

Design and verification in real-time distributed computing : an
introduction to compositional methods
Citation for published version (APA):
Hooman, J. J. M., & Roever, de, W. P. (1990). Design and verification in real-time distributed computing : an
introduction to compositional methods. In E. Brinksma, G. Scollo, & C. A. Vissers (Eds.), Protocol Specification,
Testing and Verification IX (Proceedings of the 9th IFIP WG 6.1 International Symposium, Enschede, The
Netherlands, June 6-9, 1989) (pp. 37-56). North-Holland Publishing Company.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/9b8e8fb4-adc2-4988-a95d-1dd1700bef1a

Protocol Specification, Testing, and Verification, IX
E. Brinksma, G. Scollo and C.~. Vissers (Editors)
Elsevier Science Publishers B.V. (North-Holland)
© IFIP, 1990

Design and verification in real-time distributed
computing: an introduction to compositional

methods*

J .J .M. Hooman
W.P. de Roever

Dept. of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513, 5600MB Eindhoven, The Netherlands
e-mail: mcvax!eutwsl!wsinjh and mcvax!eutwsl!wsinwpr

Abstract
Formal methods for the specification and verification of real- time systems can be

considered from the viewpoint of expressibility (which properties can be specified), spec
ification language (real-time temporal logic, first order assertions with time as explicit
parameter), and programming features (time-out, communication mechanism, concur
rency). We stress compositional methods, i.e. methods in which the specification of a
compound program can be inferred from specifications of its constituents without refer
ence to the internal structure of those parts. This allows programming with such parts
via their specifications rather than through their fully worked out code, thus separating
the use ofthose parts as modules from their implementation. Therefore compositionality
enables verification during the process of (top-down) design - the derivation of correct
programs - instead of the more familiar a posteriori verification based on already com
pleted program code. We extend these compositional methods to real-time distributed
computing. Compositional reasoning during top-down development is illustrated by an
example concerning a watchdog timer.

1 Introduction

37

Numerous methods have been given for the specification and verification of (real-time) dis

tributed programs. These methods can be considered from several viewpoints:

• The class of programs to which the method does apply: For instance, concurrent

programs may communicate in many different ways; via shared variables or via message

passing. We can distinguish between synchronous message passing-both sender and

receiver wait until a partner is available-and asynchronous communication with many

variations of buffering.

• The form of the correctness formulae used to specify and verify programs: Several

methods use invariants, e.g. expressed in Temporal logic, or Hoare-triples (i.e. a

program with pre- and post-condition) using first order logic.

• The properties which can be expressed: Real-time properties (expressing timing re

quirements, e.g. "communication every 5 time units"), safety properties (which can

be falsified in finite time, e.g. "communication within 10 time units", or "nontermi

nation"), or liveness properties (e.g. "eventually a communication will take place").

*This work was supported by ESPRIT Project 937: Debugging and Specification of Ada Real-Time Em
bedded Systems (DESCARTES).

38

• Is the method only applicable to complete program code or is it possible to verify

design steps during the process of program development?

In this paper we concentrate on the last point, especially for real-time distributed mes

sage passing. We illustrate in section 3 the development from a-posteriori methods (which

require the complete program text) towards compositional methods (supporting verify-while

design). Compositionality can be considered as a repercussion of hierarchical, structured,

program derivation on specification and verification formalisms for (real-time) concurrent

processes. A separation of concerns is proposed, implying a separation of the use of (and

the reasoning about) a module from its implementation.

This leads to the following definition of compo$itionality for proof methods:

Properties of a compound programming language construct (such as sequential compo

sition and parallel composition) can be deduced from specifications for its constituent

parts without any further information about the internal structure of these parts.

In general, compositional program specification and verification dictates, as a principle,

that all aspects of program execntion which are required to define the meaning of a com

pound construct from its constituents must be explicitly addressed in semantics and assertion

language alike. In &emantic$ because, otherwise, no compositional semantics can be defined,

since compositionality in semantics requires that the meaning of a compound statement is

a function of the meaning opts parts (the guiding principle of denotational semantics) . In

&pecification language& because, otherwise, no compositional verification rules can be formu

lated in which the specification of a compound construct should follow from specifications of

its constituent parts without knowledge about their internal structure (the internal structure'

often providing implicit information which has not been explicitly stated in the specification

as in [OG76,AFR80]). The rationale for this principle is that one must be able to specify the

behaviour of a module in isolation, i.e., without any implicit prior assumption regarding the

environment within which it ultimately functions. Hence, all assumptions which are needed

regarding the environment-because these influence the behaviour of a module-must be

made explicit as parameters (in the semantics and specification ofthat module alike) for only

then one can abstract away from the remaining aspects (such as inner syntactic structure).

In case of shared variable communication this compositionality principle implies that

when defining the behaviour of a module any change of a shared variable by the environment

must be explicitly expressed as an assumption of that module regarding its environment.

This is worked out in Aczel's model for shared variable semantics as cited in [dR85]. Simi

larly, when considering distributed communication via input/output-statements the specifi

cation of, e.g., an input statement in one module requires explicit expressibility of assump

tions regarding a corresponding output statement in another module. In case one abstracts

away from blocking behaviour only assumptions regarding the value communicated must be

expressible. If blocking behaviour is a focus of interest, as in the present paper, this is again

an assumption regarding program execution which must be stated explicitly; i.e. one has to

state the effect of no communication partner being available in the assertion language and

39

one must be able to express the assumption that no partner is available in the assertion

language.
When timing behaviour of a statement is considered, all factors concerning the execu

tion of this statement which influence that timing behaviour must be expressible. E .g. in

the present paper we make the maximal progress assumption with respect to distributed

i/o-communication: no communication statement should wait for communication when its

partner is also ready to communicate. This aspect of timing behaviour requires, indeed,

that one must be able to express when a partner is waiting to communicate. For, other

wise, maximal progress would not be expressible within the semantics, and hence timing

behaviour of i/o-statements could not be characterized. In this real-time context, the in

troduction of priorities for processes on a single processor implies conceptually that certain

statements which are ready to execute will not be executed on account of their lower priority

and because at most one action can be executed at a time on a uniprocessor. Modelling the

timing behaviour of such statements requires that the semantics, and hence the specification

language, contains primitives to state explicitly when a statement is executing and when it is

requesting processor time with a certain priority. These aspects of reasoning formally about

real-time and scheduling by means of priorities are addressed technically in section 3.4 and

illustrated in section 4.
In section 2 we describe a real-time programming language with synchronous message

passing and two types of parallel composition; one for parallel programs executing on a

single processor and one for concurrent programs each executing on its own processor. In

section 3 we give an example of a classical non-compositional method. We indicate how a

compositional proof system (i.e. rules and axioms relating programs and specifications) can

be achieved, and how such a method can be ext~nded to reason about real-time properties.

Compositional reasoning is illustrated, in section 4, by an example of a watchdog timer with

several stages of development and using both notions of parallelism. Part of this example

can also be found in [HW89] using real-time temporal logic. In section 5 we sketch the

development of the field, leading to a description of the state of the art and the place of our

work therein.

