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O.lNTRODUCTION 

It is not uncommon to design a programming language by regarding the kind of computations one 

would like to perfonn and to decide on a style of notation. Thus one arrives at a syntactic definition of 

the language which in general contains a large number of constructs and which, for the purpose of 

expressing ones computations, is usually very satisfying. However, when it comes to assigning a precise 

meaning to the syntactic constructs thus arrived at, the problems soon become tremendous. Therefore it 

seems more appropriate to investigate what the proper mathematical abstractions are to model ones 

computations with and to see in which way they should be manipulated. Thus a carefully chosen 

(preferably small) number of semantic constructs should dictate the basic syntactic ingredients of a 

kernel language. Ease of programming can be obtained by adding an additional layer of syntactic sugar 

to this kernel language. Since the latter is defined in tenns of the basic syntactic constructs, it is not 

hard to define its semantics. Our ultimate goal is to design a language along these lines. Our interest is 

not so much in the resulting langnage, however, but rather in the design process itself. As the kernel for 

our language we have opted for the lambda-calculus, because of its simple nature, extended with a rich 

type structure, that should allow for instance polymorphism and recursively defined types. There are 

several approaches known in the literature such as languages with implicit types like ML [HMcQM86] 

or languages with explicit types as described in [Re85]. In this report we make a start towards the latter 

in the sense that the language we define does contain recursive types and what is known as a 

polymorphic let-construct. It does not contain, however, expressions which are 'type-abstractions'. We 

have chosen this cautious approach, since the semantics of second order lambda calculi with recursive 

types is not yet well understood, although various results are known [McQPS86,McC79,Me86,Mi71]. 

Therefore we study this relatively simple case in great detail before we turn our attention towards 'full' 

polymorphism. Moreover, we have included both strict and non-strict versions of our type constructors. 

Investigation of their semantic properties will enable us to make the proper choice in a latter stage 

when we design the actual language. 
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CHAPTER 0 

The structure of this report is as follows. In chapter 1 the language is given and the meaning of 

its constructs is briefly explained. A comprehensive and formal semantics is given in chapters 4 and 5 

for the type expressions and expressions proper respectively. In chapter 2 a type deduction system is 

given that enables us to keep the type information within expressions to a minimum. Chapter 3 states a 

set of reduction rules whose soundness is proven in chapter 6. These rules can be viewed as an 

operational semantics of our language. Finally, in chapter 7, it is shown that a typed version of the 

Curry fixed point combinator [Ba81,HiSe86] can be defined in the language. 

2 



CSN 88/14 

l.SYNTAX OF TYPE EXPRESSIONS AND EXPRESSIONS 

The language we consider consists of expressions that contain type information. Its formal syntax is 

given by two kinds of expressions, type expressions and expressions proper. Let Tvar be a countable 

infinite set of variables. Elements of Tvar will be called type variables. Type expressions are 

generated by the following rules. 

Tl. Texp ::= n. 
T2. Texp ::= Tvar. 

T3. Texp ::= iTexp. 

T4.1. Texp ::= (Texp + Texp). 

T4.2. Texp ::= (Texp (j) Texp). 

TS.l. Texp ::= (Texp x Texp). 

TS.2. Texp ::= (Texp <81 Texp). 

T6.1. Texp ::= (Texp ---! Texp). 

T6.2. Texp ::= (Texp 8 Texp). 

17. Texp ::= Y(A TvarITexp). 

A formal semantics, which associates a domain (c.p.o.) to every type expression, will be defined in 

section 4. We now give an informal description of the domains corresponding to type expressions 

generated by Tl - 17. The type expression n corresponds to the one point domain. The symbol i 

is used to denote lifting of the domain, i.e. appending a fresh bottom element. Further +, x , ---! 

correspond to the disjoint sum, cartesian product and function space domain constructors, whereas 

Ell, <81, 8 correspond to their strict versions, i.e. the coalesced sum, smash product and space of strict 

functions. A type expression of the form Y(A t I te) describes a recursively defined type. For instance 

the type expression Y(A t I (t + t)) corresponds to a domain D such that D is isomorphic to the 

disjoint sum of D and D ; the type expression Y(A t I (in (j) t)) describes the flat domain of natural 

numbers. Whether an actual programming language should contain all the type constructors above 

remains to be seen. However, it is precisely the intention of this paper to investigate the properties of 

3 



CHAPTER I 

the various constructs in order to allow a deliberate choice. 

Let Var be a countable infinite set of variables such that Var () Tvar = ¢ . The syntax of 

expressions is given by the following rules. 

EL 

E2. 

E3.L 

E3.2. 

E4.LL 

E4.L2. 

E4.1.3. 

E4.2.L 

E4.2.2. 

E4.2.3. 

ES.LL 

ES.L2. 

ES.1.3. 

ES.2.L 

ES.2.2. 

ES.2.3. 

E6.LL 

E6.L2. 

E6.2.L 

E6.2.2. 

E7.L 

E7.2. 

E8. 

Exp ::= (btmITexp). 

Exp ::= Var' 

Exp ::= (up Exp). 

Exp ::= (down Exp). 

Exp ::= (inl Exp I Texp). 

Exp ::= (inr Texp I Exp). 

Exp ::= (sum Exp Exp). 

Exp ::= (inls Exp I Texp). 

Exp ::= (inrs Texp I Exp). 

Exp ::= (sums Exp Exp). 

Exp ::= (prol Exp). 

Exp ::= (pror Exp). 

Exp ::= (prod Exp Exp). 

Exp ::= (prols Exp). 

Exp ::= (prors Exp). 

Exp ::= (prods Exp Exp). 

Exp ::= (1.. Var:Texp I Exp). 

Exp ::= (appl Exp Exp). 

Exp ::= (As Var:Texp I Exp). 

Exp ::= (appls Exp Exp). 

Exp ::= (introv(A TvarlTexp) I Exp). 

Exp ::= (elim v(A Tvarl Texp) I Exp). 

Exp ::= (A Tvar I Exp) Texp. 

4 
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In chapter 2 we give a type deduction system that defines the well typed expressions. Furthermore it 

will be shown that every well typed expression has exactly one type (up to a-conversion). In chapter' 

S we define the semantics of a well typed expression and show that the value of an expression is an 

element of the domain corresponding to its type. An operational semantics in terms of reduction rules 

is given in section 3. 

In the rest of this chapter we give an informal description of the expressions introduced above. 

Let te be a type expression. The expression (btm I te) stands for a nonterminating computation 

which does not yield any information. The expressions generated by E3 are used in connection with 

the lifting of domains. In particular the (up e) construct is used to postpone reductions inside the 

expression e (see also chapter 3). The expressions defmed by E4.l are related to the disjoint sum of 

domains: (in! e I te) and (inr te I e) denote the injection of e in the left respectively right part of a 

sum domain. If el and e2 denote two functions with the same range, then (sum el e2) denotes a 

function whose domain is the disjoint sum of the domains of el and e2 and whose range is the 

common range of el and e2. The expressions defined by E4.2 are the strict versions of those given 

in E4.l, they correspond to the strict sum of domains ( Ell ). ES.l generates expressions which are 

related to the product of domains. The first two rules correspond to the left and right projection, 

whereas ES.1.3 corresponds to the pair construction. Again ES.2 gives the strict versions. E6.l (and 

E6.2) describe (strict) lambda abstraction and application. To understand E7 consider a recursively 

defined type expression, for instance v(A tit + t) .' The domain D which will be associated to this 

type expression (see chapter 4) is isomorphic to the disjoint sum of D and D. The two expressions 

given by E7 are the syntactic representants of these kinds of isomorphism and its inverse. Finally E8 

gives the possibility of building a context of type variables which are bound to type expressions. 

Next we introduce some notations which will be used frequently in this report. The mapping 

FV : Exp --; Var yields the free variables of an expression. The mapping FTV: Exp u Texp --; Tvar 
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CHAPTER I 

gives the free type variables of an expression or a type expression. Recursive definitions of FV and 

FTV can easily be given, but we shall not do so here. In the sequel we shall encounter three kinds of 

substitution. The substitution of type expressions for type variables can be performed in type 

expressions and in expressions. The substitution of expressions for variables can only take place in 

expressions. Apart from the case of (type) expressions with bounded (type) variables the definition of 

substitution is straightforward. In case of substitution for a type variable in a (type) expression with a 

bounded type variable or substitution for a variable in an expression with a bounded variable name 

clashes may occur. In that case the bounded (type) variable is always replaced by the first appropriate 

free (type) variable. We list the instances where this happens. Let s,t E Tvar , x,y E Var, te,tel,te2 E 

Texp and e,el,e2 E Exp. Then 

(v(A tl tel»~e2 = v(A u 1 (tel~) ~e2 ) , 

where u is the first type variable such that u ¢ sand u ~ FTV(tel) v FTV(te2) . 

«h:te 1 el)~2 = (i.. z:te 1 (el~) ~2 ) , 

where z is the ftrst variable such that z ¢ y and z ~ FV(el) v FV(e2) . 

«A tie) tel )~e2 = «A u 1 (e~)~e2 ) tel~e2 ' 
where u is the first type variable such that u ¢ sand u E FTV(e) v FTV(te) v FTV(te2) . 

Here te is the type expression which will be associated to e by the type inference system 

given in the next chapter (hence substitution is only defined for well-typed expressions). 

Note that our definition of substitution implies that bound variables will also be renamed in cases 

where this is in fact not necessary. The reason for choosing this definition, instead of a more usual 

one which considers several cases [Ba81], is to reduce the case analysis in the proofs further on. 

Finally we mention that the symbol '" will be used to denote the syntactic equality of (type) 

expressions, whereas "'a will be used for the equality of (type) expressions up to renaming of the 

bound variables (a--conversion). 

6 
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2.TYPE INFERENCE 

In this chapter we demonstrate that the kernel language introduced in the previous chapter is 

an explicitly typed language in the sense of Reynolds[Re85]. That is, given an expression and a 

sequence of assumptions regarding the free variables and free type variables occurring in that 

expression it is possible to assert at most one type for that expression. By a type we mean a class of 

type expressions that are equal up to a-conversion. In chapter 4 it is shown that all type expressions 

in such a class denote the same domain. 

2.2.Formal type inference system. 

Formula's of the type inference system will be called typings and they are constructed 

according to the following grammar rules: 

II. Typing ::= Assumptions ~ Consequences· 

12.I. Assumptions ::= • 

12.2. Assumptions ::= Assumption Rest. 

13.I. Assumption ::= Type assignment. 

13.2. Assumption ::= Tvar • 

14.I. Rest ::= • 

14.2. Rest :: = ; Assumption Rest • 

15.I. Consequences ::= Consequences, Consequences. 

15.2. Consequences ::= Type assertion· 

15.3. Consequences ::= Texp • 

16. Type assignment ::= Var : Texp • 

17. Type assertion ::= Exp : Texp • 

7 



CHAPTER 2 

For instance, the typing t;x:t ~ (in! x I t) : tH states that under the assumptions that (there exists a 

context in which) fIrst of all a type t is introduced and secondly a variable x of type t, one may 

assert that the expression (in! x I t) is of type tH. As usual we prefIx a typing with the symbol i

to indicate that it is derivable. 

Let A E Assumptions. The set FTV(A) of free type variables of A is the set of type 

variables that occur as subassumptions in A (cf. 13.2). Hence for x:t an assumption t E FTV(x:t) ! 

The set FV (A) of free variables of A is the set of variables that occur in any left-hand side of any 

type assignment in A (cf. 13.1 and 16). 

Let C E Consequences. The set FTV(C) is the set of type 

variables occurring free in any expression or type expression contained in C (cf. 15.3 and 17). In 

particular FTV(e:te) = FTV(e) V FTV(te) . Hence if x:t is a consequence then t E FTV(x:t) (cf. 

above)! Similarly, FV(C) is the set of free variables occurring in any expression contained in C (cf. 

17). In particular FV(e:te) = FV(e) . 

Let A,Ah A2 E Assumptions; Ch C2 E Consequences; t E Tvar ; tx,te,tel,te2 E Texp ; x E 

Var and e,el,e2,f,fl,f2 E Exp. Then the inference rules for type deduction are : 

TRI. TR2. TR3. A ~ te 

A ~ Q A j ;t;A2 ~ t A ~ ite 

TR4. A ~ tel,te2 TR5. 
A ~ tel, te2 TR6. A ~ tel, te2 

A ~ tel + te2 A ~ tel x te2 A ~ te I ---l te2 
A ~ tel (j) te2 A ~ tel ® te2 A ~ tel e te2 

TR7. A;t ~ t e 

A~ v(A tlte) 

ERl.l. 
A ~ te 

A ~ (btm I te) te 

8 



ER2. 

ER3.1. 

ER3.2. 

ER4.1. 

ER4.2. 

ER4.3.1 

ER4.3.2 

ERS.1. 

ERS.2. 

ERS.3. 

ER6.1. 

ER6.2. 

ER6.3. 

