

A trace-based compositional proof theory for fault tolerant
distributed systems
Citation for published version (APA):
Schepers, H. J. J. H., & Hooman, J. J. M. (1993). A trace-based compositional proof theory for fault tolerant
distributed systems. (Computing science notes; Vol. 9316). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Jul. 2024

https://research.tue.nl/en/publications/7aab7691-a6e6-433e-aa25-e9d4645e2ccd

Eindhoven University of Technology

Depanment of Mathematics and Computing Science

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems

by

R. Schepers and J. Rooman

Computing Science Note 93/16
Eindhoven, June 1993

93/16

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere. they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems

Henk Scheperst Joze! Hooman§

Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

We present a compositional network proof theory to specify and verify safety properties of fault
tolerant distributed systems. In this proof theory we abstract from the precise nature and occurrence
of faults, but mode1 their effect on the externally visible input and output behaviour. To this end we
formalize a fault hypothesis as a reflexive relation between the normal behaviour (i.e. the behaviour
when no faults occur) of a system and its acceptable beha.viour, that is, the normal behaviour together
with the exceptional behaviour (Le. the behaviour whose abnormality should be tolerated). The
method is composit.ional to allow for the reasoning with the specifications of processes while ignoring
their implement.ation details. This compositionality is achieved by starting from a SAT formalism to
reason about the normal behaviour and extending it with a single rule to obtain a specification of the
acceptable behaviour from the specification of the normal behaviour and a predicate characterizing
the fault hypothesis. We prove soundness and relative network completeness of the method. Our
approach is illustrated by a.pplying it to a triple modular redundant component and the alternating
bit protocol.

Key words: Compositional proof theory, fault hypothesis, fault tolerance, relative network com
pleteness, safety, soundness, specification, verification.

1 Introduction

It is dimcult to prove t.he properties of a distributed system composed of failure prone processes, as
slich proofs must take into account the effects of faults occurring at any point in the execut.ion of the
individual processes. In t.he Hoare style formalism of [5] Cristian deals with the effects of faults that
have occurred by partitioning the initial state space into disjoint subspaces, and providing a separate
specification for each part. In the formalisms for fault tolerance that have been proposed in the more
recellt. literature (cf. [3], [9], [14], [18]) the occurrence of a fault is modeled explicitly, typic.ally using the
designat.ed symbol't'. III cOHtra..c;t., we want to model t.he effects of faults 011 the ext,erllaJly visible input
and output behaviour and let the alphabet of a process remain unchanged. In particular, we aim at a
formalism which abstracts from the internal states of the processes and concentrates on the input and
outPlit hehaviour that. is oh:,wrvahle at tlH~ir illt.l~rfaef~. AH a ~OnHf'qllf'lI(,f~, ill ollr proof tllf'ory Wf' tlo 1101,

deal with the sequent.ial aspects of processes. To support top-down program design we want. t.o reason
with the specifications of processes without considering their implementation and the precise nature and
occurrence of faults in such an implementation. This means that we aim at a compositional proof theory
for fault tolerant distributed syst.ems.

ln fault tolerant systems, three domains of behaviour are distinguished: normal, exceptional and
catastrophic (see [12]). Normal behaviour is the behaviour when no faults occur. The discriminating

tSupported by the Dutch STW under grant number NWI88.1517: 'Fault Tolerance: Paradigms, Models, Logics, Con·
struction'. &.mail: schcpers@win.tue.ul.

§E·mai); wsinjh@win.tue.nl.

1

factor between exceptional and catastrophic behaviour is the fault hypothesis which stipulates how faults
affect the normal behaviour. Relative to the fault hypothesis an exceptional behaviour exhibits an
abnormality which should be tolerated (to an extent that remains to be specified). A catastrophic
behaviour has an abnormality that was not anticipated (cf. [1], [11], [12], and [15]). In general, the
catastrophic behaviour of a component cannot be tolerated by a system. Under a particular fault
hypothesis, the syst.em is designed as if the hypothetical faults are the only faults it can experience and
measures are taken to tolerate (only) those anticipated faults (see, e.g., [16] for some design examples).
In particular, the exceptional behaviour together with the normal behaviour constitutes the acceptable
behaviour.

Given this classificat.ion of behaviour, we investigate whether an existing compositional proof theory
for reasoning about the normal behaviour of a system can be adapted to deal with its acceptable be
haviour. To do so, we formalize a fault hypot.hesis as a relation between the normal and the acceptable
behaviour of a system. Indeed, such a relation enables one to abstract from the precise nature and
occurrence of a fault and to focus on the abnormal behaviour it causes, if any.

As a starting point of the development of the proof theory, along the lines described above, we
consider a simple SAT formalism to specify and verify safety properties of networks of processes that
communicate synchronously via. directed channels. Safety properties are properties that can be falsi
fied by finite observations [20]. They are important for reliability because, in the characterization by
Lamport [10], they express that 'nothing bad will happen'. We express a property of a process P by
means of trace logic, using a special variable h to denote the trace, also called history, of P. Such
a history describes the observable behaviour of a process by recording the communications along the
visible channels of the process. For instance, a possible history h of I-place buffer B which alternately
inputs an integer via the observable channel in and outputs it via the observable channel out, may
be ((in, 1),(out, 1),(in,3),(out,3)). To express that a process P satisfies a safety property.p we use a
correctness formula of the form P sat .p. Typical safety properties of buffer B are 'if there is a commu
nication on out then the communicated value is equal to the most recently communicated value on in'
and 'the number of out communications is equal to or one less than the number of in communications'.

Based on a particular fault hypothesis, the set of behaviours that characterize a process is expanded.
To keep such an expansion manageable, the fault hypothesis X of a process P is formalized as a predicate,
whose only free variables are h and hold, representing a reflexive relation between the normal and
acceptable histories of P. The interpretation is such that hOld represents a normal history of process
P, whereas h is an acceptable history of P with respect to X. For a predicate X, representing a fault
hypothesis, we introduce the construct (Plx) to indicate execution of process P under the assumption
of X. This construct enables one to specify failure prone processes. Consider again buffer B. Under
the hypothesis that, due to faults, values in the buffer are corrupted, which is formalized by some
fault hypothesis predicate Cor, history (in, 1), (out, 1), (in, 3), (out, 3)) may be transformed into history
(in,l),(out,l), (in, 3), (out,5)). Then, we would like to prove that failure prone process (BICor) still
satisfies the property that 'the number of out communications is equal to or one less tban the number
of in communications'.

We define the trace semantics of a failure prone process F P, and define when correctness formulae of
the form FP sat .p are valid. We present a proof theory to verify that a system tolerates the exceptional
behaviour of its components to the desired extent. The proof theory is compositional in the sense that
it allows for the reasoning with the specifications satisfied by failure prone processes while ignoring their
implementation details. The usefulness of our method is illustrated by applying it to a triple modular
redundant system and the alternating bit protocol, where, indeed, we only use the specifications of
the components. Finally, we snow that our proof theory is sound and obtain a completeness result by
establishing preciseness preservation (see [19]).

The remainder of this report is organized as follows. Section 2 introduces the programming language.
Section 3 defines the denot,ational semantics. In Section 4 we present the assertion language and associ
ated correctness formulae. In Section 5 we incorporate fault hypotheses into our formalism. Section 6
presents a compositional network proof theory for fault tolerant distributed systems. We illustrate our
method by applying it, in Section 7, to a triple modular redundant component, and, in Section 8, to the

2

alternating bit protocol. In Section 9 we prove that the proof theory of Section 6 is sound and complete.
A conclusion and suggestions for fut.ure research can be found in Section 10.

2 Programming Language

In this section we present an OCCAM-like programming language which is used to define networks of
processes. Let VAR be a nonempty set of program variables, CHAN a nonempty set of channel names,
and let VAL be a denumerable domain of values. lN denotes the set of natural numbers (including 0).
We consider a concurrent programming language in which processes communicate synchronously via
directed channels. The syntax of our programming language is given in Table 1, with n E lN, n 2: 1,
x E VAR,,.. E VAL, e E CHAN, and eset <; CHAN.

Expression

Boolean Expression

Guarded Command

Process

Table 1: Syntax of the Programming Language

e ::-
b .'-

G ··-.. -
p .. -

,.. I x I el + e, I el - e, I el x e,

el = e, I el < e, I ,b I b1 vb,

[Ui;1 b; - p;J
skip I x:= e I e!e I e?x I PI; P, I G I * G I PI II P, I P\ cset

Informally, t.he statements of Ollr programming language have the following meaning:

Atomic statements

• skip terminates without any effect.

• Assignment z := e assigns the value of expression e to the variable x.

• Output statement. ele is used to send the value of expression e on channel c as soon as a cor
responding input command is available. Since we assume synchronous communication, such an
output statement is suspended until a parallel process executes an input statement c?x.

• Input statement c?x is used to receive a value via channel c and assign this value to the variable
x. As for the output command, such an input statement has to wait for a corresponding partner
before a (synchronous) communication can take place.

Compound statements

• PI; P, indicat.es sequential composition: first execute PI, and continue with the execution of P, if
and when PI terminates.

• Guarded commalld [U:';1 b; - p;J. If none of the b; evaluate to true then this guarded cOlllmand
terminates after evaluation of the booJeans. Otherwise, non-deterministically select one of the hi
that evaluates to true and execute the corresponding statement Pi.

• Iteration * G indicates repeated execution of guarded command G as long as at least one of the
guards is open. When none of the guards is open * G terminates.

• PI II P, indicates the parallel execution of the processes PI and P,.

• P \ cset hides the channels from cset.

For a guarded command G = [Ui;lb; - p;J we define ba = b1 V ... V bn . Define var(P) as the set of
variables occurring in P.

3

Definition 1 (Observable input channels of a process) The set of visible, or observable, input
channels of process P, notation in(P), is defined inductively as follows:

• in (skip) = in(" := e) = in(e!e) = 0

• in(e?,,) = {e}

• in(P, ; P2) = in(P,) U in(P2)

• in([O:'=, bi - Pi]) = Uiin(Pi)

• in(.G) = in(G)

• in(P, II P2) = in(P,) U in(P2)

• in(P\ eset) = in(P) - cset o
Definition 2 (Observable output channels of a process) The set of visible, or observable, output
channels of process P, notation oul(P), is defined inductively as follows:

• out (skip) = out(" := e) = 0

• out(e!e) = {e}

• out(e?,,) = 0

• out(P, ; P2) = out(PJ) U out(P2)

• out([O:'=,bi - Pi]) = Uiout(Pi)

• out(.G) = out (G)

• out(P, II P2) = oul(P,) U oul(P2)

• out(P\ cset) = out(P) - cset o
Definition 3 (Observable channels of a process) The set of observable channels of a process P,
notation chan(P), is defined by chan(P) = in(P) U out(P). 0

2.1 Syntactic Restrictions

To guarantee that channels are unidirectional and point-to-point, we have the following syntactic con·
straints (for any c E CHAN, x E VAR, expression e, etc.):

• For PI ; P2 we require that if PI contains ele then P2 does not contain c?z, and if PI contains c?z
then P2 does not contain cleo In other words, in(PJ) n out(P2) = 0 and out(PJ) n in(P2) = 0.