2 A Real-Time Programming Language

We consider a real-time programming language which is akin to OCCAM [Occ88] and based

on real-time variations of CSP [Hoa78] for which a formal denotational semantics has been

given in [KSR+ss]. A program in our language can have the following form:

~ Su 111·· · 111 Sln, ~ 11···11 ~ Sml 111···111 Sm-.~
where 11 expresses concurrent execution of the programs ~ Si1 Ill · • · Ill Sino ~.each on its

own processor. The parallel operator Ill expresses that the programs involved are executed

on a single processor. The brackets ~ and ~ indicate that no other processes are executed

on a particular processor. Actions of parallel processes on a single processor are interleaved,

on the basis of priorities assigned to statements. A statement prio p (S) assigns priority

p to statement S. Statements without such an explicit priority have priority 0. A higher

40

number corresponds to a higher priority. There are two primitive &tatement&:

• skip which does not take any execution time, and

• assignment :z: := e which takes a certain execution time.

Processes communicate and synchronize by synchronous message passing via unidirectional

channels which connect exactly two processes. Let D be a channel name, then our language

contains the following 10-&tatement&:

• D!e Output: send the value of expression e through channel D as soon as a corre

sponding input command is available.

• D?x Input: receive a value via channel D and assign this value to the variable :z:.

Similar to the output command, this statement has to wait for a corresponding partner

before a (synchronous) communication can take place.

In general, a processor can be either at a &cheduling point or at a non&cheduling point . The

priority of a statement is only considered at scheduling points; then a statement can only

execute if there are no other statements with a higher priority on the same processor which

request processor time. In case of equal priorities a nondeterministic choice is made (to

abstract from specific scheduling policies). The execution of a statement at a non&cheduling

point can not be interrupted, not even by requesting statements with a higher priority. A

statement requests processor time until it has the highest priority; then a primitive statement

can start executing at a scheduling point. An 10-statement with highest priority either waits

for a partner (allowing lower priorities to execute) or starts the communication if a partner is

available. In this paper only the start and termination points of primitive and 10-statements

are considered to be scheduling points.

Furthermore, our syntax contains the following compo&ite command&:

• Sequential composition S1; S2•

• A guarded command [bl;/01 slu ... Ubn;IOn SnUb;delayd S], with JO,

denoting an 10-statement. It is executed as follows: first wait until an 10-command

of the open guards (i.e. for which the boolean b; evaluates to true) can be executed

and-then continue with the corresponding S;. If the delay guard is open (b evaluates

to true) and no 10-guard can be taken within d time units, then Sis executed. This

makes it possible to model a time-out, i.e. to restrict the waiting period for certain
communications.

Example 2.1 Consider [D?:z: __. S1Udelay5 __. S2]; if the D-communication can

not be executed within 5 time units then the delay-branch is taken and S2 requests

execution time. Note that in guards with a boolean expression equivalent to true this

boolean is often omitted. 1

• An iteration statement *G repeats the execution of guarded command G as long as

at least one of the guards is open. When none of the guards is open *G terminates.

41

2.1 Basic Timing Assumptions

In order to determine the real-time behaviour of programs, we have to make assumptions

about the execution time of atomic statements and the overhead associated with composite

constructs. Moreover, bounds must be given on how long a process is allowed to wait with

the execution of a primitive statement when a processor is available, and with the execution

of an 10-statement when processor and communication partner are available. In this work we

assume ma:z:imal progre&8 which means that a process never waits unnecessarily; if execution

can proceed it will do so immediately. Note that there are two reasons for a process to wait:

• Wait to execute an 10-statement because no communication partner is available. By

the maximal progress assumption, two statements D!e and D?:z: are not allowed to

wait simultaneously if both can execute on their processor.

• Wait to execute an atomic statement because the processor is not available. The

maximal progress constraint implies that if a processor is idle, then no statement on

that processor requests execution time.

Throughout this paper we use = to express syntactic equality.

3 Compositionality and Real-Time

In section 3.1 we explain the principles of traditional non-compositional methods. The

development towards compositional proof systems based on Hoare triples is described in

section 3.2. Extensions of these formulae with invariants are discussed in section 3.3. Since

none of the methods described in the sections 3.1- 3.3 can express timing behaviour of

programs, we do not use the operator Ill nor the brackets ~. ~ in these sections. In

section 3.4 the compositional method based on explicit assumption-commitment reasoning

is adapted to real-time.

3.1 Non-Compositional Methods

Classical verification methods for parallel processes, such as [OG76] for shared variable

communication and [AFR80,LG81] for synchronous message passing, consist of two stages.

First a local correctness proof is given for each of the sequential processes by associating

assertions with locations in the program. In the second, global, stage a consistency check is

applied to the local proofs:

• For shared variables this is the interference freedom test which verifies that assertions

in the proof of one process remain valid under actions of other processes.

• For communication via message passing the cooperation test is applied to verify cor

rectness of assertions attached to locations after input- and output-statements.

Such methods are not compositional because at parallel composition they require the com

plete program text, annotated with assertions, of the constituent processes.

As an example, we consider in more detail the method of Apt, Francez and de Roever

[AFR80] for synchronous message passing. This method is based on Hoare triple&, that are

42

correctness formulae of the form {p} S {q} with the following meaning: if we start program

S in a state satisfying assertion p (the pre-condition) and if S terminates then assertion q

(the post-condition) holds for the termination state. E.g. {z = 5} z := z + 1 {z = 6}.

First we indicate how a proof system can be formulated to derive such Hoare triples for

sequential programs. With q(e/z] denoting textual substitution of e for each free occurrence

of z in assertion q, we have the following assignment axiom:

Axiom 3.1 (assignment) {q(e/z]} z := e {q}

Example 3.1 With this axiom we can derive {z = 5} z := z + 1 {z = 6} because

(z = 6)(z + 1/z] equals z + 1 = 6, which is equivalent to z = 5. I
Furthermore the proof system contains rules for compound constructs. For instance,

sequential composition is modelled by the following rule:

{p} sl {r}, {r} s2 {q}
Rule 3.1 (sequential composition)

{p} s1; s2 {q}

By such a rule the formula below the line can be derived from the formulae above the line.

Soundness of the rule is proven by showing that validity of the formulae above the line

implies that the formula below the line is valid. Note that this rule is compositional because

the formula for S1; S2 is derived without using the structure of S1 or S2. To strengthen

pre-conditions and weaken post-conditions, the proof system contains the following rule:

P-+ P1, {pl} S {q1}, q1 -+ q
Rule 3.2 (consequence)

{p} s {q}

To illustrate the rule for parallel composition in (AFR80], we consider the proof of

{y = 3} B?z; z := z + 1; E!(z + 2) II B!y; E?y; y := y + 2 {z = 4 A y = 8}.

In the first stage we attach assertions to all locations in the program text of the two

processes, leading to so called proof outline&:

{true} B?z {z = 3} ; z := z + 1 {z = 4} ; E!(z + 2) {z = 4}, and

{y = 3} B!y {y = 3} ; E?y {y = 6} ; y := y + 2 {y = 8}.

