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Chapter 1

Motivation

Imagine you are the production manager in a plant, where multiple standardized products
are produced in a make-to-stock fashion. You are responsible for the production plan for the
multi-stage production process. Within this process a single bottleneck machine dominates
the scheduling decisions, which implies that you only have to draw up the production plan
for this single machine as the production plans of upstream and downstream stages are
easily deduced from this plan.

However, the development of such a production plan is certainly not as easy as falling
off a log due to the fact that you are faced with the following complicating factors: finite
production capacity, significant setup times and costs, a high utilization of capacity, and
limited buffer capacity for end-products. Furthermore, demands, timing as well as amounts,
for future periods are not known in advance, rather only statistical knowledge on these
quantities is available. A final issue increasing the complexity of the planning process is
the fact that production and setup times are variable due to breakdowns of the machine,
human interference and the fact that raw material and tools are not always available.

As a production manager you probably get overwhelmed by the abundance of questions
you come across: What product should I produce? When should I produce this product? In
what quantity? Should I idle the machine? Should I keep stock for a product? And, if so,
how much? How much buffer capacity should I dedicate to each product? And many, many
more....

The example above is an illustration of the problem the present monograph focuses on:
the so-called stochastic economic lot scheduling problem (SELSP). The SELSP deals with
the make-to-stock production of multiple standardized products on a single machine with
limited capacity under random demands, possibly random setup times and possibly random
production times. The SELSP is a common problem in practice, e.g., in glass and paper
production, injection molding, metal stamping and semi-continuous chemical processes,
but also in bulk production of consumer products such as detergents and beers. Some
specific applications described in the open literature are a laminate manufacturing plant
(see Anupindi and Tayur [36]), a glass-containers manufacturing company (see Fransoo et
al. [102]), a large consumer products manufacturer (see Gascon et al. [110]), a producer of
plastic bumpers for cars (see Grasman et al. [114]) and an aerospace component supplier
(see Sox and Muckstadt [196]). The author has been involved in several industry projects,
among which two projects at a chemical company (see Winands et al. [P21] and Urlings
[211]), a plant in an oleochemical production environment (see Ruigt [185]) and a producer
of building materials (see Vught [215]). We touch upon these projects at various places in
the present monograph.

Although the ubiquity of the SELSP reveals itself in a wide variety of applications,
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2 Motivation

one can certainly observe common characteristics among these applications. The most
pronounced similarity is the fact that a high utilization of capacity is typically prevalent
due to either the magnitude of the setup times or the customer demands. A high utiliza-
tion of capacity is oftentimes desired since the production facility is very expensive and
produced products are commonalities, implying that a decrease in utilization would have
a considerable effect on the cost price and would force the company out of business (see,
also, Fransoo [101]).

In the SELSP, a production policy is needed which describes for each possible state of
the system whether to continue production of the current product, whether to switch to
another product or whether to idle the machine. The primary goal of such a production
policy is the optimization of a pre-defined performance measure. Common performance
measures in practice are, e.g., the average work-in-progress (WIP level), the minimization
of total costs (sum of holding, backlogging and setup costs), the fraction of time that is
lost due to setups, the average stock level or the waiting time of customers.

The development of such a policy for the SELSP is generally regarded as a challeng-
ing problem; the finite production capacity has to be dynamically distributed among the
products in order to be reactive to the stochastic demands, processing and setup times
(see Sox et al. [195]). The presence of setup times in combination with the stochastic en-
vironment are the key complicating factors of the problem. On the one hand, one aims for
short cycle lengths, and thus frequent production opportunities for the various products,
in order to be able to react to the stochasticity in the system. On the other hand, short
cycle lengths increase the setup frequency, which has a negative influence on the amount of
capacity available for production. Consequently, this effect hinders the timely fulfillment
of demand.

The objective of the present monograph is the development and the analysis of math-
ematical models that capture the behavior and main effects of a number of production
policies which are widely used in practical occurrences of the SELSP. Since the perfor-
mance of a particular production schedule is, of course, highly contingent on the specific
production environment in which it is deployed, we also pay attention to the identification
of the characteristics of the environments which impact the performance. Finally, we pro-
pose and analyze extensions of the policies which lead to improved performance without
losing the (organizational) advantages of the original policies.

The remainder of the present chapter is structured as follows. In Section 1.1 we give
a detailed problem description of the SELSP after positioning the problem in the classi-
cal field of multi-product single-machine scheduling problems. Section 1.2 is devoted to
the introduction of the class of policies on which the present study focuses, while the re-
search statements of the present study are described in Section 1.3. Section 1.4 shows the
contributions of the research in the present dissertation with respect to these statements.

1.1 Problem statement

The present section is divided into two parts. First, we position the SELSP in the
framework of multi-product single-machine scheduling problems and, subsequently, we give
a detailed problem description.

1.1.1 Multi-product single-machine scheduling problems

Scheduling production of multiple products on a single machine under tight capacity
constraints is one of the classic problems in operations research. There are many variations
of multi-product single-machine scheduling problems, but we may classify them by the
following three characteristics:

1. Presence or absence of setup times and/or costs. The most important impact of
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Figure 1.1: Multi-product single-machine scheduling problems.

setups on the production plan is that the products need to be produced in batches,
since otherwise costly capacity is wasted on setups. Furthermore, setup times make
it impossible to be completely responsive to the demand, as argued by Bourland [44].

2. Customized or standardized products. Since customized products can only be pro-
duced when there is a request for an order, these products have to be produced in
a make-to-order fashion. In case of standardized products one may choose a make-
to-stock production policy, because such products do not have to be produced to
customer specifications. It is obvious that standardized products, thus, give more
freedom in deciding when to make which product and in what quantity.

3. Stochastic or deterministic environment. In a completely deterministic environment
one can confine oneself to a rigid production plan which is repeated over and over
again. However, when the company has to be responsive to a stochastic environment
such a rigid schedule will not suffice anymore.

The Venn diagram in Figure 1.1 depicts the eight subproblems, which are created by
the above characterization. Of course, this diagram only provides a global classification
of multi-product single-machine scheduling problems. One can easily think of examples of
so-called hybrid systems (see, e.g., [P3], [27] and [94] for the combination of make-to-order
and make-to-stock).

As introduced earlier, the present research considers the production of multiple stan-
dardized products on a single machine with limited capacity and setup costs under random
demands, possibly random setup times and possibly random production times, depicted as
subproblem 8 in Figure 1.1: the SELSP.

1.1.2 Problem description

We consider a system with a single production capacity for multiple products, in which
there is unlimited stock space for each product and raw material is always available. De-
mands for the various products arrive according to stationary and mutually independent
stochastic processes. We focus on single-item demand processes, but all results in the
present monograph may be generalized to models with batch demand processes. Demand
that cannot be satisfied directly from stock is backlogged until the product becomes avail-
able after production. The individual products are produced in a make-to-stock fashion
with possibly stochastic production times. A possibly stochastic setup time occurs before
the start of the production of a product. Motivated by the nowadays’ efficient control of
the production process, often the assumption is made that the production and setup times
are deterministic. The setups are, furthermore, independent of the demand processes,
production times and other setup times. Finally, only one product can be produced at a
time.
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Remark 1.1.1 In many practical situations products are produced on a multi-stage pro-
duction line. If this line allows no interchangeability of products on other lines and if no
intermediate storage is possible, such a line can be regarded as a single machine and, thus,
the discussion of the present monograph fully applies (see Fransoo et al. [102]). ¤

1.2 The class of base-stock policies

In the past a plethora of policies for the SELSP has been developed and analyzed (see
Chapter 2 for a classification and survey). The present section is devoted to the class of
policies analyzed in the present study, the so-called fixed-sequence base-stock policies.

1.2.1 Fixed-sequence base-stock policies

In many firms encountering the SELSP, the following class of fixed-sequence base-stock
policies is used for the control of the inventory of each product. We distinguish N products,
which are numbered 1, 2, . . . , N . Subsequently, to each individual product a stock point
is assigned which is controlled by a base-stock inventory policy. Under such a policy, for
each product there exists a pre-defined desired number of items in stock, the base-stock
level bi, i = 1, 2, . . . , N . When demand arrives at a stock point and the requested product
is on stock, the demand is immediately fulfilled. Otherwise, demand is backlogged and
fulfilled as soon as the product becomes available after production. A production order,
also called replenishment order, is placed immediately after demand for the corresponding
product has arrived. These production orders queue up at the production facility, where
each product has its own designated queue.

On the strategy deployed by the production facility, the following two restrictions are
imposed,

1. The products are produced according to a fixed production sequence;

2. When the machine starts production of a product, it will continue production until
either the base-stock level has been reached or a second local criterion, i.e., only
dependent on the stock level of the product currently setup, has been fulfilled.

Examples of local criteria are that only a limited number of items can be produced each
production run or that the time for each production run is limited. Due to indistinguisha-
bility of the replenishment orders at the product facility (and the inability to measure the
production time of an order before the start of production), one does not to have to worry
about the scheduling discipline within the queue and, consequently, the first come first
served (FCFS) discipline is assumed in the sequel. The combination of stock points and
production facility is visualized in Figure 1.2.

