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Verifying Sequentially Consistent Memory using 
Interface Refinement 

Rob Gerth' 
Eindhoven University of Technologyt 

December, 1993 

In large multiprocessor architectures the design of efficient shared memory systems is 
important because the latency imposed on the processors when reading or writing should 
be kept at a minimum. This is usually achieved by interposing a cache memory between 
each processor and the shared memory system. A cache is private to a processor and 
contains a subset of the memory; hopefully conta.ining most of the locations (variables) 
that the processor needs to access; i.e., the 'cache-hit' probability should be high. Such 
caches induce replication of data and hence there is a problem of cache consistency: if one 
processor updates the value at some location, all caches in the system that contain a copy 
of the location need to be updated. This is often done by marking the location in the 
caches so that a subsequent access causes the location to be fetched from shared memory 
again; variations exist, though. Clearly, chaIlging a location and marking that location in 
other caches must be done as one atomic operation if memory is to behave as expected. 

If the multiprocessor architecture is also distributed then such 'write and mark' opera
tions ca.use unacceptable latencies. For instance, the DASH [LLG+92] and KSR1 [BFKR92] 
architectures envisage up to 10000 workstations to be connected and to operate on a con
ceptually shared memory. Atomic write-anq-marks produce massive network congestion 
because at any time there will be many writes in progress. 

The approach taken ill such distributed shared memory architectures is to relax the 
constraints on the behavior of a standard shared memory. Many of these relaxations 
are patterned after Lamport's proposal of sequential consistency (Lam79]. In a standard 
memory the value that is read at a location must be the value that has last been written 
to that location. A sequentially correct memory satisfies a less stringent requirement: in 
Lamport's words 

the result of any execution [of the memory) is the same as if the opemtions 
[memory accesses} of all the processorS were exec1ded in some sequential order, 

'Currently working in ESPRIT project. P602l: "Building Correct Reactive Systems (REACT)". 
tDepartment of Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB 

Eindhoven, The Netherlands. Email: robglDwin.tue.nl. 
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and the operations of each individual p"oceSS01' appear in this sequence in the 
order specified by its program. 

The challenge that sequentially correct memory poses is not so much the verification 
of yet another complex protocol but rather the fact that sequential consistency does not 
comfortably fit the patterns of standard refinement strategies (trace inclusion, failure or 
ready trace equivalence, testing pre order, bisimulation, etc.). 

The aim of this paper is to show how sequential consistency can be interpreted as an 
instance of interface refinement [GKS92] a.nd by verifying a sequentially consistent memory 
protocol~the lazy caching protocol of [ABM93]~. Although the protocol is proven correct 
in that paper, the proof is on a semantical level and is not grounded in a verification 
methodology. This makes the proof quite hard to follow and hard to generalize to more 
complex protocols such as release consistent or non-blocking memory. 

In the next section we explain a.nd define sequential consistency. The lazy caching 
protocol is introduced in the Section 3. The heart of the paper is formed by Section 3 
and 4. The latter contains the proof of sequential correctness of the protocoL Section 3 
gives an overview of the verification methodology. Investigating sequential consistency 
made us realize that the methodology to prove interface refinement as defined in [GKS92] 
can be considerably simplified. Accordingly, this Section is also of independent interest. 
In Section 5 some conclusions are drawn. 

1 Sequential consistency 

In order to understand Lamport's definition, we first fix the behavior of a standard, 'serial' 
shared memory. This is done in Figures 1 and 2. 

• • • 
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~ 
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0:: S 

Mseriai 

Figure 1: Architecture of M",iai 

The interface of the memory comprises of'read (Ri( d, a)) and write (Wi( d, a)) events for 
each processor Pi. The processors and the memory ha.ve to synchronize on these read a.nd 
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write events. The transition system in Figure 2 indicates that these are the only external 
events that Mmiai participates in a.nd that it has no internal events. A read event Ri(d, a), 
issued by Pi, can only occur if the memory holds value d at location a: Mem[a] = d. Write 
events Wi( d, a) can always occur with the expected result. The external behavior of the 
serial memory, Beh(Mmid), is defined as the maximal (hence infinite) sequences of read 
and write events generated according to the transition system of Figure 2. Hence, the 
memory serializes the reads and writes of the processors. 

The interface of the serial memory (and the caching protocol) in [ABM93] differs from 
the one we use. There, a Ri(d, a)-event in either protocol is split into an (input) event 
ReadRequestJd, a), which is always enabled, and an (output) event ReadReturni(d, a) that 
behaves as the Ri( d, a)-event. One reason for doing so is their use of I/0 automata specifi
cations in which input events must be always enabled. However, that paper also stipulates 
that a process i must not do otherwise than engage in a Return event after it has issued 
a Request. This means that the intended interface is synchronous so that not using I/O 
automata and having simple read and write external events seem to be the conceptually 
clearer approach. 

Two objections that might be levied against this choice of interface are: events cannot 
overlap because they do not extend in time; and: read events specify the value that is read 
and thus do not really model read actions. Note that the second objection applies to the 
[ABM93] interface as well. The answer to both objections is that what is of importance 
are the points at which the memory system changes state and the values that can be read 
from memory as a result of these changes. lIenee, write events should merely be viewed 
as the initiators of state changes while read events indicate which values can be returned. 
Thus, the precise way in which a process initiates a read or a write is of no importance to 
the modeling. 

We can use this definition of serial memory both to characterize the sequential orders in 
which the memory accesses of the processors can be executed-any order that corresponds 
to a behavior of M",iai-as well as to characterize the order of operations of each individual 
processor-since a processor belongs to the environment of M,eriaJ, possible orderings are 
determined by the behaviors of Mmiai as well. 

