

Proxying UPnP service discovery and access to a non-IP
Bluetooth network on a mobile phone
Citation for published version (APA):
Delphinanto, A., Koonen, A. M. J., Hartog, den, F. T. H., & Peeters, M. E. (2007). Proxying UPnP service
discovery and access to a non-IP Bluetooth network on a mobile phone. In Proceedings of the 14th IEEE
Symposium on Communications and Vehicular Technology (SCVT 2007), 15 November 2007, Delft, The
Netherlands (pp. 1-5). https://doi.org/10.1109/SCVT.2007.4436245

DOI:
10.1109/SCVT.2007.4436245

Document status and date:
Published: 01/01/2007

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1109/SCVT.2007.4436245
https://doi.org/10.1109/SCVT.2007.4436245
https://research.tue.nl/en/publications/33832dda-10c3-4419-b5fd-1dccd9f6f10d

Proxying UPnP service discovery and access to a non-

IP Bluetooth network on a mobile phone

A. Delphinanto, A.M.J. Koonen

Technische Universiteit Eindhoven

Eindhoven, The Netherlands

A.Delphinanto@tue.nl

M.E. Peeters, F.T.H. den Hartog

TNO

Delft, The Netherlands

Frank.denHartog@tno.nl

1Abstract— The current service- and device discovery protocols

are not platform- and network independent. Therefore, proxy

servers will be needed to extend the range of IP-based discovery

protocols to non-IP domains. We developed an architecture of a

proxy that enables Universal Plug and Play (UPnP) devices and

services to be discovered and accessed on the Bluetooth network

and vice versa. We optimized and implemented the architecture

on a mobile computing platform. This proxy implementation is

then used for interworking the UPnP Content Directory service

with the Bluetooth File Transfer profile. Our performance study

showed that our proxy implementation reduces invocation time

and data throughput to about 50% of the bare Bluetooth and

UPnP performance, but it is still acceptable for an end user.

Service discovery, device discovery, UPnP, Bluetooth

I. INTRODUCTION

Service discovery technology is an important component
for communication and service collaboration in distributed
computing environments. In private networks, such as home
networks and in-car networks, these environments are very
heterogeneous considering the great variety of devices, network
technologies, control protocols and application platforms being
used. The existing service discovery frameworks use different
sets of protocols and infer specific transport protocols. None of
the protocols is completely platform- and network independent.
For example, UPnP (Universal Plug and Play) operates at the
network layer and above, and only runs on Internet Protocol
(IP) networks. Bluetooth is a link layer protocol and Bluetooth
Service Discovery Protocol (SDP) only runs on Bluetooth
networks (and in the future probably also on UltraWideBand).
As a result, Bluetooth devices such as headsets and some MP3
players cannot discover and use UPnP-enabled content servers
in the IP part of a heterogeneous home network. Most
probably, time will not solve this problem. Although Bluetooth
can support IP already in many years, it does not in practice
because industry still considers IP as too resource intensive for
small devices (headsets, sensors, etc.) and too vulnerable for
critical communication such as car control. Therefore, proxy
servers will be needed to provide an interoperability platform.

Koponen et al [1] presented a bidirectional proxy for Jini
and Service Location Protocol (SLP) interoperability. Allard et

The work presented in this article has been carried out in the collaborative

Freeband Communication technology program which is supported by the

Dutch Ministry of Economic Affairs.

al [2] presented a proxy architecture Jini-UPnP interoperability.
The proxy uses the client interfaces from both SDPs to listen to
any server announcements, generates a virtual server object for
each discovered server and finally announces the virtual server
to the counterpart network. With a comparable architecture, Jun
et al [3] proposed a unidirectional Bluetooth SDP-UPnP proxy
server enabling a UPnP control point to control Bluetooth
servers. In [4] we presented our design of a bidirectional proxy
that enables UPnP services on an IP network to be discovered
by a Bluetooth client in a non-IP Bluetooth network (piconet)
and vice versa.

In this work, we show the results of our efforts to integrate
and test a proxy implementation on a mobile phone to provide
seamless interworking between the UPnP Content Directory
Service (CDS) and the Bluetooth file transfer profile (FTP)
over the two domains.

The paper is structured as follows. In the following section
we discuss the proxy server definition and architecture. Then,
we explain the interworking between the UPnP CDS and the
Bluetooth FTP. Then our implementation of the proxy is
presented, whereas its performance evaluation is consequently
discussed in section V. The final section summarizes the
conclusions.

