

Design and implementation of parallel video encoding
strategies using divisible load analysis
Citation for published version (APA):
Li, P., Veeravalli, B., & Kassim, A. A. (2005). Design and implementation of parallel video encoding strategies
using divisible load analysis. IEEE Transactions on Circuits and Systems for Video Technology, 15(9), 1098-
1112. https://doi.org/10.1109/TCSVT.2005.852627

DOI:
10.1109/TCSVT.2005.852627

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Jul. 2024

https://doi.org/10.1109/TCSVT.2005.852627
https://doi.org/10.1109/TCSVT.2005.852627
https://research.tue.nl/en/publications/b75011a1-767d-49b2-a4b0-e60ba3cc6f6a

1098 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

Design and Implementation of Parallel Video
Encoding Strategies Using Divisible Load Analysis

Ping Li, Bharadwaj Veeravalli, Member, IEEE, and Ashraf A. Kassim, Member, IEEE

Abstract—The processing time needed for motion estimation
usually accounts for a significant part of the overall processing
time of the video encoder. To improve the video encoding speed,
reducing the execution time for motion estimation process is
essential. Parallel implementation of video encoding systems using
either the software or the hardware approach has attracted much
attention in the area of real time video coding. In this paper, we
attempt to implement a video encoder on a bus network. Usually,
for such a parallel system, the key concern is associated with
partitioning and balancing of the computational load among
the processors such that the overall processing time of the video
encoder is minimized. With the use of the divisible load theory
(DLT) paradigm, a strip-wise load partitioning/balancing scheme,
a load distribution strategy, two implementation strategies are
developed to exploit the data parallelism inherent in the video en-
coding process. The striking feature of our design is that,both the
granularity of the load partitions and all the associated overheads
caused during parallel video encoding process can be explicitly
considered. This significantly contributes to the minimization
of the overall processing time of the video encoder. Extensive
experimental studies are carried out to test the effectiveness of
the proposed strategies. The performance of the parallel video
encoder is quantified using the metrics speedup and performance
gain, respectively. The experimental results show that our strate-
gies are effective for exploiting the available parallelism inherent
in the video encoding process and provide a theoretical insight on
how to analytically quantify and minimize the overall processing
time of a parallel system. The proposed strategies can be easily
extended and applied to improve other existing parallel systems.

Index Terms—Block matching motion estimation, bus net-
work, divisible load theory (DLT), load distribution, load parti-
tioning/balancing, parallel video coding.

I. INTRODUCTION

D IGITAL video compression techniques have played a cru-
cial role in the domain of telecommunications and multi-

media systems. The way in which a video is encoded usually
decides the cost of its storage and transmission. Besides, with
the increasing usage of multimedia applications such as mobile
communications, virtual reality, video phone/conferencing, etc.,
real time video coding has become essential. However, currently
due to the complex nature of video encoding, achieving real time

Manuscript received August 14, 2003; revised Dedember 18, 2003 and July
19, 2004. This paper was recommended by Associate Editor K.-H. Tzou.

P. Li is with the Design Technology Institute, Faculty of Electrical En-
gineering, Eindhoven University of Technology, 5600 MB Eindhoven, The
Netherlands (e-mail: p.li@tue.nl).

B. Veeravalli is with the Open Source Software Laboratory, National Univer-
sity of Singapore, Department of Electrical and Computer Engineering, 117576
Singapore (e-mail: elebv@nus.edu.sg).

A. A. Kassim is with the Vision and Image Processing Laboratory, National
University of Singapore, 117567 Singapore (e-mail: eleashra @nus.edu.sg).

Digital Object Identifier 10.1109/TCSVT.2005.852627

[24–30 frames per second (f/s)] video coding in a single-pro-
cessor environment is often a difficult task. Parallel implemen-
tation of the video coding system becomes a natural option.

Parallel video coding can be achieved by either the special-
purpose hardware or the software implementation using gen-
eral-purpose computing platforms. Based on the overall consid-
eration on cost, flexibility, portability, and scalability, software
approach is more attractive and thus is used in this paper to de-
sign a parallel video encoder implemented on a bus network.
Below, we give an introduction to some related work in this di-
rection.

In [3], block matching motion estimation of a MPEG-2
[11] video encoder is parallelized using the single-program
multiple-data (SPMD) programming paradigm. The video
frame is equally partitioned into a number of blocks equal to
the number of processors. This scheme is commonly referred
to as equal-partition scheme. To eliminate the interprocessor
communication that otherwise is necessary to exchange the
decoded blocks between the slave processors, the video frame
is partitioned and distributed in an overlapped fashion such that
each processor is assigned all the required data in the initial
communication phase. Thus, all the processors may perform
their computation independently and concurrently. However,
there is no indication about how the overall processing time is
calculated and minimized in the paper. The results reported are
completely based on experimental studies. A software-based
MPEG-4 [12] video encoder using parallel processing is re-
ported in [4]. A scheduling algorithm for exploiting the control
parallelism between the coding processes of different video
object planes (VOPs) and a shape-adaptive load partitioning
method for exploiting the data parallelism inherent in the
coding process of each VOP are developed. The proposed
shape-adaptive load partitioning method is, in principle, similar
to the equal-partition scheme. After taking into account the
computation complexity of three kinds of macroblocks (MBs)
(contour MB, standard MB, and transparent MB), this scheme
guarantees that the actual computational load assigned to each
processor is equal. Again, a quantitative analysis of the pro-
cessing time is not reported. In [5], four parallel video encoding
algorithms for H.261 [13] are proposed and evaluated. The first
two algorithms referred to as Spatial Parallel Algorithm-S1 and
Spatial Parallel Algorithm-S2 are purely spatial parallelism
based. However, the latter two are referred to as Spatial-Tem-
poral Parallel Algorithm-ST1, and Spatial-Temporal Parallel
Algorithm-ST2 attempt to exploit both the spatial and the
temporal parallelism. The equal-partition scheme is used to
partition the video frames and interprocessor communication
between the slave processors is used in S2, ST3, and ST4 to

1051-8215/$20.00 © 2005 IEEE

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

LI et al.: DESIGN AND IMPLEMENTATION OF PARALLEL VIDEO ENCODING STRATEGIES USING DIVISIBLE LOAD ANALYSIS 1099

minimize the communication latency. Again, the drawback is
that the equal partitioning of the data among processors will
not minimize the overall processing time. Furthermore, the
inclusion of the interprocessor communication may complicate
the software and hardware structures.

As observed from above, the equal partitioning of the data
among the processors is predominantly used in most of the
implementations thus far to realize a parallel video encoder.
This is partly due to the fact that, by and large, the effects
of communication delays and overhead incurred in data dis-
tribution phase, interprocessor communication and solution
collection phase, are difficult to track and therefore they are
usually neglected when designing a load partitioning/balancing
scheme. However, for parallel implementation of a video
encoder on a bus network, time delays for data exchange and
solution collection can be substantial when large number of
processors are to be used. When processing time minimization
is to be carried out, we have to account for all possible delays
that affect the time performance starting from the load distri-
bution phase to the solution transfer back phase. Another point
to note is that, the performance improvement in terms of the
overall processing time achieved by the equal-partition scheme
will increase with the number of processors when one neglects
the communication and computation overheads. However, in
real-life situations, this gain does not stretch too far as the effect
of overheads tend to dominate as shown in [14] and [22] with
the increase of the processors, amidst communication latencies
and the associated overheads.

Since the predominantly used equal-partition scheme has cer-
tain disadvantages as described above, in this paper, we attempt
to design a load partitioning/balancing scheme and a load distri-
bution strategy to effectively partition the video frames among
the processors using the divisble load theory (DLT) paradigm.
This is very important, especially when the network speed is
slow, distributing and collecting the data to and from the pro-
cessors may consume quite a large amount of time. If the data
assigned to the processors is not carefully balanced, the perfor-
mance improvement by parallel processing may not compen-
sate the performance loss caused by the communication laten-
cies and associated overheads. In this paper, we also propose
two implementation strategies of the video encoder to fully ex-
ploit the data parallelism inherent in the video encoding process.
The DLT paradigm provides a generic, direct and intuitive ap-
proach for load partitioning and balancing of computation-in-
tensive workloads on network-based computing systems and
therefore is an ideal tool that we can use to design the parallel
video encoder.