The choice of the above class of policies is motivated by the following considerations.
Firstly, this class of policies is widely used in practice in a wide variety of settings (see,
e.g., Federgruen and Katalan [91; 93]). Secondly, the single production capacity that we
consider may be a bottleneck in a larger multi-stage production process. Fixing the pro-
duction sequence facilitates the coordination with downstream and upstream stages and
leads to stability on the work floor, see also Bourland [44]. Thirdly, the fixed sequence is
often imposed by sequence-dependent setup times implying that only a single sequence can
be considered for implementation. Fourthly, base-stock policies are easily implementable
and can effortlessly be monitored with minimal informational requirements, i.e., only local
information of the product currently produced is needed (see, also, Chapter 2). Fifthly,
fixed-sequence base-stock policies can be easily communicated to people on the work floor
without having to resort to arcane terms. Sixthly, base-stock policies are natural gener-
alizations of the cyclic policies advocated for deterministic cyclic problems (see, also, [91;
93]), which adds to the willingness of production managers to actually implement them on
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Figure 1.2: The fixed-sequence base-stock system.

the work floor. Finally, buffer capacities for end-products are often limited and since the
net stock level cannot exceed its base-stock level, such a buffering constraint is satisfied by
definition.

Example 1.2.1 A classical example of sequence-dependent setup times is a machine pro-
ducing paint of all sorts of colors, which has to be cleaned between production runs of
different colors. These cleaning times are highly dependent on the production sequence,
e.g., producing a light color immediately after a dark one induces a huge cleaning time. In
such settings, the production sequence is fixed to be the one minimizing total setup time
in a cycle. ¤

1.2.2 Analysis of fixed-sequence base-stock policies

For given values of the base-stock levels bi the steady-state net stock level Ni for product
i is given by, for i = 1, 2, . . . , N (see Figure 1.3),

Ni = bi − Li, (1.1)

where Li denotes the steady-state shortfall (the number of outstanding production orders
at the production facility) of product i. Notice that the net stock level of a product becomes
negative, when the shortfall of this product is larger than its base-stock level.

One can verify that the shortfall of a product is independent of the base-stock levels
implying that the performance of the production facility can be analyzed independently of
these base-stock levels. Moreover, the shortfall distribution of a product at the production
facility is identical to the queue length distribution of the corresponding queue in a so-called
polling system. The arrival, service and setup time processes in such a polling system are
identical to the demand, processing and setup time processes in the SELSP, respectively.
For given base-stock levels, the evaluation of a fixed-sequence base-stock policy is, therefore,
tantamount to evaluation of the corresponding polling system. Polling systems, which are
the central queueing models of the present monograph, are formally defined below. For a
picture of a polling system we refer to the area within the dotted box in Figure 1.2.

A typical polling system consists of a number of queues, attended by a single server in a
fixed order. Customers arrive at all queues according to independent stochastic processes,
while the service times at each queue are independent, identically distributed random
variables. When the server starts service at a queue, a setup time is incurred. The
successive setup times at a queue form identically distributed random variables. There
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Figure 1.3: Example of the relation between base-stock level, net stock level and shortfall.

is a huge body of literature on polling systems that has continued to grow since the late
1950s, when the papers [155; 156] concerning a patrolling repairman model for the British
cotton industry were published. Polling systems have a wide range of applications in
communication, production, transportation and maintenance systems. Surveys on polling
systems and their applications may be found in [203; 205; 206] and in [151]. The reader is
referred to Chapter 2 for an overview of results on polling systems most relevant for the
present study.

The analysis of polling systems can be done via various techniques, the main approaches
being simulation and mathematical analysis. The present monograph makes mainly use of
the latter because of the following considerations. Firstly, in the past people have observed
an inefficiency of simulation techniques for polling systems, see, e.g., Blanc [41], which
particularly reveals itself in the computation of queue length distributions as frequently
needed throughout the present monograph. Secondly, in the SELSP a whole plethora
of parameters influences system performance, whereas the production manager desires,
nonetheless, to quantify the impact of each individual parameter separately. Mathematical
analysis seems, therefore, the appropriate tool for evaluation and optimization, which is
confirmed by the fact that many of the analytic results obtained in the present monograph
explicitly reveal the impact of the individual input parameters on the performance measure
of interest.

1.2.3 Construction of fixed-sequence base-stock policies

To introduce a fixed-sequence base-stock policy on the work floor, the production man-
ager has to decide on the following three options:

1. How many items of each product should be produced per production run (lot-sizing
decision)?

2. In which order and frequency should the products be produced (sequencing deci-
sion)?

3. What are the values of the optimal base-stock levels (base-stock decision)?

Below, these decisions are discussed in more detail.

Lot-sizing decision. This decision basically determines the length of the production
runs and is, typically, made according to one of the following disciplines:
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• exhaustive policy: when the machine starts production of a product, it will continue
production until a pre-defined base-stock level has been reached;

• gated policy: when the machine starts production of a product, it will continue
production until a production batch has been completed the size of which equals the
difference between the base-stock level and the starting net stock level.

The main drawback of these traditional policies is the inability to prioritize among the
different products for improving total system performance. More sophisticated lot-sizing
policies offering this possibility, through bounding the lengths of the production runs, are

• quantity-limited policy: when the machine starts production of a product, it will
continue production until either the base-stock level has been reached or a maximum
number of items has been produced;

• time-limited policy: when the machine starts production of a product, it will continue
production until either the base-stock level has been reached or a maximum amount
of time has been spent on production.

In case of - practically relevant - deterministic processing times the quantity-limited and
time-limited policy are identical to each other. In cases where the quantity and time limits
equal infinity both policies are equivalent to the exhaustive service strategy.

Sequencing decision. This decision decides on the order and frequency in which prod-
ucts are produced. For example, if products A, B and C have to be produced a possible
production sequence would be A-B-A-C. A sequence in which each product is produced
exactly once in each cycle is called a pure rotation sequence, e.g., C-A-B. Unfortunately,
in practice the production manager often has no rights to decide on the production se-
quence, since this is either imposed by the downstream and upstream stages or by strongly
sequence-dependent setups.

Base-stock decision. The first two decisions determine the production strategy and,
given these decisions, the shortfall distributions can be computed by analyzing the queue
length distributions in the corresponding polling system. Since the control of the produc-
tion facility is independent of the net stock level and the base-stock levels, optimization of
the base-stock levels can be done separately from the analysis of (the shortfall in) the pro-
duction facility. That is, under the assumptions of linear setup costs Ki and linear holding
hi and backlogging pi costs, the total expected costs Z(·) may be written as a function of
the vector of base-stock levels b, in the following way (for a pure rotation sequence)

Z(b) =

∑N
i=1 Ki

E[C]
+ E[

N
∑

i=1

ci (Ni)] =

∑N
i=1 Ki

E[C]
+ E[

N
∑

i=1

ci (bi − Li)], (1.2)

with

ci(x) =

{

hix, x ≥ 0,
−pix, x < 0,

(1.3)

and where E[C] represents the mean cycle length which is dependent on the sequencing
decisions, but which is independent of the base-stock and lot-sizing decisions. Now, the
optimal base-stock levels can readily be obtained by solving standard newsboy problems
using the computed queue length distributions (see Federgruen and Katalan [91; 92; 93]).
That is, the optimal base-stock levels b∗i are given by, for i = 1, 2, . . . , N ,

b∗i = min{n ∈ N0|P [Li ≤ n] ≥ pi

pi + hi
}. (1.4)
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For more information on newsboy problems, see, e.g., Zipkin [226]. In the remainder of
the present monograph, it is assumed that the base-stock levels are optimized according
to the above procedure.

The focus of the current research is mainly on the lot-sizing decision: What should the
length of the production run be? Within the context of this lot-sizing decision the present
monograph is, in particular, concerned with the evaluation and comparison of the tradi-
tional exhaustive and gated policies, on the one hand, and the more sophisticated quantity-
limited policy, on the other hand. Evaluation and optimization of these lot-sizing disciplines
are achieved through state-of-the-art analysis of several polling systems. It is important
to remark that the lot-sizing and sequencing decisions made by the production manager
in the implementation of the base-stock policy translate directly in the physical lay-out of
these polling systems.

1.3 Research objectives

The present section discusses the two main research objectives studied. These objec-
tives distinguish themselves in the lot-sizing policy analyzed, i.e., the exhaustive and gated
policies, on the one hand, and the quantity-limited policies, on the other hand. Foregoing
the survey of polling systems in Chapter 2, we want to highlight one of the most remark-
able results in the polling literature to put our objectives in a proper light. That is, there
exists a striking dichotomy in complexity between different polling systems, independently
illuminated by Fuhrmann [104] and Resing [182]. If the lot-sizing discipline satisfies a
certain branching property (as for the exhaustive and gated discipline), the polling system
allows for an exact analysis by rather standard methods. Exact means that under the as-
sumption of Poisson arrivals the generating functions of the queue length distributions can
be expressed as infinite products, implying that even calculation of average queue lengths
involve the solutions to sizeable systems of linear equations. If this branching property
is, however, violated (as for the quantity-limited and time-limited lot-sizing policy), the
corresponding polling systems can not be, or at least have not been, analyzed exactly in
the general setting. Since the quantity-limited service policy is on the wrong side of the
borderline, one has to resort to approximations for evaluation, let alone for optimization.

