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The van der Waerden Conjecture:

Two Proofs in One Year

J. H.van Lint

1. Introduction

One of the famous open problems in combinatorial theory
was the van der Waerden conjecture on permanents of
doubly stochastic matrices. After more than fifty years in
which it managed to resist attacks it has finally been prov-
ed. As so often happens two mathematicians gave indepen-
dent proofs nearly at the same time. At the end of 1980
the news that G. P. Egoritsjev (I'. II. Eropsrues) [2] had
found a proof spread quickly and within a few months
translations and expositions of the proof were circulating
(cf. D. E. Knuth [5], J. H. van Lint [6]). It came as quite
a shock when Matematiteski Zametki 29 No. 6 appeared
a few months ago with a paper by D. I. Falikman
(1. Y. ®anuxman) [3], submitted 14. 5. 1979 (1), with a
completely different proof of the conjecture. Perhaps
even more surprising is the fact that the two proofs have
as a common feature that they use an elegant inequality,
due to A. D. Alexandroff and W. Fenchel, which until
quite recently seemed to be unknown to combinatorialists.
From the literature it is obvious that geometers certainly
know about the inequality.

In this note we shall describe and compare the two new
proofs and the ideas that led to their discovery.

Let 4 be a square matrix of size n with entries aj
(1 <i, j <n). We define the permanent of A (notation:
per A) by

(1.1)

per 4 1= Za15(1)220(2) - - - Cno(n)
o

where o runs through all permutations of {1, 2, .. ., n}.
One could say that the permanent is like the determinant
but without all the minus signs.

In his book Permanents [9] H. Minc mentions that the
name permanent is essentially due to Cauchy (1812) al-
though the word as such was first used by Muir in 1882.
Nevertheless a referee of one of Minc’s earlier papers ad-
monished him for inventing this ludicrous name!

Calculating permanents is very much more difficult
than calculating determinants. However, there are some
similarities. For instance, the permanent is a multilinear
function of the columns of 4. Let a; = (ay;, as, . - .,an]-)T
be the j-th column of 4. We shall often write per 4 as per
(ay, ..., a,). From (1.1) we have

n n
perA = X a;perA(i|j)= Z a; per A }), (1.2)
=1 =1

where A(i]j) is the matrix we obtain from A4 by deleting row
i and columnj. Asusual, we call this procedure developing
by a row or column.

The non-expert reader may wonder what purpose is
served by defining permanents. Let us consider a well-
known and not too easy example from combinatorics,
the “probléme des ménages”. At a round table n couples
are to be seated. The 7 wives have already occupied the
odd-numbered seats 1, 3, .. ., 2n — 1. No husband is allow-
ed to sit next to his wife. In how many ways can the men
be seated?

This is a typical counting problem for which the answer
is given by a permanent. Let 4 be the matrix for which eve-
ry entry is equal to 1 exceptifi —j=0or I (mod n) in
which case a;; = 0. The permanent of this matrix, usually
denoted by U,,, is the answer to our seating problem. A
reader who at this point believes he is reading about a
trivial area of mathematics may wish to prove that
U, ~ e n! (n - o). He might change his mind.

Let us now turn to van der Waerden’s conjecture. Much
of the work on permanents is in some way connected to
this conjecture and about 75% of the work on permanents
is less than 20 years old! First, a definition. A matrix A4 is
called a doubly-stochastic matrix if every entry a;; is non-
negative and all row sums and all column sums of A are
equal to 1. One can consider the entries of 4 as condition-
al probabilities which accounts for the name. It seems
that permanents do not play a r8le of any importance in
probability theory, however. Trivial examples of doubly
stochastic matrices are all permutation matrices and the
matrix J,, :=n~J (in combinatorics the matrix for which
all entries are 1 is usually denoted by J).

In 1926 B. L. van der Waerden [11] proposed as a prob-
lem (1) in Jber. DM.V. 35 to determine the minimal per-
manent among all doubly stochastic matrices. It was na-
tural to assume that this minimum is perJ, =n!n"". Let
us denote by £2,, the set of all doubly stochastic matrices.
The assertion

AEeQ, nA+JT,)= (per A >perJ,) (1.3)

became known as the van der Waerden conjecture. Some-




times just showing that 7 !n~" is the minimal value is re-
ferred to as the conjecture.