In the recent literatures, several practical applications were
shown to gain a significant performance improvement using
DLT paradigm. These include, image processing applications
such as large-size image processing [20], database operations
[19], matrix-vector product computations [18]. In [18] rigorous
experimental implementation of the matrix-vector products on
PC clusters as well as on a network of workstations (NOWs)
were carried out and in [19] several other applications such as
pattern search, file compression, joining operation in relational
databases, graph coloring and genetic search were attempted
using the DLT paradigm. In [17], a record search algorithm is

Fig. 1. Bus network topology.

designed for database applications. It must be noted that all the
above attempted applications are of computationally intensive
nature with very large size loads to process. In our problem con-
text, the nature of loads to be handled are very large and de-
mand a very large processing time. Thus, DLT becomes a nat-
ural choice in realizing a parallel video encoder.

A. Our Contributions

For the first time in domain of parallel video coding, we apply
the DLT paradigm to the video encoding process. A strip-wise
load partitioning/balancing scheme and a load distribution
strategy are developed to effectively partition the video frames
among the processors. Two implementation strategies that are
able to effectively exploit the data parallelism inherent in the
video encoding process are proposed. The striking feature of
our design is that, using DLT paradigm, both the granularity
of the load partitions and all the associated overheads caused
during parallel video encoding process can be explicitly consid-
ered. This greatly contributes to the minimization of the overall
processing time of the video encoder. The proposed strategies
give us a theoretical insight on how to analytically quantify
and minimize the processing time and all associated overheads
caused in the parallel processing process. The parallel video
encoder designed in this paper can and is shown to achieve a
good performance.

The organization of this paper is as follows. In Section II, we
present the system model and the video encoder implemented
in this paper. In Section III, we describe the mathematical
model that we use to construct the parallel video encoder. In
Section IV, we describe two implementation strategies of the
video encoder that are developed to effectively exploit the
data parallelism inherent in the video encoding process. In
Section V, we present the experimental results obtained in our
implementations. The performance of the strategies is quanti-
fied using metrics speedup and performance gain, respectively.
In Section VI, we conclude the paper with some possible future
extensions to the problem addressed in this paper.

II. SYSTEM MODEL AND THE VIDEO ENCODER

The system model is shown in Fig. 1. The network comprises
of a bus control unit (BCU) and a set of processors
connected by a bus. The video sequence to be compressed is
assumed to arrive at BCU. The network may have either a dedi-
cated BCU that is only responsible for load distribution or a gen-
eral-purpose scheduler that, besides partitioning and assigning

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

1100 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

Fig. 2. System block diagram of the video encoder.

the data to the processors, will be also responsible for computing
of the data. In this paper, we consider the case when the network
has a general-purpose BCU that not only partitions the video
frames and distributes them to the individual processors but also
carries out the computations including discrete wavelet trans-
form (DWT), set partitioning in hierarchical tree (SPIHT), in-
verse set partitioning in hierarchical tree (ISPIHT), inverse dis-
crete wavelet transform (IDWT), motion compensation (MC)
and variable length coding (VLC) of the motion vectors. Thus,
in our system, all algorithms except the motion estimation are
conducted by BCU, whereas the processors to are respon-
sible only for the motion estimation.

A. Video Encoder

Fig. 2 shows the system block diagram of the video encoder
that is implemented in this paper, which is similar to the one pro-
posed in [7]. The major difference is that, in our encoder, SPIHT
is used for coding of the wavelet coefficients while in the codec
reported in [7], the zero tree wavelet (ZTW) coding algorithm
[8] is used. Below, we shall describe briefly the feature of our
video encoder.

Block matching motion estimation (BMME) technique is
used to detect the local motion and the block motion compen-
sation technique is employed for block prediction. The video
frame is partitioned into a number of 16 16 blocks and each
block if estimated from the reference frame using one motion
vector. After motion compensation, all blocks in current frame
are predicted by the corresponding blocks from the reference
frame. In order to remove the temporal redundancy, the blocks
in current frame is subtracted by the predicted blocks in ref-
erence frame to obtain the residual blocks. The residue blocks
are then pieced together to form a complete residual frame,
upon which the two-dimensional DWT are applied to remove
the spatial redundancy. The wavelet coefficients are efficiently
encoded using SPIHT algorithm.

Fig. 3. BMME.

Although Fig. 2 shows the entire video encoder, our focus
is on the BMME part. We shall now describe in brief on how
BMME is conducted. In block matching process, two frames are
required and they are the current frame and the previous frame,
respectively. The current frame is divided into blocks of size

. For each block (current block) in the current frame, the
previous frame is searched within a neighborhood (search area)
in order to determine the closest matching block with respect to
a specified error criterion. This process is illustrated by Fig. 3.
More details on specific algorithms can be found in [6].

From the above procedure, we observe that there is a con-
siderable scope for exploiting data parallelism inherent in the
BMME process. Given the search area and the current block, the
BMME of each block is independent with each other and there-
fore can be conducted concurrently. The only restrictive aspect
is that, besides the current block and the reference block, the
individual processors also demand the surrounding blocks from
other processors to form the search area. In our implementa-
tions, we assign such additional surrounding blocks in the initial

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

LI et al.: DESIGN AND IMPLEMENTATION OF PARALLEL VIDEO ENCODING STRATEGIES USING DIVISIBLE LOAD ANALYSIS 1101

communication phase. Thus, no interprocessor communication
is required. This tremendously simplifies our design complexity.

III. MATHEMATICAL MODEL

In this section, the load partitioning/balancing scheme and
load distribution strategy that are required for parallelization
of the video encoder will be presented. The DLT paradigm on
which our design is based will be briefly explained.

A. Load Partitioning/Balancing

In general, what affects processing time most is the size of the
minimum data that can be processed by the processor, which
is often referred to as computational granularity [2]. Also, in
reality, there exists a minimum amount of data, referred to as
granularity, that can be assigned to the processor for computa-
tion. Usually, the smaller the size of the granularity, the more
processors (also referred to as more degree of parallelism) may
be used which may improve the performance. However, the
communication latency and the associated overheads incurred
during the course of communication and computation increase
with the number of the processors. If the network speed is not
high enough compared to the processor speed, the latencies and
overheads may dominate and results in a counterproductive ef-
fect on the overall processing time. Thus, the size of the gran-
ularity should be a serious consideration when we attempt to
partition the data for any actual parallel system.

To strike a balance between the degree of parallelism and
the communication overhead, a strip-wise load partitioning/bal-
ancing scheme is developed to partition the video frames among
the processors. In this scheme, each frame is partitioned into
rows of 16 16 blocks and one row of blocks in the frame is
considered as the minimum data (granularity and referred to as
one data unit in our schemes) that can be assigned to an indi-
vidual processor. Fig. 4 illustrates the load partitioning process
using the proposed scheme, where is the number of proces-
sors used in the system.

There are several other load partitioning schemes existing in
the literatures such as row-wise, column-wise, block-wise par-
titioning, etc. [23]. This paper does not examine the problem
of optimal partitioning scheme. Since the main objective of the
paper is focused on designing a theoretical or analytical method
to quantify and minimize the overall processing time of parallel
systems, determination of the optimal size of the basic unit is
not our major concern. We believe the stripe-wise load parti-
tioning scheme proposed in this paper is able to achieve a good
balance between the overheads and the degree of parallelism for
our parallel video encoding system, which is demonstrated by
our results in Section V-C.

B. Load Distribution

We note that every processor needs to be assigned a por-
tion of current frame and the corresponding portion of previous
frame for block matching process. Since the strip-wise load par-
titioning scheme is used to partition the video frames, what we
need to do is to determine size of the strips, i.e., the number of
data units, to be assigned to the processors. To achieve this, the
load distribution strategy proposed in [2] is used. It may be noted

Fig. 4. Load partitioning process using the strip-wise scheme.

that the load distribution strategy proposed in [2] does not take
into account the solution-transfer-back phase, during which the
computed solutions obtained by the individual processors are
transferred back to BCU. For our problem context, the solu-
tion-transfer-back phase is crucial because the resulting motion
vectors in the processors must be transferred back to BCU for
subsequent processing. Thus, the solution-transfer-back phase
must be carefully planned so as not to clash with bus busy time.

