each 1 € Label, each ascending chain <ti):=0 in T:
le(l,.,Uy t;) = U, le(l,t)
}

2. t,., is the standard order on Labenv.

Lemma 5.7

(Labenv,ELE) is a uccl.

0

Proof
Similar to theorem 3.23.2,

O

Definition 5.8 {p, o}
"p € Instruction -~ T ,

¢ ¢ Imstruction - Labenv x T x T » T ,
For all le € Labenv, rc,nc ¢ T:

1.1. ptLDA(a)] = (A <« M(a)) .

1.2, ofLDA(a)1 (le,rc,ne) = nc .

2.1. ptUIP(L)1 = 1.

2.2, otUJP(1)I (le,rc,nc) = le(l,rec) .
3.1, olFIP(1)Y =1 .
= CF(Q,nec,le(l,rec))

3.2, oiPIJP(1)I (le,rc,nc)

4.1, olTIP(L)E = T .

4,2, ol TIP(1)1 (le,re,nc) = CF(™Q,nc,le(l,re)) .

5,1, pECSR(L)1 =1 .

5.2, ol CSR(1)I (le,rc,nc)

i

le(l,nc) .

6.1. pIRET] =1 .

6.2, OofRETI (le,rc,nc) = rc .
O
Definition 5.9 {t}

T ¢ Instruction” - Labenv x T x T + T .

175.

. . . %
For all le € Labenv, rec,nc € T, i ¢ Instruction, §1s8y € Instruction :

1. T[s];szl(le,rc,nc) = T[sll(le,rc,rlszr(le,rc,nc)) .

2. 11ii (le,rc,nc) = plil o ofi) (le,re,nc) .

0

[T T]
MY

The following lemma states associativity of 1 with regard to

Lemma 5,10

. *
For all 81585585 € Instruction , le ¢ Labenv, rc,nc ¢ T:

3

T[(sl;sz);s3](1e,rc,nc) = T{si;(sz;s3)1(le,rc,nc) .

Proof

Tl(sl;sz);s3](1e,rc,nc}

= {definition 5.9.1}
:t[s];szl(1e,rc,1[33ﬂ(1e,rc,nc))

= {definition 5.9.1}
T[sll(le,rc,r{sZJ(le,rc,r(s3}(1e5rc,nc)))

= {definition 5.9.1}
Tlsll(le,rc,r[52;s3](le,rc,nc))

= {definition 5.9.1}

Tﬁsl;(82;83)](1e,rc,nc) .

176.

Theorem 5.11 !

1. For all i ¢ Instruction : ofi} ¢ Labenv x T x T = T ,

uc
2, For all s e Instruction™: tisl] ¢ Labenv x T x T “uc T .

0

Proof

We only prove 1 for the case i :: UJP(1l). The other proofs are similar.

Let <le > <rcj>;=0 and <nc be ascending chains in Labenv, T

1=0*
and T, respectively.

& k=0

UIP(L) (0, 1) g
of 3 Ho e, 20 rcj, J, ne

= {definition 5.8.2.2}
1o 1oy (1 xey)

= {le ;€ Labenv, definition 5.6}

o0

{JO u le, (1 rc)

= {lemma 3.20.1}

féo 1ei(l,rci)

= {definition 5.8.2.2}

s
A

o OKUJP(I)](lei,rci,nci) .

0

Finally we define the function m which yields the condition transformer

of an entire program 10: 8g5 1‘: 813 «ee3 1 expressed in those of

n
its constituent instruction sequences ;e Similarly to § in definition
4.26, the label environment le of an entire program is defined as
least fixed point of a function F ¢ Labenv - Labenv. The condition
transformer of the program is that of the instruction sequence follow—
ing label 10, i.e. le(lo,rc) for some suitable rc. We choose rec = F to
ensure that a program aborts if it attempts to execute more RET than

CSR ingtructions.

Definition 5.12 {w}

v € Program + T .

wllo: Sg3 - s 1 s 8

1 ;131 = le(ly,F) ,

n-1’

177.

where
le = uF ,

and F ¢ Labenv - Labenv is given by
F= (Ale' ¢ Labenv |

(A1 ¢ Label, rc ¢ T | [1 = 1O - t[sol(le',rc,le'(li,rc)) ,

l=ln_l > r[snnll(1e',rc,1e'(1n,rc)} ,

In order for this definition to be well~formed, it is necessary that F

is continuous. This is ensured by the following theorem.

Theorem 5.13

F ¢ (Labenv e Labenv) .
0

Proof
Immediately by theorem 5.11 and the “pointwise" lub definition in
Labenv.

O

Examgle

Consider the programs x, y and z below, which correspond to common
translations of the 8L programs
p=if B>s;;pl7B~>s, fi|p,

or do B~ S1 od; S2 .

Let b, s, and s, be regular instructions.

178.

X = 1x.: UJP(lxa);

0

lxi: b;
FJP(le);
si3
CSR(IXI);
UJP{1x3);

2% Sg3
: RET;

: CSR(lx]);

y = lyy: bs
FJP(ly]);
$;s

UJP(lyO);

'1y1: 853

z = lz,.: UJP(lzz);

lz,: sl;
1lz,: b;
TJP(lz]);

-

32,

By definition 5.12 and the fixed point property we obtain, after

simplification by means of definitions 5.8 and 5.9:

lex = (Al,rc
1=

1=

ley = (Al,rc
[1=

1 =

lez = (Al,rc
1=

1=

|

lxo

lxl

1x
1x
1x

1x

lyo
ly]

ly2

lz
1z
lz

1z

>

>

From these equations it

179.

1ex(1x4,rc)

pEbl o CP(Q,p[sll ° 1ex(1x},1ex(1x3,rc)),
lex(lxz,rc)) ,

p{szl ° lex(lx3,rc) y
re ,
lex(lxl,leX(lxs,rc)) .

I

pibl ° CF(Q,Q[SI} ° 1ex(1y0,rc),lex(1y],rc)) R
p[32] ° 1ey(1y2,rc) ,

I

lez(lzz,rc) ,
pls b o 1ez(122,rc) s
plbl e CF('!Q,p[szl ° 1ez(1z3,rc),1ez(1z1,rc)) ,

I

follows that

180.

- i xi

lex(lxo,F)

Iex(lxé,F)

lex(lxl,l)
and

1ex(1x1,1)

pibl o CF(Q,Q[SIE ° 1ex(1x1,1),p182]) .
- Tl yi

= 1ey(ly0,F)

and

ley(lyo,F)

PEDI © CF(Q,pls] ° 1ey(1y0,m,piszx) .

- iz}

1ez(1zO,F) !

1ez(lzz,F)
and

1ez(1zz,F)

#

plbl ° CF(nQ,pls,l,els] ° lez(lz,,F))

1
plbl o CF(Q,p(sln o 1ez(1zz,F),plszﬂ)

#

We find that 7wixl, 7yl and wlz) all equal the least solution of the

equation

W: W=oplbl © CF(Q,o[s]I o W,pl 82]) 5

hence programs x, y and z are equivalent.

0

The following lemma states & property of the label environment le of

program p which will be used in the derivation of version 2.

i81.

Lemma 5.14

Let le be as in definition 5.12.

le = (A1 ¢ Label, re ¢ T | [1 = 1y + T[so;slg...;sn_ll(le,rc,I) .

1=ln_] > r[sn_]n(le,rc,l) ,

0

Proof

Immediately from. the fixed point property and definition 5.9.1.

o

182.

5.3. Version 2: Introduction of program store

In this section we shall develop a semantics for program p based upon
the representation of p in a program store, i.e. an array of instruc-
tions. This representation enables us to refer to arbitrary instruc-
tions by means of their index. As a consequence the label environment
of version | can be eliminated. Version 2 makes use of a program store
P, a label-to-address function la, and functions t' and o'. First we
establish relations between these entities and those of version 1,
Subsequently we derive from these relations and the definitions in
version 1 an equation system in terms of P, la, t', ¢' and = alone.