II. PROXY SERVER DEFINITION AND ARCHITECTURE

A. Definition

A proxy server is a server that handles the requests of its
clients by forwarding requests to other servers. A client sends a
request for a file, control action, web page, or other resource to
the proxy server. The proxy server provides the resource by
connecting to the specified server and requesting the service on
behalf of the client. A proxy server may optionally alter the
client's request or the server's response, and sometimes it may
serve the request without contacting the specified server. A
well known proxy example is a web proxy, which is used for
many purposes, such as enforcing acceptable network use
policy, providing security, caching services, or reformatting
web pages (e.g. into the ones that fit in cell phones or PDAs).
In this paper we are looking at proxies that are used to reformat
device- and service discovery and –control messages. In
particular it is focused on the example of forwarding a service
access request of a non-IP Bluetooth client to any UPnP server,

and when a return is expected, the return is reformatted and
forwarded back to the Bluetooth client.

B. Architecture

Jun et al [3] showed the way how to design a mono-
directional proxy that makes Bluetooth services available to a
UPnP network. In [4], we gave a detailed architecture of a
remotely upgradeable bi-directional proxy server. Here, in
Figure 1, we show the elements of our proxy architecture that
enable Bluetooth clients to discover and access UPnP devices
and services, namely: UPnP client and Bluetooth interface (BI),
an adapter, a proxy registry, a mapping library, and dynamic
virtual server objects. We divide making a UPnP server
accessible by a Bluetooth client into two steps, namely
discovery and access.

The main goal of the discovery step is to make a UPnP
server available for prospective Bluetooth clients. This step is
initiated by the UPnP client or control point (UC) either
sending discovery message or listening to any UPnP server
(US) advertisement (action 1 in Figure 1). The UC then passes
this information to the adapter module (2). The adapter filters
the incoming service information to the mapping library if
mapping for this service is supported, after which the adapter
registers the service in the proxy registry (3). The adapter then
generates a Bluetooth virtual server (BVS) (4). This virtual
server is a software object that implements any Bluetooth
service class and the UPnP client interface. To make the virtual
server available to the Bluetooth client, this server must be
registered as a Bluetooth service object in the BI (5). Through
the UPnP client interface of the proxy, the virtual server
subscribes to the US’s events to be aware of any server state
changes (6).

The access step accommodates the Bluetooth client to
access the UPnP server via the BVS. Bluetooth SDP does not
specify a server advertisement, thus to get information about a
Bluetooth server and its services, a Bluetooth client needs to
search or browse a Bluetooth server (7). This searching is
possible after the physical server is discovered and the link is
established. The BVS will act as an actual Bluetooth server
application. When a Bluetooth client desires to access a UPnP
service,, the client may send an invocation message to the BVS
through the BI (8). Accordingly, the BVS will reformat the

message to a UPnP environment message and forward it to the
US (9). A return message may be expected (10). When that is
the case, the BVS will reformat the UPnP return message into a
Bluetooth environment message and forward it to the Bluetooth
client (11 and 12).

C. Requirements

We expect the proxy service to be provided by service
providers (operators) in conjunction with mobile phone
vendors. We therefore demand the proxy to interoperate with
as many as possible other consumer electronics currently on the
market. It should also be possible to implement it on a mobile
computing device. This leads to the following design
requirements.

In Bluetooth environments, services can be discovered
using the Bluetooth SDP but have to be accessed using other
protocols. In UPnP, the discovery as well as the access is
defined by the protocol. To achieve seamless discovery of and
access to current devices and services, we apply a filtering
process in the adapter module. The adapter only accepts UPnP
services if they are currently standardized and converts them if
these services correspond with any standardized Bluetooth
profile offering similar functionalities. The example being
further elaborated in this paper is a UPnP Content Directory
Service (CDS), which corresponds to the Bluetooth File
Transfer Profile (FTP), both having a file server service. The
service provider can configure and upgrade this filtering
function via remote management when new UPnP and
Bluetooth standards are released.

To minimize the need for internal resources, we combine
the device announcer and discoverer modules from [4] into the
UC. Furthermore, we allow only one Bluetooth virtual server
at a time.