• For [0:'=, b; - Pol we require that, for all i,j E {I, ... , n}, i # j, if P; contains c!e then Pj does
not contain c?", that. is, out(P;) n in(Pj) = 0.

• For PIIIP2 we require that if PI contains c!el then P2 does not contain c!e21 and if P l contains C?Zl

then P2 does not contain C?"2. Equivalently, in(P,) n in(P2) = 0 and out(PJ) n OUI(P2) = 0.

To avoid programs such as (e?x)\{c}, which would be equivalent to a random assignment to ", we
require:

• For P\eset we require that cset ~ in(p)n out(P).

Furthermore, we do not allow parallel processes to share program variables.

• For P,IIP2 we require that var(PJ) n var(p2) = 0.

4

3 Denotational Semantics

In this section we define a denotational semantics for the programming language of the previous section.
The semantics of a process P, denoted by O[P), associates with P a set of triples consisting of the
initial state, the sequence of communications, and the final state characterizing a possible execution of
the process.

Define the set STATE of states as the set of mappings from VAR to VAL:

STATE = {O' 10': VAR ~ VAL}

Thus a state 0' assigns to each program variable x a value O'(x). For simplicity we do not make a
distinction between the semantic and the syntactic domain of values.

Definition 4 (Variant of a state) The variant of a state 0' with respect to a variable x and a value
ti, denoted (0' : x ti), is given by

{
ti ifV=x

(0' : x ti)(V) = O'(V) if V ~ x

using '=' to denote syntactic equality. o

In the sequel we assume that we have the standard arithmetical operators +, -, and x on VAL.
Define the value of an expression e in a state 0', denoted by [[e](O'), inductively as follows:

o [[1'](0') = 1',

o [[x](O') = O'(x),

o [[e, + e2](0') = [[e,](O') + [[e2](0'),

o [[e, - e2](0') = [[e,](O') - [[e2](0'), and

o [[e, x e2](0') = [[e,](O') x [[e2](0')'

We define when a boolean expression b holds in a state 0', denoted by 8[b](0'), as

o 8[e, = e2](0') iff [[e,](O') = [[e2](0'),

o 8[e, < e2](0') iff [[e,](O') < [[e2](0'),

o 8[~b](0') iff not 8[b](0'), and

o 81b, V b2](0') iff 8[6,](0') or 8[62](0').

We represent. asynchronous communication of value /' E VAL along channel c E CHAN by a pair
(c,I'), such that ch((c,I'» = c and val((e,I'» = 1'. To denote the behaviour of a process P we use
a history 0 which is a finite sequence (also called a trace) of the form ((c" I't}, ... , (en, I'n» of length
len(O) = n, where n E IN, C; E chan(P), and 1'; E VAL, for 1 :0; i:O; n. Such a history denotes the com
munications of P along its observable channels up to some point in an execution. Let 0 denote the empty
hist.ory, i.e. the sequence of length O. The concatenation of two histories 0, = ((c" I't), ... , (e., 1',» and
O2 = ((d"vt}, ... ,(d"v,», denoted 0,'02 , is defined as ((e',I't}, ... ,(e',I'.),(d"v,), ... ,(d"v,). We
usc O'(c, 1') as an abbreviation of O'((c,I'»'

Let TRACE be the set of traces, that is, the smallest set such that

00 E TRACE,

o if 0 E TRACE, c E CHAN, and I' E VAL then O'(e,l') E TRACE.

5

Definition 5 (Projection) For a trace 0 E TRACE and a set of channels eset <; CHAN, we define
the projection of 0 onto eset, denoted by Of cset, as the sequence obtained from 0 by deleting all records
with channels not in cset. Formally,

{

() ifO=()
Or cset = 00 f cset . if 0 = OOA(C, 1') and crt cset

(00 f esetJA(c, 1') if 0 = OOA(C, 1') and c E cset

<>

Definition 6 (Hiding) Hiding is the complement of projection. Formally, the hiding of a set cset of
channels from a trace 0 E TRACE, notation 0\ cset, is defined as

0\ cset = Of(CHAN - cset)

<>

Definition 7 (Channels occurring in a trace) The set of channels occurring in a trace 0, notation
chanCO), is defined by

chanCO) = {cE CHAN I OHc} f- ()}

<>

Notice that Or cset = 0 iff chanCO) <; cset, and that OHc} = () iff crt chanCO).

Definition 8 (Length of a trace) The length of a trace 0, denoted by ten(O), is defined by

• ten(() = 0,

• ten (OA (c, 1')) = ten(O) + I. <>

Definition 9 (Prefix) The trace 01 is a prefix of a trace O2 , notation 01 ~ O2 , iff there exists a trace
03 such that 01 A03 = O2 • <>

Let STATE1- = STATE U {.1}. The semantic function 0 assigns to a process P a set of triples
(0'0,0,0') with 0'0 ESTATE, 0 E TRACE, and 0' E STATE1-. Informally, a triple (O'Q, 0, 0') E O[P) has
the following meaning:

• if rJ' # .1 then it represents a terminating computation which has performed the communications
as described in () and terminates in state (T, and

• if rJ' = .1 then it represents a point in a computation of P at which P has performed the commu
nications as described in 0 but has not yet terminated.

To define the semantic function 0 we use the operator PC which yields the prefix closure of a set 0
of triples:

PC(O) = 0 U {(O'Q, 0,.1) I there exists a (rJ'0, 01,0') E 0 such that 0 ~ Oil

For instance, PC({(O'o, «c, 1», O')}) = {(O'o, (), .1), (rJ'o, «c, 1», .1), (0'0, «c, 1», O')}. Thus, for infinite
executions of a process P the set O[P] contains all finite approximations, which is justified since we only
deal with safety properties [20J.

The semantics of a process P can now inductively be defined as follows:

• O[skip] = PC({(O'o, (), O'o)})

.0[",:= eJ = PC({(O'o,(),(O'o: "' e[e](O'o)))})

6

• 0lc!e) = PC({(O'o,((c,C[e](O'o))),O'o)))

• O[c?z] = PC({(0'o , 0, 0') I there exists a value I' E VAL such that 0 = ((c, 1'))
and 0' = (0'0: z p)})

• O[P, ; P,] = {(O'o, O,.L) I (0'0,0,.L) E O[P,]}
U {(O'O,O,AO"O') I there exists a 0', ",.L such that

(0'0,0,,0',) E OIP,] and (0',,0,,0') E OIP,]}

• 01 [Oi;, h; P;] I = PC({(0'o , 0, 0'0) I ~B[b, V ... V bnl(O'o)})
U PC({(0'O , 0, 0') I there exists a k E {I, ... , n} such that

Blb.](O'o) and (0'0,0,0') E 0IP.]})

• O[.C] = PC({(O'o,O, 0') I there exists ak E IN and a list (0'0,0"0',), ... ,(0'._,,0,,,0',) such that
0= O,A .. AO., 0' = 0'., and for all i E {O, .. . ,k -I}:
0'; ",.L, BlbG](O';) and (0';,0;+1,0';+,) E OIC], and
if 0'. ",.L then B[~bG](O")))

• OIP, " P,] = {(0'o , B, 0') I for i = 1,2 there exist 0;,0'; such that (0'0,0;,0';) E O[P;], and
if 0', = .L or 0', = .L then 0' = .L else for all z E VAR

{
O';(z) if z E var(P;)

O'(z) = O'o(z) if z ¢ var(P, "P,)
OJ chan(P;) '" 0;, and OJ chan(P, "P,) = O}

• O[P\cset] = {(O'o,O\cset,O') I (0'0,0,0') E 0[P1}

We conclude this section by defining the set of traces of a process.

Definition 10 (Traces of a process) The traces of a process P, notation XIP], follow from:

X[P] = {B I there exist 0'0 and 0' such that (0'0, e, 0') E O[P]}

4 Assertion Language and Correctness Formulae

<>

As mentioned before, we use a correctness formula P sat ¢ to express that process P satisfies safety
property ¢. Informally, since we abstract from t.he internal states of the processes and focus on the
pattern of communications, such a correctness formula expresses that any sequence of communications
P may exhibit satisfies ¢.

Conform the format of traces in the semantics of the previous section, we use communication record
expressions such as (c, jJ), with c E CHAN and jJ E VAL, in assertions. We have channel expressions,
e.g. using the operator ch which yields the channel of a communication record, and value expressions,
including the operator val which yields the value of a communication record and the length operator
len. Further, we use in assertions the empty trace, 0, traces of one record, e.g. ((c,p», as well as the
concatenation operator A and the projection operat.or j. To refer to the communication history of a
process we use a special variable h. This variable is not updated explicitly by the process: it refers to
a trace from the semantics, and consequently its value wiH in general change during the execution of
the process. Then, we can write specifications like c!2 sat hi{c} = 0 V hi{c} = ((c,2». Let VVAR,
with typical representative v, denote the set of logical value variables ranging over VAL, and let TVAR,
with characteristic element t, be the set of logical trace variables ranging over TRACE. Assume that
VVAR n TVAR = 0.

Table 2 presents the assertion language, wit.h c E CHAN, I' E VAL, v E VVAR, t E TVAR, and
cset <; CHAN. Observe that an expression in the assertion language of Table 2 does not refer to program
variables since we abstract from the internal state of a process in this report.

7

Table 2: Syntax of the Assertion Language
Channel erpression cerp ::- c I ch(rerp)

Value erpression verp ::= I' I v I val(rerp) I len(terp)

(cerp, verp) I terp(verp) Record expression

Trace expression

Assertion

rexp ::=

terp ::=

<P ::=

1 I h I () I (rerp) I terp,' lerP2 I terp i cset

cerp, = cerp2 I verp, = verp2 I lerp, = lerP2
<p, 1\ <P2 I ~<P I 3v: <P I 31: <P

Definition 11 (Abbreviations) Henceforth we use the following abbreviations:

• ch(cerp, verp) == ch«cerp, verp))

• val(cerp,verp) == val«cerp,verp»

• terp i cerp == terp j{ cerp }

• rerp, = rerP2 == ch(rerpJl = ch(rerP2) 1\ val(rerpJl = val(rerP2)

• terp\cset _ texpj(CHAN - cset)

• last(terp) _ terp(lent terp»

• terp, :0 terP2 == 3t: terp,'t = terP2

This expresses that texp, is a prefix of terP2'

• terp, :on terP2 == 3t: len(t) ::; n : terp,'t = terP2

To assert that terp, is a prefix of terP2 which is at most n records shorter.

