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A Trace-Based Compositional Proof Theory for 
Fault Tolerant Distributed Systems 

Henk Scheperst Joze! Hooman§ 

Department of Mathematics and Computing Science 
Eindhoven University of Technology 

P.O. Box 513, 5600 MB Eindhoven, The Netherlands 

Abstract 

We present a compositional network proof theory to specify and verify safety properties of fault 
tolerant distributed systems. In this proof theory we abstract from the precise nature and occurrence 
of faults, but mode1 their effect on the externally visible input and output behaviour. To this end we 
formalize a fault hypothesis as a reflexive relation between the normal behaviour (i.e. the behaviour 
when no faults occur) of a system and its acceptable beha.viour, that is, the normal behaviour together 
with the exceptional behaviour (Le. the behaviour whose abnormality should be tolerated). The 
method is composit.ional to allow for the reasoning with the specifications of processes while ignoring 
their implement.ation details. This compositionality is achieved by starting from a SAT formalism to 
reason about the normal behaviour and extending it with a single rule to obtain a specification of the 
acceptable behaviour from the specification of the normal behaviour and a predicate characterizing 
the fault hypothesis. We prove soundness and relative network completeness of the method. Our 
approach is illustrated by a.pplying it to a triple modular redundant component and the alternating 
bit protocol. 

Key words: Compositional proof theory, fault hypothesis, fault tolerance, relative network com
pleteness, safety, soundness, specification, verification. 

1 Introduction 

It is dimcult to prove t.he properties of a distributed system composed of failure prone processes, as 
slich proofs must take into account the effects of faults occurring at any point in the execut.ion of the 
individual processes. In t.he Hoare style formalism of [5] Cristian deals with the effects of faults that 
have occurred by partitioning the initial state space into disjoint subspaces, and providing a separate 
specification for each part. In the formalisms for fault tolerance that have been proposed in the more 
recellt. literature (cf. [3], [9], [14], [18]) the occurrence of a fault is modeled explicitly, typic.ally using the 
designat.ed symbol't'. III cOHtra..c;t., we want to model t.he effects of faults 011 the ext,erllaJly visible input 
and output behaviour and let the alphabet of a process remain unchanged. In particular, we aim at a 
formalism which abstracts from the internal states of the processes and concentrates on the input and 
outPlit hehaviour that. is oh:,wrvahle at tlH~ir illt.l~rfaef~. AH a ~OnHf'qllf'lI(,f~, ill ollr proof tllf'ory Wf' tlo 1101, 

deal with the sequent.ial aspects of processes. To support top-down program design we want. t.o reason 
with the specifications of processes without considering their implementation and the precise nature and 
occurrence of faults in such an implementation. This means that we aim at a compositional proof theory 
for fault tolerant distributed syst.ems. 

ln fault tolerant systems, three domains of behaviour are distinguished: normal, exceptional and 
catastrophic (see [12]). Normal behaviour is the behaviour when no faults occur. The discriminating 

tSupported by the Dutch STW under grant number NWI88.1517: 'Fault Tolerance: Paradigms, Models, Logics, Con· 
struction'. &.mail: schcpers@win.tue.ul. 

§E·mai); wsinjh@win.tue.nl. 
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factor between exceptional and catastrophic behaviour is the fault hypothesis which stipulates how faults 
affect the normal behaviour. Relative to the fault hypothesis an exceptional behaviour exhibits an 
abnormality which should be tolerated (to an extent that remains to be specified). A catastrophic 
behaviour has an abnormality that was not anticipated (cf. [1], [11], [12], and [15]). In general, the 
catastrophic behaviour of a component cannot be tolerated by a system. Under a particular fault 
hypothesis, the syst.em is designed as if the hypothetical faults are the only faults it can experience and 
measures are taken to tolerate (only) those anticipated faults (see, e.g., [16] for some design examples). 
In particular, the exceptional behaviour together with the normal behaviour constitutes the acceptable 
behaviour. 

Given this classificat.ion of behaviour, we investigate whether an existing compositional proof theory 
for reasoning about the normal behaviour of a system can be adapted to deal with its acceptable be
haviour. To do so, we formalize a fault hypot.hesis as a relation between the normal and the acceptable 
behaviour of a system. Indeed, such a relation enables one to abstract from the precise nature and 
occurrence of a fault and to focus on the abnormal behaviour it causes, if any. 

As a starting point of the development of the proof theory, along the lines described above, we 
consider a simple SAT formalism to specify and verify safety properties of networks of processes that 
communicate synchronously via. directed channels. Safety properties are properties that can be falsi
fied by finite observations [20]. They are important for reliability because, in the characterization by 
Lamport [10], they express that 'nothing bad will happen'. We express a property of a process P by 
means of trace logic, using a special variable h to denote the trace, also called history, of P. Such 
a history describes the observable behaviour of a process by recording the communications along the 
visible channels of the process. For instance, a possible history h of I-place buffer B which alternately 
inputs an integer via the observable channel in and outputs it via the observable channel out, may 
be ((in, 1),(out, 1),(in,3),(out,3)). To express that a process P satisfies a safety property.p we use a 
correctness formula of the form P sat .p. Typical safety properties of buffer B are 'if there is a commu
nication on out then the communicated value is equal to the most recently communicated value on in' 
and 'the number of out communications is equal to or one less than the number of in communications'. 

Based on a particular fault hypothesis, the set of behaviours that characterize a process is expanded. 
To keep such an expansion manageable, the fault hypothesis X of a process P is formalized as a predicate, 
whose only free variables are h and hold, representing a reflexive relation between the normal and 
acceptable histories of P. The interpretation is such that hOld represents a normal history of process 
P, whereas h is an acceptable history of P with respect to X. For a predicate X, representing a fault 
hypothesis, we introduce the construct (Plx) to indicate execution of process P under the assumption 
of X. This construct enables one to specify failure prone processes. Consider again buffer B. Under 
the hypothesis that, due to faults, values in the buffer are corrupted, which is formalized by some 
fault hypothesis predicate Cor, history ( in, 1), (out, 1), (in, 3), (out, 3)) may be transformed into history 
(in,l),(out,l), (in, 3), (out,5)). Then, we would like to prove that failure prone process (BICor) still 
satisfies the property that 'the number of out communications is equal to or one less tban the number 
of in communications'. 

We define the trace semantics of a failure prone process F P, and define when correctness formulae of 
the form FP sat .p are valid. We present a proof theory to verify that a system tolerates the exceptional 
behaviour of its components to the desired extent. The proof theory is compositional in the sense that 
it allows for the reasoning with the specifications satisfied by failure prone processes while ignoring their 
implementation details. The usefulness of our method is illustrated by applying it to a triple modular 
redundant system and the alternating bit protocol, where, indeed, we only use the specifications of 
the components. Finally, we snow that our proof theory is sound and obtain a completeness result by 
establishing preciseness preservation (see [19]). 

The remainder of this report is organized as follows. Section 2 introduces the programming language. 
Section 3 defines the denot,ational semantics. In Section 4 we present the assertion language and associ
ated correctness formulae. In Section 5 we incorporate fault hypotheses into our formalism. Section 6 
presents a compositional network proof theory for fault tolerant distributed systems. We illustrate our 
method by applying it, in Section 7, to a triple modular redundant component, and, in Section 8, to the 
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alternating bit protocol. In Section 9 we prove that the proof theory of Section 6 is sound and complete. 
A conclusion and suggestions for fut.ure research can be found in Section 10. 

2 Programming Language 

In this section we present an OCCAM-like programming language which is used to define networks of 
processes. Let VAR be a nonempty set of program variables, CHAN a nonempty set of channel names, 
and let VAL be a denumerable domain of values. lN denotes the set of natural numbers (including 0). 
We consider a concurrent programming language in which processes communicate synchronously via 
directed channels. The syntax of our programming language is given in Table 1, with n E lN, n 2: 1, 
x E VAR,,.. E VAL, e E CHAN, and eset <; CHAN. 

Expression 

Boolean Expression 

Guarded Command 

Process 

Table 1: Syntax of the Programming Language 

e ::-
b .'-

G ··-.. -
p .. -

,.. I x I el + e, I el - e, I el x e, 

el = e, I el < e, I ,b I b1 vb, 

[Ui;1 b; - p;J 
skip I x:= e I e!e I e?x I PI; P, I G I * G I PI II P, I P\ cset 

Informally, t.he statements of Ollr programming language have the following meaning: 

Atomic statements 

• skip terminates without any effect. 

• Assignment z := e assigns the value of expression e to the variable x. 

• Output statement. ele is used to send the value of expression e on channel c as soon as a cor
responding input command is available. Since we assume synchronous communication, such an 
output statement is suspended until a parallel process executes an input statement c?x. 

• Input statement c?x is used to receive a value via channel c and assign this value to the variable 
x. As for the output command, such an input statement has to wait for a corresponding partner 
before a (synchronous) communication can take place. 

Compound statements 

• PI; P, indicat.es sequential composition: first execute PI, and continue with the execution of P, if 
and when PI terminates. 

• Guarded commalld [U:';1 b; - p;J. If none of the b; evaluate to true then this guarded cOlllmand 
terminates after evaluation of the booJeans. Otherwise, non-deterministically select one of the hi 
that evaluates to true and execute the corresponding statement Pi. 

• Iteration * G indicates repeated execution of guarded command G as long as at least one of the 
guards is open. When none of the guards is open * G terminates. 

• PI II P, indicates the parallel execution of the processes PI and P,. 

• P \ cset hides the channels from cset. 

