

Language theory of lambda-calculus with recursive types

Citation for published version (APA):
Eikelder, ten, H. M. M., & Mak, R. H. (1988). Language theory of lambda-calculus with recursive types.
(Computing science notes; Vol. 8814). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1988

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 07. Jul. 2024

https://research.tue.nl/en/publications/0f2b48d4-f304-46d9-855a-27d02a34cfe3

Language Theory of a A.--calculus

with Recursive Types

by

H.M.M. ten Eikelder

R.H. Mak

88/14

june 1988

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
Editors:

CSN 88/14

O.lNTRODUCTION

It is not uncommon to design a programming language by regarding the kind of computations one

would like to perfonn and to decide on a style of notation. Thus one arrives at a syntactic definition of

the language which in general contains a large number of constructs and which, for the purpose of

expressing ones computations, is usually very satisfying. However, when it comes to assigning a precise

meaning to the syntactic constructs thus arrived at, the problems soon become tremendous. Therefore it

seems more appropriate to investigate what the proper mathematical abstractions are to model ones

computations with and to see in which way they should be manipulated. Thus a carefully chosen

(preferably small) number of semantic constructs should dictate the basic syntactic ingredients of a

kernel language. Ease of programming can be obtained by adding an additional layer of syntactic sugar

to this kernel language. Since the latter is defined in tenns of the basic syntactic constructs, it is not

hard to define its semantics. Our ultimate goal is to design a language along these lines. Our interest is

not so much in the resulting langnage, however, but rather in the design process itself. As the kernel for

our language we have opted for the lambda-calculus, because of its simple nature, extended with a rich

type structure, that should allow for instance polymorphism and recursively defined types. There are

several approaches known in the literature such as languages with implicit types like ML [HMcQM86]

or languages with explicit types as described in [Re85]. In this report we make a start towards the latter

in the sense that the language we define does contain recursive types and what is known as a

polymorphic let-construct. It does not contain, however, expressions which are 'type-abstractions'. We

have chosen this cautious approach, since the semantics of second order lambda calculi with recursive

types is not yet well understood, although various results are known [McQPS86,McC79,Me86,Mi71].

Therefore we study this relatively simple case in great detail before we turn our attention towards 'full'

polymorphism. Moreover, we have included both strict and non-strict versions of our type constructors.

Investigation of their semantic properties will enable us to make the proper choice in a latter stage

when we design the actual language.

1

CHAPTER 0

The structure of this report is as follows. In chapter 1 the language is given and the meaning of

its constructs is briefly explained. A comprehensive and formal semantics is given in chapters 4 and 5

for the type expressions and expressions proper respectively. In chapter 2 a type deduction system is

given that enables us to keep the type information within expressions to a minimum. Chapter 3 states a

set of reduction rules whose soundness is proven in chapter 6. These rules can be viewed as an

operational semantics of our language. Finally, in chapter 7, it is shown that a typed version of the

Curry fixed point combinator [Ba81,HiSe86] can be defined in the language.

2

CSN 88/14

l.SYNTAX OF TYPE EXPRESSIONS AND EXPRESSIONS

The language we consider consists of expressions that contain type information. Its formal syntax is

given by two kinds of expressions, type expressions and expressions proper. Let Tvar be a countable

infinite set of variables. Elements of Tvar will be called type variables. Type expressions are

generated by the following rules.

Tl. Texp ::= n.
T2. Texp ::= Tvar.

T3. Texp ::= iTexp.

T4.1. Texp ::= (Texp + Texp).

T4.2. Texp ::= (Texp (j) Texp).

TS.l. Texp ::= (Texp x Texp).

TS.2. Texp ::= (Texp <81 Texp).

T6.1. Texp ::= (Texp ---! Texp).

T6.2. Texp ::= (Texp 8 Texp).

17. Texp ::= Y(A TvarITexp).

A formal semantics, which associates a domain (c.p.o.) to every type expression, will be defined in

section 4. We now give an informal description of the domains corresponding to type expressions

generated by Tl - 17. The type expression n corresponds to the one point domain. The symbol i

is used to denote lifting of the domain, i.e. appending a fresh bottom element. Further +, x , ---!

correspond to the disjoint sum, cartesian product and function space domain constructors, whereas

Ell, <81, 8 correspond to their strict versions, i.e. the coalesced sum, smash product and space of strict

functions. A type expression of the form Y(A t I te) describes a recursively defined type. For instance

the type expression Y(A t I (t + t)) corresponds to a domain D such that D is isomorphic to the

disjoint sum of D and D ; the type expression Y(A t I (in (j) t)) describes the flat domain of natural

numbers. Whether an actual programming language should contain all the type constructors above

remains to be seen. However, it is precisely the intention of this paper to investigate the properties of

3

CHAPTER I

the various constructs in order to allow a deliberate choice.

Let Var be a countable infinite set of variables such that Var () Tvar = ¢ . The syntax of

expressions is given by the following rules.

EL

E2.

E3.L

E3.2.

E4.LL

E4.L2.

E4.1.3.

E4.2.L

E4.2.2.

E4.2.3.

ES.LL

ES.L2.

ES.1.3.

ES.2.L

ES.2.2.

ES.2.3.

E6.LL

E6.L2.

E6.2.L

E6.2.2.

E7.L

E7.2.

E8.

Exp ::= (btmITexp).

Exp ::= Var'

Exp ::= (up Exp).

Exp ::= (down Exp).

Exp ::= (inl Exp I Texp).

Exp ::= (inr Texp I Exp).

Exp ::= (sum Exp Exp).

Exp ::= (inls Exp I Texp).

Exp ::= (inrs Texp I Exp).

Exp ::= (sums Exp Exp).

Exp ::= (prol Exp).

Exp ::= (pror Exp).

Exp ::= (prod Exp Exp).

Exp ::= (prols Exp).

Exp ::= (prors Exp).

Exp ::= (prods Exp Exp).

Exp ::= (1.. Var:Texp I Exp).

Exp ::= (appl Exp Exp).

Exp ::= (As Var:Texp I Exp).

Exp ::= (appls Exp Exp).

Exp ::= (introv(A TvarlTexp) I Exp).

Exp ::= (elim v(A Tvarl Texp) I Exp).

Exp ::= (A Tvar I Exp) Texp.

4

CSN 88/14

In chapter 2 we give a type deduction system that defines the well typed expressions. Furthermore it

will be shown that every well typed expression has exactly one type (up to a-conversion). In chapter'

S we define the semantics of a well typed expression and show that the value of an expression is an

element of the domain corresponding to its type. An operational semantics in terms of reduction rules

is given in section 3.

In the rest of this chapter we give an informal description of the expressions introduced above.

Let te be a type expression. The expression (btm I te) stands for a nonterminating computation

which does not yield any information. The expressions generated by E3 are used in connection with

the lifting of domains. In particular the (up e) construct is used to postpone reductions inside the

expression e (see also chapter 3). The expressions defmed by E4.l are related to the disjoint sum of

domains: (in! e I te) and (inr te I e) denote the injection of e in the left respectively right part of a

sum domain. If el and e2 denote two functions with the same range, then (sum el e2) denotes a

function whose domain is the disjoint sum of the domains of el and e2 and whose range is the

common range of el and e2. The expressions defined by E4.2 are the strict versions of those given

in E4.l, they correspond to the strict sum of domains (Ell). ES.l generates expressions which are

related to the product of domains. The first two rules correspond to the left and right projection,

whereas ES.1.3 corresponds to the pair construction. Again ES.2 gives the strict versions. E6.l (and

E6.2) describe (strict) lambda abstraction and application. To understand E7 consider a recursively

defined type expression, for instance v(A tit + t) .' The domain D which will be associated to this

type expression (see chapter 4) is isomorphic to the disjoint sum of D and D. The two expressions

given by E7 are the syntactic representants of these kinds of isomorphism and its inverse. Finally E8

gives the possibility of building a context of type variables which are bound to type expressions.

Next we introduce some notations which will be used frequently in this report. The mapping

FV : Exp --; Var yields the free variables of an expression. The mapping FTV: Exp u Texp --; Tvar

S

CHAPTER I

gives the free type variables of an expression or a type expression. Recursive definitions of FV and

FTV can easily be given, but we shall not do so here. In the sequel we shall encounter three kinds of

substitution. The substitution of type expressions for type variables can be performed in type

expressions and in expressions. The substitution of expressions for variables can only take place in

expressions. Apart from the case of (type) expressions with bounded (type) variables the definition of

substitution is straightforward. In case of substitution for a type variable in a (type) expression with a

bounded type variable or substitution for a variable in an expression with a bounded variable name

clashes may occur. In that case the bounded (type) variable is always replaced by the first appropriate

free (type) variable. We list the instances where this happens. Let s,t E Tvar , x,y E Var, te,tel,te2 E

Texp and e,el,e2 E Exp. Then

(v(A tl tel»~e2 = v(A u 1 (tel~) ~e2) ,

where u is the first type variable such that u ¢ sand u ~ FTV(tel) v FTV(te2) .

«h:te 1 el)~2 = (i.. z:te 1 (el~) ~2) ,

where z is the ftrst variable such that z ¢ y and z ~ FV(el) v FV(e2) .

«A tie) tel)~e2 = «A u 1 (e~)~e2) tel~e2 '
where u is the first type variable such that u ¢ sand u E FTV(e) v FTV(te) v FTV(te2) .

Here te is the type expression which will be associated to e by the type inference system

given in the next chapter (hence substitution is only defined for well-typed expressions).

Note that our definition of substitution implies that bound variables will also be renamed in cases

where this is in fact not necessary. The reason for choosing this definition, instead of a more usual

one which considers several cases [Ba81], is to reduce the case analysis in the proofs further on.

Finally we mention that the symbol '" will be used to denote the syntactic equality of (type)

expressions, whereas "'a will be used for the equality of (type) expressions up to renaming of the

bound variables (a--conversion).

6

2.1.Introduction.

CSN 88/14

2.TYPE INFERENCE

In this chapter we demonstrate that the kernel language introduced in the previous chapter is

an explicitly typed language in the sense of Reynolds[Re85]. That is, given an expression and a

sequence of assumptions regarding the free variables and free type variables occurring in that

expression it is possible to assert at most one type for that expression. By a type we mean a class of

type expressions that are equal up to a-conversion. In chapter 4 it is shown that all type expressions

in such a class denote the same domain.

2.2.Formal type inference system.

Formula's of the type inference system will be called typings and they are constructed

according to the following grammar rules:

II. Typing ::= Assumptions ~ Consequences·

12.I. Assumptions ::= •

12.2. Assumptions ::= Assumption Rest.

13.I. Assumption ::= Type assignment.

13.2. Assumption ::= Tvar •

14.I. Rest ::= •

14.2. Rest :: = ; Assumption Rest •

15.I. Consequences ::= Consequences, Consequences.

15.2. Consequences ::= Type assertion·

15.3. Consequences ::= Texp •

16. Type assignment ::= Var : Texp •

17. Type assertion ::= Exp : Texp •

7

CHAPTER 2

For instance, the typing t;x:t ~ (in! x I t) : tH states that under the assumptions that (there exists a

context in which) fIrst of all a type t is introduced and secondly a variable x of type t, one may

assert that the expression (in! x I t) is of type tH. As usual we prefIx a typing with the symbol i

to indicate that it is derivable.

Let A E Assumptions. The set FTV(A) of free type variables of A is the set of type

variables that occur as subassumptions in A (cf. 13.2). Hence for x:t an assumption t E FTV(x:t) !

The set FV (A) of free variables of A is the set of variables that occur in any left-hand side of any

type assignment in A (cf. 13.1 and 16).

Let C E Consequences. The set FTV(C) is the set of type

variables occurring free in any expression or type expression contained in C (cf. 15.3 and 17). In

particular FTV(e:te) = FTV(e) V FTV(te) . Hence if x:t is a consequence then t E FTV(x:t) (cf.

above)! Similarly, FV(C) is the set of free variables occurring in any expression contained in C (cf.

17). In particular FV(e:te) = FV(e) .

Let A,Ah A2 E Assumptions; Ch C2 E Consequences; t E Tvar ; tx,te,tel,te2 E Texp ; x E

Var and e,el,e2,f,fl,f2 E Exp. Then the inference rules for type deduction are :

TRI. TR2. TR3. A ~ te

A ~ Q A j ;t;A2 ~ t A ~ ite

TR4. A ~ tel,te2 TR5.
A ~ tel, te2 TR6. A ~ tel, te2

A ~ tel + te2 A ~ tel x te2 A ~ te I ---l te2
A ~ tel (j) te2 A ~ tel ® te2 A ~ tel e te2

TR7. A;t ~ t e

A~ v(A tlte)

ERl.l.
A ~ te

A ~ (btm I te) te

8

ER2.

ER3.1.

ER3.2.

ER4.1.

ER4.2.

ER4.3.1

ER4.3.2

ERS.1.

ERS.2.

ERS.3.

ER6.1.

ER6.2.

ER6.3.

CSN 88/14

A ~ e : te

A ~ (up e) ite

A ~ e : ite

A ~ (down e) : te

A ~ el : te I , te2

A ~ (inl el I te2) tel + te2
A ~ (inls el I te2) tel Ell te2

A ~ tel ,e2 : te2

A ~ (inr tel I e2) : tel + te2
A ~ (inrs tel I e2) : tel Ell te2

provided x e FV(AV and FrV(tx) () FTV(AV = ¢

A ~ f1 tel -! te, f2 : te2 --l te

A ~ (sum f1 f2) : (tel + te2) --l te

A ~ f1 : tel 8 te ,f2 te28 te

A ~ (sums f1 f2): (tel Ell te2) 8 te

A ~ e : tel x te2

A ~ (prol e) : tel
A ~ (pror e) : te2

A ~ e : tel ® te2

A ~ (prols e) : tel
A ~ (prors e) : te2

A ~ el : tel , e2

A ~ (prod el e2)
A ~ (prods el e2)

A ~ tx , te
A;x:tx ~ e : te

te2

tel x te2
tel ® te2

A ~ (A x: tx I e) : tx -! te
A~(As x:tx I e) : tx 8 te

A ~ f : te --l tel , e : te

A ~ (appl f e) : tel

A ~ f : te 8 tel ,e te

A ~ (appls f e) : tel

9

CHAPTER 2

ER7.1. A ~ e : v(A t I te)

t
A ~ (intro v(A t I te) I e) : tev(A t I te)

ER7.2.
A . t

~ e . t ev(A tl te) v(A tlte)

A ~ (elim v(A tl te) e) : v(A tl te)

A~ tel

ER8. A;t ~ e: te

A~ (A tl e)tel t
tete I

ER9. A ~ e tel

A ~ e te2
provided tel ;a te2

A ~ C1

ERlO.1. A ~ Cz ERlO.2. A ~ C1 , Cz
A ~ C1 , Cz A ~ C1

A ~ Cz

Notice that to each T - and E-rule of chapter I there corresponds exactly one inference rule.

