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I/O-Efficient Map Overlay and Point Location in Low-Density
Subdivisions

Mark de Berg∗ Herman Haverkort∗ Shripad Thite∗ Laura Toma†

Abstract

We present improved and simplified i/o-efficient
algorithms for two problems on planar low-density
subdivisions, namely map overlay and point location.
More precisely, we show how to preprocess a low-
density subdivision with n edges in O(sort(n)) i/o’s
into a compressed linear quadtree such that one can:
(i) compute the overlay of two such preprocessed

subdivisions in O(scan(n)) i/o’s, where n is
the total number of edges in the two subdivisions,

(ii) answer a single point location query in O(logB n)
i/o’s and k batched point location queries in
O(scan(n) + sort(k)) i/o’s.

For the special case where the subdivision is a fat tri-
angulation, we show how to obtain the same bounds
with an ordinary (uncompressed) quadtree, and we
show how to make the structure fully dynamic us-
ing O(logB n) i/o’s per update. Our algorithms and
data structures improve on the previous best known
bounds for general subdivisions both in the number of
i/o’s and storage usage, they are significantly simpler,
and several of our algorithms are cache-oblivious.

1 Introduction

The traditional approach to algorithms design consid-
ers each atomic operation to take roughly the same
amount of time. Unfortunately this simplifying as-
sumption is invalid when the algorithm operates on
data stored on disk: reading data from or writing data
to disk can be a factor 100,000 or more slower than
doing an operation on data that is already present in
main memory. Thus, when the data is stored on disk
it is usually much more important to minimize the
number of disk accesses rather than CPU operations.

This has led to the study of so-called i/o-efficient
algorithms, also known as external-memory algo-
rithms. The standard way of analyzing such algo-
rithms is with the model introduced by Aggarwal and
Vitter [1]. In this model, a computer has an internal

∗Dept. of Mathematics and Computer Science, Technische
Universiteit Eindhoven, the Netherlands, mdberg@win.tue.nl,
cs.herman@haverkort.net, sthite@win.tue.nl. MdB and ST
were supported by the Netherlands’ Organisation for Scientific
Research (NWO) under project no. 639.023.301.

†Dept. of Computer Science, Bowdoin College, Brunswick
ME, USA, ltoma@bowdoin.edu

memory of size M and an arbitrarily large disk. The
data on disk is stored in blocks of size B, and when-
ever an algorithm wants to work on data not present
in internal memory, the block(s) containing the data
are read from disk. The i/o-complexity of an algo-
rithm is the number of i/o’s it performs—that is, the
number of block transfers between internal memory
and disk. Scanning—reading a set of n consecutive
items from disk—takes scan(n) = dn/Be i/o’s, and
sorting takes sort(n) = Θ((n/B) logM/B(n/B)) i/o’s.

One of the main application areas for i/o-efficient
algorithms is the area of geographic information sys-
tems (gis), because gis typically work with massive
amounts of data and loading all of it into memory
is often infeasible. In gis data for a particular geo-
graphic region is stored as a number of separate the-
matic layers. There can be a layer storing the road
network, a layer storing the river network, a layer stor-
ing a subdivision of the region according to land usage
or soil type, and so on. To combine information from
two such layers—for example to find the crossings be-
tween the river network and the road network—one
has to compute the overlay of the layers.

Background. The problem of map overlay can be
formulated as a red-blue intersection problem: given a
set of non-intersecting blue segments and a set of non-
intersecting red segments in the plane, compute all in-
tersections between the red and blue segments. Arge
et al. show how to do this in O(sort(n) + k/B) i/o’s,
where k is the number of intersections [2]. This is op-
timal in the worst case, but it is not satisfactory: the
algorithm is complicated and uses Θ(n logM/B(n/B))
storage. Crauser et al. [4] describe a randomized solu-
tion with the same (expected) bound of O(sort(n) +
k/B) i/o’s and linear space under some realistic as-
sumptions on M,B and n. Whether this algorithm is
practical is not clear.

Although the i/o-complexity of the above algo-
rithms is optimal for general sets of line segments,
there are important special cases for which this is not
clear. For example, in internal memory one can over-
lay two subdivisions in O(n+k) time when these sub-
divisions are connected [6]. This brings us to the topic
of our paper: is it possible to do the overlay of two
planar maps in O(scan(n + k)) i/o’s?

