

A note on compositional refinement

Citation for published version (APA):
Coenen, J. A. A., Zwiers, J., & Roever, de, W. P. (1992). A note on compositional refinement. (Computing
science notes; Vol. 9201). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Jul. 2024

https://research.tue.nl/en/publications/f98bb8e1-19bb-43ad-8d8a-5aa10c58e3aa

Eindhoven University of Technology

Department of Mathematics and Computing Science

A Note on compositional Refinement

by

J. Coenen, J.Zwiers, W.-P. de Roever

Computing Science Note 92/01
Eindhoven, January 1992

92/01

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Techno(ogy.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only 1j.Ild are not
for review.
Copies of these notes are availallie from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

A Note on Compositional Refinement *

J. Zwierst

University of Twente

P.O. Box 217

7500 AE Enschede, The Netherlands

J. Coenen+
Dept. of Math. and Computing Science

Eindhoven University of Technology
P.O. Box 513

5600 MB Eindhoven, The Netherlands

W.-P. de Roever§
Institut fur Informatik und Praktische Mathematik

Christian-Albrechts-U niversitiit zu Kiel

D-2300 Kiell, Germany

Abstract
Implementing a (concurrent) program P often requires changing the syntac
tic structure of P at various levels. We argue and illustrate that in such a
situation a natural framework for implementation correctness requires a more
general notion of refinement than that of [HHS87], a notion which involves the
introduction of separate refinement relations for P's various abstract compo
nents. An outline is given of a formal framework for proving implementation
correctness that involves these notion's.

1 Introduction

Transformational program development, in all its fashions, has become one of the
main ways to construct sequential, parallel, and distributed systems. During such a

development one constructs a sequence of more and more refined systems Q, R, S,
etc. According to some suitable notion of implementation, system Q is implemented

by its successor R, which is itself implemented by S etc. In its simplest form,

program transformation relies on algebraic equalities of the form S = T or on
implementation relations of the form S !;;; T (S is refined by T).

An important property of transformations based on inequalities is that it is rel

atively easy to incorporate specification and verification based-on program logics.

'To appear in Proc. of the 5th BCS-FACS Refinement Workshop. Workshops in Computing,
Springer-Verlag 1992.

tE-mail: zwiers@cs.utwente.ni
ISupported by NWO/SION project 612-316-022: "Fault Tolerance: Paradigms, Models, Logics,

Construction." E-mail: wsinjosc@win.tue.nl
§Partially supported by ESPRIT project 3096: "SPEC." E-mail: wpr@informatik.uni

kiel.dbp.de

Such specifications have the form S:::::J X, often denoted in this context by S sat X,

where S is a system as before, but where X is a formula of some appropriate program

logic [Z89]. Within this framework it is natural to apply process operations 'op' not
only to processes S but also to logic specifications cp or combinations of processes

and specifications, resulting in so called mixed terms [Z89,091]. This admits a
transformational approach where an initial logical specification is transformed grad

ually into an implementation as a process. During each step in such a development
trajectory one replaces one subterm by another subterm. One of the following three

situations applies to each replacement of a subterm by another.

• A specification cp is replaced by process S such that S :::::J cpo

• A process S is replaced by another process T such that T :::::J S.

• A specification cp is replaced by another specification If; such that If; :::::J cp, i.e.
If; -> cp should be a logically valid implication.

It is possible to go one step further in this integration of processes and program
logics, by introducing a single, unified language of terms that can be composed by
means of operations originating from process languages, such as parallel or sequential
composition as well as by means of logical operations from propositional logic and

predicate calculus [ZdR89]. So not only can specifications be combined by means of

process operations, but also can processes be combined by means of logic operations

such as conjunction. Apart from being :more uniform this approach has technical

advantages such as the possibility to define more complex process operations by
means of simpler logical and process operations. An example is the definition of

various forms of parallel composition of processes in terms of logical conjunction

and a few simple process operations such as relabeling of actions or projection of
communication histories [ZdR89]. Another advantage of the integration of processes

and logic is the possibility to deal with higher order constructs such as predicate

transformers in a natural way, completely inside a single unified framework. As we

rely heavily on such techniques because it also turns out to be the proper framework

for expressing and proving reification, we introduce such a unified language in the
appendix.

The use of the term reification rather than refinement emphasizes the use of sim

ulation techniques to justify the transformation steps of the development process.

Such general techniques are based on simulation of an 'abstract' high level specifica
tion A by a more concrete lower level implementation C. The idea originates from

the well known techniques for data reification, where the relation between abstract
and concrete is specified by means of so called abstraction functions, also called

retrieve functions, mapping concrete data to abstract data. Data reification can be
generalized to simulation where a retrieve function maps complete computations,
also called 'runs', from the concrete level to the more abstract level. This is based
on the assumption that systems S can semantically be interpreted as sets of runs

of the system. This view is consistent with many models of computation, both for
sequential and concurrent systems. Typical examples are the CSP trace, ready set
and failure models, where a run coincides with a finite communication history, possi
bly decorated or augmented with information concerning termination and deadlock
behaviour. Other examples are that of the set of, labeled or unlabeled, state se
quences associated with state-transition systems, the runs as defined for Petri nets
and event structures, and the traces as introduced by Mazurkiewicz. But maybe
the simplest example is the classical model for sequential nondeterministic programs
as binary relations on states, where each initial/final state pair (so, stl represents
one possible computation. Retrieve functions p which are defined on single states,
mapping states Se of the C system to states Sa = p(se) of the A system, can be
extended straightforwardly to abstraction functions p on runs, in the form of state

sequences o-c = (SO,S1,S2, .. .), by pointwise applying p. Hence,

Similarly, p is then extended to an operation on sets of runs, by applying p pointwise
to each run in turn:

Intuitively, system C implements A or as we will say, refines A with respect to

retrieve function p, if for any possible C run there is a corresponding, i.e. p related,
A run. This is easily expressed by the following requirement.

p(C) <;; A (1)

Note that for the special case that p is the identity function, this boils down to
C <;; A, that is, we are back at the simpler form of implementation for mixed terms
discussed above. In this case we simply say that C refines A.

Although it might not be apparent from (1), it can be shown, see [CdRZ91] that the

verification conditions for functional data reification in VDM amount to the same

as (1). Data refinement as discussed in [R81] and on pp. 221-222 of [J90] is slightly
more general than functional reification in that it allows abstraction relations a

rather than retrieve functions p between concrete and abstract data. This means
that one particular concrete value can represent several abstract values, a desirable
property when dealing with implementation bias. 1 When dealing with abstraction
relations a the refinement relation between systems can be formulated .as follows.

Definition 1.1 (Strong simulation)
System C strongly simulates system A with respect to relation a if

a(C) <;; A

o

1 A specification is said to be implementation biased if it includes more implementation detail
than strictly necessary (see e.g. [J90]).

A slightly more general notion of simulation is given in the next definition.