E I Event I Allowed if I Action 

V Ri(d,a) Mem[a] = d 
V Wi(d,a) Mem[a]:= d 

initially: Va Mem[a] = 0 

Figure 2: M"'iai 

We rephrase Lamport's proposal of corred behavior of sequentially consistent memory 
(SCM) thus 
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any extemal behaviol', 17, [of the SCAI] cOlTesponds with an extemal behavior, 7, 

of M",iai so that the ol'del' in which the operations of each individual processor 
appear in 17 coincides with ol'der in 'Which they appear in r. 

For instance, the graph below depicts a· possible prefix of a behavior of an SCM and a 
corresponding serial behavior: 

SCM WI (l, x) W 2 (2,y) R3(2, y) R3(O, x) R3(1,x) 

PI: W, (1,J:) 
P2 : W 2 (2,y) 
P3 : R3(2,y) R3(O, x) R3(1,x) 

Mserial W 2 (2,y) R3(2,y) R3(O,X) W , (l,x) R3(1,x) 

Time flows from left to right. In particular notice that, although P, sets x to 1 before 
P3 accesses that location, the first read of P3 retrieves x's initial value O. The effect of 
writes are thus seen to propa.gate slowly through the system. This is typical of sequentially 
consistent memory. Also notice that this SCM behavior is not possible for serial memory. 

For completeness sake, we mention that the following behavior of the individual pro
cesses cannot be accommodated for by SCM: 

P, : W, (l,:") 
P2 : WA2,:c) 
P3 : R3(1,x) R3(2,x) 
P4 : R4(2,x) R4(1,x) 

The problem is that P3 and P4 'observe' the writes of P, and P2 in different order. 
Sequential consistency has been the callonical distributed memory model for a long 

time. In practice, however, different, still weaker memory models tend to be implemented 
as the synchronization overhead of SCM is still too large. For instance, the processor 
consistency model would allow the above behavior at the processors. See [Mos93] for an 
overview of distributed memory models. 

A formal definition 

Let . t i denote the operation on behaviors of removing the events that do not originate 
from process Pi or that are not externaL Then we have 

A memory M is sequentially consistent w.r.t. Murial, M s.c. Murial, iff 

'117 E Beh(M) :i7 E Beh(Mmiai) Vi = 1 ... 11 17 ti = 7 ti 

This memory model enjoys an important advantage over its 'competitors': for reasoning 
about a program we may ignore the fact. that the program runs on a. sequential consistent 
memory and can assume instead that it runs on a standard serial memory. I.e., verification 
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techniques need not be adapted a.nd the programming model is that of standard shared 
memory. 

We stress that this is the case only if the program has no means of communication, 
either implicitly or explicitly, other than through the memory. If a program can send 
messages or can sense the time n.t which reads and writes occur, then differences between 
sequential consistent and serial memory can be detected; see, e.g., [ABM93]. 

2 The lazy caching protocol 

In [ABM93] a seqnential correct memory that is not serial was proposed: the lazy caching 
protocol. We use a slightly a.dapted version of this protocol. 

The architecture of M d;", is depicted in Figure 3; the transition system in Figure 4. 
The protocol is thus geared towa,rds a bns based architecture. Here, too, the interface 

C, 

Mdistr 

C2 

N 
~ 

" a 

• • • 

Mcm 

Figure 3: Architecture of M d;", 

of the memory comprises of the read and write events of the processors. M d;"" however, 
interposes caches C i between the shared memory Mem and the processes Pi. Each cache Ci 

contains a part of the memory Mel1/. and has two queues associated with it: an out-queue 
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Outi in which Pi's write requests are buffered and an in-queue Ini in which the pending 
cache updates are stored. These queues model the asynchronous behavior of write events 
in a sequential consistent memory. The gray arrows indicate the information flows from 
the out queues to the in queues and to klem. 

A write event W i( d, a) does not ha.ve immediate effect. Instead, a request (d, a) is placed 
in Outi. When the write request is taken out of the queue, by an internal memory-write 
event MWi(d, a), the memory is updated and a cache update request (d, a) is placed in 
every in-queue. This cache update is eventua.!ly removed from the top of some queue Inj 
by an internal cache update event CUj(d, a) as a result of which cache memory Cj gets 
updated. Cache misses are modeled by interna.! cache invalidate events: Cli can arbitrarily 
remove locations from cache Ci . Caches are filled both as the delayed result of write events 
as well as through internalll1emory-read events, MRi(d, a). The latter events intend to 
model the effect of a cache-miss: in tha.t case the read event suspends until the location is 
copied from memory. 

A read event Ri(d, a), predictably, stalls until a copy of location a is present in Ci but 
also until the copy contains a 'correct' value in the following sense: sequential consistency 
implies that a processor Pi reads the value at a location a that was most recently written 
by Pi unless some other processor updated a in the mean time. Hence, a read event Ri(d,a) 
cannot occur unless all pending writes in 01lti are processed as well as the cache update 
requests from Ini that correspond to writes of Pi. For this reason, such cache update 
request are marked (with a *). 

The transition system in Figure 4 makes a.ll this precise. 
In this transition system caches are modeled as partial functions from the set of locations 

to the set of values. Cache update (CU) actions produce 'variant functions': update ( Ci , d, a) 
stands for the function f tha.t coincides with Ci except 'at' a where f(a) = d. Cache 
invalidate (CI) actions yield 'restrictions' of functions: restrici(Ci ) stands for any function 
whose domain is included in that of Ci and which coincides with Ci on its domain. 

For Md;", there is a. distinction between the extern a.! behavior, Beh( Mdi",) and the in
ternal behavi01·, IBeh( Md;",) tha.t comprises the maximal sequences of internal and external 
events that kldi", ca·n generate (obviously we have Beh(A1",ial) = IBeh(M",ial)). Observe 
that for s E IBeh(A1d;",·), sri denotes the subsequence of extemal read and write-events 
of Pi in s. 