For a guarded command G = [Ui;lb; - p;J we define ba = b1 V ... V bn . Define var(P) as the set of 
variables occurring in P. 
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Definition 1 (Observable input channels of a process) The set of visible, or observable, input 
channels of process P, notation in(P), is defined inductively as follows: 

• in (skip) = in(" := e) = in(e!e) = 0 

• in(e?,,) = {e} 

• in(P, ; P2 ) = in(P,) U in(P2 ) 

• in([O:'=, bi - Pi]) = Uiin(Pi) 

• in( .G) = in( G) 

• in(P, II P2 ) = in(P,) U in(P2 ) 

• in(P\ eset) = in(P) - cset o 
Definition 2 (Observable output channels of a process) The set of visible, or observable, output 
channels of process P, notation oul(P), is defined inductively as follows: 

• out (skip) = out(" := e) = 0 

• out(e!e) = {e} 

• out(e?,,) = 0 

• out(P, ; P2 ) = out(PJ) U out(P2 ) 

• out([O:'=,bi - Pi]) = Uiout(Pi) 

• out( .G) = out (G) 

• out(P, II P2 ) = oul(P,) U oul(P2 ) 

• out(P\ cset) = out(P) - cset o 
Definition 3 (Observable channels of a process) The set of observable channels of a process P, 
notation chan(P), is defined by chan(P) = in(P) U out(P). 0 

2.1 Syntactic Restrictions 

To guarantee that channels are unidirectional and point-to-point, we have the following syntactic con· 
straints (for any c E CHAN, x E VAR, expression e, etc.): 

• For PI ; P2 we require that if PI contains ele then P2 does not contain c?z, and if PI contains c?z 
then P2 does not contain cleo In other words, in(PJ) n out(P2) = 0 and out(PJ) n in(P2) = 0. 

• For [0:'=, b; - Pol we require that, for all i,j E {I, ... , n}, i # j, if P; contains c!e then Pj does 
not contain c?", that. is, out(P;) n in(Pj) = 0. 

• For PIIIP2 we require that if PI contains c!el then P2 does not contain c!e21 and if P l contains C?Zl 

then P2 does not contain C?"2. Equivalently, in(P,) n in(P2) = 0 and out(PJ) n OUI(P2) = 0. 

To avoid programs such as (e?x)\{c}, which would be equivalent to a random assignment to ", we 
require: 

• For P\eset we require that cset ~ in(p)n out(P). 

Furthermore, we do not allow parallel processes to share program variables. 

• For P,IIP2 we require that var(PJ) n var(p2) = 0. 

4 



3 Denotational Semantics 

In this section we define a denotational semantics for the programming language of the previous section. 
The semantics of a process P, denoted by O[P), associates with P a set of triples consisting of the 
initial state, the sequence of communications, and the final state characterizing a possible execution of 
the process. 

Define the set STATE of states as the set of mappings from VAR to VAL: 

STATE = {O' 10': VAR ~ VAL} 

Thus a state 0' assigns to each program variable x a value O'(x). For simplicity we do not make a 
distinction between the semantic and the syntactic domain of values. 

Definition 4 (Variant of a state) The variant of a state 0' with respect to a variable x and a value 
ti, denoted (0' : x ...... ti), is given by 

{
ti ifV=x 

(0' : x ...... ti)(V) = O'(V) if V ~ x 

using '=' to denote syntactic equality. o 

In the sequel we assume that we have the standard arithmetical operators +, -, and x on VAL. 
Define the value of an expression e in a state 0', denoted by [[e](O'), inductively as follows: 

o [[1'](0') = 1', 

o [[x](O') = O'(x), 

o [[e, + e2](0') = [[e,](O') + [[e2](0'), 

o [[e, - e2](0') = [[e,](O') - [[e2](0'), and 

o [[e, x e2](0') = [[e,](O') x [[e2](0')' 

We define when a boolean expression b holds in a state 0', denoted by 8[b](0'), as 

o 8[e, = e2](0') iff [[e,](O') = [[e2](0'), 

o 8[e, < e2](0') iff [[e,](O') < [[e2](0'), 

o 8[~b](0') iff not 8[b](0'), and 

o 81b, V b2](0') iff 8[6,](0') or 8[62](0'). 

We represent. asynchronous communication of value /' E VAL along channel c E CHAN by a pair 
(c,I'), such that ch((c,I'» = c and val((e,I'» = 1'. To denote the behaviour of a process P we use 
a history 0 which is a finite sequence (also called a trace) of the form ((c" I't}, ... , (en, I'n» of length 
len(O) = n, where n E IN, C; E chan(P), and 1'; E VAL, for 1 :0; i:O; n. Such a history denotes the com
munications of P along its observable channels up to some point in an execution. Let 0 denote the empty 
hist.ory, i.e. the sequence of length O. The concatenation of two histories 0, = ((c" I't), ... , (e., 1',» and 
O2 = ((d"vt}, ... ,(d"v,», denoted 0,'02 , is defined as ((e',I't}, ... ,(e',I'.),(d"v,), ... ,(d"v,). We 
usc O'(c, 1') as an abbreviation of O'((c,I'»' 

Let TRACE be the set of traces, that is, the smallest set such that 

00 E TRACE, 

o if 0 E TRACE, c E CHAN, and I' E VAL then O'(e,l') E TRACE. 
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Definition 5 (Projection) For a trace 0 E TRACE and a set of channels eset <; CHAN, we define 
the projection of 0 onto eset, denoted by Of cset, as the sequence obtained from 0 by deleting all records 
with channels not in cset. Formally, 

{

() ifO=() 
Or cset = 00 f cset . if 0 = OOA(C, 1') and crt cset 

(00 f esetJA(c, 1') if 0 = OOA(C, 1') and c E cset 

<> 

Definition 6 (Hiding) Hiding is the complement of projection. Formally, the hiding of a set cset of 
channels from a trace 0 E TRACE, notation 0\ cset, is defined as 

0\ cset = Of( CHAN - cset) 

<> 

Definition 7 (Channels occurring in a trace) The set of channels occurring in a trace 0, notation 
chanCO), is defined by 

chanCO) = {cE CHAN I OHc} f- ()} 

<> 

Notice that Or cset = 0 iff chanCO) <; cset, and that OHc} = () iff crt chanCO). 

Definition 8 (Length of a trace) The length of a trace 0, denoted by ten(O), is defined by 

• ten(() = 0, 

• ten (OA (c, 1')) = ten(O) + I. <> 

Definition 9 (Prefix) The trace 01 is a prefix of a trace O2 , notation 01 ~ O2 , iff there exists a trace 
03 such that 01 A03 = O2 • <> 

Let STATE1- = STATE U {.1}. The semantic function 0 assigns to a process P a set of triples 
(0'0,0,0') with 0'0 ESTATE, 0 E TRACE, and 0' E STATE1-. Informally, a triple (O'Q, 0, 0') E O[P) has 
the following meaning: 

• if rJ' # .1 then it represents a terminating computation which has performed the communications 
as described in () and terminates in state (T, and 

• if rJ' = .1 then it represents a point in a computation of P at which P has performed the commu
nications as described in 0 but has not yet terminated. 

To define the semantic function 0 we use the operator PC which yields the prefix closure of a set 0 
of triples: 

PC(O) = 0 U {(O'Q, 0,.1) I there exists a (rJ'0, 01,0') E 0 such that 0 ~ Oil 

For instance, PC( {(O'o, «c, 1», O')}) = {(O'o, (), .1), (rJ'o, «c, 1», .1), (0'0, «c, 1», O')}. Thus, for infinite 
executions of a process P the set O[P] contains all finite approximations, which is justified since we only 
deal with safety properties [20J. 

The semantics of a process P can now inductively be defined as follows: 

• O[skip] = PC( {(O'o, (), O'o)}) 

.0[",:= eJ = PC({(O'o,(),(O'o: "' ..... e[e](O'o)))}) 
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• 0lc!e) = PC({(O'o,((c,C[e](O'o))),O'o))) 

• O[c?z] = PC( {(0'o , 0, 0') I there exists a value I' E VAL such that 0 = ((c, 1')) 
and 0' = (0'0: z ...... p)}) 

• O[P, ; P,] = {(O'o, O,.L) I (0'0,0,.L) E O[P,]} 
U {(O'O,O,AO"O') I there exists a 0', ",.L such that 

(0'0,0,,0',) E OIP,] and (0',,0,,0') E OIP,]} 

• 01 [Oi;, h; ...... P;] I = PC( {(0'o , 0, 0'0) I ~B[b, V ... V bnl(O'o)}) 
U PC( {(0'O , 0, 0') I there exists a k E {I, ... , n} such that 

Blb.](O'o) and (0'0,0,0') E 0IP.]}) 

• O[.C] = PC({(O'o,O, 0') I there exists ak E IN and a list (0'0,0"0',), ... ,(0'._,,0,,,0',) such that 
0= O,A .. AO., 0' = 0'., and for all i E {O, .. . ,k -I}: 
0'; ",.L, BlbG](O';) and (0';,0;+1,0';+,) E OIC], and 
if 0'. ",.L then B[~bG](O"))) 

• OIP, " P,] = {(0'o , B, 0') I for i = 1,2 there exist 0;,0'; such that (0'0,0;,0';) E O[P;], and 
if 0', = .L or 0', = .L then 0' = .L else for all z E VAR 

{ 
O';(z) if z E var(P;) 

O'(z) = O'o(z) if z ¢ var(P, "P,) 
OJ chan(P;) '" 0;, and OJ chan(P, "P,) = O} 

• O[P\cset] = {(O'o,O\cset,O') I (0'0,0,0') E 0[P1} 

We conclude this section by defining the set of traces of a process. 

Definition 10 (Traces of a process) The traces of a process P, notation XIP], follow from: 

X[P] = {B I there exist 0'0 and 0' such that (0'0, e, 0') E O[P]} 

4 Assertion Language and Correctness Formulae 

<> 

As mentioned before, we use a correctness formula P sat ¢ to express that process P satisfies safety 
property ¢. Informally, since we abstract from t.he internal states of the processes and focus on the 
pattern of communications, such a correctness formula expresses that any sequence of communications 
P may exhibit satisfies ¢. 