Definition 1.2 (Weak simulation)
System C weakly simulates system A with respect to a if

o

Strong simulation requires that for any C run ac all a related runs a A are possible
runs for the abstract system A. Weak simulation only requires that there is at least
one such a related run that is also a possible run for A. Clearly weak simulation

is more liberal than strong simulation, because a(C) <;; A => C <;; a-I (A) if (and

only if) a is total, but C <;; a-I(A) => arC) <;; A if (and only if) a is functional.
Whereas retrieve functions are not adequate when considering implementation bias,

requiring totality is not a real limitation. After all, it is only required that the

abstraction relation is total with respect to the admissible states of the concrete

data type, which can be achieved by strengthening the data invariant part of the

representation invariant that characterizes the abstraction relation.

Both strong and weak simulation are defined in terms of abstraction relations on
the level of computations. As it turns out, the well known notions of upward and
downward simulation are not of this form, i.e. cannot be understood in terms of

abstraction relations operating on computations. What is possible however is to

characterize upward and downward simulation of A by C by means of inequalities
of the following form:

C <;; F,,(A) (downward simulation)

(upward simulation)

The operations F" and G" transform processes, i.e. they transform sets of computa
tions, and are defined in [HHS87], relying on weakest prespecifications and strongest

post specifications. Within' our unified language they can be expressed in terms of

relational composition X : Y, weakest preconditions [XJY and the leads-to operator
X "-'+ Y, as follows:

G,,(X) = [aJ(a: X).

Next we note that both weak and strong simulation can be formulated as inequalities

of this form. For weak simulation as defined above this is already the case, and the
inequality for strong simulation is expressible in our language as

where a R denotes the right adjoint of a. We therefore define in general refinement

of A by C with respect to F as the inequality

C <::::: F(A).

Departing from this definition of refinement we define in this paper a generalization
of it to what can be called compositional refinement.
Compositional refinement does not treat abstract and concrete programs as mono

lithic entities but rather takes their decomposition into smaller programs into ac

count. A limited form of compositionality has been defined in [HHS87], where it it
is called subdistributivity. An operator F as above sub-distributes over some n-ary

language operator op iff

Subdistributivity guarantees the following for refinement of complete programs of
the form P(At, ... , Am) that are built uP by means of subdistributive operations

from some set of basic programs AI, ... , Am: If each of the Ai is refined by Ci with

respect to F, then the whole program P(AI, ... ,Am) is refined by P(CI, ... ,Cm)
with respect to F. Subdistributivity allows refinement of basic abstract program

Ai by means of basic concrete program Ci. But it does not allow for refinement

of the (parameterized) abstract program P(XI, ... , Xm) to a 'concrete' program

Q(XI , ... ,Xn). In this paper we give a precise definition of such 'context refine
ments' and we provide examples thereof.

Related to context refinement is the idea of a varying abstraction relation. The ba

sic idea is that different components of ~ program might be refined with respect to
different abstraction relations, one for each component, rather than using a uniform
abstraction relation for the whole program. A very simple example of a varying ab

straction relation is provided by variable or channel hiding contexts that are used to

declare local abstract and concrete variables and (CSP style) channels. The general

picture here is that we have an abstract program operating on abstract variables a

say, and an implementing program C operating on corresponding concrete variables
c, where C refines A with respect to abstraction relation a, i.e. C <::::: a-leA). The

two programs are placed in contexts HA (X) and Hc(Y) that declare the a or c as

local variables and initialize, and possibly even finialize, those variables. For appro

priate contexts we then have that from C <::::: a-leA) it follows that Hc(C) <::::: HA(A).
We regard this as context refinement, where HA(X) is refined by Hc(Y) and where
the abstraction relation a for the components X and Y has been replaced by the
identity relation on the outer level. In general we do not require the identity at the
outer level or 'interface level' as refinement relation; a nontrivial choice for refine

ment at the interface level enables us to formalize so called interface refinement. In
the paper we treat an example of context refinement for a communication protocol
where there is a shift from rather complicated abstraction functions for components
to a relatively simple abstraction function for the interface.

Our definition of compositional refinement takes both context refinement and vary
ing abstraction relations into account. It can be formulated as a simple weak ho

momorphism property. We say that a program (context) A(Xt, ... , Xn) is refined
by another program (context) C(Yt, ... , Yn) with respect to Fo (for the outer level)

and F1 , •.. , Fn (for the components) iff

The outline of the remainder of this report is as follows. In section 2 we first
discuss the role of compositionality in refinement and its relation with the notion of

subdistributivity in [HHS87j. We give an example that illustrates how the refinement

relation P between the overall abstract program and the concrete program may be

different from the refinement relations Pi between their (concurrent) abstract and
concrete components Ai resp. Ci. Secondly, we introduce a refinement notion which

generalizes subdistributivity by allowing context refinements. This is illustrated

by an example based on the self-stabilizing snapshot algorithm of Katz and Perry

[KP90j. In the appendix we present a theory that unifies several refinement methods

for both sequential and concurrent programs within one framework. The theory is

related to calculus of [HH87j and [HHS87j. Furthermore the theory is applied to the
examples of section 2.

2 Compositional refinement

An important question for transformational techniques in general is how they com

bine with a modular style of system development. Transformations should be ver
tically composable as well as horizontally compos able. Vertical composability or
transitivity is the property that if a system A can be transformed into a system B
which in turn can be transformed into C then the immediate step from A to C is

also a legal transformation. This requirement is readily satisfied for most transfor
mation techniques, including simulation where we rely on composability of retrieve

functions. Horizontal composability or compositionaiity requires that if a system

S(Sl,"" Sn) can be decomposed into parts S1, ... , Sn and a top level part S(.. .),

then implementing the parts yields also an implementation of the whole. To be more

precise, let S = S(X1 , .. . ,Xn) be a program term with free variables Xl, .. . ,Xn,

for which other programs, say Sl, ... , Sn can be substituted which we denote for

mallyas S[S1/ Xl, ... , Sn/ Xnj and more informally as S(Sl, ... , Sn). Then, if S; is

implemented by T;, for i = 1, ... , n, compositionality requires that S(Sl,"" Sn) is
implemented by S(T1 , ••• , Tn).

For simple algebraic equalities between processes the requirements of vertical and
horizontal compos ability are readily satisfied, because equality is transitive and sub-

c

stitutive:

if Q = Rand R = S then Q = S, and

if Si=Ti fori=l, ... ,n thenS(SI"",Sn)=S(TJ, ... ,Tn).

More complex transformational techniques rely on implementation relations in the
form of inequalities between processes rather than equalities. For implementation

relations of the form S s;:; T horizontal composability is guaranteed when programs
are built up from smaller parts by means of monotonic operations. For systems de

noting sets of 'runs' - the implementation relation S ~ T denotes the set inclusion

T s;:; S - this means that an operation 'op' satisfies the following property.

if Ti s;:; Si for i = 1, ... ,n then Op(TI, ... ,Tn) s;:; OP(SI"",Sn)'

Vertical composability follows from the transitivity of the subset relation.