The first research objective deals with one of the most important performance measures,
the exact evaluation of the average WIP level for each product (equalling the mean queue
length in the corresponding polling system) under the most used lot-sizing policies, i.e.,
the exhaustive and gated strategies.

Research objective 1. Development of a unifying exact framework for the analysis of
the exhaustive and gated lot-sizing policies in terms of the average WIP levels under the
assumption of Poisson demand processes. ¤

Unifying in this context means that the framework should not only be able to compute
the marginal average WIP levels, but should also be able to quantify the impact of the
high utilization of capacity observed in practice (due to either the presence of setup times
or the customer demands). It is shown that a major drawback of the exhaustive and
gated lot-sizing policy is, however, that a single product, for which a high demand arrives
in a certain period of time, may occupy the machine for quite a while. The impacts of
this phenomenon on the other products are stock outs, highly variable cycle lengths and
high costs. The quantity-limited lot-sizing policy circumvents this drawback and offers the
possibility to the manager to control both the setup frequencies and the production runs
(and, thus, the cycle lengths). One would expect that in this way the costs incurred at
the machine can be significantly decreased. Startlingly, the quantity-limited policy has
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received no attention at all in the context of production-inventory systems, although this
policy has won its spurs in the field of communication systems in the past (see, e.g., [43;
63]).

Evaluation of the quantity-limited lot-sizing policy is, thus, of great interest both for
practitioners and theorists and, therefore, the following research objective is introduced.

Research objective 2. Development of an efficient and accurate approximate tool for
the analysis of the quantity-limited lot-sizing policy under the assumption of general de-
mand processes. ¤

We require that this approach, besides evaluating the performance of the quantity-
limited policy, can also be applied to offer, albeit in an idealized mathematical setting, a
preliminary exploration of an important managerial issue: What is the gain in performance
of bounding production runs by means of the quantity-limited lot-sizing policy in multi-
item production-inventory systems? Furthermore, it is important to stress that additional
(qualitative) advantages of bounding the production runs are the facilitation of preventive
maintenance and cleaning of the machine. Finally, the potential gains of the quantity-
limited policy can be achieved without conceding to the (organizational) advantages of the
class of base-stock policies as described in Section 1.2.

If cost benefits of the quantity-limited policy are supposedly high, such a tool is desired
since then an accurate and efficient evaluation method contributes to the implementation
of this policy on the work floor. In this respect, we recall that the exhaustive policy is a
special case of the quantity-limited policy with an infinite quantity limit and may, therefore,
ideally be evaluated within the same tool.

1.4 Contributions of the monograph

The present section describes our contributions with respect to the introduced research
objectives. We present these contributions from the viewpoint of fixed-sequence base-stock
policies. As argued before, the analysis of fixed-sequence base-stock policies is, essentially,
tantamount to the analysis of polling systems. An overview of the existing literature on
polling systems is given in Chapter 2, where we also relate our contributions to this field.

To put our contributions in a proper light it is important to remark, foregoing the survey
on policies in the SELSP in Chapter 2, that in the context of fixed-sequence base-stock
policies a series of papers by Federgruen and Katalan [91; 92; 93] has been published in
the past. However, these papers deal with an approximate analysis of the exhaustive and
gated lot-sizing policies and leave the quantity-limited policy untouched.

Ad research objective 1. In Chapter 3 an exact Mean Value Analysis (MVA) frame-
work for the exhaustive and gated lot-sizing disciplines is presented, which computes the
average WIP levels by exploiting direct mean value arguments. The merits of this MVA
framework are its intrinsic simplicity and its intuitively appealing derivation. As a con-
sequence, MVA may be applied, both in an exact and approximate manner, to a large
variety of models. Within this framework the individual WIP levels can be efficiently ob-
tained via the solution of a sparse set of linear equations, whereas for the total WIP level a
closed-form expression is presented. The MVA framework allows the evaluation of both the
exhaustive and gated discipline, but it is important to stress that the exhaustive policy is
most relevant from a practical point of view, implying that throughout most quantitative
and qualitative investigations are focussed on this discipline.

The MVA framework gives rise to explicit closed-form expressions, allowing for back-of-
the-envelope calculations, for the individual WIP levels in the asymptotic regime of high
utilization of capacity due to either customer demands or setup times. These expressions
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explicitly show the impact of all input parameters, yield insensitivity and monotonicity
properties and unearth the (dis)similarities between the two sources of high utilization.
In particular, it is shown that the exhaustive and gated lot-sizing disciplines display un-
desirable behavior if the utilization rate is high due to customer demand, which reveals
itself, for example, in difficulties in the coordination between stages within the production
process.

Motivated by the practical significance of the large setup times regime, we study this
regime in more detail for a general class of branching-type lot-sizing policies by using
more advanced techniques. The most remarkable result of this analysis is the fact that
the stochastic system converges to its deterministic counterpart in the limit of increasing
setup times implying that the sequencing decision is essentially tantamount to the one
in the deterministic counterpart. The latter problem has been extensively studied in the
seventies and eighties (see the survey of [86]). Moreover, a reasonable hypothesis, which
may be formulated from this analysis, is that, in practice, production managers rely more
on deterministic production strategies in production environments with significant setups
than they do in environments with small setups in which stochastic (dynamic) policies seem
to be more appropriate. Finally, the fact that the stochastic system becomes deterministic
in the limit also implies that the exhaustive lot-sizing policy is optimal in terms of the WIP
levels and that, thus, production runs should not be bounded in systems with extremely
large setup times. For general settings, the latter conclusion does not always hold which
we analytically show in the analysis of the second research objective. Finally, a challenging
topic for further research related to our first research objective would be the classification
of a general class of lot-sizing disciplines for which the MVA framework is applicable.

Ad research objective 2. In order to gain insights into the impact of bounding pro-
duction runs and not to be diverted by other effects, Chapter 4 starts the analysis with a
basic occurrence of the SELSP in an exact way. That is, we analyze a two-product sys-
tem, in which a high-priority product is produced exhaustively and a low-priority product
according to the quantity-limited service strategy. Ungainsayable, the two-queue model
is, however, also of interest in its own right: Production applications, in which only two
items have to be produced on a single production facility, are certainly not inconceivable.
In such settings, it is quite natural to bound production runs to provide different service
to the different items in order to improve system performance. In this model, we observe
significant cost reductions by application of the quantity-limited policy, compared to the
standard exhaustive policies, indicating the potential of the quantity-limited service disci-
pline as lot-sizing rule in production environments. Foregoing the numerical evaluation in
Chapter 4, we cite the example below which is one of the illustrative cases studied in this
chapter.

Example 1.4.1 Consider a system with a single production capacity for two products, in
which demands for the two products arrive according to Poisson processes with rate 0.375
and in which production and setup times for both products are exponentially distributed
with means 1 and 0.25, respectively. Suppose that product 1 is a product with high
costs, for which an exhaustive base-stock policy is implemented, whereas product 2 is of
secondary importance compared to the first product and for which a quantity-limited base-
stock policy is used. It turns out that the total costs in case the optimal quantity limit for
product 2 is implemented are 35% lower than the total costs which would be incurred if a
standard exhaustive policy were implemented for both products. ¤

The results obtained in the two-product case provide us with theoretical evidence that
the quantity-limited strategy may lead to considerable cost reductions compared to the
widely used (standard) exhaustive policy. Therefore, in Chapter 4 we develop an efficient
and accurate approximate decomposition approach for the evaluation of quantity-limited
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lot-sizing policies under the most general imaginable assumptions, i.e., general number of
products each with their own quantity limit in an environment with generally distributed
arrival, service time and setup time distributions. The accuracy of the approximation
scheme is verified by means of an extensive simulation study. The developed approxima-
tion approach turns out to be accurate, robust and computationally efficient. Therefore, it
allows us to probe what happens should, for example, processing times change or demand
for a product increase. Due to the low computational complexity of the developed proce-
dure, it can be used in a large-scale study comparing the quantity-limited and exhaustive
lot-sizing policies in the context of the SELSP. From an application point of view, it is
important to remark that the algorithm can almost directly be applied to the lost sales
case as well. Finally, since the approach is generic, it may serve as a basis for other types
of queueing models that can be solved using the same technique.

The last part of Chapter 4 is devoted to a numerical simulation study assessing the
quality of the quantity-limited lot-sizing policy as tool for prioritizing among products. It
is shown that the quantity-limited lot-sizing policy outperforms the standard exhaustive
policy leading to improvements in system performance for a variety of environments. In
particular, the quantity-limited policy proves its worth in asymmetric production systems.
Concluding we can say that the present monograph makes important methodological con-
tributions in the evaluation of quantity-limited lot-sizing policies, optimization of such
policies is however left for further research (although we present some explorative, yet
preliminary, results in Chapter 4).