• terp, ..(terP2 == texp,:o terP2 1\ terp, '" texp2

To denote that terPI is a strict prefix of terP2'

• texPl -<n texP2 == 3t: 1 < len(t) :::; n : texp/\t = texP2

To express that terPI is a strict prefix of terP2 which is at most n records shorter.

• terp[verpJ == terp(I)' .. Aterp(verp)

To refer to the prefix of terp that has length verp.

if len(terp,) ::; 1
if len(terp,) > 1

To denote that ter]>, is a (not necessarily contiguous) subsequence of terP2' o

Furthermore, we use the standard abbreviations <PI V <P2 == ~(~<PI 1\ ~<P2)' and <PI - <P2 _ ~<PI V <P2'
Also, for natural numbers z and y, we use the relations x $n y and x <n y to denote that 0 :5 y - x :5 n,
respectively that 0 < y - :z; ::; n.

Definition 12 (Sequence of values) For a trace terp,

~ I(t) _ { () if texp = ()
a exp - Vul(texpo}'v if texp = terPo'(e, v)

o

8

Example 1 (Medium) Consider a medium M that accepts messages via m;n and delivers them via
mout in first in-first out order. To specify that M has a capacity of one message, we use

M sat Val(himout) =,' Val(him;n)

For an assertion </> we define a set chant </» of channel names such that </> may only be invalidated by
a communication on the channels of chan (</».

Definition 13 (Channels in an assertion) For an assertion </> We inductively define the set chan(</»
of channels such that c E chant </» iff a communication along c might affect the validity of </>.

• chan(c) = 0

• chant ch(rexp» = chant rexp)

• chan(p) = chan(v) = 0

• chan(val(rexp» = chan(rexp)

• chan(len(lexp» = chant lexp)

• chan«cexp, vexp» = chan(cexp) U chan(vexp)

• chan(texp(vexp» = chan(texp) U chan(vexp)

• chan(t) = 0

• chan(h) = CHAN

• chan«) = 0

• chan«rexp» = chan(rexp)

• chan(texp,'texP2) = chan(texpJl U chan(texP2)

• chan(texpi cset) = chan(texp) n cset

• chan(cexp, = cexP2) = chan(cexpJl U chan(cexP2)

• chant vexp, = vexP2) = chant vexpJl U chant vexP2)

• chan(texPI = texP2) = chan(texpJl U chan(texP2)

• chan(</>, 1\ </>2) = chan(</>d U chan(</>2)

• chan(~</» = chan(3v : </» = chan(3t : </» = chan(</» o

Next we define the meaning of assertions. An assertion is interpreted with respect to a pair (0,1).
Trace ° gives h its value, and environment "{ interprets the logical variables of VVAR U TVAR. We use
the special symbol f to deal with l.he interpretation of texp(vexp) where index vexp is not a positive
nat,ural number, or if it is greater than the length of texp. The value of an expression is undefined
whenever a subexpression yields f. We define the value of a channel expression cexp in the trace 8,
and an environment ,,{, denoted by C[cexp](O,"{), yielding a value in CHAN U {n, the value of a value
expression vexp in the trace 0, and an environment ,,{, denoted by V[vexp](8, "{), yielding a value in
VAL U {n, the value of a record expression rexp in the trace 0, and an environment ,,{, denoted by
R[rexp](O, "{), yielding a value in CHAN x VALU {n, and the value of a trace expression texp for trace
0, and an environment ,,{, denoted by T[texp](O, "{), yielding a value in TRACE U {n.

9

• C[cJ(O,,,) = c

• C[ch(rexp)J(O,,,) = { : iff1G[rexp](O,,,) = f
iff there exists a I' such that 1G[rexpJ(O,,,) = (c,p)

• V[P](O,,,) = I'

• Vlv](O,,,) = ,,(v)

{
f iff 1G[rexp](O,,,) = f

• Vlval(rexp)J(O,,,) = I' iff there exists a c such that 1Glrexp](O,,,) = (c,p)

V[I (I)](0) _ { f iff T[lexp](O,,,) = f
• en exp ,,, - len(T[lezp](O, ,,)) otherwise

1G[()](0) _ { t iff C[cexp](O,,,) = t or V[vexp](O,,,) = t
• cexp, vezp ,,, - (C[cexp](O, ,,), V[vexp](O, ,,)) otherwise

• 1G[lexp(vexp)](0,,,) = and T[lexp](O,,,) = 0, '(c, prO,
{

(c,p) iff there exist 0, and 0, such that len(Od = V[vexp](0,,,)-1

f otherwise .

• T[I](O,,,) = ,,(1)

• T[h)(O,,,) = °
• T[()](O,,,) = 0

TI()](0) _ { f iff 1G[rexp](O,,,) = f
• rexp ,,, - «c,p) iff 1G[rexp](O,,,) = (c,p)

{

f iff T[lexp,](O,,,) = f or
• T[texp,'lexp,](O,,,) = T[texp,](O,,,) = f

T[lezp,](O, "l'T[lezp,](O,,,) otherwise

T[I r 1](0) {f iff T[texp](O,,,) = f
• exp cse ,,, = T(lezp](Or eset,,,lT csel otherwise

Definition 14 (Variant of an environment) The variant of an environment" with respect to a
logical variable I and a value A, denoted b : I A), is given by

{
A ifm=1

b : I A)(m) = ,,(m) if m'$. I

We inductively define when an assertion 4> holds for a trace 0, and an environment ", denoted by
(0,,,) F= 4>. To avoid the complexity of a three-valued logic, an equality predicate is interpreted strictly
with respect to f, that. is, it has truthvalue false if it contains some expression that has an undefined
value.

• (0,,,) F= cexp, = eexp, iffC[cezp,](O,,,) = C[eexp,](O,,,) and C[eezp,](O,,,) '" f

• (0,,,) F= vexp, = vexp, iffV[vexp,](0,1) = V[vexp,](O,,,) and V[vexp,](O,,,) '" t

• (0,,,) F= texp, = texp, iff T[texp,](O,,,) = T[lexp,](O,,,) and Tllexp,](O,,,) '" f

• (0,,,) F= 4>, "4>, iff (0,,,) F= 4>, and (0,1) F= 4>,

10

• (8, r) 1= ~,p iff not (8, r) 1= ,p

• (8, r) 1= 3v : ,p iff there exists a value Il such that (8, (r : v Il)) 1= ,p

• (8, r) 1= 3t : '" iff there exists a trace 0 such that (8, (r : t 0)) 1= ,p

Definition 15 (Validity of an assertion) An assertion ,p is valid, which we denote by 1= ,p, iff for all
8 and r : (8, r) 1= ,p 0

We conclude this section by defining when a correctness formula P sat ,p is valid.

Definition 16 (Validity of a correctness formula) For a process P and an assertion 4J a correctness
formula P sat ,p is valid, denoted by 1= P sat ,p, iff

for all r and all 8 E H[P] : (8, r) 1= ,p
o

5 Incorporating Fault Hypotheses

Based on a particular fault hypothesis, the set of behaviours that characterize a process is expanded.
To keep such an expansion manageable, the fault hypothesis X of a process P is formalized as a
predicate, expressed in a first order assertion language, whose only free variables are h and hold,

representing a reflexive relation between the normal and acceptable histories of a process. The in~
terpretation is such that hold represents a normal history of process P, whereas h is an acceptable
history of P with respect to X. Such relations enable one to abstract from the precise nature of a
fault and to focus on the abnormal behaviour it causes. For instance, a possible history h of pro
cess Square, which alternately inputs an integer via the observable channel in and outputs its square
via the observable channel out, may be ((in, 1), (out, 1), (in, 3), (out, 9)). The exceptional behaviour
reSUlting from Square's output channel becoming transiently stuck at zero can be defined using a pred
icate StuckAtZero asserting that hold and h are equally long, if the ith element of hold records an
in communication then it is equal to the ith element of h, and if the ith element of hold records
an out communication then so does the ith element of h, but in the latter case the communicated
value recorded in h is equal to the original value or it is equal to zero. Using, similar to [17], the
construct (Square I StuckAtZero) to indicate execution of process Square under the assumption of Stuck
AtZero, we still have ((in, 1), (out, 1), (in, 3), (out, 9)) E H[(Square/ StuckAtZero j], but also, for instance,
((in, 1), (out, 1), (in, 3), (out, 0)) E H[(Square I StuckAtZero)l Our goal is to examine whether it is pos
sible to develop a compositional proof theory based on the idea of transforming histories; for the time
being it is not our aim to find a logic to express fault hypotheses as elegantly as possible.

Example 2 (Stuck at zero) The before mentioned predicate StuckAtZero can formally be defined as
follows:

StuckAtZero ~ len(h old) = len(h)
A Vi : 1 ~ i ~ len(h) : ch("r{in, out}(i)) = ch(holdr{in, out}(i))

A val(hiin(i)) = val(holdiin(i))
A val(hiout(i)) = val{holdiout(i))

V val(hiout(i)) = 0

By not specifying the value part of an out record in h, allowing it to be any element of VAL, we can
forma1ize corruption.

11

Example 3 (Corruption) We formalize corruption as follows:

Cor ~ len(hold) = len(h)
" Vi : I $ i $ len (h) : ch(hT{in, out}(i)) = ch(holdi{in, out}(i))

" val(hTin(i» = val(holdTin(i))

A

Example 4 (Loss) Consider medium M of Example 1. To formalize the hypothesis that M may lose
messages we define:

Loss ~ hT{m;., moutl~ hold! {m;., mou,}
" h Tm;. = hOld Tm;.

A

We extend the assertion language with trace expression term hold. Sentences of the extended language
are called transformation expressions, with typical representative.,po A transformation expression is
interpreted with respect to a triple (00 ,0, 'Y). Trace 00 gives hold its value, and, in conformity with the
foregoing, trace 0 gives h its value, and environment 'Y interprets the logical variables of VVAR U TVAR.
The meaning of assertions, as defined on page 9, can easily be adapted for transformation expressions;
the only new clause is T[hold](OO, 0, 'Y) = 00 • Similarly, the channels occurring in an transformation
expression are defined as in Definition 13 with the extra clause chan(hold) = CHAN.

Since the term hold does not occur in assertions, the following lemma is trivial.