3 Interface Refinement 

The proof of sequential consistency will be based on our notion of interface refinement. The 
approach that we shall use is based on a much streamlined version of the one published 
in [OKS92]. This section intends to supply a quick introduction to interface refinement 
a.nd a (derived) proof rule that is specifically engineered for proving sequential consistency. 
A full account of the genera.!, streamlined approach will be published elsewhere. 

We assume some general knowledge of linear temporal logic and of transition systems. 
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E t Event 

vi Ri(d,a) 

vi Wi(d,a) 

MWi(d,a) 

MRi(d, a) 

CUi(d,a) 

Cl i 

Initially: 

Fairness: 

Allowed if 

Ci(a) = d 1\ Outi = {} 
1\ no *-ed entries in Ini 

Action 

OUii:= append(Outi,(d,a)) 

head( OUii) = (d, a) Mem[aJ := d; 
OUii := tail( Outi); 
(Vk f- i :: Ink:= append(Ink' (d, a))); 
Ini := append(Ini, (d, a, *)) 

Mem[aJ = d Ini:= append(Ini,(d,a)) 

head(Ini) is either 
(d,a) or (d,a,*) Ini:= tail(Ini); Ci := update(Ci,d,a) 

Ci : = resl1'ict ( Ci ) 

Va Mem[aJ = 0 
1\ Vi = 1 ... 11 C i C Me1/! 1\ Ini = {} 1\ OUti = {} 
no action other than Cli can be always enabled but never taken 

MW-memory write 
CU-cache update 

MR-memory read 
CI-cache invalidate 

Figure 4: Mdi,t,· 

If we compare the definitions of sequential consistency 

C s.c. A iff Va E Beh(C) 37 E Beh(A) Vi = 1 ... 11 afi = 7 fi 

and that of standard (trace) refinement 

C ref A iff Va E Beh(C) 37 E Beh(A) a = 7 

we detect a pattern: 

CrefRA iff VaE Beh(C) 37EBeh(A) (a,7)ER 

I.e., these cases can be viewed as refinements, except that the way in which an abstract 
behavior a gets implemented as 7 may change. Consequently, the refinement relation 
is pammete1'ized with a relation R that. determines how behaviors are implemented. For 
example, the relation is that of equality for ordinary refinement. This pattern is also shared 
by, e.g., the condition of seria.lizebility of dat.abase transactions and by Lamport's 'stutter 
closed' refinement. 
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We assume that such relations are specified in some logic. I.e., a relation R is now given 
by a formula if; and ((T, T) E R iff (T, T F if;, for a suitably defined satisfaction relation F' 

The logic will be a linear temporal logic (LTL); although we shall only use always 
(0) and eventuality (0) properties. An L'1'L is usually valuated on (infinite) sequences of 
states. To express constraints on (internal) behaviors, we assume the logic to be extended 
with a hisio7'Y variable h that valuates at a point in a state sequence to the sequence of 
events that have occurred up to this point. A second complication is that here, the LTL is 
used to compare two state sequences. By convention, two (equal length) state sequences 
determine a single such sequence through taking the pointwise product of the states in 
the sequences. In the logic we can then use projection functions to refer to the separate 
sequences agam. Write he and h" for the projections of history h; 'c' for concrete and'a' 
for abstract. 

We need to establish some notation. We generically assume that C and A are inter
preted transition systems that have disjoint sets of (free) variables; see M"r;a/ or Md;,tr for 
examples. Write S(A) for the set of states of A; I(A) for its initial states; and 's ~ s' in 
A' if the event a is executed in state s of A and produces state s'. Remember that these 
states also valuate the variables; in particular the variable h, so that s(h) = c if s E I(A) 
and if s ~ s' in A then s'(h) = s(h r a. We often write just s ~ s' if the transition 
system is clear from the context. Write [A] for the set of maximal sequences of states, 
obtained by repeatedly applying ~ starting in some initial state of A. We assume that 
there are no finite state sequences in [A]; as is the case for e.g. M"r;ai and Md;,tr' Because 
states valuate h, every state sequence (T E '[A] uniquely determines an event sequence, 
(Te E IBeh(A); hence IBeh(A) = {(Te I (T E [A]}. For states sand t write's xi' for their 
product or pairing. For (infinite) sequences of states CT and T write aXT for the sequence 

obtained by the pointwise product of the states in (T and T. Write 1i for the set of (finite) 
event sequences h, h', .... History variables take there value from 1i. 

Definition 3.1 (Interface refinement) Lei if; be some LTL formula. Then 

C ref¢ A iff V(T E [CD ::IT E [A] (TXT F if; . 

For example, standard trace refinemcnt, C ref A, is defined as C ref ~ A by taking, e.g., 

if; == O¢ and ¢ == last(hc) = last(h a ) • 

For (T E [CD and T E [A] we have by definition of 0 that (TXT F if; holds just in case 
(TXT, k F if, holds at evcry position k; i.e., for every state pair in (TXT. If sxi is the k-th 
such state pair, then this is equivalent to sxt F if, which holds precisely if (t) last(s(h)) = 
last(t(h)). I.e., (sxt)(hc) = 8(h) and (sxt)(ha) = t(h). Thus, (t) expresses that the event 
that produced s in C is the same as the one that produced t in A. 

3.1 Sequential consistency as interface refinement 

For this we make a simplifying assumption 
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Every process issues infinitely many writes to Md;",. Stated diffel'ently, on any 
(J E [Mb ",] and for any i = I ... 1/., (Je fi contains infinitely may Wi events. 

This simplification is not essclltial for the proof; it does make it slightly easier. 

