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Abstract

y" ,

°give a simple construction

Given an arbitrary odd positive integer n and arbitrary data {Yv}~=o'

{y"}n y'" yl" Meir and Sharma [2J proved that there exists a unique
v \1=0' 0' n'

deficient quintic spline function s E c3[0,nJ, with nodes at 0,1,2, ••• ,n,

such that s(\I) = y (v = O,l, ••• ,n), s"(v) = y" (\I = O,l, ••• ,n), s'''(O) =
v v

and s'" (n) = y"'. Using generating functions we
n

of this deficient quintic spline.



- 1 -

I. Introduction

Let there be given an arbitrary positive integer n. A deficient quintic

spline function sex), defined on the interval [O,nJ, is a function satisfy­

ing the following conditions:

3a) SEC [O,nJ;

b) In each interval [v,v+1J (v = 0,1, ••• ,n-1) s is a polynomial of degree

at most five.

In [2J Meir and Sharma proved that under various boundary conditions there

exists a unique deficient quintic spline function, that interpolates a given

function f and its second derivative at the nodes O,l, ••• ,n. This kind of

interpolation is called (0,2)-interpolation. The method of proof in [2J can

be used to derive an algorithm for the evaluation of the deficient spline

on the basis of the given data. This algorithm involves the solution of a

(2n) x (2n) system of linear equations.

The calculation of the deficient quintic spline we propose in this note is

based on a method due to Greville [IJ, who uses generating functions for

the construction of a natural cubic spline function interpolating a given

function at equidistant nodes. We remark that Greville's method is also

used by Metz [3J for the calculation of an interpolating spline function of

arbitrary odd degree. The advantage of the method prescribed in this note,

as compared to the one suggested in [2J, is that the deficient quintic

spline can be obtained explicitly, without the necessity of solving a

(2n) x (2n) system of linear equations.

2. The Euler-Frobenius polynomials

In what follows we will need a class of polynomials that is well known in

the theory of spline approximation. These polynimials, denoted by IT (t),
P

can be defined by the expansion

(2. I) IT (t) = (1 - t)P+1
p

00

L
j=O

(It I < 1; P = 0,1,2, ••• ) •
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It is easy to verify that they satisfy the recurrence relation

(2.2)

with TIO(t) = I.

From this relation one deduces that

TIo(t) TI 3 (t) 2
+ 4t += t

TI I (t) = TI 4 (t) = t 3
+ IltZ

+ lit + I ,
TI Z(t) = t + I , TIS (t) = t 4

+ Z6t 3
+ 66t2

+ 26t + 1 .
The polynomials TI (t) are called the Euler-Frobenius polynomials (cf. [4J,p
p. 22).

3. Statement of the problem

C' f Z 41mb "" '" '" h~ven a set 0 n + rea nu ers YO'YI' ••• 'Yn'YO' ••• 'Yn' Yo ' Yn ' t e
problem is to determine a deficient quintic spline function s in such a way

that

i) s (v) = Yv (v = 0, I , ••• ,n) ,

ii) s"(v) = y" (v = o , I , ••• ,n) ,
(3.1) v

iii) s'" (0) = y" ,
0

iv) s'" (n) = yIlt
n

Assuming that n is an odd positive integer, it is established in [2J that

the above problem (3. I) has a unique solution. As is remarked in [2J, the

boundary conditions iii) and iv) can be replaced by similar ones, without

destroying the existence and uniqueness of the solution. Our method of con­

struction as will be developed in section 4, also applies to these cases.

4. Construction of the deficient quintic spline function

s (x)(4. I)

It is clear that every deficient quintic spline function satisfying s (0) =YO'

s"(O) y" and s"'(O) = Y"' can be represented in the formo 0

1 2 I 3 n-I 4 S
= Yo + 2'Yox + '6Yo' x + yx + L (a. ° (x - j) + BJo (x - j) +)

j=O J +
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m
where. as usual. the truncated power function z+ is defined by

(z ~ 0)

(z < 0) •

Using (4.1) the second derivative of sex) is given by

(4.2) s"(x) = y"+ y"'x + 12a a
n-I n-I
I Ct

J
" (x - j ): + 20 L Bj (x - j) ~ •

j=O j=O

Now our problem is to determine the parameters y, Cto, ••• ,Ctn_I,BO, ••• ,Bn_I

in such a way that

rV

) •

y (v = 1, ••• , n)v
s"(v) = y" (v = 1, ••• , n)

s'" (n) = ;~"