The additional rule ER9 signifies that we are only interested in type expressions up to a-conversion.

The reason for this is that type expressions that are equal up to a-conversion denote the same

domain. Rules ERlO are not essential. They merely allow us the notational convenience of typings

containing more than one consequence. Therefore we shall leave applications of these rules implicit in

the derivation of typings.

Most proofs given below rely on the fact that given a typing we are able to determine the last

inference rule of its derivation. In the absence of rule ER9 this last rule would be uniquely

identifiable from the structure of the expression. Derivations of typings in which the expressions

contain bound type variables, however, can always end with one or more applications of rule ER9.

In order to avoid these trivial but cumbersome details we assume in all proofs, and without loss of

generality, that no derivation ends with an application of rule ER9.

10

CSN 88/14

2.3.Explicit typing.

Our type inference system has been designed to ensure that under any given sequence of

assumptions each expression has at most one type, which is, if it exists, derivable from the types of its

constituting parts (Recall that a type is an equivalence class of type expressions under o;--conversion.)

In Reynolds[Re85] this property is called explicit typing.

Theorem 2.3.l.[Explicit typing theorem]

Let A E Assumptions; tel ,te2 E Texp and e E Exp . If both \- A ~ e : tel and \- A ~ e : te2 then

tel =0; te2 .

Sketch of proof. By induction on the structure of expression e. Note that to each of the rules El.l

thru E8 to construct expressions there corresponds exactly one inference rule that enables us to assert

a type for the expressions produced by that rule. Therefore the induction is straightforward.

o

As stated above it is necessary to provide expressions with a certain amount of type

information to obtain an explicitly typed language. The need for additional type information in

expressions produced by E4.l, E4.2 and E6.l is rather obvious (see p.e. [Re85]). The reader may

wonder, however, about the necessity of the type information contained in rules E7.l and E7.2.

Therefore let us assume, for the sake of the argument, that rule E7.2 is simplified to

Exp ::= (elim Exp) and that inference rule ER7.2 is accordingly modified to

A ~ • t I e . tev(A tlte) ,v(A t te)

A ~ (elim e) : v(A tl te)

Let A E Assumptions be such that \- A ~ e t
tv(A tit) , v(A tit) . Then we may assert on

11

CHAPTER 2

t
account of (*) that (elim I e) is of type v(A tit) . However, since tv(A tit) -a

v(A tlt)~(A slv(A tit» we may apply rule ER9 before applying (*) and assert that (elim e) has

type v(A slv(A tit» as well. Therefore the type information v(A TvarlTexp) is absolutely essential

in rule E7.2 to obtain explicit typing. For reasons of symmetry the same type information has been

added to rule E7.l, although one can show that explicit typing can be obtained without it.

Given an assumption A we define the set WTV(A) (WTE(A)) of well-typed variables

(expressions) under A by

WTV(A) = (x E Var I (3 te E Texp I I- A ~ x : te) }

WTE(A) = (e E Exp I (3 te E Texp I I- A ~ e : te) }

(2.3.2)

(2.3.3)

On account of the explicit typing theorem one can also define for each assumption A a function 't A

that assigns to each expression e E WTE(A) an arbitrary, but fixed, type expression te such that

I- A ~ e : te . We shall take care that whenever 't A is used, the particular te chosen for 't A (e) is

irrelevant, i.e. may be replaced by any type expression tel such that tel =a te .

2.4.Elementary properties.

Before we state the fundamental properties of our type inference system, viz. inference rules

for substitution and a--conversion, we first list some elementary properties of typings.

Property 2.4. 1. [Introduction of type variables]

For A E Assumptions and te E Texp :

I- A ~ te iff FTV(te) ~ FTV(A)

o

This property expresses that all free type variables of a type expression should be properly introduced.

12

CSN 88/14

Property 2.4.2.[Additional inference rules]

The following additional inference rules are derivable from the ones given in section 2.2 :

Rules to extend assumptions

A~ C ERI1.1.
A;t ~ C

A ~ tx ERI1.2. C

A;x:tx ~ C

Rules to reorder assumptions

ERI2.1. Aj;s;t;A2 ~

Aj;t;s;A2 ~

C

C

ERI2.2. Aj;x:tx;y:ty;A2

A j;y:tY;X:tx;A2

ERI2.3. A I;x:tx;t;A2 ~

Aj;t;x:tx;A2 ~

ERI2.4. A j ;t;x:tx;A2 ~

Aj;x:tx; t;A2 ~

o

~

~

C

C

C

C

2.5. Substitution and a-conversion.

provided t E FTV(C)

provided x E FV(C)

C

C
provided x ~ y V tx "'a ty

provided t E FrV(tx)

As indicated in chapter 1 three kinds of substitution can be performed. For each kind we

present a corresponding inference rule. Likewise three kinds of a~onversion can be performed.

Three additional inference rules state that each kind of a~onversion leaves the types of expressions

invariant. In chapters 4 and 5 we shall demonstrate that a~onversion neither changes the meaning op

type expressions nor the meaning of expressions.

13

CHAPTER 2

Theorem 2.5.1.[Substitution of type expressions for type variables in type expressions]

Let AJ,A2 E Assumptions; t E Tvar and te,te1 E Texp . Then the following inference rule can be

derived.

Aj ~ tel

ER13. Aj; t ;A2 ~ te provided t E FrV(A2)
t t

Aj;A2 t el ~ tete1

Proof. By induction on the structure of type expression te . All other cases being trivial we only

consider the case te '" v(A s I tf) .

Assume

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

0

I-Aj~te1

I- Aj;t;A2 ~ te

t E FfV(A2)

Let te '" v(A s I tf)
I- Aj;t;A2;S ~ tf

Let u be the fIrst type variable such that

u ¢ t " u E FrV(tf) " u E FrV(te1)

I- Aj;t;A2;s;u ~ tf

I- Aj;t;A2;u ~ u

I- Aj;t;A2;u;s ~ tf

I- A j;t;A2;u ~ tf~

t E FrV(A2;U) = FrV(A2) v (u)

I- t s t A j;(A2;u)tel ~ (tfu)te1

I- t S t
Aj;Azte1 ;u ~ (tfu\e1

I- t I st Aj;Aztel ~ v(A u (tfu)te1)

t t
I- Aj;Aztel ~ v(A s I tf)te1

. t t
I- AJ,Azte1 ~ tetel

14

(**)

(***)

[(**),TR7]

[(2),(3),ER11.1]

[TR2]

[(4),ER12.1]

[(5),(6),IH]

[(***),(3)]

[(*),(7),(8),IH]

[(3),(9)]

[(IO),TR7]

[(3),(11),subst.]

[(1),(12)]

CSN 88/14

Theorem 2.5.2.[Substitution of type expressions for type variables in expressions]

Let A1;A2 E Assumptions; t E Tvar; te,te1 E Texp and e E Exp. Then the following inference rule

can be derived

A1 ~ tel
ERI4. A j ; t ;A2 ~ e : te provided FrV(A1;t) 1'\ FrV(A0 = ¢

A1;A2! el ~ e!el : te!e1

Proof. By induction on the structure of expression e. We prove only a few cases. The remaining

cases are trivial.

Assume I-A1~tel

I- A1;t;A2 ~ e : te

1.1. Let e '" x and x E FV(A2) , hence x E FV(A1)

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

Let A3'~ E Assumptions be such that

a) A1 = A3;x:te;~

b) I- A3 ~ te

c) x ~ FV(A4 ;t;Ai)

d) FTV(te) 1'\ FTV(~;t;A0 = ¢

x E FV(~;A~el) = FV(~;t;A2)

FrV(te) 1'\ FTV(A4;A~el) = ¢

I- A3;x:te;A4;A2!el ~ x : te

t E FTV(te)

te "'a te!el
t I- A1;A2te1 ~ x : te

t t t
I- A1;A2tel ~ xte1 : tete1

I- A 'A t t. t
I> 2tel ~ ete1 . tete1

15

[(**),ER2]

[(1.2c)]

[(***),(1.2d)]

[(1.2b),(1.3),(1.4),ER2]

[(1.2d)]

[(1.6)]

[(1.2a),(1.5)]

[(1. 7),(1.8),ER9]

[(1.1),(1.9)]

CHAPTER 2

2.1. Let e '" x and x E FV(A2)

2.2. Let A3,A.! E Assumptions be such that [(**),ER2]

a) A2 = A3;x:te;A.!

b) I- AJ;t;A3 ~ te

c) x E FV(A.!)

d) FfV(te) n FfV(A.!) = <P

2.3. a) t E FfV(A3) [(***),(2.2a)]

b) t E FfV(A [(***),(2.2a)]

2.4. I- AJ;A3!e1 ~ te!e1 [(*),(2.2b),(2.3),thm.2.S.1]

2.S. x E FV(A.!!e1) = FV(A.!) [(2.2c)]

2.6. t t
FfV(tete1) n FfV(A.!te1)

= FfV(te!e1) n FfV(A.!) [(2.3b)]

= «FfV(te) \ (t)) u FfV(te1)) n FfV(A.!)

= FfV(te1) n FfV(A.!) [(2.2d)]

~ FfV(AJ) n FfV(A.!) [prop.2.4.1]

= <P [(***),(2.2a)]

2.7. I- Al;A3~e1;x:te!e1;A.!!e1 ~ x : te~e1 [(2.4),(2.S),(2.6),ER2]

2.8. I-.t t.t A[,A2te1 ~ xte1 . tete1 [(2.2a),(2.7),subst.]

2.9. . t t. t I- A[,A2te1 ~ ete1 . tete1 [(2.1),(2.8)]

3.1. Let e '" (A. y:ty I f)

3.2. Let tf E Texp be such that [(**),ER6.1]

a) I- AJ;t;A2 ~ ty,tf

b) I- AJ;t;A2;y:ty ~ f : tf

c) I- te "'a ty ---> tf

3.3. FfV(A1;t) n FfV(A2;y:ty) = <P [(***)]

3.4. I- AJ;(A2;y:tY)~e1 ~ ~e1 : t~e1 [(*),(3.2b),(3.3),1H]

16

CSN 88/14

3.5. t t f
I- Aj;Aztel ~ tYtel ' t tel [(*),(***),(3.2a),thm2.S.l]

3.6. I- Aj;A~el ;Y:tY~el ~ ~el : t~el [(3.4)]

3.7. I- Aj;A~el ~ (A. Y:tY~el I ~el): tY~el ---; ~el [(3.S),(3.6),ER6.l]

3.8. t t t
I- Aj;Aztel ~ etel : tetel

[(3.l),(3.2c),(3.7)]

4.l. Let e '" (elim v(A s I tf) I f)

4.2. I- Aj;t;A2 ~ f : tf~(A s I tf) , v(A s I tf) [(**),ER7.2]

4.3. t f s t
I- Aj;Aztel ~ tel: (tfV(A s I tf)tel [(*),(4.2),(***),IH]

4.4. Let r be the fIrst type variable such that

r ¢ tAr E FTV(tf) ArE FTV(tel)

4.S. v(A sltf)~el "'v(Arl(~)~el) [(4.4),subst]

4.6. s t t t r
(tfV(A s I tf)tel "'a «t r)tel)v(A rl (t~)~e1) [(4.4)]

4.7. I- Aj;A~el ~ ~el : «~)~el)~(A rl (rrs)t) [(4.3),(4.6),ER9]
r tel

4.8. . tit I- AJ,Aztel ~ v(A s tf)tel [(*),(4.2),(***),thm2.S.l]

4.9. . t Irrst I- AJ,Aztel ~ v(A r (r)tel) [(4.4),(4.8),subst]

4.10. I- Aj;A~el ~ (elim v(A r I (t~)~el) I ~el) : v(A rl (~)~el) [(4.7),(4.9),ER7.2]

4.1l. I- Al;A~el ~ (elim v(A s I tf) I f):el : v(A s I tf):el [(4.1O),substJ

4.12. te "'a v(A s I tf) [(**),ER7.2]

4.13. t t t I- Aj;Aztel ~ etel : tetel [(4.1),(4.11),(4.12)]

5.l. Let e '" (A s I f)tfl

5.2. I- Aj;t;A2 ~ tfl [(**),ER8]

5.3. Let tf E Texp be such that [(**),ER8]

a) I- Aj;t;A2;s ~ f:tf

b) te "'a ~f1

17

CHAPTER 2

5.4. Let r be the fIrst type variable such that

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

o

a) r e FrY(f:tf)

b) r ¢ t II r e FfV(tel)

I- A 1;t;A2;s;r ~ f:tf

I- A1;I;A2;r ~ r

I- A1;I;A2;r ~ ~ : ~

I e FfV(A2;r)

I- A1;(A2;r)~el ~ (~)~el : (~)~el
I ..sl . ..sl

I- A1;A2tel ;r ~ (rPle1 : (ur)lel

I I I- A1;A2tel ~ tfl le1
I ..sl t ..sl I

I- A1;A2tel ~ (A r I (rPle1)tfl lel : ((Ir;.)le1)tfl~el

((~)~e1)~f1 I
leI

-a. (~f1)~e1
t

-a. lele1
I _~ I I I

I- A1;A2rel ~ (Arl(t~)tel)tfltel: tetel

I-AA t t. t
1; 2re1 ~ ete1 . te tel

Theorem 2.5.3.[renaming bound type variables]

[(5.3a),(5.4a),ERl1.l]

[(5.5),ER12.l]

[TR2]

[(5.6),(5.7),IH]

[(***),(5.4b)]

[(*),(5.8),(5. 9),IH]

[(5.10)]

[(*),(5.2),(***),thm2.5.1]

[(5.ll),(5.l2),E8]

[(5.3b)]

[(5.13),(5.l4),ER9]

[(5.1),(5.15)]

Let A E Assumptions; s,t E Tvar ; te,tel,te2 E Texp and e E Exp. Then the following inference rules

can be derived:

ER15.1. A ~ Y(A t I te) provided s e FrY (te)

A ~ Y(A s I te~)

ER15.2. A ~ (A tl e)te1 : te2

A ~ (A sl e~)tel : te2

provided s e FrY(e:'tA;t(e))

18

Proof.