Below, the load distribution strategy proposed in [2] is intro-
duced and extended so that solution-transfer-back phase can be
considered during the load distribution process. Some impor-
tant notations that will be used throughout this paper are the
following:

amount of the data (number of rows of blocks) assigned
to processor ;
time for processor to process one data unit;
time for BCU to transmit one data unit over the bus
network;
additive computation overhead that includes all extra
delays (the extra time for system switching, hardware
initialization, software startup, etc.) associated with the
computation process;
additive communication overhead that includes all
extra delays (the extra time for system switching,
hardware initialization, software startup, etc.) associ-
ated with the communication process;
number of processors involved in the parallel pro-
cessing;
total number of data units to be scheduled;
ratio of the data to be transferred back to BCU from
processor over the data assigned to it. In this appli-
cation, we note that .

In the above, one data unit is defined as one row of blocks in
the frame, i.e., the minimum data that can be assigned to the
processor (granularity).

The load distribution process is described by means of a di-
rected flow graph (DFG) [2] as shown in Fig. 5. In brief, DFG
represents load distribution process and captures precedence re-
lationships between communication and computation events.
An in-depth description of DFG representation can be found
in [2]. Note that besides communication node and computation
node as explained in [2], a third type of node referred to as solu-
tion-transfer-back node is introduced in our DFG. The weight
of the communication node is given by the communication
time to transfer a load to and weight of the computation

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

1102 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

Fig. 5. Directed flow graph for load distribution in bus network with m
processors.

node is given by the computation time to process the load
by . Similarly, the weight of a solution-transfer-back node
is the processing time for to transfer the results to BCU. We
shall now introduce some important definitions that will be used
throughout this paper.

• Load distribution, denoted by , is defined as an -tuple
such that

(1)

This equation is referred to as normalization equation.
• Computation finish time path (CFTP) of processor , de-

noted as , is defined as the sum of the weights of
the nodes starting from the communication node 1 till com-
putation node along the directed arrows, which is com-
puted as follows:

(2)

• Transfer-back Finish time path (TFTP) of processor ,
denoted as , is defined as the sum of the weights
of the nodes starting from the communication node 1 till
solution-transfer-back node along the directed arrows,
which is computed as follows:

(3)

• Overall processing time of the video encoder, denoted as
, is defined as the processing time for the video en-

coder to process one video frame.
It has been rigorously proved [9] that for optimal processing of a
divisible load it is necessary and sufficient that all the processors
that are participating in the computation must stop computing at
the same time instant. However, this is not true when solution-
transfer-back phase is to be considered explicitly. In this case,
to achieve the optimal processing time, the processors should
stop computing one after another in such a manner that they
could start their solution-transfer-back phase one after another.
We will briefly explain this in later discussion. By equating the

CFTP of processor to the TFTP of processor , we obtain
the following recursive equations:

(4)
Note the communication and computation overheads are can-
celled out when we equate CFTP to TFTP and thus do not ap-
pear in (4) explicitly. From (4) together with the normalization
equation (1), we have equations with independent vari-
ables. The load partitions that minimize the processing time can
be obtained by solving these recursive equations. The solutions
of the recursive equations are shown below.

Rewriting (4), we have

where

Thus

(5)

where

Substituting (5) into the normalization equation, we obtain

(6)

Thus, as shown above, the individual load partition is ob-
tained by using (5) and (6). From Fig. 5, it is clear that the overall
processing time of the parallel processing process is equivalent
to the TFTP of processor . With the load partitions derived
above, the TFTP of processor is calculated as follows:

where, are given by (5) and (6).
We now explain why we equate the CFTP of processor

to the TFTP of processor to derive (4) for optimal
processing time. Suppose we change the load partitions

derived using (5) and (6) to
, where is a small

positive value, it can be seen that the overall processing
time will increase by . Similarly,
suppose the load partitions derived above are changed to

, then we observe that
the overall processing time will increase by .
Hence, any incremental change to the load parititions derived
from the above equations lead to an increase in processing time.
Thus, the load partitions computed by equating the CFTP of
processor to the TFTP of processor are optimal for our
problem where the single-installment load distribution strategy
is used.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

LI et al.: DESIGN AND IMPLEMENTATION OF PARALLEL VIDEO ENCODING STRATEGIES USING DIVISIBLE LOAD ANALYSIS 1103

Fig. 6. Timing diagram of the video encoder using Strategy I.

Obviously, the load partitions obtained by solving the recur-
sive equations may not be integers. For our problem of paral-
lelization of BMME process, the video frames must be parti-
tioned and assigned to the processors in terms of integer number
of data units, i.e., one row of the blocks. To restrict the non-
integer load partitions derived above to integer values, an in-
teger approximation algorithm proposed for the single-instal-
ment strategy in [2] is used.

IV. IMPLEMENTATION STRATEGIES

The motion vectors obtained in the video encoder are of
half-pel precision. To obtain the half-pel motion vectors, the
entire BMME process is divided into two steps; the full-pel
motion estimation (FPME) to get full-pel motion vectors and
the half-pel motion estimation (HPME) to refine the full-pel
motion vector to half-pel precision. Generally, the HPME is
performed on the previous reconstructed frame. However, the
FPME can be done either on the previous reconstructed frame
or on the previous original frame [7]. This leads to our two
implementation strategies of the video encoder. They are

Strategy I: both FPME and HPME are performed on
previous reconstructed frame;
Strategy II: FPME is performed on previous original
frame and HPME is performed on the previous recon-
structed frame.

Below, we will give a more detailed discussion on these two
implementation strategies.

A. Analysis of Strategy I

In this strategy, all algorithms except the BMME are carried
out by BCU. Fig. 6 shows the timing diagram of the video en-
coder when three processors are used. We see the overall pro-
cessing time of the encoder is the sum of and , where is

Fig. 7. Load partitioning process for Strategy I.

the execution time for the preprocessing phase1 and the pro-
cessing time for the parallel motion estimation process. can be
computed by multiplying the processing speed of BCU with the
number of data units processed by it. The processing speed of
BCU can be measured and is observed to be a more-or-less con-
stant value. The number of data units processed by BCU equals
to the total number of the rows of the blocks in a video frame,
which is a constant value. Thus, is more-or-less constant. It
is the that varies with the amount of the data assigned to the
individual processors. Thus, to minimize the overall processing
time , focus is on minimizing by adjusting the amount
of the data assigned to the processors.

The load partitioning process using the strip-wise load par-
titioning/balancing scheme is shown in Fig. 7, in which is
the number of processors (excluding BCU) used in the parallel
system. The directed flow graph of the load distribution process
is illustrated by Fig. 8. The weight of communication node is
given by , where is the number of data
units assigned to processor ; is the processing time needed

1In Strategy I, preprocessing phase is defined as the processing before the
load distribution process by BCU.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

1104 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

Fig. 8. Directed flow graph of the parallel BMME process for Strategy I.

for transferring one data unit over the network; is the com-
munication overhead. As explained in Section II, we assign the
additional data that is required by processor to conduct the
BMME process at the initial communication phase. The second
“2” in the weight means that, besides the number of rows of
blocks in both the current and reference frames, two additional
rows of blocks above and below the strip should be assigned to
processor as well. The weights of the communication nodes
1 and are slightly different from others. As shown by Fig. 7,
since there is no block above the first strip assigned to proces-
sors and no block below the last strip assigned to processor

, the search areas required for the BMME process of the first
and last rows of blocks in current frame are obtained simply by
extending the reference frame. Thus, only one additional row
of blocks needs to be transmitted to processors 1 and at the
initial communication phase, as is demonstrated by the “1” in-
stead of “2” in the weights of the communication nodes 1 and .
The weight of computation node is given by and the
weight of solution-transfer-back node is given by ,
both of which have been explained in Section III.

