

Verifying sequentially consistent memory using interface
refinement
Citation for published version (APA):
Gerth, R. T. (1993). Verifying sequentially consistent memory using interface refinement. (Computing science
notes; Vol. 9348). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Jul. 2024

https://research.tue.nl/en/publications/90d59620-27fd-4a32-80f2-3fff90eb86ee

Eindhoven University of Technology

Department of Mathematics and Computing Science

Verifying Sequentially Consistent Memory using

Interface Refinement

by

R. Gerth

Computing Science Note 93/48
Eindhoven, December 1993

93/48

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited disrribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Verifying Sequentially Consistent Memory using
Interface Refinement

Rob Gerth'
Eindhoven University of Technologyt

December, 1993

In large multiprocessor architectures the design of efficient shared memory systems is
important because the latency imposed on the processors when reading or writing should
be kept at a minimum. This is usually achieved by interposing a cache memory between
each processor and the shared memory system. A cache is private to a processor and
contains a subset of the memory; hopefully conta.ining most of the locations (variables)
that the processor needs to access; i.e., the 'cache-hit' probability should be high. Such
caches induce replication of data and hence there is a problem of cache consistency: if one
processor updates the value at some location, all caches in the system that contain a copy
of the location need to be updated. This is often done by marking the location in the
caches so that a subsequent access causes the location to be fetched from shared memory
again; variations exist, though. Clearly, chaIlging a location and marking that location in
other caches must be done as one atomic operation if memory is to behave as expected.

If the multiprocessor architecture is also distributed then such 'write and mark' opera
tions ca.use unacceptable latencies. For instance, the DASH [LLG+92] and KSR1 [BFKR92]
architectures envisage up to 10000 workstations to be connected and to operate on a con
ceptually shared memory. Atomic write-anq-marks produce massive network congestion
because at any time there will be many writes in progress.

The approach taken ill such distributed shared memory architectures is to relax the
constraints on the behavior of a standard shared memory. Many of these relaxations
are patterned after Lamport's proposal of sequential consistency (Lam79]. In a standard
memory the value that is read at a location must be the value that has last been written
to that location. A sequentially correct memory satisfies a less stringent requirement: in
Lamport's words

the result of any execution [of the memory) is the same as if the opemtions
[memory accesses} of all the processorS were exec1ded in some sequential order,

'Currently working in ESPRIT project. P602l: "Building Correct Reactive Systems (REACT)".
tDepartment of Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB

Eindhoven, The Netherlands. Email: robglDwin.tue.nl.

1

and the operations of each individual p"oceSS01' appear in this sequence in the
order specified by its program.

The challenge that sequentially correct memory poses is not so much the verification
of yet another complex protocol but rather the fact that sequential consistency does not
comfortably fit the patterns of standard refinement strategies (trace inclusion, failure or
ready trace equivalence, testing pre order, bisimulation, etc.).

The aim of this paper is to show how sequential consistency can be interpreted as an
instance of interface refinement [GKS92] a.nd by verifying a sequentially consistent memory
protocol~the lazy caching protocol of [ABM93]~. Although the protocol is proven correct
in that paper, the proof is on a semantical level and is not grounded in a verification
methodology. This makes the proof quite hard to follow and hard to generalize to more
complex protocols such as release consistent or non-blocking memory.

In the next section we explain a.nd define sequential consistency. The lazy caching
protocol is introduced in the Section 3. The heart of the paper is formed by Section 3
and 4. The latter contains the proof of sequential correctness of the protocoL Section 3
gives an overview of the verification methodology. Investigating sequential consistency
made us realize that the methodology to prove interface refinement as defined in [GKS92]
can be considerably simplified. Accordingly, this Section is also of independent interest.
In Section 5 some conclusions are drawn.

1 Sequential consistency

In order to understand Lamport's definition, we first fix the behavior of a standard, 'serial'
shared memory. This is done in Figures 1 and 2.

• • •

~
~

" " -ci' -ci'
~

~

~
~

0:: S

Mseriai

Figure 1: Architecture of M",iai

The interface of the memory comprises of'read (Ri(d, a)) and write (Wi(d, a)) events for
each processor Pi. The processors and the memory ha.ve to synchronize on these read a.nd

2

write events. The transition system in Figure 2 indicates that these are the only external
events that Mmiai participates in a.nd that it has no internal events. A read event Ri(d, a),
issued by Pi, can only occur if the memory holds value d at location a: Mem[a] = d. Write
events Wi(d, a) can always occur with the expected result. The external behavior of the
serial memory, Beh(Mmid), is defined as the maximal (hence infinite) sequences of read
and write events generated according to the transition system of Figure 2. Hence, the
memory serializes the reads and writes of the processors.

The interface of the serial memory (and the caching protocol) in [ABM93] differs from
the one we use. There, a Ri(d, a)-event in either protocol is split into an (input) event
ReadRequestJd, a), which is always enabled, and an (output) event ReadReturni(d, a) that
behaves as the Ri(d, a)-event. One reason for doing so is their use of I/0 automata specifi
cations in which input events must be always enabled. However, that paper also stipulates
that a process i must not do otherwise than engage in a Return event after it has issued
a Request. This means that the intended interface is synchronous so that not using I/O
automata and having simple read and write external events seem to be the conceptually
clearer approach.

Two objections that might be levied against this choice of interface are: events cannot
overlap because they do not extend in time; and: read events specify the value that is read
and thus do not really model read actions. Note that the second objection applies to the
[ABM93] interface as well. The answer to both objections is that what is of importance
are the points at which the memory system changes state and the values that can be read
from memory as a result of these changes. lIenee, write events should merely be viewed
as the initiators of state changes while read events indicate which values can be returned.
Thus, the precise way in which a process initiates a read or a write is of no importance to
the modeling.

We can use this definition of serial memory both to characterize the sequential orders in
which the memory accesses of the processors can be executed-any order that corresponds
to a behavior of M",iai-as well as to characterize the order of operations of each individual
processor-since a processor belongs to the environment of M,eriaJ, possible orderings are
determined by the behaviors of Mmiai as well.