CSN 88/14 

A ~ e : te 

A ~ (up e) ite 

A ~ e : ite 

A ~ (down e) : te 

A ~ el : te I , te2 

A ~ (inl el I te2) tel + te2 
A ~ (inls el I te2) tel Ell te2 

A ~ tel ,e2 : te2 

A ~ (inr tel I e2) : tel + te2 
A ~ (inrs tel I e2) : tel Ell te2 

provided x e FV(AV and FrV(tx) () FTV(AV = ¢ 

A ~ f1 tel -! te, f2 : te2 --l te 

A ~ (sum f1 f2) : (tel + te2) --l te 

A ~ f1 : tel 8 te ,f2 te28 te 

A ~ (sums f1 f2): (tel Ell te2) 8 te 

A ~ e : tel x te2 

A ~ (prol e) : tel 
A ~ (pror e) : te2 

A ~ e : tel ® te2 

A ~ (prols e) : tel 
A ~ (prors e) : te2 

A ~ el : tel , e2 

A ~ (prod el e2) 
A ~ (prods el e2) 

A ~ tx , te 
A;x:tx ~ e : te 

te2 

tel x te2 
tel ® te2 

A ~ (A x: tx I e) : tx -! te 
A~(As x:tx I e) : tx 8 te 

A ~ f : te --l tel , e : te 

A ~ (appl f e) : tel 

A ~ f : te 8 tel ,e te 

A ~ (appls f e) : tel 

9 



CHAPTER 2 

ER7.1. A ~ e : v(A t I te) 

t 
A ~ (intro v(A t I te) I e) : tev(A t I te) 

ER7.2. 
A . t 

~ e . t ev(A tl te) v(A tlte) 

A ~ (elim v(A tl te) e) : v(A tl te) 

A~ tel 

ER8. A;t ~ e: te 

A~ (A tl e)tel t 
tete I 

ER9. A ~ e tel 

A ~ e te2 
provided tel ;a te2 

A ~ C1 

ERlO.1. A ~ Cz ERlO.2. A ~ C1 , Cz 
A ~ C1 , Cz A ~ C1 

A ~ Cz 

Notice that to each T - and E-rule of chapter I there corresponds exactly one inference rule. 

The additional rule ER9 signifies that we are only interested in type expressions up to a-conversion. 

The reason for this is that type expressions that are equal up to a-conversion denote the same 

domain. Rules ERlO are not essential. They merely allow us the notational convenience of typings 

containing more than one consequence. Therefore we shall leave applications of these rules implicit in 

the derivation of typings. 

Most proofs given below rely on the fact that given a typing we are able to determine the last 

inference rule of its derivation. In the absence of rule ER9 this last rule would be uniquely 

identifiable from the structure of the expression. Derivations of typings in which the expressions 

contain bound type variables, however, can always end with one or more applications of rule ER9. 

In order to avoid these trivial but cumbersome details we assume in all proofs, and without loss of 

generality, that no derivation ends with an application of rule ER9. 

10 
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2.3.Explicit typing. 

Our type inference system has been designed to ensure that under any given sequence of 

assumptions each expression has at most one type, which is, if it exists, derivable from the types of its 

constituting parts (Recall that a type is an equivalence class of type expressions under o;--conversion.) 

In Reynolds[Re85] this property is called explicit typing. 

Theorem 2.3.l.[Explicit typing theorem] 

Let A E Assumptions; tel ,te2 E Texp and e E Exp . If both \- A ~ e : tel and \- A ~ e : te2 then 

tel =0; te2 . 

Sketch of proof. By induction on the structure of expression e. Note that to each of the rules El.l 

thru E8 to construct expressions there corresponds exactly one inference rule that enables us to assert 

a type for the expressions produced by that rule. Therefore the induction is straightforward. 

o 

As stated above it is necessary to provide expressions with a certain amount of type 

information to obtain an explicitly typed language. The need for additional type information in 

expressions produced by E4.l, E4.2 and E6.l is rather obvious (see p.e. [Re85]). The reader may 

wonder, however, about the necessity of the type information contained in rules E7.l and E7.2. 

Therefore let us assume, for the sake of the argument, that rule E7.2 is simplified to 

Exp ::= (elim Exp) and that inference rule ER7.2 is accordingly modified to 

A ~ • t I e . tev(A tlte) ,v(A t te) 

A ~ (elim e) : v(A tl te) 

Let A E Assumptions be such that \- A ~ e t 
tv(A tit) , v(A tit) . Then we may assert on 

11 



CHAPTER 2 

t 
account of (*) that (elim I e) is of type v(A tit) . However, since tv(A tit) -a 

v(A tlt)~(A slv(A tit» we may apply rule ER9 before applying (*) and assert that (elim e) has 

type v(A slv(A tit» as well. Therefore the type information v(A TvarlTexp) is absolutely essential 

in rule E7.2 to obtain explicit typing. For reasons of symmetry the same type information has been 

added to rule E7.l, although one can show that explicit typing can be obtained without it. 

Given an assumption A we define the set WTV(A) ( WTE(A) ) of well-typed variables 

(expressions) under A by 

WTV(A) = (x E Var I (3 te E Texp I I- A ~ x : te) } 

WTE(A) = (e E Exp I (3 te E Texp I I- A ~ e : te ) } 

(2.3.2) 

(2.3.3) 

On account of the explicit typing theorem one can also define for each assumption A a function 't A 

that assigns to each expression e E WTE(A) an arbitrary, but fixed, type expression te such that 

I- A ~ e : te . We shall take care that whenever 't A is used, the particular te chosen for 't A (e) is 

irrelevant, i.e. may be replaced by any type expression tel such that tel =a te . 

2.4.Elementary properties. 

Before we state the fundamental properties of our type inference system, viz. inference rules 

for substitution and a--conversion, we first list some elementary properties of typings. 

Property 2.4. 1. [Introduction of type variables] 

For A E Assumptions and te E Texp : 

I- A ~ te iff FTV(te) ~ FTV(A) 

o 

This property expresses that all free type variables of a type expression should be properly introduced. 

12 
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Property 2.4.2.[Additional inference rules] 

The following additional inference rules are derivable from the ones given in section 2.2 : 

Rules to extend assumptions 

A~ C ERI1.1. 
A;t ~ C 

A ~ tx ERI1.2. C 

A;x:tx ~ C 

Rules to reorder assumptions 

ERI2.1. Aj;s;t;A2 ~ 

Aj;t;s;A2 ~ 

C 

C 

ERI2.2. Aj;x:tx;y:ty;A2 

A j;y:tY;X:tx;A2 

ERI2.3. A I;x:tx;t;A2 ~ 

Aj;t;x:tx;A2 ~ 

ERI2.4. A j ;t;x:tx;A2 ~ 

Aj;x:tx; t;A2 ~ 

o 

~ 

~ 

C 

C 

C 

C 

2.5. Substitution and a-conversion. 

provided t E FTV(C) 

provided x E FV(C) 

C 

C 
provided x ~ y V tx "'a ty 

provided t E FrV(tx) 

As indicated in chapter 1 three kinds of substitution can be performed. For each kind we 

present a corresponding inference rule. Likewise three kinds of a~onversion can be performed. 

Three additional inference rules state that each kind of a~onversion leaves the types of expressions 

invariant. In chapters 4 and 5 we shall demonstrate that a~onversion neither changes the meaning op 

type expressions nor the meaning of expressions. 

13 



CHAPTER 2 

Theorem 2.5.1.[Substitution of type expressions for type variables in type expressions] 

Let AJ,A2 E Assumptions; t E Tvar and te,te1 E Texp . Then the following inference rule can be 

derived. 

Aj ~ tel 

ER13. Aj; t ;A2 ~ te provided t E FrV(A2) 
t t 

Aj;A2 t el ~ tete1 

Proof. By induction on the structure of type expression te . All other cases being trivial we only 

consider the case te '" v(A s I tf) . 

Assume 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

0 

I-Aj~te1 

I- Aj;t;A2 ~ te 

t E FfV(A2) 

Let te '" v(A s I tf) 
I- Aj;t;A2;S ~ tf 

Let u be the fIrst type variable such that 

u ¢ t " u E FrV(tf) " u E FrV(te1) 

I- Aj;t;A2;s;u ~ tf 

I- Aj;t;A2;u ~ u 

I- Aj;t;A2;u;s ~ tf 

I- A j;t;A2;u ~ tf~ 

t E FrV(A2;U) = FrV(A2) v (u) 

I- t s t A j;(A2;u)tel ~ (tfu)te1 

I- t S t 
Aj;Azte1 ;u ~ (tfu\e1 

I- t I st Aj;Aztel ~ v(A u (tfu)te1) 

t t 
I- Aj;Aztel ~ v(A s I tf)te1 

. t t 
I- AJ,Azte1 ~ tetel 

14 
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(***) 

[(**),TR7] 

[(2),(3),ER11.1] 

[TR2] 

[(4 ),ER12.1] 

[(5),(6),IH] 

[(***),(3)] 

[(*),(7),(8),IH] 

[(3),(9)] 

[(IO),TR7] 

[(3),(11),subst.] 
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Theorem 2.5.2.[Substitution of type expressions for type variables in expressions] 

Let A1;A2 E Assumptions; t E Tvar; te,te1 E Texp and e E Exp. Then the following inference rule 

can be derived 

A1 ~ tel 
ERI4. A j ; t ;A2 ~ e : te provided FrV(A1;t) 1'\ FrV(A0 = ¢ 

A1;A2! el ~ e!el : te!e1 

Proof. By induction on the structure of expression e. We prove only a few cases. The remaining 

cases are trivial. 

Assume I-A1~tel 

I- A1;t;A2 ~ e : te 

1.1. Let e '" x and x E FV(A2) , hence x E FV(A1) 

1.2. 

1.3. 

1.4. 

1.5. 

1.6. 

1.7. 

1.8. 

1.9. 

1.10. 

Let A3'~ E Assumptions be such that 

a) A1 = A3;x:te;~ 

b) I- A3 ~ te 

c) x ~ FV(A4 ;t;Ai) 

d) FTV(te) 1'\ FTV(~;t;A0 = ¢ 

x E FV(~;A~el) = FV(~;t;A2) 

FrV(te) 1'\ FTV(A4;A~el) = ¢ 

I- A3;x:te;A4;A2!el ~ x : te 

t E FTV(te) 

te "'a te!el 
t I- A1;A2te1 ~ x : te 

t t t 
I- A1;A2tel ~ xte1 : tete1 

I- A 'A t t. t 
I> 2tel ~ ete1 . tete1 

15 
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CHAPTER 2 

2.1. Let e '" x and x E FV(A2) 

2.2. Let A3,A.! E Assumptions be such that [(**),ER2] 

a) A2 = A3;x:te;A.! 

b) I- AJ;t;A3 ~ te 

c) x E FV(A.!) 

d) FfV(te) n FfV(A.!) = <P 

2.3. a) t E FfV(A3) [(***),(2.2a)] 

b) t E FfV(A [(***),(2.2a)] 

2.4. I- AJ;A3!e1 ~ te!e1 [( * ),(2.2b ),(2.3),thm.2.S.1] 

2.S. x E FV(A.!!e1) = FV(A.!) [(2.2c)] 

2.6. t t 
FfV(tete1) n FfV(A.!te1) 

= FfV(te!e1) n FfV(A.!) [(2.3b)] 

= «FfV(te) \ (t)) u FfV(te1)) n FfV(A.!) 

= FfV(te1) n FfV(A.!) [(2.2d)] 

~ FfV(AJ) n FfV(A.!) [prop.2.4.1] 

= <P [(***),(2.2a)] 

2.7. I- Al;A3~e1;x:te!e1;A.!!e1 ~ x : te~e1 [(2.4),(2.S),(2.6),ER2] 

2.8. I-.t t.t A[,A2te1 ~ xte1 . tete1 [(2.2a),(2.7),subst.] 

2.9. . t t. t I- A[,A2te1 ~ ete1 . tete1 [(2.1),(2.8)] 

3.1. Let e '" (A. y:ty I f) 

3.2. Let tf E Texp be such that [(**),ER6.1] 

a) I- AJ;t;A2 ~ ty,tf 

b) I- AJ;t;A2;y:ty ~ f : tf 

c) I- te "'a ty ---> tf 

3.3. FfV(A1;t) n FfV(A2;y:ty) = <P [(***)] 

3.4. I- AJ;(A2;y:tY)~e1 ~ ~e1 : t~e1 [( * ),(3.2b ),(3.3),1H] 

16 



CSN 88/14 

3.5. t t f 
I- Aj;Aztel ~ tYtel ' t tel [(* ),(*** ),(3.2a),thm2.S.l] 

3.6. I- Aj;A~el ;Y:tY~el ~ ~el : t~el [(3.4)] 

3.7. I- Aj;A~el ~ (A. Y:tY~el I ~el): tY~el ---; ~el [(3.S),(3.6),ER6.l] 

3.8. t t t 
I- Aj;Aztel ~ etel : tetel 

[(3.l),(3.2c),(3.7)] 

4.l. Let e '" (elim v(A s I tf) I f) 

4.2. I- Aj;t;A2 ~ f : tf~(A s I tf) , v(A s I tf) [(**),ER7.2] 

4.3. t f s t 
I- Aj;Aztel ~ tel: (tfV(A s I tf)tel [( * ),(4.2),( *** ),IH] 

4.4. Let r be the fIrst type variable such that 

r ¢ tAr E FTV(tf) ArE FTV(tel) 

4.S. v(A sltf)~el "'v(Arl(~)~el) [(4.4),subst] 

4.6. s t t t r 
(tfV(A s I tf)tel "'a «t r)tel)v(A rl (t~)~e1) [(4.4)] 

4.7. I- Aj;A~el ~ ~el : «~)~el)~(A rl (rrs)t ) [(4.3),(4.6),ER9] 
r tel 

4.8. . tit I- AJ,Aztel ~ v(A s tf)tel [( * ),(4.2),( *** ),thm2.S.l] 

4.9. . t Irrst I- AJ,Aztel ~ v(A r ( r)tel) [(4.4),( 4.8),subst] 

4.10. I- Aj;A~el ~ (elim v(A r I (t~)~el) I ~el) : v(A rl (~)~el) [(4.7),(4.9),ER7.2] 

4.1l. I- Al;A~el ~ (elim v(A s I tf) I f):el : v(A s I tf):el [(4.1O),substJ 

4.12. te "'a v(A s I tf) [(**),ER7.2] 

4.13. t t t I- Aj;Aztel ~ etel : tetel [(4.1),(4.11),(4.12)] 

5.l. Let e '" (A s I f)tfl 

5.2. I- Aj;t;A2 ~ tfl [(**),ER8] 

5.3. Let tf E Texp be such that [(**),ER8] 

a) I- Aj;t;A2;s ~ f:tf 

b) te "'a ~f1 

17 
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5.4. Let r be the fIrst type variable such that 

5.5. 