Finally, we should keep in the back of our mind that the results of the present mono-
graph are certainly not limited to the described production setting, but may be used in the
design and optimization phase of many other fields of application such as communication,
maintenance, manufacturing and transportation as shown by the author, for example, in
the papers [P4; P9].

We wish to end with an overview of the reports and papers upon which this thesis is
largely built. Chapter 2 is partially based on the reports [P11; P12; P13; P21]. Chapter 3
stems from the journal papers [P5; P9; P10; P15], the conference papers [P4; P16] and the
report [P17]. The basis of the material in Chapter 4 are the journal papers [P1; P8; P18],
while some initial material was presented in the conference paper [P14]. The final chapter
is based on the journal paper [P3; P6] and the reports [P2; P7].
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Chapter 2

Literature review

The present chapter is divided into two parts. Firstly, we present a classification and survey
on the policies studied so far for the SELSP (see Subsection 2.1). Secondly, we give an
overview of the results on polling systems most relevant for the present monograph (see
Subsection 2.2).

2.1 The stochastic economic lot scheduling problem

The aim of the present section is to give an overview of the research on the SELSP
along with a comprehensive list of references. Therefore, we describe the most critical
elements of a production plan, i.e., the sequencing and the lot-sizing policy. Based on
these elements we propose a classification of the production strategies for the SELSP. The
above two decisions are, of course, not the only decisions which ought to be made. The
production manager has, for instance, to decide on the idle times between the production
runs and the safety stocks as well. However, the sequencing and the lot-sizing decisions
can be seen as the most critical ones.

The present section is a strongly abridged version of the literature review in the paper of
Winands et al. [P13]. [P13] also contains, apart from a more extended literature survey, a
comprehensive list of open problems in the SELSP, a thorough discussion of the relationship
between the SELSP and its deterministic counterpart, suggestions for alternative policies
not yet studied in the context of the SELSP and a brief overview of the recognition of the
existence of the SELSP both in practice and in the academic society. For more details, the
interested reader is referred to [P13].

Production sequence. The first critical element in a production plan is whether a
fixed production sequence is used or not. A fixed production sequence means that there
exists a pre-defined order and frequency for the production of the individual products. For
production strategies using a fixed production sequence an additional classification can be
made, i.e., whether or not a pre-defined fixed cycle length - which is the time between two
successive completions of the production sequence - is used.

Thereupon, the production strategies for the SELSP can be divided into the following
three categories:

• Dynamic production sequence;

• Fixed production sequence in combination with a dynamic cycle length;

• Fixed production sequence in combination with a fixed cycle length.

13
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Figure 2.1: Classification of the literature.

Lot-sizing policy. The second critical element of a production plan is the deployed
lot-sizing policy, where we can distinguish two general classes of such policies:

1. Global lot-sizing policies: lot-sizing decisions may depend on the complete state
of the system, i.e., stock levels of all the individual products and the state of the
machine;

2. Local lot-sizing policies: lot-sizing decisions only depend on the stock level of the
product currently setup.

Classification of the literature. By using the above two elements of a production plan
a classification of the strategies for the SELSP can be made, which is depicted in Figure
2.1. Based on this classification, we review in the next subsection the existing literature
on the SELSP. Surprisingly, until the end of the seventies the SELSP received almost no
attention in the literature. Most likely, this lack of attention was not caused by an absence
of practical interest, but by the intrinsic analytical complexity of the problem. To illustrate
this feeling we cite here the following conclusion drawn by Vergin and Lee [213] in 1978
concerning the state of the research on the SELSP at that time:

The literature is almost completely void of not only the development of ana-
lytical models, but even of discussion of the problem. A thorough review of the
production scheduling and inventory management journals and books would
almost suggest that the scheduling problem does not exist. Yet the multiple
product single machine system is quite common in industry and demand is
inevitably stochastic.

Due to this late start of the research on the SELSP, several interesting research questions
are still unanswered as we see in the survey in the next subsection.

2.1.1 Strategy classes for the SELSP

2.1.1.A Dynamic production sequence. The papers concerning the two types of
dynamic production sequence policies, i.e., using a global or a local lot-sizing policy, are
described below.

Global lot-sizing policy. Sox and Muckstadt [196] propose a finite-horizon discrete-
time stochastic optimization model under the assumption of the availability of overtime and
deterministic production and setup times. They propose a method for finding optimal or
near-optimal solutions applicable for small problems by using a Lagrangian decomposition
algorithm. Sox and Muckstadt [196] assume that a setup for a product is incurred even if
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the same product was produced in the preceding period. They argue that this assumption
can easily be relaxed at the expense of increased computation times.

Qiu and Loulou [179] present a multi-product model with limited stock space for each
product under the assumption of backlogging, Poisson demand and deterministic produc-
tion and setup times. They model the problem as a continuous-time semi-Markov decision
problem with an infinite horizon, where the state space consists of the individual stock
levels and the status of the machine. By using the successive approximations technique
a policy can be derived on a truncated finite state space, which is then extended to a
near-optimal policy for the original model. It is shown that a local lot-sizing policy is,
in general, not optimal. Furthermore, Qiu and Loulou [179] conclude that for problems
consisting of more than two products, their solution procedure cannot be both efficient
and accurate due to the notorious curse of dimensionality. They suggest using composite
products in these cases as in Graves [115]. Though they state that preliminary results
indicate that this aggregation of products is promising, no results have appeared in the
open literature yet.

Finally, we want to mention work of Karmarkar and Yoo [127], in which the SELSP
is also studied under the assumption of backlogging, deterministic production and setup
times. They present a formulation of a discrete-time stochastic dynamic programming
problem over a finite horizon under the assumption of time-varying stochastic demand.
Several Lagrangian relaxations of the problem are introduced, which can provide lower and
upper bounds for the original problem. The results on small-scale problems are, however,
not very encouraging.

Local lot-sizing policy. Production strategies that fall within this class are often of
the so-called independent stochastic control type (see, e.g., Sox et al. [195]). This means
that the lot-sizing decisions are made locally according to standard single product inven-
tory control strategies such as (s, Q) or (s, S) policies, whereas the sequencing decisions
are dynamically resolved by using priority rules. In particular, Zipkin [224] studies a
continuous-time model under the assumption of backlogging, Poisson demand processes
and generally distributed setup and production times. The individual lot-sizing policies
are of the (s, Q) type, while the batches for the various products are produced in a first
come first served (FCFS) order. Zipkin [224] makes the additional assumption that the
production time of a batch is (nearly) independent of the size of this batch. He derives
optimal batch sizes and reorder points with respect to total costs.

Winands et al. [P21] extend the analysis of [224] to general (renewal) arrival processes,
multiple parallel lines and different service measures. Furthermore, [P21] does not make the
assumption of the production times being independent of the batch sizes. [P21] develops
a fast, accurate and easy-to-implement algorithm for the evaluation and optimization of
the studied policy. The approach is implemented as a decision support tool in a chemical
plant in Germany, which enabled them to make recommendations on the required inventory
levels and tank capacities for the plant. By doing so, they identify major opportunities
for improvement of current practice. Encouraged by this first positive application, the
company intends to apply the tool inside and outside Germany. The case study is of
particular interest for the present monograph since it shows a successful implementation of a
queueing algorithm in practice, in all respects comparable to the tool developed in Chapter
4 for the quantity-limited lot-sizing policy, and illustrates how to take full advantage of
the idiosyncrasies of a specific practical setting in such implementations.

Altiok and Shiue [29; 30; 31] study a model for the SELSP, in which an (s, S) policy is
implemented for the lot-sizing decisions. The sequencing decision is made based on either
one of the following two priority rules. The first one is a standard priority rule, which states
that when the inventory position of the product currently setup reaches its base-stock level,
the machine starts production of the highest priority product with inventory position below
its reorder point. The second priority rule is a cyclical one, which serves the products with
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stock below their reorder points in a cyclical manner. In the case of backlogging, Altiok and
Shiue [29] present an approximate analysis for the case of three products and in Altiok and
Shiue [31] the extension is made to the N -product case. More specifically, an approximate
iterative procedure is developed, which assumes independence among the stock levels of
the products. In Altiok and Shiue [30], an exact analysis is performed for the lost sales
case under the additional assumptions of phase-type distributed production times and
exponentially distributed setup times.

Paternina-Arboleda and Das [178] analyze a base-stock policy, which works as follows: if
the product currently being produced reaches its base-stock level, one is allowed to switch
to another product or to keep the machine idle until a demand arrival epoch when switching
may be worthwhile. For a small test bed, some improvements in system performance are
reported compared to fixed-sequence base-stock policies. The methodology used in [178]
can be summarized as a simulation optimization approach using reinforcement learning.
A major drawback induced by this approach is that the resulting policy is very hard to
implement; [178] (partially) solves this implementation problem by applying data mining
classification techniques.

