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On a Recursion Formula and on Some Tauberian Theorems'
N. G. de Bruijn® and P. Exrdos?

The paper is concerned with two sets of positive numbers, ¢; and fi, connected by a

linear recursion formula.

n n
between the partial sums > ¢z and > fz.
1

1
The assumptions on the ¢ are of Tauberian type.

Under certain assumptions there exists an asymptotic relation

The method is based on discussing

@© L==]
the associated power series E ; cxr® and E ; Frzk.
1 1

Let

CkZO, kz :Ck:]..
=1
Define

=1, f=Fafa—  @>). O

This recursion formula has various applications in
the theory of probability.t In the present note,
however, we will investigate (1) independently of
its applications. Assume, first, that

Zk0k< @,
k=1

Erdés, Feller, and Pollard [2] proved that if the
greatest common divisor of the k’s with ¢, >0 is 1,
then,

fm)—AT (A=3key). @)

It is easy to see that if the greatest common divisor
of the k’s with ¢, >0 is greater than 1, then lim f(n)
cannot exist.® It was also shown that if

- .
Zlk(jkz o )

then (2) always holds, in other words, f(n)—0.
Feller in a paper [3] restricted himself to the case
when > ke,< . In the present paper we will not
in general make this assumption.
We prove the following results:
Theorem 1. Assume that for every k>1,
3)

2.
Cr-1Cr41.>Cr

Then for every n>1,
J—1)f(n+1)>F(n).

RI Prep}?tation of this paper was sponsored in part by the Office of Naval
esearch.

2 Technische Hogeschool Delft. Present address: University of Amsterdam,
Amsterdam, Holland.

3 National Bureau of Standards, and University of Aberdeen, Scotland.

4 See Feller [3]. This paper quotes most of the literature that deals with these
guestions.

5 See [2] and the remarks at the end of the present paper.

Other theorems of the same type as theorem 1 were
proved by T. Kaluza [4]. Assuming (1), he showed
for instance, that f(2)>0, f(n—1)f(n+1)>f2(n)
(n=2,3, . ..) imply that the ¢’s are positive.

Furthermore, he proved that f(1),f(2), .. .is a
moment sequence if, and only if, ¢;, ¢, ¢3, . . .is a
moment sequence. (Here ¢y, ¢y, ¢3, . . . 1s called a

moment sequence whenever it is of the form
= wu”dx(u), where x(u) is nondecreasing and
such ﬁl&t the integral converges for all n).
Theorem 2. Putry=2 ¢, 8(y)= > ry, S(y)=> fk).
>k k<y k<y

Assume that for every p >0

stpy) _ .

51_)12 s(y) )
for a fixed o,0 <a<1 (a independent of p). Then
sWSW =5 araTe oW ()

Theorem 3. Assume that (3) and (4) both hold.
Then, :

l1—a 1
f(n)zshr(1-|—a)l‘(2—-a)+o (E)

In case a=1, (6) does not give an asympiotic
formula, it only gives f(n)=0(s,™?).

It would be interesting to obtain conditions that
imply f(n+1)/f(n)—1. We can prove that if
Cnr1/Cn—>1, then f(n-+1)/f(n)—1; also if

(6)

¢,<B. min ¢,
1<k<n

then f(n+1)/f(n)—1. We suppress the proofs be-
cause we believe that very much more general
conditions : can be obtained. If f(n+1)/f(n)—1,
then it is not difficult to prove that ¢,_;=o0{f(n)}.
It can be conjectured that the converse is also true,
under the additional condition that the g.c.d of the
ks with ¢; >0 1s 1.
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Proof of theorem 1. TFirst we show that for any n

el f(n+2)f(n) —f*(n+1)}

=3 Canrr—eats) [+ D A1)
—fmfnt2—B}. @

To prove (7) split the right-hand side into four
sums. These are, respectively,

unaf 1 1) 200 f(-+ 1) =i flnt-1) fn);

—empf(0) kéck_lf(wz —k)
= _Cn-}—lf(n) {f(TH— 1) —‘Cnf(U } 5

—eafnt 1) 2 (n 1)
= — e, fnD{ fn-FD)—ef )}

enf ) 2 erf -2 =)
=c, f(n){f(n+2) —Cnpf (1) —ef(n+ 1}

Addition gives ¢, {f(n+2)f(n)—f*(n+1)}, which
proves (7).
To prove theorem 1, observe that

FfB)—12(2) = f(2) +eaf (1) —f*(2)=caf (1) >0.

((3) implies that all the ¢’s are positive.) Assume
now n>2, and suppose that f(k)f(k+2)>f*(k+1) is
already proved for 1<k<n. Then (3) implies
Cnp1Ci1>Crlr, since by (3) (eofer) <(esfea)< . . . .
Thus i (7) all terms on the right side are positive,
and we obtain f(n)f(n+2)>f*(n-+1), which proves
theorem 1.