5.6. 

5.7. 

5.8. 

5.9. 

5.10. 

5.11. 

5.12. 

5.13. 

5.14. 

5.15. 

5.16. 

o 

a) r e FrY(f:tf) 

b) r ¢ t II r e FfV(tel) 

I- A 1;t;A2;s;r ~ f:tf 

I- A1;I;A2;r ~ r 

I- A1;I;A2;r ~ ~ : ~ 

I e FfV(A2;r) 

I- A1;(A2;r)~el ~ (~)~el : (~)~el 
I ..sl . ..sl 

I- A1;A2tel ;r ~ (rPle1 : (ur)lel 

I I I- A1;A2tel ~ tfl le1 
I ..sl t ..sl I 

I- A1;A2tel ~ (A r I (rPle1)tfl lel : ((Ir;.)le1)tfl~el 

((~)~e1)~f1 I 
leI 

-a. (~f1)~e1 
t 

-a. lele1 
I _~ I I I 

I- A1;A2rel ~ (Arl(t~)tel)tfltel: tetel 

I-AA t t. t 
1; 2re1 ~ ete1 . te tel 

Theorem 2.5.3.[renaming bound type variables] 

[(5.3a),(5.4a),ERl1.l] 

[(5.5),ER12.l] 

[TR2] 

[(5.6),(5.7),IH] 

[(***),(5.4b)] 

[(* ),(5.8),(5. 9),IH] 

[(5.10)] 

[( * ),(5.2),( *** ),thm2.5.1] 

[(5.ll),(5.l2),E8] 

[(5.3b)] 

[(5.13),(5.l4),ER9] 

[(5.1),(5.15)] 

Let A E Assumptions; s,t E Tvar ; te,tel,te2 E Texp and e E Exp. Then the following inference rules 

can be derived: 

ER15.1. A ~ Y(A t I te) provided s e FrY (te) 

A ~ Y(A s I te~) 

ER15.2. A ~ (A tl e)te1 : te2 

A ~ (A sl e~)tel : te2 

provided s e FrY(e:'tA;t(e)) 

18 



Proof. 

Assume s E FrV(te) 

I- A ~ v(A tlte) 

1. I- A;t ~ te 

2. I- A;t;s ~ te 

3. I- A;s;t ~ te 

4. I- A;s ~ s 

S. I- A;s ~ te! 

6. I- A ~ v(A site!) 

Hence rule ERIS.I is derivable. 

Assume s E FrV(e:te) 

I- A ~ (A tl e)tel : te2 

1. I- A ~ tel 

2. Let te E Texp be such that 

a) I- A;t ~ e : te 
_ t 

b) te2 =a tetel 

3. I- A;t;s ~ e : te 

4. I- A;s;t ~ e : te 

S. I- A;s ~ s 

6. I- A-s ~ et . tet 
, s· s 

7. I- A ~ (A s I e!)tel : (te!)~el 
S. I- A ~ (A s I e!)te1 : te~el 
9. I- A ~ (A sl e!)tel : te2 

Hence rule ERIS.2 is derivable. 

o 

CSN SS/14 
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(*) 

(**) 

[(**),TR7] 

[(*),(I),ERll.l] 

[(2),ERI2.1] 

[TR2] 

[(3),( 4),thm2.S.l] 

[(S),TR7] 

[(**),ERS] 

[(**),ERS] 

[(*),(2a),ERll.l] 

[(3),ERI2.1] 

ITR2] 

[(4),(S),thm2.S.2] 

[(I),(6),ERS] 

[(* ),(7),ER9,subst] 

[(2b),(S),ER9] 
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Theorem 2.5A.[Substitution of expressions for variables in expressions] 

Let A E Assumptions; te,tel E Texp ; x E Var and e,el E Exp. Then the following inference rule is 

derivable: 

ER16. 

A ~ el : tel 
A;x:tel ~ e : te 

x 
A ~ eel: te 

Proof. By induction on the structure of expression e. We consider only a few cases. The other cases 

are trivial. 

Assume I- A ~ el : tel 

I- A;x:tel ~ e : te 

1.1. Let e=x 

1.2. I- A ~ tel 

1.3. I- A;x:tel ~ e : tel 

104. te =a tel 

1.5. I- A ~ x~l : tel 

1.6. I- A ~ x~l : te 

1.7. I- A ~ e~l : te 

2.1. Let e=y II y~x 

2.2. Let Aj , A2 E Assumptions be such that 

a) A = Aj;y:te;A2 

b) I- Al ~ te 

c) y E FV(A2;x:tel) 

d) FTV(te) fI FTV(A2;x:tel) = tj> 

2.3. a) y E FV(A2) 

b) FTV(te) fI FTV(A2) = tj> 

204. I-A~y:te 
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(*) 

(**) 

[(*)] 

[(1.1),(1.2),ER2] 

[(**),(1.3),thm2.3.1] 

[(*),subst] 

[(1.4),(1.5),ER9] 

[(1.1),(1.6)] 

[(2.1),(**),ER2] 

[(2.1),(2.2c)] 

[(2.2d)] 

[(2.2a),(2.3),ER2] 



2.5. 

2.6. 

~ A ~ Y~1 : te 

~ A ~ e~1 : te 

3.1. Let e '" (A. y:te2 1 f) 

3.2. Let tf E Texp be such that 

a) ~ A;x:tel ~ te2 , tf 

b) ~ A;x:te 1 ;y:te2 ~ f : tf 

c) te "'ex te2 -----; tf 

3.3. Let z be the fIrst variable such that 

3.4. 

3.5. 

3.6. 

3.7. 

3.8. 

3.9. 

3.10. 

3.11. 

3.12. 

3.13. 

3.14. 

3.15. 

z ¢ x II z e FV(f) II z E FV(el) 

~ A;x:tel;y:te2 ~ te2 

~ A;x:tel;y:te2;z:te2 ~ f: tf 

~ A;z:te2;x:te I ;y:te2 ~ f : tf 

~ A;x:te I ;z:te2 ~ z : te2 

~ A;z:te2;x:tel ~ z : te2 

~ A;z:te2;x:tel ~ fY : tf z 

~AHe2,tf 

~ A;z:te2 ~ el : tel 

~ A;z:te2 ~ (fy)x
1 

: tf 
z e 

~ A ~ (A. z: te2 1 (fi)~ 1) : te2 -----; tf 

~ A ~ (A. y:te2 1 f)~ I : te2 -----; tf 

~ A ~ e~1 : te 

4.1. Let e '" (A sl f)tfl 

4.2. 

4.3. 

~ A;x:tel ~ tfl 

Let tf E Texp be such that 

a) ~ A;x:tel;s ~ f: tf 

b) te "'ex t~f1 

CSN 8S/14 
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[(2.1),(2.4)] 

[(2.1),(2.4)] 

[(**),ER6.1] 

[(3.2a),ERll,2] 

[(3.2b),(3.4),(3.3),ERI1.2] 

[(3.5),ERI2.2] 

[(3.2a),ER2] 

[(3.3),(3.7),ERI2.2] 

[(3.6),(3.S),IH] 

[(3.2a)] 

[(*),(3.1O),(3.3),ERI1.2] 

[(3.9),(3.11),IH] 

[(3. 10),(3. 12),ER6.1] 

[(3.3),(3.13)] 

[(3. 1),(3.2c)(3. 14),ER9] 

[(**),ERS] 

[(**),ERS] 
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4.4. Assume without loss of generality that 

S E FrV(el:tel) 

4.5. I- A;s ~ el : tel 

4.6. I- A;s;x:tel ~ f : tf 

4.7. I- A;s ~ ~l : tf 

4.8. I- A ~ tfl 

4.9. I- A ~ (A sl ~l)tfl : ~f1 

4.10. I- A ~ e~l : te 

o 

Theorem 2.5.5.[renaming bound variables] 

[thm2.5.3] 

[(*),(4.4),ERll.l] 

[(4.3a),ER12.3] 

[(4.5),(4.6),IH] 

[(4.2)] 

[(4.7),( 4.8),ER8] 

[(4.l),(4.3b),( 4.9),ER9] 

Let A E Assumptions; tel,te2 E Texp ; x,y E Var and e E Exp. Then the following inference rules 

can be derived: 

Proof. 

Assume 

1. 

2. 

3. 

ER17.1. A ~ (A. x:tel e) : te2 

A ~ (A. y:tel 

ER17.2. A ~ (As x:te 1 e) : te2 

A ~ (As y:te I 

Y E FV(e) 

I- A ~ (A. x:tel I e) : te2 

Let te E Texp be such that 

a) I- A ~ tel , te 

b) I- A;x:tel ~ e : te 

c). te2 "'ex tel ---; te 

I- A;x:tel ~ te 1 

I- A;y:tel ~ y : tel 

22 

provided y E FV(e) 

provided y E FV(e) 

[(**),ER6.1] 

[(1a),ERI1.2] 

[(1a),ER2] 



4. 

S. 

6. 

7. 

8. 

f- A;x:tel;y:tel ~ e : te 

f- A;y:tel ;x:tel ~ e : te 

f- A;y:tel ~ eX : te 
y 

f- A ~ (I.. y:tel I e~) : tel ----; te 

f- A ~ (I.. y:tel I eX) : te2 
y 

CSN 88/14 

[(2),(1 b),ER11.2] 

[(4),ERI2.2] 

[ (3),(S),thm2.S.4] 

[(la),(6),ER6.1] 

[(lc),(7),ER9] 

Hence rule ER17.1 is derivable. Similarly it can be shown that rule ER17.2 is derivable. 

o 
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3.REDUCfION 

3. 1. Introduction. 

In this chapter a reduction relation » on expressions is defined that provides an operational 

semantics for our kernel language. We shall present this reduction relation in the form of a formal 

theory (cf. Hindley and Seldin [HiSe86]). Besides reduction rules that deal with expressions having 

function types, which are familiar from the lambda calculus, the theory contains reduction rules for 

expressions having sum, product or recursive types. 

In order to present this theory we need the notion of a context. Suppose we take an expression 

and replace some of its sUbexpressions by the fresh symbol $. The resulting term is called a context. 

Actually we think of a context as an expression with some holes in it. The symbol $ merely enables 

us to give a proper syntactic definition. To that end replace in rules EI - E8 of chapter I the 

nonterminal Exp by C_and_E and add the rule C_and_E ::= $ . Let Exp be the subset of 

sentences of C_and_E that contain zero occurrences of the symbol $, and let Context be the 

subset of sentences that contain at least one occurrence of $. Notice that substituting an expression 

for $ describes the process of filling in the holes of a context. 

3.2. The theory of reduction. 

The theory of reduction consists of formula's of the form Exp» Exp and the following rules: 

(v) (blm I te) » (him I te) 

(0) (down (up e)) » e 

(O'j) (appl (sum fl f2) (in! el I te2)) » (appI fl el) 

(O'z) (appi (sum fl f2) (inr tel I e2)) » (appl f2 e2) 

(0'3) (appis (sums f1 f2) (inls el I te2)) » (appis f1 el) 

(0'4) (appis (sums f1 f2) (inrs tel I e2)) » (appis f2 e2) 
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(O"s) (sums (As x:tel I (appls f (inls x I te2») 

(As x:te2 I (appls f (mrs tel I x»» » f, 

(7tI) (prol (prod el e2)) » el 

(nz) (pror (prod el e2» » e2 

(7t3) (prod (prol e) (pror e» » e 

(7t4) (prols (prods el e2» » el , 

(7ts) (prors (prods el e2» » e2, 

(7t6) (prods (prols e) (prors e» » e 

(ev (elim v(A tlte) I (intro v(A tlte) I e» » e 

(ez) (intro v(A t I te) I (elim v(A t I te) I e» » e 

(~I) (appl (1 x:tx I e) el) » e~l 

(132) (appls (1s x:tx I e) el) » e~l ' 

(~) (A t I e)tel » e~el 

(111) (1 x:tx I (appl f x» » f, 

(11z) (As x:tx I (appls f x» » f, 

(p) e» e 

el » e2 

('t) e2 » e3 

el » e3 

x E FV(f) 

provided e2 in normal form 

provided el in normal form 

provided el in normal form 

x E FV(f) 

x E FV(f) 

reflexivity 

transitivity 

el » e2 

c$ »c$ 
provided there exist no contexts c1 and c2 such that c =a c l~p c2 

el e2 

Rule 'I' expresses the substitutivity property (or compatibility property as it is called in Barendregt 

[Ba81]) of » • It states, however, one exception, viz. subexpressions appearing in an up-context can 

not be reduced. Hence » is the reflexive, transitive and (almost) substitutive closure of the one-step 

reduction relation defined by rules v thru 11 . The left-hand side of any of these rules is called a 

redex. An expression in which all redices, if any, appear inside an up-context is called a normal form. 
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Notice that the notions redex and normal form are actually defined by mutual recursion, on account of 

the constraints in rules 1t4 , 1ts and 132. In particular (btrn I te) is not a normal form. This is 

proper, since it corresponds to a nonterrninating computation that yields no information at all. On the 

other hand, any up--expression is in normal form. 