In this stage only the post-conditions of assignments are verified: from the assignment axiom

we obtain {z = 3} z := z + 1 {z = 4} and {y = 6} y := y + 2 {y = 8}. Observe that the

post-conditions of the input statements B?z and E?y express assumptions about the values

sent by the communication partner.

These assumptions are verified in the second stage by means of the cooperation test.1 In

general, this test requires that for {p1} D?z {q1} and {p2} D!e {q2} in the proof outlines

of two processes we have to prove {p1 1\ p2} D?z II D!e {q1 1\ q2}, which is equivalent to

{Pl A P2} z := e {q1 1\ q2}. In our example this leads to the proof obligations:

{true 1\y = 3} B?z II B!y {z = 3 1\y = 3} and

{y = 3 1\ z = 4} E?y II E!(z + 2) {y = 6 A z = 4} which are easy to prove.

After the verification of the first two stages we obtain the conjunction of all pre-conditions

from the sequential processes as the pre-condition of the complete program and the con

junction of the post-conditions as the final post-condition. In our example this leads to

1 ln the full method of [AFR80) auxiliary variables and a global invariant ate used to make the method
complete, i.e. to guarantee that any valid Hoare triple can be proven.

43

pre-condition true A y = 3 and post-condition z = 4 A y = 8 which are equivalent to the

required conditions.

3.2 Towards Compositionality

In this section we discuss how a compositional proof method can be obtained for pro

grams which communicate via synchronous message passing. First the cooperation test

from (AFR80] is removed by disallowing implicit assumptions in the post-conditions of

IO-statements. The local proof of a sequential program should be valid in any arbitrary

environment. To derive a required (valid) post-condition for the complete program, we use

a hiJtory variable h which denotes the communication history of the complete program. A

(communication) hi&tory is a sequence of records { D, v) where D is a channel name and v

a value. E.g. < (D,5),(E,6),(B,8),(E,O) >is a history expressing four communications:

first one via channel D with value 5, then a communication viaE with value 6, etc. Let <>

denote the empty sequence. History variable h does not appear in the program, but it is

updated implicitly in the semantics of IO-statements. This leads to the following formulae:

• For an output command e.g. {h =< (D, 5) >} E!6 {h =< (D, 5), (E, 6) > }.

• For an input statement D?z we can only express in the post-condition that there exists

a value which is communicated via D and assigned to z. For instance,

{h =<>} D?z {3v: h =< (D,v) > Az = v}.

Example 3.2 Consider the parallel composition of D!5 and D?z, using Hoare triples

{h =<>} D!5 {h =< (D,5) >}and {h =<>} D?z {3v: h =< (D,v) > /\z = v} .

Suppose the pre- and post-condition after parallel composition are obtained by taking the

conjunction of, resp., pre- and post-conditions of the sequential programs. Then

{h =<>} D!5ll D?z {h =< (D,5) > /\3v: h.=< (D,v) > Az = v}.

Since the post-condition implies v = 5Az = v, and hence z = 5, the consequence rule leads to

{h =<>} D!5ll D?z {z = 5}. By a so called &ub&titution rule (n;,t given in this paper), we

could substitute <> for h in the pre-condition, thus obtaining pre-condition true. I

' Example 3.3 Consider again sl = B?z j z := z + 1 j E!(z + 2) II s2 = B!y j E?y j y := y + 2.

First derive the following Hoare triples: {h =<>} B?z {3vl: h =< (B,vt) > /\z = v1},

{3v1 : h =< (B,v1) > Az = v1} z := z + 1 {3v1 : h =< (B,v1) > /\z = v1 + 1}, and

{3v1 : h =< (B,v1) > Az = v1 +1} E!(z+2) {3vl: h =< (B,vt),(E,v1 +3) > Az = v1 +1}.

By two applications of the sequential composition rule we obtain:

{h =<>} B?z; z := z + 1; E!(z + 2) {3v1 : h =< (B,v1),(E,vl + 3) > /\z = v1 + 1}.

Similarly, {h =<> Ay = 3} B!y; E?y; y := y+2 {3v2: h =< (B,3),(E,v2) > Ay = v2+2}.

Then the parallel composition rule above leads to
{h =<> Ay = 3} S1IIS2 { 3v1 : h =< (B,vt),(E,v1 + 3) > Az = v1 + 1A

3v2 : h =< (B, 3), (E, v2) > Ay = v2 + 2}.
The post-condition implies v1 = 3 A v2 = v1 + 3 A z = v1 + 1 1\ y = V2 + 2, which leads to

44

:v = 4 II y = 8. Thus, by the consequence rule, {h =< > lly = 3} 8t!IS2 {:v = 4/\ y = 8}.

(Again h =<>in the pre-condition can be removed by the substitution rule.) I

Although this works nicely for two processes, the next example shows that there is a

problem if more than two processes are involved.

Example 3.4 Consider St = B!O j E?:v II s2 = B?y j D!(y + 1) II Sa = D?z j E!(z + 1).

Following the previous example, we could first prove:

{h =<>} 81 {qt = 3vt: h =< (B,O), (E,vt) > 1\:v = v1 }, and

{h =<>} 82 {q2 = 3v2 : h =< (B, v2), (D, v2+1) > lly = v2}. But then the conjunction of q1
and q2 implies false whereas S1 IIS2IIS3 terminates and hence does not satisfy post-condition

false. I
The problem is that h denotes the global history of the complete program-e.g. con

sisting of three processes-whereas each of the processes in isolation can only describe the

history on its own channels. A possible solution is to give each process its own history vari

able, and to combine these local history variables at parallel composition. Zwiers [Zwi88],

however, shows that concise and simple rules for parallel composition can be formul<1-ted

if each process uses projections of global history variable h onto its own channels. Such a

projection expresses the view of a particular process on the global history. Formally, the

projection of h onto a set of channel names cset, notation h ••• ., denotes the sequence ob

tained from the history denoted by h by removing all records with channel name not in cset.

E.g. if h =< (B,O),(D,1),(E,3) >then h{v} =< (D,1) >, h{D,E} =< (D,1),(E,3) >,and

h{F} =<>. Henceforth we write hv, hvE, and hF instead of, resp., h{v}, h{D,E}, and h{F}·

At parallel composition of S1 and S2 we require that the post-condition of 8; only refers

to h via projections on the channels occurring inS;, fori= 1,2. If, moreover, the post

condition of 8 1 (resp. S2) does not refer to program variables of S2 (resp. S1), then the

following rule for parallel composition is sound:

{Pt} 81 {qt}, {pz} 82 {qz}
Rule 3.3 (parallel composition)

{Pt II Pz} St[ISz {qt 1\ qz}

Observe that this is a compositional rule because a Hoare triple for S1 ll82 can be derived

without knowing the internal structure of S1 and S2 • Recall that Hoare triples are not

sufficient to formulate the cooperation test but that proof outlines are required. In the rule

above this test is replaced by a simple syntactic check on the Hoare triples for the parallel

components.

Except for bottom-up verification such a rule can be used for top-down development.