III. INTERWORKING UPNP CDS WITH BLUETOOTH FTP

A. UPnP CDS

UPnP is an interoperability framework for devices and
services in a relatively small-scale IP network. It is based on
the client/server model and distinguishes three logical entities
in the network: UPnP Services, which represent the service
functionality of a device, UPnP Devices, which act as services

Figure 1. The architecture of a proxy that enables seamless interworking between a UPnP server and a Bluetooth client

servers, and UPnP Control Points (CPs), which act as clients
for controlling the services. UPnP defines Dynamic Host
Configuration Protocol (DHCP), Simple Service Discovery
Protocol (SSDP), Simple Object Access Protocol (SOAP), and
General Event Notification Architecture (GENA) for
addressing, discovery, control, and eventing, respectively.
Device and service descriptions are expressed and partially
standardized in eXtended Markup Language (XML) templates.

The UPnP ContentDirectory service (CDS) [5] is one of the
UPnP standard services. This service is aimed to provide a
uniform mechanism for a user interface application to browse,
locate, or transfer any content (e.g. songs or video files) from a
server and to obtain detailed information about individual
content objects. Natively, the UPnP CDS is one of default
services in the MediaServer, one of the standard UPnP devices,
which is used to expose search and browse capabilities [6].
Some commands in the CDS that are relevant with this work
are Browse(), Search(), and ImportResource(). For file transfer
the CDS uses existing transport protocols i.e. HTTP GET (for
downloading) and HTTP POST (for uploading).

B. Bluetooth FTP basics

Bluetooth is an industrial specification for wireless personal
area networks. Primarily designed for low-power consumption
and short-range coverage, Bluetooth provides a wireless way to
connect and exchange information between mobile devices
such as mobile phones, laptops, digital cameras and etc. A
Bluetooth network is an ad-hoc network (Piconet) that works in
a master-slave fashion. A master may have connections to 7
active slaves and up to 255 inactive (parked) slaves. In
Bluetooth communication, data can only be exchanged
between a master and one slave at a time. However, these
devices can switch roles and the slave can become the master at
any time. Bluetooth link technologies (i.e. the Bluetooth core
communication protocol) and applications (i.e. Bluetooth
profile) are maintained by Bluetooth Special Interest Group
(SIG).

One of the Bluetooth core protocols is the Bluetooth
Service Discovery Protocol (SDP). As the SDP is designed for
highly dynamic communications, it only provides a means for
client applications to browse available services or search for a
desired service in a Bluetooth server. Each Bluetooth service is
referred to as a Bluetooth service record and is an
implementation of a Bluetooth service class. Each service class
is distinct and is distinguished by a universal unique identity.
To access the services, the Bluetooth SIG defines Bluetooth
profiles, which describes standard operations and protocols for
applications that use a Bluetooth communication interface.

The relevant profile for this work is the Bluetooth File
Transfer Profile (FTP) [7]. The profile requires the devices to
follow the Bluetooth Generic Object Exchange Profile (GOEP)
and uses OBject EXchange (OBEX) as the file transport
protocol. It enables a client to browse, transfer and delete files
in a server. Those commands are carried out by combinations
of OBEX commands (CONNECT, DISCONNECT, PUT, GET,
SETPATH and ABORT). For example, the client browses files
in the server using GET FolderListing and sets a current folder

using SETPATH, or the client may retrieve or upload a file
using GET and PUT.

IV. IMPLEMENTATION

To validate our current architecture, we created a scenario
and implemented the concept in a mobile platform. Here, we
focus on the service access functionality of the proxy and the
respective performance analysis rather than service discovery
(which has been evaluated already in [4]). Our implementation
consist of a mobile platform (HTC TyTN, 400 MHz processor,
64 MB RAM), an operating sytem (Microsoft Windows
Mobile 5.0), an internal database (Microsoft SQLCE Server), a
UPnP library (Intel UPnP CE Stack, Bluetooth library (32Feet
Bluetooth Stack) and an XML Parser library (System.XML
library provided by the .Net framework).

The scenario is as follows. In a home, a user with a portable
MP3 player wants to download a music file from a server. This
activity cannot be done straight forward because the MP3
player has only a Bluetooth interface, the server only has a Wifi
IP/Ethernet interface, and the Bluetooth applications cannot
directly communicate with UPnP applications. The user has a
mobile pocket PC that has Bluetooth and Wifi interfaces and
runs the proxy application. Using this pocket PC as an
intermediate, the user effortlessly downloads the file.