Next we consider the composability requirements that were posed above for refine

ment notions based on simulation. Again, vertical composability causes no problems:

if R refines Q with respect to 001 and S refines R with respect to 002 than S refines

Q with respect to 001 0 002:

if R s;:; a11 (Q) and S s;:; a2"I(R)

then S s;:; (001 oa2tl (Q)

Horizontal compos ability, however, is not so simple. From Si s;:; a-I(Ti) for i =
1, ... , n it does in general not follow that S(SI, ... , Sn) s;:; a-I(S(TI , ... , Tn)). A
notorious counterexample is sequential composition: a-I(Si) ~ Ti , (i = 1,2), does

not necessarily guarantee that a-I(Sd; a-I(S2) s;:; TI ; T2 , unless some restrictions

are imposed upon a (c.f. [CdRZ91]). What we need here is a property related to
the notion of subdistributivity as introduced in [HHS87].

Subdistributivity of relation a for some n-ary program operation op means that for

any systems SI, ... , Sn the following inequality holds:

If S(XI , •• . , Xn) is built with monotonic subdistributive operations only, then it
follows easily that

if Ci s;:; a-I (Ai) for i = 1, ... ,n

then S(CI , ... , Cn) s;:; a-I(S(AI, ... , An)).

So, subdistributivity forms the basis of the compositional treatment of data refine

ment in [HHS87], where abstract operations Ai on abstract data within program S,
are implemented by concrete operations Ci, operating on concrete data. Concrete
operations of Ci , resp. abstract operations of Ai, can be considered as atomic op
erations in the syntax trees of S(CI, ... , Cn), resp. S(AI"'" An). I.e. apart from
their atoms these trees have the same syntactic structure.

7

However, in some situations a more general notion of subdistributivity is required

that allows the refinement relation P between the overall abstract and concrete

programs to be different from the refinement relations Pi between the concrete and
abstract components Ci resp. Ai. This is illustrated in the following example.

Example 2.1
Consider the an abstract communication medium MEDA • Messages mlm2 .. . mk

enter M ED A via some channel inA and leave via channel outA. Messages cannot get

lost or duplicated, but they can leave M ED A in a different order than they entered

it. We want to sketch a few development steps, both vertically, by refining the

representation of messages and horizontally, by indicating how an abstract medium
could be built up from a sender process that routes messages via a number of (lower

level) channels to a receiver process that merges them into a single stream which
leaves the communication module through a buffer. What we want to illustrate

is that a relatively simple message representation for the interface of the whole

module has to be replaced by a more complicated representation inside. Moreover,

the context that puts together the sender, the channels and the receiver has to be
refined into a more complicated context that includes a sliding window process. Thus

we see here an example of context refinement with a varying abstraction relation.

First we consider a 'vertical' development step, where M ED A is refined into a more

concrete one M EDe. For this refined medium M EDe we take into account that

abstract messages mi, which can be of arbitrary length, are to be split into sequences
of fixed-length packets 7r(mi) = p;p; ... P7' for the concrete level. The channels inA
and out A are for the concrete level replaced by similar channels inc and oute, and an

abstract message m traveling along inA or OUiA is replaced by the sequence 7r(m) that

travels along inc or oute. We specify a simple protocol that requires that packets

for a given message enter and leave M EDe as a contiguous, ordered sequence.

In order to reconstruct a message from its packets we assume that each packet

Pi carries a message identification as well as the total number of packets for that

message. The relation between the abstract the concrete level is easily formalized

by a retrieve function p, mapping communication histories for inc and oute to
abstract communication histories. For a history h of the form 7r(mt)7r(m2)··· 7r(mn)

we define p(h) = ml, m2, ... m n . If h' is a history like h as above except that for the
last message only a few packets have been communicated we can isolate the longest
prefix h" of h' of 'complete' messages and we define p(h') = p(h"). This retrieve

function p forms the basis for an abstraction relation 0 that relates the complete

concrete behaviour, i.e. the combined history he for the inc and oute channels
together, to the complete abstract behaviour hA, thus:

Note that 0 is functional, in that there is at most one hA value for any he value,
which will be denoted by o(he). For histories he that do not conform to the
protocols introduced above the value of o(he) is not defined.

6

We can now specify the required interface refinement as follows:

Due to the fact that a is a partial function this can also be rephrased as the require
ments that a is defined for all M EDc histories and moreover that

a(MEDc) ~ MEDA.

We remark that p (and a) map histories to histories and that a mapping from

(single) concrete communications to abstract ones does not suffice.

Thus far we have described a rather standard simulation relation for concurrent pro

grams. Note that the refinement relation defines the representation of messages on
the module interface only; nothing is said yet about message representation inside

the module. In fact this representation is determined only after some 'horizontal'
development steps are made, where we develop the medium on the abstract level, i.e.

without taking any message representation into account. Then, after this horizontal

development, compositional refinement comes in when we refine abstract internal

messages. The idea of the horizontal step is that we use standard process refinement
techniques to implement the abstract communication medium as a network of pro
cesses consisting of a router and a merge process communicating via an asynchronous

network consisting of a number of (virtual) channels. Because the messages may be
routed through the network via different routes, it is possible that they are received
out of order. We can describe this by means of a program in a CSP style process
language:

(NETA)\{VinA(i), VoutA(i),BinA} where

NET A ~ ROUTERA II VCHANNELSA II MERGERA II BUFFERA, and

VCHANNELSA ~ VCHANA(l) II VCHANA(2) II

The (synchronous) transfer of messages from one component to another can be
described by means of CSP style communication via CSP channels. We remark
here that CSP communication channels should not be confused with communication

media such as MEDA or the VCHAN channels. CSP communication is used here
exclusively as a mathematical device to describe the transfer of messages from one

component to another, whereas processes like VCHANA(i) are (simplified) models
of certain components of communication networks or distributed operating systems.
The CSP 'channels' connected to these processes are as follows:

Except for the inA and outA channels, all these channels are hidden by the CSP hid
ing construct "X\ {VinA(i), VoutA(i), BinA}". The idea of the design is that incom
ing messages are forwarded by the ROUTER via one of the VCHANs which act as

communication media, of limited capacity and with a low reliability. The ROUTER

should take such capacities and potential failures into account and distribute incom
ing messages in an appropriate way. The MERGER collects the messages from all

VCHANs and sends them all via the Bin channel towards the BUFFER which in

turn delivers them via outA. Due to nondeterministically determined delays in the

reception of messages that are sent via different VCHAN's the order of messages

might indeed get lost, as is allowed by the specification. It is not difficult to specify

processes like ROUT ERA, and to show correctness of the M ED A implementation
as above on the basis of these component specifications. One might then continue

this 'horizontal' development, by implementing the component processes. At some

moment though this has to be followed by a 'vertical' stage, where we take the rep

resentation of messages by sequences of packets into account. During this vertical

stage a component such as ROUT ERA is replaced by a component ROUT ERa that

behaves much like ROUT ERA except that it operates on packets rather than mes
sages. At first look we might use essentially the same abstraction relation a to relate

the concrete internal level to the abstract level. (This 'generic' a should relate, by

means of the p function, not only ina and outa to inA and outA but also the concrete
internal channels to their abstract counterparts.) A correct solution could then be

specified by the requiring that ROUTERa <:::; a-1(ROUTERA), and similarly for
the other components. For in that case the subdistributivity of the CSP parallel

composition and hiding constructs would guarantee that MEDa <:::; a-1 (MEDA),
as required.