Let us assume that the instruction sequences Bgseees of program p

s
n~1
are stored consecutively in an array P(k: 0sk<N) of instructions, where

N = (8 j: 0gj<n: 1ength(si)).
Let also be given a function la ¢ Label » {0,...,N} such that:

- for all j: 0 £ 3 < n: 1a(1j) is the index in P of the first

instruction of Sj'

- la(ln) = N,

It follows that

Ri.1. for all j: 0 £ j < n: P(k: 1a(lj) < k <« la(lj+1}) = sj.
R1.2, for all j: 0 £ j < n: P(k: la(lj) sk < N) = sj;...;sn“].
Let le be as in definition 5.12., From R1.2 and lemma 5.14 we obtain

R2. le = (A1 ¢ Label, rc ¢ T \

[1 = lg > tP(k: la(ly) < k < Wi (le,re,I) ,
1=1n_I + I P{k: 13(1n—3) < k < Nl {le,rc,I) ,
1=1_ -1

n

1

183.

Definition 5,15 {t', o'}

1.t e {0,...,N} x T >T,

for all j: 0 £ j <N, re ¢ T:.

- 1'(j,rc) = TiP(k: jsk<W)i(le,rc,I) .

- 1" (N,rc) I.

2. o' ¢ Instruction » {0,...,N} x T » 7T .
for all i ¢ Instruction, j: 0 < j < N, rc ¢ T:
o'1il (j,xe) = of il (le,re, v’ (j+1,rc)) .
0
An immediate consequence of relation R2 and definition 5.15.1 is

R3. for all 1 ¢ Label, rc ¢ T: le{l,rc) = t'(1a(l),rc} .

Next, we derive a relation between 7' and o’.

Let j: 0 £ j <N, rec e T,

T (j,rc)

= {definition 5.15.1}
T P{k: j<k<N)1(le,rc,I)

= {instructions stored consecutively}
HP(3); P(k: j+Isk<N)¥ (le,re,I)

= {definition 5.9}
pEP(i)1 o ol P(§)I (le,re,TIP(k: j+ick<N)i (le,rc,I))

= {definition 5.15.1} '
pIBP(Y » ol P(j)1 (le,re,t' (j+1,rc))

= {definition 5.15.2}
pIP(i) » o' [P(I) (§,xc) .

The result of this derivation, together with the second part of defini-

tion 5.15.1, are summarized in:

184,

R4. for all j: 0 €3 <N, re ¢ Tt

PEP(PDTE o o' IP(PI{§,xc) .

- T {(j,rc)

- t'"(¥,rc) 1.

For o' we derive a relation R3, divided in cases, As the derivations
of all cases have the same structure, we present the general pattern,
followed by the results., The pattern is:
R5.m. G'Kimﬂ(j,rc)
= {definition 5.15.2}
El(a,le,r’,rc,j)
= {definition 5.8.m.2}
Ez(le,t',rc,j)
= {R3}

E3(1§aT'arCaj) .

The results are:

G

i:

o'fLDA(a)! (f,re)

n

' (j+1,re)

&

c'tUIP()3 (j,re) = ' (la(l),rc) .

e
w
.
o
.

S FIP((j,re) = CP(Q, 7' (j+1,re), 1" (La(l),re)) .

G

. OTETIP(DY (,xe) = CF(aQ, ' (G+l,re), 1" (la(l),xe))

&
h
v
.

oI CSR(DII {j,re) = o' (La(l), v (j+1,re)) .

posd
Ln
o

"I RETI (j,rc) re .

|

Finally, from definition 5.12 and relation R3 we obtain

R6. wlph = t'(la(ly),F) .

Taken together, relations R4, R5 and R6 are a semantics for p in terms

of P, 1la, t', o' and w.

185.

5.4. Version 3: Introduction of return stack

A short inspection of relations R4, R5 and R6 of version 2 reveals that
each return continuation is either F or of the form t'(k,rc), where

k ¢ {0,...,N} and rc is an other return continuation. As a consequence
we can characterize return continuations by means of a stack, repre-
sented here by a finite sequence over {0,...,N}. We use a function f

to define the return continuation represented by such a sequence.

Definition 5.16 {Stack}

*

Stack = {0,...,N} .
0

Definition 5.17 {f}

f € Stack >~ T .
1. f(< > =F .,
2. f(<j> @ 5) = 1'(j,f(s)) .
0

These definitions enable us to replace the equation system of version
2, in terms on P, la, t', ¢' and 7, by an equation system in terms of
P, la, t", ¢" and m, which is based on stacks instead of return con-

tinuations. We begin with definitions of t" and o".

Definition 5.18 {1", o"}

1. ™ ¢ {0,...,N} x Stack > T .

IA

for all j: 0 € j € N, s ¢ Stack:

™(j,s) ' (3,£(s)) .

2. o" ¢ Instruction » {0,...,N} x Stack - T .
for all i € Instruction, j: 0 < j < N, rc ¢ T:
o"[il (j,s) = o'C11 (j,£(s)) .
0

From definition 5.18 and relation R4 we obtain:

186.

R7. for all j: 0 s j <N, s e Stack:

)

- 1(j,s) = ptP(§)1 o o"™IP(NI(§,s) .

3

I.

T (N,s)
For ¢" we derive relation R8 below, divided by cases. The derivations

of the first four cases follow the pattern:

R8.m. a“[imn(j,s)

{definition 5.18.2}

G’Eiml(j,f(s))

]

{R5.m}

E (j,£(s),1',1a)

[1

{definition 5.18.1}

Ez(j,s,r",la)

For R8.5 the derivation is

o"ﬂCSR(l)](j,s)
= {definition 5.18.2}
o' CSR(DI (3,£(s))
= {R5.5}
' (la(l), ' (§+1,£(s))
= {definition75.17.2}
' (la(l),£(<j+1> @ 5))
= {definition 5.18,1}

" (1la(l),<j+1> ® s) .
For R8.6 the derivation is

o"I RETI (i,s)
= {definition 5.18.2}

o"IRETY (3,£(s))

187.

= {R5.6}

f(s)
= {definition 5.17}

ifs=<>>Fls=c<j">0s" >t (i) fi
= {definition 5.18.1}

ifs=<>>Flls=<j'>0s" »1"({",s") fi.
Thus we obtain

R8.1. o"[LDA(a)1 (j,8) = T"(j+1,8) .

R8.2. o"FUJP(1)1(j,s) = 1"(la(l),s) .

R8.3. o"IFJP(1)1(j,s) = CF(Q,t"(j+1,s),t"(1a(l),s))
R8.4. o™ TIJP(1)1(j,s) = CF(=1Q, t"(j+1,s),1t"(la(l),s))

R8.5. o"[CSR(1)1(j,s) = t"(la(l),<j+]1> & s)

]
[=1
=
n

R8.6. o"[RET] (j,s)

=<>>Fls=<j'">0s" > '"(j',f(s")) fi .
Finally, for p we derive

7l pl

{r6}

T'(la(lo), F)

= {definition 5.17.1}
T'(la(lo),f(< >))

= {definition 5.18.1}

r"(la(lo),< >)

RO, mipl = t"(la(ly),< >)

Relations R7, R8 and R9 characterize the semantics of p in terms of

P, la, t", o" and 7m, using stacks instead of return continuatioms.

188.

5.5. Version 4: Derivation of an interpreter

In this section we will derive an operational description of program p
by means of an interpreter. Apart from the data variables M, A, B and
Q, this interpreter will also use control variables, which are used

for sequencing purposes. The control variables are:
P : array (k: 0 5 k < N) of Instruction ,
la: Label -+ {0,...,N} ,
ip: {0,...,N},
rs: Stack .

The variables P and la serve the same purpose as in version 2. The
variable ip is the instruction pointer and indicates the location of
an instruction to be interpreted. The variable rs is the return stack.
For the interpreter P and la are to be considered as constants., All

sequencing has to be performed by appropriate assignments to ip and rs.

We will code the interpreter in a slight variant of the source language,
the semantics of which will be obvious. Our aim is to construct the
interpreter in such a way that it has the same condition transformer as
the program p to be interpreted. Relations R7, R8 and R9 will serve as

guideline in the derivation.

To begin with, let us try to comstruct a repetition
DO = do B+ S od

such that

.