From Fig. 8, by equating the CFTP of processor to the
TFTP of processor , we obtain

(7)

(8)

Again, together with the normalization equation, we have
equations with independent variables. The load partitions can
be obtained by solving these recursive equations, as in Sec-
tion III.

B. Analysis of Strategy II

From implementation perspective, Strategy I is simple and
straightforward to implement. This is in fact an advantage of
Strategy I. However, because of the strong data dependency be-
tween the preprocessing phase and the motion estimation phase,
processors are not allowed to start the motion estimation process
until BCU finishes its preprocessing and distributes the previous
reconstructed frame to them. Similarly, BCU must wait for the

processors to transfer back the motion vectors for subsequent
processing. Obviously, such data dependency result in idle time
for both BCU and processors, wasting the available CPU time.
Strategy II is proposed to circumvent this problem.

In this strategy, the entire BMME is split into two steps, i.e.,
the FPME which is done on the previous original frame and
the HPME which is conducted on the previous reconstructed
frame. Fig. 9 shows the timing diagram of the video encoder
using Strategy II when a fast BMME algorithm is used, where
three processors are used. With this strategy, the data depen-
dency between the part of preprocessing phase to obtain the
previous reconstructed frame and the FPME that is done on the
previous original frame is completely eliminated. After the pre-
vious original frame is partitioned and distributed to the proces-
sors, the preprocessing by BCU to obtain the previous recon-
structed frame and the FPME by processors to obtain the full-pel
motion vectors may be carried out concurrently. As such, not
only the data parallelism inherent in the BMME process but
also the parallelism between the preprocessing phase and FPME
phase are exploited. It can be predicted that Strategy II will
gain some advantages over Strategy I. It should be however
carefully noted that the dependency between the preprocessing
phase and the HPME that is performed on the previous recon-
structed frame still exists. The time periods from to in
Fig. 9 are defined as follows:

time for BCU to load the current original frame and par-
tition the previous and current original frames;
time for BCU to distribute the previous and current orig-
inal frames;
time for BCU to carry out the algorithms including DWT,
SPIHT, ISPIHT, IDWT, MC, and partitioning of the pre-
vious reconstructed frame;
time for BCU to distribute the previous reconstructed
frame;
time for BCU to encode the motion vectors using VLC;
time for processors to carry out the FPME;
time for processors to carry out the HPME.

1) Analysis of Strategy II When a Fast BMME Algorithm is
Used: As shown by Fig. 9, when a fast BMME algorithm is
used, the overall processing time of the video encoder is given
by . Again, since the time periods , ,
and for preprocessing phases are more or less constant, we
attempt to minimize for HPME by adjusting amount of the
data assigned to the individual processors.

The load partitioning process is illustrated by Fig. 10 and the
directed flow graph of the load distribution process is shown in
Fig. 11. The weight of the communication node is given by

instead of as in Fig. 8. The reason is that
we do not need to transfer the current original frame since it
has already been partitioned and assigned to the processors in
FPME. The weights of computation and solution-transfer-back
nodes are no different from those in Fig. 8.

From Fig. 11, by equating the CFTP of processor to the
TFTP of processor , we obtain

(9)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

LI et al.: DESIGN AND IMPLEMENTATION OF PARALLEL VIDEO ENCODING STRATEGIES USING DIVISIBLE LOAD ANALYSIS 1105

Fig. 9. Timing diagram of video encoder when a fast BMME algorithm is used for Strategy II.

Fig. 10. Load partitioning process when a fast BMME algorithm is used for
Strategy II.

(10)

Similar to the Strategy I, the load partitions can be obtained by
solving these recursive equations.

2) Analysis of Strategy II When a High-Complexity BMME
Algorithm is Used: The above analysis is based on two assump-
tions, they are, and , under which
the overall processing time of the video encoder is given by

where , and for precessing phases are
more-or-less constant and for HPME varies with the amount
of data assigned to the processors.

Both the above two assumptions are true if a fast BMME is
used. However, if a very computation-intensive motion estima-
tion algorithm such as the full-search block matching algorithm
is used, the assumption may be violated and the
overall processing time becomes . In that case,
minimizing is a better solution to minimize the overall pro-
cessing time of the video encoder since, generally, for FPME

is much greater than for HPME. Therefore, to achieve a better
performance, we should reschedule the data among processors
when a complex BMME algorithm is to be used.

Fig. 12 shows the timing diagram of the video encoder when
a very time-consuming BMME algorithm is used. The load par-
titioning process is illustrated by Fig. 13, in which both the pre-
vious and current original frames are partitioned. Fig. 14 shows
the directed flow graph of the load distribution process for this
case. The weights of the communication, computation nodes are
the same as in Strategy I. The notable difference is that no so-
lution-transfer-back node is in Fig. 14. The reason is that the
full-pel motion vectors obtained in the processors in FPME are
needed for the HPME by the same processor and thus need not to
be transferred back to BCU upon the completion of the FPME.
In this case, the optimal solution can be obtained if all the pro-
cessors involved in the parallel processing will stop their com-
puting at the same time instant.

From the directed flow graph, by equating the CFTP of pro-
cessor to the CFTP of processor , we obtain

(11)

(12)

Thus, together with the normalization equation, the load parti-
tions can be obtained by solving recursive equations.

V. PERFORMANCE EVALUATION

In this section, we simulate the parallel video encoder on a
PII350 MHz/128RAM computer using the proposed strategies.
Obviously, we have homogeneous machines in our implementa-
tions, i.e., . All the program modules are
developed under Microsoft Visual C++ version 6, in which each

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

1106 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

Fig. 11. Directed flow graph of the load distribution process when a fast BMME algorithm is used for Strategy II.

Fig. 12. Timing diagram of the video encoder when a high-complexity BMME algorithm is used for Strategy II.

Fig. 13. Load partitioning process when a high-complexity BMME algorithm
is used for Strategy II.

processor is represented by one corresponding process. The data
communication between the processes is achieved by using the

shared memory techniques. The output bit streams are written
to the disk and could be decoded and displayed for visual in-
spection and comparison.

To demonstrate the advantages of the proposed strategies, it
would be best if an actual implementation of the strategies on a
real parallel video encoding system could be carried out. How-
ever, since our main objective is focused on illustrating how the
DLT could be applied to parallelize the video encoding process,
how the data parallelism inherent in a video encoder can be fully
exploited and how the execution time and the associated over-
heads caused in the parallel processing process can be analyti-
cally quantified and minimized, we decided to go for a realistic
simulation experiments with real-life values of the components
to track the behavior of the strategies. We feel that it is beyond
the scope of the current paper to carry out the actual implemen-
tation. The strategies proposed in this paper give us a theoretical

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

LI et al.: DESIGN AND IMPLEMENTATION OF PARALLEL VIDEO ENCODING STRATEGIES USING DIVISIBLE LOAD ANALYSIS 1107

Fig. 14. Directed flow graph of load distribution process for FBMA-II.

insight on how to quantify and minimize the overall processing
time of a parallel system.

In our implementation, the tempete.cif (288 352 pixels)
video sequence is used. we define six continuous frames a
group of pictures (GOP). The first frame of a GOP is intracoded
as I-frame and all five succeeding frames are intercoded from
the preceding frame as P-frames. Each P-frame is encoded at
32 kbits and each I-frame is encoded at 96 kbits. BMME is
performed on the 16 16 luminance blocks. The sum of ab-
solute difference (SAD) is used as the distortion measure. The
full search range is up to 15 pixels in all four directions from
the center of the block. The motion vectors for the luminance
blocks are divided by two, rounded to the nearest integers, and
then taken as the motion vectors for the chrominance blocks.

A. Combinations of the Schemes Implemented in This Paper

The computational complexity of the BMME algorithms
varies largely from algorithm to algorithm. To examine the
impact of the complexity of the motion estimation algorithm
on the performance of the video encoder, two representative
BMME algorithms are implemented using each strategy. They
are: 1) full-search block matching algorithm (FBMA) [16],
the most computation-intensive BMME algorithm and 2) new
three step search (NTSS) [10], a fast BMME algorithm. Thus,
totally four combinations are implemented in this paper, which
are listed as follows.