The problem with this proposed solution is that it assumes that the low level

VCHAN processes preserve the ordering of messages, which is quite unrealistic,

and moreover forces us to send all packets for some particular message via the same

VCHAN virtual channel. If we drop the assumption on order preservation and

allow the ROUTER to arbitrarily distribute packets the protocol specified above

is no longer obeyed, since in general the packets for a message will leave M EDa
via outa out of order and non-contiguous, i.e. intermixed with packets belonging to
other messages.

Informally one sees that we can correct the situation by tagging packets with a

sequence number and replacing the abstract BUFF ERA process by a process SW
implementing a sliding window protocol. That is, rather than merely buffering pack
ets, SW will delay incoming packets until it has received all packets for some message
and will then deliver all of them, in order and consecutively, via outa.

For this more sophisticated solution we can no longer use p (and a) as the abstraction
function for the internal behaviours. Rather we define a more complex variation,
of p that in some sense incorporates a specification of a sliding window protocol in
that it extracts the abstract messages from a 'shuffled' sequence of packets. (For
those sequences that do conform to our protocol, , and p are both defined and yield

equal results).

Let #h denote the length of a communication history h and h\{PI,P2,"'} a variant
of the hiding operation, that removes the indicated messages PI, P2, ... from h. then
we define:

if there exists an n : 1 $; n $; #h:

m (h\{.J 11 < . < k}) {pf 11 $; j $; kd <; {hi 11 $; i $; n}
I, 1'1 - J - I 'and for all i: 1 $; i $; #h

,(h) = {Pi II$; j $; ki } rz {h j 11 $; j < n P

, otherwise.

As an example, suppose 7l'(mt) = plpI and 7l'(m2) = p~ and plpIP~ is transmitted

via inc, corresponding to p(plpIPD = mlm2 via inA. On channel Bine the sliding

window may receive sequences plpip~ and p~p:pi representing mlm2 and m2ml
respectively, and which would be legal output for the oute channel. It may also

receive a sequence such as PIP~pl, which is not allowed on oute, and for which p
is not defined. The "'(function is defined for all three sequences, e.g. "'((pip~pD is
computed as follows:

",((PIP~Pl)

m2 "'((pip~pl \ {pm

m2/(PIPl)

- m2 ml "'((pip: \ {pl, pm

m2 ml,(E)

, choose n = 2

, definition of hiding

, choose n = 2

, definition of hiding

Thus, , maps he to the abstract history hA such that message hA (i) is the i lh

completely received message. Based on , we formulate a fJ relation defined on the
complete internal behaviour.

20ne chooses n to be the minimal value for which there exists an index I such that all packets
of ml are received.

I.

For example, for the MERGER component we define

(3(hc, hAl iff

(hAI{VoutA(l), VoutA(2), .. . }) = l'(hcl{Voutc(l), Voutc(2), .. . }) and

(hAIBinA) = l'(hcIBinc).

The criterium for correct refinement of M ERGERA by M ERGERc is then formu
lated as expected:

and similar requirements for the ROUTER and VC H AN components. Subdis
tributivity is now sufficient to conclude that we have also

where

INTA ~ (ROUTERA II VCHANNELSA II MERGERA) and where

1NTc ~ (ROUTERc II VCHANNELSc II MERGERc).

Finally, we define contexts for I NTA and I NTc:

CtxA(X) ~ (X II BUFFER)\{VinA(i), VoutA(i),BinA}

Ctxc(Y) ~ (Y II SW)\{Vinc(i), Voutc(i),Binc}

What we claim here is that context Ctxc refines Clx A in the following sense:

This property can be formulated equivalently as:

A proof of this claim will be sketched below, after the formal definition of composi

tional refinement. From the claim and the refinement relation between I NTA and
I NTc it then easily follows that

(Which shows the correctness of the whole design).

What the example shows is that the usual definition of program simulation, which
assumes a uniform choice for the retrieve function, is not appropriate within a com

positional set-up. For although the I' and (3 functions could have been used at the

interface level too, such is exactly the situation one wants to avoid by the principle
of 'separation of concerns': the (simple) p and a functions are all that is needed to

specify the externally observable behaviour of the communication module, and any
complexity related to internal detail is to be avoided for that purpose. Moreover, one
might decide later on to re-implement the module much better than our proposal,
while retaining our refined interface.
(End of example)

We define a more general notion of refinement, avoiding the limitation signalled

above by introducing separate refinement relations for every component. Moreover,

the definition is in terms of context refinement.

Definition 2.1 (Compositional Refinement)
We say that So(X" ... , Xn) is refined by To(Yi, ... ,Yn) with respect to Fo and

F" ... , Fn iff

for all X" ... , X n •

o

In this paper we mainly concentrate on the case where Fj is of the form aj'. We

repeat the definition for this special case:

Definition 2.2 (Compositional refinement based on weak simulation)
System So(X" ... ,Xn) is refined by To(Y, , ... , Yn) with respect to relations ao and

at, ... ,an iff

for all X" ... ,Xn .

o

For the simple case that So and To contain no free variables, our definition coincides
with the notion of weak simulation introduced in definition 1.2.

Another important special case is that where So equals To and where Fo = F, =

. .. = Fn. This is essentially subdistributivity of Fo for So, where we extend

this latter notion to complete terms So (X, , ... ,Xn), rather than just operations

op(X" ... ,Xn).

We already noticed that data refinement in the sense of [HHS87] implies a transfor

mation of programs in which only their (atomic) data structure operations are re

placed. The reason for this is that although subdistributivity admits implementation

of operations or subprograms within a context S, it does not admit transformation
of the context S itself. For concurrency, this situation is not satisfactory, because
there are many cases where one's intuitive notion of implementation implies a change

of context. For instance, take Milner's suggestion (in [MSO]) to implement shared
variable concurrency using communication based concurrency by modelling shared

variables as separate concurrent processes, whose communications correspond to
read and write operations. Here, the added shared variable modelling processes are

put in parallel with the top syntactic level of the appropriately transformed shared
variable program, implying a syntactic change at various levels. Another example

of such a context change is contained in [Z90], which gives a correctness proof of a
reification where the sequential abstract operations of a program are implemented
by concurrent versions, more specifically, where abstract operations are replaced

by communications with concurrent processes, implementing the data structures

involved in concurrent fashion and running in parallel with the appropriately trans

formed original program.

Some basic properties of compositional refinement are contained in the following

theorems, which we present in the form appropriate for weak simulation.