RI0. for all s ¢ Stack, j: 0 < j < N:
(ip,rs<j,s) ° wp(DO) = 1"(j,s) .
If we succeed in doing so, it follows from relation R9 and the wp

definition for éssignment and sequential composition (definitions
3.37.3 and 3.37.4) that the program

ip,rs := la(lo}, < >: DO

has the same condition transformer as program p, so we may regard it

as an operational description of p.

189,

Applying the fixed point property for wp(DO) and some propositional
calculus to RIO yields the following equivalent relation:
R1I, for all s ¢ Stack, j: 0 23 < N:

(ip,rs+j,s) o (Ag | B A q Vv B A wp(Dwp(D0)q) = 1"(},s) .
Separation of the case i = N and application of R7 yields that RII is
equivalent to (R12.1 A RI2.2), where
R12.1. for all s ¢ Stack:

(ip,rs<N,s) o (Aq | =B A q v B A wp(S)wp(DO)q) =T .

R12.2, for all s ¢ Stack, j: O € j < N:
(ip,rs+j,s) o (Ag | =1B A q v B A wp{§)wp(DO)q)

= olP(i}1 o " P(iN(j,s) .

Relation RI2,! is satisfied by B (ip # N). Substitution in R12.2

yields
for all s ¢ Stack, j: 0 € j < N:
(ip,rs«j,s) o (dq | ip =N A g v ip # N A wp(S)wp(DO)q)
= pEP(1 ° "[E(I(],s) '

which can be simplified to

R13. for all s ¢ Stack, j: 0 £ j < N:

(ip,rs«j,s) o wp(S) » wp(DO) = pIP()I ¢ o™ P()I1(j,s) .

It follows that we should look for a program
DO = do ip # N > S od

where, under the assumption that RI0O holds - this is in fact the induc—
tion hypothesis for fixed point induction - the statement S should

satisfy relation RI13.

Obviously, relation RI3 depends on the value of P(j) for various j.

Let us therefore rewrite RI3 as:

190.

Ri4, for all s ¢ Stack, j: 0 £ 3 < N:
(ip,rs<j,s) ¢ wp(8) o wp(DO)
= (g | [VVi | i ¢ Instruction f P{j) = 1 A ptito™il(i,s)ql) .
This relation is satisfied by

wp(8) = (A\q | [Vi | i ¢ Instriction | P(ip) =i A wp(Ti)q])
provided we can find statements T, such that

15. for all i ¢ Instruction, § € Stack, j: 0 € j < N:

(ip,rs<j,s) o wP(Ti) o wp(DO) = plil o o™il {(j,s) .

Let us denote the set Instructiom by the k element set {i],...,ik} for
a while. As wp(S) is the condition transformer of an alternative state-—
ment with mutually exclusive guards P(ip) = ik’ it follows that we

should look for a program

DO = do ip # N » if P(ip) = i - Ti
M - =1
g... :
D pGp) = iy > Ty
fi

od

where, under the assumption that RIO holds, the statements"l’i should

satisfy relation RIS,

Let us restrict ourselves to statements Ti of the form

where the statements X, do mnot contain lassignments to the variables ip

and rs. In that case relation R15 may be rewritten as:

R16. for all i ¢ Imstructiom, s ¢ Stack, j: 0 € j < N:
wp(Xi) o (ip,rs«j,s) © wp(Yi) o wp(DO} = plil ° o™il (i,s)
which is implied by (R17 A R18), where

Ri7. for all i ¢ Instructiom: wp(Xi) = plil.

191,

R18. For all i ¢ Inmstruction, s ¢ Stack, j: 0 € j < N:

(ip,rs<j,s) ° wp(Yi) o wp(DO) = o™il (],s)

Now it is time to consider the individual instructioms. Let us first

deal with the solutions of R17.

- If i = LDA(a), then by definition 5.8.1.1: olil = (A « M(a)),
hence Xi = A 1= M(a).

- If i is a singular instruction, then by definitions 5.8.2.1-

5.8.6.1: plil = I, hence X, = skip.

Next we derive, under the assumption that RIO holds, statements Yi
satisfying Ri18. For two representative cases we give full derivations.

The other cases are similar.

case i = LDA(a)

o il (j,s)
= {R8.1}
™ (j*1,8)
= {R10}
(ip,rs<j+1,s) o wp(DO)
= {property of substitution}
(ip,rs«j,s) = (ip«ip+1) o wp{(DO)
= {definition wp}

(ip,re«i,s) ¢ wp(ip := ip+1) o wp(DO)

hence Y, = ip := dip+l.

case i = CSR(1)

o™ i3 (j,.s)

{R8.5}

™ (1a(l),<j+1> @ s)

{rR10}

192,

(ip,rs+«la(l),<j+1> ® s) o wp(DO)

{property of substitution}

(ip,rs<j,s) o (ip,rs<la(l),<j+1> ® s) o wp(DO)
p

{definition wp}

|
(ip,rs<j,s) o wp(ip,rs := la(l),<j+1> @ s) o wp(DO)
hence Y, = ip,rs := la(l),<j+1> @ s .,

By similar derivations we find

case i = UJP(1): Yi = ip := la(l)

case i = FJP(1): Y, = if Q »ip :=ip+1 [= Q » ip := la(l) fi
case i = TJP(1): Y, = if 7 Q > ip :=dip+1 [Q » ip := la(l) fi
case i = RET : Yi = if s = <j'>® s' > ip,rs := j',s' fi

With the derivation of the statements Xi and Yi we have completed the

derivation of the interpreter. Combination of the code fragments yields:

ip,rs := la(ly), < >3

do ip # N ~
if P(ip) = LDA(a) > A := M(a); ip := ip+l
0 P(ip) = UJP(1) ~ skip; ip := la(l)
0 P(ip) = FIP(1) - skip;
if @ > dip := ip+1 1 = 0Q » ip := la(l) fi
0 p(ip) = TJIP(1) > skip;
' if mQ~»ip :=ip+1 I Q > ip := 1a(1) fi
0 p(ip) = CSR(1) - skip; ip,rs := la(l),<j+1> @ rs
0 p(ip) = RET -+ skip;
if s =<j>® s' » ip,rs := j',s' fi
fi

193.

CHAPTER 6
EPILOGUE

We conclude this thesis with a short summary and evaluation of the results

obtained in preceding chapters.

In chapter 2 we have developed a variant of attribute grammars which is a
self-contgined formal system free of implementation bias. Nevertheless, the
various components of this system can be used directly as compiler specifi-
cations, from which compilers can be derived by means of existing techniques
for attribute evaluation and data structure implementation. The grammar for

the source language is rather compact: it has only 33 grammar rules.

We have extended the predicate transformer method to a genuine definition
method by providing it with a2 firm foundation and extending it to language
constructs other than statements.In this respect the lattice theory of
section 3.1 has been of great value. The general framework provided by this
theory has helped in structuring definitions and in separating general
lattice~theoretical properties from properties particular to certain language

constructs.

We have developed semantics and proof rules for recursive procedures, both
with and without parameters, constructs the formal treatment of which in
the literature has often been problematic. We have succeeded in doing so by
separation of the various aspects of procedures and by making design
choices leading to simple semantics, e.g. with respect to parameter mecha-

nisms and initialization requirements.

The background of our work has made it necessary to consider both syntax
and semantics. On the one hand, taking into account context-dependent
properties has complicated various derivations, and we feel that there is
room for improvement in this respect. On the other hand, it has enabled us
to derive rather simple conditions for the applicability of certain proof
rules, e.g. with respect to scope of variables and disjointness of para-

meters, a notorious problem area.

194,

We have shown that it is possible to give a manageable non-operational
definition of machine instructions, and that an implementation of thése
instructions can be derived systematically. The latter derivation also
gives an impression of the way the formalisms developed in this thesis

will be put to work in the derivation of a translation from SL to TL.