This note allows me to save for posterity a humorous
experience of the late sixties. Van der Waerden, by then
retired, had decided to attend a meeting on combinatorics,
a field he had never seriously worked in. There was a talk
by a young mathematician who was desperately trying to
explain his complete thesis in 20 minutes. I was sitting in
the front row, next to van der Waerden, when the famous
conjecture was mentioned by the speaker and the alleged
author inquired what this famous conjecture stated!!
exasperated speaker spent a few seconds of his precious
time to explain and at the end of his talk wandered over
to us to read the badge of the person who had asked this
inexcusable question. I knew it was going to happen and
still remember happily how he recoiled. Do not worry; he
recovered and is now a famous combinatorialist. The lesson
for the reader is the following. If you did not know of the
“conjecture” then if is comforting to realize that it was 40
years old before van der Waerden heard that it had this
name.

T o
1I1C

What is the origin of the problem? At my request van
der Waerden went far back in his memory and came up
with the following. One day in 1926 during the discussi-
ons, which took place daily in Hamburg. O: Schreier men-
tioned that G. A. Miller had proved that there is a mutual
system of representatives for the right and left cosets of
a subgroup H of a finite group G. At this point van der
Waerden observed that this was a property of any two
partitions of a set of size un into u subsets of size n. This
theorem was published in the Hamburger Abhandlungen
in 1927 [12}]. In a note, added in proof, van der Waerden
acknowledges that he has rediscovered the theorem which
is now known as the Konig-Hall theorem. (Intermezzo:
Among the many things which my thesis-supervisor F.
van der Blij taught me was the good habit of looking at
the titles of all the papers in a journal which one checks
for a reference. The authors of the papers in reference [12]
are E. Artin, M. Bauer, H. Behnke, W. Blaschke, E. Hecke,
H. D. Kloosterman, H. Kneser, H. Petersson, H. Radema-
cher, J. Radon, K. Reidemeister, H. Schatz, O. Schreier, E.
Spemer, B. L. van der Waerden. K. Zwirner; indeed: . . .
mais ou sont les neiges d’antan?).

In the terminology of permanents we can formulate the
problem, Schreier and van der Waerden were considering as
follows. Let A;(1 <i < p) and Bx(1 <k < ) be the sub-
sets in the two partitions and let az := | 4; N By |. Then
A = (a;;) is a matrix with constant line sums (= n). The
assertion that there is a mutual system of representatives
of the sets A; resp. By, is the same as saying that per 4 >0.
At this point van der Waerden wondered what the mini-
mal permanent, under the side condition that all line sums
are 1, is. He posed this as a problem in Jber. d. DM.V. 35
and thus the van der Waerden conjecture was born.
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We pointed out above that this conjecture was respon-
sible for much of the research on permanents. There were
of course other interesting problems, e.g. an intriguing
conjecture by Minc on the relation between permanents
of (0, 1)-matrices and the line sums of these matrices. The
reader interested in a survey of the knowledge up to 1978
is referred to Minc’s book [9]. In fact much of the follow-
ing introductory material is taken from this book.

Let us now have a look at the inequality which is essen-
tial in both of the new prnnfc of the van der Waerden con-

a1 U0 U1 v v IUVLS Ui uiv Vaul Wl vy abiuviai VU0

jecture. Consider convex sets Ky, K5, . . ., K, in R”, Let
X1,X2,...,X; benon-negative. We consider the set K
consisting of all pointsx;a; +x5a, +...+x,,a,,, where
a; €K;. As a function of the variables x4, . . ., x,, the
volume V(K) of the set K is a homogeneous polynomial
of degree n. We express this as follows:

m m
V(K)= .E ‘e E Vil---in x,-lx,-Z . .xin,
i1=1 in=

where we require that the coefficients are symmetric with
regard to subscripts. The coefficient Vi ...1, is called the
mixed volume of the sets K; , . . ., K;, . The following
inequality was proved independently by A. D. Alexan-
droff [1] and W. Fenchel [4].