Theorem 2.3 (Refinement for monotonic terms)

Let To(Y" ... Yn) be monotonic in each of its Y; variables. Then So(Xl , ... ,Xn)
is refined by TO(Yl ,' .. , Yn) with respect to relations 0'0 and 0'1, ••. , an if for all
Y" ... , Yn and all Xl, ... , Xn:

(1\ 1'; <:;; a;-l(Xi)) =} TO(Yl , ... ,Yn) <:;; aOl(SO(Xl"" ,Xn)).
i=:1..n

•

Theorem 2.4 (Horizontal composability)
Let the following conditions be satisfied.

• So (XI , ... ,Xn) is refined by To(Xl' ... ,Xn) with respect to 0'0 and at, . .. ,an,

• Si(Yi, ... , Ym) is refined by Ti(Yi, ... , Ym) with respect to ai and 131,···, 13m,
for i = 1, ... ,n. (We assume here that the variables of each of the systems Si
is contained in a common list Yi, ... , Ym .)

• To is monotonic in each of the Xi variables.

Then the composed system

is refined by

with respect to 0'0 and 131, ... , 13m .

•
Our definition of compositional refinement is rather general and moreover formu
lated in terms of parameterized, i.e. higher order, programs. Thus it might seem

complicated to prove refinement on the basis of actual program texts and assertional

specifications. For concrete specification- and programming languages it is possible
though to have simpler criteria for checking the refinement conditions. We give a

sketch of this for the case of CSP style processes and assertional trace specifications,

within a "Programs as Predicates" setting [Ho85],[ZdR89]. That is, we use a mixed

formalism that includes both processes and specifications as special case.

An assertional trace specification of a process P is a (first order) formula X(h)
with a special designated variable h denoting the communication history of the

specification. The programs as predicates paradigm can be paraphrased as follows.
Programs P can semantically be regarded as predicates on traces too, which we

sometimes indicate by the notation P(h). (Syntactically though, the h variable
does not occur at all in the program text of P.) A context Ctx(X1 , ••• ,Xn) can be

regarded in this way as a predicate of the form x(h1 , ••• , hn, h), where the hi denote
traces of the components Xi, and where the last variable h denotes the trace of
Ctx put around those components. Proof systems such as [Z89], [ZdR89] allow one

to prove implications of the form P(h) -t X(h). Such implications denote exactly
the same as P <; X in the notation of this paper, i.e. program P should satisfy
specification X.

Now for predicates as above, there is a simple characterization for inverse images of
the form a-I (X), by means of substitution:

Lemma 2.5
For functions a and predicates X(h) on traces:

a-1(x(h)) = x(a(h))

•
Assume that we want to prove that some context CtxA(X1, ... , Xn) is refined by

Ctxc(Yt, .. . , Yn) with respect to a and /3h"" /3n. Furthermore, assume that we
have equivalent predicates XA and Xc for CtxA and Ctxc. The refinement condition
of the form

can then be rewritten as follows:

Vh (3hh ... , hn(i=0..n Xi(/3i(hi)) II Xc(h1, ... , hn, h)) -+

3t1, ... ,tn(;=0..nX;(ti) II XA(th ... ,tn,a(h)))

This implication should be valid for all Xl, . .. , X n • A sufficient condition for the

implication to hold is obtained by choosing ti = /3i(h i), followed by simplification of
the formula:

What we have shown is the following theorem:

Theorem 2.6 (Compositional refinement for trace specifications)
For trace predicates XA(hh .. " hn, h) and XC(hh"" hn, h) a sufficient condition for

refinement of Ctx A by Ctxc with respect to a and /31,' .. , /3n is:

V h (V hI, ... , hn (X c (hI, ... , hn, h) -+ X A (/31 (hI)' ... , /3n (hn), a(h)))) .

•
Example 2.2

As an example we consider the contexts introduced at the end of example of the
communication medium. We recall the definition of these contexts:

CtXA(X) ~ (X II BUFFER)\{VinA(i), VoutA(i),BinA}

Ctxc(Y) ~ (Y II SW)\{Vinc(i), Voutc(i),Binc}

Techniques as for instance discussed in [Z89] allow one to prove equivalence of these
contexts with the following predicates:

and:

Xc(h},h) ~ 3h'(h = (h'l{inc,outc}) II chan(h') = {inc,outc,Binc}

What has to be shown to prove the refinement relation that we claimed at the

end of the previous example can now be reduced to the following straightforward

verification condition:

where a and f3 are the abstraction relations introduced in the example.

(End of example)

Finally we provide another example of context refinement, which can be considered
a special case of compositional refinement.

Example 2.3 (Self-stabilizing snapshot algorithm of [J(P90j)
Consider a distributed system in which processes communicate by asynchronous

message passing via directed channels. The communication network is strongly

connected, and the channels are FIFO buffers of sufficient capacity. The global state

of a distributed system is the product of all the local states plus the contents of the
channels. An accurate snapshot is defined as follows [KP90j.

At any global state a, a process is said to have an accurate snapshot of
a' if local variables of the process contain a representation of a global

state that is a possible successor of a' and a possible predecessor of 17.3

Snapshots may be used, for example, to detect wether a distributed algorithm has

terminated or to retrieve information contained in the local states of the processes.

In [CL85] Chandy and Lamport presented the algorithm for obtaining accurate

snapshots, which is used as a basis for the 'StableS nap' algorithm of Katz and

Perry [KP90j. We will briefly outline the Chandy-Lamport algorithm. For a more
complete discussion of the algorithm and its correctness argument we refer to [CL85,

D83j. Process Po may invoke the snapshot algorithm by recording its local state

and sending a marker along each outgoing channel. From this moment on the
process records for each incoming channel the messages it receives. On receiving
a marker along an incoming channel c a process Pi executes the subroutine C L(c)

(algorithm 1). If process Po has received all reports, it may initiate another snapshot.
Let eLi denote the snapshot algorithm for process Pi and ¥ denote the superposition

3It is implicitly understood that (J and (J' are states within the same computation.

1:

IF Pi has not yet recorded its local state
THEN Pi records its local state and starts recording

the incoming messages on channel c;
Pi sends a marker on each outgoing channel

ELSE Pi stops recording the incoming messages on channel c

FI;
IF Pi has stopped recording the messages on all incoming channels

THEN Pi sends a report to Po

FI

Algorithm 1: CL(c) (Snapshot, [CL85]).

(or superimposition), see e.g. [BF88], of program S upon T, then the distributed
system Po II ... II Pn- 1 is transformed into

CLo II 00. II CLn- 1 .

Po Pn - 1

The structure of this system can be described by

C(Po, ... , Pn- 1 , CLo, ... , CLn-tl , (2)

where the context C(Xo, ... , X n - 1 , Yo, ... , Yn-tl is defined as

Yo II 00. II Yn
-

1
.