Substituting x = k+ 1 (k = 0,1,2, ••• ) in (4.1) and (4.2), we obtain

s (k + 1) = YO + ..!. y" (k + 1) 2 + ..!. y'" (k + 1) 3 + y (k + 1) +
2 a 6 0

min(k~n-l) 4 5
+ 1. (Ct" (k + 1 - j ) + S " (k + 1 - j) )

j=O J J
(4.3)

s"(k+I)
min (k ~n- 1) 2

= y" + y'" (k + 1) + 12 L Ct" (k + 1 - j) +
o a j=O J

min(k n-I) 3
+ 20 2 S" (k + 1 - j) •

j=O J

Let H (t) denote the infinite seriesp

00

(4.4) H (t) = I (k+I)Ptk
(p 0,1, ••• ) ,

P k=O

that converges in the interior of the unit circle.
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We further introduce

00

lJ (t) I
(4.5) k=O

00

p (t) = I
k=O

(s(k+ I) -y -1. y"(k+ 1)2_1. y'''(k+ 1)3)tk
·02 0 6 0

(s"(k+ I) -y" -y'" (k+ I»tk
o 0

Since sex) is a polynomial of degree at most five for x ~ n, these series

also converge inside the unit circle.

Moreover, we denote by A(t) and B(t) the polynomials

(4.6) A(t) = B (t) =

As a consequenceof (4.3), (4.4), (4.5) and (4.6) one has the identities

In view of (4. I) there follows

s"' (x) =
n-I n-I

yo' + 24 La. (x - j )+ + 60 L 8
J
• (x - j):

j=O J j=O

(4.8)

Substituting x = n in this equation we obtain

n-I n-I
y~' - yO' = 24 L a.(n-j) + 60 L 8.(n-j)2.

j=O J j=O J

In this connection we note that the coefficient of tn-I in the expansion of

24H 1(t)A(t) + 60H2 (t)B(t)

is also equal to the right-hand side of (4.8).

From (4.7) if follows that

where

A(t)
wI (t)

wet)
B (t)
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20H3 (t) (0 (t) - yH I (t» - ~! (t)H
S

(t)

Taking into account formula (2.1) one gets

(4.9)

In order to calculate the parameter y in the representation (4.1), it turns

out to be convenient to write

(4.10)

where

WI (t) 240 (1 -8 2 2IT IIT
3

) 240(1 - t)-6 ,= - t) (3IT - =2

w2 (t) 240 (l -
-6 2 -4

= t) (2IT 1IT 3 - 3IT2) = -240(1 - t) ,

w
3

(t) = 12(1 - t)-8(SJI
Z

JI
4

- 2JI
I

JI
S

) = I2(I-t)-6(3t2 +I4t+3)

In view of this and formulae (4.9), (4.10) it folLows that

(4. 11) 24H
I
(t)A(t) + 60H

Z
(t)B(t) = 30 zy- 30~I - t) cr(t) +

1 - t + t

9tZ + 4Zt + 9
+ p (t) •

Z(I - t
Z)

As a consequence of formula (4.8) and the remark immediately following (4.8),

the coefficient of t n- I in the expansion of the right-hand side of (4.11)

must be equal to y~' - Yo'. Assuming that n is an odd positive int~ger, one

thus obtains an equation for the parameter y. Hence, in this case, y is uni-
n-I .quely determined. If, however, n is even, then the coefficient of t ~n the

expansion of (1 - t Z) is equal to zero and y cannot be evaluated. We note

that this phenomemen is completely in agreement with the existence theorem

as given in [2J. SO, from now on we will assume that n is an odd positive

integer.



- 6 -

Putting

1 - t
00

9t2
+\' ~ 42t + 9--= i a~t ,1 + t L _ t 2)R.=O 2(1

we easily obtain that

00

L
t=O

b tt
t

(4.12)

t
= 2(-1) , (R, = 1,2, •.• ) ,

9, b l = 42, b2 = 18, b
t

= b
t
- 2 , (t = 3,4, ••• ) •

By our above remarks and taking into account formulae (4.11), (4.12) and

the conditions (3.1), a simple calculation yields

(4. 13) y'" - y'"
n 0

n-l (n _ k) 2 (n _ k) 3
= 30y - 30 L (Yn-k -Yo - 2 y" - 6 YO')~ +

k=O 0

n-l
+ ~ L (y" . - y" - (n - k)y'O" )bk '

k=O n-k 0

which enables us to give an explicit expression for the parameter y. What

remains is the calculation of the parameters aO,al, ••• ,an-l,80, ••• ,8n-l'

Substituting x = 1 in (4.1) and (4.2), we get two equations for the two pa­

rameters aO and 80 , from which these parameters can be easily determined.

Next we substitute x = 2 in (4.1) and (4.2) to calculate the parameters a l
and 81, We continue this procedure up to and including x = n. This completes

the construction of the deficient quintic spline function.
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