1) Strategy I with NTSS, referred to as NTSS-I.
2) Strategy I with FBMA, referred to as FBMA-I.
3) Strategy II with NTSS, referred to as NTSS -II.
4) Strategy II with FBMA, referred to as FBMA-II.

B. Determination of the Parameters

To solve the recursive equations, we must provide the pa-
rameters , , , , , , and . And, since the en-
tire video encoding process involves several processing phases
such as HPME, FPME, preprocessing, VLC of the motion vec-
tors, etc., we need to capture the execution time of each of
these phases. Thus, before implementing the four combinations,
those parameters that are required for either solving the recur-
sive equations or calculating the processing time of each of the
processing phases should be first quantified.

Note in our implementation, the video sequence is of CIF
format (288 352 pixels) and each video frame is divided into
18 22 number of 16 16 blocks. As explained in Section III,
we consider the size of the granularity (data unit), the minimum
size of the data that can be assigned to the processor, as one row
of blocks, i.e., 22 blocks. Thus, equals to 18, which is the total
number of rows of blocks in a video frame (288/16). Because
each 16 16 luminance block will generate one 3-byte motion
vector, equals to . That is, the solutions obtained
in the processor that need to be transferred back to BCU only
amount for percent of the data assigned to it. The
luminance component of a pixel is stored in one 4-byte float type
variable and one motion vector is stored in a 3-byte structure in
our C++ code.

The computation overhead and communication overhead
are difficult to track in real systems. In our simulation on a

single-processor environment, due to following reasons, we set
thesetwooverheadstozero, i.e., .Communication
and computation overheads mainly comprise of the extra time
used for system switching, hardware initialization and software
startup. The amount of this extra time remains independent of
the data size and is more or less constant per any computation
or communication task [14], [21]. For some parallel systems
where the latency caused by the overheads is comparable with
the computation latency or the communication latency, the
overheads may become a critical issue. In that case, the overheads
may consume much processing time and dominate the parallel
processing and must be carefully considered. For the problem
studied in this paper, where one row of the MBs is treated as a
basic unit and a 5-PII 350-MHz/128-MB processor bus network
is used as the building platform, the time for communication
and computation overheads are negligible when compared to
the actual computation and communication time. That is, the
processing time for the processor to process a basic unit and
the processing time for BCU to transmit a data unit over the
bus network will be much larger than the communication and
computation overheads. Thus, setting the two overheads to zero
does not influence the load partitioning/balancing process and
the overall processing time. Furthermore, as will be discussed
later, since the extra time caused by overheads is implicitly
considered as a part of speed parameters when they are measured,
above assumption of the two overheads being zero remains
valid.

The speed parameter is dependent on the processor, algo-
rithm, and the size of the granularity. Given the processor, al-
gorithms and the size of the granularity in our experiments, the
measured values of will be given below. The speed param-
eters that are required for our implementations are defined as
follows.

Speed parameters for Strategy I:
time for processor to carry out the BMME with one
data unit;
time for BCU to carry out the preprocessing with
one data unit;

Speed parameters for Strategy II:
time for BCU to carry out the algorithms including
DWT, SPIHT, IDWT, ISPIHT, MC, and partitioning
of previous reconstructed frame with one data unit;

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

1108 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

time for BCU to encode the motion vectors with one
data unit;
time for BCU to partition the previous original
frame and current original frame with one data
unit;
time for processor to carry out FPME with one data
unit;
time for processor to carry out HPME with one data
unit.

Now we shall describe the methodology adopted to measure
the speed parameter . In our program, the function clock(),
which is defined in Microsoft Visual C++ version 6 run-time
library, is used to measure the processing time. The return value
of clock() is the elapsed wall-clock time since the start of the
process (elapsed time in seconds times CLOCKS_PER_SEC,
where CLOCKS_PER_SEC is the operating frequency of the
processor), which tells how much time the calling process has
used. It takes into account whatever time the OS was used
including the extra time for communication and computation
overheads. Partly due to this reason, it is reasonable to set
the computation and communication overheads to zero in the
simulations. We encode the first 50 frames of tempete. The
processing times for each of the frames are measured and then
averaged. The average values are treated as the final results.
Note the processing times for the I-frames are excluded from
the computation of the final results.

In practice, the communication speed will be faster than com-
putation speed in a small bus network. In our experiments, with

, the time to transfer the partitioned data to the processors
and the time to collect the motion vectors are calculated using
an observed value of as 5 ms/data unit. The determination of

is based on the experiment conducted in [20], in which an
image processing application for large images is implemented
on a real 10/100 Mb-Tx high-speed Ethernet network. To mea-
sure the communication speed, the entire image is transmitted
over the network repeatedly for certain number of times. The
average value is then computed to represent the communication
speed . In reality, the communication speed of a bus network
varies over time. However, since the communication delays or
the channel bandwidth of a small and dedicated bus network re-
mains more-or-less constant in a practical system [14], [21], it is
appropriate to represent the communication speed using a single
average value, as done in our simulation.

The measured speed parameters for Strategy I are given as
follows. equals to 115 ms/data unit, for NTSS is
64 ms/data unit and for FBMA is 1538 ms/data unit. The mea-
sured speed parameters for Strategy II are tabulated in Table I,
in which all the parameters are measured in ms/data unit.

As above, in our experiments, speed parameters are repre-
sented by the average values of the measured processing times
of 50 continuous frames under the assumption that the speed pa-
rameters remains constant during the entire parallel processing.
In reality, the speed parameters like , , etc., vary
from frame to frame and slice to slice. Table II lists the mea-
sured processing times for BCU and five processors to process
their computation load for each of the 50 frames encoded in ex-
periment NTSS-I. In our encoder, each intracoded I-frame is fol-
lowed by five intercoded P-frames. The rows in the table where

TABLE I
SPEED PARAMETERS FOR STRATEGY II

TABLE II
MEASURED PROCESSING TIMES FOR BCU AND 5 PROCESSORS TO PROCESS

THEIR COMPUTATION LOAD FOR EACH OF THE 50 FRAMES (EXCLUDING THE

FIRST I FRAME) ENCODED IN NTSS-I; THE NUMBER OF DATA UNITS

ASSIGNED TO 5 PROCESSORS ARE 6, 4, 3, 3, 2, RESPECTIVELY

processing times of the five processors equal to zero denote the
intracoded I-frames. When computing the speed parameters, the
processing times for I-frames are excluded.

From Table II, we see the processing times for the processor
to process the same amount of computation load do vary over
time. However, the variation is small. For BCU, the ratio be-
tween standard deviation of the processing times and its average
processing time is 0.07; for processor , this value is also 0.07;
for processor , the value is 0.21. Since all the MBs use the
same motion search strategy in our algorithm, the complexity
and processing time demand of each MB remains close to each
other. Thus, for the uniform system that is simulated in this
paper, it will be appropriate to use the average speed param-
eter, which is measured in advance, to partition all the frames.
Further, since the main objective of the paper is focused on de-
signing theoretical or analytical methods to quantify and mini-
mize the processing time and all associated overheads caused in
the parallel processing process, accurate updating of the speed
parameters according to past statistics is not very necessary.

C. Experimental Results

Up to now, we have clarified the methodologies and tech-
nical details that are required for parallel implementation of
a video encoder. It is the time for us to put those ideas into
realization. Below, we will describe in detail the implementa-
tions of the four combinations, referred to as NTSS-I, FBMA-I,
NTSS-II, FBMA-II, respectively. The performance of the video
encoders is evaluated using the metrics speedup and perfor-
mance gain, which are defined as follows. Let us refer to the
overall processing time of the conventional video encoder im-
plemented on a single processor as ; and, the overall pro-
cessing of the parallel video encoder implemented on a bus net-

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

LI et al.: DESIGN AND IMPLEMENTATION OF PARALLEL VIDEO ENCODING STRATEGIES USING DIVISIBLE LOAD ANALYSIS 1109

TABLE III
THEORETICAL DME PROCESSING TIMES FOR NTSS-I

TABLE IV
MEASURED DME PROCESSING TIMES FOR NTSS-I

work as . The speedup is defined as the ratio of over
, i.e., speedup . The performance gain is de-

fined as the ratio of over , i.e., performance
gain .