The implementation of the scenario is explained using a
sequence diagram (depicted in Figure 2) that contains a client
representing the Bluetooth MP3 player, a server representing
the UPnP server, and the proxy. The actions in the scenario can
be grouped into the following technical activities (distinguished
by different time slots in Figure 2): initialization, browsing (a
file), changing folder information and downloading (a file).

1) Initialization
Before starting the other activities, an initialization is

carried out. The server that contains a UPnP CDS should be
discovered by the proxy, for instance by sending a notify()
message. Then, the proxy should perform a UPnP-to-Bluetooth
service static description mapping, for instance as described in
[3]. Upon receiving the server’s notification, the proxy invokes
the server with a Browse() action. The server will reply with an
XML file (A1 in Figure 2) containing folder (root and its
children) information. This information is used as an initial
reference to the folder locations. Simultaneously, the client
discovers the proxy and establishes a connection, whereafter
the client looks for a Bluetooth FTP.

2) Browsing,
To browse the server, the client invokes the proxy with a

GET action with a parameter FolderListing. To respond to the
invocation, the proxy will first reformat the file A1 into another
XML file (B1) and send this file to the client. The file
reformatting is needed because the UPnP XML file has a
different structure and meaning from the Bluetooth XML file.
For example, UPnP identifies folders by an identity while
Bluetooth (OBEX) identifies folders by a name. For this
reason, the proxy should keep pairs of Bluetooth folder names
and UPnP folder identities. When the Bluetooth client has
received the file B1, the client may parse it to a user-friendly

format for the end user. The user can browse through the folder
like any other file browser he is used to.

3) Changing folder,
To change folder hierarchy, the Bluetooth client invokes the

proxy with a SETPATH action with a folder name as parameter.
The proxy will match the given folder name with available
folder identities and in case of successful matching, the proxy
replies the invocation with an ok message. To get the final
folder structure, the client invokes the proxy again with a
GET(FolderListing). Accordingly, the proxy invokes to the
server with a Browse() action with the matched folder identity
as parameter. The server will respond the proxy’s invocation
with a new XML file (A2) containing new structure
information of the requested folder. Similarly, like in the
browsing, A2 is converted to a new OBEX file (B2) and sent to
the client.

4) Downloading
The client downloads a file from the server by sending a

GET action to the proxy with the desired file name (X) as
parameter. The proxy looks up the location (i.e. file-uri) of file
X. Then it invokes the file by sending an HTTP GET to the X’s
uri with the maximum OBEX packet size (obtained in the
initialization) as parameter. The server will send file X to the
proxy in several packets depending on the given OBEX packet

size. The proxy wraps each of these packets into a Bluetooth
OBEX packet and sends it to the client. Upon each successful
packet reception, the client must confirm to the proxy with an
ok message, after which the proxy can continue downloading
the file. This is repeated until the file is completely transferred.
The proxy acknowledges the client about the completed
transfer by sending a download-finished message.

During implementation, we found that the UPnP CDS and
Bluetooth FTP work quite differently, though they have similar
functionality and commands. For example, for browsing, the
client needs to send two invocations (i.e. SETPATH and GET)
while the server only needs one invocation (i.e. browse). From
this we conclude that the proxy needs specific solutions for
each conversion between Bluetooth profiles and UPnP
services.

V. PERFORMANCE EVALUATION

Using the proxy implementation, we measured the proxy’s
response times for browsing files and downloading a file. For
the browsing response time we measured the total browsing
time and the UPnP browse time as perceived by the proxy. The
total browsing time is measured from the time the proxy
receives the client’s request (i.e. SETPATH) until the time the
proxy replies the Get FolderListing to the client. This total time
is identical with the time slot number 3 in Figure 2 (i.e.
changing folder). The total browse time minus and the UPnP
browse time yields how much latency the proxy added to the
original UPnP browse time. The downloading time is
measured from the time the proxy receives a client download
request (GET file) until the time the proxy sends the download-
finish acknowledgment to the client. Each measurement is
repeated 40 times to minimize sampling error.