Lemma 1 (Correspondence) For assertion 4> for all 00 (Oo,O,'Y) F= 4> iff (O,'Y) F= 4>. o

In this section we define the trace semantics 1i[(FPlx)J of failure prone process (FPlx), that is,
process FP under assumption of fault hypothesis X. A fault hypothesis X is a fault assertion which,
since it formalizes a relat.ion between the normal and the acceptable behaviour of a process, represents
a reflexive relation between h and hold. Formally,

• F= X[hold/h]

Furthermore, we require a fault hypothesis X to be prefix c10sedness preserving, that is, we require

Using P to denote a process expressed in t.he programming language of Section 2, we define the
syntax of our extended programming language in Table 3.

Table 3: Extended Syntax of the Programming Language

Failure Prone Process FP ::- P I FP,II FP 2 I FP\cset I (FPlXl I
We require, in (FPlx), that chan(x) s;; chan(FP). Hence, chan«FPlx)) = chan(FP), and, as

before, chan(FP, II FP 2) = chan(FP,) U chan(FP2), and chan(FP\ cset) = chan(FP) - cset.
As we are only interested in the traces of a process, the semantics of a failure prone process FP is

inductively defined as follows:

12

• H[FPIII FP,] = {Ol for i = 1,2, Ofchan(FP,) E H[FP,], and Ofchan(FPIIi FP,) = 0 }

• H[FP\ cset) = { 0\ cset 1 0 E H[FP] }

• H[(FPlx)) = {Ol there exists a 00 E H[FPj such that, for all" (00 ,0,,) F x, and
OTchan(FP) = 0 }

The set H[(FPlx)] represents the acceptable behaviour of FP with respect to fault hypothesis X. No
tice that, H[FP] = H[(FPlhf chan(FP) = holdf chan(FP»] , and that, because of the reflexivity of
x, H[FP] ~ H[(FPlx)]. Also, observe that the semantics is defined such that if 0 E H[FP] then
chan(O) ~ chan(FP).

Lemma 2 (Prefix closedness) If 0 E H[FP] and 0' ::0 0 then 0' E H[FP).

Proof. See A ppendix A. o

Definition 17 (Composite transformation expression) For transformation expressions .pI and .p"
the composite transformation expression (.pll.p,) is defined as follows

where t must be fresh.

From this definition we easily obtain the following lemma.

Lemma 3 (Composite fault hypothesis)

H[(FPl(xdx,))] = H[«FPlxdlX2)]

Proof. See Appendix B. 0

The following lemmas are easy to prove by structural induction.

Lemma 4 (Projection) Consider cset ~ CHAN and transformation expression .p. If chan(.p) ~ cset
then, for all 00 , 0, and,

(a) (00 ,0,,) F.p iff (00 , Of cset,,) F .p

(b) (00 ,0,,) F.p iff (80 fcset,0,,) F.p

Lemma 5 (Substitution) Consider transformation expression .p.

(a) (00 ,0,,) F .p[texp/h] iff (00 , T[texp](Oo, 0, ,),,) F .p

(b) (00 ,8,,) F .p[texp/hold] iff (T[texp](80 ,0,,),O,,) F.p

o

o

Since the interpretation of assertions has not changed, the validity of correctness formula FP sat 4> is
defined as in Definition 16, with P replaced by FP.

Definition 18 (Validity of a correctness formula) For a failure prone process FP and an assertion
4> a correctness formula FP sat 4> is valid, denoted by F FP sat 4>, iff

for all, and all ° E H[FP] : (0,,) F 4>

o

13

6 A Compositional Network Proof Theory

In this section we present a compositional proof theory to prove safety properties of networks of processes.
Since we focus on the relation between fault hypotheses and concurrency, we have abstracted from the
internal states of the processes and do not give rules for atomic statements, nor sequential composition.
Such rules could be formulated by using an extended assertion language which includes program variables
and a denotation to indicate termination (e.g. [20]).

The following rules are standard:

Rule 6.1 (Consequence)

Rule 6.2 (Conjunction)

Rule 6.3 (Invariance)

FP sat </>" </>'-</>2
FP sat </>2

FP sat </>" FP sat </>2
FP sat </>,1I</>2

cset n chan(FP) = (2)

F P sat hI cset = ()
From tilis rule we can derive the following lemma.

Lemma 6 (Invariance)
P sat h \ chan(P) = ()

Rule 6.4 (Parallel composition)

FP, sat </>" FP2 sat </>2

FPdlFP2 sat </>,11 </>2

o

provided that chan(</>,) n chan(FP2) ~ chan(FP,) and chan(</>2) n chan(FP,) ~ chan(FP2), i.e. if the
assertion that holds for one process refers to channels of the other process then this concerns channels
connecting the two processes (cf. [8], [20]). Note that, as a consequence of this restriction, any occurrence
of h in specification </>; of process FP; should be projected onto a subset of chan(FP;}. Recall that we
do not allow shared variables.

Rul" 6.5 (Hiding)
FP sat </>, chan(</» n cset = (2)

FP\ cset sat </>

Next, we formulate the rule for the introduction of a fault hypothesis.

Rule 6.6 (Fauit hypothesis introduction)

FP sat </>

(FPlx) sat (</>Ix)

Observe that since </> is an assertion, hold does not occur in </>, and hence also (</>Ix) is an assertion.

Example 5 (Loss) Consider the medium of Example 4. By (Fault hypothesis introduction),

(MILoss) sat 3t: (Val(hIm ou,):5' Val(hIm;n»)[t/hl
II (hf{m;n, mou,}:s)holdf{m;n, mou,} II hIm;n = hOldlm;n)[t/holdl

14

which reduces to

(MILoss) sat 3t : Val(tim ou,) ~l Val(tjm;.)
/I hf{m;., mou,}~tf{m;., mou,} /I hjm;. = tim;.

Now, for instance, by hi {min, mout} ~ t i {min I moud J we have, obviously, h imout:g tfmout, which, since
Val(timoutl ~l Val(tim;.), implies Val(hjmoutl~ Val(tim;.). Then, by tim;. = hjm;., we obtain

(MILoss) sat Val(himou')~ Val(hjm;.)

Also, since Val(tim ou,) ~l Val(tim;n), we have Vi: ch(t'(i)) = mou, : val(t'(i)) = val(last(t'[iJrm;.)),
with t' = tf{m;.,mou,). Because hf{m;.,mou,)~tf{m; .. mou,) whilst him;. = tim;., this leads to

(M I Loss) sat Vi: ch(hf{m;.,mou,}(i)) = mou,:
val(hf{m; .. mou,}(i)) = val(last(hf{m;., mou,)[iJrm;n))

Finally, since the semantics is prefix closed we have the following rule .

. Rule 6.1 (Prefixing)
FP sat <P

FP sat Vt ~ h: <p[t/h]

7 Example I: Triple Modular Redundancy

Consider the triple modular redundant component of Figure 1. It consists of three identical components
Cj , j = 1,2,3, an input triplicating component In, and a component Voter that determines the ultimate
output. The intuition of the triple modular redundancy paradigm is that 3 identical components operate
on the same input and send their output to a voter which outputs the result of a majority vote. Clearly,
the failure of one component can be masked, and the failure of two or all three components can be
detected, as long as they do not fail identically.

In out2 out
}-=:.L...'; Voter}-+--="--

out3

Figure 1: Triple modular redundant component

15

Definition 19 (Abbreviations) Throughout this section we use the following abbreviations:

• c(i) == val«htc)(i»

• cOld(i) == val«holdtC)(i»

• c'(i) == val«ttc)(i» <>

Each component alternately awaits an input message from in, performs some computation I, and
produces an output message on out. We abstract from the implementation details of a componentj we
only consider the following specification. .

Cj sat Vi: out(i) = I(in(i»

The voter awaits the output of each of the 3 components, takes a majority vote, and outputs the
result of that vote. Formally,

Voter sat Vi, v: out (i) = v - (3k, I : k # I : out.(i) = outl(i) = v)

Finally, component In conforms to

In sat Vi,j : inj(i) = inti)

The voter produces the desired output if at least two of the values output by CI , C2 , and Ca are
correct. Hence, to mask the failure of one component, at most one of the values output by CI , C" and
Ca may be corrupted for each vote. This assumption is formalized by the following fault hypothesis.

Cor$1 ~ Vi: 3k, I: k # I : oul.(i) = out~'d(i) II out,(i) = outr'd(i)
II "t{inl, in" ina} = holdt{inl, in" ina}

We show that, given this assumption, the system in II «CI II C2 II C3)/ Cor$l)1I Voter produces the de
sired output, that is, hiding internal channels we prove

(in II «CI II C2 II C3)/ Cor$I)11 Voler) \ {inl. in2. in3. outl. out2, out3} sat Vi: out(i) = I(in(i»

Proof. By (Parallel Composition)

a
CdlC211Ca sat /\ Vi: outj(i) = I(inj(i»

j=l

By (Fault Hypothesis Introduction)

3

«CdIC2I1Ca)/Cor$l) sat 3t: (/\ Vi: outj(i) = I(inj(i»)[tfh] II Cor$l[tfholdl
j;:;l

which is, by definition, equivalent to

«CdIC2I1Ca)/Cor$1) sat 3t: A:=l Vi: outi(i) = I(inj(i»

and, thus, by (Consequence),

II Vi: 3k, I: k # I: out.(i) = outW) II outl(i) = out1(i)
II ht{inl' in2, in3} = tt{inl, in2, in3}

16

«C,I/C.I/C3)/ Cor$') sat 3t: 'Ii: 3k, I: k # I: outk(i) = !(inW)) " out,(i) = !(inf(i))
" hHin" in2, in3} = tHin" in2, in3}

Using hHin" in2, in3} = tHin" in2, in3}, we have that /lS=, 'Ii: tjinj(i) = hiinj(i). Hence

«C,I/C2I/C3)/Cor$') sat 'Ii: 3k,l: k # I: outk(i) = !(ink(i))" out,(i) = !(in,(i))

By (Parallel Composition), we get

Inll«CdIC2I/C3)/ Cor~') sat Vi: 3k, I: k # I: outk(i) = !(ink(i)) " out,(i) = !(in,(i))
" Vi,j: inj(i) = in (i)

Hence, by (Consequence),

Inl/«C,I/C2I/C3)/Cor$') sat 'Ii: 3k,l: k # I: outk(i) = !(in(i)) " out,(i) = !(in(i))

and thus

Inl/«CdIC2 I/C3)/Cor9) sat 'Ii: 3k,l: k # I: outk(i) = out,(i) = !(in(i))

By (Parallel Composition) and (Consequence), we add the voter and obtain the relation between in and
out.

In l/«C,I/C2I/C3)/ Cor$')1/ Voter sat Vi: out(i) = !(in(i))

Finally, by (Hiding), we obtain

8 Example II: The Alternating Bit Protocol

o

The alternating bit protocol [2], extended with timers, is a simple way to achieve communication over
a medium that may lose messages. Consider the duplex communication medium of Figure 2, where A
and M are media with fault hypothesis 108S as already discussed in Example 5.