195,

APPENDIX A
PROOF OF SOME LEMMAS

Proof of lemma 3.20.2

(C,8) is a ucel
= {definition 3.5, R, S countable}

E s %55 M s i3 & iR s Fiy)

(AicR, jes ! xij
= {transitivity g, definition 3.2}
Aies | Hpxye My Mox)
= {definition 3.2}
jos idr Fij B i¥r j¥s Fij -
Also, by symmetry:
195 i%r Fij 2 ¥R §9s *ij5 -
Hence, by antisymmetry of £ ¢
ier jes *ij T j¥s i€r Xij

O

Proof of lemma 3.21

(=3
1. <x,>

i i=0

P |
@Ailizolxex, Ay ey,)

oo - . »)
and <yi>i=0 ascending chains

= {definition N}

@ili20]%ny;cxy Ay ey,

I

{definition N}

@iliz0]xny ex, My,

o«
<x, M y,>, is an ascending chain.
1 ¥i%i=0 § chain

196.

had o

o

. = Ll .oy, =, . =, .

2. Let =z i=0 (Xl yl)’ X =40 ¥ YT o Y4
We first prove

. 2z L xMNy, and subsequently the stronger assertion

2. z=x1My.

1. true
= {definition M}
(ai | iz0| Xi”yiEXi’\Xi”yiEy-)
= {definition U}
- . 0 o0
ailizo] X, My, € 00 % Ax; Ny, € odyy,)
= {definition M}
: 13 e oo
@iliz0[xny; e (yx)n ()
= {definition u}
foed X kol
o G5 0y B Gy %) M Glg vy
= {definition %, y, 2z}

zExNy.

2, zgcxNy
= {definition 3,1}
(z=xMny) v (zC xMy)
= {definition x, y, M}

L Lsd
(z=xny)v (zC fﬁ X, A zLC féo yi)

0 "1

= {definition W}
(z=xny) v (EL]i0]zox) A Ei] 0] zCy)

[>+] o0 .

= {<xi>i=0 and <y.>. o ascending}
(z=xny)v(Ei|lizo]|zc X, AzCy)

= {definitiomn M}
(Zéxﬁy)v(giiizolsziﬂyi)

= {definition L}

197,

(z=xmy) Vv (zC fzﬁ (xi | yi))

{definition z}

[

(z=xMNy)y Vv (zC z)

(z

L]

X y) .
0

Proof of lemma 3.22

By induction on the size of S.

1. For S = § the equality holds, because N @ = 7T _,

2, Ind, hyp.: let for some finite set S'

Mo, O x,, =0 .n A
ies! 320 xlj j=0 ieS' x13

Let 1 ¢ 8', and 8 = {1} u 8",

N, U x,,
i€S j=0 le

{s {1}us'}(u x.)ﬂ(

ies! —0 x5)

. o
{ind. hyp.} (jg g) n (, UO g xij)

(]

3
{lemma 3.21.2} jQO (xij 1 fgs, Xij)

i

{§={1} v s} 50 g L
g

Proof of lemma 3,25

1. g v (lgl h.)
k- i
1=0

¥

{definition |DJ} g e (Ax | L hi(x))
=

]

{functional composition} (lx | g(L_J h. (x)))
i=0

"

g e (x| L8] sth; o)
=0 /

i

{definition (D)} |__| Ox | g(h, (x)))
i=0

198.

= {functional composition} [D] (g ° ho) .
i=0

(131 ;) - (1B ny)
i=o /' M=o ¥
{functional composition} ()\x | (05 gi><
{definition |D]} (Ax |

{gi e D} ()\x [|§f

1
{lemma 3.20.1} ()\x | |§| gk(hk(x)))
{definition [D]} |B] Ox | g (h ()))
k=0

{functional composition} |D] (g, © h) .
k=0 k k

199.

APPENDIX B
COLLECTED DEFINITION OF THE SOURCE LANGUAGE

Syntax

{Collected from sectioms 2.3.2, 4.1.1, 4.2.1, 4.4,1, The functions USE,
ASSN, and INIT have been incorporated into the attribute grammar. The
corresponding attribute variables have names beginning with the letters
u, a, and i, respectively. Their domain is Nst, which corresponds to sets

of names.}

Domains

{Bool,Int ,Name ,Names ,Nst ,Prio,Type,Types,Decs ,Env ,Penv}

Attribute variables

n,n],nz:Nwm;

nS, NSy, NS, NS, Names ;

u, LIO, u], uz, ug, ngo, Ugi’ ng, us, USO, USI, USZ, a, ao, a], a2,
i, iy, i, i, ¥st;

Ps PgsPysPyt Prio;

t, tO’ tl’ tzz Type;

ts, tSO’ ts1, tsz, ts3, tsaz Types;

d, dO, d], d2= Decs

e, eq, ejz Env;

pe, pén, pe], pez, pe3: Penv.

Operations on Name

Name = Letter (Letter u Digit)*.

Operations on Names

L1y 1 Name - Names

» \8) - : Names * Names - Names
. EEN « 1 Name * Names -+ Bool
#N(',' s Name * Names » Int

200.

oy dng Ioply = (o) =0y
n, iEN (nsl\y/nsz) = (nl iQN nsl) Y (n1 EEN nsz)
(nl,[nz}) = if_n] =n, > 1 i n, # n, > 0 fi

=§
N (nl,ns]\g}nsz) . (n,ns)) + QN (n,ns,)

Operations on Nst

Vet = set of Name. Details of set axioms omitted.

Operations on Prio

Prio = {e ¢ Int | the integer value corresponding to e is an element
of {1,...,7}}.

Operations on Type

Type = Typesym.

Operations on Types

[’]T : Type -+ Types
IR Types‘* Types - Types
Mts i Names *= Type » Types

ets)

= tsy &p (ts, &

(ts] ®_ ts,) @ ts 1 ®rp

T2 T 773

Mts([nl ,t) = Lel,

nt
Mts(ns \Wns,,t) = Mts(ns,,t) @ Mts(ns,,t)

Operations on Decs

Leyedy : Nemes » Type - Decs

UL 1 Decs * Decs + Decs
(+,+) iny + : Name x Type * Decs + Bool
#D ('a')

Nome * Decs - Int

-

(n,t) iny [ns,ty]) = n ing ns A (£ = t,)

(n,t) iny (dl\Q/dz) ({n,t) iny d)) v ((n,t) in, d

2)

#D (u,[ns,t]D) #N (n,ns)

) (a,d Wdy) = £ (m,d) + ¥ (n,d,)

Operations on Env

Empty : Env
Ext (e, : Eny % Decs » Env
(-, EEE » : Name * Type * Env -~ Bool

(n,t) iEE Empty = false

{n,t) iEE Ext{e,d) = {n,t) iﬁp d v (#D (n,d) = 0 A {(n,t) EEE e)

Operations on Penv

Pempty : Penv

Leyenelp : Name x Types * Types - Penv
c\B : Penv % Penv ~ Penv

#P(".) : Name * Peny - Int

(+y*y*) iﬂP * : Name * Types x Types x Penv -+ Bool

#P (n,Pempty) = 0

o (pslngitsy,ts,]y) =if gy =ny > 10 n) #20y)>0fi
#P (n,pe]LE}pez) = #P (n,pe;) + #P (n,pe,)

(n,tsl,tsz) ig? Pempty = false

(nl,tsl,tsz) in, [nZ’tSB’tsé]P = (nl =mn, Ats =ts; Ats,=ts)

201,

(n:tslatsz) E'P-P P81 LPJ Pez = ((ngtslatsz) :1_31, Pe]) v ((nats])tsz) _i-P_P pez)

Nonterminals

Vy = {Abstr <Penv,Types,Types> ,
Block <Penv,Env,Nst,Nst,Nst> ,
Con <Type> ,
Decs <Decs> ,
Dop <Prio,Type,Type,Type> ,
Expr <Env,Prio,Type,Nst> ,
Exprs <Bw,Tlypes,Nst> ,

202,

Ges <Penv,Env,Nst,Nst,Nst,Nst> , .
Id <Name> ,

Ids <Names> ,

Mop <Type,Tyve> ,

Pdecs <Decs,Types> ,

Procdecs <Penv,Penv> ,

Prog ,

Stat <Pewnv,Env,Nst,Nst,Nst> ,

Type <Type> ,

Var <Ewnv,Name,Type> ,

Vars <Env,Names,Types,Nst>

Terminals

Letter = {"a",...,"2"}
Digit = {"0",...,"9"}
Opl {"+","_"’|'_1||}

= LLIVR L B L TR LR L DU B L P { B L DR L DR L PR L B) e 1] LIRS A I BN L I OO { O I T B L UL B | AN 1)
0p2 = {4 T AT e L ALY

Typesym = {"int","bool"}

Consym = {"true","false"}

Statsym = {"skip","abort"}

Sym = {"I[M,]|, e g I et e (e

"E‘l , "E","_d_»g","ﬂ"’ Ilvar" ’"con"’ ".reS"}
VT = Letter u Digit u Opl v Op2 u Typesym u Consym U Statsym U Sym .