As follows, we present the experimental studies conducted
in this paper to illustrate the parallel video encoding process
using proposed strategies. The performance of the parallel video
encoder is evaluated using the speedup and performance gain
based on the experimental results.

1) NTSS-I: Substituting the processing speed for
NTSS and , , , , and that are given before into
(7) and (8) and the normalization equation, by solving which
we obtain .
After integer approximation, we have

.

Now, since we have the parameters , , , , and the
load partitions , the processing time for distributed motion
estimation (DME) by each processor can be calculated using
the definitions of , , and , as defined
in Section III. The the preprocessing time can be computed
by multiplying the processing speed and the number of
data units processed by BCU, i.e., .

Table III shows the calculated (theoretical) processing times
for each processor to process its DME data. Note that, after the
integer load approximation, the processors may not stop com-
puting exactly one after another. We select the maximum finish
time of the processor as the processing time for the entire DME
process. From Table III, we see processor takes the longest
time and thus, equals to 449 ms. is the product of
and , i.e., ms. Thus, the
theoretical overall processing time of the video encoder using
DME is given by ms . Without DME, the
overall processing time is given by

ms. Thus, a speedup of 1.28 and a 21.8%
performance gain on the overall processing time is achieved by
scheduling the BMME data on a bus network.

Table IV shows the measured DME processing times ob-
tained in our experimental study, where we see the measured
overall processing time for DME process is 452 ms. The mea-
sured processing time for preprocessing phase is 2067 ms.
Thus, the actual overall processing time can be computed as

TABLE V
COMPARISON BETWEEN THEORETICAL AND MEASURED RESULTS FOR NTSS-I

TABLE VI
THEORETICAL DME PROCESSING TIMES FOR FBMA-I

TABLE VII
MEASURED DME COMPUTATION TIMES FOR FBMA-I

TABLE VIII
COMPARISON BETWEEN THEORETICAL AND MEASURED RESULTS FOR FBMA-I

TABLE IX
THEORETICAL PROCESSING TIMES OF HPME FOR NTSS-II

TABLE X
THEORETICAL PROCESSING TIMES OF FPME FOR NTSS-II

TABLE XI
MEASURED COMPUTATION TIMES OF HPME FOR NTSS-II

TABLE XII
MEASURED COMPUTATION TIMES OF FPME FOR NTSS-II

ms, which happens to be equal
to the theoretical overall processing time. Table V summarizes

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

1110 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

TABLE XIII
COMPARISON BETWEEN THEORETICAL AND MEASURED RESULTS FOR NTSS-II

the above comparison between theoretical and measured results
for NTSS-I. As explained in Section V-B, in our simulation,
the communication times are computed using an observed com-
munication speed. Thus, the measured communication times in
Table IV are exactly the same as the theoretical communication
times in Table III.

2) FBMA-I: Similar to NTSS-I, using the processing
speed for FBMA as given before, we obtain

. After integer load approximation, we have
.

The theoretical DME processing times are shown in Table VI,
where we see equals to 6337 ms. The theoretical prepro-
cessing time is the same as that in NTSS-I, i.e., ms.
Thus, the theoretical overall processing time is given by

ms. Without DME, the theoretical overall pro-
cessing time of the video encoder is given by

ms. Thus, a speedup of
3.54, a 71.7% performance gain on the overall processing time
of the video encoder, is achieved. Table VII shows measured
DME computation times obtained in this experiment (the DME
communication times are computed using the observed commu-
nication speed and are the same as those shown in Table VI). The
measured preprocessing time equals to 2067 ms. Similar to
NTSS-I, the actual overall processing time can be computed as
8421 ms. Again, the experimental results show a close match
with the theoretical results. Table VIII summarize the above
comparison.

3) NTSS-II: Substituting processing speed
as given in Table I and , , , ,

into (9), (10) and the normalization equation,
by solving which we obtain

. After integer load
approximation, we have .

The theoretical processing times of HPME and FPME under
the above load partitions are given in Tables IX and X, respec-
tively, from where we can see equals to 205 ms and equals
to 325 ms.

The respective processing times from to indicated in
Fig. 9 are calculated as follows:

ms;
ms;

ms;
ms;

ms.
Thus, the theoretical overall processing time of video encoder
using DME is given by ms.
Without DME, the theoretical overall processing time
equals to

ms. Thus, a speedup of
1.23 and a 18.4% performance gain on the overall processing

TABLE XIV
THEORETICAL PROCESSING TIMES OF FPME FOR FBMA-II

TABLE XV
THEORETICAL PROCESSING TIMES OF HPME FOR FBMA-II

TABLE XVI
MEASURED COMPUTATION TIMES OF FPME FOR FBMA-II

TABLE XVII
MEASURED COMPUTATION TIMES OF HPME FOR FBMA-II

time of the video encoder is achieved. Tables XI and XII
show the measured computation times of HPME and FPME
processes obtained in the experiment. The measured values of

, and are 183 ms, 2130 ms and 2.5 ms, respectively.
Similar to NTSS-I, the actual overall processing time can
now be computed as ms. Again,
the experimental results demonstrate a good match with the
theoretical results. Table XIII summarizes the above results.

4) FBMA-II: Substituting processing speed
for FBMA as given in Table I and , , , ,

into (11) and (12) and the normalization equation,
by solving which we obtain

. After integer load
approximation, we have .

The theoretical processing times of FPME and HPME under
the above load partitions are shown in Tables XIV and XV re-
spectively, where we see equals to 6509 ms and equals to
218 ms. Theoretical processing times from to for prepro-
cessing phase are calculated the same as in NTSS-II. Thus, the
theoretical overall processing time of the video encoder using
DME is given by ms. Without DME, the
theoretical overall processing time is

ms.
Thus, a speedup of 4.49 and a performance gain of 77.8% on
the overall processing time is achieved.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

LI et al.: DESIGN AND IMPLEMENTATION OF PARALLEL VIDEO ENCODING STRATEGIES USING DIVISIBLE LOAD ANALYSIS 1111

TABLE XVIII
COMPARISON BETWEEN THEORETICAL AND MEASURED RESULTS FOR FBMA-II

Tables XVI and XVII show the measured computation times
of the FPME and HPME processes. The measured values of

, and are 186, 2019, and 4 ms, respectively. Similar to
NTSS-I, the actual overall processing time can be computed as

ms. Again, we observe that the exper-
imental results demonstrate a good match with the theoretical
findings. Table XVIII summarizes the above results.

D. Discussions on the Results

Table XIX summarizes all the results obtained in our experi-
ments. From the results obtained in four tests, we can see using
the proposed load partitioning scheme and two implementation
strategies, a significant performance improvement on the overall
processing time of the video encoder is obtained. With only five
processors used in our parallel implementation, the lowest per-
formance gain on the processing time is 18.4% for Strategy I
with NTSS and the highest is 77.8% for Strategy II with FBMA.
The results reported in this paper provide considerable hope
to implement these strategies for handling real time encoding,
using divisible load paradigm.

Obviously, by increasing the number of the processors in
FBMA-II, for FPME can be further reduced and thus con-
tribute to the overall processing time of the video
encoder. However, note that is the lower bound to
which could be decreased because any further reduction in

below will not contribute to the overall processing
time . As stated in [2], [14], and [22], given
a -processor system, it may not be necessary that an optimal
solution exist when one attempts to utilize all the processors.
In the case of Strategy II, a more restrictive requirement on the
maximum number of processors is posed. For the fast BMME
algorithm, the optimal solution exists when for HPME is min-
imized.2 However, for the high-complexity BMME algorithm

, the optimal number of processors should guar-
antee that approximates to so that the idle time for
both BCU and processors is minimized.