Sender S accepts via in data from the environment, appends a bit to it, and sends it via min; the
value of the bit alternates for successive messages, starting with 1. Receiver R awaits a message via moult

and sends the bit via ai. as an acknowledgement; R only passes the data via out to the environment
if the value of the message's bit differs from the value of the previous message's bit, or if it is the first
message. Consequently, messages along M consist of data-bit pairs (d, b), such that dat«d, b)) = d and
bitted, b)) = b. Medium A transmits bits. Under the alternating bit protocol, S keeps sending a message
via man until its acknowledgement arrives via aO"t. The alternating bit ensures that R can identify
duplicates.

In this section we will prove that ABP ~ S 1/ (M I Loss) II (AI Loss) 1/ R satisfies the safety property
that Val(h Tout) =' Val(h i in). We use the following functions:

Definition 20 (Removal of duplicate messages) For a trace texp of chan(M) x aM records,

{ ()
RDMsg(texp) = RDMsg(texpo)

RDMsg(texpo)A(c, (d, b))

if texp = ()
if texp = texpoA(c, (d, b)) and b = bitt val(last(texpo)))
if texp = texpoA(c, (d, b)) and b # bitt val(last(texpo)))

17

o

Figure 2: Duplex communication medium

Definition 21 (Removal of duplicate acknowledgements) For a trace lexp that consists only of
chan(A) x oA records,

{
0

RDA ck (texp) = RDAck(texpo)
RDAck(texpoY(c, b)

if lexp = 0
if texp = texp/(c, b) and b = val(last(texpo))
if texp = texpoA(c,b) and b i val(last(texpo))

Definition 22 (Sequence of data) 'For a trace texp of chan(M) x oM records,

D { 0 if texp = 0
al(lexp) = Msg(lexpoYd if texp = lexpoA(c, (d, b))

Definition 23 (Sequence of bits) For a trace texp of chan(M) x oM records,

B'I t _ { 0 if texp = 0
,(exp) - Bil(lexpoYb iftexp = lexpoA(c,(d,b»

In the sequel we write h where we mean hI chan(ABP).
The informal description of sender S given above can be formalized as follows.

S sat Dat(RDMsg(hTmin»:O' Val(hIin)
1\ Val(RDAck(hIaout)):O' Bil(RDMsg(hImin»

Similarly, we obtain the following specification for receiver R.

Rsat Va/(hIoul):o' Dal(RDMsg(hImout»
1\ Val(RDAck(hTain»~' Bit(RDMsg(hTmout))

Then, by (Consequence) and (Parallel composition), we obtain:

ABP sat Dal(RDMsg(hImin»:O' Val(hIin)

ABP sat Val(RDAck(hTaout» :0' Bit(RDMsg(hTmin))

ABP sat Val(hIoul) :0' Dal(RDMsg(hImout))

ABP sat Val(RDAck(hIain» :0' Bit(RDMsg(hImoutl)

18

<>

<>

(AI)

(A2)

(A3)

(A4)

From Example S we learned that (MILoss) sat Val(him oti,)$! Val(him,.) which implies that

ABP sat len(RDMsg(himoti,)) $ len(RDMsg(him,.» (AS)

Also recall from Example S that (M I Loss) sat Vi: ch(h'(i» = m Oti ' : val(h'(i)) = val(last(h' [.lim,.)),
with hi = hi {m,., m Oti'}' Since this property can only be invalidated by communications on m,. and
mout, we conclude

ABP sat Vi: ch(h(i» = m Oti ' : val(h(i)) = val(last(h[.lim,.))

For medium A we obtain similarly

ABP sat len(RDAck(hia oti,)) $ len(RDAck(hia,.))

ABP sat Vi: ch(h(i» = aOti' : val(h(i» = val(last(h[iJia,.»

The crucial property of the alternating bit protocol is the following.

Lemma 7 (Persistency)

ABP sat Val(RDAck(hiaoti'):o' Val(RDAck(hia,.»
" Dat(RDMsg(himoti')):O' Dat(RDMsg(him,.»

(A6)

(A7)

(AS)

Proof. See Appendix C. 0

Then, by (Consequence), we have

ABP sat Dat(RDMsg(hlmoti')):O' Dat(RDMsg(him,.))

which, by (AI) and (A3), yields

ABP sat Val(hlout):o Val(hiin)

which shows that the alternating bit protocol tolerates loss of messages and acknowledgements.

9 Soundness and Relative Network Completeness

In this section we prove that the proof theory of Section 6 is sound, that is, we prove that, if a correctness
formula FP 8at ,p is derivable, then it is valid. Furthermore, we prove the proof system to be complete,
that is, we prove that, if a correctness formula FP sat ,p is valid, then it is derivable. In fact, the prefixing
rule is not needed to establish completeness.

Theorem 1 (Soundness) The proof system of Section 6 is sound.

Proof. See Appendix D. o

As usual when proving completeness, we assume that we can prove any valid formula of the underlying
(trace) logic (cf. [4]). Thus, using I- ,p to denote that assertion ,p is derivable, we add the following axiom
to our proof theory.

Axiom 1 (Relative completeness assumption) For an assertion ,p,

I-,p if t=,p

19

As in [19] we use the preciseness preservation property to achieve relative completeness. The intuition
is that, as long 88 the specifications of the individual processes are precise, 80 are the deduced specifi
cations of systems composed of such processes. Informally, a specification of a failure prone process is
precise if it characterizes exactly the set of behaviours of the process.

Definition 24 (Preciseness) An assertion 4> is precise for failure prone process FP iff

(i) F FP sat 4>.

(ii) if chanCO) ~ chan(FP) and, for some "{, (0, "{) F 4> then 0 E ll[FPl

(iii) chan(4)) ~ chan(FP). o

Let f- P sat 4> denote that correctness formula P sat 4> is derivable. Note that no proof rules were
given for the sequential aspects of processes, so our notion of completeness is relative to the assump
tion that for a process P there exists a precise assertion 4>. This leads to the definition of network
completeness.

Definition 25 (Network completeness) Assume that for every process P there exists a precise as

sertion 4> with f- P sat 4>. Then, for any failure prone process FP and assertion {, F FP sat { implies
f- FP sat{. 0

The following lemma asserts that preciseness is preserved by the proof rules of Section 6.

Lemma 8 (Preciseness preservation) Assume that for any process P there exists an assertion 4>
which is precise for P and f- P sat 4>. Then, for any failure prone process FP there exists an assertion {
which is precise for F P and f- F P sat {.

Proof. See Appendix E. a

The following lemma asserts that any specification satisfied by a failure prone process is implied
by the precise specification of that process. Since a precise specification only refers to channels of the
process, and a valid specification might refer to other channels, we have to add a clause expressing that
the process does not communicate on those other channels.

Lemma 9 (Preciseness consequence) If 4>1 is precise for FP and F= FP sat 4>, then

F (4)1 1\ hj(chan(4>,) - chan(FP» = 0) - 4>,

Proof. Assume that 4>1 is precise for FP, and that F= FP sat 4>, (I).
Consider any 0 and "{. Assume that (O,"{) F= 4>1 Ahj(chan(4>,) - chan(FP» = 0 (2).

By (2), (O,"{) F= 4>1. Since 4>1 is precise for FP, chan(4)l) ~ chan(FP). Hence projection lemma (a)
yields (Or chan(FP), "{) F 4>1, thus, once more by the preciseness of 4>1 for FP, Or chan(FP) E ll[FP]'
By (1), (Orch.n(FP),"{) F 4>, (3).

By (2), we have that (0, "Y) F= hi(chan(4),) - chan(FP» = O. Hence, OJ(chan(4>,) - chan(FP)) = 0,
and thus, Olchan(FP) = Ol(ch.n(FP) U (ch.n(<p,) - ch.n(FP))) = Ol(chan(FP) U ch.n(<p,». Hence,
we obtain from (3) that (Or (ch.n(FP)U chan(4),)), "{) F 4>" and consequently, by projection lemma (a),
(0, "{) F <p,. a

Now we can establish relative network completeness.

Theorem 2 (Relative network completeness) The proof system of Section 6 is relatively network
complete.

20

Proof. Assume that for every process P there exists a precise specification <p with I- P sat <p. Then, by
the preciseness preservation lemma, for any failure prone process F P there exists an assertion ~ which
is precise for FP and I- FP sat { (1).

Assume 1= FP sat~. Since (chan(~) - chan(FP)) n chan(FP) = 0, we obtain, by (Invariance),
I- FP sat hT(chan(~) - chan(FP)) = 0 (2).

By (1) and (2), I- FP sat {I\ h T(chan(~) - chan(FP)) = 0, and thus, by the preciseness consequence
lemma, the relative completeness assumption, and (Consequence), I- FP sat ~. Q

10 Conclusions and Future Research

Starting from a SAT formalism, we have defined a trace-based compositional proof theory for fault
tolerant distributed systems. In this theory, the fault hypothesis of a process is formalized as a reflexive
relation between the normal and acceptable observable input and output behaviour of that process.
Such a relation enables one to abstract from the precise nature of a fault and to focus on the abnormal
behaviour it causes. With respect to existing SAT formalisms, only one new rule, viz. the fault hypothesis
introduction rule, is needed. We illustrated our method by proving safety of a triple modular redundant
component and the alternating bit protocol, using only the specifications of the components. The proof
of correctness of the alternating bit prot,ocol that appears in [13] is also based on traces. There, a less
natural specification of the receiver, which contains the requirement that non-duplicate input messages
have alternating bits, evades the necessity to prove the property of persistency.

In this report we only considered safety properties, ignoring !iveness issues. Since the underlying trace
logic is based on finite approximations, the proof theory we presented is not appropriate to deal with
liveness properties. To allow reasoning about liveness properties, trace logic can be replaced by a more
expressive logic, e.g. temporal logic. Then, instead of relating normal and exceptional communication
sequences, a fault hypothesis relates normal and exceptional sequences of states. Consider, for instance,
a system S whose state consists of 2 integers z and y, that is, STATEs = { IT I IT : {z,y} - '" }.
Assume that in a sequence S of states a new state is recorded whenever the value of z or y changes. If
we allow transient memory faults to occur, then it is possible that, instead of some intended sequence
Sold = (0,0), (10, 0), ... , we observe s = (0,0), (3, 0), (10, 0), ... because a fault affects the cell containing
z before it is assigned the value 10. Notice that, since we only allow transient memory faults, assigning
10 to z undoes the effect of the preceding fault. In a description where each new state is related to
its predecessor by stating which state variables have changed, transient memory faults can easily be
formalized as the insertion of a state at an arbitrary position in the sequence.