Up--expressions can be used to enforce lazy evaluation. Consider the two expressions 

(appJ (A x:tx I (in! x I te2)) e) 

and 

(appl (A x:itx I (in! (down x) I te2)) (up e) 

If e)} el then (appl (A x:tx I (in! x I te2)) e) )} (in! el I te2) in two distinct ways, viz. applying rule 

131 before rule '1', which is called lazy evaluation or applying rule 'I' and then rule 131, which is 

called eager evaluation. Likewise (appl (A x:itx I (in! (down x) I te2)) (up e) » (in! el I te2) , but 

the order in which the rules are applied has to be first 131 then I) and finally '1'. 

One would expect that reduction does not change the type of an expression. This is indeed the 

case, if renaming of bound variables is ignored. Of course type expressions that differ only in the 

names of their bound variables have the same semantics. Hence, if we are a little more liberal and 

consider a type to be a class of type expressions that are equal up to a-conversion then we can say 

that types are invariant under reduction. 

Theorem 3.2.1. 

Let A E Assumptions and el,e2 E Exp. 

If el E WTE(A) and el » e2 

Then e2 E WTE(A) and 'tA (el) "'a 'tA (e2). 
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Proof. With the exception of the l3-rules this follows for each of the remaining rules v thru 11 by a 

straightforward calculation. Rules 131 and 132 preserve types on account of theorem 2.5.3. Rule I3:J 

preserves types on account of theorem 2.5.4. 

o 

Remark. For reductions el »e2 that do not comprise rule I3:J one can prove that 'tA (el) '" 'tA (e2). 

o 
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4.SEMANTICS OF TYPE EXPRESSIONS 

4.l.Introduction. 

In this chapter we show how a complete partial order (c.p.o.) can be associated to every type 

expression. The c.p.o.'s corresponding to recursively defined types, i.e. type expressions of the form 

v(A t I te) , are found using the inverse limit construction. The use of this technique to solve recursive 

domain equations has been described by Smyth & Plotkin [SP82], Lehmann & Smyth [LS81] and 

others. A detailed description (for the case of the category of c.p.o.'s with embedding-projection pairs 

as morphisms) can be found in Bos & Hemerik [BH88]. For general aspects of category theory we 

refer to Herrlich & Strecker [HeStr73] or Maclane[McL71]. 

In this section we introduce some notations and conventions. Some elementary properties of 

the concepts introduced in this section are given in section 4.2. The actual semantics of type 

expressions is given in section 4.3. We fIrst associate a certain functor with every type expression. 

The c.p.o. corresponding to a type expression is then found by applying that functor to an object, 

called the type environment. Finally in section 4.4. some elementary properties of the semantics of 

type expressions are given. 

Let s,t E Tvar. In the sequel we shall use the following notations. 

C = CPO PR ,the category of c.p.o.'s with embedding/projection pairs as morphisms 

ITC = IT CPOpR ' 
tE Tvar 

P t : ITC -l C , the projection functor on component t. 

If A E obj(IlC) ,then At = PlA). 

If f E mor(ITC) ,then ft = Pt(f). 

If A E obj(IlC) , B E obj(C) ,then A[B/t] E obj(ITC) is defIned by 
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A[B/t] = s 
{

A ifs¢t 

s B ifs=t 

If f E mor(I1C) , g E mor(C) , then f[glt] E mor(I1C) is defined by 

f[glt] = . 
{

fSifs¢t 

s g ifs=t 

Consider the functors F: I1C ----; I1C and G: I1C ----; C. Then the functor 

F[G/t] : I1C ----; I1C is defined by 

P 0 F[G/t] = s 
{

POF ifs¢t 

s G ifs=t 

Id : I1C ----; I1C , the identity functor. 

idA : A ----; A , the identity morphism on object A. 

Consider the functor F : I1C ----; C . The functor abstrt: I1C ----; (C ----; C) is defined in the 

following way: 

i) For A E obj(I1C) is abstrt(A) the object in the category C ----; C (i.e. the functor 

C ----; C ) defined by 

abstrt(A) (B) = F(A[B/tD for be obj(C) , 

abstrtF(A) (g) = F(id A [gltD for g E mor(C) . 

ii) For f E mor(I1C) is abstrt(f) the morphism in the category C ----; C (i.e. the natural 

transformation) defined by 

(abstrl(t))B = F(f[idBIt]) for B E obj(C) 

Suppose D is an arbitrary category. A functor F: I1C ----; D will be called independent of t if 

F = F 0 Id[G/t] for all functors G: I1C ----; C. 

We shall use the following functors. 
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CONST A : rrc ----; C , the constant functor corresponding to an object A E obj(C) , 

LIFT : C ----; C , the lifting functor, 

DS : C x C ----; C , the disjoint sum functor, 

CP : C x C ----; C , the cartesian product functor, 

FS : C x C ----; C , the function space functor, 

CS : C x C ----; C , the coalesced sum functor, 

SP : C x C ----; C , the smash product functor, 

SF: C x C ----; C , the strict function space functor, 

IFP : [C ----; C] ----; C , the initial fixed point functor. 

The formal definition of these functors can be found in Bos & Hemerik [BH88] or Smyth and 

Plotkin [SP82]. 

4.2.Elementary properties. 

The following properties of the concepts introduced in the preceding section can easily be 

shown. Let F,G: rrc ----; C , H : C ----; D and t,u E Tvar . Then 

F = P
t 

0 Id[F/t] , 

if t ¢ u then P is independent of t, 
u 

abstruF is independent of u, 

if F is independent of t, then abstruF is independent of t, 

if F is independent of u, then abstr (F 0 Id[P It]) = abstrtF, 
u u 

if G is independent of u and t ¢ u , then 

abstru(F 0 Id[G/t]) = (abstruF) 0 Id[G/t]. 
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4.3.Definition of semantics of type expression. 

We first show that with every type expression an co - continuous functor ITC ---; C can be 

associated. Define 1: Texp ---; [ITC ---; C] by 

1[0] 

l[t] 

1[ite] 

l[tel + te2] 

l[tel x te2] 

l[tel ---; te2] 

1[ te 1 ElHe2] 

1[tel ®te2] 

l[tel e te2] 

l[v(A tlte)] 

= CONST A • where A is the one-point c.p.o. 

=Pt • 

= LIFT ol[te] • 

= DS 0 < 1[tel] .1[te2] > • 

= CP 0 < l[tel] .1[te2] > • 

= FS 0 < l[tel] .1 [te2] > • 

= CS 0 < l[tel] .1 [te2] > • 

= SP 0 < l[tel] .1 [te2] > • 

= SF 0 < l[tel] .1 [te2] > . 

= IFP 0 ( abstrl [tel ) . 

The constant and projection functors are trivially co - continuous. The co - continuity of the functors 

DS • CP • FS • CS • SP and SF follows from the local continuity of the corresponding functors on 

CPO x CPO respectively CP0.L x CP0.L • see for instance Smyth & Plotkin [SP82] or Bos & 

Hemerik [BH88]. The co continuity of the functor LIFT follows from the local continuity of the 

corresponding functor CPO ---; CP0.L • see also [SP82] or [BH88]. Further if F : [ITC ---; C] • then 

also abstrl: [ITC ---; [C ---; Cll • see for instance Herrlich & Strecker [HeStr73. th.15.9]. The co -

continuity of the initial fixed point functor IFP is shown in Lehmann & Smyth [LS81]. Now using 

the property that the composition of two co - continuous functors is again co - continuous (see Mac 

Lane [McL71]). it is easily shown by induction on the structure of te that 1[te] is an co -

continuous functor for every type expression teo 

Define Tenv = obj(I1C) . Elements of Tenv will be called type environments. If P E Tenv • 

then Pt = Pt(p) is the c.p.o. associated to t E Tvar by the type environment p. The c.p.o. 
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corresponding to a type expression te in the environment p is given by J[ te] p . 

4.4.Properties of the type semantics. 

We now describe some properties of the semantics of type expressions. Theorem 4.4.4. shows 

that the functor associated to a type expression te depends only on the type variables which appear 

freely in te . Hence the c.p.o. which corresponds to te in an environment p depends only on the values 

of p on FrV(te). 

Theorem 4.4.1. 

Let te E Texp and t E Tvar. If t e FfV(te) then J[te] is independent of t. 

Proof. The theorem is easily proved using induction on the structure of teo 

i) te = Q ,then J[te] = CONST A ' where A is the one-point c.p.o. Clearly this functor is 

independent of t. 

ii) te = u E Tvar with u ~ t . Then J[te] = P u ' which by property (4.4.2) is independent of t. 

iii) te = ftel , te = tel + te2 , te = tel x te2 ,te = tel -----; te2 , te = tel Ell te2 , te = tel ® te2 and 

te = tel 8 te2 . These cases are easily handled using the induction hypothesis that J[tel] 

respectively J[tel] and J[te2] are independent of t. 

iv) te = v(A ulte) . Then J[v(A ulte)] = IFP 0 (abstr J[te]) . If t '" u the result follows from 
u 

property (4.2.3). If t ~ u then t e FrV(tel) and the theorem follows from the induction assumption 

and property (4.2.4). 

o 

The next theorem gives the behaviour of J[te] under substitution in te. 
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Theorem 4.4.2. [substitution in type expressions] 

Let tel, te2 E Texp and t E Tvar. Then 1[tel~e2] = 1[tel] 0 Id[1[te2] / t] . 

Proof. The proof is done by induction on the structure of te 1 . 

i) tel = Q or tel = s with s E Tvar and s ~ t . In these cases t E FTV(tel) and the theorem 

follows from theorem 4.4.1. 

ii) tel = t . A simple calculation yields that 

1[t~e2] 
= 1[te2] 

= Pt 0 Id[1[te2] / t] 

= 1[t] 0 Id[1[te2] / t] . 

iii) tel = ite . Then we have 

1[(ite)~e2] 

= l[i(te~e2)] 

= LIFT 0 1[te~e2] 
= LIFT 0 1[te] 0 Id[1[te2] / t] 

= l[ite] 0 Id[1[te2] / tJ . 

[propeny 4.2.1] 

[induction hypothesis] 

iv) tel = te3 & te4 where & = +, x, --->, Ell, ®, 8 corresponds to respectively FU = DS, CP, FS, CS, 

SP, SF. The result follows from the following computation. 

1[ (te3 & te4)~e2] 

= 1[te3~e2 & te4~e2] 

= FU 0 < 1[te3~e2 ,1[te4~e2] > 

= FU 0 < 1[te3] 0 Id[1[te2] / t] ,1[te4] 0 Id[1[te2] / t] > [induction hypothesis] 

= FU 0 < 1[te3] ,1[te4] > 0 Id[1[te2] / t] [ <FloF , F2oF> = <FI,F2>oF] 

= 1[te3 & te4] 0 Id[1[te2] / t] 

v) tel = v(A site) . Let u be the first variable such that u ~ t and u E FTV(te) V FTV(te2) . The result 

now follows from the following calculation. 
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1[(Y(A s I te»~e2] 
= J[ Y(A u I (te~)~e2] 

= IFP 0 (abstru1[(te~)~e2]) 

CHAPTER 4 

= IFP 0 (abstru( J[te~] 0 Id[J[te2] / t] ) ) 

[def. of substitution] 

[induction hypothesis] 

= IFP 0 (abstr 1[tes] ) 0 Id[1[te2] / t] [J[te2] is independent of u , property (4.2.6)] 
u u 

= IFP 0 (abstru(J[te] 0 Id[P is]) ) 0 Id[J[te2] / t] [induction hypothesis, J[u] = P u] 

= IFP 0 (abstr/[te]) 0 Id[J[te2] / t] [1[te] is independent of u , property (4.2.5) ] 

= J[(Y(A site)] 0 Id[J[te2] It]. 

As a consequence of theorem 4.4.2 we have 

1[tel~e2] p = J[tel] (p[J[te2]p It]) (4.4.3) 

for all tel,te2 E Texp , t E Tvar and p E Tenv . This relation shows that substitution in a type 

expressions can be replaced by substitution in the type environment. 

As expected, the semantics of a recursively defined type does not depend on the name of the 

bound variable. 

Theorem 4.4.4. 

Let te E Texp and t,u E Tvar . If u ~ FfV(te) , then 

J[ Y(A t I te)] = J[ Y(A u I te~)]. 

Proof. Using the previous theorem this result can be proved by a straightforward calculation. 

J[ Y(A t I t<)] 

= IFP 0 abstruJ[te~] 

= IFP 0 abstru( 1[te] 0 Id[P it] ) [theorem 4.4.2.] 
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= IFP 0 abstrlTte] 

= J[v(Atlte)]. 
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[J[te] is independent of u ,property 4.2.5.)] 

Finally we mention a technical result which will be used in section 5. From part v) of the 

proof of theorem 4.4.2. we infer that if u ~ t and t E FfV(te) u FfV(te2) , then 

abstruJ[(te~)~e2] = (abstr/Tte] ) 0 Id[J[te2] / t]. 

Hence we see that under the same assumptions 

(4.4.5) 

for every type assignment p. 
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S.SEMANTICS OF EXPRESSIONS 

S.1.States. 

The value of an expression e E WTE(A) depends on the values of the free variables 

occurring in it. The function that defines these values is called a state. Hence a state maps each free 

variable of an expression to an element of a specific c.p.o .. Which c.p.o. that is depends on the 

assumption A and the type environment p. Therefore we define for A E Assumptions and 

P E Tenv 

STp,A = II (1'['tA(x)]p I x E WTV(A)} (5.1.1) 

i.e. the set of functions cr such that cr(x) E 1'['tA (x)]p for all x E WTV(A) . Elements of STp,A 

are called states. 