As we know, we use a PII350 Hz/128 MB computer to do the
simulation. In terms of the up-to-date computer technology, this
processor is certainly slow. However, since our main objective
is not to achieve a real-time video encoder but to design a theo-
retical or analytical method to quantify the execution time and
associated overheads in any parallel video encoding system, the
processor speed is not our serious consideration. Our concern
is more on how to effectively partition and balance the compu-
tation load among the processors for any given parallel system
no matter what are the communication and computation speeds.
Thus, as long as there are certain communication latency and
computation latency in the system, our algorithm can be applied
to minimize the parallel processing.

2In this case, refer to [14] for details on how to determine the optimal number
of processors

TABLE XIX
PERFORMANCE GAIN AND SPEEDUP ACHIEVED BY OUR SCHEMES

When the computation latency is significantly greater than the
communication latency, the load partitions by our scheme ap-
proximates to those by conventional equal-partitioning scheme.
As we see from FBMA-I and FBMA-II, where the exhaustive
full-search motion estimation algorithm is used, all the proces-
sors are assigned almost the same amount of data. However,
from optimization point of view, our scheme certainly has the
advantage over the simple partitioning scheme since it gives us
a theoretical insight on how to quantify and minimize the pro-
cessing time and associated overheads of any parallel system
no matter what are the communication and computation delays.
Furthermore, as we observed from our experiments, the DLT
computation overhead is negligible especially when the number
of processors involved is small.

VI. CONCLUSION

In this paper, we parallelize a video encoder on a bus network.
Using DLT paradigm, a strip-wise load partitioning/balancing
scheme, a load distribution strategy, and two implementation
strategies are developed to exploit the available data parallelism
inherent in the video encoding process.

The advantages of our strategies include the following. 1)
With our approaches, the precise modeling and minimization of
the execution time of each phase of the video encoding process
becomes an easy task. The proposed strategies give us a the-
oretical insight on how to analytically quantify and minimize
the overall processing time of a parallel video coding system. 2)
Our strategies are easy to implement. No interprocessor com-
munication is required in our implementations because we as-
sign the additional data in the initial communication phase. This
largely simplifies the complexity of our strategies. 3) The pro-
posed strategies can be easily extended and applied to improve
other parallel applications. Although a homogeneous platform
is used in this paper, a heterogenous platform where the proces-
sors’ speeds are different from each other are allowed. Further-
more, our strategies also allow different algorithms being used
in processors. The data partitions that minimize the processing
time can be obtained by solving the same set of recursive equa-
tions as that used in this paper. The only difference is on the
measurement of the speed parameters.

The performance of the strategies is rigorously tested in
our experimental studies. Four combinations of the schemes

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

1112 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

referred to as NTSS-I, FBMA-I, NTSS-II, FBMA-II are imple-
mented using each of the proposed strategies. The performance
of our parallel video encoder is quantified using metrics
speedup and performance gain. As presented in Section V, a
significant performance gain on the overall processing time
of the video encoder is obtained by using our strategies. The
proposed strategies are shown to be effective in reducing the
overall processing time of the video encoder and the DLT
paradigm is shown to be an effective and viable solution to
parallelizing the video encoder on a bus network.

ACKNOWLEDGMENT

The authors would like to thank Professor K. R. Rao, De-
partment of Electrical Engineering, University of Texas at Ar-
lington, for his suggestions in enriching Section I on video en-
coding schemes.

REFERENCES

[1] P. Kuhn, Algorithms, Complexity Analysis and VLSI Architectures for
MPEG-4 Motion Estimation. Dordrecht, Germany: Kluwer, 1999.

[2] V. Bharadwaj and N. Viswanadham, “Suboptimal solutions using integer
approximation techniques for scheduling divisible loads on distributed
bus networks,” IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol.
30, no. 6, pp. 680–691, Nov. 2000.

[3] S. M. Akramullah, I. Ahmad, and M. L. Liu, “Parallelization of MPEG-2
video encoder for parallel and distributed computing systems,” in Proc.
Midwest Symp. Circuits and Systems, Aug. 1995, pp. 834–837.

[4] Y. He, I. Ahmad, and M. L. Liou, “A software-based MPEG-4 video
encoder using parallel processing,” IEEE Trans. Circuit Syst. Video
Technol., vol. 8, no. 7, pp. 909–920, Nov. 1998.

[5] N. H. C. Yung and K.-K. Leung, “Spatial and temporal data paralleliza-
tion of the H.261 video coding algorithm,” IEEE Trans. Circuit Syst.
Video Technol., vol. 11, no. 1, pp. 91–104, Jan. 2001.

[6] E. Chan and S. Panchanathan, “Review of block matching based motion
estimation algorithms for video compression,” in Proc. Canadian Conf.
Electrical and Computer Engineering, vol. 1, Sep. 1993, pp. 151–154.

[7] S. A. Martucci, I. Sodagar, T. Chiang, and Y.-Q. Zhang, “A zerotree
wavelet video coder,” IEEE Trans. Circuits Syst. Video Technol., vol. 7,
pp. 109–118, Feb. 1997.

[8] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet co-
efficients,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3445–3462,
Dec. 1993.

[9] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi, Scheduling Di-
visible Loads in Parallel and Distributed Systems. Los Alamitos, CA:
IEEE Computer Society Press, 1996.

[10] R. Li, B. Zeng, and M. L. Liou, “A new three step search algorithm for
block motion estimation,” IEEE Trans. Circuit Syst. Video Technol., vol.
4, no. 4, pp. 438–442, Aug. 1994.

[11] Generic Coding of Moving Pictures and Associated Audio, Draft Inter-
national Standard ISO/IEC 13 818, 1993.

[12] MPEG-4 Video Verification Model, ISO/IEC JTC1/SC29/WG11 N1796,
1997.

[13] Video Codec for Audiovisual Services at p � 64 kbits, ITU-T Recom-
mendation H.261, 1990.

[14] V. Bharadwaj, X. Li, and C. C. Ko, “On the influence of start-up costs
in scheduling divisible loads on bus networks,” IEEE Trans. Parallel
Distributed Syst., vol. 11, no. 12, pp. 1288–1305, Dec. 2000.

[15] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical tree,” IEEE Trans. Circuits Syst.
Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[16] P. Baglietto, M. Maresca, A. Migliaro, and M. Migliardi, “Parallel im-
plementation of the full search block matching algorithm for motion esti-
mation,” in Proc. Int. Conf. Application Specific Array Processors, 1995,
pp. 182–192.

[17] K. Ko and T. G. Robertazzi, “Record search time evaluation,” presented
at the Conf. Information Sciences and Systems, Princeton, NJ, Mar.
2000, Euro-Par 2000.

[18] S. K. Chan, V. Bharadwaj, and D. Ghose, “Matrix-vector products on
distributed bus networks with communication delays using the divisible
load paradigm: Performance analysis and simulation,” Math. Comput.
Simul., vol. 58, pp. 71–79, 2001.

[19] M. Drozdowski and P. Wolniewicz, Experiments With Scheduling Di-
visible Tasks in Clusters of Workstations. New York: Springer-Verlag,
2000, vol. LNCS 1900, pp. 311–319.

[20] B. Veeravalli and S. Ranganath, “Theoretical and experimental study on
large size image processing application using divisible load paradigm
on distributed bus networks,” Image Vis. Comput., vol. 20, pp. 917–935,
2002.

[21] G. Barlas, “Collection-aware optimum sequencing of operations and
closed-form solutions for the distribution of a divisible load on arbitrary
processor trees,” IEEE Trans. Parallel Distrib. Syst., vol. 9, no. 5, pp.
429–441, May 1998.

[22] M. Drozdowski, Selected Problems of Scheduling Tasks in Multipro-
cessor Computer Systems, ser. Monographs. Poznon, Poland: Poznan
Univ. Technology Press, 1997.

[23] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele Jr, and M.
E. Zosel, The High Performance Fortran Handbook. Cambridge, MA:
MIT Press, 1994.