We have also abstracted from the sequential aspects of processes. To reason about these aspects,
often a proof system based on Hoare triples (see [6]) is more convenient. In such a proof system one
reasons about correctness formulae of the form {p} S {q} where S is a program, and p and q are assertions
expressed in a first-order language. Informally, the triple {p}S{ q} means that if execution of S is started
in a state satisfying p, and if S terminates, then t.he final state satisfies q.

Besides finding a logic to express fault hypotheses more elegantly, an obvious continuation of the
research described in this report is the introduction ,of time to the formalism, to allow reasoning about
properties of fault tolerant real-time systems. Then, the characterization that safety properties express
that 'nothing bad will happen' and liveness properties express that 'eventually something good will
happen' (see [10]) is, as indeed mentioned in [10], no longer appropriate. Consider, for instance, a
communication medium that accepts messages via a channel in and relays them to a channel out. The
property 'after a message is input to the medium via in it is output via out within 5 seconds' is a safety
property, because it can be falsified after 5 seconds following an in communication, but it expresses tha.t
something must happen. Hence, by adding time, the class of safety properties is extended and, e.g., also
includes progress properties.

21

References

[J} A. Avizienis and J.e. Laprie. Dependable computing: from concepts to design diversity, Proceeding.
o! lilt ",;1\'" 14(fJ) (Mlty IO~O) 02U 03M.

[2} K.A. Bartlett, R.A. Scantlebury and P.T. Wilkinson. A note on reliable full-duplex transmission
over half-duplex links, Communications of the ACM 12(5) (1969) 260-261.

[3J J. Coenen and J. Hooman. A compositional semantics for fault tolerant real-time systems, Proc.
Second Int. Symp. on Formal Techniques in Real- Time and Fault Tolerant Systems, Lecture Notes
in Computer Science 511 (Springer, 1991) 33-51.

[4} S.A. Cook. Soundness and completeness of an axiom system for program verification, SIAM Journal
on Computing 7(1) (February 1978) 70-90.

[5} F. Cristiano A rigorous approach to fault tolerant programming, IEEE Trans. on Software Engi
neering SE-ll(l) (1985) 23 - 31.

[6} C.A.R. Hoare. An axiomatic basis for computer programming, Communications of the ACM 12(10)
(1969) 576-580,583.

[7J C:A.R. Hoare. Communicating Sequential Processes (Prentice-Hall International, 1985).

[8} J. Hooman. Specification and Compositional Verification of Real- Time Systems, Lecture Notes in
Computer Science 558 (Springer, 1992).

[9} M. Joseph, A. Moitra and N. Soundararajan. Proof rules for fault tolerant distributed programs,
Science of Computer Programming 8 (1987) 43-67.

[1O} L. Lamport. What good is temporal logic, in: R.E. Manson, ed. Information Processing (North
Holland, 1983) 657-668.

[l1J J.C. Laprie. Dependable computing and fault tolerance: concepts and terminology, Proc. 15th Int.
Symp. on Fault Tolerant Computing Systems, (IEEE Computer Society Press, 1985) 2-11.

[12J P.A Lee and T. Anderson. Fault Tolerance: Principles and Practice (Springer, 1990).

[13] K. Paliwoda and J.W. Sanders. An incremental specification of the sUding window protocol, Dis
tributed Computing 5 (1991) 83-94.

[14] J. Peleska. Design and verificat.ion of fault tolerant systems with CSP, Distributed Computing 5
(1991) 95-106.

[15J B. Randell, P.A. Lee and P.C. 'Deleaven. Reliability issues in computing system design, ACM
Computing Surveys 10(2) (June 1978) 123-165.

[I6] H. Schepers. Terminology and paradigms for fault tolerance, in: J. Vytopil, ed. F~rmal Techniques
in Real-Time and Fault Tolerant Systems (Kluwer Academic Publishers, 1993) 3-31.

[17] H. Schepers. 'Dacing fault tolerance, Proc. 3rd IFIP Int. Working Conference on Dependable Com
puting for Critical Applications ,Springer, to appear).

[18} D.G. Weber. Formal specification of fault-tolerance and its relation to computer security, ACM
Software Engineering Notes 14(3) (1989) 273-277.

[19} J. Widom, D. Gries and F. Schneider. 'Dace-based network proof systems: expressiveness and
completeness, ACM TOPLAS 14(3) (July 1992) 396-416.

[20] J. Zwiers. Compositionality, Concurrency and Partial Correctness, Lecture Notes in Computer
Science 321 (Springer, 1989).

22

A Proof of the prefix closed ness lemma

By induction on the structure of FP. (Base) Since the semantic function 0 generates prefix clOlied sets,
the theorem holds trivially for 1t[P]. (Induction Step) Assume that the lemma holds for 1t[FP):

(a) Assume 0 E 1t[FP, II FP,], that is, assume that, for i = 1,2, OJ chan(FP,) E 1t[FP,] (I) and
OJ chan(FP, II FP,) = 0 (2). Consider any 0' :5 O. Since 0' :5 0, we have that, for i = 1,2,
O'jchan(FP'):5 Ojchan(FP,). By (1) and the induction hypothesis, we conclude that, for i = 1,2,
O'j chan(FP,) E 1t[FP,] (3). By (2), chan(O) ~ chan(FP,IIFP,). Since 0' :5 0, chan(O') ~ chan(O).
Consequently, chan(O') ~ chan(FP,11 FP,) which means that O'jchan(FP,1I FP,) = 0' (4). From
(3) and (4) we conclude that 0' E 1t[FP, II FP,].

(b) Assume 0 E 1tIFP\cset], that is, assume there exists aTE 1t[FP] such that T\cset = O. Consider
any 0' :5 O. There exists a T' :5 T such that T' \ cset = 0'. By the induction hypothesis, T' E 1t[F P)'
Hence 0' E 1t[FP\cset].

(c) Assume 0 E 1t[(FPlx)], that is, assume that there exists a 0o E 1t[FP] such that, for all ""{,
(00,0,""{) F x· Consider 0' :5 O. Using 9 = (""{ : t 0'), t fresh, we have (00,0,9) F x. Since
8' :5 0, we have (80,0,9) F t :5 h. Consequently, (00,0,9) F X II t :5 h. By the syntactic
restriction on x, we obtain that (00,0,9) F 3told :5 hold: X[t/h,told/hold]. Thus there exists a
8" such that (00,0,(9: told 0")) F told:5 hold II X[t/h,told/hold]. Consequently, we have that
8" :5 0o and hence (00,0,(9: told 0")) F X[t/h,told/hold]. Then, by the substitution lemma,
(0", 9(t), (9 : told 0")) F x. Since 9(t) = 0' and t and told do not occur in X, we obtain
(O",O',""{) F x· Since 0o E 1t[FP] and 0":5 0o, the induction hypothesis yields 0" E 1t[FP), which
proves 0' E 1t[(FPlx)].

o

B Proof of the composite fault hypothesis lemma

It is sufficient to prove that 1t[(FPI(x,lx,))] ~ 1t[«FPlxt}ln)). We will even prove equality of these
two two sets.

Assume 0 E 1t[(FPI(xdn))], that is, assume that there exists a 0o E 1t[FP] such that, for any""{,
(00,0,""{) F (xdx,)· By definition this equals (00,0,""{) F 3t: Xl[t/h]lIn[t/h old], i.e. there exists aO,
such that, for 9 = (""{: t Od, (00,0,9) F Xt[t/h]IIX,[t/h old]. Observe that 7[t](00, 0,9) = 0,. By
the substitution lemma, (00 ,0,9) F x,[t/h]IIX,[t/hold] iff (00 ,0,,9) F x, and (0,,0,9) F n. Hence,
o E 1t[(FPI(xdx2))] iff there exists a 0o E 1t[FP] such that, for any ""{, there exists a 0, such that
(00 ,0,,""{) F X, and (O"O,""{) F X2· Then, 0 E 1t[(FP I(xd n))] iff there exists a 0, E 1t[(FP I xtl) such
that (O,\O,""{) F X2· Equivalently, 0 E 1t[(FPI(xdn))] iff 0 E 1t[«FPlxdlx2)]. 0

C Proof of the persistency lemma

By induction on the length of h.

(Base Step) The case h = () is trivial.

(Induction Step) Assume that the lemma holds for t, that is,

Val(RDAck(tjaout)):::' Val(RDAck(tja'n))

and

Dat(RDMsg(tjmou,)) :::' Dat(RDMsg(lfm,n))

Four cases need examination:

23

(1),

(2).

I. h = tAr m,n, (v, b», where b f- bitt val(last(tfm,n))).
By (A2), we have that len(RDAck(hTaout)) $1 len(RDMsg(hTm.n)). Since t -< h, by (A2)
and (Prefixing), we obtain len(RDAck(tlaou,)) $1 len(RDMsg(tfm'n)). Then, because
h = tA(m'n, (v, b)), we conclude that len(RDAck(tfa ou,)) = len(RDMsg(tfm.n)) (3).
Since t -< h, we have, by (A4) and (Prefixing), Val(RDAck(tfa,n)) ~I Bit(RDMsg(tfmou,).
Then, by (1), we obtain that Val(RDAck(tfa ou') ~ Bit(RDMsg(tfmou'). Consequently,
we have lent Val(RDAck(tfa ou,))) $ len(Bit(RDMsg(tfmou,)), from which we conclude
that len(RDAck(tjaou,» $ len(RDMsg(tjmou,» (4).
By (2) we have that len(RDMsg(tfmout)) $1 len(RDMsg(tjm'n))' Hence, by (4), we
obtain len(RDAck(qa ou')) $ len(RDMsg(tTmou,)) $1 len(RDMsg(tTm'n». Finally, by
(3), we have len(RDMsg(tTmou')) = len(RDMsg(qm,n)), from which we conclude, by (2),
that Dat(RDMsg(tTmou,)) = Dat(RDMsg(tTm'n)). Then it is obviously the case that
Dat(RDMsg(hTmout)) -<I Dat(RDMsg(hlm.n)), from which the theorem follows.