Bemarks: Tt is clear from the proof of theorem 1
that if we only assume that ¢gici_1 =6 (B>1), we
obtain f(n+1)f(n—1) >f*(n) (n>1). :

If (3) is true, then, by theorem 1, f(n+1)/f(n) is
an increasing function of n. Wehave f(n-+1)/f(n) <1
for all n, for otherwise we would have f(n+1)/
F(n)>a>>1 for some a and all large n. This would
contradict the fact that f(n)=0(1), which easily
follows from (1). From f(n+1)<f(n) (n=12, . . .)
it follows that

fm)(a+ . . . Fe) <fln+1)<H(n), ®

and so (3) implies f(n+1)/f(n)—1 (n—>o).
To prove theorem 2 we need some lemmas.
Lemma 18 Letdy, ds, . . . be an infinite sequence,
and let o be ¢ number greater than —1. Put g(y)=
S1d,, and assume that g(y) >0 for all large y, and that,

E<y

6 As far as the authors know, a complete proof of this lemma was not published
before, although it is the Abelian counterpart of the Tauberian lemma 2, which is
due to Karamata. K. 1. Chung brought to our notice that in Doetsch [1] an
incomplete proof is presented for a theorem very similar to our lemma 1. Doetsch
claims to use only the inequalities L{y)=0(y<), 1/L(y) =0(y<) (y—), Whereas
an inequality of the type (11) seems to be indispensable. -

Sor every p>0,

g(py) l9(y) —p* (y— ). 9)

Then the series D(x)=2:_‘,dkxk converges for |x|<1, and
if £>0, t—0, we have

D(e)={1+0(1) }g(1/)T (1 +a).

Proof. The function L(y)=g(y)y * is positive for
y large, and it is measurable and bounded over any
fnite interval 0<y<A (for g(y)=0 if 0<y<1).
Furthermore, L(y) is slowly increasing, that is,
L(py)/L(y)—1 as y— =, for every p>0.

We shall prove that for any e>0 there exist
positive constants C(e), Ci(e) such that

(10)

L(py) o
]T(yfl<01(€){9 ) (p>0,y>0(9). (1)

It is known 7 that L(py)/L(y)—1 as y—«, uni-
formly for a<p<b, where ¢ and b are arbitrary

positive. Therefore, C(e) can be determined such
that L(y) >0 for ¥ > C(e) and such that

log{ L(py) /L (y) }<e

It follows by induction that

(e <p=ZLey>Cle).

log {L(py)/L(y)}<e(1+log p) (p=1,y>0(e), (12)
and

log {L(py)/L(y)}<e(1+log p™)

(Cley<p<1, y=C(9). (13)
Put
M(e)z0 sup L(y).

<y<C(9)

Then we have, for 0<p<<C(e)y~!, y=>C(e) by (13),

log {L(py)/L(y) }
=log {L(C(e))/L{y)} +log{L(py)/L(C(e)}

y M(e) (14)
<e{1—|—10g 0(6)}+10g L0@)
<e(14log p™) +Cs(e). J

Now (12), (13) and (14) prove (11).

In the first place, we obtain from (11) that
L(x)=0(z%) as z—>», and therefore dy=0(k*").
Hence the power series for D(z) converges if |z]|<1.

We have, for £ >0,

D(e™) :ﬁme‘”‘dg(y) :ﬁ)mte‘“g(y)dy,

7 See [5] (where L(y) is assumed to be continuous), and 171.
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and so,
D(e =1L ﬁ "o (y,0dy,

where

-

For any fixed ¥y >0, ¢(y,t) tends to e ¥y* as {—0.
Furthermore, by (11), ¢(y,f) can be majorized by a
positive function of ¥ only, whose integral over (0,«)
converges.  Therefore, by the Arzéla-Lebesgue
theorem, we have

| ownay— | emrty=ra+a) 0,40,
0 0

This proves the lemma.
Lemma 2.  Assume that

D<x>=$d~kxk .

18 convergent for |z|<1, and that d;>0 but not all
dy=0. Let a>GC be fired. Assume that for any

fixed p>0 .
D(e?)[D(e™)=pme  (E>0,4=0). . (15)
Then we have

= {140() D )/T(1+a)  (E>0,1-0).