Sequential consistency is a condition on maximal, hence, infinite sequences. To express 
this in an LTL, we must rewrite to a condition on states, i.e., on prefixes of the sequences, 
that must hold at various points along thc sequences. A first try is 

M di", s.c. M",iai iff M di",· ref ~ fl!I",·ia.i with 1> = D 1'I;=1...n 1>i and 

In (JXT F 1>i, the function of the quantification is to 'freeze' prefIxes of the distributed 
behavior (J so that they can be matched against prcfixes of the serial behavior T. As every 
prefix of (J is eventually matched aga.inst a prefix of T and because (J is infinite, we must 
have (J fi = T fi. 

Another way of doing this is to associate with every prefix of T a prefix of (J that can 
be matched against it. This approach leads to an easier proof. Now, however, we must 
make sure that we match ever longer prefixes of (J. Hence, we change 1>; by replacing the 
existentially quantified temporal variable H by a 'choice function' fi that maps a history 
to a prefix of that history. Say that f: H --+ H increases i.o. on A iff for every chain 
hO 

::: hi ... such that limn~oo h" = IBeh(A) we have lim,,~oo Ifi(h")1 = 00. Then 

<Pi ::::::: ./i(ho) fi :::::; 11.1 fi for sonte .Ii that increases i.D. on Mdistr (1) 

For completeness sake, we supply a proof. It is basically expanding definitions: 

Proof. The left to right direction is obvious. Now assume that Md;,', s.c. M",iai is not true. 
So, for some (j = S081 ..• E [Mdistr] and for every T E [MseriaI] we have (T€ fi -:j. T

e fi for some i. 
Fix such a (1, i a.nd T, and take a.ny Ii that increases La. on Mdistr. 

For some index j we must have (80SI ... Sj)e f i :S T e f i and (80S1 ... 8j+l)e fi -L T e fi which is 
equivalent to sj(h) fi :S T' fi but. 8i+1(h) fi -L T' fi. Now, consider D.pi. As f; increases i.o. on 
Mdi,tn there is an index k such that 8}+I(h):s f;(sk(h)). But then (J,T,k ~.pi whence (J,T ~.p. 
Since this conclusion holds for every T E [Mserial] and any Ii, we conclude that Mdistr ref¢ Mserio'/ 

cannot. hold. D 

3.2 A proof rule 

The first step in verifying sequential consistency C ref ¢ A, or interface refinement in 
genera.l, is to relate beha.viors in the two systems with each other. The second step is then 
to prove that related beha.viors satisfy the a.ppropriate specification 

A general technique for relating state sequences is that of simulation (backward or 
forward simulation, possibility ma.ppings, implementation functions). 
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Definition 3.3 (Weak simulation) Given tmnsition systems C and A, a relation R <;;; 
S(C) X SeA) is a weak simulation of C in A, C '-+R A, provided 

1. for any s E I(C) there is an I E leA) such that (s,t) E R, 

2. if (s, t) E Rand s ~ s' in C then thel'e is an t' E SeA) such that (s', t') E Rand 

either thel'e is an event fJ such that t ~ t' in A or t = t' (we say fJ = f in this case) 

The inductive clause (2) is illustrated in the fig
ure on the right. Given a state sequence (J E [C], 
a weak simulation C '-+ R A constructs a state se-
quence T of A in which every sta.te in T is related 

t fJ t' 
R( -----------~\I\" R A 

to some state in (J. However, we do not necessar- a •• C 
ily have T E [A]. First of all, A may have fairness S s' 
constraints which T ma.y viola.te. Secondly, T may be finite because from some moment 
onwards R relates the transitions in (J with f transitions 'in' T. Fairness constraints are no 
problem for us, as M''''ial will play the role of A and it does not have fairness constraints. 
Forcing T to be infinite will be done implicitly, later on. 

R is called a weak simulation because A is allowed to 'stutter' and because there are 
no constraints on the events of the transitions of C and A, nor on the related states. This 
is different from more standard forms of simulation where there are constraints on the 
events-e.g., a '= fJ-or on the rela.ted states. 

In our view, such condition are really implicitly defining how behaviors must be imple
mented and tha.t is precisely what we want to avoid at this point. E.g., forcing a '= fJ in 
related transit.ions is forcing related sequences to be equal. If we set up such a stronger 
simulation between the stat.es of C and A we are showing ordinary refinement. 

Given a weak simulation, C '-+ R A, the second step is to show that R-related sequences 
(J and T satisfy (JXT p ,p. For sequential consistency this is easy, as it reduces to proving 
,pi for every i = 1 .. . 11. in every related state pair. 

This observation immedia.tely suggest.s the proof rule in Figure 5. 

A and Care t.ransition systems such tha.t A has no fairness const.raints': 

C '-+n A, Vs,t (s,t)ER =} sxtp,pi(i=l ... n) 
pC s.c. A 

with ,pi '= fi(ho) fi :5 ii, fi for some ./i that. increases i.o. on C 

Figure 5: Proof rule for establishing sequential consistency 

1 Formally: [AI must. be closed in t.he sense t.hat. for any chain 0'0 ::0 0'1 ::0 ... for which Ifi 30' E [AI O'i ::0 
(J" we have limi_oo (fi E [A] 

10 



Soundness of the rule is immediate. Observe that because f; must increase i.o. on C so 
that <Pi maps ever longer prefixes of [CD to prefixes of [A], the weak simulation R cannot 
associate a finite state sequence of [A] to one in [C]. 