2. h = tA(mou" (v, b», where b f- bit(val(last(tTmou')).
By (A4), we have that Val(RDAck(hla,n)) ~I Bit(RDMsg(hTmou')). Since t -< h, we
obtain, by (A4) and (Prefixing), that Val(RDAck(tTa,n)) ~I Bit(RDMsg(tTmou')). Hence,
we conclude that Val(RDAck(tTa,n)) = Bit(RDMsg(qmou')). Then, by (1), we obtain
that Val(RDAck(tTa ou') ~I Bit(RDMsg(tTmou,)), from which we can easily conclude that
len(RDAck(tTa ou')) $1 len(RDMsg(tTm.u,) (5).
Since t -< h, by (A2) and (Prefixing), len(RDAck(tTa ou') $1 len(RDMsg(tTm,n)) (6).
Since t -< h, we have, by (A5) and (Prefixing), len(RDMsg(tjmou')) $ len(RDMsg(tjmin)).
Then, by (5) and (6), len(RDMsg(tTm ou,)) $1 len(RDMsg(tTm,n)) (7).
Assume that len(RDMsg(tTmou,)) = len(RDMsg(tTm'n))' Since h = tA(mou" (v,b)), with
b f- bit(val(last(tTmou,))), we obtain len(RDMsg(hTmou,)) = len(RDMsg(hTm'n)) + 1,
which is in conflict with (A5). Hence, by (7), len(RDMsg(tTmou,)) <I len(RDMsg(tTm,n)),
which, using (2), yields that Dat(RDMsg(tTmou')) -<I Dat(RDMsg(tTm'n))' By (A6),
v = msg(val(last(h[len(h)]Tm,n))), or, equivalently, v = msg(val(last(tTm,n))). Then,
Dat(RDMsg(hTmou,)) = Dat(RDMsg(hTm,n)), from which we conclude that the theorem
holds.

3. h = tA(a,n,b), where b f- val(last(tTa,n)).
By (A4), we have that len(RDAck(hTa,n» $1 len(RDMsg(hTm ou'). Since t -< h, by (A4)
and (Prefixing), we obtain len(RDAck(tfa,n)) $1 len(RDMsg(tTmou,)). Then, we conclude
that len(RDAck(tTa,n)) <1 len(RDMsg(qm ou,)) (8).
By (2), we have that len(RDMsg(tTmou,)) $1 len(RDMsg(tTm'n)). Then, by (8), we con
clude that len(RDAck(tTa,n)) < len(RDMsg(qm'n)) (9).
Since t -< h, by (A7) and (Prefixing), len(RDAck(tTa ou,)) $ len(RDAck(tTa,n)), which
leads, by (9), to len(RDAck(qaou,)) $ len(RDAck(qa,n)) < len(RDMsg(tTm'n)) (10).
Since t -< h, we have, by (A2) and (Prefixing), len(RDAck(tTaou,)) $1 len(RDMsg(tTm,n)),
which, by (10), yields that len(RDAck(tTaou,)) = len(RDAck(qa'n)). Hence, by (1), we
obtain that Val(RDAck(tTa ou,)) = Val(RDAck(qa'n)). Then, it is obviously the case that
Val(RDAck(hTa ou') -<I Val(RDAck(hTa.n)), from which we conclude that the theorem
holds.

4. h = tA(aou"b), where b f- val(last(qa ou').
By (A2), we have Val(RDAck(hTa ou') ~1 Bit(RDMsg(hTm'n)). Since t -< h, by (A2)
and (Prefixing), we also have Val(RDAck(tTa ou,)) ~1 Bit(RDMsg(tTm'n)). Hence, we
conclude that Val(RDAck(tTa ou,)) -<I Bit(RDMsg(tTm,n)), from which we can conclude
that len(RDAck(tTaou,)) <I len(RDMsg(tTm'n)). (11).
By (2), we have that len(RDMsg(tTmou,)) $1 len(RDMsg(qm,n))' Then, by (11), we
conclude len(RDAck(qaou,)) $1 len(RDMsg(tTmou,)) (12).

24

o

Since t -< h, by (A4) and (Prefixing), len(RDAck(ITa'n)) $1 len(RDMsg(ITmou.) (13).
Since t -< h, we have, by (A7) and (Prefixing), len(RDAck(ITaout» $ len(RDAck(ITa'n».
Then, by (12) and (13), we conclude len(RDAck(ITaout» $1 len(RDAck(ITa'n)) (14).
Assume that len(RDAck(ITaout)) = len(RDAck(ITa'n»' Then, since h = tA(aout, b), where
b i- val(last(ITaout», we obtain len(RDAck(hia ou') = len(RDAck(hTa'n» + I, which con
flicts with (A7). Consequently, by (14), len(RDAck(ITaout)) <I len(RDAck(tTa'n», which,
combined with (I), yields Val(RDAck(ITaout» -<I Val(RDAck(ITa'n»' Finally, since, by
(AS), we have that b = val(last(h[len(h)lia,n», or, equivalently, b = val(last(ITa'n)), we
obtain Val(RDAck(hTa ou') = Val(RDAck(hTa'n», from which we conclude that the theo
rem holds.

D Proof of the soundness theorem

D.I Soundness of the consequence and conjunction rule

Trivial.

D.2 Soundness of the invariance rule

Follows from the fact that if 0 E 1i[FP] then chan(O) ~ chan(FP). Thus, cset n chan(FP) = 0 implies
chan(O) n cset = 0.

D.3 Soundness of the parallel composition rule

Suppose chan(<pJ} n chan(FP2) ~ chan(FPJ}, chan(<P2) n chan(FPJ} ~ chan(FP2) (I).
Assume F FP I sat <PI, F FP2 sat <P2 (2).
We have to prove F FPdlFP2 sat <PI II <P2. Consider any r· Let 0 E 1i[FPdIFP2]. By the defi
nition of the semantics, we have, for i = 1,2, OT chan(FP,) E 1i[FP,] and OT chan(FPdIFP2) = O.
Since 0Tchan(FP,) E 1i[FP,], we obtain, by (2), (Ofchan(FP,),r) F <p,. By projection lemma (a)
((OT chan(FP,))T chan(<Pi), r) F <p" thus (Oi(chan(FP,) n chan(<p,)), r) F <Pi.
By (1), we obtain that chan(FP2) n chan(<pd ~ chan(FPd n chan(<pd, from which we conclude that
(chan(FP 2) n chan(<pd) U (chan(FPJ) n chan(<pJ) ~ chan(FPJ) n chan(<pd. Consequently, we have
that (chan(FP2) n chan(<P2» U (chan(FPd n chan(<pd) = chan(FPd n chan(<pd, from which we deduce
chan(FP I) n chan(<pd = (chan(FPd U chan(FP2)) n chan(<pd = chan(FPdIFP2) n chan(<pd. By
similar reasoning, chan(FP2) n chan(<P2) = chan(FP I IIFP2) n chan(<p2). Consequently, for i = 1,2,
(0i(chan(FP I IIFP2) n chan(<p;),r) F <Pi. Hence, ((0i(chan(FPdIFP 2))Tchan(<p,),r) F <p" which
leads to (8ichan(<Pi),r) F <Pi, and consequently, by projection lemma (a), (O,r) F <p,. This proves
F FPdlFP2 sat <PI II <P2'

D.4 Soundness of the hiding rule

Assume F FP sat <P (I),
and chan(<p) n cset = 0 (2).
We show FP\cset sat <p. Consider any r. Let 0 E 1i[FP\cset]. Then there exists a 01 E 1i[FP] with
8 = 01 \cset. By (I), (Ol,r) F <p. Since, by (2), chan(<p) ~ CHAN - cset, projection lemma (a) leads to
(8d(CHAN - cset),r) F <p, and consequently, by definition, (81 \cset,r) F <p. Hence, (8,r) F <p.

25

" .'. ~.

0.5 Soundness of the fault hypothesis introduction rule

Assume F FP sat,p (1). Consider any -yo Let 0 E 1i[(FPlx»). Then there exists a 80 E 1i[FP] such
that, for all -y, (80,0, -y) F x· By (1), for any 8~, (8~, 80, -y) F ,p, thus also (80,00, -y) F,p. Let, for
fresh t, 9 = (-y : t 00)' Since t does not occur in ,p, (80,80,9) F,p. Observe that 7[t](80, 8, 9) = 80,
thus (00,7[t](80, 8,9),9) F ,p. By substitution lemma (a) we obtain (00,0,9) F ,p[t/h], or, by the
correspondence lemma, (0,9) F ,p[t/h] (2).
Since (00,0,9) F x, we have (7[tl(00,8,9),0,9) F x· Applying substitution lemma (b) leads to
(00,0,9) F X[t/hold]. Since hold does not occur in X[t/hold], the correspondence lemma leads to
(0,9) F X[t/hold] (3).
From (2) and (3) we obtain (0, (-y : t 0o)) F ,p[t/h] /\ X[t/hold], from which we may conclude that
(0, -y) F 3t : ,p[t/h] /\ X[t/hold]'

0.6 Soundness of the prefixing rule

Assume F FP sat,p (1). Consider any -Yo Let 8 E 1i[FP]. By (1), (O,-y) F,p. For all 0' ~ 0 we
have, by the prefix closedness lemma, that 0' E 1i[FP), and thus, by (1), (0', -y) F,p. Let t be a fresh
logical variable. Then, as t does not occur in ,p, for all 8' ~ 0, (0', (-y : t 0'» F,p. Equivalently,
(7[t](00,8',(-y: t O')),(-y: t 0'» F,p. By substitution lemma (a) (O',(-y: t 0')) F ,p[t/h]' for
"II 0' ~ 0, and thus, as h obviously does not occur in ,p[t/h], for all 0' ~ 0, (8, (-y : t 0'» F ,p[t/h],
and consequently, for all 0', (0, (-y : t 0')) F t ~ h ~ ,p[t/ h]. Hence, (0, -y) F 'It : t ~ h ~ ,p[t/h], i.e.
(0, -y) F 'It ~ h : ,p[t/h]. Thus, F FP sat 'It ~ h : ,p[t/h].

E Proof of the preciseness preservation lemma

By induction on the structure of FP. (Base) By assumption, the lemma holds for P. (Induction
Step) Assume that the lemma holds for FP:

(a) Assume I- FP I sat ,pI and I- FP2 sat ,p2, with ,pI and ,p2 precise for FP I and FP2, respec
tively. Since, by the preciseness of ,pI for FP I , we have chan(,ptJ ~ chan(FPtJ (1), we
conclude chan(,ptJ n chan(FP2) ~ chan(FP I) n chan(FP2) ~ chan(FPtJ. Similarly, using
chan(,p2) ~ chan(FP2) (2), we obtain chan(,p2) n chan(FPI) ~ chan(FP2). Thus, by apply
ing (Parallel Composition), we obtain I- FP, II FP2 sat ,p1/\,p2 (3). We show that <1>,/\ <1>2 is
precise for FPI II FP2.

(i) By (3) and soundness, we obtain F FP I II FP2 sat ,pI /\ ,p2'
(ii) Let chan(O) ~ chan(FPI II FP2) (4) and assume (O,-y) F ,pl/\ ,p2' Then, by (1) and

projection lemma (a), (ot chan(FPtJ, -y) F ,pl. Consequently, by the preciseness of ,pI
for FP I, we conclude OJ chan(FPtJ E 1i[FPI] (5). Similarly, OJ chan(FP2) E 1i[FP2]
(6). Finally, by (4), OJ chan(FP I II FP2) = 0 (7). Then, by (5), (6), and (7), we
conclude that 0 E 1i[FPI II FP2]. .