E I Event I Allowed if I Action

V Ri(d,a) Mem[a] = d
V Wi(d,a) Mem[a]:= d

initially: Va Mem[a] = 0

Figure 2: M"'iai

We rephrase Lamport's proposal of corred behavior of sequentially consistent memory
(SCM) thus

3

any extemal behaviol', 17, [of the SCAI] cOlTesponds with an extemal behavior, 7,

of M",iai so that the ol'del' in which the operations of each individual processor
appear in 17 coincides with ol'der in 'Which they appear in r.

For instance, the graph below depicts a· possible prefix of a behavior of an SCM and a
corresponding serial behavior:

SCM WI (l, x) W 2 (2,y) R3(2, y) R3(O, x) R3(1,x)

PI: W, (1,J:)
P2 : W 2 (2,y)
P3 : R3(2,y) R3(O, x) R3(1,x)

Mserial W 2 (2,y) R3(2,y) R3(O,X) W , (l,x) R3(1,x)

Time flows from left to right. In particular notice that, although P, sets x to 1 before
P3 accesses that location, the first read of P3 retrieves x's initial value O. The effect of
writes are thus seen to propa.gate slowly through the system. This is typical of sequentially
consistent memory. Also notice that this SCM behavior is not possible for serial memory.

For completeness sake, we mention that the following behavior of the individual pro
cesses cannot be accommodated for by SCM:

P, : W, (l,:")
P2 : WA2,:c)
P3 : R3(1,x) R3(2,x)
P4 : R4(2,x) R4(1,x)

The problem is that P3 and P4 'observe' the writes of P, and P2 in different order.
Sequential consistency has been the callonical distributed memory model for a long

time. In practice, however, different, still weaker memory models tend to be implemented
as the synchronization overhead of SCM is still too large. For instance, the processor
consistency model would allow the above behavior at the processors. See [Mos93] for an
overview of distributed memory models.

A formal definition

Let . t i denote the operation on behaviors of removing the events that do not originate
from process Pi or that are not externaL Then we have

A memory M is sequentially consistent w.r.t. Murial, M s.c. Murial, iff

'117 E Beh(M) :i7 E Beh(Mmiai) Vi = 1 ... 11 17 ti = 7 ti

This memory model enjoys an important advantage over its 'competitors': for reasoning
about a program we may ignore the fact. that the program runs on a. sequential consistent
memory and can assume instead that it runs on a standard serial memory. I.e., verification

4

techniques need not be adapted a.nd the programming model is that of standard shared
memory.

We stress that this is the case only if the program has no means of communication,
either implicitly or explicitly, other than through the memory. If a program can send
messages or can sense the time n.t which reads and writes occur, then differences between
sequential consistent and serial memory can be detected; see, e.g., [ABM93].

2 The lazy caching protocol

In [ABM93] a seqnential correct memory that is not serial was proposed: the lazy caching
protocol. We use a slightly a.dapted version of this protocol.

The architecture of M d;", is depicted in Figure 3; the transition system in Figure 4.
The protocol is thus geared towa,rds a bns based architecture. Here, too, the interface

C,

Mdistr

C2

N
~

" a

• • •

Mcm

Figure 3: Architecture of M d;",

of the memory comprises of the read and write events of the processors. M d;"" however,
interposes caches C i between the shared memory Mem and the processes Pi. Each cache Ci

contains a part of the memory Mel1/. and has two queues associated with it: an out-queue

5

Outi in which Pi's write requests are buffered and an in-queue Ini in which the pending
cache updates are stored. These queues model the asynchronous behavior of write events
in a sequential consistent memory. The gray arrows indicate the information flows from
the out queues to the in queues and to klem.

A write event W i(d, a) does not ha.ve immediate effect. Instead, a request (d, a) is placed
in Outi. When the write request is taken out of the queue, by an internal memory-write
event MWi(d, a), the memory is updated and a cache update request (d, a) is placed in
every in-queue. This cache update is eventua.!ly removed from the top of some queue Inj
by an internal cache update event CUj(d, a) as a result of which cache memory Cj gets
updated. Cache misses are modeled by interna.! cache invalidate events: Cli can arbitrarily
remove locations from cache Ci . Caches are filled both as the delayed result of write events
as well as through internalll1emory-read events, MRi(d, a). The latter events intend to
model the effect of a cache-miss: in tha.t case the read event suspends until the location is
copied from memory.

A read event Ri(d, a), predictably, stalls until a copy of location a is present in Ci but
also until the copy contains a 'correct' value in the following sense: sequential consistency
implies that a processor Pi reads the value at a location a that was most recently written
by Pi unless some other processor updated a in the mean time. Hence, a read event Ri(d,a)
cannot occur unless all pending writes in 01lti are processed as well as the cache update
requests from Ini that correspond to writes of Pi. For this reason, such cache update
request are marked (with a *).

The transition system in Figure 4 makes a.ll this precise.
In this transition system caches are modeled as partial functions from the set of locations

to the set of values. Cache update (CU) actions produce 'variant functions': update (Ci , d, a)
stands for the function f tha.t coincides with Ci except 'at' a where f(a) = d. Cache
invalidate (CI) actions yield 'restrictions' of functions: restrici(Ci) stands for any function
whose domain is included in that of Ci and which coincides with Ci on its domain.

For Md;", there is a. distinction between the extern a.! behavior, Beh(Mdi",) and the in
ternal behavi01·, IBeh(Md;",) tha.t comprises the maximal sequences of internal and external
events that kldi", ca·n generate (obviously we have Beh(A1",ial) = IBeh(M",ial)). Observe
that for s E IBeh(A1d;",·), sri denotes the subsequence of extemal read and write-events
of Pi in s.

3 Interface Refinement

The proof of sequential consistency will be based on our notion of interface refinement. The
approach that we shall use is based on a much streamlined version of the one published
in [OKS92]. This section intends to supply a quick introduction to interface refinement
a.nd a (derived) proof rule that is specifically engineered for proving sequential consistency.
A full account of the genera.!, streamlined approach will be published elsewhere.

We assume some general knowledge of linear temporal logic and of transition systems.