Therefore, consider {p} S {q} as a specification for a program 8. Suppose we decide to im

plementS as Stll8z. Then 81 and S2 can be implemented independently, using specifications

{Pt} St {qt} and {pz} Sz {q2} provided p-+ Pt II P2, q1 1\ q2 -+ q and certain requirements
on the post-conditions hold.

3.3 Extensions of Hoare Triples

A Hoare triple is perfectly suited to describe the observable behaviour of a sequential pro

gram which is given by initial and final state. For a parallel program also the communication

45

behaviour on its external channels is observable. Hence a specification of a parallel com

ponent should express this communication interface. Note, however, that a specification

{p} S {q} has an important limitation: it only specifies the behaviour of S if S terminates.

All non-terminating computations of S satisfy such a specification trivially. Thus the post

condition can not be used to exp~ess the communication interface. Therefore, a Ho~e triple

is extended with an invariant, called commitment in this paper, which must hold throughout

the computation. This leads to a formula C: {p} S {q} where commitment C describes the

communication interface of S during its execution. The success of such formulae in many

applications is based on a simple rule for parallel composition in which, besides conjunctions

for pre- and post-conditions, also the conjunction of commitments can be taken.

Yet the framework explained so far is not satisfactory. In the form of the specification

of a process there is no separate component describing the behaviour of its environment,

whereas in general the behaviour of a process depends heavily on its environment. Espe

cially when specifying so called reactive processes (HP85], which have an intensive relation

with their environment, we want to specify a process relative to explicit assumptions about

its environment. Therefore the specification formula is extended with a second invariant,

called auumption, which expresses assumptions about the environment and by which we

can strengthen post-condition and commitment. This leads to formulae (A, C) : {p} 8 {q},

' where

A is an assumption describing the expected behaviour of the environment of S, and

C is a commitment which is guaranteed by process 8 itself, as long as the environment

does not violate the assumption.

The general idea is that assumption and commitment reflect the communication interface

between parallel components (and hence do not contain program variables), whereas pre

and post-condition facilitate the reasoning at sequential composition.

In the following examples, seq1 j seq2 expresses that sequence seq1 is an initial prefix of

sequence seqz.

Example 3.5 Now assumptions about the values sent by the environment can be expressed

explicitly. For instance, hv j< (D, 3) >,which expresses that the history of channel Dis a

prefix of< (D,3) >,can be used as an assumption as follows:

(hv j< (D,3) >,true): {true} D?:v {:v = 3}.

This assumption can be used for a commitment about the next communication:

(hv j< (D,3) >,hs j< {B,4) >):{true} D?:v; B!(:v + 1) {:v = 3}. I

A proof system for these assumption-commitment based formulae has been given in

(Hoo89]. In this paper we discuss mainly the proof obligations for assumptions and com

mitments at parallel composition. Consider the parallel composition SdiSz, and assume

assumption-commitment pairs {Al>C1) for S1 and (A,,C2) for S2. Which conditions have

to be verified to obtain a pair (A, C) for Sti!Sz? Consider assumption A2 of 82:

• A2 may contain assumptions about joint channels of 81 and S2 which connect these

two processes; these assumptions must be justified by commitment Ct of St.

46

• A 2 may contain assumptions about external channels of 8 2 • These assumptions are

maintained in the new network assumption A for 8 1 II 8 2 •

This leads to the following proof obligation: A 1\ 0 1 --t A2 • Similarly for A1: A 1\ 0 2 --t A1.

To obtain a sound rule with these implications, the meaning of a formula (A;, 0;) :

{p;} 8; {q;} has to be defined carefully. A simple implication between A; and 0; would

with the implications above and A = true lead to circular reasoning, e.g. A1 --t 0 1 --t

A2 --t 02 --t A1. Therefore in defining the meaning of (A;, 0;) : {p;} 8; {q;} we require

that if p; holds in the initial state then 1) 0; holds initially, and 2) 0; holds after every

communication provided A; holds after all preceeding communications. This inductive step

inside the meaning of formulas is sufficient to avoid circularity (see [MC81]).

As in Rule 3.3 we can take the conjunction of pre-conditions and post-conditions and

also of commitments, provided 1) the assertions A;, 0;, p; and q; of 8; refer only to h via

projections on the channels, and 2) p; and q; do not refer to program variables of the other

process. (Program variables are not allowed in A; and 0;.) With these constraints, the

following rule for parallel composition is valid:

(All 01) : {Pl} 81 {ql}, (A2, 02) : {p2} 82 {q2}
Rule 3.4 (par. comp. A-C) A 1\ 0 1 --t A2, A 1\ 0 2 --t A1

(A,01 1\ 02): {Pl /\p2} 811!82 {ql 1\ q2}

Example 3.6 Consider 81 = B?z j z := z + 1 j E!(z + 2) II 82 = D?y j B!y j E?y j y := y + 2.
Then for 8 1 and 8 2 we can derive

(A1:: hB ~< (B,3) >, 01:: hE~< (E,6) >): {hBE =<>} 81 {z = 4}, and

(A2:: hv ~< (D,3) >/\hE~< (E, 6) >, 02:: hB ~< (B,3) >): {hBDE =<>} 82 {y = 8}.

Since 81 and 82 communicate with each other via the channels Band E, we take for 811182
the assumption about the remaining channel: A= hv ~< (D,3) >.

Then A 1\ 01 --t A2 and A 1\ 0 2 --t Al> thus the parallel composition rule leads to

(A, 01 1\ 02) : {hBDE =<>} 811182 {z = 41\ y = 8}. I

3.4 Extension to Real-Time

In this section we discuss the extension of compositional methods, in particular the assump

tion/commitment formalism described in the previous section, to real-time specifications
containing timing requirements.

We express the timing behaviour of a program from the viewpoint of an external observer

with his own clock. Thus at the level of reasoning there is a conceptual global clock. Since

our global clock is not incorporated in the distributed system itself, it does not impose any

synchronization upon processes. In the specification a special variable time is introduced

which refers to this external clock. E.g. if an assignment takes between 3 and 5 time units,

then {z = 51\ time = 2} z := z + 1 {z = 6 1\ 5 < time < 7}. In this paper we assume

that time ranges over a dense time domain which includes the natural numbers with the

standard ordering <,e.g. the rational numbers.

To express the communication behaviour of a program, our assertion language contains

primitives to express when a communication via a certain channel takes place, and which

47

value is transmitted. Recall from section 2 that the maximal progress assumption imposes

certain constraints on waiting before a communication takes place. As already explained

in section 1, this implies that we must be able to express when a process is waiting to

communicate via a particular channel. In this paper we use the following primitives:

• comm via D at t with value v, to denote that a communication via channel D with

value v takes place at ~·

• wait to D! at t, to denote that a process is waiting to send a message via D at t.

• wait to D? at t, to denote that a process is waiting to receive via D at t.