Assume s E FrV(te)

I- A ~ v(A tlte)

1. I- A;t ~ te

2. I- A;t;s ~ te

3. I- A;s;t ~ te

4. I- A;s ~ s

S. I- A;s ~ te!

6. I- A ~ v(A site!)

Hence rule ERIS.I is derivable.

Assume s E FrV(e:te)

I- A ~ (A tl e)tel : te2

1. I- A ~ tel

2. Let te E Texp be such that

a) I- A;t ~ e : te
_ t

b) te2 =a tetel

3. I- A;t;s ~ e : te

4. I- A;s;t ~ e : te

S. I- A;s ~ s

6. I- A-s ~ et . tet
, s· s

7. I- A ~ (A s I e!)tel : (te!)~el
S. I- A ~ (A s I e!)te1 : te~el
9. I- A ~ (A sl e!)tel : te2

Hence rule ERIS.2 is derivable.

o

CSN SS/14

19

(*)

(**)

[(**),TR7]

[(*),(I),ERll.l]

[(2),ERI2.1]

[TR2]

[(3),(4),thm2.S.l]

[(S),TR7]

[(**),ERS]

[(**),ERS]

[(*),(2a),ERll.l]

[(3),ERI2.1]

ITR2]

[(4),(S),thm2.S.2]

[(I),(6),ERS]

[(*),(7),ER9,subst]

[(2b),(S),ER9]

CHAPTER 2

Theorem 2.5A.[Substitution of expressions for variables in expressions]

Let A E Assumptions; te,tel E Texp ; x E Var and e,el E Exp. Then the following inference rule is

derivable:

ER16.

A ~ el : tel
A;x:tel ~ e : te

x
A ~ eel: te

Proof. By induction on the structure of expression e. We consider only a few cases. The other cases

are trivial.

Assume I- A ~ el : tel

I- A;x:tel ~ e : te

1.1. Let e=x

1.2. I- A ~ tel

1.3. I- A;x:tel ~ e : tel

104. te =a tel

1.5. I- A ~ x~l : tel

1.6. I- A ~ x~l : te

1.7. I- A ~ e~l : te

2.1. Let e=y II y~x

2.2. Let Aj , A2 E Assumptions be such that

a) A = Aj;y:te;A2

b) I- Al ~ te

c) y E FV(A2;x:tel)

d) FTV(te) fI FTV(A2;x:tel) = tj>

2.3. a) y E FV(A2)

b) FTV(te) fI FTV(A2) = tj>

204. I-A~y:te

20

(*)

(**)

[(*)]

[(1.1),(1.2),ER2]

[(**),(1.3),thm2.3.1]

[(*),subst]

[(1.4),(1.5),ER9]

[(1.1),(1.6)]

[(2.1),(**),ER2]

[(2.1),(2.2c)]

[(2.2d)]

[(2.2a),(2.3),ER2]

2.5.

2.6.

~ A ~ Y~1 : te

~ A ~ e~1 : te

3.1. Let e '" (A. y:te2 1 f)

3.2. Let tf E Texp be such that

a) ~ A;x:tel ~ te2 , tf

b) ~ A;x:te 1 ;y:te2 ~ f : tf

c) te "'ex te2 -----; tf

3.3. Let z be the fIrst variable such that

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

z ¢ x II z e FV(f) II z E FV(el)

~ A;x:tel;y:te2 ~ te2

~ A;x:tel;y:te2;z:te2 ~ f: tf

~ A;z:te2;x:te I ;y:te2 ~ f : tf

~ A;x:te I ;z:te2 ~ z : te2

~ A;z:te2;x:tel ~ z : te2

~ A;z:te2;x:tel ~ fY : tf z

~AHe2,tf

~ A;z:te2 ~ el : tel

~ A;z:te2 ~ (fy)x
1

: tf
z e

~ A ~ (A. z: te2 1 (fi)~ 1) : te2 -----; tf

~ A ~ (A. y:te2 1 f)~ I : te2 -----; tf

~ A ~ e~1 : te

4.1. Let e '" (A sl f)tfl

4.2.

4.3.

~ A;x:tel ~ tfl

Let tf E Texp be such that

a) ~ A;x:tel;s ~ f: tf

b) te "'ex t~f1

CSN 8S/14

21

[(2.1),(2.4)]

[(2.1),(2.4)]

[(**),ER6.1]

[(3.2a),ERll,2]

[(3.2b),(3.4),(3.3),ERI1.2]

[(3.5),ERI2.2]

[(3.2a),ER2]

[(3.3),(3.7),ERI2.2]

[(3.6),(3.S),IH]

[(3.2a)]

[(*),(3.1O),(3.3),ERI1.2]

[(3.9),(3.11),IH]

[(3. 10),(3. 12),ER6.1]

[(3.3),(3.13)]

[(3. 1),(3.2c)(3. 14),ER9]

[(**),ERS]

[(**),ERS]

CHAPTER 2

4.4. Assume without loss of generality that

S E FrV(el:tel)

4.5. I- A;s ~ el : tel

4.6. I- A;s;x:tel ~ f : tf

4.7. I- A;s ~ ~l : tf

4.8. I- A ~ tfl

4.9. I- A ~ (A sl ~l)tfl : ~f1

4.10. I- A ~ e~l : te

o

Theorem 2.5.5.[renaming bound variables]

[thm2.5.3]

[(*),(4.4),ERll.l]

[(4.3a),ER12.3]

[(4.5),(4.6),IH]

[(4.2)]

[(4.7),(4.8),ER8]

[(4.l),(4.3b),(4.9),ER9]

Let A E Assumptions; tel,te2 E Texp ; x,y E Var and e E Exp. Then the following inference rules

can be derived:

Proof.

Assume

1.

2.

3.

ER17.1. A ~ (A. x:tel e) : te2

A ~ (A. y:tel

ER17.2. A ~ (As x:te 1 e) : te2

A ~ (As y:te I

Y E FV(e)

I- A ~ (A. x:tel I e) : te2

Let te E Texp be such that

a) I- A ~ tel , te

b) I- A;x:tel ~ e : te

c). te2 "'ex tel ---; te

I- A;x:tel ~ te 1

I- A;y:tel ~ y : tel

22

provided y E FV(e)

provided y E FV(e)

[(**),ER6.1]

[(1a),ERI1.2]

[(1a),ER2]

4.

S.

6.

7.

8.

f- A;x:tel;y:tel ~ e : te

f- A;y:tel ;x:tel ~ e : te

f- A;y:tel ~ eX : te
y

f- A ~ (I.. y:tel I e~) : tel ----; te

f- A ~ (I.. y:tel I eX) : te2
y

CSN 88/14

[(2),(1 b),ER11.2]

[(4),ERI2.2]

[(3),(S),thm2.S.4]

[(la),(6),ER6.1]

[(lc),(7),ER9]

Hence rule ER17.1 is derivable. Similarly it can be shown that rule ER17.2 is derivable.

o

23

CHAPTER 3

3.REDUCfION

3. 1. Introduction.

In this chapter a reduction relation » on expressions is defined that provides an operational

semantics for our kernel language. We shall present this reduction relation in the form of a formal

theory (cf. Hindley and Seldin [HiSe86]). Besides reduction rules that deal with expressions having

function types, which are familiar from the lambda calculus, the theory contains reduction rules for

expressions having sum, product or recursive types.

In order to present this theory we need the notion of a context. Suppose we take an expression

and replace some of its sUbexpressions by the fresh symbol $. The resulting term is called a context.

Actually we think of a context as an expression with some holes in it. The symbol $ merely enables

us to give a proper syntactic definition. To that end replace in rules EI - E8 of chapter I the

nonterminal Exp by C_and_E and add the rule C_and_E ::= $. Let Exp be the subset of

sentences of C_and_E that contain zero occurrences of the symbol $, and let Context be the

subset of sentences that contain at least one occurrence of $. Notice that substituting an expression

for $ describes the process of filling in the holes of a context.

3.2. The theory of reduction.

The theory of reduction consists of formula's of the form Exp» Exp and the following rules:

(v) (blm I te) » (him I te)

(0) (down (up e)) » e

(O'j) (appl (sum fl f2) (in! el I te2)) » (appI fl el)

(O'z) (appi (sum fl f2) (inr tel I e2)) » (appl f2 e2)

(0'3) (appis (sums f1 f2) (inls el I te2)) » (appis f1 el)

(0'4) (appis (sums f1 f2) (inrs tel I e2)) » (appis f2 e2)

24

CSN 88/14

(O"s) (sums (As x:tel I (appls f (inls x I te2»)

(As x:te2 I (appls f (mrs tel I x»» » f,

(7tI) (prol (prod el e2)) » el

(nz) (pror (prod el e2» » e2

(7t3) (prod (prol e) (pror e» » e

(7t4) (prols (prods el e2» » el ,

(7ts) (prors (prods el e2» » e2,

(7t6) (prods (prols e) (prors e» » e

(ev (elim v(A tlte) I (intro v(A tlte) I e» » e

(ez) (intro v(A t I te) I (elim v(A t I te) I e» » e

(~I) (appl (1 x:tx I e) el) » e~l

(132) (appls (1s x:tx I e) el) » e~l '

(~) (A t I e)tel » e~el

(111) (1 x:tx I (appl f x» » f,

(11z) (As x:tx I (appls f x» » f,

(p) e» e

el » e2

('t) e2 » e3

el » e3

x E FV(f)

provided e2 in normal form

provided el in normal form

provided el in normal form

x E FV(f)

x E FV(f)

reflexivity

transitivity

el » e2

c$ »c$
provided there exist no contexts c1 and c2 such that c =a c l~p c2

el e2

Rule 'I' expresses the substitutivity property (or compatibility property as it is called in Barendregt

[Ba81]) of » • It states, however, one exception, viz. subexpressions appearing in an up-context can

not be reduced. Hence » is the reflexive, transitive and (almost) substitutive closure of the one-step

reduction relation defined by rules v thru 11 . The left-hand side of any of these rules is called a

redex. An expression in which all redices, if any, appear inside an up-context is called a normal form.

25

CHAPTER 3

Notice that the notions redex and normal form are actually defined by mutual recursion, on account of

the constraints in rules 1t4 , 1ts and 132. In particular (btrn I te) is not a normal form. This is

proper, since it corresponds to a nonterrninating computation that yields no information at all. On the

other hand, any up--expression is in normal form.

Up--expressions can be used to enforce lazy evaluation. Consider the two expressions

(appJ (A x:tx I (in! x I te2)) e)

and

(appl (A x:itx I (in! (down x) I te2)) (up e)

If e)} el then (appl (A x:tx I (in! x I te2)) e))} (in! el I te2) in two distinct ways, viz. applying rule

131 before rule '1', which is called lazy evaluation or applying rule 'I' and then rule 131, which is

called eager evaluation. Likewise (appl (A x:itx I (in! (down x) I te2)) (up e) » (in! el I te2) , but

the order in which the rules are applied has to be first 131 then I) and finally '1'.

One would expect that reduction does not change the type of an expression. This is indeed the

case, if renaming of bound variables is ignored. Of course type expressions that differ only in the

names of their bound variables have the same semantics. Hence, if we are a little more liberal and

consider a type to be a class of type expressions that are equal up to a-conversion then we can say

that types are invariant under reduction.

Theorem 3.2.1.

Let A E Assumptions and el,e2 E Exp.

If el E WTE(A) and el » e2

Then e2 E WTE(A) and 'tA (el) "'a 'tA (e2).

26

CSN 88/14

Proof. With the exception of the l3-rules this follows for each of the remaining rules v thru 11 by a

straightforward calculation. Rules 131 and 132 preserve types on account of theorem 2.5.3. Rule I3:J

preserves types on account of theorem 2.5.4.

o

Remark. For reductions el »e2 that do not comprise rule I3:J one can prove that 'tA (el) '" 'tA (e2).

o

27

CHAPTER 4

4.SEMANTICS OF TYPE EXPRESSIONS

4.l.Introduction.

In this chapter we show how a complete partial order (c.p.o.) can be associated to every type

expression. The c.p.o.'s corresponding to recursively defined types, i.e. type expressions of the form

v(A t I te) , are found using the inverse limit construction. The use of this technique to solve recursive

domain equations has been described by Smyth & Plotkin [SP82], Lehmann & Smyth [LS81] and

others. A detailed description (for the case of the category of c.p.o.'s with embedding-projection pairs

as morphisms) can be found in Bos & Hemerik [BH88]. For general aspects of category theory we

refer to Herrlich & Strecker [HeStr73] or Maclane[McL71].

In this section we introduce some notations and conventions. Some elementary properties of

the concepts introduced in this section are given in section 4.2. The actual semantics of type

expressions is given in section 4.3. We fIrst associate a certain functor with every type expression.

The c.p.o. corresponding to a type expression is then found by applying that functor to an object,

called the type environment. Finally in section 4.4. some elementary properties of the semantics of

type expressions are given.

Let s,t E Tvar. In the sequel we shall use the following notations.

C = CPO PR ,the category of c.p.o.'s with embedding/projection pairs as morphisms

ITC = IT CPOpR '
tE Tvar

P t : ITC -l C , the projection functor on component t.

If A E obj(IlC) ,then At = PlA).

If f E mor(ITC) ,then ft = Pt(f).