6

E t Event

vi Ri(d,a)

vi Wi(d,a)

MWi(d,a)

MRi(d, a)

CUi(d,a)

Cl i

Initially:

Fairness:

Allowed if

Ci(a) = d 1\ Outi = {}
1\ no *-ed entries in Ini

Action

OUii:= append(Outi,(d,a))

head(OUii) = (d, a) Mem[aJ := d;
OUii := tail(Outi);
(Vk f- i :: Ink:= append(Ink' (d, a)));
Ini := append(Ini, (d, a, *))

Mem[aJ = d Ini:= append(Ini,(d,a))

head(Ini) is either
(d,a) or (d,a,*) Ini:= tail(Ini); Ci := update(Ci,d,a)

Ci : = resl1'ict (Ci)

Va Mem[aJ = 0
1\ Vi = 1 ... 11 C i C Me1/! 1\ Ini = {} 1\ OUti = {}
no action other than Cli can be always enabled but never taken

MW-memory write
CU-cache update

MR-memory read
CI-cache invalidate

Figure 4: Mdi,t,·

If we compare the definitions of sequential consistency

C s.c. A iff Va E Beh(C) 37 E Beh(A) Vi = 1 ... 11 afi = 7 fi

and that of standard (trace) refinement

C ref A iff Va E Beh(C) 37 E Beh(A) a = 7

we detect a pattern:

CrefRA iff VaE Beh(C) 37EBeh(A) (a,7)ER

I.e., these cases can be viewed as refinements, except that the way in which an abstract
behavior a gets implemented as 7 may change. Consequently, the refinement relation
is pammete1'ized with a relation R that. determines how behaviors are implemented. For
example, the relation is that of equality for ordinary refinement. This pattern is also shared
by, e.g., the condition of seria.lizebility of dat.abase transactions and by Lamport's 'stutter
closed' refinement.

7

We assume that such relations are specified in some logic. I.e., a relation R is now given
by a formula if; and ((T, T) E R iff (T, T F if;, for a suitably defined satisfaction relation F'

The logic will be a linear temporal logic (LTL); although we shall only use always
(0) and eventuality (0) properties. An L'1'L is usually valuated on (infinite) sequences of
states. To express constraints on (internal) behaviors, we assume the logic to be extended
with a hisio7'Y variable h that valuates at a point in a state sequence to the sequence of
events that have occurred up to this point. A second complication is that here, the LTL is
used to compare two state sequences. By convention, two (equal length) state sequences
determine a single such sequence through taking the pointwise product of the states in
the sequences. In the logic we can then use projection functions to refer to the separate
sequences agam. Write he and h" for the projections of history h; 'c' for concrete and'a'
for abstract.

We need to establish some notation. We generically assume that C and A are inter
preted transition systems that have disjoint sets of (free) variables; see M"r;a/ or Md;,tr for
examples. Write S(A) for the set of states of A; I(A) for its initial states; and 's ~ s' in
A' if the event a is executed in state s of A and produces state s'. Remember that these
states also valuate the variables; in particular the variable h, so that s(h) = c if s E I(A)
and if s ~ s' in A then s'(h) = s(h r a. We often write just s ~ s' if the transition
system is clear from the context. Write [A] for the set of maximal sequences of states,
obtained by repeatedly applying ~ starting in some initial state of A. We assume that
there are no finite state sequences in [A]; as is the case for e.g. M"r;ai and Md;,tr' Because
states valuate h, every state sequence (T E '[A] uniquely determines an event sequence,
(Te E IBeh(A); hence IBeh(A) = {(Te I (T E [A]}. For states sand t write's xi' for their
product or pairing. For (infinite) sequences of states CT and T write aXT for the sequence

obtained by the pointwise product of the states in (T and T. Write 1i for the set of (finite)
event sequences h, h', History variables take there value from 1i.

Definition 3.1 (Interface refinement) Lei if; be some LTL formula. Then

C ref¢ A iff V(T E [CD ::IT E [A] (TXT F if; .

For example, standard trace refinemcnt, C ref A, is defined as C ref ~ A by taking, e.g.,

if; == O¢ and ¢ == last(hc) = last(h a) •

For (T E [CD and T E [A] we have by definition of 0 that (TXT F if; holds just in case
(TXT, k F if, holds at evcry position k; i.e., for every state pair in (TXT. If sxi is the k-th
such state pair, then this is equivalent to sxt F if, which holds precisely if (t) last(s(h)) =
last(t(h)). I.e., (sxt)(hc) = 8(h) and (sxt)(ha) = t(h). Thus, (t) expresses that the event
that produced s in C is the same as the one that produced t in A.

3.1 Sequential consistency as interface refinement

For this we make a simplifying assumption

8

Every process issues infinitely many writes to Md;",. Stated diffel'ently, on any
(J E [Mb ",] and for any i = I ... 1/., (Je fi contains infinitely may Wi events.

This simplification is not essclltial for the proof; it does make it slightly easier.

Sequential consistency is a condition on maximal, hence, infinite sequences. To express
this in an LTL, we must rewrite to a condition on states, i.e., on prefixes of the sequences,
that must hold at various points along thc sequences. A first try is

M di", s.c. M",iai iff M di",· ref ~ fl!I",·ia.i with 1> = D 1'I;=1...n 1>i and

In (JXT F 1>i, the function of the quantification is to 'freeze' prefIxes of the distributed
behavior (J so that they can be matched against prcfixes of the serial behavior T. As every
prefix of (J is eventually matched aga.inst a prefix of T and because (J is infinite, we must
have (J fi = T fi.

Another way of doing this is to associate with every prefix of T a prefix of (J that can
be matched against it. This approach leads to an easier proof. Now, however, we must
make sure that we match ever longer prefixes of (J. Hence, we change 1>; by replacing the
existentially quantified temporal variable H by a 'choice function' fi that maps a history
to a prefix of that history. Say that f: H --+ H increases i.o. on A iff for every chain
hO

::: hi ... such that limn~oo h" = IBeh(A) we have lim,,~oo Ifi(h")1 = 00. Then

<Pi ::::::: ./i(ho) fi :::::; 11.1 fi for sonte .Ii that increases i.D. on Mdistr (1)

For completeness sake, we supply a proof. It is basically expanding definitions:

Proof. The left to right direction is obvious. Now assume that Md;,', s.c. M",iai is not true.
So, for some (j = S081 ..• E [Mdistr] and for every T E [MseriaI] we have (T€ fi -:j. T

e fi for some i.
Fix such a (1, i a.nd T, and take a.ny Ii that increases La. on Mdistr.