Xo Xn - l

We describe an algorithm called 'StableSnap' that can be viewed as a refinement
of (2), where the context C(Xo, ... , X n- l , Yo, ... , Yn-tl is transformed into

J«XO,oo"Xn_l,Yo,oo',Yn_l), thereby leaving PO,oo',Pn- 1 and CLo,oo.,CLn_1

unchanged. So, the resulting system can be described as

J«Po, ... , Pn- 1 , CLo, ... , CLn-tl , (3)

Compositional refinement allows one to show a refinement relation between

C(Xo, ... , Xn-t, Yo, ... , Yn-tl and J«Xo, ... , X n- 1 , Yo, ... , Yn-tl without paying at
tention to the structure of Pi and CLi (i = 1, ... , n), all in order to prove that (2)

is refined by (3). Similarly, one could refine Pi into some process PI or CLi into
CL; (i = 1,00', n). Subdistributivityas in [HH87] would allow only these latter
refinements, but not context refinement.

The 'StableSnap' algorithm is a self-stabilizing snapshot algorithm based upon the
Chandy-Lamport algorithm. Paraphrasing Katz and Perry, a self-stabilizing pro
gram is a program that eventually resumes normal behaviour even if its execution
is initiated from an illegal state. In this sense a self-stabilizing program can tolerate
transient faults. Following [KP90], sem(P) denotes the set of all possible execu
tion sequences of P for arbitrary initial states. Let legsem(P) denote the subset of

sem(P) with all execution sequences starting in legitimate initial states (initial states

satisfying some characteristic predicate.) Given the definitions for self-stabilization:

Program P is self-stabilizing if each sequence in sem(P) has a non-empty

suffix that is identical to a suffix of some sequence in legsem(P),

and program extension:

Program Q is an extension of program P if for each global state in

legsem(Q) there is a projection onto all variables and messages of P

such that the resulting set of sequences is identical to legsem(P), upto

stuttering, 4

a program Q is defined to be a self-stabilizing extension of program P if Q is self
stabilizing and also an extension of P (see [KP90]).

Below we give a brief description of the core of the 'StableSnap' algorithm. Each

round of the 'StableSnap' algorithm is initiated by process Po by sending a marker

on each outgoing channel. Process Po may initiate a new round at any time. A

round ends when process Po has received a report for that round from all processes.
Due to the lack of synchronization each process may be involved in a different round,

Therefore it is assumed that each marker and report contains the round number of

the originating process at the moment of sending. Upon receiving a marker via

channel e a process Pi invokes the algorithm [(Pre) (algorithm 2). A distributed

system Po II ... II Pn- I is transformed by superposition of the 'StableSnap' algorithm
into

[(Po(CLo) 11 .•. 11 [(Pn-I(CLn- I) ,
Po Pn- I

where [(Pi(CLi) means that [(Pi uses the subroutines of CLio

It can be shown, d. [KP90], that a distributed system StableSnap(XI II ... II X k)

obtained by superposition of the 'StableSnap' algorithm is a self-stabilizing extension

of the system Snapshot (Xl II ... II Xd, that is obtained by superposing the Chandy

Lamport algorithm upon Xl II ... II X k . Let 7r be the function that maps each

execution sequence s of 'StableSnap' to the unique execution sequence s' obtained

by first projecting the states of s to the variables and messages of 'Snapshot' and

then removing duplicate immediate-successors of states. Then from the fact that
'StableSnap' is an extension of 'Snapshot' it follows that

ir- I (legsem(Snapshot)) = legsem(StableSnap) ,

where ir-I is defined by

ir-I(E) ~ {s I s' = 7r(s), s' E E} .

4 A sequence is stuttering if there exist two identical consecutive states in that sequence.

;.

IF Pi is recording this channel and

FI

the marker has the same round number as Pi
THEN start CL(c);

IF Pi stopped recording all channels
THEN send a report to process Po

FI

ELSE IF the marker was received before
THEN skip

FI

ELSE IF the marker has a higher round number than Pi
THEN propagate the marker along all channels;

adapt the round number and restart CL(c)
ELSE propagate the marker along all channels;

IF Pi stopped recording all channels
THEN send a report to process Po

FI
FI

Algorithm 2: J(P(c) (StableSnap, [KP90j).

Furthermore, let I> be the relation that relates all execution sequences s with each
execution sequence s' that is a non-empty suffix of s then i\;-1 is defined by

i\;-I(~) ~ {s I (S,8') E 1>, S' E~} .

Given the fact that 'StableSnap' is self-stabilizing w.r.t. 'Snapshot', it follows that

(legsem(X) <;; sern(X) for all X)

it-I (i\;-I(sem(Snapshot») 2 sem(StableSnap) ,

It is easily seen that Snapshot(X, II ... II Xk) is refined by StableSnap(XI II ... II X k)

if one chooses ao = (I> 0 71") and for ai (i = 1, ... , k) the identity relation in defini
tion 2.1.

The superposed programs can only affect its own variables, but not variables of

the underlying program. Furthermore, the underlying program and the superposed

program can identify whether a message belongs to the underlying or the superposed
program, so that no interference can occur. These restrictions guarantee that the
superposed program can not block or affect the control of the underlying program.

Therefore we may conclude that (this kind of) superposition is monotonic. Because
superposition is monotonic, it follows from theorem 2.4 that if we replace the macro's
of the Chandy-Lamport algorithm by correct implementations, then that will not
affect the correctness of the Katz-Perry algorithm, independently of the underlying

program.

(End of example)

3 Conclusions

We discussed the role of compositionality in refinement and argued that a more

general notion of refinement than subdistributivity is needed for compositional re
finement. The motivation for such a generalized notion of refinement was illustrated
by some non-trivial examples.

Furthermore, we introduced a general framework that unifies several refinement

methods for sequential and concurrent programs. The expressive power of the re

sulting theory has been investigated, which resulted in the conclusion that several

well-known theories, such as the prespecification calculus, are embedded within the
theory.

A Formal framework

In this section we sketch some of the underlying principles and techniques that are

used throughout the paper. One of the problems that we encountered when study

ing the literature on reification and simulation was the large variety of theories and
methods being proposed, both for sequential and for parallel systems. Quite often
there is a strong relationship between methods, and it is one of our aims to clarify
such relationships. For sequential systems we presented a more uniform framework

for several well known reification methods in [CdRZ91]. For instance, it was shown
how Reynolds' reification method and VDM-style reification can be related within

one predicate transformer framework. Here we extend these results by proposing a

language that allows for the formulation of several definitions of simulation, such

as upwards or downwards simulation, applicable to both sequential and parallel
systems. The language resembles more classical formalisms such as predicate trans

former calculi and the relational calculus. It differs from these formalisms in that we
make a clear distinction between composition of relations and predicate transform

ers on the one hand and sequential composition of programs on the other hand. For
instance, in a trace-based formalism we use binary retrieve relations to map concrete

communication histories to abstract histories. Composing such relations does not

correspond to the sequential composition operator of the programming language.
For the latter operation amounts to concatenation of histories. However, the predi

cate transformer framework for sequential programs is embedded in the theory below
as a special case in which programs denote binary relations on states. To deal with

concurrent programs we use relations not on states but on complete computations,
which we sometimes refer to as generalized states. In [Z89] a predicate transformer
theory and formalism for concurrency based on this notion of generalized states is

developed which indicates the wide range of applicability of predicate transformer

concepts and which is subsumed in the formalism presented below.