Vigigeoin_1in) = Vi Vi

11 e in_ 2inin’

1.4
These historical comments on the geometry of convex sets
were rather vague. They suffice to show the origin of the
following inequality which was obtained in two steps from
(1.4). Alexandroff reformulated (1.4) as a theorem on qua-
dratic forms in 7 variables. By taking these forms to be
given by diagonal matrices the inequality takes on a spe-
cial form which allows us to state it as a theorem on per-
manents. We call this the Alexandroff-Fenchel inequality
on permanents.

1-dn—tin—1"

1.5. Theorem. Let a;, a,, . . ., a,_ 1 be vectors in R" with
positive coordinates and let b € IR”. Then

-:an—l,b))2>Per (a17 s an—l:an—l)

(1.6)

(per (ag, 2, . .

* per (al: e ln_2, b: b)

and equality holds iff b = Na,,_ | for some constant \.

Note that the inequality also holds if we only require
that the a; are non-negative but we cannot make the asser-
tion concerning the consequence of equality unless all a;
are positive.

We shall give a proof of Theorem 1.5 in Section 5.

To my knowledge the only other appearance of the
Alexandroff-Fenchel inequalities in the literature on com-
binatorial theory is in a paper by R. P. Stanley which
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appeared a few months ago in J. Combinatorial Theory

(cf. [10]).

2. Notation and Definitions

We denote the set of all doubly stochastic matrices of
size n by £,,. The subset consisting of matrices for which
all entries are positive is denoted by Q.

The matrix for which all entries are 1 is usually denot-

ed by J. We define J,, := n~ 1. The vector (1, 1, . . ., 1}T
is denoted by j.

A matrix A € §,, such that per 4 = min {per S|SE€Q,}
is called a minimizing matrix.

The matrix obtained from 4 by deleting the i-th row
and the j-th column is denoted by A(i|j). We consider a
matrix A as a sequence of »n columns and write 4 =
(a;,a,, . . ., a,). In Section 5 we consider permanents of
matrices of size # — 1 but we wish to use the notation for
matrices of size n. The trick is to write per (a;, a3, ...,a,_1,
ej) where e; denotes thej-th standard basis vector. This
permanent does not change value if the j-th row and n-th
column are deleted:

per(ag, ..., a,—1,€) =per(ay, ..., a1, &) (jIn).

The essential new idea introduced by Falikman is to
study a function which differs only slightly from the per-
manent. In the following let € > 0. We first define

[
1= P

. aij (A € Q’n)

2.1)

IIA) :=
i=1j
The function F, which will be studied in Section 4 and
Section 6 is given by
F(A):=per4 +¢/li(4), AEQ). 2.2
The idea is this; for fixed e > 0 it is clear that F will be
large near the boundary of £2,, but on the other hand for
fixed 4 we have Hrr& F (A)=per A.
€e—>

3. Some Elementary Results on Permanents

There are a number of results on the set €2, and the struc-
ture of minimizing matrices which we shall need in our
description of the two proofs. Most of these are fairly well-
known and proofs can be found in many books, e.g. in [9].
Therefore we only mention the theorems and skip the
proofs.

One of the most fundamental results in the theory of
doubly stochastic matrices is Birkhoff’s theorem which
states that 2, is a convex polyhedron with the permuta-

tion matrices as vertices, i.e. a doubly stochastic matrix 4

m
can be expressed as ~ o;P; where the a; are non-negative,
i=1

m
T «a; = 1, and the matrices P; are permutation matrices. A
i=1

consequence of this theorem is that if 4 € 2, then per
A > 0 (this was the fact which Schrejer and van der Waer-
den needed in 1926).

It is clear that the boundary of Q,, is going to give us
difficulties when we try to find the minimal permanent.
Therefore we would like to have some information on the
zeros in an element of £2,,. Suppose 4 € {2, is a direct
sum of an element P € Q, and Q € ,,_ . From Birk-
hoff’s theorem we know that per P > 0 and per @ > 0.
So, by rearranging elements we may assume that the dia-
gonal of 4 is positive. As an easy exercise the reader can
show that we can now decrease two diagonal elements by
e and replace two of the 0’s by € in such a way that we
find another element of Q,, with a permanent larger than
per A. This gives us the following lemma.