Start symbol

Prog.

Pseudo terminals

{1d <Name>, Dop <Prio,Type,Type,Type>, Mop <Type,Type>, Con <Tyne>,
Type <Type>}

For all n € Name:

L(Id <n>) = {n} \ (Typesym u Consym U Statsym)

L(Dop
L{Dop
L(Dop
L(Dop
L(Dop
L(Dop

L(Mop
L(Mop

L{Con
L(Con

L{Type <int>)
L{Type <bool>)

<1,bool,bool,bool>) = {"=" "'}
<2,bool,bool,bool>) = {"v'}

<3,bool,bool,bool>) = {"A"}

<4, bool,int,int>) = {M= Mg m ngn nu ey
<5,int,int,int>) = {"41, -

<6,int, int,int>) = {MxM}

<int,int>) = {Mgn oy

<bool,bool>) = {"=1"}

. R
<int>) = Digit

<bool>) = Consym

{"int"}

{"bool™}

3

Grammar rules

1. Prog ::=

Block <pe,e,u,a,i> ®m

pe = Pempty

]

e Empty

2. Prog ::=

Procdecs <pe,pe> | Block <pe,e,u,a,i> ®

e = Empty
(A n: Name | #P (n,pe) £ 1)

3. Procdecs <peq,pe,> :i:=

1
Procdecs <peg,pe,y> , Procdecs <pey),pe

e = pey \B Py

4, Procdecs <peqyspe > ii=

14 <n> = Abstr <pe0,ts1,tsz>,a

pe, = [n,ts],tszlP

3

> 8

203,

204,

5. Abstr <pe,tsl,tsz> =

(con Pdecs <dl,ts > H res Pdecs <d,,t

1 2°
[Stat <pe,e,u,a,i> bR
(é n: Name | #D (n,dl\Djdz) + #P (n,pe) < 1h
e = Ext(Empty,d] L]})dz) ‘
= (E n: Fame | #D (n,d]) #0 An ¢ a)
(é n: Name] #D (n,dz) #0een e i)
6. Pdecs <d0,ts

srm

0t

Pdecs fdl,ts]> » Pdecs <d

dy = ¢y W/ 4
® ts

gats,> ®

ts, = ts

0 1 2

7. Pdecs <d,tsg> 1:=
Ids <ns> : Type <t> ®
d = [ns,t]D
ts = Mts{ns,t)

8. Block <pe,e

O,uo,ao,10> 1i=
I var Decs <d> | Stat <pe,e,e ,uy,a;,i,>
Ilm

(A n: Name | #D (n,d) + #P {n,pe) < 1)

e, = Ext(eo,d)

(A n: Name | #D (n,d) # 0= (n ¢ i1 von ¢ u}))

uy = u, \ {n: Vame | #D (n,d) # 0}
ay = a; \ {n: Name | #y (n,d) # 0}
iy =i, \ {n: Name | #y (n,d) # 0}
9. Decs <d0> 1=
Decs <d]> s Decs <d2> "
do = 4, W 4,
10. Decs <d> ::=
Ids <ns> : Type <t> m
d = [ns,t]D
1i. Ids <nso> 1=
Ids <ns,> s Ids <nsz> L

nso = ns] \gj ns,

2

>

205.

12, Ids <as> 1:=
Id <n> m

ns = [n]N

13. Stat <pe,e,u,a,i> i:=
abort =
u=p
a=@
i=6

14. Stat <pe,e,u,a,i> t:=

skip »

o
L]
- WS

i5. Stat <pe,e,u0,ao,i0> HHE
Vars <e,ns,ts,a0> H Exprs <e,ts,u0>]
(A n: Name | #N (n,ns) < 1)
1g=8 \ 4

16. Stat <pe,e,u0,ao,io> 1=

Stat <pe,e,u,;,a si.> H Stat <pe,e,u2,a2,i2> n

1’71

uo = UI U uz
aO = a] u 32

ie = i] Y (12 \ ul)

17. Stat <pe,e,ﬁ,a,io> T
if Ges <pe,e,ug,us,a,i1> fim
u = ug U us
ig =1, \ ug

18. Stat <pe,e,u,a,i0> 1=

do Ges <pe,e,ug,us,a,i1> od m

u = ug U us

io =

19. Stat <pe,e,u,a,i> :1:=

Block <pe,e,u,a,i> =

206.

20.

21.

22,

23.

24,

25.

26.

IR
.o

Stat <pe,e,u0,a0,io>

2)

Vars <e,ns,t52,ao>

Abstr <pe,ts ,Ls

(A n: Name | #N (n,ns)

iy =35 Vyy

-

<pe,e,u0,ao,io> 1=
Id <n> (

Stat
Exprs

Vars <e,ns,ts,,a.>

2°70
(A n: Name | #N (n,ns)

(n,tsl,tsz) in, pe

P
i

0= 3 VY

-

Vars <e,nsO,tso,aG> =

>

1
ns, = ns, \/ ns,
tsy = ts, &, ts,

1Y e

Vars <e,ns,ts],a

a a

0

Vars <e,ns,ts,a> :1:=
Var <e,n,t> ®
[n]N‘

eln

{n}

ns

ts

13

a

O,u0> Hbhe
Exprs <e,ts],u

Exprs <e,ts
17 ’

&y 5y

2

tS0 = tS}

u U ua

0~ Y

Exprs <e,ts,u> :i=
Expr <e,p,t,u> =

ts = [t]T

Expr <e,p0,t0,u0> HE
Expr <e,pl,tl,u
<

_Pl

<p2

u

>

1
Py
Pg

Yo

U

i 2

(Exprs <e,ts;,u,> :
) =

1)

<

>

<e,ts 0 3

e
Im

1

<

s Vars <e,n32,tsz,a2>]

Exprs <e,tsz,u2> »

Dop <p0,t0,tl,t2>

Expr <e,p2,t2,u2> -

207.

27, Expr <e,p0,to,u> 1=

Mop <tgsty> Expr <e,py,t),u> W
Po =7
P = 7

28. Expr <e,pgst,u> 1=
(Expr <e,p,,t,u>) m
Py ~ 7

29, Expr <e,p,t,u> i1:=
' Var <e,n,t> ®
p=7

u = {n}

30. Expr <e,p,t,u> ::=

Con <t> ®
p=7
u=0

31, Var <e,n,t> ::=
Id <n> =

(n,t) inE e

32, Ges <pe,e,ug0,uso,a0,i0> ti=
Ges <pe,e,ug ,us;,a;,s,> 1} Ges <pe,e,ug2,u32,a2,i2> [
ugy = ug, U ug,
usy = us, U us,

0 i
a

a
#

U a
1 2

i, = i ni
0

1 2

33. Ges <pe,e,ug,us,a,i> 1:=
Expr <e,p,t,ug> -+ Stat <pe,e,us,a,i> »
t = bool

208,
Semantics
{Collected from definitions 4.46, 4.47, 4.48, 4.49.}

Definition {wp'}

For all e ¢ Env the function

WPé ¢ L(Stat <Penv,e,Net,Nst,Nst>) » A T,

is defined by

i. wpé(abort)é (A\gq € Ce | false)

2. wp](skip)s Ogec, | @

3

3. wpé(v = BE)§ (v « E)
4. wpé(sl;sz)ﬁ = (wp[(8,)8)o(wp (8,)6)
5. wpl(if B, » 5, 0 ... 1 B, ~sS fi) =
= (g e C, | Vi | igign | Bi] ALAL | isisn | B, = (wpé(si)a)q])
6. wpé(g_q‘B1 > 5 b...10 B > S od)s = uF
where F= (MfeC +~ C |
e uc e

(iq € C, | ([Vvi | igizn | Bi] v q)

A IAL | Isign | B, = (wp (5.)8) £ qI))

7. wp (A(E5v))& = pwp (8) (6) (E,v)

8. wpl (p(E;v))6

pwpl (p) (8) (E,v)
9. wp (I[var x: ¢t s 11) = (hq e C, | Gepl ((x + y)S)S)a) ,
1
where y ¢ Name such that } new (y,e) ,

e, = Ext(e,[y,t]n) .