For some index j we must have (80SI ... Sj)e f i :S T e f i and (80S1 ... 8j+l)e fi -L T e fi which is
equivalent to sj(h) fi :S T' fi but. 8i+1(h) fi -L T' fi. Now, consider D.pi. As f; increases i.o. on
Mdi,tn there is an index k such that 8}+I(h):s f;(sk(h)). But then (J,T,k ~.pi whence (J,T ~.p.
Since this conclusion holds for every T E [Mserial] and any Ii, we conclude that Mdistr ref¢ Mserio'/

cannot. hold. D

3.2 A proof rule

The first step in verifying sequential consistency C ref ¢ A, or interface refinement in
genera.l, is to relate beha.viors in the two systems with each other. The second step is then
to prove that related beha.viors satisfy the a.ppropriate specification

A general technique for relating state sequences is that of simulation (backward or
forward simulation, possibility ma.ppings, implementation functions).

9

Definition 3.3 (Weak simulation) Given tmnsition systems C and A, a relation R <;;;
S(C) X SeA) is a weak simulation of C in A, C '-+R A, provided

1. for any s E I(C) there is an I E leA) such that (s,t) E R,

2. if (s, t) E Rand s ~ s' in C then thel'e is an t' E SeA) such that (s', t') E Rand

either thel'e is an event fJ such that t ~ t' in A or t = t' (we say fJ = f in this case)

The inductive clause (2) is illustrated in the fig
ure on the right. Given a state sequence (J E [C],
a weak simulation C '-+ R A constructs a state se-
quence T of A in which every sta.te in T is related

t fJ t'
R(-----------~\I\" R A

to some state in (J. However, we do not necessar- a •• C
ily have T E [A]. First of all, A may have fairness S s'
constraints which T ma.y viola.te. Secondly, T may be finite because from some moment
onwards R relates the transitions in (J with f transitions 'in' T. Fairness constraints are no
problem for us, as M''''ial will play the role of A and it does not have fairness constraints.
Forcing T to be infinite will be done implicitly, later on.

R is called a weak simulation because A is allowed to 'stutter' and because there are
no constraints on the events of the transitions of C and A, nor on the related states. This
is different from more standard forms of simulation where there are constraints on the
events-e.g., a '= fJ-or on the rela.ted states.

In our view, such condition are really implicitly defining how behaviors must be imple
mented and tha.t is precisely what we want to avoid at this point. E.g., forcing a '= fJ in
related transit.ions is forcing related sequences to be equal. If we set up such a stronger
simulation between the stat.es of C and A we are showing ordinary refinement.

Given a weak simulation, C '-+ R A, the second step is to show that R-related sequences
(J and T satisfy (JXT p ,p. For sequential consistency this is easy, as it reduces to proving
,pi for every i = 1 .. . 11. in every related state pair.

This observation immedia.tely suggest.s the proof rule in Figure 5.

A and Care t.ransition systems such tha.t A has no fairness const.raints':

C '-+n A, Vs,t (s,t)ER =} sxtp,pi(i=l ... n)
pC s.c. A

with ,pi '= fi(ho) fi :5 ii, fi for some ./i that. increases i.o. on C

Figure 5: Proof rule for establishing sequential consistency

1 Formally: [AI must. be closed in t.he sense t.hat. for any chain 0'0 ::0 0'1 ::0 ... for which Ifi 30' E [AI O'i ::0
(J" we have limi_oo (fi E [A]

10

Soundness of the rule is immediate. Observe that because f; must increase i.o. on C so
that <Pi maps ever longer prefixes of [CD to prefixes of [A], the weak simulation R cannot
associate a finite state sequence of [A] to one in [C].

The proof rule for general interface refinement, C ref.p A, is based on the same ideas.
The first step, again, is establishing a. weak simulation. The second step changes because
now <P need not be of the form D.;\ and it is this form that determined the second pre
miss in rule 5. For instance, if <P == DO.;\ for some state assertion .;\, then we need to
establish .;\ at infinitely many state pairs along every pair of R-related state sequences.
For this we introduce an auxiliary state formula. d such that C p DOd and demand that
(8, t) E R & 8 P d =} sxt p.;\. In case <P == DO<p' /\ O<p" we would use two auxil
iary state assertions d' and d" such that C p DOd' /\ Od", etc. The normal form result
of [MP91 J tells us that a finite number of auxilia.ry formulae always suffices. Specifically,
we have that for every TL formula <P (without quantifiers) there is a propositional TL
formula IjI with propositional variables PI, . .. , Pn and state formulae <PI, ... , <Pn such that
p <P f-> 1jI[<PJ/PI, ... , <Pn/Pnj, where I denotes syntactic substitution; we usually write

1jI(<PI, ... <Pn). The following proof rule applies to the general case.

A and C are transition systems such that A has no fai1'11ess constraints; \II is a propositional
TL formula with propositional variables PI, ... , Pn; and <PI, ... , <Pn and dl , ... , dn are
state formulae.

p \II (<PI, ... <Pn) -> <P
C P \II(dl , ... , dn)

C '-+R J1

spddz(s,t)ER =} SXiP<Pi (i=l ... n)
pC ref¢ A

Figure 6: Proof rule for general interface refinement

The sequential consistency proof rule is obtained by taking d;
that the formula in Lemma 3.2 is in 1I0rmal fonn.

4 Correctness Proof of M d;,t, s.c. M",;ai

4.1 Constructing a weak simulation R

true and by noting

The problem in defining a simulation is to decide when to 'allow' the serial memory to
make a transition.

11

In the situation indicated on the right, f3
should not be the corresponding Wi(d, a)-event.
If it is, Rj (e, a)-actions in the distributed memory
that read an earlier value e at location a become
disabled in the serial memory. This suggests that
the corresponding serial write be postponed un
til the write has been completed, that is, until no

R(-----"-----<\
_ W,(d,a) .J'

Mserial

processor can read an older value from the distributed memory system, i.e., from its cache.
As a consequence, any read-action that reads the value of an uncompleted write-action is
postponed as well.