Definition 5.1.2. 

Let A E Assumptions and p E Tenv . Moreover, let x E Var and tx E Texp such that I- A ~ tx 

and let d E 1'[ tx] p . Then for cr E ST A we define the function cr[ d/x] E STp A' .tx by: p, , ,x. 

cr[d/x](y) = if y ;: x ----; d 0 Y f x ----; cr(y) fi 

Moreover, for Al E Assumptions and PI E Tenv such that WTV(AI)!;; WTV(A) and 1'['tA/x)]PI 

= 1'[ 'tA (x)]p for all x E WTV(AI) we define the restriction cr r WTV(AI) E ST PhAI by: 

(cr r WTV(AI» (x) = cr(x) 

Note that if also I- A I ~ tx then 

cr[d/x] r (WTV(AI;x:tx» = (cr r WTV(AI» [d/x] (5.1.3) 

o 
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5.2.Semantic mappings 

The meaning of an expression e is given by a family of mappings t: = <t:p,A I p E Tenv , 

A E Assumptions> such that for p and A the domain of t: A is WTE(A) and for all expressions p, 

e E WTE(A) we have t: A[e] E ST A ---; 1['tA(e)]p . Hence given a state cr E STp A ' p, p, , 

t:p,A[e]cr indeed yields a value in the domain ll'tA (e)]p . 

Definition 5.2.l.[Semantic mapping t:p,AJ 

Let p E Tenv and A E Assumptions. For all t,tx E Tvar; te,tel E Texp; x E Var; e,el,e2,fl,f2 E Exp 

and cr E STp,A the mapping t:p,A E IT (STp,A ---; 1"['tA(e)]p lee WTE(A») is defined by: 

l. t:p,A [(btm I te)]cr = .LD 

where D = llte]p 

2. t:p,A[x]cr = cr(x) 

3.l. t:p,A[(uP e)]cr = <O,t:p,A[e]cr>iD 

where D = 1"['tA(x)]p 

3.2. t:p,A [(down e)]cr = 

if t:p,A[e]cr = .LiD ---;.LD 

D t:p,A[e]cr = <O,d>iD ---; d 

fi 

where D=ll'tA(x)]p 

4.l. t:p,A[(inl el I te2)]cr = <1,t:p,A[el]cr>D,+D
2 

t:p,A[(inls el I te2)]cr = <l,t:p,A[el]cr>D, (!)D2 

where D, = 1"['tA (el)]p , D2 = llte2]p 
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4.2. Ep,A[(inr tel I e2)]cr = <2,cp,A[e2]cr>D
I
+D

2 

Ep,A[(inrs tel I e2)]cr = <2,Ep,A[e2]cr>DI EIlD2 

where DI = 1[tel]p , D2 = 1[tA (e2)]p 

note that <1,olDI>DI Ell D2 = olDI Ell D2 = <2,olD/ DI Ell D2 . 

4.3. Ep,A[(sum fl f2)]cr = 

5.1. 

(l<. d E DI+D2 

I if d = olDI+D2 

o d = <1,dl>D
1
+D

2 

o d = <2,d2>D
1
+D

2 

fi 

) 

---; (Ep,A[fl]cr)(dl) 

---; (Ep,A [f2]cr)(dz) 

where DI ---; D = 1[tA (fl)]p , D2 ---; D = 1[tA (f2)]p 

Ep,A [(sums fl f2)]cr = 

(l<. dEDI Ell D2 

lif d = <1,dl>D
1 

EIlD2 ---; (Ep,A[fl]cr)(dl) 

o d = <2,d2>D
1 

(f)D
2 

---; (Ep,A[f2]cr)(d2) 

fi 

) 

Ep,A[(prol e)]cr = 7t1(Ep,A[e]cr) 

Ep,A[(pror e)]cr = 7t2(Ep,A[e]cr) 

where 7t1 = (l<. <dj,d2>D
1
xD

2 
E D1XD2 I dl) 

and 7t2 = (l<. <dj,d2>D
1
XD

2 
E D1xD2 I d2) 

and DlxD2 = 1[tA (e)]p 
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5.2. t'p,A[(prols e)]cr = 'Jfit'p,A[e]cr) 

t'p,A[(prors e)]cr = 'Jf2(t'p,A[e]cr) 

where 'Jfj = (};. <dj,d2>Dj ® D2 E Dj ® D2 I if d2 = olD2 -+ olDj D d2 *- olD2 -+ dj fi) 

and 'Jf2 = (};. <d],d2>D j ®D
2 

E Dj ®D2 I if dj = olDj -+ olD2 D dj '" olDj -+ d2 fi) 

and Dj ®D2 =1['tA(e)]p 

note that <dj,olD/ Dj ® D2 = olDj ® D2 = <olDj,d2>D j ® D2 

5.3. t'p,A[(prod el e2)]cr = <t'p,A[el]cr,t'p,A[e2]cr>D jxD2 

t'p,A[(prods el e2)]cr = <t'p,A[el]cr,t'p,A[e2]cr>Dj ®D2 

6.1. t'p,A[(A. x:tx I e)]cr = (};. d ED I t'p,Aj[e]cr[d/xD 

t'p,A[(As x:tx I e)]cr = 

(};. d ED 

lifd =olD -+ olE 

D d"'olD -+ t'p A [e]cr[d/xJ 
, j 

fi 

) 

where Aj = A;x:tx , D = 1[tx]p , E = 1['tA/e)]p 

6.2. t'p,A[(appl f e)]cr = t'p,A[f]cr (t'p,A[e]cr) 

6.3. t'p,A[(appls f e)]cr = t'p,A[f]cr (t'p,A[e]cr) 

7. t'p,A[(intro v(A tlte) I e)]cr = aR(t'p,A[e]cr) 

t'p,A[(elim v(A tlte) I e)]cr = aL(t'p,A[e]cr) 

where (D,(aL,aR» is the initial fixed point of the endofunctor F = (abstrt 1[te])p 

on the category e = epopR obtained by applying the inverse limit construction to 

the co - chain < pnole ' pnu I 0 ~ n > with u the unique morphism from ole to 

t L 
F(ole)' Note that D = 1[v(A tlte)]p, F(D) = 1[tev(A tlte)]P, a E Hom(F(D),D) 
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and a.R 
E Hom(D,F(D», cf{BH88,SP82J 

8. t"p,A[(A tl e)tel]cr = t"PI,AI[e] (cr tWTV(AI» 

where PI = p[1[tel]p I tJ , Al = A;t 

Remark. All clauses of definition 2.5.2 are of the fonn 

where eJ, ... ,en are the constituting subexpressions of e, and <I> is some function. This is a proper 

definition iff 

if e E WTE(A) then ei E WTE(Ai) , for 1::; i ::; n 

<1>: 1['tA/el)]PI x ... x 1['tAn(eJ]Pn --+ 1['tA(e)]p 

For all clauses but 7 and 8 this is trivial. For clause 7 we consider the case (elim v(A t I te) Ie) 

only. The case (intro v(A tl te) I e) will then be evident. For all A E Assumptions such that 

(elim v(A tl te) I e) E WTE(A) : 

(i) 1['tA«elimv(A tlte) I e»]p 

= 1[v(A tlte)]p 

= (IFP 0 (abstrt 7[te]»p 

= IFP«abstrt 1[te])p) 

= IFP(F) 

By rule ER7.2 it follows that e E WTE(A) and, moreover, 

(ii) 7[ 'tA (e)]p 

= 7[te~(A tlte)]P 

= 7[te]p[1[v(A tlte)]p I tJ 

= J[te]p[IFP(F) I tJ 

= «abstrt 7[te])p)IFP(F) 

= F(IFP(F) 
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Since a L is an embedding from F(IFP(F)) into IFP(F) it follows that clause 7 is a proper 

definition. From rule ER8 it follows that if (A t I e)te1 E WTE(A) then e E WTE(AI). Since the 

introduction of the rightmost type variable t in Al invalidates type assignments for variables in 

which the type expression depends on t and that occur to the left of it (see rule ER2), it follows that 

WTV(AI) ~ WTV(A) . Moreover, for x E WTV(AI) it holds that 'tAI(x) = 'tA(x) 

t e FTV('tAI(x)) . Hence 

1['tAI(x)]PI 

= 1['t
AI

(x)]p[1[tel]p / t] 

= 7['tA /x)]p 

= 1['tA(x)]p 

and therefore (J r WTV(AI) E STp A is properly defined. 
[, I 

o 

and that 

[thm.4.4.l] 

In the sequel we shall frequently need to compare the meanings (values) of a single 

expression under similar assumptions and in similar states. The following property indicates that if 

these similarities are strong enough the respective values are equal. 

Property 5.2.2. 

For all A[,Az E Assumptions; p E Tenv; e E Exp; (JI E STp,A
I 

and (Jz E STp,A
z 

: 

If f- Al ~ e : te 

f- Az ~ e : te 

(JI r WTV(Az) = (J2 r WTV(AI) 

Then ep,AI[e](J1 = ep,Az[e](Jz 

o 
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5.3.Substitution and a--conversion. 

In order to prove the soundness of the J3-reduction rules (see chapter 6) we have to 

determine the meaning of expressions containing substitutions. For each of the two kinds of 

substitutions in expressions (see chapter I) we present a substitution theorem. 

Theorem 5.3.1.[Modification of type environment] 

For all A E Assumptions ; P E Tenv ; t E Tvar ; te E Texp ; e E Exp ; D E Obj(CPOpR) and 

a E STp,A : 

If I- A ~ e:te 

t E FTV(e:te) 

Then £p A[e]a = £p A [e]al 
, h 1 

where PI = p[D/t] , Al = A;t and al = a t WTV(AI) 

Proof. By induction on the structure of expression e. We prove only a limited number of difficult 

cases. Assume (*) and (**). 

1.1. Let e=x 

1.2. 

1.3. 

X.E WTV(AI) 

£p,A[e]a = a(x) = al(x) = £PhAI[x]a1 

Let e = (J.. y:ty I f) 

[(*),(**),ERI1.I] 

[(1.2),def.£J 

2.1. 

2.2. Let dE 1[ty]p . Moreover, let A2 E Assumptions and a2 E ST
p

,A
2 

be such that 

A2 = A;y:ty a2 = a[d/y] 

2.3. Let tf E Texp be such that [(* ),(2.2),ER6.1] 

a) I- A ~ ty , tf 

b) I- A2 ~ f : tf 

c) te =a ty --... tf 

2.4. FTV(e:te) = FTV(ty) u FTV(f) u FTV(tf) [(2.1),(2.3c)] 
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2.5. 

2.6. 

2.7. 

2.8. 

a) t i! FfV(ty) 

b) t E FfV(f:tf) 

I- A2;t ~ f : tf 

I- A1;y:ty ~ f: tf 

WTV(A2;t) = WTV(A1;y:ty) 
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2.9. (cr2 t WTV(A2;t» t WTV(A1;y:ty) 

= (cr[dly] t WTV(A2;t» t WTV(A1;y:ty) 

= (cr[dly] t (WTV(A1;y:ty» t WTV(A2;t) 

= (cr t WTV(A1))[dly] t WTV(A2;t) 

= crl[dly] t WTV(A2;t) 

2.10. t'p,AW" y:ty I f)]cr 

= (ll d E 1[ty]p I t'p,A2[f]cr2) 

= (l<. d E 1[ty]p I t'pJ,A2;t[f]cr2tWTV(A2;t» 

= (l<. d E 1[ty]p I t'PJ,A1;y:tiGcr1[dly] ) 

= t'p A [(i.. y:ty I f)]crl 
h 1 

3.1. Let e=(elimv(Asltf) I f) 

3.2. a) I- A ~ f : tf~(A s I tf) 

b) te =u v(A sltf) 

3.3 FfV(f:tf~(A s I tf) 

= FrV(f) u (FfV(tf)\(s)) u FrV(v(Asltf) 

= FfV(f) u FrV(v(A sltf) 

= FrV((elim v(A s I tf) If): v(A s I tf) 

= FfV(e:te) 

[(**),(2.4)] 

[(2.3b),(2.Sb),ER11.1] 

[(2.6),ERI2.3] 

[ERI2.3] 

[(2.8)] 

[(S.1.3)] 

[def.t'] 

[(2.3b),(2.Sb),IH] 

[(2.6),(2.7),(2.9),prop.S.2.2] 

[def.t'] 

[(*),ER7.2] 

3.4. t E FfV(f:tf~(A s I tf) fI t E v(A s I tf) [(**),(3.2),(3.3)] 

3.S. Let (A,(uL,UR» be the unique IFP resulting from the inverse limit construction with 

functor (abstrs l[(te)])p 
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3.6. Let (B,(I3L,I3R» be the unique IFP resulting from the inverse limit construction with 

functor (abstrs l[(te)])p[O/t] 

3.7. Since t E FfV(Y(A sltf), by (3.4), it follows that the functor (abstrs l[(tf)])p is indepen

dent of t, i.e. (abstrs 1[(tf)])p = (abstrs l[(tf)])p[O/t] 

3.B. 

3.9. 

4.1. 

4.2. 

o.
L = I3L 

ep,A[(elim Y(A sltf) I f)]a 

L = a. (ep,A[f] a) 

= I3L 
(ep,A [f]a) 

L = 13 (ephAj[f]aj) 

= ep A [(elim Y(A s I tf) I f)]aj 
h j 

Let e = (A s I f)tfl A s r. t 

Let A2 E Assumptions; P2 E Tenv and a2 E ST A be such that 
P2, 2 

[(3.5),(3.6),(3.7)] 

[def.tJ 

[(3.B)] 

[(3.2),(3.4),lli] 

[def.tJ 

A2 = A;s P2 = p[1[tfl]p / s] a2 = a t WTV(Av 

4.3. Let tf E Texp be such that 

a) I- A2 ~ f : tf 

b) te =0. rr:fl 

4.4. FfV(e:te) 

4.5. 