Conform the format of traces in the semantics of the previous section, we use communication record 
expressions such as (c, jJ), with c E CHAN and jJ E VAL, in assertions. We have channel expressions, 
e.g. using the operator ch which yields the channel of a communication record, and value expressions, 
including the operator val which yields the value of a communication record and the length operator 
len. Further, we use in assertions the empty trace, 0, traces of one record, e.g. ((c,p», as well as the 
concatenation operator A and the projection operat.or j. To refer to the communication history of a 
process we use a special variable h. This variable is not updated explicitly by the process: it refers to 
a trace from the semantics, and consequently its value wiH in general change during the execution of 
the process. Then, we can write specifications like c!2 sat hi{c} = 0 V hi{c} = ((c,2». Let VVAR, 
with typical representative v, denote the set of logical value variables ranging over VAL, and let TVAR, 
with characteristic element t, be the set of logical trace variables ranging over TRACE. Assume that 
VVAR n TVAR = 0. 

Table 2 presents the assertion language, wit.h c E CHAN, I' E VAL, v E VVAR, t E TVAR, and 
cset <; CHAN. Observe that an expression in the assertion language of Table 2 does not refer to program 
variables since we abstract from the internal state of a process in this report. 
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Table 2: Syntax of the Assertion Language 
Channel erpression cerp ::- c I ch( rerp) 

Value erpression verp ::= I' I v I val(rerp) I len(terp) 

( cerp, verp) I terp( verp) Record expression 

Trace expression 

Assertion 

rexp ::= 

terp ::= 

<P ::= 

1 I h I () I (rerp) I terp,' lerP2 I terp i cset 

cerp, = cerp2 I verp, = verp2 I lerp, = lerP2 
<p, 1\ <P2 I ~<P I 3v: <P I 31: <P 

Definition 11 (Abbreviations) Henceforth we use the following abbreviations: 

• ch(cerp, verp) == ch«cerp, verp)) 

• val(cerp,verp) == val«cerp,verp» 

• terp i cerp == terp j{ cerp } 

• rerp, = rerP2 == ch(rerpJl = ch(rerP2) 1\ val(rerpJl = val(rerP2) 

• terp\cset _ texpj(CHAN - cset) 

• last( terp) _ terp( lent terp» 

• terp, :0 terP2 == 3t: terp,'t = terP2 

This expresses that texp, is a prefix of terP2' 

• terp, :on terP2 == 3t: len(t) ::; n : terp,'t = terP2 

To assert that terp, is a prefix of terP2 which is at most n records shorter. 

• terp, ..( terP2 == texp,:o terP2 1\ terp, '" texp2 

To denote that terPI is a strict prefix of terP2' 

• texPl -<n texP2 == 3t: 1 < len(t) :::; n : texp/\t = texP2 

To express that terPI is a strict prefix of terP2 which is at most n records shorter. 

• terp[verpJ == terp(I)' .. Aterp(verp) 

To refer to the prefix of terp that has length verp. 

if len( terp,) ::; 1 
if len( terp,) > 1 

To denote that ter]>, is a (not necessarily contiguous) subsequence of terP2' o 

Furthermore, we use the standard abbreviations <PI V <P2 == ~(~<PI 1\ ~<P2)' and <PI - <P2 _ ~<PI V <P2' 
Also, for natural numbers z and y, we use the relations x $n y and x <n y to denote that 0 :5 y - x :5 n, 
respectively that 0 < y - :z; ::; n. 

Definition 12 (Sequence of values) For a trace terp, 

~ I( t ) _ { () if texp = () 
a exp - Vul(texpo}'v if texp = terPo'(e, v) 

o 
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Example 1 (Medium) Consider a medium M that accepts messages via m;n and delivers them via 
mout in first in-first out order. To specify that M has a capacity of one message, we use 

M sat Val(himout) =,' Val(him;n) 

For an assertion </> we define a set chant </» of channel names such that </> may only be invalidated by 
a communication on the channels of chan (</». 

Definition 13 (Channels in an assertion) For an assertion </> We inductively define the set chan(</» 
of channels such that c E chant </» iff a communication along c might affect the validity of </>. 

• chan(c) = 0 

• chant ch( rexp» = chant rexp) 

• chan(p) = chan(v) = 0 

• chan(val(rexp» = chan(rexp) 

• chan(len( lexp» = chant lexp) 

• chan«cexp, vexp» = chan(cexp) U chan(vexp) 

• chan(texp(vexp» = chan(texp) U chan(vexp) 

• chan(t) = 0 

• chan(h) = CHAN 

• chan«) = 0 

• chan«rexp» = chan(rexp) 

• chan(texp,'texP2) = chan(texpJl U chan(texP2) 

• chan(texpi cset) = chan(texp) n cset 

• chan(cexp, = cexP2) = chan(cexpJl U chan(cexP2) 

• chant vexp, = vexP2) = chant vexpJl U chant vexP2) 

• chan(texPI = texP2) = chan(texpJl U chan(texP2) 

• chan(</>, 1\ </>2) = chan(</>d U chan(</>2) 

• chan(~</» = chan(3v : </» = chan(3t : </» = chan(</» o 

Next we define the meaning of assertions. An assertion is interpreted with respect to a pair (0,1). 
Trace ° gives h its value, and environment "{ interprets the logical variables of VVAR U TVAR. We use 
the special symbol f to deal with l.he interpretation of texp( vexp) where index vexp is not a positive 
nat,ural number, or if it is greater than the length of texp. The value of an expression is undefined 
whenever a subexpression yields f. We define the value of a channel expression cexp in the trace 8, 
and an environment ,,{, denoted by C[cexp](O,"{), yielding a value in CHAN U {n, the value of a value 
expression vexp in the trace 0, and an environment ,,{, denoted by V[vexp](8, "{), yielding a value in 
VAL U {n, the value of a record expression rexp in the trace 0, and an environment ,,{, denoted by 
R[rexp](O, "{), yielding a value in CHAN x VALU {n, and the value of a trace expression texp for trace 
0, and an environment ,,{, denoted by T[texp](O, "{), yielding a value in TRACE U {n. 
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• C[cJ(O,,,) = c 

• C[ch(rexp)J(O,,,) = { : iff1G[rexp](O,,,) = f 
iff there exists a I' such that 1G[rexpJ(O,,,) = (c,p) 

• V[P](O,,,) = I' 

• Vlv](O,,,) = ,,(v) 

{ 
f iff 1G[rexp](O,,,) = f 

• Vlval(rexp)J(O,,,) = I' iff there exists a c such that 1Glrexp](O,,,) = (c,p) 

V[I (I )](0 ) _ { f iff T[lexp](O,,,) = f 
• en exp ,,, - len(T[lezp](O, ,,)) otherwise 

1G[( )](0 ) _ { t iff C[ cexp](O,,,) = t or V[vexp](O,,,) = t 
• cexp, vezp ,,, - (C[cexp](O, ,,), V[vexp](O, ,,)) otherwise 

• 1G[lexp( vexp )](0,,,) = and T[lexp](O,,,) = 0, '(c, prO, 
{ 

(c,p) iff there exist 0, and 0, such that len(Od = V[vexp](0,,,)-1 

f otherwise . 

• T[I](O,,,) = ,,(1) 

• T[h)(O,,,) = ° 
• T[()](O,,,) = 0 

TI( )](0) _ { f iff 1G[rexp](O,,,) = f 
• rexp ,,, - «c,p) iff 1G[rexp](O,,,) = (c,p) 

{ 

f iff T[lexp,](O,,,) = f or 
• T[texp,'lexp,](O,,,) = T[texp,](O,,,) = f 

T[lezp,](O, "l'T[lezp,](O,,,) otherwise 

T[I r 1](0 ) {f iff T[texp](O,,,) = f 
• exp cse ,,, = T(lezp](Or eset,,,lT csel otherwise 

Definition 14 (Variant of an environment) The variant of an environment" with respect to a 
logical variable I and a value A, denoted b : I ..... A), is given by 

{
A ifm=1 

b : I ..... A)(m) = ,,(m) if m'$. I 

We inductively define when an assertion 4> holds for a trace 0, and an environment ", denoted by 
(0,,,) F= 4>. To avoid the complexity of a three-valued logic, an equality predicate is interpreted strictly 
with respect to f, that. is, it has truthvalue false if it contains some expression that has an undefined 
value. 

• (0,,,) F= cexp, = eexp, iffC[cezp,](O,,,) = C[eexp,](O,,,) and C[eezp,](O,,,) '" f 

• (0,,,) F= vexp, = vexp, iffV[vexp,](0,1) = V[vexp,](O,,,) and V[vexp,](O,,,) '" t 

• (0,,,) F= texp, = texp, iff T[texp,](O,,,) = T[lexp,](O,,,) and Tllexp,](O,,,) '" f 

• (0,,,) F= 4>, "4>, iff (0,,,) F= 4>, and (0,1) F= 4>, 
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• (8, r) 1= ~,p iff not (8, r) 1= ,p 

• (8, r) 1= 3v : ,p iff there exists a value Il such that (8, (r : v ..... Il)) 1= ,p 

• (8, r) 1= 3t : '" iff there exists a trace 0 such that (8, (r : t ..... 0)) 1= ,p 

Definition 15 (Validity of an assertion) An assertion ,p is valid, which we denote by 1= ,p, iff for all 
8 and r : (8, r) 1= ,p 0 

We conclude this section by defining when a correctness formula P sat ,p is valid. 