We shall define R inductively, using a dag <h. Given a state s of Mdi"" the minimal
elements of <s(h), i.e., the elements that are not the target of any edge in the dag, define
the actions that M",;ai can 'safely' execute. E.g., a write event a in s(h) cannot be minimal
as long as the event is still not completed and a read event, R;(d,a), is not minimal as long
as the write event that writes value d at location a has not occurred. Then, if (s, t) E R

and s ~ Sf we take (Sf, tf) E R for any l' such that t ~ tf where f3 is a minimal (enabled)
event in <s'(h) that has not yet appeared in t(h) (or I': if there are none).

Thus, along a state sequence SOSl ... of Md;st,. the dag <s,(h) functions as a scheduler
of the events of M",.;ai and forces the R-related M",.;ai computation tot 1 ... to be always
compatible with SOSI ... so that at no point we can have si(h) fi f, (tot1 .. .)e fi.

In order to formalize the above ideas, we adapt the transition system of Mdi,t,.; see
Figure 7. Every write-action uniquely tags the value that it writes so that cache and
memory update actions can be traced back to the specific action that 'caused' them.

Obviously, we still have

Lemma 4.1 Beh(M};,,,.) = Beh(M,{i,',.)

This is because Ci (a) = din M",;,1 iff :In C;(a) = d*n in Md;",. and the enabling condition
of the other events a,re independent from any specific value of the data.

Since actions can occur more than once on behaviors the subsequent discussion is
couched in terms of events, i.e., action-occurrences: (k, a) is the k-th occurrence of a
type(o}action in the behavior or history under discussion, where type(a) is defined as Ri
or Wi depending on whether a == R;(d, a) or a == Wi(d, a) for some d, a. Also write addr(a)
for the location that the action a refers to. Write Act; for the i-labeled actions and Exti
for the i,-Iabeled externa1 actions.

For uniformity of notation and proof, the initial values of the memory are represented as
pseudo-actions Wo(O, a) for every location a. Every MI.",.-behavior is implicitly prep ended
with a sequence (Wo(O, a)), where a ranges over all locations.

F1'Om now on, h (hf) will denote prefi:res of distributed (se,-ial) memory internal
behaviors

We define the following predicates. The more complex definitions are preceded by their
intuitive meaning:

12

E I Event

v' R;(d,a)

v' W;(d,a)

Allowed if

G;(a) = d*n for sOlue n
1\0ut; = {}
1\ no *-ed entries in In;

Action

ti := t; + 1;
Outi := append(Out i, (d*(t;*i) , a))

MW;(d, a) head(Out;) = (d, a) Mem[aJ := d;
Out; := tail(Out;);
(Vk", i :: Ink := append(Ink' (d, a)));
In; := appcnd(Ini' (d, a, *))

MR;(d,a) Mem[a) = d In; := append (In; , (d, a))

CU;(d, a) hcad(In;) is either

Cli

Initially:

Fairness:

(d,a) or (d,a,*) Ini:= tail(In;);Gi := updatc(G;,d,a)

G; := 1'estrict(G;)

Va Mem[aJ = 0*0
1\ Vi = 1 ... n G; c Mem 1\ Ini = {} 1\ Out; = {} 1\ ti = 0

no action other tha.n Cli can be always enabled but never taken

MW-memory write
CU-cache update

M R-memory read
CI-cache invalidate

Figure 7: Adapted MI.",.

• (k,a) occurs in h iff a occurs in II. (i.e., h = hoah, for some 11.0 , h,) and h contains
at least k occurrenccs of typc(a)-events

• (k, a) occurs before (I, (3) in II. iff (I, (3) occurs in h and there is a prefix h' of h
such that (k,a) occurs in h' but not (1,(3) occurs in h'

• (k, W;(d, a)) is completed in II. iff Vj = 1 ... n CUAd*(hi), a) occurs in h

• a completes (A:, (3) in h iff not. (k, (3) is completed in h but (k, (3) is completed
in ha

• (k,a) is read by (1,(3) in h iff (k,a) is thc (uniquc) write-event that caused the
value read by (1,(3) to be written. By convention, write-events are always read by
themselves. More forma.lly:

13

(1,(3) occurs in II and (i) (3 is a write-event and (k,a) = (1,(3) or (ii) (3 == R;(d,a)
for some i, d, a, 0' == Wj(d, a) for some j and either j # 0 and the last CUi-event
before (I, (3) in II that refers to location a writes value d*(hj) or j = 0, k = 0, d = 0
and there are no CU-evcllts before (I, (3) in II that refer to location a

• (k, W;(d, a)) distributes before (I, Wj(d' , al)) in II iff every cache 'sees' (i.e., is af
fected by) the (k, W;(d, all-event before it sees the second event. More formally:

k = i = d = 0 or (k, MW;(d*(hi), a)) occurs before (I, MWj(d'*(I*j), a'l) in II

• (k, R;(d, a)) reads before (I, Wi(d' , a)) in II iff (k, R;(d, a)) reads a value at an ad
dress that will be overwritten by the (I, Wj(d' , all-event. More formally:

for some (m, Wk(d, a)) we have that (171., Wk(d, a)) is read by (k, R;(d, a)) in II and
(m, Wk(d,a)) distributes before (I, Wj(d',a)) in II

• (k, a) is ready in h, h' iff l: > 0, 0' is the k-th type(a)-event in II and there are
precisely k - 1 type(a)-events in h'

We now state some important properties of the caching protocol. The whole correctness
proof will be based on just these properties of Md;,tr.

Lemma 4.2 Let k > 0 and (k, 0') # (I, (1). The following formulae are invariants of MI.,tr:

1. (k, R;(d, a)) occurs in h -> (I, Wi(d, a)) is read by (k, R;(d, a)) in h for
some (I, Wi(d,a))

2. (k,a) occurs in h 1\ type(a) = Wi -> O(k, 0') is completed in h

3. (k,a) is read by (1,(3) in h -> (k,a) occurs before (1,(3) in h

4. (k, MW;(d,a)) occurs before (I, MWj(dl,a')) in h->
~(I,CUj(dl,'a)) occurs before (k,CUj(d,a)) in h

5. 0' E Act; 1\ (3 E Act; ->

(k,a) reads before (1,(3) in h -> (k,a) occurs before (1,(3) in h
1\ (k,a) distributes before (1,(3) in h -> (k,a) occurs before (1,(3) in h

6.0' E Acti 1\ (3 E Act; 1\0' == Wi(d,a) 1\ (k,a) occurs before (i,(3) in h->
type((3) = Wi -> (k,a) distributes before (I, (3) in h

1\ type((3) = Ri -> (k,CU;(d*(hi),a)) occurs before (1,(3) in h
1\ (I, (3) is completed in h -> (k,a) is completed in h

7. (k,W;(dl,a')) occurs before (l,R;(d,a)) in h
1\ (i, R;(d,a)) reads before (m, Wj(d,a)) in h->

(k, W;(d',a')) distributes before (m, WAd, a)) in h

14

Proof. We shall not give completely formal proofs here.