The proof rule for general interface refinement, C ref.p A, is based on the same ideas. 
The first step, again, is establishing a. weak simulation. The second step changes because 
now <P need not be of the form D.;\ and it is this form that determined the second pre
miss in rule 5. For instance, if <P == DO.;\ for some state assertion .;\, then we need to 
establish .;\ at infinitely many state pairs along every pair of R-related state sequences. 
For this we introduce an auxiliary state formula. d such that C p DOd and demand that 
(8, t) E R & 8 P d =} sxt p.;\. In case <P == DO<p' /\ O<p" we would use two auxil
iary state assertions d' and d" such that C p DOd' /\ Od", etc. The normal form result 
of [MP91 J tells us that a finite number of auxilia.ry formulae always suffices. Specifically, 
we have that for every TL formula <P (without quantifiers) there is a propositional TL 
formula IjI with propositional variables PI, . .. , Pn and state formulae <PI, ... , <Pn such that 
p <P f-> 1jI[<PJ/PI, ... , <Pn/Pnj, where I denotes syntactic substitution; we usually write 

1jI( <PI, ... <Pn). The following proof rule applies to the general case. 

A and C are transition systems such that A has no fai1'11ess constraints; \II is a propositional 
TL formula with propositional variables PI, ... , Pn; and <PI, ... , <Pn and dl , ... , dn are 
state formulae. 

p \II ( <PI, ... <Pn) -> <P 
C P \II(dl , ... , dn ) 

C '-+R J1 

spddz(s,t)ER =} SXiP<Pi (i=l ... n) 
pC ref¢ A 

Figure 6: Proof rule for general interface refinement 

The sequential consistency proof rule is obtained by taking d; 
that the formula in Lemma 3.2 is in 1I0rmal fonn. 

4 Correctness Proof of M d;,t, s.c. M",;ai 

4.1 Constructing a weak simulation R 

true and by noting 

The problem in defining a simulation is to decide when to 'allow' the serial memory to 
make a transition. 
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In the situation indicated on the right, f3 
should not be the corresponding Wi( d, a)-event. 
If it is, Rj ( e, a )-actions in the distributed memory 
that read an earlier value e at location a become 
disabled in the serial memory. This suggests that 
the corresponding serial write be postponed un
til the write has been completed, that is, until no 

R( -----"-----<\ 
_ W,(d,a) .J' 

Mserial 

processor can read an older value from the distributed memory system, i.e., from its cache. 
As a consequence, any read-action that reads the value of an uncompleted write-action is 
postponed as well. 

We shall define R inductively, using a dag <h. Given a state s of Mdi"" the minimal 
elements of <s(h), i.e., the elements that are not the target of any edge in the dag, define 
the actions that M",;ai can 'safely' execute. E.g., a write event a in s(h) cannot be minimal 
as long as the event is still not completed and a read event, R;(d,a), is not minimal as long 
as the write event that writes value d at location a has not occurred. Then, if (s, t) E R 

and s ~ Sf we take (Sf, tf) E R for any l' such that t ~ tf where f3 is a minimal (enabled) 
event in <s'(h) that has not yet appeared in t(h) (or I': if there are none). 

Thus, along a state sequence SOSl ... of Md;st,. the dag <s,(h) functions as a scheduler 
of the events of M",.;ai and forces the R-related M",.;ai computation tot 1 ... to be always 
compatible with SOSI ... so that at no point we can have si(h) fi f, (tot1 .. . )e fi. 

In order to formalize the above ideas, we adapt the transition system of Mdi,t,.; see 
Figure 7. Every write-action uniquely tags the value that it writes so that cache and 
memory update actions can be traced back to the specific action that 'caused' them. 

Obviously, we still have 

Lemma 4.1 Beh(M};,,,.) = Beh(M,{i,',.) 

This is because Ci ( a) = din M",;,1 iff :In C;( a) = d*n in Md;",. and the enabling condition 
of the other events a,re independent from any specific value of the data. 

Since actions can occur more than once on behaviors the subsequent discussion is 
couched in terms of events, i.e., action-occurrences: (k, a) is the k-th occurrence of a 
type(o}action in the behavior or history under discussion, where type(a) is defined as Ri 
or Wi depending on whether a == R;(d, a) or a == Wi(d, a) for some d, a. Also write addr(a) 
for the location that the action a refers to. Write Act; for the i-labeled actions and Exti 
for the i,-Iabeled externa1 actions. 

For uniformity of notation and proof, the initial values of the memory are represented as 
pseudo-actions Wo(O, a) for every location a. Every MI.",.-behavior is implicitly prep ended 
with a sequence (Wo(O, a)), where a ranges over all locations. 

F1'Om now on, h (hf) will denote prefi:res of distributed (se,-ial) memory internal 
behaviors 

We define the following predicates. The more complex definitions are preceded by their 
intuitive meaning: 
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E I Event 

v' R;(d,a) 

v' W;(d,a) 

Allowed if 

G;(a) = d*n for sOlue n 
1\0ut; = {} 
1\ no *-ed entries in In; 

Action 

ti := t; + 1; 
Outi := append( Out i, (d*(t;*i) , a)) 

MW;( d, a) head( Out;) = (d, a) Mem[aJ := d; 
Out; := tail( Out;); 
(Vk", i :: Ink := append(Ink' (d, a))); 
In; := appcnd(Ini' (d, a, *)) 

MR;(d,a) Mem[a) = d In; := append (In; , (d, a)) 

CU;( d, a) hcad(In;) is either 

Cli 

Initially: 

Fairness: 

(d,a) or (d,a,*) Ini:= tail(In;);Gi := updatc(G;,d,a) 

G; := 1'estrict( G;) 

Va Mem[aJ = 0*0 
1\ Vi = 1 ... n G; c Mem 1\ Ini = {} 1\ Out; = {} 1\ ti = 0 

no action other tha.n Cli can be always enabled but never taken 

MW-memory write 
CU-cache update 

M R-memory read 
CI-cache invalidate 

Figure 7: Adapted MI.",. 