(iii) By (1) and (2), we conclude chan(,ptJ U chan(,p2) ~ chan(FPtJ U chan(FP2). Hence,
by definition, we have chan(,pl 1\,p2) ~ chan(FPI II FP2).

(b) Assume I- FP sat,p (1) with ,p precise for FP. Define

4i '= 3t: ,p[t/h] /\ hi(chan(FP) - cset) = ti(chan(FP) - cset)

We show that I- FP\cset sat 4i, and, furthermore, that 4i is precise for FP\cset.

Lemma 10 F,p ~ 4i
Proof: Assume (0, -y) F,p. Let, for fresh t, 9 = (-y : t 0). Then, (0,9) F ,p,
and, trivially, (0,9) F ,p[t/h] /\ hi(chan(FP) - cset) = ti(chan(FP) - cset). Hence,
(O,-y) F 3t: ,p[t/h] /\ hi(chan(FP) - cset) = ti(chan(FP) - cset). 0

26

By Lemma 10 and the relative completeness assumption, we obtain I- t/> ---+ ~. By (1) and
the consequence rule, I- FP sat~. Note that, by definition, chan(3t : t/>[t/h]) = 0, thus
chan(~) = chan(FP) - cset, and hence chan(~) n cset = 0. Then the hiding rule leads to
I- FP\cset sat ~ (2). It remains to be shown that ~ is precise for FP\cset.

(i) By (2) and soundness, we have F FP\ cset sat ~.
(ii) Let chan(O) ~ chan(FP\cset) (3) and, for some ,)" (0,,),) F~. There exists a 9 with

(0, (')' : t 0)) F t/>[t/h] " hf(chan(FP) - cset) = tf(chan(FP) - cset) (4)

Then, by substitution lemma (a), (0, (')' : t 0» F t/>, and thus (0, ')') F t/>. Hence,
by projection lemma (a), we have (Ojchan(t/»,')') F t/>. Since, by the preciseness
of t/> for FP, chan(t/» ~ chan(FP), we obtain (Ojchan(FP),,),) F t/>. Obviously,
chan(Oj chan(FP» ~ ckan(FP), so, by the preciseness of t/> for FP, we have that
Ojchan(FP) E ?t[FPl Since, by (3), chan(O) ~ chan(FP) - cset and, by (4),
Of(chan(FP) - cset) = Of(chan(FP) - cset), we obtain 0 = OJ chan(FP\cset), and
thus 0 = (OJ chan(FP»\ cset. Hence, 0 E ?t[FP\ cset).

(iii) Since chan(~) = chan(FP) - cset, we have, by definition, chan(~) = chan(FP\cset).

(c) Assume I- FP sat", (1) with t/> precise for FP. Define ~;: (t/>Ix), that is

o

~ ;: 3t: t/>[t/h] " X[t/hold]

Then, by (Fault Hypothesis Introduction), I- (FPlx) sat ~ (2). We show that ~ is precise
for (FP Ix).

(i) By (2) and soundness, we have F (FPlx) sat~.
(ii) Let chan(O) ~ chan(FPlx) (3) and assume, for some ,)" (0,,),) F ~. Consequently,

there exists a 0 such that (0, (')' : t 0)) F t/>[t/ h] "X[t/ hold] (4). Then, by substitution
lemma (a), (0, (')' : t 0)) F t/>, and thus, since t does not occur free in t/>, (0, ')') Ft/>.
Since we have, by the preciseness of t/> for FP, chan(t/» ~ chan(FP), we obtain, by pro
jection lemma (a), (OJ chan(FP), ')') F t/>. Trivially, chan(Oj chan(FP)) ~ chan(FP),
and hence, because of the preciseness of t/> for FP, OJ chan(FP) E ?t[FP] (5). By the
correspondence lemma and substitution lemma (b), (4) leads to (0,0,(,),: t 0)) F x,
thus, since t does not occur free in x, (0,8,,),) F x. Since chan(x) ~ chan(FP).
projection lemma (b) leads to (Ojchan(FP), 0,,) F X (6).
Finally, by definition, (3) leads to chan(O) ~ chan(FP) (7).
Consequently, by (5), (6), and (7), 0 E ?t[(FPlx)].

(iii) By definition, we have that chan(~) = chan(t/>[t/h]) U chan(x[t/hold]) (1). Clearly,
chan(x[t/hold]) ~ chan(x) (2). It is also obvious that chan(t/>[t/h]) ~ chan(t/», and,
since, by the preciseness of t/> for FP, we have that chan(t/» ~ chan(FP), we conclude
chan(t/>[t/h]) ~ chan(FP) (3). By (1), (2), and (3), chan(~) ~ chan(FP) U chan(x),
that is, chan(~) ~ chan(FPlx).

27

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpe1t
H.C.M. de Swan

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91113 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14. .

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Para11el Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

91/18 Rik van Ge1drop

91/19 Erik Poll

91/20 A.E. Eiben
R. V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
GJ. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarChy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correcmess of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J .A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kam~reddine

92/09 R.c. Backhouse

92/10 P.M.P. Rambags

92/11 R.c. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamareddine

A note on compositional refinement. p. 27.

A compositional semantics for fault tolerant real-time
systems. p. 18.

Real space process algebra. p. 42.

Program derivation in acyclic graphs and related
problems. p. 90.

Conservative fixpoint functions on a graph. p. 25.

Discrete time process algebra. pAS.

The fine-structure of lambda calculus. p. 110.

On stepwise explicit substitution. p. 30.

Calculating the Warshall/Floyd path algorithm. p. 14.

Composition and decomposition in a CPN model. p. 55.

Demonic operators and monotype factors. p. 29.

Set theory and nominalisation. Pan I. p.26.

Set theory and nominalisation. Part II. p.22.

The total order assumption. p. 10.

A system at the cross-roads of functional and logic
programming. p.36.

Integrity checking in deductive databases; an exposition.
p.32.

Interval timed coloured Petri nets and their analysis. p.
20.

A unified approach to Type Theory through a refined
lambda-calculus. p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities. p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application. p. 16.

92/22 R. Nederpelt A useful lambda notation, p. 17.
F.Kamareddine

92(23 F.Kamareddine Nominalization, Predication and Type Containment, p. 40.
E.K1ein

92(24 M.Codish Bottum-up Abstract Interpretation of Logic Programs,
D.Dams p.33.
Eyal Yardeni

92(25 E.Poll A Programming Logic for Fro, p. IS.

92(26 T.H.W.Beelen A modelling method using MOVlE and SimCon/ExSpect,
WJJ.Stut p. IS.
P.A.C. Verlwulen

92(27 B. Watson A taxonomy of keyword pattern matching algorithms,
G.Zwaan p.50.

93/01 R. van Geldrop Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

93/02 T. Vemoeff A continuous version of the Prisoner's Dilemma, p. 17

93/03 T. Vemoeff Quickson for linked lists, p. 8.

93/04 E.H.L. Aans Deterministic and randomized local search, p. 78.
J.H.M. Korst
PJ. Zwietering

93/05 J.C.M. Baeten A congruence theorem for structured operational
C. Vemoef semantics with predicates, p. 18.

93/06 J.P. Veltkamp On the unavoidability of metastable behaviour, p. 29

93/07 P.D. Moerland Exercises in Multiprogramming, p. 97

93/08 J. Vemoosel A Formal Deterministic Scheduling Model for Hard Real-
Time Executions in DEDOS, p. 32.

93/09 K.M. van Hee Systems Engineering: a Formal Approach
Pan I: System Concepts, p. 72.

93/10 K.M. van Hee Systems Engineering: a Formal Approach
Pan II: Frameworks, p. 44.

93/11 K.M. van Hee Systems Engineering: a Formal Approach
Pan III: Modeling Methods, p. 101.

93/12 K.M. van Hee Systems Engineering: a Formal Approach
Pan IV: Analysis Methods, p. 63.

93/13 K.M. van Hee Systems Engineering: a Formal Approach
Pan V: Specification Language, p. 89.

:: ..

92/22 R. Nederpelt A useful lambda notation, p. 17.
F.Kamareddine

92{}.3 F.Kamareddine Nominalization, Predication and Type Containment, p. 40.
E.Klein

92{}.4 M.Codish Bonum -up Abstract Interpretation of Logic Programs,
D.Dams p.33.
Eyal Yardeni

92{}.5 E.Poll A Programming Logic for Fro, p. 15 ..

92{}.6 T.H.W.Beelen A modelling method using MOVIE and SimConJExSpect,
W.J.J.Stut p. 15.
P.A.C.Verkoulen

92{}.7 B. Watson A taxonomy of keyword pattern matching algorithms,
G. Zwaan p.50.

93/01 R. van Geldrop Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

93/02 T. Verhoeff A continuous version of the Prisoner's Dilemma, p. 17

93/03 T. Verhoeff Quicksort for linked lists, p. 8.

93/04 E.H.L. Aarts Deterministic and randomized local search, p. 78.
J.H.M. Korst
P.I. Zwietering

93/05 I.C.M. Baeten A congruence theorem for structured operational
C. Verhoef semantics with predicates, p. 18.

93/06 J.P. Veltkamp On the unavoidability of metastable behaviour, p. 29

93/07 P.O. Moerland Exercises in Multiprogramming, p. 97

93/08 I, Vemoosel A Formal Deterministic Scheduling Model for Hard Real-
Time Executions in DEDaS, p. 32.

93/09 K.M. van Hee Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

93/10 K.M. van Hee Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

93/11 K.M. van Hee Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

93/12 K.M. van Hee Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

93/13 K.M. van Hee Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

93/14 1.C.M. Baeten On Sequential Composition, Action Prefixes and
1.A. Bergstra Process Prefix, p. 21.

93/15 J.C.M. Baeten
J .A. Bergstra
R.N. Bol

A Real-Time Process Logic, p. 31.

•

	Abstract
	1. Introduction
	2. Programming Language
	2.1 Syntactic Restrictions
	3. Denotational Semantics
	4. Assertion Language and Correctness Formulae
	5. Incorporating Fault Hypotheses
	6. A Compositional Proof Theory
	7. Example I: Triple Modular Redundancy
	8. Example II: The Alternating Bit Protocol
	9. Soundness and Relative Network Completeness
	10. Conclusions and Future Research
	References
	A: Proof of the prefix closedness lemma
	B: Proof of the composite fault hypothesis lemma
	C: Proof of the persistency lemma
	D: Proof of the soundness theorem
	E: Proof of the preciseness preservation lemma