Ping Li received the B.Eng. and M.Eng. degrees in
mechanical engineering from Xi’an Jiaotong Univer-
sity, Xi’an, China, in 1998 and 2000, respectively,
and the M.Eng. degree in computer engineering from
National University of Singapore in 2003.

He worked on H.264/AVC video coding at the
Institute for Infocomm Research, Singapore, from
March 2003 to August 2004. His research interests
include video/image processing and multimedia
computing. He is currently with the Design Tech-
nology Institute, Faculty of Electrical Engineering,

Eindhoven University of Technology, Eindhoven, The Netherlands.

Bharadwaj Veeravalli (M’99) received the B.Sc.
degree in physics from Madurai-Kamaraj University,
Maduria, India, in 1987, the M.S. degree in electrical
communication engineering and the Ph.D. degree
from the Department of Aerospace Engineering,
Indian Institute of Science, Bangalore, India, in 1991
and 1994, respectively.

He was a Postdoctoral Researcher in the Depart-
ment of Computer Science, Concordia University,
Montreal, Canada, in 1996. He is currently with the
Department of Electrical and Computer Engineering

at The National University of Singapore, Singapore, as an Assistant Professor.
His research interests include high-speed heterogeneous computing, sched-
uling in parallel and distributed systems, multimedia computing, cluster/grid
computing, bioinformatics, and manufacturing systems. He has served as a
Technical Committee Member in several international conferences and had
published more than 50 technical papers in archival journals and conferences.
He is one of the earliest researchers in the field of divisible load theory and is
the principal author of the book entitled Scheduling Divisible Loads in Parallel
and Distributed Systems (Los Alamitos, CA: IEEE Computer Society, 1996).

He is currently serving as an Associate Editor for International Journal of
Computers and their Applications (IJCA), and the IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS—A: SYSTEMS AND HUMANS.

Ashraf A. Kassim received the B.Eng. degree (first-
class hons.) in electrical engineering from the Na-
tional University of Singapore (NUS), Singapore, in
1985 and the Ph.D. degree in electrical and computer
engineering from Carnegie Mellon University, Pitts-
burgh, PA, in 1993.

He worked on the design and development of
machine vision systems at Texas Instruments until
1988. Since 1993, he has been with the Electrical and
Computer Engineering Department, NUS, where he
is currently an Associate Professor and Deputy Head

of Department. His research interests include image analysis, machine vision,
video/image processing and compression.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

	toc
	Design and Implementation of Parallel Video Encoding Strategies
	Ping Li, Bharadwaj Veeravalli, Member, IEEE, and Ashraf A. Kassi
	I. I NTRODUCTION

	Fig.€1. Bus network topology.
	A. Our Contributions
	II. S YSTEM M ODEL AND THE V IDEO E NCODER

	Fig.€2. System block diagram of the video encoder.
	A. Video Encoder

	Fig.€3. BMME.
	III. M ATHEMATICAL M ODEL
	A. Load Partitioning/Balancing
	B. Load Distribution

	Fig.€4. Load partitioning process using the strip-wise scheme.
	Fig.€5. Directed flow graph for load distribution in bus network
	Fig.€6. Timing diagram of the video encoder using Strategy I.
	IV. I MPLEMENTATION S TRATEGIES
	A. Analysis of Strategy I

	Fig.€7. Load partitioning process for Strategy I.
	Fig.€8. Directed flow graph of the parallel BMME process for Str
	B. Analysis of Strategy II
	1) Analysis of Strategy II When a Fast BMME Algorithm is Used: A

	Fig.€9. Timing diagram of video encoder when a fast BMME algorit
	Fig.€10. Load partitioning process when a fast BMME algorithm is
	2) Analysis of Strategy II When a High-Complexity BMME Algorithm
	V. P ERFORMANCE E VALUATION

	Fig.€11. Directed flow graph of the load distribution process wh
	Fig.€12. Timing diagram of the video encoder when a high-complex
	Fig.€13. Load partitioning process when a high-complexity BMME a
	Fig.€14. Directed flow graph of load distribution process for FB
	A. Combinations of the Schemes Implemented in This Paper
	B. Determination of the Parameters

	TABLE I S PEED P ARAMETERS FOR S TRATEGY II
	TABLE II M EASURED P ROCESSING T IMES FOR BCU AND 5 P ROCESSORS
	C. Experimental Results

	TABLE III T HEORETICAL DME P ROCESSING T IMES FOR NTSS-I
	TABLE IV M EASURED DME P ROCESSING T IMES FOR NTSS-I
	1) NTSS-I: Substituting the processing speed $E_{\rm ME}$ for NT

	TABLE V C OMPARISON B ETWEEN T HEORETICAL AND M EASURED R ESULTS
	TABLE VI T HEORETICAL DME P ROCESSING T IMES FOR FBMA-I
	TABLE VII M EASURED DME C OMPUTATION T IMES FOR FBMA-I
	TABLE VIII C OMPARISON B ETWEEN T HEORETICAL AND M EASURED R ESU
	TABLE IX T HEORETICAL P ROCESSING T IMES OF HPME FOR NTSS-II
	TABLE X T HEORETICAL P ROCESSING T IMES OF FPME FOR NTSS-II
	TABLE XI M EASURED C OMPUTATION T IMES OF HPME FOR NTSS-II
	TABLE XII M EASURED C OMPUTATION T IMES OF FPME FOR NTSS-II
	TABLE XIII C OMPARISON B ETWEEN T HEORETICAL AND M EASURED R ESU
	2) FBMA-I: Similar to NTSS-I, using the processing speed $E_{\rm
	3) NTSS-II: Substituting processing speed $E_{\rm half}$ as give

	TABLE XIV T HEORETICAL P ROCESSING T IMES OF FPME FOR FBMA-II
	TABLE XV T HEORETICAL P ROCESSING T IMES OF HPME FOR FBMA-II
	TABLE XVI M EASURED C OMPUTATION T IMES OF FPME FOR FBMA-II
	TABLE XVII M EASURED C OMPUTATION T IMES OF HPME FOR FBMA-II
	4) FBMA-II: Substituting processing speed $E_{\rm full}$ for FBM

	TABLE XVIII C OMPARISON B ETWEEN T HEORETICAL AND M EASURED R ES
	D. Discussions on the Results

	TABLE XIX P ERFORMANCE G AIN AND S PEEDUP A CHIEVED BY O UR S CH
	VI. C ONCLUSION
	P. Kuhn, Algorithms, Complexity Analysis and VLSI Architectures
	V. Bharadwaj and N. Viswanadham, Suboptimal solutions using inte
	S. M. Akramullah, I. Ahmad, and M. L. Liu, Parallelization of MP
	Y. He, I. Ahmad, and M. L. Liou, A software-based MPEG-4 video e
	N. H. C. Yung and K.-K. Leung, Spatial and temporal data paralle
	E. Chan and S. Panchanathan, Review of block matching based moti
	S. A. Martucci, I. Sodagar, T. Chiang, and Y.-Q. Zhang, A zerotr
	J. M. Shapiro, Embedded image coding using zerotrees of wavelet
	V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi, Schedulin
	R. Li, B. Zeng, and M. L. Liou, A new three step search algorith

	Generic Coding of Moving Pictures and Associated Audio, Draft In
	MPEG-4 Video Verification Model, ISO/IEC JTC1/SC29/WG11 N1796, 1
	Video Codec for Audiovisual Services at $p\times 64~{\hbox {kbit
	V. Bharadwaj, X. Li, and C. C. Ko, On the influence of start-up
	A. Said and W. A. Pearlman, A new, fast, and efficient image cod
	P. Baglietto, M. Maresca, A. Migliaro, and M. Migliardi, Paralle
	K. Ko and T. G. Robertazzi, Record search time evaluation, prese
	S. K. Chan, V. Bharadwaj, and D. Ghose, Matrix-vector products o
	M. Drozdowski and P. Wolniewicz, Experiments With Scheduling Div
	B. Veeravalli and S. Ranganath, Theoretical and experimental stu
	G. Barlas, Collection-aware optimum sequencing of operations and
	M. Drozdowski, Selected Problems of Scheduling Tasks in Multipro
	C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele Jr,