If A E obj(IlC) , B E obj(C) ,then A[B/t] E obj(ITC) is defIned by

28

CSN 88/14

A[B/t] = s
{

A ifs¢t

s B ifs=t

If f E mor(I1C) , g E mor(C) , then f[glt] E mor(I1C) is defined by

f[glt] = .
{

fSifs¢t

s g ifs=t

Consider the functors F: I1C ----; I1C and G: I1C ----; C. Then the functor

F[G/t] : I1C ----; I1C is defined by

P 0 F[G/t] = s
{

POF ifs¢t

s G ifs=t

Id : I1C ----; I1C , the identity functor.

idA : A ----; A , the identity morphism on object A.

Consider the functor F : I1C ----; C . The functor abstrt: I1C ----; (C ----; C) is defined in the

following way:

i) For A E obj(I1C) is abstrt(A) the object in the category C ----; C (i.e. the functor

C ----; C) defined by

abstrt(A) (B) = F(A[B/tD for be obj(C) ,

abstrtF(A) (g) = F(id A [gltD for g E mor(C) .

ii) For f E mor(I1C) is abstrt(f) the morphism in the category C ----; C (i.e. the natural

transformation) defined by

(abstrl(t))B = F(f[idBIt]) for B E obj(C)

Suppose D is an arbitrary category. A functor F: I1C ----; D will be called independent of t if

F = F 0 Id[G/t] for all functors G: I1C ----; C.

We shall use the following functors.

29

CHAPTER 4

CONST A : rrc ----; C , the constant functor corresponding to an object A E obj(C) ,

LIFT : C ----; C , the lifting functor,

DS : C x C ----; C , the disjoint sum functor,

CP : C x C ----; C , the cartesian product functor,

FS : C x C ----; C , the function space functor,

CS : C x C ----; C , the coalesced sum functor,

SP : C x C ----; C , the smash product functor,

SF: C x C ----; C , the strict function space functor,

IFP : [C ----; C] ----; C , the initial fixed point functor.

The formal definition of these functors can be found in Bos & Hemerik [BH88] or Smyth and

Plotkin [SP82].

4.2.Elementary properties.

The following properties of the concepts introduced in the preceding section can easily be

shown. Let F,G: rrc ----; C , H : C ----; D and t,u E Tvar . Then

F = P
t

0 Id[F/t] ,

if t ¢ u then P is independent of t,
u

abstruF is independent of u,

if F is independent of t, then abstruF is independent of t,

if F is independent of u, then abstr (F 0 Id[P It]) = abstrtF,
u u

if G is independent of u and t ¢ u , then

abstru(F 0 Id[G/t]) = (abstruF) 0 Id[G/t].

30

(4.2.1)

(4.2.2)

(4.2.3)

(4.2.4)

(4.2.5)

(4.2.6)

CSN 88/14

4.3.Definition of semantics of type expression.

We first show that with every type expression an co - continuous functor ITC ---; C can be

associated. Define 1: Texp ---; [ITC ---; C] by

1[0]

l[t]

1[ite]

l[tel + te2]

l[tel x te2]

l[tel ---; te2]

1[te 1 ElHe2]

1[tel ®te2]

l[tel e te2]

l[v(A tlte)]

= CONST A • where A is the one-point c.p.o.

=Pt •

= LIFT ol[te] •

= DS 0 < 1[tel] .1[te2] > •

= CP 0 < l[tel] .1[te2] > •

= FS 0 < l[tel] .1 [te2] > •

= CS 0 < l[tel] .1 [te2] > •

= SP 0 < l[tel] .1 [te2] > •

= SF 0 < l[tel] .1 [te2] > .

= IFP 0 (abstrl [tel) .

The constant and projection functors are trivially co - continuous. The co - continuity of the functors

DS • CP • FS • CS • SP and SF follows from the local continuity of the corresponding functors on

CPO x CPO respectively CP0.L x CP0.L • see for instance Smyth & Plotkin [SP82] or Bos &

Hemerik [BH88]. The co continuity of the functor LIFT follows from the local continuity of the

corresponding functor CPO ---; CP0.L • see also [SP82] or [BH88]. Further if F : [ITC ---; C] • then

also abstrl: [ITC ---; [C ---; Cll • see for instance Herrlich & Strecker [HeStr73. th.15.9]. The co -

continuity of the initial fixed point functor IFP is shown in Lehmann & Smyth [LS81]. Now using

the property that the composition of two co - continuous functors is again co - continuous (see Mac

Lane [McL71]). it is easily shown by induction on the structure of te that 1[te] is an co -

continuous functor for every type expression teo

Define Tenv = obj(I1C) . Elements of Tenv will be called type environments. If P E Tenv •

then Pt = Pt(p) is the c.p.o. associated to t E Tvar by the type environment p. The c.p.o.

31

CHAPTER 4

corresponding to a type expression te in the environment p is given by J[te] p .

4.4.Properties of the type semantics.

We now describe some properties of the semantics of type expressions. Theorem 4.4.4. shows

that the functor associated to a type expression te depends only on the type variables which appear

freely in te . Hence the c.p.o. which corresponds to te in an environment p depends only on the values

of p on FrV(te).

Theorem 4.4.1.

Let te E Texp and t E Tvar. If t e FfV(te) then J[te] is independent of t.

Proof. The theorem is easily proved using induction on the structure of teo

i) te = Q ,then J[te] = CONST A ' where A is the one-point c.p.o. Clearly this functor is

independent of t.

ii) te = u E Tvar with u ~ t . Then J[te] = P u ' which by property (4.4.2) is independent of t.

iii) te = ftel , te = tel + te2 , te = tel x te2 ,te = tel -----; te2 , te = tel Ell te2 , te = tel ® te2 and

te = tel 8 te2 . These cases are easily handled using the induction hypothesis that J[tel]

respectively J[tel] and J[te2] are independent of t.

iv) te = v(A ulte) . Then J[v(A ulte)] = IFP 0 (abstr J[te]) . If t '" u the result follows from
u

property (4.2.3). If t ~ u then t e FrV(tel) and the theorem follows from the induction assumption

and property (4.2.4).

o

The next theorem gives the behaviour of J[te] under substitution in te.

32

CSN 88/14

Theorem 4.4.2. [substitution in type expressions]

Let tel, te2 E Texp and t E Tvar. Then 1[tel~e2] = 1[tel] 0 Id[1[te2] / t] .

Proof. The proof is done by induction on the structure of te 1 .

i) tel = Q or tel = s with s E Tvar and s ~ t . In these cases t E FTV(tel) and the theorem

follows from theorem 4.4.1.

ii) tel = t . A simple calculation yields that

1[t~e2]
= 1[te2]

= Pt 0 Id[1[te2] / t]

= 1[t] 0 Id[1[te2] / t] .

iii) tel = ite . Then we have

1[(ite)~e2]

= l[i(te~e2)]

= LIFT 0 1[te~e2]
= LIFT 0 1[te] 0 Id[1[te2] / t]

= l[ite] 0 Id[1[te2] / tJ .

[propeny 4.2.1]

[induction hypothesis]

iv) tel = te3 & te4 where & = +, x, --->, Ell, ®, 8 corresponds to respectively FU = DS, CP, FS, CS,

SP, SF. The result follows from the following computation.

1[(te3 & te4)~e2]

= 1[te3~e2 & te4~e2]

= FU 0 < 1[te3~e2 ,1[te4~e2] >

= FU 0 < 1[te3] 0 Id[1[te2] / t] ,1[te4] 0 Id[1[te2] / t] > [induction hypothesis]

= FU 0 < 1[te3] ,1[te4] > 0 Id[1[te2] / t] [<FloF , F2oF> = <FI,F2>oF]

= 1[te3 & te4] 0 Id[1[te2] / t]

v) tel = v(A site) . Let u be the first variable such that u ~ t and u E FTV(te) V FTV(te2) . The result

now follows from the following calculation.

33

o

1[(Y(A s I te»~e2]
= J[Y(A u I (te~)~e2]

= IFP 0 (abstru1[(te~)~e2])

CHAPTER 4

= IFP 0 (abstru(J[te~] 0 Id[J[te2] / t]))

[def. of substitution]

[induction hypothesis]

= IFP 0 (abstr 1[tes]) 0 Id[1[te2] / t] [J[te2] is independent of u , property (4.2.6)]
u u

= IFP 0 (abstru(J[te] 0 Id[P is])) 0 Id[J[te2] / t] [induction hypothesis, J[u] = P u]

= IFP 0 (abstr/[te]) 0 Id[J[te2] / t] [1[te] is independent of u , property (4.2.5)]

= J[(Y(A site)] 0 Id[J[te2] It].

As a consequence of theorem 4.4.2 we have

1[tel~e2] p = J[tel] (p[J[te2]p It]) (4.4.3)

for all tel,te2 E Texp , t E Tvar and p E Tenv . This relation shows that substitution in a type

expressions can be replaced by substitution in the type environment.

As expected, the semantics of a recursively defined type does not depend on the name of the

bound variable.

Theorem 4.4.4.

Let te E Texp and t,u E Tvar . If u ~ FfV(te) , then

J[Y(A t I te)] = J[Y(A u I te~)].

Proof. Using the previous theorem this result can be proved by a straightforward calculation.

J[Y(A t I t<)]

= IFP 0 abstruJ[te~]

= IFP 0 abstru(1[te] 0 Id[P it]) [theorem 4.4.2.]

34

o

= IFP 0 abstrlTte]

= J[v(Atlte)].

CSN 88/14

[J[te] is independent of u ,property 4.2.5.)]

Finally we mention a technical result which will be used in section 5. From part v) of the

proof of theorem 4.4.2. we infer that if u ~ t and t E FfV(te) u FfV(te2) , then

abstruJ[(te~)~e2] = (abstr/Tte]) 0 Id[J[te2] / t].

Hence we see that under the same assumptions

(4.4.5)

for every type assignment p.

35

CHAPTERS

S.SEMANTICS OF EXPRESSIONS

S.1.States.

The value of an expression e E WTE(A) depends on the values of the free variables

occurring in it. The function that defines these values is called a state. Hence a state maps each free

variable of an expression to an element of a specific c.p.o .. Which c.p.o. that is depends on the

assumption A and the type environment p. Therefore we define for A E Assumptions and

P E Tenv

STp,A = II (1'['tA(x)]p I x E WTV(A)} (5.1.1)

i.e. the set of functions cr such that cr(x) E 1'['tA (x)]p for all x E WTV(A) . Elements of STp,A

are called states.

Definition 5.1.2.

Let A E Assumptions and p E Tenv . Moreover, let x E Var and tx E Texp such that I- A ~ tx

and let d E 1'[tx] p . Then for cr E ST A we define the function cr[d/x] E STp A' .tx by: p, , ,x.

cr[d/x](y) = if y ;: x ----; d 0 Y f x ----; cr(y) fi

Moreover, for Al E Assumptions and PI E Tenv such that WTV(AI)!;; WTV(A) and 1'['tA/x)]PI

= 1'['tA (x)]p for all x E WTV(AI) we define the restriction cr r WTV(AI) E ST PhAI by:

(cr r WTV(AI» (x) = cr(x)

Note that if also I- A I ~ tx then

cr[d/x] r (WTV(AI;x:tx» = (cr r WTV(AI» [d/x] (5.1.3)

o

36

CSN 88/14

5.2.Semantic mappings

The meaning of an expression e is given by a family of mappings t: = <t:p,A I p E Tenv ,

A E Assumptions> such that for p and A the domain of t: A is WTE(A) and for all expressions p,

e E WTE(A) we have t: A[e] E ST A ---; 1['tA(e)]p . Hence given a state cr E STp A ' p, p, ,

t:p,A[e]cr indeed yields a value in the domain ll'tA (e)]p .

Definition 5.2.l.[Semantic mapping t:p,AJ

Let p E Tenv and A E Assumptions. For all t,tx E Tvar; te,tel E Texp; x E Var; e,el,e2,fl,f2 E Exp

and cr E STp,A the mapping t:p,A E IT (STp,A ---; 1"['tA(e)]p lee WTE(A») is defined by:

l. t:p,A [(btm I te)]cr = .LD

where D = llte]p

2. t:p,A[x]cr = cr(x)

3.l. t:p,A[(uP e)]cr = <O,t:p,A[e]cr>iD

where D = 1"['tA(x)]p

3.2. t:p,A [(down e)]cr =

if t:p,A[e]cr = .LiD ---;.LD

D t:p,A[e]cr = <O,d>iD ---; d

fi

where D=ll'tA(x)]p

4.l. t:p,A[(inl el I te2)]cr = <1,t:p,A[el]cr>D,+D
2

t:p,A[(inls el I te2)]cr = <l,t:p,A[el]cr>D, (!)D2

where D, = 1"['tA (el)]p , D2 = llte2]p

37

CHAPTERS

4.2. Ep,A[(inr tel I e2)]cr = <2,cp,A[e2]cr>D
I
+D

2

Ep,A[(inrs tel I e2)]cr = <2,Ep,A[e2]cr>DI EIlD2

where DI = 1[tel]p , D2 = 1[tA (e2)]p

note that <1,olDI>DI Ell D2 = olDI Ell D2 = <2,olD/ DI Ell D2 .

4.3. Ep,A[(sum fl f2)]cr =

5.1.