We will describe solutions based on modifications
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of the so-called linear quadtree, introduced by Gar-
gantini [8]. The linear quadtree is a quadtree variant
where only the leaf regions are stored, and not the
internal nodes. To facilitate a search in the quadtree,
a linear order is defined on the leaves based on some
space-filling curve; then a b-tree is constructed on the
leaves using this ordering—see Section 2 for details.
The idea of using linear quadtrees to store planar sub-
divisions has been used by Hjaltason and Samet [9].
They present algorithms for constructing the quadtree
and for insertions. Although their experiments indi-
cate their method performs well in practice, the i/o-
complexity of their algorithms is not fully understood
and does not seem to be worst-case-optimal. Further-
more, the stopping rule for splitting quadtree cells is
based on user-defined parameters, so their method is
not fully automatic.

Our results. We show how to overcome these dis-
advantages for two types of subdivisions: fat trian-
gulations and low-density subdivisions [5]. A δ-fat
triangulation is a triangulation in which every angle
is bounded from below by a fixed positive constant δ.
A λ-low-density subdivision is a subdivision such that
any disk D is intersected by at most λ edges whose
length is at least the diameter of D, for some fixed
constant λ. We believe these two types of subdivisions
are representative for most subdivisions encountered
in practice, for reasonable values of δ and λ.

We present improved external-memory algorithms
for map overlay and point location for such subdivi-
sions. Our results are based on quadtrees which we
define to ensure that (i) each leaf intersects only a
constant number of edges of the subdivision, (ii) that
we create only O(n) leaves, and (iii) that we can con-
struct the leaves efficiently. To store the quadtrees,
we combine the ideas of compressed quadtrees and
linear quadtrees to get a linear compressed quadtree.
Our algorithms to construct the quadtrees are simple
and elegant—simpler than the algorithm of Hjaltason
and Samet [9]—and use only O(sort(n)) i/o’s.

Our other results then come almost for free:
overlaying two subdivisions boils down to a simple
merge of the ordered lists of quadtree leaves tak-
ing O(scan(n)) i/o’s, point location can be done in
O(logB n) i/o’s by searching in the b-tree built on top
of the list of quadtree leaves, and k batched point loca-
tion queries can be done in O(scan(n)+sort(k)) i/o’s
by sorting the points along the space-filling curve and
merging the sorted list with the list of quadtree leaves.
The structure for fat triangulations can be made fully
dynamic at the cost of O(logB n) i/o’s per update.

All our data structures and query algorithms can
be made cache-oblivious [7] by plugging in the cache-
oblivious variants of the various building blocks used,
so that no tuning for B and M is necessary. For tri-
angulations, also the construction and update algo-

rithms can be made cache-oblivious, except that up-
dates then take O(logB n + 1

B log2 n) i/o’s.
In this abstract we assume that our inputs are sub-

divisions of the unit square [0, 1]2.

2 Our solution for fat triangulations

Theorem 1 Let F be a δ-fat triangulation with n
edges. Knowing the memory size M and the block
size B, we can construct, in O(sort(n/δ2)) i/o’s, a
linear quadtree for F with O(n/δ2) cells such that
each cell intersects O(1/δ) triangles and the total
number of intersections between cells and triangles is
O(n/δ2). With this structure we can do the following:

(i) Map overlay: Given two δ-fat triangulations
with n triangles in total, each stored in such
a linear quadtree, we can find all pairs of
intersecting triangles in O(scan(n/δ2)) i/o’s.

(ii) (Batched) point location: for any query
point p we can find the triangle of F that
contains p in O(logB n) i/o’s, and for any set
P of k query points we can find for each point
p ∈ P the triangle of F that contains p in
O(scan(n/δ2) + sort(k)) i/o’s.

(iii) Updates: Inserting a vertex, moving a vertex,
deleting a vertex, and flipping an edge can all be
done in O((logB n)/δ4) i/o’s.

The quadtree subdivision for fat triangulations A
quadtree is a hierarchical subdivision of the unit
square into quadrants, where the subdivision is
defined by a criterion to decide what quadrants are
subdivided further, and what quadrants are leaves
of the hierarchy. A canonical square is any square
that can be obtained by recursively splitting the unit
square into quadrants. For a canonical square σ,
let mom(σ) denote its parent, that is, the canonical
square that contains σ and has twice its width. The
leaves of the quadtree form the quadtree subdivision;
that is, a quadtree subdivision for a set of objects in
the unit square is a subdivision into disjoint canonical
squares (quadtree cells), such that each cell obeys the
stopping rule while its parent does not. The stopping
rule we use is as follows:

Stop splitting when all edges intersecting
the cell σ under consideration are incident
to a common vertex.