Note that, in general, communication takes a certain period of time, and hence there will

be an interval of points at which a process is communicating via a particular channel with

a certain value. With these primitives the mazimal progress constraint can be expressed as

follows, for every channel D;

Axiom 3.2 (MP) Vt : •(wait to D? at t 1\ wait to D! at t)

Furthermore we will later use the following axiom which excludes that a program is simul

taneously waiting to communicate and communicating on the same channel:

Axiom 3.3 (Excl) Vt : •[(wait to D? at t V wait to D! at t) 1\ comm via D at t]

The following abbreviations are frequently used:

• comm via D at t = 3v : comm via D at t with value v

• (wait to} comm via D! at t = comm via D at tV wait to D! at t

• wait to D! during (to, t2) = Vt1, to < t1 < t2 : wait to D! at t1

• wait to D! at t Until comm via D =
Vt1 2:: t : wait to D! at t1 V 3t2 Vt1, t ~ t1 < t2 : wait to D! at t1 1\ comm via D at t2

From these definitions we derive the following lemma.

Lemma 3.1 wait to D! at t Until comm via D --t (wait to) comm via D! at t

Example 3.7 Consider processes P1 and P2 with specifications

{p1 } P1 {wait to D? at 5 Until comm via D} and

{p2 } P2 {wait to D! at 5 Until comm via D}.
Then the rule for parallel composition leads to the following post condition for P1 II P2:

wait to D? from 5 Until comm via D 1\ wait to D! from 5 Until comm via D. Now the max

imal progress requirement implies that there is no point of time with waiting for input and

waiting for output via channel D. Hence the D communication must start at time 5. I

Considering uniprocessor implementations with scheduling based on priorities, again our

assertion language must be extended to achieve compositionality. Recall from section 2 that

in this case we have to express when a process is executing and when it requests processor

time with a certain priority. Therefore we introduce the following predicates:

• exec(t, oo) which is true when the process is executing at a non-scheduling point t.

• ezec(t,p), for p f= oo, which is true when the process is executing at a scheduling point

t with priority p.

• req(t,p) which is true when the process requests processor time at t with priority p.

-
48

Furthermore, a priority is associated with waiting for a communication:

• {wait to) comm via D! at t with prio p

The following general axiom expresses that if a statement is executing with a certain priority,

then no 10-statement is waiting to communicate or communicating with a lower priority:

Axiom 3.4 (Prio) ezec(t,pt) Apt> P2---> --.(wait to) comm via D! at t with prio p2
In the assumption/commitment formalism, we can now express in the assumption when

the environment of a process is waiting to communicate. With such an assumption we can

determine when the communication must take place, and derive the termination time in the

post-condition (assume the communication takes 1 time unit):

(A - (wait to) comm via D! at 51\ Vt,3 .:S t < 5: --.comm via D at t,

C - Vt, 3 .:S t < 5 : wait to D? at t 1\ Vt, 5 < t < 6 ; comm via D at t) :

{time= 3} D?z {time= 6}

Note that, due to the maximal progress constraint, a communication takes place as soon as

both process and environment are ready for input and, resp., output.

When adding timing primitives to the assertion language, Rule 3.4 for the parallel com

position StiiS2 has to be adapted slightly. Therefore observe that in the post-conditions

qt and q2 of, resp., St and s2 the special variable time denotes the termination time of
' ,

resp., St and S2 . Since these termination times will be different in general (and then

qt 1\ q2 could implies false), we substitute logical variables tt (resp. t2) for time in as

sertion qt (resp. q2) before the conjunction is taken. Hence Rule 3.4 is adapted as follows:

replace qt 1\ q2 in the post-condition of Sti!S2 by q, and add to the conditions above the line

qt[ttftime]l\ q2[t2/time]l\ time= maz(th t2)---> q because the parallel construct terminates
if both processes have terminated.

Example 3.8 Consider the following specifications (action d is used to represent an in

ternal actions which takes d time units and assume communications take one time unit):

(At = (wait to) comm via B? at 21\ Vt, 0 .:S t < 2 : --.comm via B at t 1\

(wait to} comm via D? at 6 1\ Vt, 3 .:S t < 6 : --.comm via D at t,

Ct - Vt, 2 < t < 3 : comm via B at t 1\ wait to D! at 3 Until comm via D 1\

[Vt : (3v : comm via D at t with value v) --+ v = 5]) :

{time= 0} St = < B!l; D!5; action 2 :> {time= 9}, and

(A2 - wait to D! at 3 Until comm via D 1\

[Vt: (3v: comm via D at t with value v)---> v = 5],

C2 - {wait to) comm via D? at 61\ Vt,3 .:S t < 6: --.comm via D at t 1\

Vt, 6 < t < 7 : comm via D at t) :

{time= 0} S2 =<action 6; D?z :> {time= 71\ z = 5}

Take for St II s2 the following assumption: A = (wait to) comm via B? at 21\ Vt, 0 .:S t < 2 :

--.comm via B at t, then clearly: A 1\ Ct ---> A2 and A 1\ C2 --+ At. The parallel composition

rule leads to (A,Ctl\ C2); {time= 0} St II s2 {time= 9/\:1: = 5}. I

49

For the uniprocessor parallel ~omposition Ill we follow the same scheme, with some

changes to deal with the ezec and req primitives. Observe that the commitments Ct and C2
in general express different properties of these predicates. Therefore rename ezec in Ct and

c2 by, resp., predicates et and e2. Since St Ill s2 executes iff sl or s2 executes, we add the

property ezec <-+ e1 V e2, which is an abbreviation of VpVt: ezec(t,p) <-+ e1(t,p) V e2(t,p).

Similar changes are made for the req predicate. This leads to the following conditions for

deriving a pair (A, C) for sl Ill s2 from pairs (At,Ct) forSt and (A2,C2) for S2:

4

• A[etfezec,rtfreq)/\ q t(e2/ezec,r2/req)/\(et Ve2 <-+ ezec)/\(rt Vr2 <-+ req)--+ A2, and

A[etfexec,rtfreq]l\ C2[e2/euc,rz/req]l\ (e1 V e2 <-+ ezec) 1\ (r1 V r2 <-+ req)---> At

Example Watchdog Timer

To illustrate our formalism with an example, consider the network pictured in Fig. 1. Process

alarm

Figure 1: Watchdog Timer Network

W is a "watchdog" process: its job is to ensure that processes Pt, ... , Pn are functioning

properly. Each P; indicates that it is functioning by sending a reset-signal on channel re;

at least every v; (say) time units. Process W is always ready to receive signals on any re;.

If there is no communication on a particular rek for vh or more time units, then, within K

(say) time units, W sends a warning on channel alarm. In section 4.1 we give a specification

for process W. Given specifications for the P;, we prove for P11!· · ·IIPniiW that one of the

P; is not functioning correctly iff W tries to send on channel alarm. This is verified using

our proof system without knowing the implementations of P1, ... , Pn and W. To demon

strate program design from a specification, ,in section 4.2 W is implemented as a parallel

composition Wtll· · ·IIWniiS and we show which specifications for W; and S are sufficient to

derive the specification of W. Next W; and S are, independently, implemented, satisfying

the corresponding implementations. In section 4.3, we show that P; can be implemented as

< prio 2 (B;) Ill prio 1 (WHi) :>where B; performs the real task of P; and WH; is a

watchdog handler which sends signal via re; as long as B; is functioning properly.