• (k,a) occurs in h iff a occurs in II. (i.e., h = hoah, for some 11.0 , h,) and h contains 
at least k occurrenccs of typc( a)-events 

• (k, a) occurs before (I, (3) in II. iff (I, (3) occurs in h and there is a prefix h' of h 
such that (k,a) occurs in h' but not (1,(3) occurs in h' 

• (k, W;(d, a)) is completed in II. iff Vj = 1 ... n CUAd*(hi), a) occurs in h 

• a completes (A:, (3) in h iff not. (k, (3) is completed in h but (k, (3) is completed 
in ha 

• (k,a) is read by (1,(3) in h iff (k,a) is thc (uniquc) write-event that caused the 
value read by (1,(3) to be written. By convention, write-events are always read by 
themselves. More forma.lly: 
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(1,(3) occurs in II and (i) (3 is a write-event and (k,a) = (1,(3) or (ii) (3 == R;(d,a) 
for some i, d, a, 0' == Wj(d, a) for some j and either j # 0 and the last CUi-event 
before (I, (3) in II that refers to location a writes value d*( hj) or j = 0, k = 0, d = 0 
and there are no CU-evcllts before (I, (3) in II that refer to location a 

• (k, W;(d, a)) distributes before (I, Wj(d' , al)) in II iff every cache 'sees' (i.e., is af
fected by) the (k, W;(d, all-event before it sees the second event. More formally: 

k = i = d = 0 or (k, MW;(d*(hi), a)) occurs before (I, MWj(d'*(I*j), a'l) in II 

• (k, R;(d, a)) reads before (I, Wi(d' , a)) in II iff (k, R;(d, a)) reads a value at an ad
dress that will be overwritten by the (I, Wj(d' , all-event. More formally: 

for some (m, Wk(d, a)) we have that (171., Wk(d, a)) is read by (k, R;(d, a)) in II and 
(m, Wk(d,a)) distributes before (I, Wj(d',a)) in II 

• (k, a) is ready in h, h' iff l: > 0, 0' is the k-th type(a)-event in II and there are 
precisely k - 1 type( a)-events in h' 

We now state some important properties of the caching protocol. The whole correctness 
proof will be based on just these properties of Md;,tr. 

Lemma 4.2 Let k > 0 and (k, 0') # (I, (1). The following formulae are invariants of MI.,tr: 

1. (k, R;(d, a)) occurs in h -> (I, Wi(d, a)) is read by (k, R;(d, a)) in h for 
some (I, Wi(d,a)) 

2. (k,a) occurs in h 1\ type(a) = Wi -> O(k, 0') is completed in h 

3. (k,a) is read by (1,(3) in h -> (k,a) occurs before (1,(3) in h 

4. (k, MW;(d,a)) occurs before (I, MWj(dl,a' )) in h-> 
~(I,CUj(dl,'a)) occurs before (k,CUj(d,a)) in h 

5. 0' E Act; 1\ (3 E Act; -> 

(k,a) reads before (1,(3) in h -> (k,a) occurs before (1,(3) in h 
1\ (k,a) distributes before (1,(3) in h -> (k,a) occurs before (1,(3) in h 

6.0' E Acti 1\ (3 E Act; 1\0' == Wi(d,a) 1\ (k,a) occurs before (i,(3) in h-> 
type((3) = Wi -> (k,a) distributes before (I, (3) in h 

1\ type((3) = Ri -> (k,CU;(d*(hi),a)) occurs before (1,(3) in h 
1\ (I, (3) is completed in h -> (k,a) is completed in h 

7. (k,W;(dl,a')) occurs before (l,R;(d,a)) in h 
1\ (i, R;(d,a)) reads before (m, Wj(d,a)) in h-> 

(k, W;(d',a' )) distributes before (m, WAd, a)) in h 
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Proof. We shall not give completely formal proofs here. 

(1) Every value needs to be written; remember the convention to prep end histories with virtual 
(0, WaCO, a)-actions. 

(2) This is a consequence of the fairness constraint on M;[;,tr and the fact that MWi and CUi-events 
are enabled as long as Outi and Ini are non-empty. 

(3) This follows from the unique tagging of the data being written 

(4) Follows from the fact that (d, a) enters queue In f before (d', a') does. 

(5) Let a == Ri(d,a), (3 == Wi(d',a) a.nd let (m,,) is read by (k,a) in h with, == Wj(d,a). 
Since (m, Wj(d,a)) distributes before (I, Wi(d', a)) in h by definition of reads before, 
(I, MWi(d'*(m*i),a)) occurs before (k,a) in h would entail that not (m,,) is read by (k,a) 
in h holds: a becomes enabled only after Outi is flushed and Ini does not contain any .-ed 
entries but (d'*(I*i), a,.) enters Ini after (d*(m*j), a) does. The second implication is proven 
analogously 

(6) Follows from the fact that Wi events are queued in Outi a.nd that a subsequent Ri event 
flushes the Outi queue and the .-ed entries in the Ini queue as well (; remember that a Wi event 
eventually contributes a .-ed entry to Ini). 