3.1. Lemma. If A € Q,, isa minimizing matrix then A is not
a direct sum of an element of Sy, and an element of Q,,_ .

We shall use this lemma in two ways. First of all it im-
plies that for any a;; in a minimizing matrix 4 there is a
permutation o such that o(7) =7 and ag 45 > 0 for 1 <
s <n, s #i. (This is not trivial but it can be derived from
Lemma 3.1 without too much difficulty.) A second appli-
cation of Lemma 3.1 is more direct: a row of a minimizing
matrix has at least two positive elements.

4. How Far Do We Get with Calculus?

In 1959 a major attack on the van der Waerden conjecture
was launched by M. Marcus and M. Newman {8]. Much of
the work in subsequent years was stimulated by the follow-
ing surprising theorem.

4.1. Theorem. If A € Q, is a minimizing matrix and apy >
0 then per A (hlk) =per 4.

Notice that the matrix J,, indeed has the property that
every subpermanent of size n — 1 is equal to per J,.

The idea of the proof was to define a suitable set for
which A4 is an interior point and then use differential cal-
culus. The conditions on the row sums and column sums
in ©,, made it possible to introduce Lagrange multipliers.

One of Falikman’s main lemmas is a result similar to
Theorem 4.1 for the function F, instead of the permanent.
His proof also uses differential calculus. We shall show be-
iow that in fact the same proof as used by Marcus and New-




man can be applied. The most important consequence of
Theorem 4.1 was the following theorem, also due to Mar-
cus and Newman.

4.2 Theorem. If there is a minimizing matrix A in Q% then
per A =perJ, =n!/n" and in fact A =J,,.

The proof, for which we refer to [9], depends on a trick
which plays a central r8le in Egoritsjev’s paper. Suppose

A is an element of ., for which per A (h|k) = per A holds
for all pairs 4, k. If we replace any column of 4 by a vector

n
x for which £ x; =1 then, developing by this column we
i=1

find that the new matrix has the same permanent as 4. We
shall refer to this idea as the substitution principle. If A is
a minimizing matrix in Q% then Theorem 4.1 allows us to
use the substitution principle to replace any two columns
of A by their average and thus obtain a new minimizing
matrix. In this way one constructs a sequence of minimiz-
ing matrices which tends to J,,. The uniqueness of the mini-
mum takes a little extra work.

We now state Falikman’s generalization of Theorem 4.1.

4.3. Theorem. There is a matrix A € QF; for which F.(A4)
is minimal. For this A and 1 < h, k < n we have

perA(hlk)=b+-—,
Apx

where ¢ :=€/ll(A) and b :=per A — nc.

Proof: Let a be the minimal entry in X € Q%. Then, apply-
ing the arithmetic-geometric mean inequality to then — 1
rows not containing &, we find

1 n(n—1)

It follows that the matrices X with F.(X) < 2F(J,) form
a compact subset of Q%. So there is a matrix 4 € Q%
where F_ attains its minimal value.

Now consider the function

~ n n
Fe(X) :=Fé(X)—'21 Ki(kzl Xik — 1)
i= =

n n
— 2wl T x—=11.
i=1”7(k=1 “ )

From (2.2) we find

kad L c
dF/dx;; = per X (i I])——; - N iy
ij
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and hence we have

per A(ilj) =—— + \; + .
dg;‘

(4.4)

Multiplying both sides of (4.4) by a;; and summing over
j resp. i we find

P
|
3
]
I}
g
+
i
Tgs
)
=
1}
=
+
M5
&
&
=
~
S
n
N’

Introducingj := (1,1, .., DT, A := (1, ., M) T, 2=
(M1, .y )T we have from (4.5)

(perd —nc)j=A+Au=u+AT\ (4.6)

Multiplying by 47 gives us
(perd —nc)j=ATA+ ATA4p,
ie.
A TA[J =M.

Since ATA € Q* it has eigenvalue 1 with multiplicity 1
belonging to the eigenvector j. Therefore both A and u

are multiples of j and then (4.6) implies that A; + u; =
per 4 — nc. o
This proves the assertion

To answer the title of this section we can say that we have
nearly proved the conjecture. Nevertheless it took more
than twenty years before the last step was found. One di-
rection of research was to try to generalize Theorem 4.1
in such a way that the condition on a;; could be removed.
The first step in this direction was a theorem due to D. Lon-
don [7] which we give below. The generalization was final-
ly proved by Egoritsjev using algebraic methods.