The theory is defined relative to two basic types, viz. State and Comp. The elements
State are (generalized) states and the elements of C omp are computations. For types

TI, . .. ,Tn the type Rei is defined by

Rel(TI, ... , Tn) ~ P(TI X ... X Tn).

Thus the elements of Rei are relations. In case of a unary relation we use S et(T)
rather than Rel(T). The type Trans is only defined for non-basic types TI and T2:

The elements of Trans are called transformers, because predicate transformers turn
out to be special elements of Trans. Besides elements of the types defined above,

the theory also includes a class of formulae, which will be discussed later.

Definition A.I (Relations)
Relations are defined inductively as follows.

o

• Let X be a n-place predicate on tuples in TI X ... X Tn, then

((t1, ... ,tn) E T1 X .•• X Tn I X(t 1, ... ,tn)}

is a relation of type Rel(TI, ... , Tn).

• Let R be a relation of type ReZ(TI, ... , Tn), then

the complement ~R ~ R is a relation of type ReI(T1, ... , Tn).

the converse R-I is a relation of type Rel(Tn, ... ,Ttl.

• Let R1 and R2 be relations of type Rel(TI"" ,Tn), then the union
RI V R2 ~ RI U R2 and the intersection RI II R2 ~ RI n R2 are relations of

type Rel(TI,"" Tn).

• Let RI be a relation of type Rel(T1, ... , Tn-I, Tn) and R2 be a relation of type
Rel(Tn, Tn+! , ... ,Tn+m), then their composition RI 9 R2 ~ R2 0 R1 is a relation

of type Rel(TI, ... Tn-I, Tn+I, .. ·, Tn+m)'

• A special case of the previous definition is the relational image R(lSD, which
abbreviates S 9 R. We employ this abbreviation when S is a unary rela~ion,

i.e. a set. So if R is a relation of type Rel(TI, T2, ... ,Tn) and S is of type
S et(TI), then the relational image R(lSD is a relation of type Rel(T2, . .. ,Tn).

• Let T be a transformer of type T1 --> T2, and let R be a relation of type T1 then
T(R) is a relation of type T2'

Notice the notation Rl ~ R2 for composition of relations. Although we do not present
any particular programming language here, we denote sequential composition of

programs by 8 1 ; 8 2 . As explained above, the two operations coincide only for the

case of sequential programs, where 8 1 ; 8 2 (also) denotes relational composition.

Definition A.2 (Transformers)
For non-basic types 71,72 transformers are defined inductively as follows.

o

• Let X be a variable of type 71 and R be of type 72, possibly with free occur

rences of X, then >'X.R is a transformer of type 71 -> 72'

• Let Tl and T2 be transformers of type 71 -> 72, then

- Tl/\T2 and Tl VT2, respectively defined by (Tl/\T2)(X) ~ Tl(X)/\T2(X)
and (Tl V T2)(X) ~ Tl(X) V T2(X), are transformers of type 71 -> 72'

- Likewise, ~Tl is a transformer of type 71 -> 72'

• Let Tl be a transformer of type 71 -> 72 and T2 be a transformer of type
72 -> 73, then T2 0 Tl is a transformer of type 71 -> 73.

• Let T be a transformer of type 71 -> 72 then the adjoint transformer Tt is

defined by

Tt(X) ~ U{Y 1 T(Y) <;;; X}.

It is a transformer of type 72 -> 71.

Because the definitions above are very general, we will discuss some more specific

cases of transformers, that capture some of the more familiar (predicate) transform
ers.

If R is of type Rel(71,72) and 8 of type S et(7tl, then R08D is the strongest postcon
dition of type S et(71)'

Tt(X) is easily seen to be the largest Y such that T(Y) <;;; X. For the cases of

interest T can be assumed to be completely additive (c.a.), i.e.

T(U{X I···X ... }) = U{T(X) I . .. X ... }.

In that case Tt is also characterized by the following property of right adjoints:

T(X) <;;; Y if and only if X <;;; Tt(y).

The use of the adjoint operation is that it allows for a uniform definition of sev
eral distinct predicate transformers, such as weakest preconditions, weakest pre
specifications, generalizations thereof for concurrency, the weakest postspecification

and the related 'leads to' transformer. We provide some of the details. Let R
be a relation of type Rel(TI, ... , Tn+I). Furthermore, let X resp. Y be a variable

of type Rel(TI, ... ,Tn,Tn+2, ... ,Tn+m) resp. Rel(Tn+t, ... ,Tn+m). We define the so

called 'leads to' transformer)"X.R """ X of type Rel(TI, ... , Tn, Tn+2, ... , Tn+m) --+

Rel(Tn+t, ... , Tn+m) as the adjoint of R ~ Y, i.e.

)"X.R"",, X ~ (W.R; y)t .

This definition includes the following well known transformers as special cases.

• If R is of type S etC Ttl and S of type Seth), then R """ S is the 'leads
to' relation of type Rel(TI, T2). If we interpret Rand S as precondition and

postcondition of a Hoare style formula, then R """ S is the largest program

(i.e. relation) that satisfies that Hoare formula.

• If R is of type Rel(TI, T2) and S of type R el(Tt, T3)' then R """ S is the weakest
postspecification SIR of Hoare and He [HH87] of type Rel(T2, T3), (take n = 1

and m = 2 in the above definition.)

For relation R of type Rel(TI, ... , Tn) and variables X and Y respectively of type

Rel(Tn+I, ... , Tn+m, T2, ... , Tn) and Rel(Tn+I, ... , Tn+m, TI), the transformer [R] of
type Rel(Tn+t, ... ,Tn+m,T2, ... ,Tn) -> Rel(Tn+I, ... ,Tn+m,TI) is defined as the ad
joint of Y • R, i.e.

)..X.[R]X ~ ()"Y.Y ~ R)t .

The following special cases may be more familiar.

• Taking m = 0 and n = 2 in the above definition, if R is of type Rel(Tl> T2) and

S is of type Set(T2)' then [R]S denotes the weakest precondition transformer

of type S etC TI).

• And if R is of type Rel(T2, T3) and S is of type Rel(TI, T3), then [R]S is the

weakest prespecification R\S of [HH87] of type Rel(TI, T2).

The transformer (R) is as usual defined as the dual of [R], i.e. (R)X ~ ~[R]~X.

The purpose of this transformer in theories for reification has been explained in

[CdRZ91]. It has the so called 'angelicness' property, which can be formulated as

(S V T) = (S) V (T)

Such transformers appear for instance in work by Ralph Back [BvW89]. Back does
not make a clear notational distinction between transformers of the form [S] and

of the form (S). Consequently he must introduce angelic statements, such as the
angelic choice operators' 0' satisfying the (surprising) law

[SOT] = [S] V [T].