(7) Let (t) (n, Wr(d,a)) is read by (I, Ri(d,a)) in h. By definition of reads before 
we have (n, Wr(d,a)) distributes before (m, Wj(d,a)) in h. If the consequent is false 
then we also have (m, Wi(d,a)) distributes before (k, Wi(d', a')) in h. We obtain 
(n',CUi(d*(n*"),a)) occurs before (llI,',CUi(d*(m*j),a)) in hand (m',CUi(d*(m*j),a)) oc
curs before (k',CUi(d'*(hi),a')) in h. As Wi(d', a') and Ri(d,a) both originate in the same 
process, we must have (k', CU i( d'*( 'ai), a')) occurs before (I, Ri ( d, a)) in h. This contradicts (t) 
since this CUi-event processes a *-ed ent.ry in Ini. 0 

N ow we can define the dag and the simulation relation based on it: 

4.1.1 Dag <h 

Define the dag <h on the set 

{(k,a) I k: > 0, a is the k-th type(a)-event in h} U {1.} 

as the smallest relation satisfying 

1. if a,(3 E Acti and (k,a) occurs before (1,(3) in h then (k,a) <h (1,(3) 

2. if (k,a) is read by (1,(3) in h then (k,a) <h (1,(3) 

3. if (k,a) reads before (1,(3) in h then (k,a) <h (1,(3) 

4. if (k,a) distributes before (l,(3) in h then (k,a) <h (1,(3) 

5. if not (k,a) is completed in h then 1. <h (k,a) 

Here, we write U <h v to indicate that the dag has an edge from u to v. 
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4.1.2 Simulation R 

The simulation relation R is inductively defined as the smallest relation that includes the 
pairs (s, t) for initial states s of M1:,tr and t of Mmial and that satisfies for all (s, t) E R 

and s ~ s' that there is a state t' and an event {3 such that (s', t') E Rand t ~ t' subject 
to the following constraint: 

R(' ------"- ----..\'> 
~ G "I 
s s' 

Let T = min( <s'(h)JRs',t) with 
Rs',t = {(k, G) I (k,o:) is ready in s'(h), t(h)} U {1..}. 
If T n Act = 0 then (3 = T else there is an I such that 
(I,{3) E T. Moreover, if 0: completes (n,,) in s(h) 
and, E Acti then (I, (3) E T n Acti 

So, M"rial executes an action that is minimal in the dag determined by s'(h) from which 
all events that have already occured in t(h) are removed. To ensure that M"rial executes 
actions from every Pi, there is the additional constraint that if Mdi,tr completes a Pi-write 
action from s then Mmial must execute a Pi-action from t. It is only at such points that 
we can be sure that there is a P;-a.ction amongst the minimal ones. 

Lemma 4.3 

1. Let (s, t) E Rand s ~ s' (in M]i',t,). Then f01' eve1'y {3 ¢ 1.., if (I, (3) E 

mint <,'(h) rRs',t) for SOllie I, then (3 is enabled in t 

2. ME,tr 1= D((k,O') E dom«h) --+ O(k,G) E min«h)) 

We defer the proof of Clause (1); Clause (2) is a direct consequence of Lemma 4.2(2) 
and the fact that each process issues infinitely many writes. 

From the inductive definition of R, Lemma 4.2(2) and Lemma 4.3(1), we immediately 
conclude that M1:,tr '->R M",;al; provided we can show that <h is indeed a dag so that 
minimal elements always exists. 

Theorem 4.4 <h is a dag. 

The proof is based on a Lemma that relates the ordering of MW-events to the ordering of 
read and write events. 

Write (k,O') <t (1,{3) to indicate that the dag <h admits a path from (k,G) to (I,{3). 

Lemma 4.5 Let (J."W;(d,a)) <t (I,{3) . 

• If{3= Rj(d',a') then (k:,MW;(d*(hi),a) occurs before (1,{3) in h 

• If (3 = Wi(d',a') then (k:, W;(d,a)) distributes before (I, Wk(d', a')) in II. 
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Proof. We use induction along a pa.th from (k, Wi(d, a)) to (I, {3). Let a == Wi( d, a) and {3 E Actj. 

First assume that (k, a) <h (I, {3). Then either (i) j = i and (k, a) occurs before (I, {3) in h or 
(ii) j '" i and (k,a) is read by (1,{3) in hoI' (k,a) distributes before (1,{3) in h. For case (i) 
the Lemma follows from Lemma 4.2(6). Case (ii) follows immediately from the definitions of the 
is read by and distributes before relations. 

Next, suppose that (k,a) <t (m,,,,!) <h (1,{3). By induction the Lemma holds for (k,a) <t 
(m,,,,!). According to the definition of <" there are four cases. If "'! rt Actj and (m,,,,!) reads 
before (I, {3) in h, then the result follows from Lemma 4.2(7). The other cases are as (i) and (ii) 
~~. 0 

We are ready to show that <h is a dag 

Proof of Theorem 4.4. Suppose that <h admits a cycle. Then, we must have (iC, a) <t ([,il) 
and ([,13) <t (iC,a) for some a and 13. W.l.o.g., we may assume that (iC,a) <h (1,13). So, 
by definition of <h, there lUust be all (ih,,?) such that (1,13) <t (m,,?) <t (iC,a) and not 
a, 13, '? E Acti for SOlUe i. 

By transitivity of <t this moans that we have (A) (k, Wi( d, a)) is read by (I, {3) in h and (I, {3) <t 
(k, Wi(d,a)) or (D) (k, Wi(d,a)) distributes before (1,{3) in hand (I,{3) <t (k, Wi(d,a) or 
(C) (k,a) reads before (I,Wi(d,a)) in hand (I,Wi(d,a)) <t (k,a) with a,{3 rt Acti. We 
immediately obtain (k, MWi(d*(k*i),a)) occurs before (k, Wi(d,a)) in h for case (A) and by 
Lemma 4.5 (k,MWi(d*(k*i),a)) occurs before (k,MWi(d*(k*i),a») in h for case (B) and 
(I, MWi(d*(I*i),a)) occurs before (I.:,a) in h for case (C). The first two cases give immediate 
contradictions; the last one via Lemma 4.2(7) from which we infer that (I, W i ( d, a) distributes 
before (I, Wi(d, a)) in h which is impossible. 0 

There remains the proof that ll1inimal elements of <h are always enabled. For this, we 
need the following two trivial facts a.bout NImiai . 