Another way of settling the conjecture is to show that
per A = per J, on Q% because it then follows from Theo-
rem 4.2 thatJ,, is indeed a minimizing matrix. The second
approach was used by Falikman. It is based on Theorem
4.3 but again algebraic methods are necessary. We discuss
the algebraic tools in the next section.

We finish this section on methods from calculus by de-
monstrating London’s gergalization of Theorem 4.1.

4.7. Theorem. If A € Q,, is a minimizing matrix then per
A(i|j) = per A for all i and j.

Proof: Given i and j there is a permutation ¢ such that

0()) =j and ag (5 > 0 for 1 <s<n, s #i(cf. Lemma 3.1).
Let P be the corresponding permutation matrix. For 0<< ¢
< 1 we define f(3) :=per (1 — )4 + 9P). Since A is a
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minimizing matrix £'(0) > 0, i.e.

M!

n
0<Z 2 (~a;; +pij)per AGlj) =

1j=1

~.
i}

n
=—nperd+ T perdA(s|o(s)).
s=1

By Theorem 4.1 we have per 4(s | o(s)) =per 4 fors #i
and hence per A(i|j) > per 4. G

5. A Contribution by Linear Algebra

In this section we shall give a direct proof of a theorem on
symmetric bilinear forms (taken from [6]) which leads to
the inequality that was derived by Egoritsjev from the
Alexandroff-Fenchel inequalities. A corollary of this theo-
rem is the result which Falikman needed to complete his
proof.

We consider the space IR” with a symmetric inner prod-
uct{x, y)=xTQy. If Q has one positive eigenvalue and
n — 1 negative eigenvalues we shall speak of a Lorentz
space. We use the standard terminology: a non-zero vector
X is isotropic if (x, x) = 0, positive resp. negative if (x, x)
is positive resp. negative.

If a is a positive and b # 0 is not a multiple of a then
by Sylvester’s theorem the plane spanned by a and b must
contain a negative vector. Therefore the quadratic form in
A given by {a + Ab, a + Ab) must have a positive discrimi-
nant. Therefore we have the following inequality (Cauchy
the wrong way around) which will lead to the inequality

(1.6).

5.1. Lemma. If a is a positive vector in a Lorentz space
and b is arbitrary then

(a,b)? >¢a, a)(b, b)

and equality holds iff b = \a for some constant N

The connection with permanents is provided by the follow-
ing definition.

Consider vectors a;, as, ..., 8,_ , in R” with positive
coordinates. As usual let e, ..., &, be the standard basis
of IR". We define an inner product on R” by

(x,y):=per(as, as, ..., 8,_2,X,¥), (5.2)
ie.

(x,y)=xTQy where Q is given by

qij = per (21, 8, ..., 8y, €}, €)). (5.3)

Note that if 4 is a matrix with columns a,, ..., a,, and if we
delete the last two columns and the rows with index 7 and j,
then the reduced matrix has permanent equal to q;;.

5.4. Theorem. The space IR” with the inner product defin-
ed by (5.2) is a Lorentz space.

Proof: The proof is by induction. For n = 2 we have Q =

{\(1) (1)) and the assertion is true. Now assume the theo-

rem is true for R?— 1 In the first step of the proof we

rem is true for n the first step of the pr
show that Q does not have the eigenvalue 0. Suppose
QOc=0,ie.

a, 5,¢)=0 forl<j<n

per (31, A3, ey (5'5)
By deleting the last column and the j-th row we can con-
sider (5.5) as a relation for vectors in IR”~1. We consider
the inner product given by

per (al: a2, -, An—-3, X, Y, e]) (j ! n) (5'6)
and apply the induction hypothesis, (5.5) and Lemma
5.1. Substitution of x = a,,_,,y = a,_, in (5.6) gives a po-
sitive value and x = a,,_,, y = ¢ gives the value 0. There-
fore

per (a;, a3, ..., 3,_3,¢C, ¢, &) <0 5.7
for 1 <j < and for each j equality holds iff all coordina-
tes of ¢ except ¢; are 0. If we multiply the left-hand side
of (5.7) by the j-th coordinate of a,_, and sum over j we
find ¢ 7Qc. Therefore the assumption Qc = 0 implies that
c=0.