A related construct is the angelic assignment of [BvW89] which is used in work on
refinement. Such angelic constructs cannot be explained on the level of relations,

i.e. if we model statements as binary relations, then the operation SOT does not
exist. For example the statement x := a 0 x := b has the following properties.

[x:= aOx:= b](x=a) = true

[x:= aOx:= b](x=b) - true

(4)

(5)

From (4) it follows immediately that [x := a 0 x := b] ~ {(so, sd I Sl (x) = a}, and
likewise from (5) it follows that [x:= aOx:= b] ~ {(SO,Sl) I Sl(X) = b}. Hence,
for all a and b such that a =J b it follows that [x := a 0 x := b] = 0. For this reason
we prefer a theory based on a combined use of the box and diamond operators [S]
and (S).

Definition A.3 (Formulae)
The syntactic class :Form of (correctness) formulae is defined as follows.

o

• Let Rl and R2 be relations of type Rel(Tl, ... ,Tn), then Rl ~ R2 is a formula.

• Let Fl E :Form and F2 E :Form, then Fl --> F2 and Fl /\ F2 are formulae with
the obvious interpretation.

• Let X be a variable of type Rel(Tl, ... ,Tn) and F be a formula with free
occurrences of X, then VX.F(X) is a formula. The formula VX.F(X) is true
if F(R) is true for all relations R of type Rel(Tl, ... , Tn), and false otherwise.

We will use abbreviations such as 3X.F(X) with the usual interpretation.

Some special formulae can be defined as follows. For relations Rl , R2, and R3 resp.

of type Rel(Tl, ... , Tn), Rel(Tn, ... , Tn+m), and Rel(TJ, ... , Tn_I, Tn+J, ... Tn+m) we
define generalized Hoare formulae

In case that Rl , R2, and R3 resp. are of type Sel(Tl), Rel(Tl,T2), and Sel(T2),
then (Rl) R2 (R3) coincides with the classical Hoare-style correctness formula

{Rd R2 {R3} (d. [CdRZ91]). In a similar way [CdRZ91] VDM-style (partial)
correctness formulae can also be defined.

As a last example of the expressive power of this framework, we demonstrate how
the theory of [HHS87] can be embedded in our theory. A relation C downward
simulates relation A w.r.t. simulation relation R if

R'C~A'R.

Following [HHS87] we define the transformer FR by

FR(X) ~ R""" (X : R) .

From the definition of """ it follows that

R: FR(A) ~ A: R.

Thus FR(A) is the largest relation that downward simulates A with respect to R.
Because, in the prespecification calculus ':' coincides with ';', this is a generalized
version of FR as defined in [HHS87]. In a similar way we can also define the trans
former Gs for upward simulation, c.f. [HHS87,CdRZ91].

References

[BF88] Bouge L & Francez N. A Compositional Approach to Superimposition.
Proc. of the 15th Symp. on Principles of Programming Languages, pp.

240-249, 1988.

[BvW89] Back RJR & von Wright J. A Lattice-theoretical Basis for a Specification

Language. Proc. of the conf. on Mathematics of Program Construction,

LNCS 375, van de Snepscheut (Ed.) Springer 1989.

[CL85] Chandy KM & Lamport 1. Distributed Snapshots: Determining Global

States of Distributed Systems. ACM Transactions on Computer Systems
3(1):63-75, 1985.

[CdRZ91] Coenen J, de Roever WP & Zwiers J. Assertional Data Reification Proofs:

[D83]

[H085]

Survey and Perspective. Proc. of the 4th BCS-FACS Refinement Work
shop, Workshops in Computing, pp. 97-114, Springer-Verlag 1991.

Dijkstra E.W. The Distributed Snapshot of K.M. Chandy and L. Lamport.

EWD864a.

Hoare C.A.R. Programs are predicates. in Mathematical Logic and Pro

gramming Languages, Hoare and Shepherdson(eds), Prentice-Hall, 1985.

[HH87] Hoare CAR & He J. The Weakest Prespecijication. Information Process
ing Letters 24:127-132, 1987.

[HHS87] Hoare CAR, He J & Sanders JW. Prespecijication in Data Refinement.
Information Processing Letters 25:71-76, 1987.

[J90] Jones CB. Systematic Software Development using VDM. Prentice-Hall
1990 (2nd edition).

[KP90] Katz S & Perry JP. Self-Stabilizing Extensions for Message-passing Sys
tems. Proc. of the 9th Symp. on Principles of Distributed Computing,
pp. 91-101, 1990.

[M80] Milner R. A Calculus of Communicating Systems. LNCS 92, Springer
Verlag 1980.

[091] Olderog ER. Nets, Terms, and Formulas. Cambridge Tracts in Computer
Science 23, Cambridge University Press 1991.

[R81]

[Z89]

[Z90]

[ZdR89]

Reynolds JC. The Craft of Programming. Prentice-Hall 1981.

Zwiers J. Compositionality, Concurrency, and Partial Correctness: Proof
Theories for Networks of Processes, and their Relationship. LNCS 321,
Springer-Verlag 1989.

Zwiers J. Refining Data to Processes. Proc. of VDM '90, LNCS 428, pp.
352-369, Springer-Verlag 1990.

Zwiers J & de Roever WP. Predicates are Predicate Transformers: a
Unified Compositional Theory for Concurrency. Proc. of the 8th Symp.
on Principles of Distributed Computing, pp. 265-279, 1989.

1..-

-T

In this series appeared:

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T. Vemoeff
J.T.Udding

89/6 T. Vemoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
KM. van Hee

89/9 KM. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
KM. van Hee

89/13 A.T.M.Aerts
KM. van Hee
M.W.H. Hesen

89/14 H.C.Haesen

89/15 I.S.C.P. van
der Woude

89/16 A.T.M.Aerts
KM. van Hee

89/17 M.I. van Diepen
KM. van Hee

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
gnards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Poueli
M.Reed-J.sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. Brzozowski
J.e. Ebergen

90/6 A.J.J.M. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Fonnal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. IS.

A fonnal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving termination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
I. v.d. Woude

91/11 R.C. Backhouse
P.I. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
.. if...,then , p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Wby and how it was
built, p. 63 ..

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
RV. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.TM. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

Eldorado: Architecture of a Functional Database
Management System. p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs.
p.25.

Transforming Functional Database Schemes to Relational
Representations. p. 21.

Transformational Query Solving. p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping. p. 21.

Knowledge Base Systems. a Formal Model. p. 21.

Assertional Data Reification Proofs: Survey and
Perspective. p. 18.

Schedule Management: an Object Oriented Approach. p.
26.

Z and high level Petri nets. p. 16.

Formal semantics for BRM with examples. p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness. p. 52.

The GOOD based hypertext reference model. p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy. p. 17.

A compositional proof system for dynamic proces
creation. p. 24.

Correctness of Acceptor Schemes for Regular Languages.
p. 31.

An Algebra for Process Creation. p. 29.

.;;,1

91/31 H. ten Eike1der

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

	Abstract
	1. Introduction
	2. Compositional refinement
	3. Conclusions
	A: Formal Framework
	References