(1) Every value needs to be written; remember the convention to prep end histories with virtual
(0, WaCO, a)-actions.

(2) This is a consequence of the fairness constraint on M;[;,tr and the fact that MWi and CUi-events
are enabled as long as Outi and Ini are non-empty.

(3) This follows from the unique tagging of the data being written

(4) Follows from the fact that (d, a) enters queue In f before (d', a') does.

(5) Let a == Ri(d,a), (3 == Wi(d',a) a.nd let (m,,) is read by (k,a) in h with, == Wj(d,a).
Since (m, Wj(d,a)) distributes before (I, Wi(d', a)) in h by definition of reads before,
(I, MWi(d'*(m*i),a)) occurs before (k,a) in h would entail that not (m,,) is read by (k,a)
in h holds: a becomes enabled only after Outi is flushed and Ini does not contain any .-ed
entries but (d'*(I*i), a,.) enters Ini after (d*(m*j), a) does. The second implication is proven
analogously

(6) Follows from the fact that Wi events are queued in Outi a.nd that a subsequent Ri event
flushes the Outi queue and the .-ed entries in the Ini queue as well (; remember that a Wi event
eventually contributes a .-ed entry to Ini).

(7) Let (t) (n, Wr(d,a)) is read by (I, Ri(d,a)) in h. By definition of reads before
we have (n, Wr(d,a)) distributes before (m, Wj(d,a)) in h. If the consequent is false
then we also have (m, Wi(d,a)) distributes before (k, Wi(d', a')) in h. We obtain
(n',CUi(d*(n*"),a)) occurs before (llI,',CUi(d*(m*j),a)) in hand (m',CUi(d*(m*j),a)) oc
curs before (k',CUi(d'*(hi),a')) in h. As Wi(d', a') and Ri(d,a) both originate in the same
process, we must have (k', CU i(d'*('ai), a')) occurs before (I, Ri (d, a)) in h. This contradicts (t)
since this CUi-event processes a *-ed ent.ry in Ini. 0

N ow we can define the dag and the simulation relation based on it:

4.1.1 Dag <h

Define the dag <h on the set

{(k,a) I k: > 0, a is the k-th type(a)-event in h} U {1.}

as the smallest relation satisfying

1. if a,(3 E Acti and (k,a) occurs before (1,(3) in h then (k,a) <h (1,(3)

2. if (k,a) is read by (1,(3) in h then (k,a) <h (1,(3)

3. if (k,a) reads before (1,(3) in h then (k,a) <h (1,(3)

4. if (k,a) distributes before (l,(3) in h then (k,a) <h (1,(3)

5. if not (k,a) is completed in h then 1. <h (k,a)

Here, we write U <h v to indicate that the dag has an edge from u to v.

15

4.1.2 Simulation R

The simulation relation R is inductively defined as the smallest relation that includes the
pairs (s, t) for initial states s of M1:,tr and t of Mmial and that satisfies for all (s, t) E R

and s ~ s' that there is a state t' and an event {3 such that (s', t') E Rand t ~ t' subject
to the following constraint:

R(' ------"- ----..\'>
~ G "I
s s'

Let T = min(<s'(h)JRs',t) with
Rs',t = {(k, G) I (k,o:) is ready in s'(h), t(h)} U {1..}.
If T n Act = 0 then (3 = T else there is an I such that
(I,{3) E T. Moreover, if 0: completes (n,,) in s(h)
and, E Acti then (I, (3) E T n Acti

So, M"rial executes an action that is minimal in the dag determined by s'(h) from which
all events that have already occured in t(h) are removed. To ensure that M"rial executes
actions from every Pi, there is the additional constraint that if Mdi,tr completes a Pi-write
action from s then Mmial must execute a Pi-action from t. It is only at such points that
we can be sure that there is a P;-a.ction amongst the minimal ones.

Lemma 4.3

1. Let (s, t) E Rand s ~ s' (in M]i',t,). Then f01' eve1'y {3 ¢ 1.., if (I, (3) E

mint <,'(h) rRs',t) for SOllie I, then (3 is enabled in t

2. ME,tr 1= D((k,O') E dom«h) --+ O(k,G) E min«h))

We defer the proof of Clause (1); Clause (2) is a direct consequence of Lemma 4.2(2)
and the fact that each process issues infinitely many writes.

From the inductive definition of R, Lemma 4.2(2) and Lemma 4.3(1), we immediately
conclude that M1:,tr '->R M",;al; provided we can show that <h is indeed a dag so that
minimal elements always exists.

Theorem 4.4 <h is a dag.

The proof is based on a Lemma that relates the ordering of MW-events to the ordering of
read and write events.

Write (k,O') <t (1,{3) to indicate that the dag <h admits a path from (k,G) to (I,{3).

Lemma 4.5 Let (J."W;(d,a)) <t (I,{3) .

• If{3= Rj(d',a') then (k:,MW;(d*(hi),a) occurs before (1,{3) in h

• If (3 = Wi(d',a') then (k:, W;(d,a)) distributes before (I, Wk(d', a')) in II.

16

Proof. We use induction along a pa.th from (k, Wi(d, a)) to (I, {3). Let a == Wi(d, a) and {3 E Actj.

First assume that (k, a) <h (I, {3). Then either (i) j = i and (k, a) occurs before (I, {3) in h or
(ii) j '" i and (k,a) is read by (1,{3) in hoI' (k,a) distributes before (1,{3) in h. For case (i)
the Lemma follows from Lemma 4.2(6). Case (ii) follows immediately from the definitions of the
is read by and distributes before relations.