Figure 3 shows the measured total browse time and UPnP
browse time as a function of folder level (i.e. the position in the
folder hierarchy). Level 1 represents a browsing to the root
(top) folder hierarchy of the file server. In our case the root
contains three folders. The root information is obtained during
the initialization process (as discussed in section IV).
Therefore, the root browsing does not require a separate server
invocation. This explains why the UPnP browse time at level 1
is zero. Level 2 represents browsing to one of the three
subfolders of the root folders. Level 3 means browsing to one
of eleven subfolders of the level 2’s folders. Finally, level 4
shows the browsing to the lowest position of the folder
hierarchy, which contains 28 files. The figure shows that the
total browse time is almost double the UPnP browse time and
both response times increase with the amount of folder/file
information available. From this we can conclude that the
proxy processes for the browsing activities (i.e. looking up
folder/file identities, updating new folder information and
converting UPnP XML folder structures to OBEX folder
structures) take about half the total browsing time, which is
significant. However, also for complicated file folder structures
(e.g. with four levels), the total browsing time is still acceptable
for the end user. From this we conclude that our proxy design
can indeed be implemented on current mobile platforms,
adding value to current Bluetooth and UPnP services.

Figure 2. Sequence diagram for interworking between UPnP

CDS service and Bluetooth client

We also measured the payload data throughput when
downloading a file from a UPnP server to a Bluetooth client via
the proxy. We found a throughput of 150 ± 30 kbps, which is
about half the native Bluetooth throughput. The throughput on
the UPnP network is many Mbps, so the loss can be accounted
to the processing activities of the proxy. For e.g. streaming
audio, the measured rate is still high enough.

We also repeated the measurement adding a second
Bluetooth FTP client that downloads another file
simultaneously during the download time measurement. We
then obtained a rate of 70 ± 20 kbps. This rate drop occurs
because the Bluetooth link fairly divides the number of
channels between the two clients. In this case the audio file has
to be downloaded or partly buffered before being consumed to
achieve an acceptable audio quality.. From this we conclude
that the number of Bluetooth links to the proxy should be
limited.

VI. CONCLUSIONS

Proxy servers can provide an effective interoperability
platform for service discovery and access in a heterogeneous
private network. We developed a proxy architecture for
seamless interoperability between Bluetooth and UPnP servers
that can run on the high-end mobile devices of today. This
paper described our experiences when implementing this
architecture on a mobile platform.

We found that the UPnP CDS and Bluetooth FTP work
quite differently, though they have similar functionality and
commands. From this we conclude that the proxy needs
specific solutions for each conversion between Bluetooth
profiles and UPnP services

For our performance measurements we only focused on the
effect of the proxy on service access times, because we
evaluated the discovery performance before [4]. We measured
the effect that the proxy has on browse times and data
throughput when using a Bluetooth client to access files on a
UPnP server. We found that our proxy implementation reduces
browse time and data throughput to about 50% of the bare

Bluetooth and UPnP performance, but this is still acceptable for
an end user.

ACKNOWLEDGMENT

We thank Rob van der Veer for his valuable comments.

REFERENCES

[1] T. Koponen and T. Virtanen, “A Service Discovery: A Service Broker
Approach”, in Proc. of the 37th Hawaii International Conference on
System Sciences, 5-8 Jan. 2004.

[2] J. Allard, V. Chinta, S. Gundala, and G. R. III, “Jini meets UPnP: An
Architecture for Jini/UPnP interoperability”, Proc. of Symposium of
Applications and the Internets, pp. 268-275, 27 – 31 Jan. 2003

[3] S.M. Jun and N.H. Park, “Controlling non IP Bluetooth devices in UPnP
home network,” Proc. of the 6th International Conference on Advanced
Communication Technologies, Vol. 2, pp. 714-718, 2004.

[4] A. Delphinanto, J.J. Lukkien, A.M.J Koonen, A. Madureira, I.G.G.M.
Niemegeers, F.T.H den Hartog, F. Selgert, “Architecture of a
bidirectional Bluetooth-UPnP Proxy”, Proc. on 4th IEEE Consumer
Communications and Networking Conference, Las Vegas, January
2007.

[5] A. Presser et al, “ContentDirectory:2 Service Template version 1.01”,
UPnP forum, 31 May 2006.

[6] A. Presser et al, “MediaServer:2 Device Template version 1.01”, UPnP
forum, 31 May 2006.

[7] D. A. Gratton, “Bluetooth Profiles: The Denifitive Guide”, 1st ed.,
Prentice Hall, 30 Dec. 2002.

Figure 3. The Proxy browse time at different levels of file

folder