Note that the stopping rule includes the case were
σ is not intersected by any edges. We can prove that
this stopping rule leads to a quadtree subdivision with
O(n/δ2) cells, such that each cell is intersected by at
most 2π/δ triangles, and the total number of triangle-
cell intersections is O(n/δ2).

We store the quadtree subdivision defined above as
a linear quadtree [8]. To this end, we define an order-
ing on the leaf cells of the quadtree subdivision. The
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ordering is based on a space-filling curve defined re-
cursively by the order in which it visits the quadrants
of a canonical square. We use the z-order space-filling
curve for this, which visits the quadrants in the or-
der bottom left, top left, bottom right, top right, and
within each quadrant, the z-order curve visits its sub-
quadrants recursively in the same order. Since the
intersection of every canonical square with this curve
is a contiguous section of the curve, this yields a well-
defined ordering of the leaf cells of the quadtree sub-
division. We call this order the z-order.

The z-order curve not only orders the leaf cells of
the quadtree subdivision, but it also provides an or-
dering for any two points in the unit square—namely
the z-order of any two disjoint canonical squares con-
taining the points. (We assume that canonical squares
are closed at the bottom and the left side, and open at
the top and the right side.) The z-order of two points
can be determined as follows. For a point p = (px, py)
in [0, 1〉2, define its z-index z(p) to be the value in the
range [0, 1〉 obtained by interleaving the bits of the
fractional parts of px and py, starting with the first
bit of px. The value z(p) is sometimes called the Mor-
ton block index of p. The z-order of two points is now
the same as the order of their z-indices [9]. The z-
indices of all points in a canonical square σ form a
subinterval [z1, z2〉 of [0, 1〉, where z1 is the z-index
of the bottom left corner of σ. Note that any subdi-
vision of the unit square [0, 1〉2 into k leaf cells of a
quadtree corresponds directly to a subdivision of the
unit interval [0, 1〉 of z-indices into k subintervals.

A simple way of storing a triangulation in a linear
quadtree is now obtained by storing all cell-triangle
intersections in a b-tree [3]: each cell-triangle inter-
section (σ,4) of a cell σ corresponding to the z-index
interval [z1, z2〉 is represented by storing triangle 4
with key z1. Thus the leaf cells are stored implic-
itly: each pair of consecutive different keys z1 and z2

constitutes the z-index interval of a quadtree leaf cell.

Building the quadtree Since the quadtree may have
height Θ(n), a natural top-down construction algo-
rithm could take Θ(n2/B) i/o’s. Below we describe a
faster algorithm that computes the leaf cells that re-
sult with our stopping rule directly, using local com-
putations instead of a top-down approach.

For any vertex v of the given triangulation F , let
star(v) be the star of v in F ; namely, it is the set of
triangles of F that have v as a vertex. Recall that a
canonical square is any square that can be obtained
by recursively subdividing the unit square into quad-
rants. For a set S of triangles inside the unit square,
we say that a canonical square of σ is active in S if
it lies completely inside S and all edges from S that
intersect σ are incident to a common vertex, while
mom(σ) intersects multiple edges of S that are not
all incident to a common vertex. Thus the cells of the

quadtree subdivision we wish to compute for F are
exactly the active canonical squares in F .

Lemma 2 Let 4uvw be a triangle of F and σ a
canonical square that intersects 4uvw. Then σ is ac-
tive in F if and only if σ is active in star(u), star(v)
or star(w).

We now construct the linear quadtree as follows:

1. Compute an adjacency list for each vertex.
2. Scan the adjacency lists for all vertices: for each

vertex u load its adjacency list in memory and
compute the active cells of star(u), with for each
cell σ the triangles that intersect σ. Output each
triangle with the key z1 of the z-index interval
[z1, z2〉 that corresponds to σ.

3. Sort the triangles by key, removing duplicates.
4. Build a b-tree on the list of triangles with keys.

This algorithm runs in O(sort(n/δ2)) i/o’s. Note
that by Lemma 2, local update operations such as in-
serting a vertex can be done by computing the struc-
ture of the quadtree locally in the area of the update,
and determining what the changes entail for the data
stored on the disk.