209,

Definition {wlp'}

For all e ¢ Fnv the function

wlpé ¢ L(Stat <Penv,e,Nat, Nst,Nst>) + A To

is defined by

wlp! (abort)§ = (Aq € C, | true)
wip!(skip)§ = (Aq ¢ C, I a)
wlpé(v 1= E)8 = (v « E)

- wlpl(8,38,)8 = (wlp)(5,)8)°(wip (5,)6)

wip,(if B, >s, 0 ... 0 B ~»s8 fi) =
= (Aq € C b AL | 1<isn | B, = (wlp](S.)8)qD):

wip (do B, > 8, [l ... 0B =+ 8 od)s =16,

1

where G = (\f e C =, C, |

(q e C, | (Vi | 1gisn | B,1 v a)

A LAL | 1gign | B, = (wlp!(5,)6) £ ql))

7. wlpé(A(E;v))S = pwlpé(A)(G)(E,v)
8. wlp_ (p(E;v))8 = pwlp (p) (8) (E,V)
9

- wlpl (11 var x: ¢ | 811)= (qecC | (wlp! ((x« v)8)8)q) ,
e e el

where y € Ngme such that } new (y,e) ,

e = Ext(e,[y,t]D).

Definition {pwp',pwlp'}

For all e ¢ Env the functions pwp; and pwlpé

¢ L(Id <lNome>) v L{Abstr <Penv,Types,Types>) - & + P,

are defined as follows:

210.

Let (com x: t,; res y: t, | 8) ¢ L(Abstr <Penmv,Types,Tures>).,

E = L(Expr <e,Prio,t,,Nst>) ,

I,
V= L(Var <e,Name,t2>) ,
x',y' ¢ Naome such that + new (x',e), F mew (y',e), x' # y' ,

\

]

e Ext(e,[x',tllD \0/ [y',tzlb} .

s' x,y « x',y")s .

it

1.1, pwpé((con x: t]; res vi tz { $))8 =

=(AEeE velV| (x' «E) o wpé,(S‘)S o (v=1y"))
1.2. pwpé(p)& = §(p) (e} .

2.1, pwlpé((con X: t;; res y: t, | 8336 =

= (MeE vel]| (x' «E) o wlpé,(S‘)G o (vevy')) .

2.2. pwlpé(p)é = §{p)(e)

Definition {wp and wlp for programs}

1.1. wp(B) = wp!(B)6 ,

where e = Empty, 6 = @ .

1.2. wp(p]=Ai,...,pk=Ak | B) = wp. (B)S ,
where e = Empty ,
& is the function {(pl,wl},...,(pk,mk)} ,
(@],...,mk) = u(@],...,ék) s
and, for i: 1 £ 1 < k:
@i’= (X@;,...,Qé e X |

Oe e Eno | pwpl (A {(p o)) 5000, (puop))

2.2,

wlp(B) = wlp;(B)ﬁ ,

where e = Empty, § = § .

wip(p =A;,...,p, =4 | B) = wlpl(B)S ,
where e = Empty
§ is the function {(pl,wl),...,(pk,wk)}
Wpseensty) = v 000,90,
and, for i: 1 £ i < ki
Yo = Qs € X |

(e € Env | pwlpl(A)1(p0]) 50 vy (p, 00) o

211,

212,

INDEX OF DEFINITIONS

{Unless indicated otherwise, numbers refer to numbers of definitions.}

admissible predicate 3.30 fixed point 3.27
ambiguity 2.8 frontier 2.5, 2.20
ascending chain 3.2 : full attributed derivation tree 2.21
attribute grammar 2,12 full derivation tree 2.6
attribute structure 2.9 function signature 2.9
attributed derivation tree 2.9 function symbol 2.9
attributed nonterminal 2.14 gib‘ 3.2

attributed nonterminal form 2.14 grammar rule 2.12

base grammar 2.25 greatest fixed point 3.27
base rule 2.24 greatest lower bound 3.2
base symbol 2.23 language generated by

base tree 2.26 grammar 2.3, 2.18
boolean attribute structure 2.10 least fixed point 3.27
cel 3.6 least upper bound 3.2
chain 3.3 lub 3.2

cl 3.7 monotonicity 3.14
complete lattice 3.7 ' non-logical axioms 2.9

complete partially ordered set 3.4 nonterminal 2.1, 2,12

conjunctively 3.17 nonterminal signature 2.12
context-free grammar 2.1} partial correctness logic 3.51
continuity 3.19 partial correctness proof rule 3.49
countably complete lattice 3.6 partially ordered set 3.1
cpo 3.4 production rule 2.1
deel 3.5 proof rule 3.49
derivation tree 2.4 pseudo terminal sections 2.1.2,
descending chain 3.2 2.2.2
disjunctivity 3.17 rule condition 2.12
domain 2.9 rule form 2,12
downward continuocus 3,19 standard order 3.9
downward countably-complete start symbol 2.1

lattice 3.5 strictness 3.12

expression signature 2.9 substitution 2.15

213,

substitution in conditions ucel 3.5
note following 3.38 upward continuous 3.19
substitution in statements 4;6, upward countably-complete
4.14 lattice 3.5
terminal 2.1, 2.12 variagble signature 2.9
total correctness logic 3.53 vocabulary 2.1

total correctness proof rule 3.49

{notions pertaining to grammars} {notions pertaining to condition
>> 2.2, 2,57 transformers}
+ >> 2.2, 2.17 eq 3.31
kx> 2.2, 2.17 C, 3.32
2.3, 2.18 g, 3.33
D 2.11 T, 3.35
es 2.13 P, 4.15
AN 2.14 A 4,21, 4.45
pr 2.16 X 4,42
bs 2.23 wp 3.37, 4.10, 4.18, 4,26, 4.49
br 2.24 wp' 4.23, 4.46
bt 2.26 wip 3.38, 4.10, 4.18, 4.26, 4.49
wip' 4,24, 4,47
{notions pertaining to lattices} pwp 4,17
(€,z) 3.1 pwp! 4,48
[3.1 pwlp 4,17
C note following 3.1 pwlp' 4,48
3 note following 3.1 - (v <« E) note following 3.38
n 3.2, 3.16 (x+7y) 4.6, 414
u 3.2, 3.16 USE 4.1, 4,13
o % 3.2 ASSN 4.2, 4,13
G 3.2 INIT 4.3, 4,13
L note on p. 57
T note on p. 57

214,

{noticns pertaining to proof rules} {notions pertaining to target

Pvalid0 3.48 language}
Pvalidl 4,29 Stack 5.16
Pvalid2 4.34 Instruction 5.1
Pvalid3 4,51 Label 5.2
Pvalidé 4,57 Labenv 5.6
Psound0 3.50 T 5.3
Psound] 4,30 1,F,CF 5.5
Psound? 4.35 ' £ 5.17
Psound3 4,52 p 5.8
Psound4 4,58 I 5.8
Tvalid0 3.48 o' 5.15
Tvalidl 4,37 o' 5.18
Tvalid2 4,62 T 5.9
Tsound0 3.50 ' 5,15
Tsound! 4,38 . ™ 5.18
Tsound2 4,63 w 5.12
PC, 3,51

PA|,PA,,PA, 3.5

PR,,...,PR, 3.5

PR PR, PR, 4.1

PR, PRy 4,19

PR, ,PR,, 4.55

PR12 following th. 4.61

TCO 3.53

TA,,TAy,TA; 3.53

TR],...,TR4 3.53

TRgyene, TRy 4.1

TRq, TR, 4,19

TR, TR, 4.66
TR]2 following th. 4.68

215,

REFERENCES

[apt 1]
Apt, K.R., Ten years of Hoare's logic: A survey - Part L.
ACM Transactions on Programming Languages and Systems 3, 4
(Oct. 1981), pp. 431-483, ‘
[Apt 2]
Apt, K.R., A sound and complete Hoare-like system for a fragment
of Pascal, Report IW 97/78 Mathematisch Centrum, Amsterdam, 1978,
[Ashcroft]
Ashcroft, E.A., Wadge, W.W., Ry for Semantics, ACM Transactions
on Programming Languages and Systems 4, 2 (Apr. 1982), pp. 283-294,
[Back 1]
‘Back, R.J.R., Proving total correctness of nondeterministic
programs in infinitary logic, Acta Inf. 15 (1981), pp. 233-249.
[Back 2]

Back, R.J.R., Correctness preserving program refinements: proof
theory and applications, Mathematical Centre Tracts 131, Mathema-
tisch Centrum, Amsterdam, 1980,

[de Bakker]
de Bakker, J.W., Mathematical theory of program correctness,
Prentice~Hall, 1980.