Definition 16 (Validity of a correctness formula) For a process P and an assertion 4J a correctness 
formula P sat ,p is valid, denoted by 1= P sat ,p, iff 

for all r and all 8 E H[P] : (8, r) 1= ,p 
o 

5 Incorporating Fault Hypotheses 

Based on a particular fault hypothesis, the set of behaviours that characterize a process is expanded. 
To keep such an expansion manageable, the fault hypothesis X of a process P is formalized as a 
predicate, expressed in a first order assertion language, whose only free variables are h and hold, 

representing a reflexive relation between the normal and acceptable histories of a process. The in~ 
terpretation is such that hold represents a normal history of process P, whereas h is an acceptable 
history of P with respect to X. Such relations enable one to abstract from the precise nature of a 
fault and to focus on the abnormal behaviour it causes. For instance, a possible history h of pro
cess Square, which alternately inputs an integer via the observable channel in and outputs its square 
via the observable channel out, may be ((in, 1), (out, 1), (in, 3), (out, 9)). The exceptional behaviour 
reSUlting from Square's output channel becoming transiently stuck at zero can be defined using a pred
icate StuckAtZero asserting that hold and h are equally long, if the ith element of hold records an 
in communication then it is equal to the ith element of h, and if the ith element of hold records 
an out communication then so does the ith element of h, but in the latter case the communicated 
value recorded in h is equal to the original value or it is equal to zero. Using, similar to [17], the 
construct (Square I StuckAtZero) to indicate execution of process Square under the assumption of Stuck
AtZero, we still have (( in, 1), (out, 1), (in, 3), (out, 9)) E H[(Square/ StuckAtZero j], but also, for instance, 
(( in, 1), (out, 1), (in, 3), (out, 0)) E H[(Square I StuckAtZero)l Our goal is to examine whether it is pos
sible to develop a compositional proof theory based on the idea of transforming histories; for the time 
being it is not our aim to find a logic to express fault hypotheses as elegantly as possible. 

Example 2 (Stuck at zero) The before mentioned predicate StuckAtZero can formally be defined as 
follows: 

StuckAtZero ~ len(h old ) = len(h) 
A Vi : 1 ~ i ~ len( h) : ch("r{in, out}(i)) = ch(holdr{in, out}(i)) 

A val(hiin(i)) = val(holdiin(i)) 
A val(hiout(i)) = val{holdiout(i)) 

V val(hiout(i)) = 0 

By not specifying the value part of an out record in h, allowing it to be any element of VAL, we can 
forma1ize corruption. 
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Example 3 (Corruption) We formalize corruption as follows: 

Cor ~ len(hold) = len(h) 
" Vi : I $ i $ len (h) : ch(hT{in, out}(i)) = ch(holdi{in, out}(i)) 

" val(hTin(i» = val(holdTin(i)) 

A 

Example 4 (Loss) Consider medium M of Example 1. To formalize the hypothesis that M may lose 
messages we define: 

Loss ~ hT{m;., moutl~ hold! {m;., mou,} 
" h Tm;. = hOld Tm;. 

A 

We extend the assertion language with trace expression term hold. Sentences of the extended language 
are called transformation expressions, with typical representative.,po A transformation expression is 
interpreted with respect to a triple (00 ,0, 'Y). Trace 00 gives hold its value, and, in conformity with the 
foregoing, trace 0 gives h its value, and environment 'Y interprets the logical variables of VVAR U TVAR. 
The meaning of assertions, as defined on page 9, can easily be adapted for transformation expressions; 
the only new clause is T[hold](OO, 0, 'Y) = 00 • Similarly, the channels occurring in an transformation 
expression are defined as in Definition 13 with the extra clause chan(hold) = CHAN. 

Since the term hold does not occur in assertions, the following lemma is trivial. 

Lemma 1 (Correspondence) For assertion 4> for all 00 (Oo,O,'Y) F= 4> iff (O,'Y) F= 4>. o 

In this section we define the trace semantics 1i[(FPlx)J of failure prone process (FPlx), that is, 
process FP under assumption of fault hypothesis X. A fault hypothesis X is a fault assertion which, 
since it formalizes a relat.ion between the normal and the acceptable behaviour of a process, represents 
a reflexive relation between h and hold. Formally, 

• F= X[hold/h] 

Furthermore, we require a fault hypothesis X to be prefix c10sedness preserving, that is, we require 

Using P to denote a process expressed in t.he programming language of Section 2, we define the 
syntax of our extended programming language in Table 3. 

Table 3: Extended Syntax of the Programming Language 

Failure Prone Process FP ::- P I FP,II FP 2 I FP\cset I (FPlXl I 
We require, in (FPlx), that chan(x) s;; chan(FP). Hence, chan«FPlx)) = chan(FP), and, as 

before, chan(FP, II FP 2 ) = chan(FP,) U chan(FP2 ), and chan(FP\ cset) = chan(FP) - cset. 
As we are only interested in the traces of a process, the semantics of a failure prone process FP is 

inductively defined as follows: 

12 



• H[FPIII FP,] = {Ol for i = 1,2, Ofchan(FP,) E H[FP,], and Ofchan(FPIIi FP,) = 0 } 

• H[FP\ cset) = { 0\ cset 1 0 E H[FP] } 

• H[(FPlx)) = {Ol there exists a 00 E H[FPj such that, for all" (00 ,0,,) F x, and 
OTchan(FP) = 0 } 

The set H[(FPlx)] represents the acceptable behaviour of FP with respect to fault hypothesis X. No
tice that, H[FP] = H[(FPlhf chan(FP) = holdf chan(FP»] , and that, because of the reflexivity of 
x, H[FP] ~ H[(FPlx)]. Also, observe that the semantics is defined such that if 0 E H[FP] then 
chan(O) ~ chan(FP). 

Lemma 2 (Prefix closedness) If 0 E H[FP] and 0' ::0 0 then 0' E H[FP). 

Proof. See A ppendix A. o 

Definition 17 (Composite transformation expression) For transformation expressions .pI and .p" 
the composite transformation expression (.pll.p,) is defined as follows 

where t must be fresh. 

From this definition we easily obtain the following lemma. 

Lemma 3 (Composite fault hypothesis) 

H[(FPl(xdx,))] = H[«FPlxdlX2)] 

Proof. See Appendix B. 0 

The following lemmas are easy to prove by structural induction. 

Lemma 4 (Projection) Consider cset ~ CHAN and transformation expression .p. If chan(.p) ~ cset 
then, for all 00 , 0, and, 

(a) (00 ,0,,) F.p iff (00 , Of cset,,) F .p 

(b) (00 ,0,,) F.p iff (80 fcset,0,,) F.p 

Lemma 5 (Substitution) Consider transformation expression .p. 

(a) (00 ,0,,) F .p[texp/h] iff (00 , T[texp](Oo, 0, ,),,) F .p 

(b) (00 ,8,,) F .p[texp/hold] iff (T[texp](80 ,0,,),O,,) F.p 

o 

o 

Since the interpretation of assertions has not changed, the validity of correctness formula FP sat 4> is 
defined as in Definition 16, with P replaced by FP. 

Definition 18 (Validity of a correctness formula) For a failure prone process FP and an assertion 
4> a correctness formula FP sat 4> is valid, denoted by F FP sat 4>, iff 

for all, and all ° E H[FP] : (0,,) F 4> 

o 
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6 A Compositional Network Proof Theory 

In this section we present a compositional proof theory to prove safety properties of networks of processes. 
Since we focus on the relation between fault hypotheses and concurrency, we have abstracted from the 
internal states of the processes and do not give rules for atomic statements, nor sequential composition. 
Such rules could be formulated by using an extended assertion language which includes program variables 
and a denotation to indicate termination (e.g. [20]). 

The following rules are standard: 

Rule 6.1 (Consequence) 

Rule 6.2 (Conjunction) 

Rule 6.3 (Invariance) 

FP sat </>" </>'-</>2 
FP sat </>2 

FP sat </>" FP sat </>2 
FP sat </>,1I</>2 

cset n chan(FP) = (2) 

F P sat hI cset = () 
From tilis rule we can derive the following lemma. 

Lemma 6 (Invariance) 
P sat h \ chan(P) = () 

Rule 6.4 (Parallel composition) 

FP, sat </>" FP2 sat </>2 

FPdlFP2 sat </>,11 </>2 

o 

provided that chan(</>,) n chan(FP2) ~ chan(FP,) and chan(</>2) n chan(FP,) ~ chan(FP2), i.e. if the 
assertion that holds for one process refers to channels of the other process then this concerns channels 
connecting the two processes (cf. [8], [20]). Note that, as a consequence of this restriction, any occurrence 
of h in specification </>; of process FP; should be projected onto a subset of chan(FP;}. Recall that we 
do not allow shared variables. 

Rul" 6.5 (Hiding) 
FP sat </>, chan(</» n cset = (2) 

FP\ cset sat </> 

Next, we formulate the rule for the introduction of a fault hypothesis. 

Rule 6.6 (Fauit hypothesis introduction) 

FP sat </> 

(FPlx) sat (</>Ix) 

Observe that since </> is an assertion, hold does not occur in </>, and hence also (</>Ix) is an assertion. 

Example 5 (Loss) Consider the medium of Example 4. By (Fault hypothesis introduction), 

(MILoss) sat 3t: (Val(hIm ou,):5' Val(hIm;n»)[t/hl 
II (hf{m;n, mou,}:s)holdf{m;n, mou,} II hIm;n = hOldlm;n)[t/holdl 
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which reduces to 

(MILoss) sat 3t : Val(tim ou,) ~l Val(tjm;.) 
/I hf{m;., mou,}~tf{m;., mou,} /I hjm;. = tim;. 

Now, for instance, by hi {min, mout} ~ t i {min I moud J we have, obviously, h imout:g tfmout, which, since 
Val(timoutl ~l Val(tim;.), implies Val(hjmoutl~ Val(tim;.). Then, by tim;. = hjm;., we obtain 

(MILoss) sat Val(himou')~ Val(hjm;.) 

Also, since Val(tim ou,) ~l Val(tim;n), we have Vi: ch(t'(i)) = mou, : val(t'(i)) = val(last(t'[iJrm;.)), 
with t' = tf{m;.,mou,). Because hf{m;.,mou,)~tf{m; .. mou,) whilst him;. = tim;., this leads to 

(M I Loss) sat Vi: ch(hf{m;.,mou,}(i)) = mou,: 
val(hf{m; .. mou,}(i)) = val(last(hf{m;., mou,)[iJrm;n)) 

Finally, since the semantics is prefix closed we have the following rule . 