4.6. 

4.7. 

4.B. 

= FfV(e) U FfV(rr:fl) 

= (FfV(f) \ (s)) u FfV(tfl) u (FfV(tf)\(s)) 

= (FfV(f:tf) \ (s)) u FfV(tfl) 

t e FfV(f:tf) 

P2[O/t] = pj[1[tf1]p / s] 

I- A2;t ~ f : tf 

I- Aj;s ~ f: tf 

4.9. Since WTV(A2;t) = WTV(Aj;s) it follows that 

(a2 t WTV(A2;t» t WTV(Aj;s) = (aj t WTV(Aj;s» t WTV(A2;t) 
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[sr.t,def·PhP2] 
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4.10. £p,A[(A sl Otfl]O' 

= £p20A}f]O'2 

= £p2[D/t],A2;t[f]O'2tWTV(A2;t) 

= £pl[:F[tfl]p 1 s],A2if]O'2tWTV(A2;t) 

= £pl[lltfl]p 1 s],A1;s[f]O'1tWTV(A1;s) 

= £p A [(A s I Otf1]O'I 
10 1 

5.1. Let e'" (A tl Otf1 

5.2. 

5.3. 

Let tf E Texp be such that 

a) f- Al ~ f: tf 

b) te "'a ~tf1 
f- A l;t ~ f : tf 

5.4. Since WTV(A0 = WTV(A1;t) it follows that 

0'1 t WTV(A1;t) = (0'1 t WTV(A1;t)) t WTV(A1) 

5.5. t E FrV(tfl) 

5.6. p[J'[tfl]p 1 t] 

= p[D/t][lltf1]p 1 t] 

= Pl[J'[tfl]p 1 t] 

= Pl[J'[tf1]p[D/t] 1 t] 

= Pl[ll tf1] PI 1 t] 

5.7. £p,A[(A tl Otfl]O' 

o 

= £p[J'[tfl]p 1 tj,AP]0'1 

= £pl[J'[tfl] PI 1 tj,A1[f]O'I 

= £pl[lltf1] PI 1 t],A1;t[f]O'I tWTV(A1;t) 

= £pIoAl[(A tl Otf1]O'I 
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[( 4.3a),( 4.5),1H] 

[(4.6)] 

[(4.7),(4.8),(4.9),prop.5.2.2] 

[def.£] 

[(*),ER8.1] 

[(5.2a)] 

[(**)] 

[(5.5),thm4.4.1] 

[def.£] 

[ (5.6)] 

[(5.2a), (5.3),(5.4) ,prop.5 .2.2] 

[def.£] 
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Theorem S.3.2.[Substitution of type expressions for type variables in expressions] 

For all P E Tenv ; AJ,A2 E Assumptions; t E Tvar ; te,tel E Texp; e E Exp and a E ST t p,At;A2tel 

If I-At~tel 

FTV(At;t) () FTV(A2) = <P (***) 

Then Cp,At;A;el [e~el]a = CPJ,At;t;A}e]at 

where Pt = p[J1tel]p / t] and at = afWTV(At;t;Az) 

Proof. By induction on the structure of expression e. We prove only a limited number of difficult 

cases .Assume (*),(**) and (***). 

1.1. Lete=x 

1.2. 

1.3. 

X E WTV(At;t;A2) 

Cp At'A?~ [x~el]a , , -LeI 

= Cp A 'A t [x]a 
, J, 2tel 

= a(x) 

= at(x) 

= CPJ,At;t;A2[x]at 

2.1. Let e = (i.. y:ty I f) 
2.2. 

2.3. 

2.4. 

Let tf E Texp be such that 

a) I- At;t;A2 ~ ty , tf 

b) I- At;t;A2;y:ty ~ f: tf 

t E FTV(A2;y:ty) = FTV(A2) 

t 
J1tYtel]P = J1tY]Pt 

[(**)] 

[subst] 

[def.t"J 

[(1.2)] 

[def.t"J 

[(**),ER6.1] 

[(***)] 

[(4.4.3)] 

2.5. Let dE J1tY]Pt . Moreover let A3 E Assumptions and a3 E STp A .t'A be such that 
h h' 3 
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2.6. cr[d!y] t WTV(A1;t;A3) 

= (cr t WTV(A1;t;A2»[dly] 

= crl[dly] 

= cr3 

2.7. t:p A .A t [~el]cr[dly] , I> 3te l 

= t:p A .t.A [f](cr[dly] t WTV(A1;t;A3» 
h h' 3 

= t:PI>A1;t;A3[f]cr3 

2.8. t:p A .A t [(A. y:ty I f)~el]cr 
, I> 2tel 

= t:p A . A~ [(A. y:tY~el I ~el)]cr 
'h el 

= (X d E lltY~el]P I t:p A ·A3t [~el]cr[dly]) 
, I> tel 

= (\ d E 1"[tY]Pl I t:p A .r-A [f] cr3 ) 
it h, 3 

= t:p A .t.A [(A. y:ty I f)]crl 
1, h' 2 

3.1. Let e '" (elim v(A s I tf) I f) 
3.2. f- A1;t;A2 ~ f : tf~(A s I tf) 
3.3. Let r be the fIrst type variable such that 

r ¢ t /I r ~ FrV(tf) /I r ~ FrV(te1) 

[(5.1.3)] 

[(* ),(2.2b ),(2.3),IH] 

[(2.6)] 

[subst.] 

[def.£] 

[(2.4),(2.7)] 

[def.£] 

[ER7.2] 

3.4. Let (A,(aL,aR» be the unique initial fIxed point resulting from the inverse limit construction 

with functor (abstrr 1"[(~)~el])P 

3.5. Let (B,(~L,~R)) be the unique initial fIxed point resulting from the inverse limit construction 

with functor (abstrs lltf])Pl 

3.6. 

3.7. 

3.8. 

(abstrr ll(~)~el])P = (abstrs lltf])Pl 

aL = ~L 

t:pA .A t [CelimvCAsltf) I f)~el]cr 
, I> 2te l 

= t:p A .A t [(elim v(A rl (~)~e1 I ~el)]cr 
, I> 2tel 
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[(4.5.2)] 

[(3.4)-(3.6)] 

[(3.l),subst] 
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4.1. Let e'" (A sl f)tfl 

4.2. Let tf E Texp be such that 

a) J- A1;t;A2;s ~ f : tf 

b) te "'ex ~fl 
4.3. Let r be the first type variable such that 

r t t " r E FrV(tel) " r E FrV(f:tf) 

[def.EJ 

[( * ),(3.2),( *** ),IH] 

[(3.7)] 

[def.EJ 

[ER8] 

404. Let Pn E Tenv and An E Assumptions and O"n E STp A ' 2 $ n $ 5 , be such that 
n, n 

4.5. 

4.6. 

4.7. 

4.8. 

4.9. 

4.10. 

P2 = PI[l[tfl]PI / s] 0"2 = 0"1 t WTV(A1;t;A2;s) 

t 
A3 = (A2;r)tel 

~ = A2;r 

As = ~;s 

J- A1;t;A2;s;r ~ f : tf 

J- AI;t;~ ~ r 

J- A1;t;As ~ f: tf 

J- Al;t;~ ~ ~ : t~ 

t e FrV(A2;r) 

P4 

= P3[l[te1]P3 / t] 

P3 = P[l[tfl~el]P / r] 

P4 = P3[1[tel]P3 / t] 

Ps = P4[1[r]P4 / s] 

= P3[l[tel]p[1[tfl~el]P / r] / t] 

= P3[1[tel]p / t] 

= P[l[tfl~el]P! r][l[tel]p / t] 

= p[l[tfl]Pl! r][l[tel]p! t] 
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0"3 = 0" t WTV(A1;A3) 

0"4 = 0"3 t WTV(Al;t;~) 

O"S = 0"4 t WTV(A1;t;As) 

[(4.2a),(4.3),ERl1.1] 

lTR2] 

[(4.5),ER12.1] 

[(4.6),(4.7),ER14] 

[(***),(4.3)] 

[def,P4] 

[def,P3] 

[(4.3),thmo404.l] 

[def,P3] 

[(404.3),def,Pl] 
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= p[J[tel]p I t)[J[tfl]PI I r) 

= PI[J[tfl]PI Ir) 

4.1l. Ps 

= P4[J[r]P4 I s) 

= P4[P4(r) I s) 

= P4[(PI[J[tfl]PI I r))(r) I s) 

= P4[J[tfl]PI Is) 

= PI[J[tfl]PI / rj[J[tfl]PI / s) 

= PI[J[tfl]PI/ sj[J[tfl]PI / r) 

= P2[J[tfl]PI I r) 

4.12. 0"5 = 0" r WTV(AI;t;A2;r;s) = 0"2 r WTV(AI;t;A2;s;r) 

4.13. &p A.A t [«A sl f)tfl)tt 1]0" 
, I> 2tel e 

o 

= &p AI.A?~ [(A rl(\)~el)tfl~el]O" , , -LeI 

= &p3,AI;A3[(~)~el]0"3 
= &p4,AI;t;A4 [~]0"4 
= &ps,Aj;t;As[f]O"S 

= &p A ·t·A ·s·r[f]0"2 rWTV(Aj;t;A2;s;r) S,J"2,, 

= & A .. A. [f]0"2 P2, ht, 2,S 

= &p A ·t·A [(A sl f)tfl]O"j 
h h, 2 

Theorem 5.3.3 [Renaming a bound type variable) 

[(4.3») 

[def·PI) 

[def·ps) 

[def.J) 

[(4.10») 

[(4.10») 

[def.pz] 

[subst.,(3.1») 

[def·0"3,def.&j 

[( * ),(4.8),( 4.9),IH] 

[(4.6),(4.7),IH] 

[(4.5),(4.7),( 4.12),prop.5.2.2) 

[(4.2),(4.3),(4.11),thm5.3.1) 

[ def·0"2,def.&j 

For all P E Tenv ; A E Assumptions; s,t E Tvar ; te,te1 E Texp ; e E Exp and 0" E ST A: p, 

If I-A~tel 

I- A;t ~ e:te 

s e FTV(e:te) 
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Proof. Assume (*),(**) and (***). 

1. Let P)'P2 E Tenv ; A),A2 E Assumptions and al E STp A ' a2 E STp A be such tbat 
1, 1 2, 2 

Al = A;t PI = p[1[te1]p / t] al = atWTV(AI) 

A2 = A;s 

I- A2 ~ S 

P2 = p[1[tel]p / s] a2 = atWTV(A2) 

2. 

3. 

4. Since FfV(A) ~ FrV(A2) it follows from (*) and prop.2.4.l tbat 

I- A2 ~ tel 

S. I- A2;t ~ e : te 

6. (a2 t WTV(A2;t» t WTV(Aj;s) 

= (a t WTV(A2;t)) t WTV(Aj;s) 

= (a t WTV(Aj;s» t WTV(A2;t) 

= (al t WTV(AI;s» t WTV(A2;t) 

7. P2[1[S]P2 / t] 

8. 

= P2[P2(S) / t] 

= P2[1[tel]p / t] 

= p[1[tel]p / s][1[tel]p / t] 

= p[1[tel]p / t][1[tel]p / s] 

= pj[1[tel]p / s] 

ep,A[(A sl e!)tel]a 

= ep2,A}e!]a2 

= ep2[1[S]P2 / t],A2;t[e]a2tWTV(A2;t) 

= ep2[1[S]P2 / t],Aj}e]ajtWTV(Aj;s) 

= epI[1[tel]p / s],Aj}e]ajtwTV(AI;s) 

= ep A [e]al 
), I 

SO 

[(1),TR2] 

[(1),(**),(***),ERl1.l] 

[(3),ER12.l] 

[def.1J 

[(1)] 

[(1)] 

[(1)] 

[def.£] 

[ (Z),(S),thmS.3.Z] 

[(3),(S),(6),prop.S.2.2] 

[(7)] 

[(**),(***),thmS.3.l] 
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[def.c~] 

o 

Theorem 5.3.4.[State modification] 

For all A E Assumptions; p E Tenv ; te,tel E Texp ; x E Var ; e E Exp CJ E STp,A and 

dl E 7[tel]p : 

If I-A~tel 

I-A~e:te 

x E FV(e) 

Then cp,A[e]CJ = cp,AI[e]CJI 

where Al = A;x:tel and CJI = CJ[dl/x] 

Proof. By induction to the structure of expression e. We prove only a limited number of difficult 

cases. Assume (*) and (**). 

1.1. Let e=y 

1.2. 

1.3. 

y~x 

cp A [y]CJ = CJ(y) = CJI(y) = cp A [Y]CJI 
, , I 

Let e = (i.. y:te2 I f) fI x ~ y 2.1. 

2.2. Let d2 E 7[te2]p and let A2 E Assumptions and CJ2 E ST P,A2 be such that 

2.3. 

2.4. 

2.5. 