Brander et al. [55] present simulation results to assess the quality of deterministic lot-
sizes in stochastic environments, which show that the determination of lot sizes is of less
importance than, among other things, the sequencing decision. In [55] the latter decision is
based on the run-out times of all products, where the run-out time of a product represents
the expected time until this product runs out of stock.

2.1.1.B Fixed production sequence with a dynamic cycle length. In the context
of fixed sequence strategies using a dynamic cycle length, we distinguish strategies using a
global lot-sizing policy or a local one. These two types of strategies are discussed in more
detail below.

Global lot-sizing policy. Markowitz et al. [157] propose a model, in which the demands
are allowed to follow general renewal processes. At each point in time, the production
manager has the following options: produce the product currently setup, idle the machine
or switch to the next product in the production sequence. Markowitz et al. [157] study the
cases of setup times and costs separately, but the combination can be analyzed without
much additional effort. Motivated by well-known heavy-traffic limit theorems, a time-scale
decomposition is made. By doing so, the SELSP can be approximated by a diffusion control
problem. This problem can be solved explicitly for the setup cost case, whereas one has
to resort to an algorithmic procedure in the setup time case. The paper is completed with
a numerical evaluation of the resulting policies, in which, among others, a discrete-event
simulation is used. In Markowitz and Wein [158] the same kind of heavy traffic analysis is
applied to all kinds of related stochastic multi-product single-machine scheduling problems.

Bourland and Yano [45] use a two-level hierarchical policy for the SELSP under the
assumption of deterministic production and setup times. Their strategy assumes that
for each individual product a reorder point is given. Besides idle time and safety stocks,
overtime may be used to respond to the stochastic demand. Since the backlogging costs are
higher than the overtime costs, no demand is backlogged. At the upper level, the planning
level, a cyclic schedule is obtained without neglecting the stochasticity of the demand. At
this level one decides on the cycle length, stock levels and idle time allocations given the
reorder points. Moreover, this planning level sets targets for the lower level, the control
level. At this lower level, a control rule is defined that tries to follow the target schedule.
The control policy does not alter the production sequence, but it may move the production
starts forward or backward in time and, thus, the actual cycle length may differ from the
target length. The production quantity is then determined by a so-called match-up lot-
sizing policy, which is defined as follows in Bourland [44]: a match-up policy schedules
production of a product in such a way that the stock level at the planned completion time
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- and not necessarily at the actual completion time - of the production run will be equal
to the base-stock level. In Bourland [44], it is shown by means of a simulation study that
such a match-up policy follows the target cycles more effectively compared to a standard
(exhaustive) base-stock policy. By using simulations Bourland and Yano [45] conclude that
in comparison to safety stocks and overtime, idle times are a very expensive tool against
demand uncertainty.

Gallego [107] proposes a three-level production strategy. At the first level, Gallego [107]
constructs the production sequence, the production quantities and the idle times based
on a deterministic procedure, but he does not add safety stocks yet. At the second level,
Gallego [107] derives a policy which recovers the target schedule at minimal excess over
average costs after a single disruption. A disruption may for instance be a machine failure,
lack of raw materials, variations in demand or power shortages. The recovery of the target
schedule is realized by adjusting the production quantities without altering the production
sequence. The size of these adjustments for a product depends in general on the stock levels
of all individual products. In Gallego [108] sufficient conditions are given for a base-stock
recovery policy to be optimal. In case of a base-stock policy one only needs to monitor the
stock level of the product currently setup. Several authors (see, e.g., Anupindi and Tayur
[36] and Sox et al. [195]) see in these conditions a first step in the derivation of optimality
conditions for the SELSP. At the third level, Gallego [107] adds safety stocks in order to
efficiently use the control policy, that was shown to be optimal after a single disruption,
in a stochastic environment.

Leachman and Gascon [143] develop a so-called dynamic cycle lengths heuristic in a
discrete-time model under the assumption of non-stationary demand and deterministic
production and setup times. The first step in their heuristic is the calculation of target
cycle lengths in each review period via a deterministic approach by using moving averages
of the demand forecasts. The second step is the determination of the operational cycle
lengths, which are the minimal reductions of the target cycle lengths for which there is
an adequate probability that these modified cycles can be maintained. This reduction is
achieved by proportionally reducing the production quantities of all products in a cycle,
while maintaining the fixed production sequence. The last step is the possible insertion
of an idle period in a cycle, when all products have sufficient stock. Leachman et al.
[144] improve the heuristics by increasing the lengths of the operational cycles, i.e., the
operational cycles are closer to the target cycles, which results in lower costs and improved
customer service. Furthermore, the decision rule concerning the insertion of an idle period
is refined as well. In a later paper (Gascon et al. [110]), an extensive simulation study
on the performance of the dynamic cycle lengths heuristic is undertaken. It is concluded
that the performance of the heuristic is satisfactory as long as the load is not extremely
high. Moreover, it turns out that the dynamic cycle length heuristic outperforms simple
heuristics such as the EMQ rule.

Fransoo et al. [102] study a model for the SELSP under assumptions comparable to
those of Leachman and Gascon [143] and Leachman et al. [144]. In particular, it is
assumed that demand that cannot be fulfilled from stock is lost. Fransoo et al. [102]
show numerically that the performance of the dynamic cycle lengths heuristic proposed
by Leachman and Gascon [143] significantly decreases if the load increases. Therefore,
an alternative heuristic is developed, that is able to keep the cycle lengths stable. By
means of a simulation study, it is shown that this stable cycle length heuristic outperforms
the dynamic cycle lengths heuristic when the total demand rate is close to or exceeds the
production rate. Fransoo [100] and Fransoo et al. [102] give the following qualitative reason
for this result. If one expects that a product will run out of stock in the forthcoming cycle,
the dynamic cycle lengths heuristic will decrease the cycle length. Hence, the relative setup
frequency increases and less capacity is available for production. Consequently, it becomes
even more difficult to fulfill future demand.
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Local lot-sizing policy. Anupindi and Tayur [36] present a fixed production sequence
policy under the assumption of backlogging and deterministic production and setup times.
They model a very general demand process, i.e., a non-Markovian compound demand pro-
cess in which demand arrives for sets of products, and assume state-dependent setups.
They allow a large number of lot-sizing strategies which are all variations of base-stock
policies. A simulation-based procedure is developed to obtain the optimal base-stock lev-
els for various performance measures. These performance measures contain not only the
traditional product-focussed measures, such as costs and service levels based on individ-
ual products, but also order-focussed measures, like the order response time. Their paper
is completed with numerical results for theoretical instances as well as for an industrial
application. From these results, it clearly emerges that the popular product-focussed per-
formance measures based on costs cannot be used as substitute for order-focussed measures.

Wagner and Smits [218] suggest a two-level continuous time model, where at the upper
level an optimal fixed cycle schedule with respect to the expected setup and holding costs
is derived. At the lower level a periodic base-stock policy, a so-called (R, S) policy, is used.
The review periods are fixed and determined by the solution at the planning level, while the
optimal base-stock levels are obtained by an algorithm developed by Smits et al. [194]. The
planning and control levels are then instantaneously optimized by an integrative approach,
which uses a local search optimization technique.

Vaughan [212] studies a model for the SELSP under the assumption of correlated de-
mand, backlogging, deterministic production and setup times. His policy is characterized
by an exhaustive base-stock policy and a target cycle length. This means that if a cycle is
ended within the target length, the machine is idled. If not, the next cycle will commence
immediately. Vaughan [212] concludes that demand correlation both increases the variance
of the cycle length and causes correlation between the demand per period and the cycle
length. Both effects lead to a higher variance of the total demand during a cycle and, thus,
larger safety stock levels are needed compared to the uncorrelated demand case.

Recently, Eisenstein [85] introduced an extension of the fixed-sequence base-stock re-
covery policy of Gallego [107; 108]. The policy of [85] is more flexible than the policies
of Gallego [107; 108] in that the policy of [85] is able to adjust the amount of idle time
during recovery in response to disruptions. Numerical comparisons show that the policy
of [85] is very effective compared to its competitors. Although this policy was designed for
environments with a single disruption, it is numerically shown that it also is useful when
disruptions are more pervasive (as also examined by [107; 108] for his policies).

Brander and Forsberg [53; 54] present an approximate method for the determination
of safety stocks and base-stock levels for a given fixed production sequence, both with
and without idle times. Moreover, they develop a control model making the decision
whether to produce the next item in the sequence or to idle the machine. Although the
lot-sizing discipline in [53; 54] is local, this control model incorporates global information.
Finally, it is important to remark that [54] assumes that the production and setup times
are deterministic, which is extended to stochastic production and setup times in [53].