. Rule 6.1 (Prefixing) 
FP sat <P 

FP sat Vt ~ h: <p[t/h] 

7 Example I: Triple Modular Redundancy 

Consider the triple modular redundant component of Figure 1. It consists of three identical components 
Cj , j = 1,2,3, an input triplicating component In, and a component Voter that determines the ultimate 
output. The intuition of the triple modular redundancy paradigm is that 3 identical components operate 
on the same input and send their output to a voter which outputs the result of a majority vote. Clearly, 
the failure of one component can be masked, and the failure of two or all three components can be 
detected, as long as they do not fail identically. 

In out2 out 
}-=:.L...'; Voter}-+--="--

out3 

Figure 1: Triple modular redundant component 
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Definition 19 (Abbreviations) Throughout this section we use the following abbreviations: 

• c(i) == val«htc)(i» 

• cOld(i) == val«holdtC)(i» 

• c'(i) == val«ttc)(i» <> 

Each component alternately awaits an input message from in, performs some computation I, and 
produces an output message on out. We abstract from the implementation details of a componentj we 
only consider the following specification. . 

Cj sat Vi: out(i) = I(in(i» 

The voter awaits the output of each of the 3 components, takes a majority vote, and outputs the 
result of that vote. Formally, 

Voter sat Vi, v: out (i) = v - (3k, I : k # I : out.(i) = outl(i) = v) 

Finally, component In conforms to 

In sat Vi,j : inj(i) = inti) 

The voter produces the desired output if at least two of the values output by CI , C2 , and Ca are 
correct. Hence, to mask the failure of one component, at most one of the values output by CI , C" and 
Ca may be corrupted for each vote. This assumption is formalized by the following fault hypothesis. 

Cor$1 ~ Vi: 3k, I: k # I : oul.(i) = out~'d(i) II out,(i) = outr'd(i) 
II "t{inl, in" ina} = holdt{inl, in" ina} 

We show that, given this assumption, the system in II «CI II C2 II C3)/ Cor$l)1I Voter produces the de
sired output, that is, hiding internal channels we prove 

(in II «CI II C2 II C3)/ Cor$I)11 Voler) \ {inl. in2. in3. outl. out2, out3} sat Vi: out(i) = I(in(i» 

Proof. By (Parallel Composition) 

a 
CdlC211Ca sat /\ Vi: outj(i) = I(inj(i» 

j=l 

By (Fault Hypothesis Introduction) 

3 

«CdIC2I1Ca)/Cor$l) sat 3t: (/\ Vi: outj(i) = I(inj(i»)[tfh] II Cor$l[tfholdl 
j;:;l 

which is, by definition, equivalent to 

«CdIC2I1Ca)/Cor$1) sat 3t: A:=l Vi: outi(i) = I(inj(i» 

and, thus, by (Consequence), 

II Vi: 3k, I: k # I: out.(i) = outW) II outl(i) = out1(i) 
II ht{inl' in2, in3} = tt{inl, in2, in3} 
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«C,I/C.I/C3)/ Cor$') sat 3t: 'Ii: 3k, I: k # I: outk(i) = !(inW)) " out,(i) = !(inf(i)) 
" hHin" in2, in3} = tHin" in2, in3} 

Using hHin" in2, in3} = tHin" in2, in3}, we have that /lS=, 'Ii: tjinj(i) = hiinj(i). Hence 

«C,I/C2I/C3)/Cor$') sat 'Ii: 3k,l: k # I: outk(i) = !(ink(i))" out,(i) = !(in,(i)) 

By (Parallel Composition), we get 

Inll«CdIC2I/C3)/ Cor~') sat Vi: 3k, I: k # I: outk(i) = !(ink(i)) " out,(i) = !(in,(i)) 
" Vi,j: inj(i) = in (i) 

Hence, by (Consequence), 

Inl/«C,I/C2I/C3)/Cor$') sat 'Ii: 3k,l: k # I: outk(i) = !(in(i)) " out,(i) = !(in(i)) 

and thus 

Inl/«CdIC2 I/C3)/Cor9 ) sat 'Ii: 3k,l: k # I: outk(i) = out,(i) = !(in(i)) 

By (Parallel Composition) and (Consequence), we add the voter and obtain the relation between in and 
out. 

In l/«C,I/C2I/C3)/ Cor$')1/ Voter sat Vi: out(i) = !(in(i)) 

Finally, by (Hiding), we obtain 

8 Example II: The Alternating Bit Protocol 

o 

The alternating bit protocol [2], extended with timers, is a simple way to achieve communication over 
a medium that may lose messages. Consider the duplex communication medium of Figure 2, where A 
and M are media with fault hypothesis 108S as already discussed in Example 5. 

Sender S accepts via in data from the environment, appends a bit to it, and sends it via min; the 
value of the bit alternates for successive messages, starting with 1. Receiver R awaits a message via moult 

and sends the bit via ai. as an acknowledgement; R only passes the data via out to the environment 
if the value of the message's bit differs from the value of the previous message's bit, or if it is the first 
message. Consequently, messages along M consist of data-bit pairs (d, b), such that dat«d, b)) = d and 
bitted, b)) = b. Medium A transmits bits. Under the alternating bit protocol, S keeps sending a message 
via man until its acknowledgement arrives via aO"t. The alternating bit ensures that R can identify 
duplicates. 

In this section we will prove that ABP ~ S 1/ (M I Loss) II (AI Loss) 1/ R satisfies the safety property 
that Val(h Tout) =' Val(h i in). We use the following functions: 

Definition 20 (Removal of duplicate messages) For a trace texp of chan(M) x aM records, 

{ () 
RDMsg(texp) = RDMsg(texpo) 

RDMsg(texpo)A(c, (d, b)) 

if texp = () 
if texp = texpoA(c, (d, b)) and b = bitt val(last( texpo))) 
if texp = texpoA(c, (d, b)) and b # bitt val(last( texpo))) 
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Figure 2: Duplex communication medium 

Definition 21 (Removal of duplicate acknowledgements) For a trace lexp that consists only of 
chan(A) x oA records, 

{ 
0 

RDA ck (texp ) = RDAck(texpo) 
RDAck(texpoY(c, b) 

if lexp = 0 
if texp = texp/(c, b) and b = val(last(texpo)) 
if texp = texpoA(c,b) and b i val(last(texpo)) 

Definition 22 (Sequence of data) 'For a trace texp of chan(M) x oM records, 

D { 0 if texp = 0 
al(lexp) = Msg(lexpoYd if texp = lexpoA(c, (d, b)) 

Definition 23 (Sequence of bits) For a trace texp of chan(M) x oM records, 

B'I t _ { 0 if texp = 0 
,( exp) - Bil(lexpoYb iftexp = lexpoA(c,(d,b» 

In the sequel we write h where we mean hI chan(ABP). 
The informal description of sender S given above can be formalized as follows. 

S sat Dat(RDMsg(hTmin»:O' Val(hIin) 
1\ Val(RDAck(hIaout)):O' Bil(RDMsg(hImin» 

Similarly, we obtain the following specification for receiver R. 

Rsat Va/(hIoul):o' Dal(RDMsg(hImout» 
1\ Val(RDAck(hTain»~' Bit(RDMsg(hTmout)) 

Then, by (Consequence) and (Parallel composition), we obtain: 

ABP sat Dal(RDMsg(hImin»:O' Val(hIin) 

ABP sat Val(RDAck(hTaout» :0' Bit(RDMsg(hTmin)) 

ABP sat Val(hIoul) :0' Dal(RDMsg(hImout)) 

ABP sat Val(RDAck(hIain» :0' Bit(RDMsg(hImoutl) 
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From Example S we learned that (MILoss) sat Val(him oti,)$! Val(him,.) which implies that 

ABP sat len(RDMsg(himoti,)) $ len(RDMsg(him,.» (AS) 

Also recall from Example S that (M I Loss) sat Vi: ch(h'(i» = m Oti ' : val(h'(i)) = val(last(h' [.lim,.)), 
with hi = hi {m,., m Oti'}' Since this property can only be invalidated by communications on m,. and 
mout, we conclude 

ABP sat Vi: ch(h(i» = m Oti ' : val(h(i)) = val(last(h[.lim,.)) 

For medium A we obtain similarly 

ABP sat len(RDAck(hia oti,)) $ len(RDAck(hia,.)) 

ABP sat Vi: ch(h(i» = aOti' : val(h(i» = val(last(h[iJia,.» 

The crucial property of the alternating bit protocol is the following. 

Lemma 7 (Persistency) 

ABP sat Val(RDAck(hiaoti'):o' Val(RDAck(hia,.» 
" Dat(RDMsg(himoti')):O' Dat(RDMsg(him,.» 

(A6) 

(A7) 

(AS) 

Proof. See Appendix C. 0 

Then, by (Consequence), we have 

ABP sat Dat(RDMsg(hlmoti')):O' Dat(RDMsg(him,.)) 

which, by (AI) and (A3), yields 

ABP sat Val(hlout):o Val(hiin) 

which shows that the alternating bit protocol tolerates loss of messages and acknowledgements. 

9 Soundness and Relative Network Completeness 

In this section we prove that the proof theory of Section 6 is sound, that is, we prove that, if a correctness 
formula FP 8at ,p is derivable, then it is valid. Furthermore, we prove the proof system to be complete, 
that is, we prove that, if a correctness formula FP sat ,p is valid, then it is derivable. In fact, the prefixing 
rule is not needed to establish completeness. 

Theorem 1 (Soundness) The proof system of Section 6 is sound. 