A2 = A;y:te2 

Let tf E Texp be such that 

a) I- A ~ te2 , tf 

b) I- A2 ~ f : tf 

c) te =a te2 --; tf 

I- A2 ~ tel 

x E FV(f) 
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[(**),(1.1)] 

[(1.2)] 

[(**),ER6.l] 

[(*),ERl1.2] 

[(***),(2.1)] 
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2.6. cp,A}f]cr2 = c p,A2;x:tel I:f]crz[dfx] 

2.7. I- A2;x:tel ~ f: tf 

2.8. I- A j;y:te2 ~ f : tf 

2.9. cr2[dj/x] t WTV(Aj;y:te2) = crj[dz/y] t WTV(A2;x:tel) 

2.10. Cp,A[(A. y:te2 I f)]cr 

= (};. d2 E :F[te2]p I Cp,A}f] cr2) 

= (};. d2 E :F[te2]p I cp,A2;x:tel [f]cr2[dJix] ) 

= (}( d2 E :F[te2]p I Cp,A j;y:te2[f]O"MZ/y] ) 

= Cp,APA. y:te2 I f)]O"j 

3.1. Let e '" (A. x:te2 I f) 

3.2. 

3.3. 

Let tf E Texp be such that 

a) I- A ~ te2 , tf 

b) I- A;x:te2 ~ f : tf 

c) te "'a ty ----; tf 

I- A j;x:te2 ~ f : tf 

3.4. O"[d/x] t WTV(Aj;x:te2) = O"j[d/x] t WTV(A;x:te2) 

3.S. Cp,A[(A. y:ty I f)]0" 

= (}( d E :F[ty]p I Cp,A;y:ty[f]O"[d/y] ) 

= (}( d E :F[ty]p I Cp,Aj;y:tif]crj[d/y] ) 

= cp A [(A. y:ty I f)]O"j 
, j 

4.1. Let e'" (A sl f)tn 

4.2. 

4.3. 

4.4. 

Assume without loss of generality that 

s i! FrV(tel) 

Let A2 E Assumptions and 0"2 E ST A be such that 
P2, 2 

A2 = A;s P2 = p[l[tfl]p / s] 

I- A2 ~ tel 

S2 

[(2.4),(2.3b ),(2.S),IH] 

[(2.3),(2.4),ERl1.2] 

[(2.S),ER 12.2] 

[x ~ y] 

[def.£] 

[(2.6)] 

[(2.7),(2.8),(2.9),prop.S.2.2] 

[def.£] 

[(**),ER6.l] 

[(3.2b)] 

[def.£] 

[(3.3),(3.4 ),propS.2.2] 

[def.£] 

[thm.S.3.3] 

0"2 = 0" t WTV(Az) 

[(*),(4.2),ERll.l] 
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4.5. Let tf E Texp be such that [ER8] 

I- A2 ~ f: tf 

4.6. x e FV(f) [(4.1),(**)] 

4.7. I- A2;x:te1 ~ f : tf [( 4.5),(4.6),ER11.2] 

4.8. I- AI;s ~ f: tf [(4.2),(4.7),ER12.4] 

4.9. a2[dyx] t WTV(AI;s) 

= (a t WTV(A2»[dl/x] t WTV(AI;s) 

= (a[dyx] t WTV(A2;x:te1) t WTV(AI;s) [(5.1.3)] 

= (0'1 t WTV(A2;x:te1» t WTV(AI;s) 

= (0'1 t WTV(AI;s» t WTV(A2;x:te1) 

4.10. £p,A [(A s I f)tfl] a 

= £p A [f]a2 [def.£] 
2, 2 

= £ P2,A2;x:te 1 [f] a2[ d I/x] [(4.4),(4.5),( 4.6),IH] 

= £p A' [f]altWTV(AI;s) [(4.7),(4.8),( 4.9),prop5.2.2] 
2, h S 

= £p A [(A sl f)tf1]al [def.£] , I 

0 

Theorem 5.3.5.[Substitution of expressions for variables in expressions] 

For all p E Tenv; A E Assumptions; tel E Texp ; x E Var; e,e1 E Exp and a E STp,A: 

If I- A ~ e1 : tel 

I- Al ~ e : te 

Then £p,A[e~l]a = £p,AI[e]0'1 

where Al = A;x:tel and 0'1 = a[£p,A[el] a 1 x] 

Proof. By induction on the structure of expression e. We prove only a few difficult cases. 

Assume (*) and (**). 
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1.1. Let e"'x 

1.2. t'p,A[x~l]a 

= t'p,A[el]a 

= a[t'p,A[el]a / x] (x) 

= t'p,Aj[x]aj 

2.1. Let e"'y " y~x 

2.2. t'p,A[Y~l]a = t'p,A[y]a = a(y) = aj(Y) = t'p,Aj[y]aj 

3.1. Let e '" (A. y:te2 I t) 
3.2. Let z be the ftrst variable such that 

z ~ x " z ~ FV(t) " z ~ FV(el) 

Let D = llte2]p and dE D 3.3. 

3.4. Let An E Assumptions and an E ST A ,2::; n ::; 5 , be such that p, n 

A2 = Aj;y:te2 a2 = aj[d!y] 

3.5. 

3.6. 

3.7. 

3.8. 

3.9. 

3.10. 

A3 = A;z:te2 

A4 = A3;x:tel 

As = ~;y:te2 

I- A3 .. el : tel 

1-~ .. fY·tf z . 

1-~ .. z:te2 

I- As .. f: tf 

t'p,A3[el]a3 = t'p,A[el]a 

3.11. as 

= a 4[t'p,A4[z]a4 / y] 

= a4[ a4(z) / y] 

= a 4[(a[d!z][t'p,A3[el]a3 / x])(z) / y] 

a3 = a[d!z] 

a4 = a3[t' A [el]a3 / x] p, 3 

as = cr4[t:p,~[Z]cr4 / y] 
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[(3.10) in thm.2.5.4] 

[(3.8) in thm.2.5.4] 

[(3.7) in thm.2.5.4] 

[(3.6) in thm.2.5.4] 

[(*),(3.2),thm.5.3.4] 

[(3.5) in thm.2.5.4] 

[def.as] 

[def.t'J 

[(3.4)] 



3.12. 

4.1. 

4.2. 

4.3. 

4.4. 

4.5. 

4.6. 

= 0"4[d!y] 

= 0"[d!z][Ep,A
3
[e1]0"3 / x])[d!y] 

= 0"[Ep,A3[e1]0"3 / x][dIy][d!z) 

= O"[Ep,A[e1]0" / x] [dly][dlz] 

= O"I[dly][dlz] 

= O"z[dlz] 

Ep,A[(A y:te2 I 0~1]0" 
= Ep,A[(A z:te2 I (fi)~l)]O" 
= (1<. d ED I Ep A [(fY)\]0"3) ,3 Z e 

= (1<. d E D I Ep,APi]0"4) 

= (l<. dE D I Ep A [f]O"s) , s 
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[z ¢ x] 

[(3.4)] 

[z ¢ x] 

[(3.9)] 

[(3.1)] 

[def.£] 

[(*),(3.6),IH] 

[(3.7),(3.8),IH] 

= (l<. d E D I Ep,Az;z:te2[f]O"z[dlz]) [(3.8),(3.1O),(3.11),prop.5.2.2] 

= (1<. d E D I Ep,A
Z
[f]0"0 

= Ep A [(A y:te2 I 0]0"1 , 1 

Let e:; (A sl Otfl 

Assume without loss of generality that 

s E FrV(e1:te1) 

Let Az E Assumptions pz E Tenv and O"z E ST A be such that p, z 

[thm5.3.4] 

[def.£] 

[thm5.3.3] 

Az = A;s pz = p[J'[lf1]p / s] O"z = 0" ~ WTV(A0 

Let If E Texp be such that 

I- At;s ~ f : If 

I- Az ~ e1 : te 1 

I- Az;x:te1 ~ f : tf 

[(**),ER8] 

[(4.5) in thm.2.5.4] 

[(4.6) in thm.2.5.4] 

4.7. 0" ~ WTV(Az) 

= (0" ~ WTV(A0) ~ WTV(A) 

= 0"2 ~ WTV(A) 
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4.8. WTV(AI;s) !;;; WTV(A2;x:tel) [ERI2.3] 

4.9. (0'2[£p A [el] 0'2 / xl) r WTV(AI;s) , 2 

= (0'2[£p,A[el]0' / xl) r WTV(AI;s) [(*),(4.5),(4.7),prop.5.2.2] 

= «0' r WTV(A2))[£p,A[el]0' / xl) r WTV(AI;s) 

= (O'[£p,A[el]O' / X] r WTV(A2;X:tX) ) r WTV(AI;s) 

= (0'1 r WTV(A2;x:tx)) r WTV(AI;s) 

= 0'1 r WTV(AI;s) [(4.8)] 

4.10. £p,A [«A s I f)tfl)~ 1]0' 

= £p,A[(A sl f~l)tf1]O' [subst] 

= £p A [¢1]0'2 [def.t'] 
2, 2 

= £P2,A2;x:tel [f]0'2[£p,A[el]0' / X] [(4.5),(4.6),IH] 

= £p A 's[f] 0'1 rWTV(AI;s) [(4.4),(4.6),( 4.9),prop5.2.2] 
2, h 

= £p A [(A sl f)tfl]O'I , I 

0 

Renaming bound variables should and indeed does not alter the meaning of an expression. 

Theorem 5.3.6.[Renaming a bound variable] 

For all p E Tenv; A E Assumptions; 0' E STp,A ; te,te1 E Texp ; x,y E Var and e E Exp : 

If I- A ~ tel 

I- A;x:tel ~ e : te 

Y E FV(e) 

Then £p,A[(A. x:tel I e)] 0' = £p,A[(A. y:tel I e~)]O' 

and £p,A[(A.S x:tel I e)]O' = £p,A[(A.s y:tel I e~)]O' 

Proof. Assume (*),(**) and (***). 
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3. 

4. 

5. 

6. 

7. 

8. 

9. 
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Let D = 1[tel]p and dE D 

Let An E Assumptions and an E STp A ' 0 ~ n ~ 4 , be such that 
, n 

Al = A;x:tel al = a[dlx] 

A2 = A;y:tel 

A3 = A2;x:tel 

~ = AI;y:tel 

I-AI~tel 

I- A2 ~ Y :tel 

I-~~e:te 

I- A3 ~ e : te 

a3 

= a2[ep A [y]a2 / x] , 2 

= a2[ a2(Y) / x] 

= a2[dlx] 

= al[dly] 

= a4 

ep A [e
x
]a2 , 2 Y 

= ep A [e]a3 , 3 

= ep,~[e]a4 

= ep A [e]al , I 

ep A[(A y:tel I eX)]a , y 

= (l<. d E D I ep A [ex]a2) 
, 2 Y 

= (l<. d E D I ep A [e]al) , I 

= ep,A[(A x:tel I e)]a 

a2 = a[dly] 

a3 = a2[ep,A}y]a2/x] 

a4 = al[dly] 

The case of strict A-abstraction is proved similarly. 

o 
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[( * ),ER11.2] 

[(*),ER2] 

[(**),(***),(4),ER11.2] 

[(5),ERI2.2] 

[(4 ),(5),thm.5.3.5] 

[(5),(6),(7) ,prop.5 .2.2] 

[(3),( ** ),( *** ),thm.5.3.4] 

[def.t1 

[(8)] 

[ (2),def.t1 



CHAPTER 6 

6.S0UNDNESS OF REDUcrION 

6.l.Introduction. 

In chapter 3 we have introduced a set of reduction rules for expressions. Furthermore, we have 

shown that for expressions e I and e2 such that e I » e2 their values f p,A [e I] cr and f p,A [e2] cr 

are members of the same domain 1[ t A (e I)] p = :T[ t A (e2)] p . In this chapter we prove that the 

reduction rules of chapter 3 are sound, i.e. reducing an expression yields an expression with the same 

value. In order to prove this result we need some elementary properties. 

Property 6.1.1.[strictness] 

For all A E Assumptions; p E Tenv ; cr E ST p,A ; te,tel E Texp and f E Exp : 

If I- A ~ f : te e tel 

Then (fp,A[f]cr) (.l1[te]p) = .l:T[teI]p 

o 

Property 6.1.2.[normal form] 

For all A E Assumptions; P E Tenv ; cr E ST A and e E Exp : p, 

If 

and 

Then 

o 

e is in normal form 

('t/ x E WTV(A) I cr(x) t:. .l:T[ tA (x)]p ) 

fp,A[e]cr t:. .l1[t
A

(e)]p' 

6.2.Soundness. 

Theorem 6.2.1.[soundness] 

For all A E Assumptions; p E Tenv; cr E ST A and eI,e2 E WTE(A) : p, 
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and 

Then 
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el » e2 

(,v x e WTV(A) I a(x) # .LJ[t
A 

(x)]p ) 

[p,A[el]a = [p,A[e2]a 

Proof. It is sufficient to prove the soundness of each of the rules v thru " . Apan from rules as, 1t4, 

1ts, f3j, 132 and 133 this is a trivial exercise using definition 5.2.1. 

Rule as: (sums fl f2) » f, 

where fl = (As x:tel I (appls f (inls x I te2») 

and f2 = (As x:te2 I (appls f (inrs tel I x») 

Assume x ~ PV(f) 

1. The lefthandside of as is an element of WTE(A) iff 

a) I- A ~ tel,te2 

provided x ~ FV(f) 

(**) 

(***) 

b) there exists a type expression te e Texp such that I- A ~ f: tel EIlte2 e te 

2. Let DI = J[tel]p , D2 = J[te2]p and D = J[te]p . Moreover, let 

Al = A;x:tel and A2 = A;x:te2 . 

3. Since x f PV(f) it follows by (1) , (***) and rule ERI1.2 

that I- Al ~ f : (tel EB te2) e te and I- A2 ~ f: (tel Ell te2) e teo 

Hence J[tAI(f)]p = J['tA2(f)]P = J['tA(f)]p. 