[Bjdrner]
Bjdrner, D., Jones, C.B. (eds.), The Vienna development method:

the meta language, Lect. Not. Comp. Sci. 61, Springer, 1978,
[Bochmann]

Bochmann, G.V., Ledgard, H.F., Marcotty, M., A sampler of formal
definitions, ACM Computing Surveys 8, 2 (June 1976), pp. 191-276.

[Brinch Hansen]
Brinch Hansen, P., Concurrent Pascal Repert, Information Science,

California Institute of Technology, 1975.

216.

[Cook 1]
Cook, S.A., The complexity of theorem~proving procedures. Procs.
3rd Ann. ACM Symp. on theory of computing, May 1971.
[Cook 2]
Cook, S.A., Soundness and completeness of an axiom system for
program verification, SIAM J. on Computing 7, 1978, pp. 70-90.
[Curry]

Curry, H.B., Feys, R.
Combinatory logic, vol. I., North-Holland Publ. Comp., 1958.

[Dijkstra 1]
Dijkstra, E.W., Guarded commands, nondeterminacy and formal

derivation of programs, Comm. ACM 18, 8 (Aug. 1975), pp. 453-457.

[Dijkstra 2]

Dijkstra, E.W., A discipline of programming, Prentice~Hall, 1976.

[Dijkstra 3]
.Dijkstra, E.W., Lecture notes "Predicate transformers” (Draft),
EWD 835, 1982.

[Floyd]
Floyd, R.W., Assigning meanings to programs, Proc. Symp., in
Applied Mathematics 19, Mathematical Aspects of Computer Science,
J.T. Schwartz (ed.). AMS 1967, pp. 19-32.

{Ginsburg]
Ginsburg, S., Rounds, E,M., Dynamic syntax specification using
grammar forms, IEEE Trans. Soft. Eng., vol. SE~4, no. 1, Jan. 1978,
- pp. 44~35,

[Goguen] ‘
Goguen, J.A., Thatcher, J.W., Wagner, E.G., An initial algebra
approach to the specification, correctness, and implementation of
abstract data types; in: Current Trends in Programming Methodology,
4, R.T. Yeh (ed.), Prentice-~Hall, 1978, pp. 80-149.

[Guttag]
Guttag, J.V., The specification and application to programming of
abstract data types, Ph.D. thesis, Comptr. Syst. Res. Group Tech.
Rep. CSRG 47, Dept. Comptr. Sci., Univ. of Toromto, 1975,

[Hemerik]

[Hoare 1]

[Hoare 2]

[Hoare 3]

[Jazayeri]

[Knuth]

[Rarp]

[Laver]

217,

Hemerik, C., Relaties tussen taaldefinitie en taalimplementatie
(in Dutch), MC Syllabus 42, J.C. van Vliet (ed.), Mathematisch
Centrum, Amsterdam, 1980, pp. 109-142,

Hoare, C.A.R. An axiomatic basis for computer programming, Comm.
ACM 12, 10 (Oct. 1969), pp. 576-580.

Hoare, C.A.R., Wirth, N., An axiomatic definition of the program-

ming language Pascal, Acta Inf. 2, 1973, pp. 335-355.

Hoare, C.A.R., Procedures and parameters: an axiomatic approach;
in: Symp. on Semantics of Algorithmic Languages, E. Engeler {ed.),
Lect. Not. Math. 188, Sprimger, 1971, pp. 102-116.

Jazayeri, M., Ogden, W.F., Rounds, W.C., The intrinsically ex-
ponentional complexity of the circularity problem for attribute
grammars, Comm. ACM 18, 12 (Pec. 1975}, pp. 697-706.

Knuth, D.E., Semantics of context-free languages, Math. Syst.
Theory 2 (1968), pp. 127-145. Correction imn: Math. Syst. Theory 5
(1971), p. 95.

Karp, C.R., Languages with expressions of infinite length, North-
Holland Publ., Comp., 1964,

* Laver, P.E., Consistent formal theories of the semantics of

[Ledgard]

programming languages, Tech. Rep. TR. 25.121, IBM Lab. Vienna,
Nov. 1971,

Ledgard, H.F., Production systems: a notation for defining syntax
and translation, I[EEE Trans. Soft. Eng., vol. SE-3, no. 2, March
1977, pp. 105~124,

218,

[Me Carthyl
Mc Carthy, J., Towards a mathematical science of computation,
Procs. IFIP Congress 62, C.M. Popplewell (ed.), North-Holland
1963, pp. 21-28. 7

[Milne]
Milne, R.E., Tranforming predicate transformers, Proc., IFIP TC-2
Working Conference on Formal Description of Programming Concepts,
E.J. Neuhold (ed.), Worth-Holland, 1978, pp. 31-65.

[Plotkin]
Plotkin, G.D., Dijkstra's predicate transformers and Smyth's
power domains, Procs. 1979 Copenhagen Winter School, D. Bjdrner
(ed.), Lect. Not. Comp. Sci. 86, Springer, 1980.

[Raiha]
RHihd, K.-J., Bibliography on attribute grammars, ACM SIGPLAN
Notices 15, 3 (March 1980), pp.'35—44. ’

[Scott 1].
Scott, D.S., Logic with denumerably long formulas and finite
strings of quantifiers, Symp. on the Theory of Models, J. Addison,
L. Henkin, A. Tarski {(eds.), North-Holland, 1965, pp. 329-341.

[Scott 2]
Scott, D.S., Data types as lattices, SIAM J. on Computing 3,
1976, pp. 522-587.

[Simonet]
Simonet, M., An attribute description of a subset of ALGOL 68,
-Proc. of the Strathclyde ALGOL 68 Conf., ACM SIGPLAN Notices 12, 6
(June 1977), pp. 129-137.

[Strachey]
Strachey, C., Wadsworth, C.P., Continuations: a mathematical
semantics for handling full jumps, Technical Monograph PRG-11,

Programming Research Group, University of Oxford, 1974.

[stoyl]
Stoy, J., Denotational semantics: the Scott—Strachey approach to

programming language theory, MIT Press, 1977.

219,

[Tennent]
Tennent, R.D., Language design methods based on semantic principles,
Acta Inf. 8 (1977), pp. 97-112,

[Wand]
Wand, M., A characterization of weakest preconditions, J. Comp.
Syst. Sci. 15, 1977, pp. 209-212.
[Watt])
Watt, D.A., An extended attribute grammar for Pascal, SIGPLAN
Notices lE; 2 (Feb. 1979), pp. 60-74.
[Wegner]
Wegner, P., The Vienna Definition Language, Computing Surveys 4,
1972, pp. 5-63.
[Wirth 1]
Wirth, N., Weber, H., EULER: A Generalization of ALGOL, and its
Formal Definition, part II, Comm. ACM 9, 2 (Feb. 1966), pp. 89-99.
[Wirth 2]

Wirth, N., Hoare, C.A.R., A contribution to the development of
ALGOL, Comm. ACM 9, 6 (June 1966), pp. 413-431.

[van Wijngaarden]
van Wijngaarden, A. et. al. (eds.), Revised report on the algo-
rithmic language ALGOL 68, Acta Inf. 5, 1975, pp. 1-236.

220.