Proof. See Appendix D. o 

As usual when proving completeness, we assume that we can prove any valid formula of the underlying 
(trace) logic (cf. [4]). Thus, using I- ,p to denote that assertion ,p is derivable, we add the following axiom 
to our proof theory. 

Axiom 1 (Relative completeness assumption) For an assertion ,p, 

I-,p if t=,p 
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As in [19] we use the preciseness preservation property to achieve relative completeness. The intuition 
is that, as long 88 the specifications of the individual processes are precise, 80 are the deduced specifi
cations of systems composed of such processes. Informally, a specification of a failure prone process is 
precise if it characterizes exactly the set of behaviours of the process. 

Definition 24 (Preciseness) An assertion 4> is precise for failure prone process FP iff 

(i) F FP sat 4>. 

(ii) if chanCO) ~ chan(FP) and, for some "{, (0, "{) F 4> then 0 E ll[FPl 

(iii) chan(4)) ~ chan(FP). o 

Let f- P sat 4> denote that correctness formula P sat 4> is derivable. Note that no proof rules were 
given for the sequential aspects of processes, so our notion of completeness is relative to the assump
tion that for a process P there exists a precise assertion 4>. This leads to the definition of network 
completeness. 

Definition 25 (Network completeness) Assume that for every process P there exists a precise as

sertion 4> with f- P sat 4>. Then, for any failure prone process FP and assertion {, F FP sat { implies 
f- FP sat{. 0 

The following lemma asserts that preciseness is preserved by the proof rules of Section 6. 

Lemma 8 (Preciseness preservation) Assume that for any process P there exists an assertion 4> 
which is precise for P and f- P sat 4>. Then, for any failure prone process FP there exists an assertion { 
which is precise for F P and f- F P sat {. 

Proof. See Appendix E. a 

The following lemma asserts that any specification satisfied by a failure prone process is implied 
by the precise specification of that process. Since a precise specification only refers to channels of the 
process, and a valid specification might refer to other channels, we have to add a clause expressing that 
the process does not communicate on those other channels. 

Lemma 9 (Preciseness consequence) If 4>1 is precise for FP and F= FP sat 4>, then 

F (4)1 1\ hj(chan(4>,) - chan(FP» = 0) - 4>, 

Proof. Assume that 4>1 is precise for FP, and that F= FP sat 4>, (I). 
Consider any 0 and "{. Assume that (O,"{) F= 4>1 Ahj(chan(4>,) - chan(FP» = 0 (2). 

By (2), (O,"{) F= 4>1. Since 4>1 is precise for FP, chan(4)l) ~ chan(FP). Hence projection lemma (a) 
yields (Or chan(FP), "{) F 4>1, thus, once more by the preciseness of 4>1 for FP, Or chan(FP) E ll[FP]' 
By (1), (Orch.n(FP),"{) F 4>, (3). 

By (2), we have that (0, "Y) F= hi( chan(4),) - chan( FP» = O. Hence, OJ( chan( 4>,) - chan(FP)) = 0, 
and thus, Olchan(FP) = Ol(ch.n(FP) U (ch.n(<p,) - ch.n(FP))) = Ol(chan(FP) U ch.n(<p,». Hence, 
we obtain from (3) that (Or (ch.n(FP)U chan(4),)), "{) F 4>" and consequently, by projection lemma (a), 
(0, "{) F <p,. a 

Now we can establish relative network completeness. 

Theorem 2 (Relative network completeness) The proof system of Section 6 is relatively network 
complete. 
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Proof. Assume that for every process P there exists a precise specification <p with I- P sat <p. Then, by 
the preciseness preservation lemma, for any failure prone process F P there exists an assertion ~ which 
is precise for FP and I- FP sat { (1). 

Assume 1= FP sat~. Since (chan(~) - chan(FP)) n chan(FP) = 0, we obtain, by (Invariance), 
I- FP sat hT(chan(~) - chan(FP)) = 0 (2). 

By (1) and (2), I- FP sat {I\ h T( chan(~) - chan(FP)) = 0, and thus, by the preciseness consequence 
lemma, the relative completeness assumption, and (Consequence), I- FP sat ~. Q 

10 Conclusions and Future Research 

Starting from a SAT formalism, we have defined a trace-based compositional proof theory for fault 
tolerant distributed systems. In this theory, the fault hypothesis of a process is formalized as a reflexive 
relation between the normal and acceptable observable input and output behaviour of that process. 
Such a relation enables one to abstract from the precise nature of a fault and to focus on the abnormal 
behaviour it causes. With respect to existing SAT formalisms, only one new rule, viz. the fault hypothesis 
introduction rule, is needed. We illustrated our method by proving safety of a triple modular redundant 
component and the alternating bit protocol, using only the specifications of the components. The proof 
of correctness of the alternating bit prot,ocol that appears in [13] is also based on traces. There, a less 
natural specification of the receiver, which contains the requirement that non-duplicate input messages 
have alternating bits, evades the necessity to prove the property of persistency. 

In this report we only considered safety properties, ignoring !iveness issues. Since the underlying trace 
logic is based on finite approximations, the proof theory we presented is not appropriate to deal with 
liveness properties. To allow reasoning about liveness properties, trace logic can be replaced by a more 
expressive logic, e.g. temporal logic. Then, instead of relating normal and exceptional communication 
sequences, a fault hypothesis relates normal and exceptional sequences of states. Consider, for instance, 
a system S whose state consists of 2 integers z and y, that is, STATEs = { IT I IT : {z,y} - '" }. 
Assume that in a sequence S of states a new state is recorded whenever the value of z or y changes. If 
we allow transient memory faults to occur, then it is possible that, instead of some intended sequence 
Sold = (0,0), (10, 0), ... , we observe s = (0,0), (3, 0), (10, 0), ... because a fault affects the cell containing 
z before it is assigned the value 10. Notice that, since we only allow transient memory faults, assigning 
10 to z undoes the effect of the preceding fault. In a description where each new state is related to 
its predecessor by stating which state variables have changed, transient memory faults can easily be 
formalized as the insertion of a state at an arbitrary position in the sequence. 

We have also abstracted from the sequential aspects of processes. To reason about these aspects, 
often a proof system based on Hoare triples (see [6]) is more convenient. In such a proof system one 
reasons about correctness formulae of the form {p} S {q} where S is a program, and p and q are assertions 
expressed in a first-order language. Informally, the triple {p}S{ q} means that if execution of S is started 
in a state satisfying p, and if S terminates, then t.he final state satisfies q. 

Besides finding a logic to express fault hypotheses more elegantly, an obvious continuation of the 
research described in this report is the introduction ,of time to the formalism, to allow reasoning about 
properties of fault tolerant real-time systems. Then, the characterization that safety properties express 
that 'nothing bad will happen' and liveness properties express that 'eventually something good will 
happen' (see [10]) is, as indeed mentioned in [10], no longer appropriate. Consider, for instance, a 
communication medium that accepts messages via a channel in and relays them to a channel out. The 
property 'after a message is input to the medium via in it is output via out within 5 seconds' is a safety 
property, because it can be falsified after 5 seconds following an in communication, but it expresses tha.t 
something must happen. Hence, by adding time, the class of safety properties is extended and, e.g., also 
includes progress properties. 
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A Proof of the prefix closed ness lemma 

By induction on the structure of FP. (Base) Since the semantic function 0 generates prefix clOlied sets, 
the theorem holds trivially for 1t[P]. (Induction Step) Assume that the lemma holds for 1t[FP): 

(a) Assume 0 E 1t[FP, II FP,], that is, assume that, for i = 1,2, OJ chan(FP,) E 1t[FP,] (I) and 
OJ chan(FP, II FP,) = 0 (2). Consider any 0' :5 O. Since 0' :5 0, we have that, for i = 1,2, 
O'jchan(FP'):5 Ojchan(FP,). By (1) and the induction hypothesis, we conclude that, for i = 1,2, 
O'j chan(FP,) E 1t[FP,] (3). By (2), chan(O) ~ chan(FP,IIFP,). Since 0' :5 0, chan(O') ~ chan(O). 
Consequently, chan(O') ~ chan(FP,11 FP,) which means that O'jchan(FP,1I FP,) = 0' (4). From 
(3) and (4) we conclude that 0' E 1t[FP, II FP,]. 

(b) Assume 0 E 1tIFP\cset], that is, assume there exists aTE 1t[FP] such that T\cset = O. Consider 
any 0' :5 O. There exists a T' :5 T such that T' \ cset = 0'. By the induction hypothesis, T' E 1t[ F P)' 
Hence 0' E 1t[FP\cset]. 

(c) Assume 0 E 1t[(FPlx)], that is, assume that there exists a 0o E 1t[FP] such that, for all ""{, 
(00,0,""{) F x· Consider 0' :5 O. Using 9 = (""{ : t ..... 0'), t fresh, we have (00,0,9) F x. Since 
8' :5 0, we have (80,0,9) F t :5 h. Consequently, (00,0,9) F X II t :5 h. By the syntactic 
restriction on x, we obtain that (00,0,9) F 3told :5 hold: X[t/h,told/hold]. Thus there exists a 
8" such that (00,0,(9: told ..... 0")) F told:5 hold II X[t/h,told/hold]. Consequently, we have that 
8" :5 0o and hence (00,0,(9: told ..... 0")) F X[t/h,told/hold]. Then, by the substitution lemma, 
(0", 9(t), (9 : told ..... 0")) F x. Since 9(t) = 0' and t and told do not occur in X, we obtain 
(O",O',""{) F x· Since 0o E 1t[FP] and 0":5 0o, the induction hypothesis yields 0" E 1t[FP), which 
proves 0' E 1t[(FPlx)]. 

o 

B Proof of the composite fault hypothesis lemma 

It is sufficient to prove that 1t[(FPI(x,lx,))] ~ 1t[«FPlxt}ln)). We will even prove equality of these 
two two sets. 