1. Wi ( d, a) is enabled in any state, 

2. Ri( d, a) is enabled in state t iff the last write-event in t( h) that referred to location 
a has the form W j ( d, a.) for sOllle j 

Proof of Lemma 4.3( 1). In the proof we refer to the figure in the definition of the simulation 
R on Page 16. First observe that (!.:,,,,!) E dom«s'(h)) implies that (k,,,,!) occurs in s'(h) for any 
(k,,,,!). This is immediate fro111 the definition of <". 

Since writes are always enabled we may assllme that {3 == Rj(d, a). Now, sllppose that {3 is 
not enabled in t. Then the last write event that referred to location a in t(h) was a == Wi(d', a) 
for some i with d' '" d ; let this be the k - th Wi-event in t(h). Since (k,a) occurs in t(h), we 
mllst have (k,a) is completed in s(h) by definition of R. As (I,{3) occurs in s'(h) we have 
(n,,,,!) is read by (1,{3) in s'(h) for some nand",! == Wr(d,a) so that (n,,,,!) <,'(h) (l,{3). Also, 
since (1,{3) E min«s'(h) rR",t) we lUlISt ha.ve (n,,,,!) is completed in s(h). 

Now, if (1,{3) reads before (k,a) in s'(h) then (l,{3) <,'(h) (k,a), whereas (k,a) occurs in 
t(h) but not (I, {3) occurs in t(h). This contradicts the definition of R. 

17 



Hence, since both write actions are completed we must have (k, a) distributes before (n,,) 
in s'(h). We conclude that (k,a) <,'(h) (n,,) so that we cannot have (n,,) occurs before 
(k, a) in t(h). As (k, a) is the last write event referring to location a in t(h), we must have 
(n,,) E dome <s'(h) r Rs',,) so that (I, (3) is not minimal. Contradiction. 

We conclude that a cannot be of this form and, hence, that (3 is enabled in t. o 

4.2 Concluding the proof 

For the last step of verifying that (s, t) E R ==} sxt F ,p; for every i = 1 ... n, we need to 
instantiate the choice functions fi and define 

f;(h) = hi 

n;(ha) 

where hi is the prefix of h such that WI = n;(h) with 
n; inductively defined by n;(s) = 0 and 

{ 
n;(h) + 1, if a completes (n,,) in h II, E Act; 
ni(h), otherwise 

So, the length of f;(h) is the number of completed Wi-events in h. This is the obvious 
choice because the definition of R guarantees that M,cr;ai performs a Pi-action, only in case 
Md;,'r completes a Wi-action. 

By Lemma 4.2(3) and the assumption that every processor contributes infinitely many 
writes, each Ji increases i.a. all A1distr. 

Now, fix some i = 1 ... nand (5, t) E R. As ,p; == fi(he) ri ::5 ha. ri, we have to show that 
f;(s(h)) ri ::5 t(h) rio 

Since both Rand f; are defined inductively, we prove this inductively. 

The base case is clear as thell s(h) = t(h) = sand n;(s) = O. 

For the inductive step, we may assume that f;(S'(h)) ri Ii t(h) rio We refer to the 
definition of R Oil Page 16. Hence, we must have (i) a completes (m,,) in s(h) with 
, E Act;. Let f;(S'(h)) ri = f;(s(h)) W8 and let 8 be the n-th event of type(8). Then, 
(ii) (n,8) is ready in s'(h), t(h) must be true. By induction, it suffices to prove that 8 == (3, 
where (3 is the transition taken in t according to R. 

From Clause 2 in the deflllition of <,'(h), we have 1.. :1,'(h) (m,,) so that Tn Act; =F 0 
by Lemma 4.3(1). In fact IT n Acti I = 1 as Clause (1) says that <,'(h) extends the ordering 
on event occurrences induced by s'(h) r-i. Because (i) holds, we know from Lemma 4.2(6) 
that for any Wi event 8, if (1',8) occurs in 5(.f;(h)) then (r,8) is completed in s(.f;(h)); 
whence 1.. :1,'(h) (r,8). By (ii) and the fact that 1.. is never covered by read events, we then 
have (n, 8) E Tn Acti and also 8 == (3 since (I, (3) E Tn Acti for some I by definition of R. 

5 Conclusions 

We have worked out the proof ill considerable detail. The proof rule demands that a 
weak simulation be constructed as the first step. This can be interpreted as defining 

18 



a scheduler that schedules the appropriate event in M"r;al for every Md;,tr-event. For 
verifying sequential consistency this is a. quite natural approach because the purpose of 
the protocol is to ensure that the event sequences that each process engages in can also 
be obtained from a serial memory. In this respect, there is a correspondence with the 
verification approach of [ABM93]. An important ingredient of the proof is the 'delayed' 
checking of sequential consistency of prefixes, which is inherent to our approach to interface 
refinement. This makes the definition of <h easier, although a penalty is paid in the form of 
a slightly more complex proof of Lemma4.3(1). In contrast, the scheduler used in [ABM93] 
needs to maintain sequential consistency of the complete history instead of (ever longer) 
prefixes of history. 

The actual proof tries to abstract from the details of the protocol. I.e., <h is defined in 
terms of some relations on the external behavior of the protocol and the proof is based on 
a number of correctness properties of the protocol. For the same reason, we have not used 
auxiliary variables other than for the purpose of making events unique. In fact, we view 
this proof as a first step towa.rds a proper analysis of sequential consistency: The dag <h 
characterizes the constraints that the protocol maintains in order to generate sequentially 
consistent behavior. However, as is, <h is defined using internal events of Md;'tr; e.g., 
the distributes before relation refers to MW-events. Accordingly, one might ask for the 
weakest online2 scheduler defined in terms of constraints on the external events only that 
maintains sequential consistency. In fact, we ha.ve already obtained more efficient protocols 
for network based architectures and are generalizing the protocols towards weaker memory 
models such as release consistency. 
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