Next, suppose that (k,a) <t (m,,,,!) <h (1,{3). By induction the Lemma holds for (k,a) <t
(m,,,,!). According to the definition of <" there are four cases. If "'! rt Actj and (m,,,,!) reads
before (I, {3) in h, then the result follows from Lemma 4.2(7). The other cases are as (i) and (ii)
~~. 0

We are ready to show that <h is a dag

Proof of Theorem 4.4. Suppose that <h admits a cycle. Then, we must have (iC, a) <t ([,il)
and ([,13) <t (iC,a) for some a and 13. W.l.o.g., we may assume that (iC,a) <h (1,13). So,
by definition of <h, there lUust be all (ih,,?) such that (1,13) <t (m,,?) <t (iC,a) and not
a, 13, '? E Acti for SOlUe i.

By transitivity of <t this moans that we have (A) (k, Wi(d, a)) is read by (I, {3) in h and (I, {3) <t
(k, Wi(d,a)) or (D) (k, Wi(d,a)) distributes before (1,{3) in hand (I,{3) <t (k, Wi(d,a) or
(C) (k,a) reads before (I,Wi(d,a)) in hand (I,Wi(d,a)) <t (k,a) with a,{3 rt Acti. We
immediately obtain (k, MWi(d*(k*i),a)) occurs before (k, Wi(d,a)) in h for case (A) and by
Lemma 4.5 (k,MWi(d*(k*i),a)) occurs before (k,MWi(d*(k*i),a») in h for case (B) and
(I, MWi(d*(I*i),a)) occurs before (I.:,a) in h for case (C). The first two cases give immediate
contradictions; the last one via Lemma 4.2(7) from which we infer that (I, W i (d, a) distributes
before (I, Wi(d, a)) in h which is impossible. 0

There remains the proof that ll1inimal elements of <h are always enabled. For this, we
need the following two trivial facts a.bout NImiai .

1. Wi (d, a) is enabled in any state,

2. Ri(d, a) is enabled in state t iff the last write-event in t(h) that referred to location
a has the form W j (d, a.) for sOllle j

Proof of Lemma 4.3(1). In the proof we refer to the figure in the definition of the simulation
R on Page 16. First observe that (!.:,,,,!) E dom«s'(h)) implies that (k,,,,!) occurs in s'(h) for any
(k,,,,!). This is immediate fro111 the definition of <".

Since writes are always enabled we may assllme that {3 == Rj(d, a). Now, sllppose that {3 is
not enabled in t. Then the last write event that referred to location a in t(h) was a == Wi(d', a)
for some i with d' '" d ; let this be the k - th Wi-event in t(h). Since (k,a) occurs in t(h), we
mllst have (k,a) is completed in s(h) by definition of R. As (I,{3) occurs in s'(h) we have
(n,,,,!) is read by (1,{3) in s'(h) for some nand",! == Wr(d,a) so that (n,,,,!) <,'(h) (l,{3). Also,
since (1,{3) E min«s'(h) rR",t) we lUlISt ha.ve (n,,,,!) is completed in s(h).

Now, if (1,{3) reads before (k,a) in s'(h) then (l,{3) <,'(h) (k,a), whereas (k,a) occurs in
t(h) but not (I, {3) occurs in t(h). This contradicts the definition of R.

17

Hence, since both write actions are completed we must have (k, a) distributes before (n,,)
in s'(h). We conclude that (k,a) <,'(h) (n,,) so that we cannot have (n,,) occurs before
(k, a) in t(h). As (k, a) is the last write event referring to location a in t(h), we must have
(n,,) E dome <s'(h) r Rs',,) so that (I, (3) is not minimal. Contradiction.

We conclude that a cannot be of this form and, hence, that (3 is enabled in t. o

4.2 Concluding the proof

For the last step of verifying that (s, t) E R ==} sxt F ,p; for every i = 1 ... n, we need to
instantiate the choice functions fi and define

f;(h) = hi

n;(ha)

where hi is the prefix of h such that WI = n;(h) with
n; inductively defined by n;(s) = 0 and

{
n;(h) + 1, if a completes (n,,) in h II, E Act;
ni(h), otherwise

So, the length of f;(h) is the number of completed Wi-events in h. This is the obvious
choice because the definition of R guarantees that M,cr;ai performs a Pi-action, only in case
Md;,'r completes a Wi-action.

By Lemma 4.2(3) and the assumption that every processor contributes infinitely many
writes, each Ji increases i.a. all A1distr.

Now, fix some i = 1 ... nand (5, t) E R. As ,p; == fi(he) ri ::5 ha. ri, we have to show that
f;(s(h)) ri ::5 t(h) rio

Since both Rand f; are defined inductively, we prove this inductively.

The base case is clear as thell s(h) = t(h) = sand n;(s) = O.

For the inductive step, we may assume that f;(S'(h)) ri Ii t(h) rio We refer to the
definition of R Oil Page 16. Hence, we must have (i) a completes (m,,) in s(h) with
, E Act;. Let f;(S'(h)) ri = f;(s(h)) W8 and let 8 be the n-th event of type(8). Then,
(ii) (n,8) is ready in s'(h), t(h) must be true. By induction, it suffices to prove that 8 == (3,
where (3 is the transition taken in t according to R.

From Clause 2 in the deflllition of <,'(h), we have 1.. :1,'(h) (m,,) so that Tn Act; =F 0
by Lemma 4.3(1). In fact IT n Acti I = 1 as Clause (1) says that <,'(h) extends the ordering
on event occurrences induced by s'(h) r-i. Because (i) holds, we know from Lemma 4.2(6)
that for any Wi event 8, if (1',8) occurs in 5(.f;(h)) then (r,8) is completed in s(.f;(h));
whence 1.. :1,'(h) (r,8). By (ii) and the fact that 1.. is never covered by read events, we then
have (n, 8) E Tn Acti and also 8 == (3 since (I, (3) E Tn Acti for some I by definition of R.

5 Conclusions

We have worked out the proof ill considerable detail. The proof rule demands that a
weak simulation be constructed as the first step. This can be interpreted as defining

18

a scheduler that schedules the appropriate event in M"r;al for every Md;,tr-event. For
verifying sequential consistency this is a. quite natural approach because the purpose of
the protocol is to ensure that the event sequences that each process engages in can also
be obtained from a serial memory. In this respect, there is a correspondence with the
verification approach of [ABM93]. An important ingredient of the proof is the 'delayed'
checking of sequential consistency of prefixes, which is inherent to our approach to interface
refinement. This makes the definition of <h easier, although a penalty is paid in the form of
a slightly more complex proof of Lemma4.3(1). In contrast, the scheduler used in [ABM93]
needs to maintain sequential consistency of the complete history instead of (ever longer)
prefixes of history.