The next strategy we describe is introduced by Federgruen and Katalan [91; 92; 93].
Besides the basic assumptions for the SELSP, the following additional assumptions are
made in their model: unfulfilled demand is backlogged, the demand for a product follows a
Poisson process and products are produced by an exhaustive or a gated base-stock policy.
The production manager is allowed to insert a fixed idle time prior to the setup for a product
in order to reduce the setup frequencies and, hence, the average setup costs. Federgruen
and Katalan [91; 92; 93] show that the total average costs only depend on the total idle
time inserted in a cycle and not on the complete vector of idle times. Hence, a strategy is
completely specified by the vector of the base-stock levels and the total amount of idle time
in a cycle. The optimal total idle time can be obtained by a numerical procedure. Finally,
since the queue size distributions do not depend on the base-stock levels, these base-stock
levels can be computed by solving standard newsboy problems. In Federgruen and Katalan
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[93], their research is completed by the construction of an approximate optimal production
sequence.

Grasman et al. [114] extend the exhaustive base-stock model of Federgruen and Katalan
by adding random yields for the cases of backlogging, lost sales and expediting. In case of
backlogging they derive similar newsboy equations in order to obtain optimal base-stock
levels. In case of lost sales or expediting they have to resort to a heuristic for computing the
(approximate) optimal base-stock levels. Krieg and Kuhn [134; 135] introduce continuous-
time models for single-stage multi-product Kanban systems, which are completely identical
to the SELSP with lost sales. It is assumed that demands arrive according to mutually
independent Poisson processes and that the production and setup times are exponentially
distributed. In Krieg and Kuhn [134], a system is analyzed with state-independent setups,
whereas in Krieg and Kuhn [135] state-dependent setups are modeled, i.e., no setup for
a product is incurred when there is no shortfall. Production quantities are in both mod-
els determined by an exhaustive base-stock policy. They decompose the multi-product
Kanban system into multiple single-product single-server vacation models. The individ-
ual subsystems can be evaluated numerically by an approximate continuous-time Markov
chain. Finally, it is noteworthy that the strategies of Federgruen and Katalan [91; 92; 93]
and the above extensions [114; 134; 135] are some of the very few policies allowing for an
analytical evaluation and optimization.

2.1.1.C Fixed production sequence with a fixed cycle length. Below we describe
the two types of fixed production sequence strategies using a fixed cycle length.

Global lot-sizing policy. In the Master’s thesis of Giezenaar [113], a case study of
a chemical plant in the Netherlands is presented, for which a fixed production sequence
strategy in combination with a fixed cycle length has been developed under the assumption
of deterministic production and setup times. At the beginning of a cycle the production
quantities are determined according to base-stock policies. When scheduling conflicts arise
caused by the fixed cycle length, the production quantities are rationed in such a way that
the production runs fit in this cycle length.

Local lot-sizing policy. Erkip et al. [87] introduce a discrete-time model under the
assumption of backlogging, in which the production and setup times are deterministic.
They propose a fixed cycle strategy, where fixed production times are allocated to products
and where a base-stock policy is used. This means that not only the sequence and the
total cycle length are fixed, but also the available capacity for each individual product is
pre-defined. When the fixed amount of production time has expired, the product is not
produced until the next cycle. Furthermore, when the product is on base-stock level before
the end of the production interval, one does not switch to the next product in the sequence
and, thus, the machine is idled. Their strategy is modeled as a quasi-birth-death process,
which can be solved numerically by the matrix-analytic method.

Other recent work in this direction is by Bruin [58], who presents a generating function
approach for the fixed cycle strategy under general traffic settings. Furthermore, a heavy-
traffic approximation is developed for the optimal base-stock levels in case of Poisson
demand distributions. Dellaert [78] mentions some drawbacks of such a fixed cycle strategy.
The most important one is that no pooling effect is obtained by the fixed pre-allocation of
production capacities to products. For a more detailed description of fixed cycle strategies
in the context of make-to-order production situations, see Chapter 3 of Dellaert [78].

2.1.2 Position of the present monograph

Table 2.1 summarizes the classification of the literature discussed in Subsection 2.1.1.
The fixed-sequence base-stock policies can be easily positioned in this classification, i.e.,
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Lot sizing strategy

Production Global Local

sequence

Dynamic Karmarkar and Yoo [127] Altiok and Shiue [29], [30], [31]
Qiu and Loulou [179] Brander et al. [55]

Sox and Muckstadt [196] Paternina-Arboleda and Das [178]
Winands et al. [P21]

Zipkin [224]
Fixed + Bourland and Yano [44], [45] Anupindi and Tayur [36]
dynamic cycle Fransoo et al. [102] Brander and Forsberg [53], [54]
length Gallego [107], [108] Eisenstein [85]

Gascon et al. [110], [143], [144] Federgruen and Katalan [91], [92], [93]
Markowitz et al. [157], [158] Grasman et al. [114] , [218]

Krieg and Kuhn [134], [135]
Smits et al. [194]
Vaughan [212]

Fixed + Giezenaar [113] Bruin [58]
fixed cycle Erkip et al. [87]
length

Table 2.1: An overview of the classification.

this class of policies can be characterized by a fixed production sequence (with a dynamic
cycle length) and a local lot-sizing policy. The contributions of the monograph to this area
have been discussed, in detail, in Section 1.4.

2.2 Polling systems

The present monograph investigates several specific polling systems as modeling tools
of fixed-sequence base-stock policies (see Chapter 1), which have some characteristics in
common. To avoid duplication, the present section gives a general model description which
is valid for the systems studied in subsequent chapters. For details which are specific for
the systems considered, we refer to the corresponding chapters. Furthermore, we survey
the state of the art in the analysis of polling systems, where it is certainly not our intention
to present an encyclopedic overview of all available results. Instead, we want to illuminate
the (mostly exact and asymptotic) concepts which put the contributions of the present
monograph in the right perspective. For much more detailed surveys on polling systems
and their applications, we refer to [203; 205; 206] and [151; 214].

First of all, to unify the presentation in the remainder of the present monograph all
systems - unless specified otherwise - are described in terms of queues where customers
arrive according to stochastic processes and receive service rather than products facing
random demands which are produced to stock. Similarly, we adopt the nomenclature for
the service policies as commonly used in the field of polling systems, e.g., we talk about
the k-limited service policy rather than about the quantity-limited lot-sizing policy.

2.2.1 Basic model

We consider a system with a single server for N ≥ 1 queues, in which there is infinite
buffer capacity for each queue. The server visits and serves the queues in a fixed cyclic
order. We index the queues by i, i = 1, 2, . . . , N , in the order of the server movement.
For compactness of presentation, all references to queue indices greater than N or less
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than 1 are implicitly assumed to be modulo N , e.g., queue N + 1 actually refers to queue
1. Throughout the present monograph, it is assumed that within a queue customers are
served FCFS. Obviously, the mean waiting times are the same under any work-conserving
non-preemptive scheduling discipline (which excludes the creation and destruction of work
see, e.g., [47]) that does not account for the actual service requests of the customers.

Customers arrive at all queues according to independent Poisson processes with rates λi,
i = 1, 2, . . . , N , where the total arrival rate is denoted by Λ =

∑N
i=1 λi. The service times

Bi at queue i are independent, identically distributed random variables with distribution
function Fi(·), density fi(·) and Laplace Stieltjes Transform (LST) βi(·), i = 1, 2, . . . , N .
The first two moments of the service time of an arbitrary customer are given by, respec-
tively,

E[B] =

N
∑

i=1

λiE[Bi]

Λ
, E[B2] =

N
∑

i=1

λiE[B2
i ]

Λ
. (2.1)

When the server starts service at queue i, a setup time Si is incurred with LST σi(·),
i = 1, 2, . . . , N . The mean and the variance of the total setup time in a cycle are given by,
respectively,

E[S] =

N
∑

i=1

E[Si], Var[S] =

N
∑

i=1

(E[S2
i ] − E[Si]

2). (2.2)

These setup times are identically distributed random variables, independent of any other
event involved. In particular, they are independent of the service times. Furthermore, it
is assumed that a setup is incurred even if the subsequent queue is empty. For further
reference, we introduce the mean residual service time and the mean residual setup time
for queue i, which can be expressed as follows, respectively,

E[RBi ] =
E[B2

i ]

2E[Bi]
, E[RSi ] =

E[S2
i ]

2E[Si]
, i = 1, 2, . . . , N. (2.3)

The occupation rate ρi (excluding setups) at queue i is defined by ρi = λiE[Bi] and the
total occupation rate ρ is given by

ρ =
N

∑

i=1

ρi. (2.4)

The cycle length Ci of queue i, i = 1, 2, . . . , N , is defined as the time between two polling
instants of this queue, where a polling instant of queue i is defined as the moment at which
the server starts a visit at this queue (after a setup). It is well known that the mean cycle
length is independent of the queue involved and is given by

E[C] =
E[S]

1 − ρ
. (2.5)

This identity can be proved by observing that the amount of work arriving during a cycle
should on average equal the amount of work departing during a cycle, i.e.,

ρE[C] = E[C] − E[S]. (2.6)

Unfortunately, higher moments of the cycle length are analytically intractable and, cer-
tainly, depend on the queue involved.