Overlaying maps and point location Recall that
each triangulation’s quadtree, or rather, subdivision
of the z-order curve, is stored on disk as a sorted list of
z-indices with triangles. To overlay the two triangula-
tions, we scan the two quadtrees simultaneously in z-
order, reporting, for any pair of intersecting leaf cells,
the intersections between the triangles stored with the
cells. The input has size O(n/δ2). The output con-
sists of O(n/δ) intersections since a δ-fat triangulation
has density O(1/δ), as shown by De Berg et al. [5].
Thus map overlay takes only O(scan(n/δ2)) i/o’s.

To locate a point p we compute its z-index z(p) and
search the b-tree for the triangles with the highest
keys less than or equal to z(p). For batched point
location, we sort the set P of query points by z-index,
and scan the leaves of the b-tree and P in parallel.

3 Our solution for low-density subdivisions

The density of a set of line segments in the plane is the
smallest number λ such that the following holds: any
disk D is intersected by at most λ line segments with
length at least the diameter of D. We say that a sub-
division F has density λ if its edge set has density λ.

Theorem 3 Let F be a subdivision or a set of non-
intersecting line segments of density λ with n edges.
Knowing M and B, we can construct, in O(sort(λn))
i/o’s, a linear compressed quadtree for F with O(n)
cells that each intersect O(λ) edges. With this struc-
ture we can do the following:
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(i) Map overlay: If we have two subdivisions (or
sets of non-intersecting line segments) of density
λ with n edges in total, both stored in such a
linear compressed quadtree, then we can find all
pairs of intersecting edges in O(scan(λn)) i/o’s.

(ii) (Batched) point location: for any query point
p we can find the face of F that contains p in
O(logB n) i/o’s, and for any set P of k query
points we can find for each point p ∈ P the face of
F that contains p in O(scan(λn)+sort(k)) i/o’s.

Below we explain our data structure. The query
algorithms are the same as in the previous section.

The compressed quadtree subdivision for low-
density maps Let G be the set of vertices of
the axis-parallel bounding boxes of the edges of F .
We construct a quadtree for F with the following rule:

Stop splitting when the cell σ under consid-
eration contains at most one point from G.

To be able to bound the number of cells to O(n), we
use five-way splits as in a compressed quadtree [10],
as follows. Let σ be a canonical square that contains
more than one point from G, and let σ′ be the small-
est canonical square that contains all points of σ ∩ G.
Then σ is split into five regions. The first region is the
donut σ \ σ′. The remaining four regions are the four
quadrants of σ′. Note that the first region does not
contain any points of G, so it is never subdivided fur-
ther. We can prove that a quadtree subdivision based
on the above stopping rule and five-way splits has
O(n) cells, each intersected by at most O(λ) edges.

We store the cell-edge intersections of the com-
pressed quadtree subdivision in a list sorted by the
z-order of the cells, indexed by a b-tree. The only
difference with the previous section is that we now
have to deal with donuts as well as square cells. Recall
that a canonical square (a square that can be obtained
from the unit square by a recursive partitioning into
quadrants) corresponds to an interval on the z-order
curve. For a donut this is not true. However, a donut
corresponds to at most two such intervals, because a
donut is the set-theoretic difference of two canonical
squares. Thus the solution of the previous section can
be applied if we represent each donut by two intervals
[z1, z2〉 and [z3, z4〉; edges intersecting the first part of
the donut are stored with key z1 and edges intersect-
ing the second part are stored with key z3. We merge
cells that do not intersect any edge with their immedi-
ate successors or predecessors in the z-order. We call
the resulting structure—the b-tree on the cell-edge in-
tersections whose keys imply a compressed quadtree
subdivision—a linear compressed quadtree.

Building the quadtree We construct the leaves of
the compressed quadtree, or rather, the corresponding

subdivision of the z-order curve, as follows. We sort
G into z-order, and scan the sorted points. For each
pair of consecutive points, say u and v, we construct
their lowest common ancestor lca(u, v) by examining
the longest common prefix of the bit strings represent-
ing z(u) and z(v). We output the five z-indices that
bound and separate the z-order intervals of the four
children of lca(u, v). To complete the subdivision of
the z-order curve, we sort the output into a list by
z-order, removing duplicates.

We now build a b-tree on the subdivision of the z-
order curve, and distribute the edges of F to the leaves
that intersect them. This is done in O(sort(λn)) i/o’s
in a straightforward top-down manner.

Finally we collect all edge-leaf intersections, or-
dered by the z-indices of the leaf cells, and put a new
b-tree on top of them. Each cell σ without any inter-
secting edges is merged with the cells that precede or
follow it in the z-order.

The complete algorithm runs in O(sort(λn)) i/o’s.
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