In this example we concentrate on the assumption-commitment reasoning. Henceforth

all specifications have pre-condition time = 0 and post-condition true.

50

4.1 Specification of the Watchdog Timer

In this section we give ~ formal specification for the watchdog timer W which tries to

communicate via channel alarm at a certain point of time only if, for some k, there was a

previous period of at least vk time units during which W is waiting for input via one of the

re;. Furthermore, if there is a waiting period for input via rek of vk time units, then, for some

constant K, W starts waiting to output on channel alarm until the actual communication
takes place. Hence we specify W as follows.

(Aw

cw
0

cw
1

-
-

-

true,

[wait to rek? during (t2 - Vk, t2) -->

3t0 $ t2 + K: wait to alarm! at t0 Until comm via alarm]!\

[{wait to) comm via alarm! at t1 -->

3k 3to $ t1 : wait to rek? during (t
0

- vk, t
0

)]) : W

By convention, free variables in such a specification (e.g. t1 and t
2

) are universally quantified.

We prove that W tries to send a message via alarm iff there is an error in one of the

processes P;. Therefore we use the following specification for the P;, using a predicate error;
which represents some erroneous behaviour of P;. For all i:

(AP' _ true,

cP; - [error; 3t Vtl, t-V;< tl < t: •{wait to) comm via re;l at tl]): P;

This asserts that there is an error in P; iff there exists a period of v; time units during

which P; is neither communicating via re; nor waiting to communicate via re;. Given our

specifications for P1, ... ,Pn and W, we try to prove that P11/· · ·1/Pn//W has commitment

3k : errork +-> 3t : {wait to) comm via alarm! at t. We can apply parallel composition n
times and obtain (true, cr 1\ cr 1\ Ai=l cP•): ... PI//·. ·1/Pn//W ...
First prove 3k: errork f-. 3t: {wait to) comm via alarm! at t.

3t: {wait to) comm via alarm! at t
--> {Cf}

3t 3k 3t0 $ t: wait to rek? during (to- vk, t
0

)
--> {definition}

3k 3to Vt1, to- vk < t1 < t0 : wait to rek? at t
1 --> {MP, Excl}

3k 3to Vt1, to- Vk < t1 <to : •wait to rek! at t1 1\ •comm via rek
at t1 --> {definition}

3k 3to Vt~, to - Vk < t1 < to : -,(wait to} comm via rek! at t
1 --> {CP•} 3k: errork

Next we try to prove 3k: errork--> 3t: {wait to) comm via alarm! at t.

From 3k : errork we obtain, by CP•, 3k3tVth t-vk < t1 < t : •(wait to) comm via rek! at t
1
.

Thus 3k 3t Vt1, t- vk < t1 < t : •comm via rek at t~, but with the current specification of

W nothing can be derived from this. The specification of W only expresses how W should

behave if it does something on any of the channels. But then W need not do anything;

even the simple program skip would satisfy its specification. Therefore we modify the
specification for W as follows:

51

(Aw _ true,

CW [(wait to) comm via alarm! at tl-->

1 - 3k 3to :5 tl : wait to rek? during (to- Vk, to)]!\

t . mm via rek at t1 -+ cw = [3t Vt t - vk < t1 < · •co

2 - 1> • l I at t Until comm via alarm]) : W :lto $ t + K : wa1t to a arm. o

fr cw Now the proof proceeds as follows, for all k, Note that C'{ follows om 2 •

errork
1

t t

< t < t. •(wait to) comm via rek. a 1 :Jtl;ftl,t- Vk 1 "

3t Vtl> t- Vk < tl < t : •comm via rek at tl .
{definition}

1
t t Until comm vza alarm

{Cf} 3to $ t + K: wait to alarm. a o

3 1} 3t : (wait to) comm via alarm! at to -+ {Lemma . o .

"f roperties of PIIIP211·. ·IJPniiW (and to discovermc~m-
This reasoning allows us to veri y p "fi f for the components, without knowmg

pleteness of the specification) using the spec! ca Ions

the implementations of these processes.

t• g the Watchdog Timer
4.2 lmplemen m . . = W II·. ·IIWniiS, where each

W a arallel composition, W - 1
Next we implement process as p . S via channel al; as soon as there

P. W.· signals process f
W.· is a watchdog timer for process i· • . "t p ocess S waits for a signal on any o

' . . . for at least v; time urn s. r .)
is no commumcation on re, . t d message on alarm (see Fig. 2 .

. f · al it tnes o sen a the al;'s; after receipt o a sign

-------- ,
w

alarm

I

~
Figur; ; ; ~~;l:~:~t~tlon Watchdog Timer .

W. d S are sufficient to derive the :1) 11 • specifications for i an . .
We prove that the o OWing th t W.· tries to commumcate via

"fi tion for W.· expresses a ' 0
specification for W. The spec! ca . ' . . during a period of v; time units. n ·r t commumcate via re, .
al· only if it has been wm mg

0
• • d . hich no communication v1a re;

' . . eriod of v; time-umts urmg w
the other hand, If there IS a p . . l· within a certain time bound K;.

h w:. "ll try to commumcate VIa a • occurs, t en • W1

(Aw' true,

_ [(wait to) comm via al;l at h -+

" < t . ait tore·? during (to - v;, to)]/\ ::Jto_ I•W '

< t < t. •comm via re; at t1 --> _ [3tl;ftl,t- Vk 1 "

3to $ t + K;: (wait to) comm via al;l at to]): W;

52

Let Ks be a constant (e.g. denoting the maximum duration of a communication). The

specification for S asserts that it tries to send a message via alarm only if there was a

preceding communication via op.e of the alk. If S does not try to communicate nor commu

nicates via one of the alk at a certain point of time, then within Ks time units it will wait

to communicate via alarm until the actual communication can be performed.

(A5 true,

Cf - [{wait to) comm via alarm! at t1 -> 3k 3t0 ::; t1 : comm via alk at t
0
]11

Cf _ [--. wait to alk? at t 2 -+

3to ::; h + Ks : wait to alarm! at t0 Until comm via alarm]) : S

We show that W1/J· • ·/IWn/JS satisfies the specification of W. We can take, by repeated

application of the parallel composition rule, the conjunction of commitments: 11?=
1
(Cf' II

C:V') II Cf 1111Cf. This implies Of as follows:

{wait to) comm via alarm! at t 1

-> { Cf} 3k 3ta S t1 : comm via alk at t3

-> {definition} 3k 3t3 S t1 : (wait to) comm via alk! at t
3

-> {Of•} 3k 3ta S tt3to S ta: wait to rek? during (to- vk, t
0

)

-> {to ::0: ta S t1} 3k 3to ::; t1 : wait to rek? during (to - vk, t 0)

Next we prove Cf.