4. For deDI: 

[p,A
I 
[(appls f (inls x I te2»]a[d!x] 

= [p,AI[f]a[d!x] ([p,AI[(inls x I te2)]a[d!x]) 

= [p,AI[f]a[d!x] «I'[p,AI[x]a[d!x]>DI EIlD2) 

= [p,AI[f]a[d!x] «I,d>DI EIlD2) 

= [p,A[f]a «I,d>DI Ell D) 
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Similarly one proves for d E 02 : 

Ep A [(appls f (inrs tel I x))]cr[d/x] 
, 2 

= Ep,A[f]cr «2,d>01 eo) 

5. Ep,A[fl]cr 

= (x d E 0 1 

I if d = .LOI -+ .Lo 

D d .. .LOI -+ Ep,APappls f (inls x I te2))]cr[d/x] 

fi 

) 

= (x d E 0 1 

lifd=J.OI -+ Ep,A[t]cr(<1,.L0 ?0I e02) 

D d .. .LOI -+ Ep,A[f]cr «1,d>01 e02) 

fi 

) 

= (x d E 0 1 I Ep,A[f]cr «I,d>OI e02)) 

Similarly one proves that 

Ep,A[f2]cr = (X d E O2 I Ep,A[f]cr «2,d>01 e02) ) 

6. Ep,A[(sums fl f2)]cr 

= (x d E 0 1 e02 

lif d = <1,dl>OI e02 -+ (Ep,A[fl]cr) (dl) 

D d = <2,d2>01 e02 -+ (Ep,A[f2]cr) (d2) 

fi 

) 

60 

[prop.6.1.1] 

[(4)] 



= (}i. d E 0 1 Ell 02 

I if d = <1,dl>OI Ell O
2 

---I 

D d = <2,d2>01 Ell 02 ---! 

fi 

) 

= (}i. d E 0 1 Ell 02 I £p,A [f]a(d) ) 

= £p,A[f]a 

Rule 1t4: (prols (prods e1 e2)) » el, 

Assume e2 is in normal foml. 
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('I x E WTV(A) I a(x) # .L:F[t
A 

(e)]p ) 

1. Let 0 1 = :F[tA (el)]p and O2 = :F['t
A 

(e2)]p 

2. £p,A [(prols (prods el e2))]a 

= 'VI( < £p,A[el]a, £p,A[e2]a >0
1 

®02) 

= if £ p,A [e2]a = .L02 --I .LOI 

D £p,A[e2]a # .L02 --I £p,A[el]cr 

fi 

Similarly one proves the soundness of rule 1t5' 

Rules ~I' ~2 , ~3 : 

[(5)] 

[(5)] 

provided e2 in normal form 

[(* ),(** ),prop.6.1.2] 

The soupdness of rules ~I and ~ follows from a simple computation using theorem 5.3.2. 

The soundness of rule ~ follows from theorem 5.3.1. 

o 
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7.A TYPED FIXED POINT COMBINATOR 

7.l.Syntax. 

In the type free lambda calculus every tenu can be considered as a function. Moreover, every 

term (function) has a fixed point which can be computed using a fixed point combinator. The most 

well known fixed point combinator in the type free lambda calculus is the Curry combinator 

J.l = (A. f I (A. x I f(xx» (A. x I f(xx») 

A simple calculation shows that for every term g the tenus J.lg and g(J.lg) are convertible; so J.lg 

can be considered as a fixed point of g . It can be shown that in the D 00 model of the type free 

lambda calculus J.l corresponds to the least fixed point operator, see for instance Wadsworth [Wa76]. 

In this chapter we show that similar results hold for the typed language described in this 

report. Let te be an arbitrary type expression. In this section we shall describe an expression (J.l1 te) 

with type (te ---; te) ---; te ,which can be considered as a typed version of the Curry combinator. In 

(J.l1 te) a recursively defined type will be used. Some properties associated with the corresponding 

domain (found by the inverse limit construction) are given in section 7.2. Finally in section 7.3 we 

show that in the appropriate domain (J.l1 te) corresponds to the least fixed point operator. 

In this chapter we use the following abbreviations 

w = v(A tit ---; te) 

where t is the first type variable such that t e FTV(te) and 

g = (A. x:w I (appl f (appl (intro w I x) x) ) . 

A typed version of the Curry combinator is then given by 

(J.l1 te) = ( f : te ---; te I (appl g (elim w I g» ) . 

It is an elementary exercise to show that the following type inference rule holds 
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A ~ te 

A ~ (~I tel : (te ----; tel ----; te 

The following theorem states that (~I te) is a syntactic fixed point combinator. 

Theorem 7.1.4. 

Let f: te ----; te . Then (appl (~I te) f) and (applf (appl (~I te) f) have a common reduct. 

Proof. The theorem is easily proved by the following computations. 

Also 

(appl (~I tel f) 

» (appl g (e1im wig)) 

» (appl (i.. x:w I (appl f (appl (intro w I x) x» ) (elim w I g) ) 

= (appl f (appl (intro wi (elim w I g» (elim w I g» ) 

» (appl f (appl g (elim w I g» ) 

(appl f (appl (~I tel f) ) 

» (appl f (appl g (elim w I g» ) 

which proves the theorem. 

o 

[~i1 

[(7.1.2)] 

[~l] 

[102] 

Note that, although (appl (~I tel f) and (appl f (appl (~I tel f) have a common reduct, it is not 

possible to reduce one of these terms to the other. The same propeny holds for the untyped Curry 

combinator. For the untyped lambda calculus there exists another fixed point combinator, the Turing 

combinator ~', such that ~'f reduces to f(/l'f). A typed version of the Turing combinator, with 

similar properties as described in this repon, can also be given, see for instance Struik[St881. 
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7.2.Technical results. 

In the construction of (Ill te) we used the recursive type w = v(A tit -----. te) . In a type 

environment p the corresponding domain W is obtained in the following way. Let the functor F: 

C -----. C be given by 

F = (abstrt J[t -----. te])(p) 

Then, following the semantics of type expressions as described in section 4, we get 

W = J[ v(A tit -----. te)] p = IFP(F). (7.2.1) 

A simple computation (using the definition of abstrt given in section 4.1) yields that 

where I,CB : C -----. C are respectively the identity functor and the constant functor corresponding to 

the domain B = J[te]p. Recall that in the category C ( = CPOpR ) a morphism a E Hom(AJ,A:z) is 

L R L R a pair a =( a ,a ), where a : Al -----. A2 is an embedding and a : A2 -----. Al is a projection, i.e. 

L R ['d a 0 a 1 A - 2 
and R L 'd a 0 a = 1 Al (7.2.2) 

If a is an isomorphism, then in the first relation equality holds and 

given by 

From the definition of the function space functor FS (see for instance [BH88], where this functor is 

called A) it follows that (recall B = J[te]p) 

if A E obj(C) , then F(A) = [A -----. B] , 

if a E Hom(AJ,A2) , then F(a) E Hom( [AI -----. B],[A2 -----. B]) is defined by 

F(a)L(~) = ~ 0 aR for ~ E [AI -----. B] , (7.2.3) 
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The object W is constructed in the following way. Let Do be the initial object in the 

category C , i.e. Do is the one point c.p.o. Let Dk = F<:(Do) for k ~ 1 . Since Do is initial, there 

exists a unique morphism '1'0 E Hom(Do,D1) • Let 'l'k = F<:('I'0) for k ~ 1 . Then !:l = 

< (D.,'I") >~=o is an ro-chain in C. Since C is an ro-category this ro-chain has a colirnit ryv,a). 
1 1 1-

This defines the (an) object W . To see that W is a fixed point of the functor F , we consider the 

ro-chain !:l' = < ( F(D. ),F('I") ) > ~=o 
1 1 1-

it preserves colirnits. So (Fryv),F(a» 

= < (Di+1,'I'i+l) >i=o . Since F is an ro-continuous functor 

(where F(a) stands for < F(a.) >.""=0) is a colimit of the 
1 1-

ro-chain !:l'. Apart from the first element of !:l, the chains !:l and !:l' are identical. Thus (W,a) 

and (Fryv),F(a» are both colimits of the same ro-chain, which implies that there exists an 

isomorphism ~ E Hom(Fryv),W) . The situation may be elucidated by the following figure. 

'1'0 
!:l: Do DJ I ... -----+ 

Now the following properties hold (see for instance Smyth and Plotkin[SP82] or Bos and Hemerik 

[BH88]). 
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(7.2.8) 

L R Define the mapping Pk : W ----> W by Pk = a k 0 a k . Then (7.2.4) and (7.2.8) can be written as 

(7.2.9) 

and 

00 

(7.2.10) 

Since Do is the one-point c.p.o. and a~ is strict, we have 

Po(x) = loW for all x E W (7.2.11) 

In the remainder of this section we give some technical lemmas, which will be used in section 7.3. 

Lemma 7.2.12. 

Proof. We prove the first relation for fixed e by induction with respect to k. If k = e the result 

follows from (7.2.5). Next suppose a~ 0 P e = a~ and e ~ k ~ 1. Since (W,a) is a cocone for l!. , 

we have ak_ 1 = ak 0 'l'k-l ,so a~_1 = ~-1 0 a~ . Then using the induction hypothesis, we 

get 

The second part of the lemma can be proved in a similar way. 

o 

Lemma 7.2.13. 

Proof. The lemma follows immediately from the definition of Pk and lemma 7.2.12. 

o 
• 
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Note that if YEW, then ~R(y) E FCW) = [w ----; B] . In the case that y E Pk+1(W) the mapping 

~R(y) : [w ----; B] has a special property. 

Lemma 7.2.14. 

Let x E Wand e:!! k :!! 0 . Then 

Proof. The lemma follows from the following computation. 

(.1.-1 L (.I.R 
[L component of (7.2.6), (f-' ) = f-' ] 

[(7.2.3)] 

[lemma.7.2.12] 

o 

7.3. Semantics. 

We now show that the semantics of 011 te) is the least fixed point operator in the appropriate 

c.p.o. The computation given here, is similar to the computation of the semantics of the untyped Cuny 

fixed point combinator as given in Wadsworth [Wa76]. 

Suppose that I- A ~ te and let p E Tenv. We introduce the following abbreviations: 

w = v(A tit ----; te), 

g = (A x:w I (appl f (appl (intro w I x) x)) ) , 

W = J[v(A tit ----; te)]p, 

B = J[te]p, 

X = £p,A
1
[g]cr[4>/f] where Al = A;f:te----;te 
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From the definition of the semantics of expressions, see [def. 5.2.1 case 7], it follows that 

x = ep A [g]cr[<\l/f] = (A. dEW I <\l( (13R(d» d» 
, 1 

where 13 is the isomorfism between F(W) = [W -> B] and W . From (7.1.3) we get 

The following theorem shows that t:p,A [(J.l1 te)]cr is a fixed point operator for the domain B. 

Theorem 7.3.3. 

Let <\l E [B -> B] . Then for all states cr E ST A p, 

Proof. The theorem follows from the following computation. 

0 

Since 

( t:p,A [(J.l1 te)]cr ) <\l 

= X (13L
(X» 

= <\l ( (13R(13L(X» ) (13L
(X» ) 

= <\l (X (13L
(X» ) 

= <\l ( (t:p,A [(J.l1 te)]cr) <\l ) 

00 k 
J.lB = (ft.. <\l E [B -> B] I U <\l (.LB» 

k=O 
is the least fixed point operator in the c.p.o. B, we now have 

The following theorem shows that in (7.3.5) equality holds. 
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Theorem 7.3.6. 

For all states CJ E ST p,A 

Proof. We fIrst show by induction 'with respect to k that for k ~ 0 

- Induction basis, k = O. Then 

x (Po (~L(X» ) 

= X (.lW) 

R 
= <I> «~ (.lW».lW) 

= <I> (.lB) . 

- Induction step. Suppose (7.3.7) holds. Then 

X (Pk+ 1 (~L(X» ) 

(7.3.7) 

[(7.2.11)] 

[(7.3.1)] 

[~R is strict] 

R L L 
= <I> «~ (Pk+ 1 (~ ex»» (Pk+ 1 (~ (X»» [(7.3.1)] 

R L L . L 
= <I> «~ (Pk+ 1 (~ ex») 0 Pk ) (Pk+ 1 (~ (X»» [lemma 7.2.14 WIth e = k and x = ~ ex)] 

= cp «j3R (Pk+
1 

«(3Lex»)) ) (Pk «(3L(X))) ) [lemma 7.2.13] 

[ <I> (X (Pk «(3L(X» ) ) [(7.2.9), i3R and <I> are monotonic, (7.2.2)] 

[ <I> (<I>k+ 1 (.lB) ) [induction hypothesis (7.3.7), <I> is monotonic] 

This proves (7.3.7) for all k ~ O. The theorem now follows from (7.3.5) and the following 

computation. 

t'p,A[(lll te)]CJ 
00 

= (A <I> E [B --; B] I X( ( u Pk)(~L(X»» 
k=O 

[(7.3.2),(7.2.10)] 
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'" 
= (i.. <I> E [B -----; B]! U (X (Pk(pL(X») ) ) 

k=O 
[X is continuous] 

'" 
[ (i.. <I> E [B -----; B]! U <l>k+ l(lB) ) 

k=O 
[(7.3.7)] 

= IlB [(7.3.4)] 

o 

Thus we have shown that the semantics of (Il! te) is the least fixed point operator in the domain B 

corresponding to the type expression teo This result means that it is not necessary to add recursion 

explicitly to the language given in chapters 1 and 2. Recursion can be performed using the typed fixed 

point combinator (Il! te) , which can be written in terms of the already defined language. Note that 

the presence of recursively defined types is essential for the construction of (Il! te) . 
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