(l<. d E DI+D2

I if d = olDI+D2

o d = <1,dl>D
1
+D

2

o d = <2,d2>D
1
+D

2

fi

)

---; (Ep,A[fl]cr)(dl)

---; (Ep,A [f2]cr)(dz)

where DI ---; D = 1[tA (fl)]p , D2 ---; D = 1[tA (f2)]p

Ep,A [(sums fl f2)]cr =

(l<. dEDI Ell D2

lif d = <1,dl>D
1

EIlD2 ---; (Ep,A[fl]cr)(dl)

o d = <2,d2>D
1

(f)D
2

---; (Ep,A[f2]cr)(d2)

fi

)

Ep,A[(prol e)]cr = 7t1(Ep,A[e]cr)

Ep,A[(pror e)]cr = 7t2(Ep,A[e]cr)

where 7t1 = (l<. <dj,d2>D
1
xD

2
E D1XD2 I dl)

and 7t2 = (l<. <dj,d2>D
1
XD

2
E D1xD2 I d2)

and DlxD2 = 1[tA (e)]p

38

eSN 88/14

5.2. t'p,A[(prols e)]cr = 'Jfit'p,A[e]cr)

t'p,A[(prors e)]cr = 'Jf2(t'p,A[e]cr)

where 'Jfj = (};. <dj,d2>Dj ® D2 E Dj ® D2 I if d2 = olD2 -+ olDj D d2 *- olD2 -+ dj fi)

and 'Jf2 = (};. <d],d2>D j ®D
2

E Dj ®D2 I if dj = olDj -+ olD2 D dj '" olDj -+ d2 fi)

and Dj ®D2 =1['tA(e)]p

note that <dj,olD/ Dj ® D2 = olDj ® D2 = <olDj,d2>D j ® D2

5.3. t'p,A[(prod el e2)]cr = <t'p,A[el]cr,t'p,A[e2]cr>D jxD2

t'p,A[(prods el e2)]cr = <t'p,A[el]cr,t'p,A[e2]cr>Dj ®D2

6.1. t'p,A[(A. x:tx I e)]cr = (};. d ED I t'p,Aj[e]cr[d/xD

t'p,A[(As x:tx I e)]cr =

(};. d ED

lifd =olD -+ olE

D d"'olD -+ t'p A [e]cr[d/xJ
, j

fi

)

where Aj = A;x:tx , D = 1[tx]p , E = 1['tA/e)]p

6.2. t'p,A[(appl f e)]cr = t'p,A[f]cr (t'p,A[e]cr)

6.3. t'p,A[(appls f e)]cr = t'p,A[f]cr (t'p,A[e]cr)

7. t'p,A[(intro v(A tlte) I e)]cr = aR(t'p,A[e]cr)

t'p,A[(elim v(A tlte) I e)]cr = aL(t'p,A[e]cr)

where (D,(aL,aR» is the initial fixed point of the endofunctor F = (abstrt 1[te])p

on the category e = epopR obtained by applying the inverse limit construction to

the co - chain < pnole ' pnu I 0 ~ n > with u the unique morphism from ole to

t L
F(ole)' Note that D = 1[v(A tlte)]p, F(D) = 1[tev(A tlte)]P, a E Hom(F(D),D)

39

CHAPTERS

and a.R
E Hom(D,F(D», cf{BH88,SP82J

8. t"p,A[(A tl e)tel]cr = t"PI,AI[e] (cr tWTV(AI»

where PI = p[1[tel]p I tJ , Al = A;t

Remark. All clauses of definition 2.5.2 are of the fonn

where eJ, ... ,en are the constituting subexpressions of e, and <I> is some function. This is a proper

definition iff

if e E WTE(A) then ei E WTE(Ai) , for 1::; i ::; n

<1>: 1['tA/el)]PI x ... x 1['tAn(eJ]Pn --+ 1['tA(e)]p

For all clauses but 7 and 8 this is trivial. For clause 7 we consider the case (elim v(A t I te) Ie)

only. The case (intro v(A tl te) I e) will then be evident. For all A E Assumptions such that

(elim v(A tl te) I e) E WTE(A) :

(i) 1['tA«elimv(A tlte) I e»]p

= 1[v(A tlte)]p

= (IFP 0 (abstrt 7[te]»p

= IFP«abstrt 1[te])p)

= IFP(F)

By rule ER7.2 it follows that e E WTE(A) and, moreover,

(ii) 7['tA (e)]p

= 7[te~(A tlte)]P

= 7[te]p[1[v(A tlte)]p I tJ

= J[te]p[IFP(F) I tJ

= «abstrt 7[te])p)IFP(F)

= F(IFP(F)

40

CSN 88/14

Since a L is an embedding from F(IFP(F)) into IFP(F) it follows that clause 7 is a proper

definition. From rule ER8 it follows that if (A t I e)te1 E WTE(A) then e E WTE(AI). Since the

introduction of the rightmost type variable t in Al invalidates type assignments for variables in

which the type expression depends on t and that occur to the left of it (see rule ER2), it follows that

WTV(AI) ~ WTV(A) . Moreover, for x E WTV(AI) it holds that 'tAI(x) = 'tA(x)

t e FTV('tAI(x)) . Hence

1['tAI(x)]PI

= 1['t
AI

(x)]p[1[tel]p / t]

= 7['tA /x)]p

= 1['tA(x)]p

and therefore (J r WTV(AI) E STp A is properly defined.
[, I

o

and that

[thm.4.4.l]

In the sequel we shall frequently need to compare the meanings (values) of a single

expression under similar assumptions and in similar states. The following property indicates that if

these similarities are strong enough the respective values are equal.

Property 5.2.2.

For all A[,Az E Assumptions; p E Tenv; e E Exp; (JI E STp,A
I

and (Jz E STp,A
z

:

If f- Al ~ e : te

f- Az ~ e : te

(JI r WTV(Az) = (J2 r WTV(AI)

Then ep,AI[e](J1 = ep,Az[e](Jz

o

41

CHAPTER 5

5.3.Substitution and a--conversion.

In order to prove the soundness of the J3-reduction rules (see chapter 6) we have to

determine the meaning of expressions containing substitutions. For each of the two kinds of

substitutions in expressions (see chapter I) we present a substitution theorem.

Theorem 5.3.1.[Modification of type environment]

For all A E Assumptions ; P E Tenv ; t E Tvar ; te E Texp ; e E Exp ; D E Obj(CPOpR) and

a E STp,A :

If I- A ~ e:te

t E FTV(e:te)

Then £p A[e]a = £p A [e]al
, h 1

where PI = p[D/t] , Al = A;t and al = a t WTV(AI)

Proof. By induction on the structure of expression e. We prove only a limited number of difficult

cases. Assume (*) and (**).

1.1. Let e=x

1.2.

1.3.

X.E WTV(AI)

£p,A[e]a = a(x) = al(x) = £PhAI[x]a1

Let e = (J.. y:ty I f)

[(*),(**),ERI1.I]

[(1.2),def.£J

2.1.

2.2. Let dE 1[ty]p . Moreover, let A2 E Assumptions and a2 E ST
p

,A
2

be such that

A2 = A;y:ty a2 = a[d/y]

2.3. Let tf E Texp be such that [(*),(2.2),ER6.1]

a) I- A ~ ty , tf

b) I- A2 ~ f : tf

c) te =a ty --... tf

2.4. FTV(e:te) = FTV(ty) u FTV(f) u FTV(tf) [(2.1),(2.3c)]

42

2.5.

2.6.

2.7.

2.8.

a) t i! FfV(ty)

b) t E FfV(f:tf)

I- A2;t ~ f : tf

I- A1;y:ty ~ f: tf

WTV(A2;t) = WTV(A1;y:ty)

CSN 88/14

2.9. (cr2 t WTV(A2;t» t WTV(A1;y:ty)

= (cr[dly] t WTV(A2;t» t WTV(A1;y:ty)

= (cr[dly] t (WTV(A1;y:ty» t WTV(A2;t)

= (cr t WTV(A1))[dly] t WTV(A2;t)

= crl[dly] t WTV(A2;t)

2.10. t'p,AW" y:ty I f)]cr

= (ll d E 1[ty]p I t'p,A2[f]cr2)

= (l<. d E 1[ty]p I t'pJ,A2;t[f]cr2tWTV(A2;t»

= (l<. d E 1[ty]p I t'PJ,A1;y:tiGcr1[dly])

= t'p A [(i.. y:ty I f)]crl
h 1

3.1. Let e=(elimv(Asltf) I f)

3.2. a) I- A ~ f : tf~(A s I tf)

b) te =u v(A sltf)

3.3 FfV(f:tf~(A s I tf)

= FrV(f) u (FfV(tf)\(s)) u FrV(v(Asltf)

= FfV(f) u FrV(v(A sltf)

= FrV((elim v(A s I tf) If): v(A s I tf)

= FfV(e:te)

[(**),(2.4)]

[(2.3b),(2.Sb),ER11.1]

[(2.6),ERI2.3]

[ERI2.3]

[(2.8)]

[(S.1.3)]

[def.t']

[(2.3b),(2.Sb),IH]

[(2.6),(2.7),(2.9),prop.S.2.2]

[def.t']

[(*),ER7.2]

3.4. t E FfV(f:tf~(A s I tf) fI t E v(A s I tf) [(**),(3.2),(3.3)]

3.S. Let (A,(uL,UR» be the unique IFP resulting from the inverse limit construction with

functor (abstrs l[(te)])p

43

CHAPTERS

3.6. Let (B,(I3L,I3R» be the unique IFP resulting from the inverse limit construction with

functor (abstrs l[(te)])p[O/t]

3.7. Since t E FfV(Y(A sltf), by (3.4), it follows that the functor (abstrs l[(tf)])p is indepen

dent of t, i.e. (abstrs 1[(tf)])p = (abstrs l[(tf)])p[O/t]

3.B.

3.9.

4.1.

4.2.

o.
L = I3L

ep,A[(elim Y(A sltf) I f)]a

L = a. (ep,A[f] a)

= I3L
(ep,A [f]a)

L = 13 (ephAj[f]aj)

= ep A [(elim Y(A s I tf) I f)]aj
h j

Let e = (A s I f)tfl A s r. t

Let A2 E Assumptions; P2 E Tenv and a2 E ST A be such that
P2, 2

[(3.5),(3.6),(3.7)]

[def.tJ

[(3.B)]

[(3.2),(3.4),lli]

[def.tJ

A2 = A;s P2 = p[1[tfl]p / s] a2 = a t WTV(Av

4.3. Let tf E Texp be such that

a) I- A2 ~ f : tf

b) te =0. rr:fl

4.4. FfV(e:te)

4.5.

4.6.

4.7.

4.B.

= FfV(e) U FfV(rr:fl)

= (FfV(f) \ (s)) u FfV(tfl) u (FfV(tf)\(s))

= (FfV(f:tf) \ (s)) u FfV(tfl)

t e FfV(f:tf)

P2[O/t] = pj[1[tf1]p / s]

I- A2;t ~ f : tf

I- Aj;s ~ f: tf

4.9. Since WTV(A2;t) = WTV(Aj;s) it follows that

(a2 t WTV(A2;t» t WTV(Aj;s) = (aj t WTV(Aj;s» t WTV(A2;t)

44

[(*),ERB]

[(**),(4.1),(4.4)]

[sr.t,def·PhP2]

[(4.3a),(4.5),ER11.1]

[(4.7),ER12.1]

CSN 88/14

4.10. £p,A[(A sl Otfl]O'

= £p20A}f]O'2

= £p2[D/t],A2;t[f]O'2tWTV(A2;t)

= £pl[:F[tfl]p 1 s],A2if]O'2tWTV(A2;t)

= £pl[lltfl]p 1 s],A1;s[f]O'1tWTV(A1;s)

= £p A [(A s I Otf1]O'I
10 1

5.1. Let e'" (A tl Otf1

5.2.

5.3.

Let tf E Texp be such that

a) f- Al ~ f: tf

b) te "'a ~tf1
f- A l;t ~ f : tf

5.4. Since WTV(A0 = WTV(A1;t) it follows that

0'1 t WTV(A1;t) = (0'1 t WTV(A1;t)) t WTV(A1)

5.5. t E FrV(tfl)

5.6. p[J'[tfl]p 1 t]

= p[D/t][lltf1]p 1 t]

= Pl[J'[tfl]p 1 t]

= Pl[J'[tf1]p[D/t] 1 t]

= Pl[ll tf1] PI 1 t]

5.7. £p,A[(A tl Otfl]O'

o

= £p[J'[tfl]p 1 tj,AP]0'1

= £pl[J'[tfl] PI 1 tj,A1[f]O'I

= £pl[lltf1] PI 1 t],A1;t[f]O'I tWTV(A1;t)

= £pIoAl[(A tl Otf1]O'I

45

[def.£]

[(4.3a),(4.5),1H]

[(4.6)]

[(4.7),(4.8),(4.9),prop.5.2.2]

[def.£]

[(*),ER8.1]

[(5.2a)]

[(**)]

[(5.5),thm4.4.1]

[def.£]

[(5.6)]

[(5.2a), (5.3),(5.4) ,prop.5 .2.2]

[def.£]

CHAPTERS

Theorem S.3.2.[Substitution of type expressions for type variables in expressions]

For all P E Tenv ; AJ,A2 E Assumptions; t E Tvar ; te,tel E Texp; e E Exp and a E ST t p,At;A2tel

If I-At~tel

FTV(At;t) () FTV(A2) = <P (***)

Then Cp,At;A;el [e~el]a = CPJ,At;t;A}e]at

where Pt = p[J1tel]p / t] and at = afWTV(At;t;Az)

Proof. By induction on the structure of expression e. We prove only a limited number of difficult

cases .Assume (*),(**) and (***).

1.1. Lete=x

1.2.

1.3.

X E WTV(At;t;A2)

Cp At'A?~ [x~el]a , , -LeI

= Cp A 'A t [x]a
, J, 2tel

= a(x)

= at(x)

= CPJ,At;t;A2[x]at

2.1. Let e = (i.. y:ty I f)
2.2.

2.3.

2.4.

Let tf E Texp be such that

a) I- At;t;A2 ~ ty , tf

b) I- At;t;A2;y:ty ~ f: tf

t E FTV(A2;y:ty) = FTV(A2)

t
J1tYtel]P = J1tY]Pt

[(**)]

[subst]

[def.t"J

[(1.2)]

[def.t"J

[(**),ER6.1]

[(***)]

[(4.4.3)]

2.5. Let dE J1tY]Pt . Moreover let A3 E Assumptions and a3 E STp A .t'A be such that
h h' 3

46

CSN 88/14

2.6. cr[d!y] t WTV(A1;t;A3)

= (cr t WTV(A1;t;A2»[dly]

= crl[dly]

= cr3

2.7. t:p A .A t [~el]cr[dly] , I> 3te l

= t:p A .t.A [f](cr[dly] t WTV(A1;t;A3»
h h' 3

= t:PI>A1;t;A3[f]cr3

2.8. t:p A .A t [(A. y:ty I f)~el]cr
, I> 2tel

= t:p A . A~ [(A. y:tY~el I ~el)]cr
'h el

= (X d E lltY~el]P I t:p A ·A3t [~el]cr[dly])
, I> tel

= (\ d E 1"[tY]Pl I t:p A .r-A [f] cr3)
it h, 3

= t:p A .t.A [(A. y:ty I f)]crl
1, h' 2

3.1. Let e '" (elim v(A s I tf) I f)
3.2. f- A1;t;A2 ~ f : tf~(A s I tf)
3.3. Let r be the fIrst type variable such that

r ¢ t /I r ~ FrV(tf) /I r ~ FrV(te1)

[(5.1.3)]

[(*),(2.2b),(2.3),IH]

[(2.6)]

[subst.]