3t Vth t - Vk < t1 < t : --.comm via rek at t1
-+ 3tz S t + Kk: {wait to) comm via alk! at t 2

-+ {definition} 3tz S t + Kk: wait to alk! at t 2 V comm via alk! at t
2

-+ {MP, Excl} 3t2 S t + Kk:--. wait to alk? at t 2

-+ {Of} 3tz S t + Kk 3to ::0: tz + Ks: wait to alarm! at t 0 Until comm via alarm

-+ {calculus} 3to S t + Kk + Ks: wait to alarm! at t0 Until comm via alarm

Hence the specification of W can be derived provided Kk + Ks::; K.

The processes W; and S can be implemented as: W; = *[re;? -> skip O delay v; -> al;!],

and S = [0i=l..nal;?-+ alarm!]. With the proof system given in [Hoo89] it can be shown

that these programs meet the specifications given earlier, provided: Ks is greater than the

maximum duration of a communication via al;, and K; is greater than the overhead for a

guarded command to start the execution of the delay branch in case of a time-out.

4.3 Watchdog Handlers on a Uniprocessor

In this section we give a possible implementation of the processes P;. We assume that each

P; is executed on a single processor and that it has to perform a certain task given by a

program B;. When B; is executing continuously for at least v; time units this is considered to

be an error. For instance, if B; models a keyboard handler then an error indicates that there

is no time left to store characters in a buffer. Such errors can be detected by a watchdog

53

handler W H; which executes in parallel with B; on the same processor and which tries to

send signals via channel re;. We prove that if WH; has a lower priority than B;, then WH;

will try to send via re; at least once every v; time units iff no error occurs in B;. Given

the specifications {orB; and WH; below, we show that~ prio 2 (B;) Ill prio 1 (WH;) ~

satisfies the specification of P; given earlier.

Suppose prio 2 (B;) satisfies the following specification, where the assumption expresses

that if any other statement on the same processor executes at a nonscheduling point (with

priority 00), then within a constant time K. no statement in the environment is executing

or some statement executes with a priority lower than 2.

(AB' _ exec(t,oo)-+ 3tht < t1 ::; t+Kc: --.exec(tt,p) V (exec(tt,p) lip< 2),

cf• - [error; 3t Vtl, t-V; <it < t : ezec(tl, 2)]11

cf• _ [3t Vt1, t-v; < t1 < t : exec(tt,P) -+error;]) :

prio 2 (B;)

The specification for the watchdog handler prio l(W H;) commits that it will not execute

continuously at nonscheduling points for more thanK. time units (hence satisfying AB•) and

if it waits to communicate, then it waits with priority 1. Finally, if it does not communicate

nor waits to co;mmunicate via re;, then it is not executing but requesting processor time.

(AWH; true,

ofH• - AB' II

c;vH; _ [(wait to) comm via re;! at t1 -> (wait to) comm via re;! at t1 with prio 1]11

CfH; _ [-.(wait to} comm via re;! at tz-+ --.exec(tz,p) II req(tz,p)]):

prio 1 (WH;)

To derive the specification for P;, we first prove

(A' _ VtVp: --.ezec(t,p),

C~ _ [error; -+ 3t Vit, t-v; < t1 < t : -.(wait to) comm via re;! at t1]II

c; _ [3t Vit, t-v; <it < t :--.(wait to) comm via re;! at t1 ->

(error; V 3t Vth t-v;< it< t: --.ezec(t1,p) II req(t1,p))]):

prio.2 (B;) Ill prio 1 (WH;)

In this formula, assumption A' expresses that no other statement is executing on the same

processor. To derive this specification, first consider assumption AB• and prove:

A'fet/ezec]ll cfH'[ezfezec]ll (el v ez +-+ ezec)-+ AB•.

From A'[e1 j ezec] which equals Vt Vp : --.e1(t,p), we obtain ez +-+ ezec. Then it is easy to see

that cfH'[e2fezec]ll (e2 +-+ ezec)-+ AB•. For the commitments we have to prove:

(Of' II 0f')(e1j ezec)ll c;vH; II CfR'[ez/ ezec, rzfreq]ll (e1 V ez +-+ ezec) II (r1 V rz H req) --+

(Ot II C~). First consider Ct:

54

---> {e1 ---> ezec} 3t Vt1, t - v;< t1 < t: ezec(tl! 2)

---> {Prio} 3t Vt1, t - v; < t1 < t : -.(wait to} comm via re;! at t1 with prio 1

---> {CfH;} 3t Vt11 t - v;< t1 < t: -.(wait to) comm via re;! at t1

Next prove C~:
3t Vt1, t-v; < h < t: -.(wait to) comm via re;! at t1

3tVh,t -v; < t 1 < t: -.e2(t11p) l\r2(t11p)

---> {calculus}

--->

3t Vt11 t - v; < t1 < t : (-.ezec(tl ,p) V e1(tl!p)) 1\ req(t1,p)

3t Vt1, t-v; < h < t: e1(tl!p) V

3t Vt11 t-v; < t1 < t: (-.ezec(t11 p) 1\ req(h,p))

error; V 3tVtl!t- v; < t1 < t: -.ezec(t1,p) 1\ req(tl!p)

Now given the specification for prio 2 (B;) Ill prio 1 (WH;), the rule for < ... ~
introduction allows us to drop the assumption Ai = VtVp: -.ezec(t,p), because the brackets

express that no other: processes are executing on the same processor. Furthermore, the

commitment is extended with VtVp: req(t,p)---> ezec(t,p) expressing that statements are

requesting execution time only if the processor is busy executing an other statement. Ob

serve that with this assertion -.ezec(t1,p) 1\ req(t1 ,p) inC~ implies false, and thus leads to:

3t Vt1, t-v; < t1 < t: -.(wait to) comm via re;! at t1 ---> error;

Hence we obtain the following specification for P;:

(AP; true,

cP; _ [error; <-+ 3t Vt1, t-v; < t1 < t : -.(wait to) comm via re;! at t1]) :

< prio 2 (B;) Ill prio 1 (WH;) ~

This is exactly the specification which has been used in section 4.1.

It can be shown that prio 1 (*(re;! ---> skip]) is a possible implementation of prio 1 (W H;),

provided K. is greater than the maximum duration of a communication via re;.

5 State of the Art and Conclusion

In particular for concurrent programs communicating via message passing, one can observe a

development from non-compositional proof methods which require the (final) program text

for their application, such as (AFR80,LG81], towards compositional theories, e.g. (CH81,

Sou84,Zwi88] (see (HdR86] for an overview of this development). Whereas these methods

verify only safety properties, with linear temporal logic (Pnu77,MP82J also liveness (progress)

properties can be verified. Compositional proof systems for temporal logic have been given

in (BKP84,NDG086].

All these methods are not designed to verify and specify real-time properties. Now an

obvious approach towards a verification theory for real-time programs is to adapt and extend

an already existing method which does not incorporate any notion of time. For instance,

in traditional linear temporal logic safety and liveness properties are expressed by means of

a qualitative notion of time (e.g. "eventually", "henceforth", "until"). In order to express

55

real-time constraints, extensions of this logic have been proposed (Koy89,BH81,SL87] which

also includes a quantitative notion of time (e.g. "eventually within 5 time units", "always

after 7 time units"). These extensions have been applied to the specification of real-time

communication properties of a transmission medium (KVR83] and the verification of local

area network protocols (SPE84]. A compositional proof theory for real-time distributed

message passing using an assertion language b~sed on real-time temporal logic has been

given in (HW89].