For 0< 9 < 1 we define a matrix Q, by taking (5.2)
and replacing every a; by da; + (1 — 9)j. From what we
have shown above it follows that for every & in [0, 1] the
matrix Q does not have the eigenvalue 0. Therefore the
number of positive eigenvalues is constant. Since this
number is 1 for & =0 it is also 1 for & = 1 which proves
our assertion. ny

In the proof of Theorem 5.4 we used Lemma 5.1 in the
following form: If a is positive and b # 0 then{a, b>=0
implies that b is negative,

It is this assertion which Falikman uses as one of his
essential lemmas. His proof is also by induction.

The inequality (1.6) is of course a direct consequence
of Theorem 5.4 and Lemma 5.1.

6. Falikman’s Proof

The result of Section 5 makes it possible to show that the
matrix 4 of Theorem 4.3 is in fact J,,. In order to do this




we consider two columns u and v of 4 and show that they
are equal. To be able to use the notation of Section 5 we
take (w.l. 0. g.)u=a,_; and v = a,. We introduce two
other vectors t :=u — vand s := (s, ..., s,) 7 withs; :=
u;v;. With the inner product (5.2) the vector s is clearly
positive. From (5.2) and Theorem 4.3 we have

t, &9 = per A (i |n) — per A (iln — 1) =2

(6.1)

[t ]
n
From (6.1) we find (t,s}=¢ £ ¢; = 0; Therefore t must
=1

be negative or §. From (6.1) we have

n Z‘-2
{t,th=¢c T —— =0.
i=1 U;V;

Thereforet=0,i.e.u=v.

So we now know that F, is minimal on Q3 in J,,. There-
fore every X € Q% satisfies

2
per X +¢/TI(X) = per J,, + en”

for any € > 0. So, in fact per X = per J,, and in Section 4
we already saw that this completes the proof of the van
der Waerden conjecture. This method does not show that
Jy, is the unique minimizing matrix in ,,.

7. Egoritsjev’s Proof

Although Egoritsjev also uses the result of Section 5, his
approach is different. He first proves the following gener-
alization of Theorem 4.1. It was known that this result
would imply the truth of the van der Waerden conjecture.

7.1. Theorem. If A € Q,, is a minimizing matrix then per
A(i|f)=vper A foralliand j.

Proof: Suppose the statement is false. Then by Theorem
4.7 there is a pair 7, s such that per 4 (r|s) > per 4.
Choose ¢ such that a,, > 0. Consider the product of two
factors per A. In the first of these we replace ag by a, and
in the second we replace a, by a;. Subsequently we develop
the first factor by column s and the second permanent by
column £. According to the inequality (4.7) we have

n n
(per4)* > kgl Qe perA(kIs)) (kgl ags per A(klt)|.

On the right-hand side every subpermanent is at least per
A and per A (r | s) > per A. Since per A (7 | s) is multiplied
by a,; which is positive we see that the right-hand side is
larger than (per A4)?, a contradiction. o

.now apply the substitution principle as sketched above a
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We have already observed in Section 4 that Theorem 7.1
allows us to use the substitution principle as follows. Take
a minimizing matrix 4 and let u and v be two columns of
A. Replace u and v by —;(u +v). The new matrix is again a
minimizing matrix.

Let A be any minimizing matrix and let b be column of
A, say the last column. From Lemma 3.1 we know that in
every row of A there are at least two positive elements. We

number of times but we never change the last column. In this

.. .. . ! ! !
way we can find a minimizing matrix 4" =(ay, ...,a,_1,b)
for which a}, ..., a,,_ ;) all have positive coordinates.

Now apply the inequality (1.6). By the substitution prin-

ciple we have equality. Hence b is a multiple of a; for any
i with 1 <i<n — 1. This implies that b = #~j and hence
A=J,.

It is not unlikely that-these ideas will lead to other even
more simple proofs. One may certainly expect other appli-
cations of the Alexandroff-Fenchel inequality in combi-
natorics.
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