Assume 0 E 1t[(FPI(xdn))], that is, assume that there exists a 0o E 1t[FP] such that, for any""{, 
(00,0,""{) F (xdx,)· By definition this equals (00,0,""{) F 3t: Xl[t/h]lIn[t/h old], i.e. there exists aO, 
such that, for 9 = (""{: t ..... Od, (00,0,9) F Xt[t/h]IIX,[t/h old]. Observe that 7[t](00, 0,9) = 0,. By 
the substitution lemma, (00 ,0,9) F x,[t/h]IIX,[t/hold] iff (00 ,0,,9) F x, and (0,,0,9) F n. Hence, 
o E 1t[(FPI(xdx2))] iff there exists a 0o E 1t[FP] such that, for any ""{, there exists a 0, such that 
(00 ,0,,""{) F X, and (O"O,""{) F X2· Then, 0 E 1t[(FP I(xd n))] iff there exists a 0, E 1t[(FP I xtl) such 
that (O,\O,""{) F X2· Equivalently, 0 E 1t[(FPI(xdn))] iff 0 E 1t[«FPlxdlx2)]. 0 

C Proof of the persistency lemma 

By induction on the length of h. 

(Base Step) The case h = () is trivial. 

(Induction Step) Assume that the lemma holds for t, that is, 

Val(RDAck(tjaout)):::' Val(RDAck(tja'n)) 

and 

Dat(RDMsg(tjmou,)) :::' Dat(RDMsg(lfm,n)) 

Four cases need examination: 
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I. h = tAr m,n, ( v, b», where b f- bitt val(last(tfm,n))). 
By (A2), we have that len(RDAck(hTaout)) $1 len(RDMsg(hTm.n)). Since t -< h, by (A2) 
and (Prefixing), we obtain len(RDAck(tlaou,)) $1 len(RDMsg(tfm'n)). Then, because 
h = tA(m'n, (v, b)), we conclude that len(RDAck(tfa ou,)) = len(RDMsg(tfm.n)) (3). 
Since t -< h, we have, by (A4) and (Prefixing), Val(RDAck(tfa,n)) ~I Bit(RDMsg(tfmou,). 
Then, by (1), we obtain that Val(RDAck(tfa ou') ~ Bit(RDMsg(tfmou'). Consequently, 
we have lent Val(RDAck(tfa ou,))) $ len(Bit(RDMsg(tfmou,)), from which we conclude 
that len(RDAck(tjaou,» $ len(RDMsg(tjmou,» (4). 
By (2) we have that len(RDMsg(tfmout)) $1 len(RDMsg(tjm'n))' Hence, by (4), we 
obtain len(RDAck(qa ou')) $ len(RDMsg(tTmou,)) $1 len(RDMsg(tTm'n». Finally, by 
(3), we have len(RDMsg(tTmou')) = len(RDMsg(qm,n)), from which we conclude, by (2), 
that Dat(RDMsg(tTmou,)) = Dat(RDMsg(tTm'n)). Then it is obviously the case that 
Dat(RDMsg(hTmout)) -<I Dat(RDMsg(hlm.n)), from which the theorem follows. 

2. h = tA(mou" (v, b», where b f- bit(val(last(tTmou')). 
By (A4), we have that Val(RDAck(hla,n)) ~I Bit(RDMsg(hTmou')). Since t -< h, we 
obtain, by (A4) and (Prefixing), that Val(RDAck(tTa,n)) ~I Bit(RDMsg(tTmou')). Hence, 
we conclude that Val(RDAck(tTa,n)) = Bit(RDMsg(qmou')). Then, by (1), we obtain 
that Val(RDAck(tTa ou') ~I Bit(RDMsg(tTmou,)), from which we can easily conclude that 
len(RDAck(tTa ou')) $1 len(RDMsg(tTm.u,) (5). 
Since t -< h, by (A2) and (Prefixing), len(RDAck(tTa ou') $1 len(RDMsg(tTm,n)) (6). 
Since t -< h, we have, by (A5) and (Prefixing), len(RDMsg(tjmou')) $ len(RDMsg(tjmin)). 
Then, by (5) and (6), len(RDMsg(tTm ou,)) $1 len(RDMsg(tTm,n)) (7). 
Assume that len(RDMsg(tTmou,)) = len(RDMsg(tTm'n))' Since h = tA(mou" (v,b)), with 
b f- bit(val(last(tTmou,))), we obtain len(RDMsg(hTmou,)) = len(RDMsg(hTm'n)) + 1, 
which is in conflict with (A5). Hence, by (7), len(RDMsg(tTmou,)) <I len(RDMsg(tTm,n)), 
which, using (2), yields that Dat(RDMsg(tTmou')) -<I Dat(RDMsg(tTm'n))' By (A6), 
v = msg( val(last(h[len(h)]Tm,n))), or, equivalently, v = msg( val(last(tTm,n))). Then, 
Dat(RDMsg(hTmou,)) = Dat(RDMsg(hTm,n)), from which we conclude that the theorem 
holds. 

3. h = tA(a,n,b), where b f- val(last(tTa,n)). 
By (A4), we have that len(RDAck(hTa,n» $1 len(RDMsg(hTm ou'). Since t -< h, by (A4) 
and (Prefixing), we obtain len(RDAck(tfa,n)) $1 len(RDMsg(tTmou,)). Then, we conclude 
that len(RDAck(tTa,n)) <1 len(RDMsg(qm ou,)) (8). 
By (2), we have that len(RDMsg(tTmou,)) $1 len(RDMsg(tTm'n)). Then, by (8), we con
clude that len(RDAck(tTa,n)) < len(RDMsg(qm'n)) (9). 
Since t -< h, by (A7) and (Prefixing), len(RDAck(tTa ou,)) $ len(RDAck(tTa,n)), which 
leads, by (9), to len(RDAck(qaou,)) $ len(RDAck(qa,n)) < len(RDMsg(tTm'n)) (10). 
Since t -< h, we have, by (A2) and (Prefixing), len(RDAck(tTaou,)) $1 len(RDMsg(tTm,n)), 
which, by (10), yields that len(RDAck(tTaou,)) = len(RDAck(qa'n)). Hence, by (1), we 
obtain that Val(RDAck(tTa ou,)) = Val(RDAck(qa'n)). Then, it is obviously the case that 
Val(RDAck(hTa ou') -<I Val(RDAck(hTa.n)), from which we conclude that the theorem 
holds. 

4. h = tA(aou"b), where b f- val(last(qa ou'). 
By (A2), we have Val(RDAck(hTa ou') ~1 Bit(RDMsg(hTm'n)). Since t -< h, by (A2) 
and (Prefixing), we also have Val(RDAck(tTa ou,)) ~1 Bit(RDMsg(tTm'n)). Hence, we 
conclude that Val(RDAck(tTa ou,)) -<I Bit(RDMsg(tTm,n)), from which we can conclude 
that len(RDAck(tTaou,)) <I len(RDMsg(tTm'n)). (11). 
By (2), we have that len(RDMsg(tTmou,)) $1 len(RDMsg(qm,n))' Then, by (11), we 
conclude len(RDAck(qaou,)) $1 len(RDMsg(tTmou,)) (12). 
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Since t -< h, by (A4) and (Prefixing), len(RDAck(ITa'n)) $1 len(RDMsg(ITmou.) (13). 
Since t -< h, we have, by (A7) and (Prefixing), len(RDAck(ITaout» $ len(RDAck(ITa'n». 
Then, by (12) and (13), we conclude len(RDAck(ITaout» $1 len(RDAck(ITa'n)) (14). 
Assume that len(RDAck(ITaout)) = len(RDAck(ITa'n»' Then, since h = tA(aout, b), where 
b i- val(last(ITaout», we obtain len(RDAck(hia ou') = len(RDAck(hTa'n» + I, which con
flicts with (A7). Consequently, by (14), len(RDAck(ITaout)) <I len(RDAck(tTa'n», which, 
combined with (I), yields Val(RDAck(ITaout» -<I Val(RDAck(ITa'n»' Finally, since, by 
(AS), we have that b = val(last(h[len(h)lia,n», or, equivalently, b = val(last(ITa'n)), we 
obtain Val(RDAck(hTa ou') = Val(RDAck(hTa'n», from which we conclude that the theo
rem holds. 

D Proof of the soundness theorem 

D.I Soundness of the consequence and conjunction rule 

Trivial. 

D.2 Soundness of the invariance rule 

Follows from the fact that if 0 E 1i[FP] then chan(O) ~ chan(FP). Thus, cset n chan(FP) = 0 implies 
chan(O) n cset = 0. 