[def.£]

[(2.4),(2.7)]

[def.£]

[ER7.2]

3.4. Let (A,(aL,aR» be the unique initial fIxed point resulting from the inverse limit construction

with functor (abstrr 1"[(~)~el])P

3.5. Let (B,(~L,~R)) be the unique initial fIxed point resulting from the inverse limit construction

with functor (abstrs lltf])Pl

3.6.

3.7.

3.8.

(abstrr ll(~)~el])P = (abstrs lltf])Pl

aL = ~L

t:pA .A t [CelimvCAsltf) I f)~el]cr
, I> 2te l

= t:p A .A t [(elim v(A rl (~)~e1 I ~el)]cr
, I> 2tel

47

[(4.5.2)]

[(3.4)-(3.6)]

[(3.l),subst]

CHAPTER 5

4.1. Let e'" (A sl f)tfl

4.2. Let tf E Texp be such that

a) J- A1;t;A2;s ~ f : tf

b) te "'ex ~fl
4.3. Let r be the first type variable such that

r t t " r E FrV(tel) " r E FrV(f:tf)

[def.EJ

[(*),(3.2),(***),IH]

[(3.7)]

[def.EJ

[ER8]

404. Let Pn E Tenv and An E Assumptions and O"n E STp A ' 2 $ n $ 5 , be such that
n, n

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

P2 = PI[l[tfl]PI / s] 0"2 = 0"1 t WTV(A1;t;A2;s)

t
A3 = (A2;r)tel

~ = A2;r

As = ~;s

J- A1;t;A2;s;r ~ f : tf

J- AI;t;~ ~ r

J- A1;t;As ~ f: tf

J- Al;t;~ ~ ~ : t~

t e FrV(A2;r)

P4

= P3[l[te1]P3 / t]

P3 = P[l[tfl~el]P / r]

P4 = P3[1[tel]P3 / t]

Ps = P4[1[r]P4 / s]

= P3[l[tel]p[1[tfl~el]P / r] / t]

= P3[1[tel]p / t]

= P[l[tfl~el]P! r][l[tel]p / t]

= p[l[tfl]Pl! r][l[tel]p! t]

48

0"3 = 0" t WTV(A1;A3)

0"4 = 0"3 t WTV(Al;t;~)

O"S = 0"4 t WTV(A1;t;As)

[(4.2a),(4.3),ERl1.1]

lTR2]

[(4.5),ER12.1]

[(4.6),(4.7),ER14]

[(***),(4.3)]

[def,P4]

[def,P3]

[(4.3),thmo404.l]

[def,P3]

[(404.3),def,Pl]

CSN 88/14

= p[J[tel]p I t)[J[tfl]PI I r)

= PI[J[tfl]PI Ir)

4.1l. Ps

= P4[J[r]P4 I s)

= P4[P4(r) I s)

= P4[(PI[J[tfl]PI I r))(r) I s)

= P4[J[tfl]PI Is)

= PI[J[tfl]PI / rj[J[tfl]PI / s)

= PI[J[tfl]PI/ sj[J[tfl]PI / r)

= P2[J[tfl]PI I r)

4.12. 0"5 = 0" r WTV(AI;t;A2;r;s) = 0"2 r WTV(AI;t;A2;s;r)

4.13. &p A.A t [«A sl f)tfl)tt 1]0"
, I> 2tel e

o

= &p AI.A?~ [(A rl(\)~el)tfl~el]O" , , -LeI

= &p3,AI;A3[(~)~el]0"3
= &p4,AI;t;A4 [~]0"4
= &ps,Aj;t;As[f]O"S

= &p A ·t·A ·s·r[f]0"2 rWTV(Aj;t;A2;s;r) S,J"2,,

= & A .. A. [f]0"2 P2, ht, 2,S

= &p A ·t·A [(A sl f)tfl]O"j
h h, 2

Theorem 5.3.3 [Renaming a bound type variable)

[(4.3»)

[def·PI)

[def·ps)

[def.J)

[(4.10»)

[(4.10»)

[def.pz]

[subst.,(3.1»)

[def·0"3,def.&j

[(*),(4.8),(4.9),IH]

[(4.6),(4.7),IH]

[(4.5),(4.7),(4.12),prop.5.2.2)

[(4.2),(4.3),(4.11),thm5.3.1)

[def·0"2,def.&j

For all P E Tenv ; A E Assumptions; s,t E Tvar ; te,te1 E Texp ; e E Exp and 0" E ST A: p,

If I-A~tel

I- A;t ~ e:te

s e FTV(e:te)

49

CHAPTERS

Proof. Assume (*),(**) and (***).

1. Let P)'P2 E Tenv ; A),A2 E Assumptions and al E STp A ' a2 E STp A be such tbat
1, 1 2, 2

Al = A;t PI = p[1[te1]p / t] al = atWTV(AI)

A2 = A;s

I- A2 ~ S

P2 = p[1[tel]p / s] a2 = atWTV(A2)

2.

3.

4. Since FfV(A) ~ FrV(A2) it follows from (*) and prop.2.4.l tbat

I- A2 ~ tel

S. I- A2;t ~ e : te

6. (a2 t WTV(A2;t» t WTV(Aj;s)

= (a t WTV(A2;t)) t WTV(Aj;s)

= (a t WTV(Aj;s» t WTV(A2;t)

= (al t WTV(AI;s» t WTV(A2;t)

7. P2[1[S]P2 / t]

8.

= P2[P2(S) / t]

= P2[1[tel]p / t]

= p[1[tel]p / s][1[tel]p / t]

= p[1[tel]p / t][1[tel]p / s]

= pj[1[tel]p / s]

ep,A[(A sl e!)tel]a

= ep2,A}e!]a2

= ep2[1[S]P2 / t],A2;t[e]a2tWTV(A2;t)

= ep2[1[S]P2 / t],Aj}e]ajtWTV(Aj;s)

= epI[1[tel]p / s],Aj}e]ajtwTV(AI;s)

= ep A [e]al
), I

SO

[(1),TR2]

[(1),(**),(***),ERl1.l]

[(3),ER12.l]

[def.1J

[(1)]

[(1)]

[(1)]

[def.£]

[(Z),(S),thmS.3.Z]

[(3),(S),(6),prop.S.2.2]

[(7)]

[(**),(***),thmS.3.l]

CSN 88/14

[def.c~]

o

Theorem 5.3.4.[State modification]

For all A E Assumptions; p E Tenv ; te,tel E Texp ; x E Var ; e E Exp CJ E STp,A and

dl E 7[tel]p :

If I-A~tel

I-A~e:te

x E FV(e)

Then cp,A[e]CJ = cp,AI[e]CJI

where Al = A;x:tel and CJI = CJ[dl/x]

Proof. By induction to the structure of expression e. We prove only a limited number of difficult

cases. Assume (*) and (**).

1.1. Let e=y

1.2.

1.3.

y~x

cp A [y]CJ = CJ(y) = CJI(y) = cp A [Y]CJI
, , I

Let e = (i.. y:te2 I f) fI x ~ y 2.1.

2.2. Let d2 E 7[te2]p and let A2 E Assumptions and CJ2 E ST P,A2 be such that

2.3.

2.4.

2.5.

A2 = A;y:te2

Let tf E Texp be such that

a) I- A ~ te2 , tf

b) I- A2 ~ f : tf

c) te =a te2 --; tf

I- A2 ~ tel

x E FV(f)

51

[(**),(1.1)]

[(1.2)]

[(**),ER6.l]

[(*),ERl1.2]

[(***),(2.1)]

CHAPTERS

2.6. cp,A}f]cr2 = c p,A2;x:tel I:f]crz[dfx]

2.7. I- A2;x:tel ~ f: tf

2.8. I- A j;y:te2 ~ f : tf

2.9. cr2[dj/x] t WTV(Aj;y:te2) = crj[dz/y] t WTV(A2;x:tel)

2.10. Cp,A[(A. y:te2 I f)]cr

= (};. d2 E :F[te2]p I Cp,A}f] cr2)

= (};. d2 E :F[te2]p I cp,A2;x:tel [f]cr2[dJix])

= (}(d2 E :F[te2]p I Cp,A j;y:te2[f]O"MZ/y])

= Cp,APA. y:te2 I f)]O"j

3.1. Let e '" (A. x:te2 I f)

3.2.

3.3.

Let tf E Texp be such that

a) I- A ~ te2 , tf

b) I- A;x:te2 ~ f : tf

c) te "'a ty ----; tf

I- A j;x:te2 ~ f : tf

3.4. O"[d/x] t WTV(Aj;x:te2) = O"j[d/x] t WTV(A;x:te2)

3.S. Cp,A[(A. y:ty I f)]0"

= (}(d E :F[ty]p I Cp,A;y:ty[f]O"[d/y])

= (}(d E :F[ty]p I Cp,Aj;y:tif]crj[d/y])

= cp A [(A. y:ty I f)]O"j
, j

4.1. Let e'" (A sl f)tn

4.2.

4.3.

4.4.

Assume without loss of generality that

s i! FrV(tel)

Let A2 E Assumptions and 0"2 E ST A be such that
P2, 2

A2 = A;s P2 = p[l[tfl]p / s]

I- A2 ~ tel

S2

[(2.4),(2.3b),(2.S),IH]

[(2.3),(2.4),ERl1.2]

[(2.S),ER 12.2]

[x ~ y]

[def.£]

[(2.6)]

[(2.7),(2.8),(2.9),prop.S.2.2]

[def.£]

[(**),ER6.l]

[(3.2b)]

[def.£]

[(3.3),(3.4),propS.2.2]

[def.£]

[thm.S.3.3]

0"2 = 0" t WTV(Az)

[(*),(4.2),ERll.l]

CSN 88/14

4.5. Let tf E Texp be such that [ER8]

I- A2 ~ f: tf

4.6. x e FV(f) [(4.1),(**)]

4.7. I- A2;x:te1 ~ f : tf [(4.5),(4.6),ER11.2]

4.8. I- AI;s ~ f: tf [(4.2),(4.7),ER12.4]

4.9. a2[dyx] t WTV(AI;s)

= (a t WTV(A2»[dl/x] t WTV(AI;s)

= (a[dyx] t WTV(A2;x:te1) t WTV(AI;s) [(5.1.3)]

= (0'1 t WTV(A2;x:te1» t WTV(AI;s)

= (0'1 t WTV(AI;s» t WTV(A2;x:te1)

4.10. £p,A [(A s I f)tfl] a

= £p A [f]a2 [def.£]
2, 2

= £ P2,A2;x:te 1 [f] a2[d I/x] [(4.4),(4.5),(4.6),IH]

= £p A' [f]altWTV(AI;s) [(4.7),(4.8),(4.9),prop5.2.2]
2, h S

= £p A [(A sl f)tf1]al [def.£] , I

0

Theorem 5.3.5.[Substitution of expressions for variables in expressions]

For all p E Tenv; A E Assumptions; tel E Texp ; x E Var; e,e1 E Exp and a E STp,A:

If I- A ~ e1 : tel

I- Al ~ e : te

Then £p,A[e~l]a = £p,AI[e]0'1

where Al = A;x:tel and 0'1 = a[£p,A[el] a 1 x]

Proof. By induction on the structure of expression e. We prove only a few difficult cases.

Assume (*) and (**).

53

CHAPTER 5

1.1. Let e"'x

1.2. t'p,A[x~l]a

= t'p,A[el]a

= a[t'p,A[el]a / x] (x)

= t'p,Aj[x]aj

2.1. Let e"'y " y~x

2.2. t'p,A[Y~l]a = t'p,A[y]a = a(y) = aj(Y) = t'p,Aj[y]aj

3.1. Let e '" (A. y:te2 I t)
3.2. Let z be the ftrst variable such that

z ~ x " z ~ FV(t) " z ~ FV(el)

Let D = llte2]p and dE D 3.3.

3.4. Let An E Assumptions and an E ST A ,2::; n ::; 5 , be such that p, n

A2 = Aj;y:te2 a2 = aj[d!y]

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

A3 = A;z:te2

A4 = A3;x:tel

As = ~;y:te2

I- A3 .. el : tel

1-~ .. fY·tf z .