The visit period Vi of queue i, i = 1, 2, . . . , N , is the time the server spends servicing
customers at queue i excluding setup time. Since the server is working a fraction ρi of the
time on queue i, the mean of a visit period of queue i reads

E[Vi] = ρiE[C], i = 1, 2, . . . , N. (2.7)
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Subsequently, the intervisit period Ii of queue i, the time between a departure epoch of
the server from queue i and its subsequent arrival to this queue, is defined as

Ii := Ci − Vi, i = 1, 2, . . . , N. (2.8)

Our main interest is in the waiting time Wi of a type-i customer, i = 1, 2, . . . , N , which
is defined as the time in steady state from a customer’s arrival at queue i until the start of
his service. Note that all results for the waiting time distribution can be readily translated
into results for the queue length distribution - and vice versa - via the distributional form
of Little’s Law [130].

There exists a sharp and startling distinction in the complexity of the analysis of polling
systems which has been independently illuminated by [104] and [182] via the use of a multi-
type branching approach. That is, if the service discipline satisfies a certain branching
property (defined below), the polling system allows for an exact analysis by rather standard
methods. If this branching property is, however, violated, the corresponding polling system
defies an exact analysis except for some special (two-queue and symmetric) cases. The
branching property is defined as follows [104; 182],

Property 2.2.1 If the server arrives at queue i to find li customers there, then during
the course of the server’s visit, each of these li customers will effectively be replaced in
an i.i.d. manner by a random population having probability generating function (PGF)
hi(z) = hi(z1, . . . , zN ), which can be any N-dimensional probability generating function.
¤

The most important members of the class of policies satisfying Property 2.2.1 are

• Exhaustive policy: when the server polls a queue, he serves its customers until that
queue is empty;

• Gated policy: when the server polls a queue, he serves all, and only, customers found
at the polling instant.

Other policies for which Property 2.2.1 holds are the binomial-exhaustive [148] and the
binomial-gated [149] disciplines.

Property 2.2.1 does not hold for the k-limited service strategy, where the server continues
working at queue i, i = 1, 2, . . . , N , until either a predefined number of ki customers is
served or until the queue becomes empty whichever occurs first. To see this, consider
the simplest variant, the 1-limited discipline. At the end of the server’s visit, the first
served customer present at the polling instant has been effectively replaced by a population
of all customers arrived during his service. The other customers present at a polling
instant are not served at all and are each ‘replaced‘ by a single customer at the queue
under consideration. Consequently, not all customers are replaced in an i.i.d. manner and
Property 2.2.1 is violated. Other policies violating Property 2.2.1 are, for example, the
Bernoulli [129] and time-limited [43] disciplines. Finally, note that these exhaustive, gated
and k-limited service disciplines correspond unambiguously to the exhaustive, gated and
quantity-limited lot-sizing disciplines defined in the preceding chapter.

The remainder of the present section is divided into three parts. Firstly, we sketch how
an exact analysis can be performed for the complete class of policies allowing a multi-type
branching process interpretation via a classical generating function approach. Secondly,
we survey the (limited) results for the k-limited policy, which can be seen as representative
for the class of policies not being contained in the branching-type framework, and outline
which unsurmountable difficulties occur in the extension to more general k-limited systems.
Thirdly, we relate our contributions stated in Chapter 1 to the field of polling systems (both
to systems with and without a multi-type branching structure).

In the present section, we outline all results for continuous-time cyclic systems with
Poisson arrivals. However, we may extend all results, without seriously complicating the
analysis, to discrete time, to periodic polling or to batch arrivals.
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2.2.2 Branching-type policies

Throughout the present subsection, we assume that the service discipline at each queue
satisfies Property 2.2.1 which implies that the joint queue lengths at polling instants can
be represented by a multi-type branching process with immigration (see [104; 182]). In
systems with setup times we are dealing with immigration in each state, whereas in systems
without setup times immigration only takes place in state zero (when the whole system is
empty). The theory of multi-type branching processes (see, e.g., [180]), which has been
developed largely in the early seventies, is well-matured and provides us with necessary
and sufficient ergodicity conditions and gives expressions for the generating function of the
joint queue length process at polling instants. Building upon these results it turns out that
one can derive pseudo-conservation laws, intensity-weighted sums of mean waiting times,
and closed-form expressions for asymptotic performance measures in case of increasing load
and/or increasing setup times.

Finally, it is important to remark that we allow different service disciplines at different
queues and that we focus on nonidling service disciplines, i.e., the server never idles while
at queue i if there is work in queue i, satisfying Property 2.2.1.

2.2.2.A Stability. The conditions ρ < 1 and E[S] < ∞ constitute necessary and
sufficient stability conditions for any nonidling policy that satisfies Property 2.2.1 with
hi(z1, . . . , zN ) 6= zi and, thus, 0 ≤ ∂

∂zi
hi(z)|z=1 < 1 (see, e.g., [182]). In the remainder of

the present monograph, these stability conditions are assumed to hold as we restrict the
attention to steady-state behavior.

2.2.2.B Preliminaries. The partial derivative ∂
∂zi

hi(z)|z=1 of the generating function

hi(z) as introduced in Property 2.2.1 represents the mean number of type-i children residing
in queue i at the end of a visit period generated by a type-i customer present at the start
of a visit to queue i (for a formal definition of children, see below). Subsequently, we define
the exhaustiveness Φi of the service discipline at queue i by

Φi = 1 − ∂

∂zi
hi(z)|z=1, i = 1, 2, . . . , N. (2.9)

Due to stability, we have

0 < Φi ≤ 1, i = 1, 2, . . . , N. (2.10)

The exhaustiveness Φi has the following intuitively appealing interpretation: each customer
present at the start of a visit to queue i will be replaced by a number of type-i customers
with mean 1 − Φi. In the present subsection, we show that the exhaustiveness plays first
fiddle throughout the analysis of branching-type policies, which has not been recognized -
at least to this generality - before in the literature.

From the branching property each visit period Vi at queue i starting with li customers
consists of li mutually independent subvisit periods Ti generated by the type-i customers
present at the start of a visit to queue i. It is convenient to have an expression for the
mean subvisit period E[Ti] in terms of Φi. Since ∂

∂zi
hi(z)|z=1 equals 1 plus the expected

number of type-i arrivals λiE[Ti] during this subvisit period minus E[Ti]/E[Bi], which is
the expected number of type-i served during this subvisit period, we can derive, after some
rewriting, the following expression,

E[Ti] =
ΦiE[Bi]

1 − ρi
, i = 1, 2, . . . , N. (2.11)

Furthermore, (2.11) also leads to an expression for E[Xi], i.e., the number of type-i
customers present at the start of a visit to queue i, by observing that the mean total visit
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period E[Vi] at queue i, which equals the sum of all subvisit periods, is the product of
E[Xi] and E[Ti]. That is, calling upon (2.7) and (2.11) yields

E[Xi] =
E[Vi]

E[Ti]
=

ρi

1 − ρ

E[S]

E[Ti]
=

λi

Φi

1 − ρi

1 − ρ
E[S], i = 1, 2, . . . , N. (2.12)

We continue with an example.

Example 2.2.2 In the present subsection, we illustrate all concepts via the exhaustive
and gated disciplines.

1. In case the exhaustive discipline is used at queue i, we have

hi(z1, . . . , zN ) = θi(
∑

j 6=i

λj(1 − zj)), (2.13)

where θi(·) denotes the LST of a busy period in an M/G/1 queue with arrival rate
λi and LST of the service time distribution βi(·). The corresponding exhaustiveness
reads Φi = 1.

2. When the gated discipline is implemented at queue i, the function hi(z1, . . . , zN )
reads

hi(z1, . . . , zN ) = βi(
N

∑

j=1

λj(1 − zj)), (2.14)

with exhaustiveness Φi = 1 − ρi.

¤

Next, define the offspring generating function f(z) as follows

f(z) := (f1(z), . . . , fN (z)), (2.15)

with for |zj | ≤ 1, j = 1, 2, . . . , N ,

fi(z) := hi(z1, . . . , zi, fi+1(z), . . . , fN (z)), i = 1, 2, . . . , N. (2.16)

This offspring generating function represents the generating function of the joint distri-
bution of the numbers of customers at the end of a cycle with respect to queue 1 that
are children of a type-i customer, where a child of a customer is recursively defined as a
customer that has arrived during the service time of this customer or of one of his children.
Furthermore, define for |zj | ≤ 1, j = 1, 2, . . . , N ,

f (0)(z) := z, (2.17)

f (k)(z) := f(f (k−1)(z)), k ≥ 1, (2.18)

where f (k)(·) represents the kth generation offspring.

2.2.2.C Queue length distribution. Since we are interested in the waiting time dis-
tribution at an arbitrary queue, we focus - without loss of generality - on queue 1 in the
remainder of the present subsection.

One can prove that the PGF X(z) of the joint queue length distribution at a polling
instant of queue 1 satisfies the following recursion (see, e.g., [182]),

X(z) = X (f(z)) g(z), (2.19)
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where the immigration generating function g(z) reads

g(z) =

N
∏

i=1

σi+1

(

i
∑

j=1

λj(1 − zj) +

N
∑

j=i+1

λj(1 − fj(z))

)

. (2.20)

Iteration of (2.19) gives us,

X(z) =
∞
∏

k=0

g
(

f (k)(z)
)

, (2.21)

the infinite product being convergent when the stability conditions are fulfilled.