D.3 Soundness of the parallel composition rule 

Suppose chan(<pJ} n chan(FP2) ~ chan(FPJ}, chan(<P2) n chan(FPJ} ~ chan(FP2) (I). 
Assume F FP I sat <PI, F FP2 sat <P2 (2). 
We have to prove F FPdlFP2 sat <PI II <P2. Consider any r· Let 0 E 1i[FPdIFP2]. By the defi
nition of the semantics, we have, for i = 1,2, OT chan(FP,) E 1i[FP,] and OT chan(FPdIFP2) = O. 
Since 0Tchan(FP,) E 1i[FP,], we obtain, by (2), (Ofchan(FP,),r) F <p,. By projection lemma (a) 
((OT chan(FP,))T chan(<Pi), r) F <p" thus (Oi(chan(FP,) n chan(<p,)), r) F <Pi. 
By (1), we obtain that chan(FP2) n chan(<pd ~ chan(FPd n chan(<pd, from which we conclude that 
(chan(FP 2) n chan(<pd) U (chan(FPJ) n chan(<pJ) ~ chan(FPJ) n chan(<pd. Consequently, we have 
that (chan(FP2) n chan(<P2» U (chan( FPd n chan(<pd) = chan(FPd n chan(<pd, from which we deduce 
chan(FP I ) n chan(<pd = (chan(FPd U chan(FP2)) n chan(<pd = chan(FPdIFP2) n chan(<pd. By 
similar reasoning, chan(FP2) n chan(<P2) = chan(FP I IIFP2) n chan(<p2). Consequently, for i = 1,2, 
(0i(chan(FP I IIFP2) n chan(<p;),r) F <Pi. Hence, ((0i(chan(FPdIFP 2))Tchan(<p,),r) F <p" which 
leads to (8ichan(<Pi),r) F <Pi, and consequently, by projection lemma (a), (O,r) F <p,. This proves 
F FPdlFP2 sat <PI II <P2' 

D.4 Soundness of the hiding rule 

Assume F FP sat <P (I), 
and chan(<p) n cset = 0 (2). 
We show FP\cset sat <p. Consider any r. Let 0 E 1i[FP\cset]. Then there exists a 01 E 1i[FP] with 
8 = 01 \cset. By (I), (Ol,r) F <p. Since, by (2), chan(<p) ~ CHAN - cset, projection lemma (a) leads to 
(8d(CHAN - cset),r) F <p, and consequently, by definition, (81 \cset,r) F <p. Hence, (8,r) F <p. 
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0.5 Soundness of the fault hypothesis introduction rule 

Assume F FP sat,p (1). Consider any -yo Let 0 E 1i[(FPlx»). Then there exists a 80 E 1i[FP] such 
that, for all -y, (80,0, -y) F x· By (1), for any 8~, (8~, 80, -y) F ,p, thus also (80,00, -y) F,p. Let, for 
fresh t, 9 = (-y : t ...... 00)' Since t does not occur in ,p, (80,80,9) F,p. Observe that 7[t](80, 8, 9) = 80, 
thus (00,7[t](80, 8,9),9) F ,p. By substitution lemma (a) we obtain (00,0,9) F ,p[t/h], or, by the 
correspondence lemma, (0,9) F ,p[t/h] (2). 
Since (00,0,9) F x, we have (7[tl(00,8,9),0,9) F x· Applying substitution lemma (b) leads to 
(00,0,9) F X[t/hold]. Since hold does not occur in X[t/hold], the correspondence lemma leads to 
(0,9) F X[t/hold] (3). 
From (2) and (3) we obtain (0, (-y : t ...... 0o)) F ,p[t/h] /\ X[t/hold], from which we may conclude that 
(0, -y) F 3t : ,p[t/h] /\ X[t/hold]' 

0.6 Soundness of the prefixing rule 

Assume F FP sat,p (1). Consider any -Yo Let 8 E 1i[FP]. By (1), (O,-y) F,p. For all 0' ~ 0 we 
have, by the prefix closedness lemma, that 0' E 1i[FP), and thus, by (1), (0', -y) F,p. Let t be a fresh 
logical variable. Then, as t does not occur in ,p, for all 8' ~ 0, (0', (-y : t ...... 0'» F,p. Equivalently, 
(7[t](00,8',(-y: t ...... O')),(-y: t ...... 0'» F,p. By substitution lemma (a) (O',(-y: t ...... 0')) F ,p[t/h]' for 
"II 0' ~ 0, and thus, as h obviously does not occur in ,p[t/h], for all 0' ~ 0, (8, (-y : t ...... 0'» F ,p[t/h], 
and consequently, for all 0', (0, (-y : t ...... 0')) F t ~ h ~ ,p[t/ h]. Hence, (0, -y) F 'It : t ~ h ~ ,p[t/h], i.e. 
(0, -y) F 'It ~ h : ,p[t/h]. Thus, F FP sat 'It ~ h : ,p[t/h]. 

E Proof of the preciseness preservation lemma 

By induction on the structure of FP. (Base) By assumption, the lemma holds for P. (Induction 
Step) Assume that the lemma holds for FP: 

(a) Assume I- FP I sat ,pI and I- FP2 sat ,p2, with ,pI and ,p2 precise for FP I and FP2, respec
tively. Since, by the preciseness of ,pI for FP I , we have chan(,ptJ ~ chan(FPtJ (1), we 
conclude chan(,ptJ n chan(FP2) ~ chan(FP I) n chan(FP2) ~ chan(FPtJ. Similarly, using 
chan(,p2) ~ chan( FP2) (2), we obtain chan(,p2) n chan(FPI) ~ chan(FP2). Thus, by apply
ing (Parallel Composition), we obtain I- FP, II FP2 sat ,p1/\,p2 (3). We show that <1>,/\ <1>2 is 
precise for FPI II FP2. 

(i) By (3) and soundness, we obtain F FP I II FP2 sat ,pI /\ ,p2' 
(ii) Let chan(O) ~ chan(FPI II FP2) (4) and assume (O,-y) F ,pl/\ ,p2' Then, by (1) and 

projection lemma (a), (ot chan(FPtJ, -y) F ,pl. Consequently, by the preciseness of ,pI 
for FP I, we conclude OJ chan(FPtJ E 1i[FPI] (5). Similarly, OJ chan(FP2) E 1i[FP2] 
(6). Finally, by (4), OJ chan(FP I II FP2) = 0 (7). Then, by (5), (6), and (7), we 
conclude that 0 E 1i[FPI II FP2]. . 

(iii) By (1) and (2), we conclude chan(,ptJ U chan(,p2) ~ chan(FPtJ U chan(FP2). Hence, 
by definition, we have chan(,pl 1\,p2) ~ chan(FPI II FP2). 

(b) Assume I- FP sat,p (1) with ,p precise for FP. Define 

4i '= 3t: ,p[t/h] /\ hi(chan(FP) - cset) = ti(chan(FP) - cset) 

We show that I- FP\cset sat 4i, and, furthermore, that 4i is precise for FP\cset. 

Lemma 10 F,p ~ 4i 
Proof: Assume (0, -y) F,p. Let, for fresh t, 9 = (-y : t ...... 0). Then, (0,9) F ,p, 
and, trivially, (0,9) F ,p[t/h] /\ hi(chan(FP) - cset) = ti(chan(FP) - cset). Hence, 
(O,-y) F 3t: ,p[t/h] /\ hi(chan(FP) - cset) = ti(chan(FP) - cset). 0 
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By Lemma 10 and the relative completeness assumption, we obtain I- t/> ---+ ~. By (1) and 
the consequence rule, I- FP sat~. Note that, by definition, chan(3t : t/>[t/h]) = 0, thus 
chan(~) = chan(FP) - cset, and hence chan(~) n cset = 0. Then the hiding rule leads to 
I- FP\cset sat ~ (2). It remains to be shown that ~ is precise for FP\cset. 

(i) By (2) and soundness, we have F FP\ cset sat ~. 
(ii) Let chan(O) ~ chan(FP\cset) (3) and, for some ,)" (0,,),) F~. There exists a 9 with 

(0, (')' : t ...... 0)) F t/>[t/h] " hf(chan(FP) - cset) = tf(chan(FP) - cset) (4) 

Then, by substitution lemma (a), (0, (')' : t ...... 0» F t/>, and thus (0, ')') F t/>. Hence, 
by projection lemma (a), we have (Ojchan(t/»,')') F t/>. Since, by the preciseness 
of t/> for FP, chan(t/» ~ chan(FP), we obtain (Ojchan(FP),,),) F t/>. Obviously, 
chan(Oj chan(FP» ~ ckan(FP), so, by the preciseness of t/> for FP, we have that 
Ojchan(FP) E ?t[FPl Since, by (3), chan(O) ~ chan(FP) - cset and, by (4), 
Of(chan(FP) - cset) = Of(chan(FP) - cset), we obtain 0 = OJ chan(FP\cset), and 
thus 0 = (OJ chan(FP»\ cset. Hence, 0 E ?t[FP\ cset). 

(iii) Since chan(~) = chan(FP) - cset, we have, by definition, chan(~) = chan(FP\cset). 

(c) Assume I- FP sat", (1) with t/> precise for FP. Define ~;: (t/>Ix), that is 

o 

~ ;: 3t: t/>[t/h] " X[t/hold] 

Then, by (Fault Hypothesis Introduction), I- (FPlx) sat ~ (2). We show that ~ is precise 
for (FP Ix). 

(i) By (2) and soundness, we have F (FPlx) sat~. 
(ii) Let chan(O) ~ chan(FPlx) (3) and assume, for some ,)" (0,,),) F ~. Consequently, 

there exists a 0 such that (0, (')' : t ...... 0)) F t/>[t/ h] "X[t/ hold] (4). Then, by substitution 
lemma (a), (0, (')' : t ..... 0)) F t/>, and thus, since t does not occur free in t/>, (0, ')') Ft/>. 
Since we have, by the preciseness of t/> for FP, chan(t/» ~ chan(FP), we obtain, by pro
jection lemma (a), (OJ chan(FP), ')') F t/>. Trivially, chan(Oj chan(FP)) ~ chan(FP), 
and hence, because of the preciseness of t/> for FP, OJ chan(FP) E ?t[FP] (5). By the 
correspondence lemma and substitution lemma (b), (4) leads to (0,0,(,),: t ..... 0)) F x, 
thus, since t does not occur free in x, (0,8,,),) F x. Since chan(x) ~ chan(FP). 
projection lemma (b) leads to (Ojchan(FP), 0,,) F X (6). 
Finally, by definition, (3) leads to chan(O) ~ chan(FP) (7). 
Consequently, by (5), (6), and (7), 0 E ?t[(FPlx)]. 

(iii) By definition, we have that chan(~) = chan(t/>[t/h]) U chan(x[t/hold]) (1). Clearly, 
chan(x[t/hold]) ~ chan(x) (2). It is also obvious that chan(t/>[t/h]) ~ chan(t/», and, 
since, by the preciseness of t/> for FP, we have that chan(t/» ~ chan(FP), we conclude 
chan(t/>[t/h]) ~ chan(FP) (3). By (1), (2), and (3), chan(~) ~ chan(FP) U chan(x), 
that is, chan(~) ~ chan(FPlx). 
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