1-~ .. z:te2

I- As .. f: tf

t'p,A3[el]a3 = t'p,A[el]a

3.11. as

= a 4[t'p,A4[z]a4 / y]

= a4[a4(z) / y]

= a 4[(a[d!z][t'p,A3[el]a3 / x])(z) / y]

a3 = a[d!z]

a4 = a3[t' A [el]a3 / x] p, 3

as = cr4[t:p,~[Z]cr4 / y]

54

[(3.10) in thm.2.5.4]

[(3.8) in thm.2.5.4]

[(3.7) in thm.2.5.4]

[(3.6) in thm.2.5.4]

[(*),(3.2),thm.5.3.4]

[(3.5) in thm.2.5.4]

[def.as]

[def.t'J

[(3.4)]

3.12.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

= 0"4[d!y]

= 0"[d!z][Ep,A
3
[e1]0"3 / x])[d!y]

= 0"[Ep,A3[e1]0"3 / x][dIy][d!z)

= O"[Ep,A[e1]0" / x] [dly][dlz]

= O"I[dly][dlz]

= O"z[dlz]

Ep,A[(A y:te2 I 0~1]0"
= Ep,A[(A z:te2 I (fi)~l)]O"
= (1<. d ED I Ep A [(fY)\]0"3) ,3 Z e

= (1<. d E D I Ep,APi]0"4)

= (l<. dE D I Ep A [f]O"s) , s

CSN 88/14

[z ¢ x]

[(3.4)]

[z ¢ x]

[(3.9)]

[(3.1)]

[def.£]

[(*),(3.6),IH]

[(3.7),(3.8),IH]

= (l<. d E D I Ep,Az;z:te2[f]O"z[dlz]) [(3.8),(3.1O),(3.11),prop.5.2.2]

= (1<. d E D I Ep,A
Z
[f]0"0

= Ep A [(A y:te2 I 0]0"1 , 1

Let e:; (A sl Otfl

Assume without loss of generality that

s E FrV(e1:te1)

Let Az E Assumptions pz E Tenv and O"z E ST A be such that p, z

[thm5.3.4]

[def.£]

[thm5.3.3]

Az = A;s pz = p[J'[lf1]p / s] O"z = 0" ~ WTV(A0

Let If E Texp be such that

I- At;s ~ f : If

I- Az ~ e1 : te 1

I- Az;x:te1 ~ f : tf

[(**),ER8]

[(4.5) in thm.2.5.4]

[(4.6) in thm.2.5.4]

4.7. 0" ~ WTV(Az)

= (0" ~ WTV(A0) ~ WTV(A)

= 0"2 ~ WTV(A)

55

CHAPTER 5

4.8. WTV(AI;s) !;;; WTV(A2;x:tel) [ERI2.3]

4.9. (0'2[£p A [el] 0'2 / xl) r WTV(AI;s) , 2

= (0'2[£p,A[el]0' / xl) r WTV(AI;s) [(*),(4.5),(4.7),prop.5.2.2]

= «0' r WTV(A2))[£p,A[el]0' / xl) r WTV(AI;s)

= (O'[£p,A[el]O' / X] r WTV(A2;X:tX)) r WTV(AI;s)

= (0'1 r WTV(A2;x:tx)) r WTV(AI;s)

= 0'1 r WTV(AI;s) [(4.8)]

4.10. £p,A [«A s I f)tfl)~ 1]0'

= £p,A[(A sl f~l)tf1]O' [subst]

= £p A [¢1]0'2 [def.t']
2, 2

= £P2,A2;x:tel [f]0'2[£p,A[el]0' / X] [(4.5),(4.6),IH]

= £p A 's[f] 0'1 rWTV(AI;s) [(4.4),(4.6),(4.9),prop5.2.2]
2, h

= £p A [(A sl f)tfl]O'I , I

0

Renaming bound variables should and indeed does not alter the meaning of an expression.

Theorem 5.3.6.[Renaming a bound variable]

For all p E Tenv; A E Assumptions; 0' E STp,A ; te,te1 E Texp ; x,y E Var and e E Exp :

If I- A ~ tel

I- A;x:tel ~ e : te

Y E FV(e)

Then £p,A[(A. x:tel I e)] 0' = £p,A[(A. y:tel I e~)]O'

and £p,A[(A.S x:tel I e)]O' = £p,A[(A.s y:tel I e~)]O'

Proof. Assume (*),(**) and (***).

56

1.

2.

3.

4.

5.

6.

7.

8.

9.

CSN 88/14

Let D = 1[tel]p and dE D

Let An E Assumptions and an E STp A ' 0 ~ n ~ 4 , be such that
, n

Al = A;x:tel al = a[dlx]

A2 = A;y:tel

A3 = A2;x:tel

~ = AI;y:tel

I-AI~tel

I- A2 ~ Y :tel

I-~~e:te

I- A3 ~ e : te

a3

= a2[ep A [y]a2 / x] , 2

= a2[a2(Y) / x]

= a2[dlx]

= al[dly]

= a4

ep A [e
x
]a2 , 2 Y

= ep A [e]a3 , 3

= ep,~[e]a4

= ep A [e]al , I

ep A[(A y:tel I eX)]a , y

= (l<. d E D I ep A [ex]a2)
, 2 Y

= (l<. d E D I ep A [e]al) , I

= ep,A[(A x:tel I e)]a

a2 = a[dly]

a3 = a2[ep,A}y]a2/x]

a4 = al[dly]

The case of strict A-abstraction is proved similarly.

o

57

[(*),ER11.2]

[(*),ER2]

[(**),(***),(4),ER11.2]

[(5),ERI2.2]

[(4),(5),thm.5.3.5]

[(5),(6),(7) ,prop.5 .2.2]

[(3),(**),(***),thm.5.3.4]

[def.t1

[(8)]

[(2),def.t1

CHAPTER 6

6.S0UNDNESS OF REDUcrION

6.l.Introduction.

In chapter 3 we have introduced a set of reduction rules for expressions. Furthermore, we have

shown that for expressions e I and e2 such that e I » e2 their values f p,A [e I] cr and f p,A [e2] cr

are members of the same domain 1[t A (e I)] p = :T[t A (e2)] p . In this chapter we prove that the

reduction rules of chapter 3 are sound, i.e. reducing an expression yields an expression with the same

value. In order to prove this result we need some elementary properties.

Property 6.1.1.[strictness]

For all A E Assumptions; p E Tenv ; cr E ST p,A ; te,tel E Texp and f E Exp :

If I- A ~ f : te e tel

Then (fp,A[f]cr) (.l1[te]p) = .l:T[teI]p

o

Property 6.1.2.[normal form]

For all A E Assumptions; P E Tenv ; cr E ST A and e E Exp : p,

If

and

Then

o

e is in normal form

('t/ x E WTV(A) I cr(x) t:. .l:T[tA (x)]p)

fp,A[e]cr t:. .l1[t
A

(e)]p'

6.2.Soundness.

Theorem 6.2.1.[soundness]

For all A E Assumptions; p E Tenv; cr E ST A and eI,e2 E WTE(A) : p,

58

If

and

Then

CSN 88/14

el » e2

(,v x e WTV(A) I a(x) # .LJ[t
A

(x)]p)

[p,A[el]a = [p,A[e2]a

Proof. It is sufficient to prove the soundness of each of the rules v thru " . Apan from rules as, 1t4,

1ts, f3j, 132 and 133 this is a trivial exercise using definition 5.2.1.

Rule as: (sums fl f2) » f,

where fl = (As x:tel I (appls f (inls x I te2»)

and f2 = (As x:te2 I (appls f (inrs tel I x»)

Assume x ~ PV(f)

1. The lefthandside of as is an element of WTE(A) iff

a) I- A ~ tel,te2

provided x ~ FV(f)

(**)

(***)

b) there exists a type expression te e Texp such that I- A ~ f: tel EIlte2 e te

2. Let DI = J[tel]p , D2 = J[te2]p and D = J[te]p . Moreover, let

Al = A;x:tel and A2 = A;x:te2 .

3. Since x f PV(f) it follows by (1) , (***) and rule ERI1.2

that I- Al ~ f : (tel EB te2) e te and I- A2 ~ f: (tel Ell te2) e teo

Hence J[tAI(f)]p = J['tA2(f)]P = J['tA(f)]p.

4. For deDI:

[p,A
I
[(appls f (inls x I te2»]a[d!x]

= [p,AI[f]a[d!x] ([p,AI[(inls x I te2)]a[d!x])

= [p,AI[f]a[d!x] «I'[p,AI[x]a[d!x]>DI EIlD2)

= [p,AI[f]a[d!x] «I,d>DI EIlD2)

= [p,A[f]a «I,d>DI Ell D)

59

[(1a),(1 b),(***),thm5.3.4]

CHAPTER 6

Similarly one proves for d E 02 :

Ep A [(appls f (inrs tel I x))]cr[d/x]
, 2

= Ep,A[f]cr «2,d>01 eo)

5. Ep,A[fl]cr

= (x d E 0 1

I if d = .LOI -+ .Lo

D d .. .LOI -+ Ep,APappls f (inls x I te2))]cr[d/x]

fi

)

= (x d E 0 1

lifd=J.OI -+ Ep,A[t]cr(<1,.L0 ?0I e02)

D d .. .LOI -+ Ep,A[f]cr «1,d>01 e02)

fi

)

= (x d E 0 1 I Ep,A[f]cr «I,d>OI e02))

Similarly one proves that

Ep,A[f2]cr = (X d E O2 I Ep,A[f]cr «2,d>01 e02))

6. Ep,A[(sums fl f2)]cr

= (x d E 0 1 e02

lif d = <1,dl>OI e02 -+ (Ep,A[fl]cr) (dl)

D d = <2,d2>01 e02 -+ (Ep,A[f2]cr) (d2)

fi

)

60

[prop.6.1.1]

[(4)]

= (}i. d E 0 1 Ell 02

I if d = <1,dl>OI Ell O
2

---I

D d = <2,d2>01 Ell 02 ---!

fi

)

= (}i. d E 0 1 Ell 02 I £p,A [f]a(d))

= £p,A[f]a

Rule 1t4: (prols (prods e1 e2)) » el,

Assume e2 is in normal foml.

CSN 88/14

('I x E WTV(A) I a(x) # .L:F[t
A

(e)]p)

1. Let 0 1 = :F[tA (el)]p and O2 = :F['t
A

(e2)]p

2. £p,A [(prols (prods el e2))]a

= 'VI(< £p,A[el]a, £p,A[e2]a >0
1

®02)

= if £ p,A [e2]a = .L02 --I .LOI

D £p,A[e2]a # .L02 --I £p,A[el]cr

fi

Similarly one proves the soundness of rule 1t5'

Rules ~I' ~2 , ~3 :

[(5)]

[(5)]

provided e2 in normal form

[(*),(**),prop.6.1.2]

The soupdness of rules ~I and ~ follows from a simple computation using theorem 5.3.2.

The soundness of rule ~ follows from theorem 5.3.1.

o

61

CHAPTER 7

7.A TYPED FIXED POINT COMBINATOR

7.l.Syntax.

In the type free lambda calculus every tenu can be considered as a function. Moreover, every

term (function) has a fixed point which can be computed using a fixed point combinator. The most

well known fixed point combinator in the type free lambda calculus is the Curry combinator

J.l = (A. f I (A. x I f(xx» (A. x I f(xx»)

A simple calculation shows that for every term g the tenus J.lg and g(J.lg) are convertible; so J.lg

can be considered as a fixed point of g . It can be shown that in the D 00 model of the type free

lambda calculus J.l corresponds to the least fixed point operator, see for instance Wadsworth [Wa76].

In this chapter we show that similar results hold for the typed language described in this

report. Let te be an arbitrary type expression. In this section we shall describe an expression (J.l1 te)

with type (te ---; te) ---; te ,which can be considered as a typed version of the Curry combinator. In

(J.l1 te) a recursively defined type will be used. Some properties associated with the corresponding

domain (found by the inverse limit construction) are given in section 7.2. Finally in section 7.3 we

show that in the appropriate domain (J.l1 te) corresponds to the least fixed point operator.

In this chapter we use the following abbreviations

w = v(A tit ---; te)

where t is the first type variable such that t e FTV(te) and

g = (A. x:w I (appl f (appl (intro w I x) x)) .

A typed version of the Curry combinator is then given by

(J.l1 te) = (f : te ---; te I (appl g (elim w I g») .

It is an elementary exercise to show that the following type inference rule holds

62

(7.1.1)

(7.1.2)

(7.1.3)

CSN 88/14

A ~ te

A ~ (~I tel : (te ----; tel ----; te

The following theorem states that (~I te) is a syntactic fixed point combinator.

Theorem 7.1.4.

Let f: te ----; te . Then (appl (~I te) f) and (applf (appl (~I te) f) have a common reduct.

Proof. The theorem is easily proved by the following computations.

Also

(appl (~I tel f)

» (appl g (e1im wig))

» (appl (i.. x:w I (appl f (appl (intro w I x) x») (elim w I g))

= (appl f (appl (intro wi (elim w I g» (elim w I g»)

» (appl f (appl g (elim w I g»)

(appl f (appl (~I tel f))

» (appl f (appl g (elim w I g»)

which proves the theorem.

o

[~i1

[(7.1.2)]

[~l]

[102]

Note that, although (appl (~I tel f) and (appl f (appl (~I tel f) have a common reduct, it is not

possible to reduce one of these terms to the other. The same propeny holds for the untyped Curry

combinator. For the untyped lambda calculus there exists another fixed point combinator, the Turing

combinator ~', such that ~'f reduces to f(/l'f). A typed version of the Turing combinator, with

similar properties as described in this repon, can also be given, see for instance Struik[St881.

63

CHAPTER 7

7.2.Technical results.

In the construction of (Ill te) we used the recursive type w = v(A tit -----. te) . In a type

environment p the corresponding domain W is obtained in the following way. Let the functor F:

C -----. C be given by

F = (abstrt J[t -----. te])(p)

Then, following the semantics of type expressions as described in section 4, we get

W = J[v(A tit -----. te)] p = IFP(F). (7.2.1)

A simple computation (using the definition of abstrt given in section 4.1) yields that

where I,CB : C -----. C are respectively the identity functor and the constant functor corresponding to

the domain B = J[te]p. Recall that in the category C (= CPOpR) a morphism a E Hom(AJ,A:z) is

L R L R a pair a =(a ,a), where a : Al -----. A2 is an embedding and a : A2 -----. Al is a projection, i.e.

L R ['d a 0 a 1 A - 2
and R L 'd a 0 a = 1 Al (7.2.2)

If a is an isomorphism, then in the first relation equality holds and

given by

From the definition of the function space functor FS (see for instance [BH88], where this functor is

called A) it follows that (recall B = J[te]p)

if A E obj(C) , then F(A) = [A -----. B] ,

if a E Hom(AJ,A2) , then F(a) E Hom([AI -----. B],[A2 -----. B]) is defined by

F(a)L(~) = ~ 0 aR for ~ E [AI -----. B] , (7.2.3)

64

CSN 88/14

The object W is constructed in the following way. Let Do be the initial object in the

category C , i.e. Do is the one point c.p.o. Let Dk = F<:(Do) for k ~ 1 . Since Do is initial, there

exists a unique morphism '1'0 E Hom(Do,D1) • Let 'l'k = F<:('I'0) for k ~ 1 . Then !:l =

< (D.,'I") >~=o is an ro-chain in C. Since C is an ro-category this ro-chain has a colirnit ryv,a).
1 1 1-

This defines the (an) object W . To see that W is a fixed point of the functor F , we consider the

ro-chain !:l' = < (F(D.),F('I")) > ~=o
1 1 1-

it preserves colirnits. So (Fryv),F(a»

= < (Di+1,'I'i+l) >i=o . Since F is an ro-continuous functor

(where F(a) stands for < F(a.) >.""=0) is a colimit of the
1 1-

ro-chain !:l'. Apart from the first element of !:l, the chains !:l and !:l' are identical. Thus (W,a)

and (Fryv),F(a» are both colimits of the same ro-chain, which implies that there exists an

isomorphism ~ E Hom(Fryv),W) . The situation may be elucidated by the following figure.