SAMENVATTING

Het onderzoek waarvan in dit proefschrift verslag wordt gedaan maakt deel
uit van een meer omvattend project dat tot doel heeft het op systematische
wijze construeren van correcte implementaties van programmeertalen. De

volgende aspecten spelen daarbij een rol:

1. De definitie van de brontaal.

2. De definitie van de doeltaal.

3. De constructie van een "betekenié behoudende" afbeelding van brontaal
naar doeltaal.

4, De constructie van een programma dat die afbeelding realiseert,

Het is duidelijk welke afhankelijkheden er tussen deze aspecten bestaan:

3 is uvitsluitend afhankelijk van 1 en 2, en de specificaties van 4 zijn
gebaseerd op 1 en 3. Het is ook duidelijk dat de correctheidsoverwegingen
van 3 en 4 gescheiden kunnen worden en dat de betrouwbaarheid van de %
resulterende vertaler uiteindelijk bepaald wordt door de mate van‘precisie,

volledigheid en ondubbelzinnigheid van 1 en 2.

Het onderwerp van dit proefschrift is het ontwerp en de formele definitie
van een brontaal SL en een doeltaal TL, die dienen als uitgangspunt voor
een implementatieproces zoals boven geschetst. Bovendien worden de daarvoor
benodigde definitiemethoden zover als nodig ontwikkeld., Gezien de gegeven
achtergrond zal het echter duidelijk zijn dat dit proefschrift niet be-
schouwd dient te worden als een op zichzelf stasande studie van taaldefini-
tie, Het grootste deel van het beschreven werk is bedoeld als theoretische

fundering van het genoemde implementatieproces.

In het proefschrift wordt allereerst kort ingegaan op voorwaarden waaraan
formele taaldefinities dienen te voldoen, zoals beschikbaarheid van goede
wiskundige theorie en afwezigheid van overspecificatie en implementatie-
aspecten. Vervolgens wordt in hoofdstuk 2 de syntactische definitie van de
brontaal behandeld. Het belangrijkste onderwerp van dit hoofdstuk is de
ontwikkeling van een variant van de welbekende attribuutgrammatica's

[Knuth], die primair gericht is op taalspecificatie. De belangrijkste

221.

componenten van deze variant zijn een verzameling geparameteriseerde produk-
tieregels en een zogenaamde attribuutstructuur, met behulp waarvan eigen~
schappen van parameters uit gegeven axioma's afgeleid kunnen worden.
Enerzijds kan een attribuutgrammatica van deze soort beschouwd worden als
een zuiver formeel systeem gebaseerd op herschrijfregels en logische
afleidingen. Anderzijds kan de attribuutstructuur, die overeenkomt met een
algebraische type-specificatie in de zin van [Goguen, Guttag]l, direct ge~
bruikt worden als specificatie van dat deel van een vertaalprogramma, dat

de context-afhankelijke analyse uitvoert.

In hoofdstuk 3 wordt de basis gelegd voor de semantische definitie van bron~
en doeltaal. De gebruikte definitiemethode is in essentie die van de
"predicate transformers” [Dijkstra 1, Dijkstra 2]. Deze methode wordt eerst
gefundeerd met behulp van een variant van Scott's "theory of continuous
lattices"” [Scott 2] en "infinitary logic” [Back 1, Karp]. Daarna worden de
predicate transformers voor een deel van de brontaal in dit raamwerk be-
schouwd. Tenslotte worden deze resultaten gebruikt om logische systemen in
de stijl van [Hoare 1, Hoare 2] te ontwikkelen voor het bewijzen van par—

tiéle en totale correctheid.

In hoofdstuk 4 worden de methoden van hoofdstukken 2 en 3 toegepast op
andere constructies van de brontaal, te weten blokken en procedures. Voor
deze constructies worden syntaxis, semantiek en bewijsregels ontwikkeld. De
verschillende aspecten van procedures worden zoveel mogelijk in isolement
behandeld. De behandeling van blokken in sectie 4.1 dient voornamelijk om
de effecten van het introduceren van lokale namen te onderzoeken. In sectie
4,2 worden aan de hand van zogenaamde abstracties de gevolgen van paramete-
risering bestudeerd. In sectie 4.3 wordt met behulp van de lattice theory
van sectie 3.1 een betrekkelijk eenvoudige behandeling vam parameterloze
recursie gegeven. Tenslotte worden in sectie 4.4 de verscheidene aspecten
samengevoegd, hetgeen resulteert in een behandeling van recursieve proce~

dures met parameters.

In hoofdstuk 5 worden enige aspecten van de formele definitie van de doel-
taal behandeld, met name die welke betrekking hebben op imstructies die de
volgorde van verwerking beinvloeden, zoals sprongen en subroutine-aanroepen.
Het doel van dit werk is het ontwikkelen van predicate transformers voor

machine-instructies, die vervolgens gebruikt kunnen worden bij het constru~

222.

eren van correcte implementaties. In eerste instantie wordt met behulp van
de lattice theory uit sectie 2.1 en de techniek van de "continuations”
[Strachey] een predicate transformer semantiek ontwikkeld. Vervolgens
wordt uit deze definitie via enige transformaties een equivalente operatio-
nele beschrijving door middel wvan een interpretator-programma afgeleid.
Deze afleiding is zowel een bewijs van de consistentie van twee definities
als een voorbeeld van het afleiden van een implementatie uit een niet-
operationele definitie. Bovendien geeft deze afleiding ook een indruk van
de semantiek behoudende transformaties die bij de vertaling van brontaal

naar doeltaal een rol zullen spelen.

Hoofdstuk 6 bevat een korte nabeschouwing van het werk.
Appendix A bevat bewijzen van enige lemma’s.

Appendix B bevat de verzamelde definitie van de brontaal.

223,

CURRICULUM VITAE

De schrijver van dit proefschrift werd op 24 april 1952 geboren te Leiden.
In 1969 behaalde hij aan de Mathenesser H.B.S. te Rotterdam het diploma
H.B.8.~B. Hij studeerde vervolgens wiskunde aan de Technische Hogeschool
Delft, alwaar hij in november 1976 het ingenieursexamen aflegde. Afstudeer-
hoogleraar was prof.dr.ir. W.L. van der Poel. Sinds | april 1977 is hij
werkzaam bij de Technische Hogeschool Eindhoven, meer in het bijzonder in
de Onderafdeiing der Wiskunde en Informatica bij prof.dr. F.E.J. Kruseman

Aretz,

STELLINGEN

behorende bij het proefschrift

Formal definitions of programming languages as

a basis for compiler construction

van

C. Hemerik

Eindhoven,
15 mei 1984.

10.

STELL INGEN

Elke recursief opsombare taal kan gedefiniSerd worden met een attribuut-

grammatica zoals gedefiniéerd in hoofdstuk 2 van 4dit proefachrift.

Rae in de literatuur overheersende opvatting, dat een operationele
definitie van een programuesertasal het beste uitgangspunt vormt voor

implementatie van die taal, is onjuist.

Programmeertalen zijn artefacten. Derhalve verdient het ontwarpen van
talen met wenselijke eigenschappen meer aandacht dan het bestuderen

van bestaande talen.

Hat is goed te bedenkan, dat een aantal helangrijke doorbraken in de
informatica het gevelg =ijn van het zorgvuldig beperken van de combi-
natorische vrijheid die geboden wordt deoor het Von Neumann-berekenings—
madeal.

Het vak programmexen is de laatste vijftien jaar onmiskenbaar wiskundiger
van aard geworden. De verworven inmzichten =zijn echter nog onveoldoende in

de vorm van stellingen vastgelegd.
Informatica is bij uitstek een ingenieurswetenschap.

Het aantrekken van grote aantallan informaticastudenten schaadt de kwaliteit

van onderwijs en enderzoek in de informatica.

Een informatica-ingenieur dient een zekere rijpheid te bexzitten om de ont-
wikkelingen in zijn vakgebied kritisch te kunnen beschouwen. Een eerste -
fase opleiding van slechts vier jaax bledt voor het benodigde rijpings-

proces onvoldoende ruimte,

De veelgencemde achterstand van Nederland op het gebied van de informatica

1z slechts vermeend,

Gezien de omstandigheden waaronder proefschriften hun voltooiing naderen,
verdient het aanbeveling te onderzoeken of er verband bestaat tussen de

wet van Parkinson en de paradox van Zeno.