The actual proof tries to abstract from the details of the protocol. I.e., <h is defined in
terms of some relations on the external behavior of the protocol and the proof is based on
a number of correctness properties of the protocol. For the same reason, we have not used
auxiliary variables other than for the purpose of making events unique. In fact, we view
this proof as a first step towa.rds a proper analysis of sequential consistency: The dag <h
characterizes the constraints that the protocol maintains in order to generate sequentially
consistent behavior. However, as is, <h is defined using internal events of Md;'tr; e.g.,
the distributes before relation refers to MW-events. Accordingly, one might ask for the
weakest online2 scheduler defined in terms of constraints on the external events only that
maintains sequential consistency. In fact, we ha.ve already obtained more efficient protocols
for network based architectures and are generalizing the protocols towards weaker memory
models such as release consistency.

Acknowledgments

We thank Ruurd Kuiper for his help and Michael Merritt for posing the problem and for
catching the last bug in the definition of <h.

References

[ABM93] Y. Afek, G. Brown, and M. Merritt. Lazy caching. ACM 1"ansactions on
Progmmming Languages and Systems, 15(1):182-206, 1993.

[BFKR92] H. Burkhardt, S. Frank, B. Knabe, and J. Rothnie. Overview of the KSR1
computer system. Technical Report SR-TR-920200l, Kendall Square Research,
Boston, 1992.

[GKS92] R. Gerth, R. Kuiper, and J. Segers. Interface refinement in reactive systems.
In Pmceedings of the Confet'ence on Concurrency (CONCUR), volume 630 of
Lecture Notes in Computet· Sciecne, pages 77-94. Springer Verlag, June 1992.

2In the sense of only depending on the current state.

19

[Lam79] L. Lamport. How to make a multiprocessor that correctly executes multiprocess
programs. IEEE Transactions on Computers, C-28:690-691, 1979.

[LLG+92] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hen
nessy, M. Horowitz, and M. S. Lam. The Stanford Dash multiprocessor. IEEE
Computer, pages 63-79, 1992.

[Mos93]

[MP91]

D. Mosberger. Memory consistency models. ACM SICOP Operating Systems
Review, 27(1):18-27, 1993.

Z. Manna and A. Pnueli. The Tempoml Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, New York, 1991.

20

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.AM. Schoenmakers

91/04 E. v.d. Sluis
AF. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
1. v.d. Woude

91/11 R.C. Backhouse
P.l. de Bruin
G.Malcolm
E.Voennans
1. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.l.l.M. Marcelis

91/17 AT.M. Aerts
P.M.E. de Bra
K.M. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if...,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Perfonnance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFlCATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Tenninology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypennedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

Transfonning Functional Database Schemes to Relational
Representations, p. 21.

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.1. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

Transfonnational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Fonnal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Fonnal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H. W. v .d.Eijnde

92/05 J.P.H. W. v .d.Eijnde

92/06 J.C.M. Baeten
J .A. Bergstra

92/07 R.P. Nederpelt

92/08 RP. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 RC. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

92/18 RNederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamareddine

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The IOta) order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.K1ein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.PolI

92/26 T.H.W.Beclen
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.J. Zwietering

93/05 J.CM. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Mocrland

93/08 J. Verhoosel

93/09 KM. van Hcc

93/10 KM. van Hee

93/11 KM. van Hee

93/12 KM. van Hee

93/13 KM. van Hce

93/14 J.CM. Baeten
J.A. Bergstra

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-Jlp Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. 15.

A modelling method using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,
p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 1Ol.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 2l.

93/15 J.C.M. Baeten
J.A. Bergstra
RN. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamareddine and
R Nederpelt

93/29 R Post and P. De Bra

93/30 J. Deogun
T. Kloks
D. Kratsch
H. Miiller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L. Loyens and J. Moonen

A Real-Time Process Logic. p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems. p. 27

Hard Real-Time Reliable Multicast in the DEDOS system.
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises. p. 22.

The Design of an Online Help Facility for ExSpect. p.21.

A Process Algebra of Concurrent Constraint Program
ming. p. 15.

Freeness Analysis for Logic Programs - And Correct
ness? p. 24.

A Typechecker for Bijective Pure Type Systems. p. 28.

Relational Algebra and Equational Proofs. p. 23.

Pure Type Systems with Definitions. p. 38.

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems. p. 31.

Multi-dimensional Petri nets. p. 25.

Finding all minimal separators of a graph. p. II.

A Semantics for a fine A-calculus with de Bruijn indices.
p.49.

GOLD. a Graph Oriented Language for Databases. p. 42.

On Vertex Ranking for Permutation and Other Graphs.
p. 11.

Derivation of delay insensitive and speed independent
CMOS circuits. using directed commands and
production rule sets. p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions. p. 17.

ILIAS. a sequential language for parallel matrix
computations. p. 20.

93/34 J.C.M. Baeten and
J.A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 J.C.M. Baeten and
J.A. Bergstra

93/37 J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

93/38 C. Verhoef

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra, p. 17.

93/39 W.P.M. Nuijten Job Shop Scheduling by Constraint Satisfaction, p. 22.
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

93/40 P.D.V. van der Stok
M.M.M.PJ. Claessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.J. Luit
J.M.M. Martin

93/46 T. Kioks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.J. Houben
Y. Komatzky

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. II.

Automatic Verification of Regular Protocols in PIT Nets,
p. 23.

A taxomomy of finite automata construction algorithms,
p. 87.

A taxonomy of finite automata minimization algorithms,
p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

	1. Sequential consistency
	2. The lazy caching protocol
	3. Interface Refinement
	3.1 Sequential consistency as interface refinement
	3.2 A proof rule
	4. Correctness Proof of M-distr S.C. M-serial
	4.1 Constructing a weak simulation R
	4.1.1. Dag <h
	4.1.2 Simulation R
	4.2 Concluding the proof
	5. Conclusions
	Acknowledgments
	References