'1'0
!:l: Do DJ I ... -----+

Now the following properties hold (see for instance Smyth and Plotkin[SP82] or Bos and Hemerik

[BH88]).

65

(7.2.4)

(7.2.5)

(7.2.6)

(7.2.7)

CHAPTER 7

(7.2.8)

L R Define the mapping Pk : W ----> W by Pk = a k 0 a k . Then (7.2.4) and (7.2.8) can be written as

(7.2.9)

and

00

(7.2.10)

Since Do is the one-point c.p.o. and a~ is strict, we have

Po(x) = loW for all x E W (7.2.11)

In the remainder of this section we give some technical lemmas, which will be used in section 7.3.

Lemma 7.2.12.

Proof. We prove the first relation for fixed e by induction with respect to k. If k = e the result

follows from (7.2.5). Next suppose a~ 0 P e = a~ and e ~ k ~ 1. Since (W,a) is a cocone for l!. ,

we have ak_ 1 = ak 0 'l'k-l ,so a~_1 = ~-1 0 a~ . Then using the induction hypothesis, we

get

The second part of the lemma can be proved in a similar way.

o

Lemma 7.2.13.

Proof. The lemma follows immediately from the definition of Pk and lemma 7.2.12.

o
•

66

CSN 88/14

Note that if YEW, then ~R(y) E FCW) = [w ----; B] . In the case that y E Pk+1(W) the mapping

~R(y) : [w ----; B] has a special property.

Lemma 7.2.14.

Let x E Wand e:!! k :!! 0 . Then

Proof. The lemma follows from the following computation.

(.1.-1 L (.I.R
[L component of (7.2.6), (f-') = f-']

[(7.2.3)]

[lemma.7.2.12]

o

7.3. Semantics.

We now show that the semantics of 011 te) is the least fixed point operator in the appropriate

c.p.o. The computation given here, is similar to the computation of the semantics of the untyped Cuny

fixed point combinator as given in Wadsworth [Wa76].

Suppose that I- A ~ te and let p E Tenv. We introduce the following abbreviations:

w = v(A tit ----; te),

g = (A x:w I (appl f (appl (intro w I x) x))) ,

W = J[v(A tit ----; te)]p,

B = J[te]p,

X = £p,A
1
[g]cr[4>/f] where Al = A;f:te----;te

67

CHAPTER 7

From the definition of the semantics of expressions, see [def. 5.2.1 case 7], it follows that

x = ep A [g]cr[<\l/f] = (A. dEW I <\l((13R(d» d»
, 1

where 13 is the isomorfism between F(W) = [W -> B] and W . From (7.1.3) we get

The following theorem shows that t:p,A [(J.l1 te)]cr is a fixed point operator for the domain B.

Theorem 7.3.3.

Let <\l E [B -> B] . Then for all states cr E ST A p,

Proof. The theorem follows from the following computation.

0

Since

(t:p,A [(J.l1 te)]cr) <\l

= X (13L
(X»

= <\l ((13R(13L(X») (13L
(X»)

= <\l (X (13L
(X»)

= <\l ((t:p,A [(J.l1 te)]cr) <\l)

00 k
J.lB = (ft.. <\l E [B -> B] I U <\l (.LB»

k=O
is the least fixed point operator in the c.p.o. B, we now have

The following theorem shows that in (7.3.5) equality holds.

68

(7.3.1)

(7.3.2)

[(7.3.2)]

[(7.3.1)]

[(7.2.2)]

[(7.3.2)]

(7.3.4)

(7.3.5)

CSN 88/14

Theorem 7.3.6.

For all states CJ E ST p,A

Proof. We fIrst show by induction 'with respect to k that for k ~ 0

- Induction basis, k = O. Then

x (Po (~L(X»)

= X (.lW)

R
= <I> «~ (.lW».lW)

= <I> (.lB) .

- Induction step. Suppose (7.3.7) holds. Then

X (Pk+ 1 (~L(X»)

(7.3.7)

[(7.2.11)]

[(7.3.1)]

[~R is strict]

R L L
= <I> «~ (Pk+ 1 (~ ex»» (Pk+ 1 (~ (X»» [(7.3.1)]

R L L . L
= <I> «~ (Pk+ 1 (~ ex») 0 Pk) (Pk+ 1 (~ (X»» [lemma 7.2.14 WIth e = k and x = ~ ex)]

= cp «j3R (Pk+
1

«(3Lex»))) (Pk «(3L(X)))) [lemma 7.2.13]

[<I> (X (Pk «(3L(X»)) [(7.2.9), i3R and <I> are monotonic, (7.2.2)]

[<I> (<I>k+ 1 (.lB)) [induction hypothesis (7.3.7), <I> is monotonic]

This proves (7.3.7) for all k ~ O. The theorem now follows from (7.3.5) and the following

computation.

t'p,A[(lll te)]CJ
00

= (A <I> E [B --; B] I X((u Pk)(~L(X»»
k=O

[(7.3.2),(7.2.10)]

69

CHAPTER 7

'"
= (i.. <I> E [B -----; B]! U (X (Pk(pL(X»)))

k=O
[X is continuous]

'"
[(i.. <I> E [B -----; B]! U <l>k+ l(lB))

k=O
[(7.3.7)]

= IlB [(7.3.4)]

o

Thus we have shown that the semantics of (Il! te) is the least fixed point operator in the domain B

corresponding to the type expression teo This result means that it is not necessary to add recursion

explicitly to the language given in chapters 1 and 2. Recursion can be performed using the typed fixed

point combinator (Il! te) , which can be written in terms of the already defined language. Note that

the presence of recursively defined types is essential for the construction of (Il! te) .

70

Ba81

BH88

CSN 88/14

REFERENCES

Barendregt, H. P., The lambda calculus, North Holland,Amsterdam, (1981).

Bos, R and Hemerik, C. , An introduction to the category theoretical solution of

recursive domain equations, to appear.

HMcQM86 Harper, R, MacQueen, D. and Milner, R , Standard ML, LFCS Report Series,ECS

LFCS-86-2, University of Edinburgh (1986).

HeStr73 Herrlich, H. and Strecker, G. E., Category Theory, Allyn and Bacon inc, Boston (1973).

HiSe86 Hindley, J. R. and Seldin, J. P., Introduction to Combinators and 'A.--Calculus,

Cambridge, University Press (1986).

LS81 Lehmann, D. J. and Smyth, M. B., Algebraic Specification of Data Types: A Synthetic

Approach, Math. Systems Theory 14 (1981) 97-139.

McL71 Mac Lane, S., Categories for the Working Mathematician, Graduate Texts in

Mathematics,Springer, New York, (1971).

McQPS86 MacQueen, D.,Plotkin, G. and Sethi, R, An Ideal Model for Polymorphic Types, Inf. and

Contr.71 (1986) 95-130.

McC79 McCracken, N., An Investigation of a Programming language with a Polymorphic Type

Structure, Ph. D. dissertation, Syracuse University, New York (1979).

Me86 Mendler, N. P., First- and Second-Order Lambda Calculi with Recursive Types,

Technical Report, Department of Computer Science, Cornell University, Ithaca, New

York (1986).

Mi71 Mitchell, J.e., Semantic Models for Second-Order Lambda Calculus, in 25th Annual

Symposium on Foundations of Computer Science, IEEE Computer Society, New York

(1984).

Re85 Reynolds, J. C., Three approaches to type structure, in Mathematical Foundations of

software development, LNCS 185, Springer, New York, (1985).

71

REFERENCES

SP82 Smyth, M. B. and Plotkin, G. D., The category-theoretic solution of recursive domain

equations, SIAM J. Comput. 11 (1982) 761-783.

St87 Struik, M., Some Relations between Operational and Denotational Semantics of a Typed

Lambda Calculus, Master's Thesis, Department of Mathematics and Computing Science,

Eindhoven University of Technology, the Netherlands (1988).

Wa76 Wadsworth, C. P., The relation between computational and denotational properties for

Scott's D", Models of the lambda calculus, SIAM J. Comput. 5 (1976) 488-521.

72

In this series appeared :

No. Author(s) Title
85/01 RH. Mak The formal specification and

derivation of CMOS-circuits

85/02 W.M.C.J. van Overveld On arithmetic operations with
M-out-of-N-codes

85/03 W.J.M. Lemmens Use of a computer for evaluation
of flow films

85/04 T. Verhoeff Delay insensitive directed trace
H.M.J.L. Schols structures satisfy the foam

rubber wrapper postulate

86/01 R Koymans Specifying message passing and
real-time systems

86/02 G.A. Bussing ELISA, A language for formal
KM. vanHee specifications of information
M. Voorhoeve systems

86/03 Rob Hoogerwoord Some reflections on the implementation
of trace structures

86/04 G.J. Houben The partition of an information
J. Paredaens system in several parallel systems
KM. vanHee

86/05 Jan L.G. Dietz A framework for the conceptual
Kees M. van Hee modeling of discrete dynamic systems

86/06 Tom Verhoeff Nondeterminism and divergence
created by concealment in CSP

86/07 R.Gerth On proving communication
L. Shira closedness of distributed layers

86/08 R Koymans Compositional semantics for
RK Shyamasundar real-time distributed
W.P. de Roever computing (Inf.&ControI1987)
R Gerth
S. Arun Kumar

86/09 C. Huizing Full abstraction of a real-time
R Gerth denotational semantics for an
W.P. de Roever OCCAM-like language

86/10 J. Hooman A compositional proof theory
for real-time distributed
message passing

86/11 W.P. de Roever Questions to Robin Milner - A
responder's commentary (lFIP86)

86/12 A. Boucher A timed failures model for
R Gerth extended communicating processes

86/13 R Gerth
W.P. de Roever

86/14 R Koymans

87/01 R Gerth

87/02 Simon J. Klaver
Chris F.M. Verberne

87/03 G.J. Houben
J.Paredaens

87/04 T.Verhoeff

87/05 R.Kuiper

87/06 RKoymans

87/07 RKoymans

87/08 H.M.J.L. Schols

87/09 J. Kalisvaart
L.RA. Kessener
W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff

87/11 P.Lemmens

87/12 K.M. van Hee and
A.Lapinski

87/13 J.C.S.P. van der Woude

87/14 J. Hooman

Proving monitors revisited: a
fIrst step towards verifying
object oriented systems (Fund.
Informatica IX -4)

Specifying passing systems
requires extending temporal logic

On the existence of sound and
complete axiomatizations of
the monitor concept

Federatieve Databases

A formal approach to distri
buted information systems

Delay-insensitive codes -
An overview

Enforcing non-determinism via
linear time temporal logic specifIcation.

Temporele logica specifIcatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems with real-time temporal logic.

The maximum number of states after
projection.

Language extensions to study structures
for raster graphics.

Three families of maximally nondeter
ministic automata.

Eldorado ins and outs.
SpecifIcations of a data base management
toolkit according to the functional model.

OR and AI approaches to decision support
systems.

Playing with patterns,
searching for strings.

A compositional proof system for an occam
like real-time language

87/15 C. Huizing A compositional semantics for statecharts
R. Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder Normal forms for a class of formulas
J.C.F. Wilmont

87/17 K.M. vanHee Modelling of discrete dynamic systems
G.-J.Houben framework and examples
J.L.G. Dietz

87/18 C.W.A.M. van Ovelveld An integer algorithm for rendering curved
surfaces

87/19 A.J.Seebregts Optimalisering van file allocatie in
gedistribueerde database systemen

87/20 G.J. Houben The R2 -Algebra: An extension of an
J. Paredaens algebra for nested relations

87/21 R. Gerth Fully abstract denotational semantics
M. Codish for concUrtent PROLOG
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the
Mobius Sequence

88/02 K.M. vanHee Executable Specification for Information
G.J. Houben Systems
L.J. Somers
M. V oorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples

88/04 G.J. Houben The Nested Relational Algebra: A Tool to handle
J.Paredaens Structured Information
D.Tahon

88/05 K.M.vanHee Executable Specifications for Information Systems
G.J. Houben
L.J. Somers
M. Voorhoeve

88/06 H.M.J.L. Schols Notes on Delay-Insensitive Communication

88/07 C. Huizing Modelling Statecharts behaviour in a fully
R. Gerth abstract way
W.P. de Roever

88/08 K.M. vanHee A Formal model for System Specification
G.J. Houben
L.J. Somers
M. V oorhoeve

88/09 A.T.M. Aerts A Tutorial for Data Modelling
K.M. vanHee

88/10 J.e. Ebergen

88/11 G.J. Houben
J.Paredaens

88/12 A.E. Eiben

88/13 A. Bij1sma

88/14 H.M.M. ten Eike1der
R.H. Mak

88/15 R.Bos
C. Hemerik

88/16 C.Hemerik
J.P.Katoen

88/17 K.M. vanHee
G.J. Houben
L.J. Somers
M. V oorhoeve

A Formal Approach to Designing Delay Insensitive
Circuits

A graphical interface formalism: specifying nested
relational databases

Abstract theory of planning

A unified approach to sequences, bags, and trees

Language theory of a lambda-calculus with
recursive types

An introduction to the category theoretic solution
of recursive domain equations

Bottom-up tree acceptors

Executable specifications for discrete event
systems

	0. Introduction
	1. Syntax of the expressions and expressions
	2. Type inference
	2.1 Introduction
	2.2 Formal type inference system
	2.3 Explicit typing
	2.4 Elementary properties
	2.5 Substitution and alpha-conversion
	3. Reduction
	3.1 Introduction
	3.2 The theory of reduction
	4. Semantics of type expressions
	4.1 Introduction
	4.2 Elementary properties
	4.3 Definition of semantics of type expression
	4.4 Properties of the type semantics
	5. Semantics of expressions
	5.1 States
	5.2 Semantic mappings
	5.3 Substitution and alpha-conversion
	6. Soundness of reduction
	6.1 Introduction
	6.2 Soundness
	7. A typed fixed point combinator
	7.1 Syntax
	7.2 Technical results
	7.3 Semantics
	References