This result is due to Karamata [6]. ,
Theorem 2 can be derived from lemmas 1 and 2.
Following a suggestion of Karamata, we first prove
a more general theorem:
Theorem 4. Let a; >0 (but not all=0), b,>0 (but
not all=0), k=1,2,3, . . . ;

—1
DS \aabny  (1=23, . . ).
1

Put
S(y)=l§ak, S(y):%bk; T(y)zk%‘,dk-

Assume that for every p >0, we have

Ty T(y)—p"

where v>a>0, v and a independent of p. Then we
have

s(py)/s(y)—p*, (y—=),

T(y) T(1+v)
s@) T(l+y—a)T(1+a)

St)={1+om)]}

Proof. Put A@)=32az* B(z)=>3ba
1 1

D(x)= idkx", then we have formally A (z) Blz)=D ().
3
Both A(z) and D(x) are analytic for [z[<(1 (see

163

lemma 1); it follows that B(x) is analytic in some
circle |2]<6. The coeflicients of B(x) are non-
negative, and for 0<z<{1, B(z) is analytic (since
A@)>0 for 0<x<1). 'Thus by a theorem of
Pringsheim (see [8], sec. 17) B(x) is analytic for

|| <1.
By lemma 1 we have, as >0, {—0,

Ale) ~s@ T (1+a); D(eH)~TEHT(1+).
Hence for any p>>0,
B(e?Y)[B(e~)—p~ .
But then by lemma 2
SE)~B(e™)/T(1+vy—a).

Now theorem 4 follows immediately from
D(x)=A(x)B().

Proof of theorem 2. Theorem 2 is an easy con-

.sequence of theorem 4. If

F@)=fDaz+f@)x+ . . ., R@)=ratra’+ ...

then it follows from (1) that F(z)R(z)=a%(1—z),
and so

iz:)zmj(n—k)=l =23, .. ).  (16)

Therefore, taking

n=2,3, ..., v=1,

Ar= ?"k,
d,=1

we obtain from theorem 4

n T(2)

S~ s(n) Te—a)(i+a)

which proves theorem 2.

Proof of theorem 3. Let e be a number greater
than 0. From (8) we infer

Fn)>{Sna+e—Sa}/(en+ 1)

It follows from (4) ‘a,nd (5) that

(17

SnSnNC'ny SnSn(_I+€) ~On(1 +€)1—a7

where C=1/{T'2—a&)T'(1+a)}. Therefore, (17) im-

plies
lim inf f(n)s,>C{(1+e"2—1}/e (n—w).
This holds for every ¢>0. Making ¢=0, we obtain

lim inf f(n)s,> (1—a)C.



Applying the same argument to n(l—e) instead
of n(l14¢ we obtain lim inf f(n)s,<(1—a)C. This
proves theorem 3. .

Some final remarks: Feller [3] proved the following
theorem: Assume that the g.c.d. of the k’s with
¢, >0 is 1, and that

S, (18)
1
then

k3
ZX‘J(l): “n-+t+d+o(1), (19)
=1

where A=Y, and, in fact, SMf()—A}<e.
1 1

Now we show the converse, namely, if (19) holds,
then (18) holds too.
< Theorem 6. Assume that the g.c.d. of the k’s with

¢ >0 18 1, and that ik%’k:m. Then we have
1
SO —A7 =,

Proof. If A=, then (19) expresses thati (D) <e.
T

This is false, since S)f(Da=2/{1—> ¢;a*}, and the
1 1

right-hand side tends to « if 2—1.
"Now assume A<». Since f(I)~>A"!, we have by

(16),
SO Som= 3 fOret 30 2 e
1 T 2<kTi<n e R )
=n—14+23(A7 Fa) 237
= It
=n—1+A”1ﬁkm+§3ez Zn) "
k=1 = »Fi
:n—l—l—Zl—l—Zg
We have >),-—>o, since > kr, diverges
Cokri>3>Fk%e), and 2> ,=0(), since —0.

Finally, we have irkzikcszl, and so
T 1
AW >0+ S0 ().

Consequently,

SO =AY > A o},
q.e.d.

Let D denote the greatest common factor of the
‘k’s with ¢, >0. Erdos, Feller, and Pollard [2]
proved that if D=1 and > kc;< e, then

SIF)—fe—1)| <, (20)

which, of course, implies that f(k) tends to a limit.
It seems possible that the condition 2> kecy<leo is
superfluous.

If D>1 and > ke,<w, then (20) does not hold,
since lim f(k) does not exist. In order to see this,
take ¢f=cip, f*(k)=f(kD—D+1); it follows that

Sk =2 ke)t=DA™.
Hence,
fED+1)—DA"0, f(kD-+2)=0.

If D>1 and > key=«, then we have f(k)—0.
Nevertheless, the series (20) need not converge.
Take ¢,=0 for n odd, ¢,=247"%n~% for n even.
Then we have f(2n)=0, f(2n—1)=f*(n), where
f*(n) and ¢f=c., are related by an equation of the

type (1), and Shef=1. It follows, by theorem 3,
that f*(n) ~7% (16 log n).
Therefore,

F@2n—1) ~7% (6 log n), f(2n)=0,

and the series (20) diverges.
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