Similarly, real-time extensions have been formulated for other methods. Zwarico and

Lee (ZL85] have adapted Hoare's trace model (Hoa85] (with one invariant and a satisfaction

relation) to real-time. Nested parallelism is not allowed in their programming language, a

restricted version of sequential composition is used, and there is no explicit mechanism for

expressing time constraints. A review of formal description techniques for real-time systems

can be found in (JG88].

In this paper we have discussed a compositional proof system for real-time distributed

message passing in which assumptions can be made about the behaviour of the environment

in the style of (MC81,ZREB84]. This formalism has been used for the top-down design of a

watchdog timer, thus illustrating the verify-while-develop paradigm. The main idea of the

method is that suitable assumptions about the environment reduce the immense number

of possible behaviours of complex real-time systems. Although not dealing with real-time,

Misra and Chandy (MC81] have used the advantages of assumptions in the hierarchical design

and verification of distributed processes with message passing. They proposed a rule for

parallel composition and demonstrated their method on several examples. In (ZREB84] these

ideas are formalized, resulting in a compositional proof system for assumption/commitment

based specifications. The examples in (Oss83] show that the Misra-Chandy method is easy

to use and leads to simple and natural correctness proofs. Pandya (Pan88] extends this

formalism to asynchronous communication and progress properties.

Our method can be extended to various other communication mechanisms such as sev

eral versions of asynchronous communication and broadcast. For instance, we are working

on a real-time communication protocol for channels which can loose, reorder and duplicate

messages but which satisfy certain real-time constraints such as a maximum message life

time. We realize, however, that numerous programming language concepts are not treated.

This leaves us with a wealth of non-real-time methods which are possible candidates for

ramification with real-time.

References

[AFRSO]

[BH81]

[BKP84]

[CH81]

K.R. Apt, N. Francez, and W.P. de Roever. A proof system for Communicating Sequen
tial Processes. TOPLAS, 2:359-385, 1980.
A. Bernstein and P.K. Harter, Jr. Proving real-time properties of programs with temporal
logic. In Proc. 8th Symposium on Operating System Principles, pages 1-11, 1981.
H. Barringer, R. Kuiper, and A. Pnueli. Now you may- compose temporal logic specifi
cations. In Proc. 16th Symposium on Theory of Computing, pages 51-63, 1984.
Zhou Chao Chen and C.A.R. Hoare. Partial correctness of Communicating Sequential
Processes. In Proc. IEEE Int. Conf. on Distr. Computing Systems, pages 1-12, 1981.

56

(dR85]

(HdR86]

(Hoa78]
(Hoa85]
(Hoo89]

[HP85]

(HW89]

[JG88]

(Koy89]

(KSR+88]

(KVR83]

(LG81]

(MC81]

(MP82]

(NDG086]

(Occ88]
(OG76]

(Oss83]

(Pa.n88]

(Pnu77]
(SL87]

(Sou84]
(SPE84]

(ZL85]

(ZREB84]

(Zwi88]

W.P. de Roever. The quest for compositionality - a survey of assertion-based proof
systems for concurrent programs, Part I: concurrency based on shared variables. In
Proc. IFIP Working Conference 1985: The role of abstract models in computer science,
pages 181-207. North-Holland, 1985.
J. Hooman and W .P. de Roever. The quest goes on: a survey of proof systems for partial
correctness of CSP. In Current Trends in Concurrency, pages 343-395. LNCS 224, 1986.
C.A.R. Hoare. Communicating Sequential Processes. CACM, 21(8):666-677, 1978.
C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
J. Hooman. Compositional specification and verification of distributed real-time systems.
Technical 'report, Eindhoven Univ. of Technology, The Netherlands, 1989.
D. Hare! and A. Pnueli. On the development of reactive systems. Logics and Models of
Concurrent Systems, pages 477-498. NATO, ASI-13, 1985.
J. Hooman and J. Widom. A temporal-logic based compositional proof system for real
time message passing. In Parallel Architectures and Languages Europe. LNCS, 1989.
M. Joseph and A. Goswami. Formal description of real-time systems: a review. Research
Report RR129, Department of Computer Science, Univ. of Warwick, 1988.
R. Koymans. Specifying Message Passing and Time-Critical Systems with Temporal
Logic. PhD thesis, Eindhoven Univ. of Technology, The Netherlands, 1989.
R. Koymans, R.K . Shyamasundar, W .P. de Roever, R. Gerth, and S. Arun-Kumar. Com
positional semantics for real-time distributed computing. Information and Computation,
79(3):21Q-256, 1988.
R. Koymans, J. Vytopyl, and W.P. de Roever. Real-time programming and asynchronous
message passing. In Proc. 2nd PODC, pages 187-197, 1983.
G.M. Levin and D. Gries. A proof technique for Communicating Sequential Processes.
Acta Informatica, 15:281-302, 1981.
J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Transactions on
Software Engineering, 7(7):417-426, 1981.
Z. Manna and A. Pnueli. Verification of concurrent programs: a temporal proof system.
In Foundations of Computer Science IV, Distributed Systems: Part 2, volume 159 of
Mathematical Centre Tracts, pages 163-255, 1982.
V. Nguyen, A. Demers, D. Gries, and S. Owicki. A model and temporal proof system for
networks of processes. Distributed Computing, 1(1):7-25, 1986.
INMOS Limited. OCCAM 2 Reference Manual, 1988.
S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6:319,340, 1976.
M. Ossefort. Correctness proofs of communicating processes: Three illustrative examples
from the literature. TOPLAS, 5(4):620-640, 1983.
Paritosh Pandya. Compositional verification of distributed programs. Technical Report
CS-88/3 (Ph.D. Thesis), Tata Institute of Fundamental Research, Bombay, India, 1988.
A. Pnueli. The temporal logic of programs. In Proc. 18th FOGS, pages 46-57, 1977.
A.U. Shankar and S.S. Lam. Time-dependent distributed systems: proving safety, live
ness and real-time properties. Distributed Computing, 2:61-79, 1987.
N. Soundararajan. Axiomatic semantics for CSP. TOPLAS, 6(4):647-662, 1984.
D.E. Shasha, A. Pnueli, and W. Ewald. Temporal verification of carrier-sense local area
network protocols. In Proc. 11th POPL, pages 54-65, 1984.
A. Zwarico and I. Lee. Proving a network of real-time processes correct. In Proc. IEEE
Real-Time Systems Symposium, pages 169-177, 1985.
J. Zwiers, W.P. de Roever, and P. van Emde Boas. Compositionality and concurrent
networks: soundness and completeness of a proofsystem. Technical Report 57, Univ. of
Nijmegen, The Netherlands, 1984.
J . Zwiers. Compositionality, Concurrency and Partial Correctness: Proof theories for
networks of processes and their relationship. LNCS 321, 1988.

Session 2:

Process Algebra
Applications