Remark 2.2.3 In systems with zero setup times (in the sequel we add a superscript 0 for
that case, to distinguish its quantities from those in systems with nonzero setup times),
we have to replace (2.19) by

X0(z) = X0 (f(z)) − π0 (

1 − g0(z)
)

, (2.22)

where

g0(z) =
N

∑

j=1

λj

Λ
zj , or g0(z) =

N
∑

j=1

λj

Λ
fj(z), (2.23)

dependent on the behavior of the server when the system becomes empty. In the first case,
the server, at the moment the system becomes empty, makes a full cycle and stops right
before queue 1, whereas in the second case he stops right after queue 1. Subsequently, the
probability π0 is given by

π0 =

[

1 +

∞
∑

k=0

[

1 − g0
(

f (k)(0)
)]

]−1

. (2.24)

After iterating (2.22) we obtain

X0(z) = 1 − π0
∞

∑

k=0

[

1 − g0
(

f (k)(z)
)]

, (2.25)

where the infinite sum is convergent when the stability conditions are fulfilled. ¤

We introduce for i = 1, 2, . . . , N ,

h̃i(z) := hi(z, 1, . . . , 1), (2.26)

f̃
(k)
i (z) := f

(k)
i (z, 1, . . . , 1), (2.27)

X̃(z) := X(z, 1, . . . , 1). (2.28)

Next, the LST of the waiting time distribution can be expressed as follows (see, e.g., [42]),

E[e−ωW1 ] = E[e−ωW
M/G/1
1 ]

X̃(h̃1(1 − ω/λ1)) − X̃(1 − ω/λ1)

X̃ ′(1)(1 − h̃1(1))ω/λ1

, (2.29)

where E[e−ωW
M/G/1
1 ] is the LST of the waiting time distribution in the corresponding

isolated M/G/1 queue with arrival rate λ1 and service time distribution LST β1(·).
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Remark 2.2.4 If we define

X̃0(z) := X0(z, 1, . . . , 1), (2.30)

the counterpart of (2.29) in systems with zero setup times can be obtained, replacing X̃(z)

by X̃0(z). ¤

Repeatedly differentiating (2.29) leads to sets of linear equations, from which the mo-
ments of the waiting times and queue lengths can be obtained numerically. Alternatively,
Konheim et al. [132] propose the so-called descendant set approach, an iterative tech-
nique that exploits the branching structure of the model by making use of the concept of
descendant sets, to obtain the moments of the waiting time. Choudhury and Whitt [65]
use numerical transform inversion to compute these moments, tail probabilities, transient
performance measures and more.

2.2.2.D Pseudo-conservation laws. In systems with zero setup times, the principle
of work conservation leads to the so-called conservation law, which states a certain linear
relationship between the mean waiting times E[W 0

i ] of customers of all queues which is
independent of the (work-conserving) scheduling discipline (see, e.g., [47]),

N
∑

i=1

ρiE[W 0
i ] = ρ

N
∑

i=1

λiE[B2
i ]

2(1 − ρ)
. (2.31)

If setup times are nonzero, the principle of work decomposition gives rise to a so-called
pseudo-conservation law, which is again a linear relationship among the E[Wi] - the affix
pseudo is used since the resulting expression now does depend on the service discipline -
(see again [47]),

N
∑

i=1

ρiE[Wi] = ρ
N

∑

i=1

λiE[B2
i ]

2(1 − ρ)
+

ρ

2E[S]
Var[S] +

E[S]

2(1 − ρ)

N
∑

i=1

ρi(1 − ρi) +
N

∑

i=1

E[Mi], (2.32)

with Mi denoting the amount of work left behind by the server at queue i at the completion
of a visit to this queue, which can be derived in closed form. That is, it is readily verified
that with the help of (2.12) for i = 1, 2, . . . , N ,

E[Mi] = E[Xi]E[Bi](1 − Φi) =
1 − Φi

Φi

ρi(1 − ρi)

1 − ρ
E[S]. (2.33)

Thus, the term E[Mi] is completely determined by the service discipline at queue i and
is independent of (the service discipline at) the other queues. Although this pseudo-
conservation law does not give explicit expressions for the mean waiting times themselves,
it appears to be a tool for developing approximations and can provide a useful check for the
accuracy of simulations, numerical calculations and approximations (see, e.g., [47]). Fur-
thermore, it gives a relatively simple expression for the weighted sum of the mean waiting
times, which may be used as a first indication of overall system performance. We continue
with an example.

Example 2.2.5 We now take a second look at the policies in Example 2.2.2.

1. For the exhaustive discipline at queue 1, we have E[M1] = 0.

2. In case the gated discipline is implemented at queue 1, one obtains E[M1] =
ρ2
1

1−ρ
E[S].

¤
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2.2.2.E Asymptotics. As seen, the interdependence of the queueing processes in polling
systems prohibits an exact explicit analysis with closed-form expressions, leading to the
need of using numerical techniques to determine performance measures of interest (see,
e.g., [65; 132]). However, these numerical approaches for the analysis of polling systems
have several drawbacks. Firstly, numerical techniques do not reveal explicitly how the
system performance depends on the system parameters and can, therefore, contribute to
the understanding of the system behavior only to a limited extent. Exact closed-form
expressions provide much more insight into the dependence of the performance measures
on the system parameters, which leads to significant insights in the behavior of the system,
e.g., insensitivity and monotonicity properties. Secondly, the efficiency of the numerical
algorithms tends to degrade significantly for heavily loaded, highly asymmetric systems
with a large number of queues, while the proper operation of the system is particularly
critical when the system is heavily loaded. In these circumstances, one naturally resorts to
asymptotic estimates. In particular, below we study the behavior of the (scaled) waiting
time in case of increasing load and/or increasing setup times.

Increasing load. Van der Mei [165] studies the waiting time distribution for branching-
type polling systems (and general setup time distributions with finite first two moments)
under heavy traffic. That is, the waiting time distribution is considered as a function of
ρ where the arrival rates are variable, while the service time distributions and the ratios
of the arrival rates are fixed. This permits to parameterize the variables as a function of
ρ. Subsequently, a closed-form expression for the scaled asymptotic waiting time, i.e., the
limit of 1 − ρ times the waiting time, is obtained when ρ tends to 1.

For that purpose, [165] relies on the following result on multi-type branching processes
with immigration in each state [180]: the joint probability distribution of the N -dimensional
branching process {Zn, n = 0, 1, . . .} converges in distribution to vΓ(α, µ) in the sense that

(we take
d−→ to represent convergence in distribution),

lim
n→∞

1

πn(ξ)
Zn

d−→ vΓ(α, µ), ξ ↑ 1, (2.34)

where ξ is the maximum eigenvalue of the so-called mean matrix, πn(ξ) is a scaling function,
v is a known N -dimensional vector and Γ(α, µ) is a gamma-distributed random variable
with known shape and scale parameters α and µ, respectively. Thereupon, in [165] it is
shown that this result leads to asymptotic heavy-traffic results for the (joint) queue length
distributions at polling instants in branching-type polling systems. We have seen before
that such results readily lead to corresponding results for the waiting time distributions as
summarized in the theorem below.

Theorem 2.2.6 The LST of the distribution of the asymptotic scaled waiting time under
heavy traffic is given by

E[e−ω(1−ρ)W1 ] → 1

(1 − ρ1)E[S]ω

[

(

δβΦ1

δβΦ1 + (1 − Φ1)(1 − ρ1)ω

)βδE[S]

−
(

δβΦ1

δβΦ1 + (1 − ρ1)ω

)βδE[S]
]

, ρ ↑ 1, (2.35)

where

β =
E[B]

E[B2]
, and δ =

N
∑

i=1

(

ρi(1 − ρi)(1 − Φi)

Φi
+ ρi

N
∑

j=i+1

ρj

)

. (2.36)
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Proof. See [165]. ¤

We continue with an example.

Example 2.2.7 For the policies introduced in Example 2.2.2, Theorem 2.2.6 has the fol-
lowing implications.

1. In case of the exhaustive discipline at queue 1, one obtains

E[e−ω(1−ρ)W1 ] → 1

(1 − ρ1)E[S]ω

[

1 −
(

δβ

δβ + (1 − ρ1)ω

)βδE[S]
]

, ρ ↑ 1. (2.37)

2. Implementing the gated discipline at queue 1 yields

E[e−ω(1−ρ)W1 ] → 1

(1 − ρ1)E[S]ω

[

(

δβ

δβ + ρ1ω

)βδE[S]

−
(

δβ

δβ + ω

)βδE[S]
]

, ρ ↑ 1.

(2.38)

¤

Increasing setup times. Winands [P11] presents an exact asymptotic analysis of the
waiting time distribution in branching-type polling systems with deterministic setup times
when the setup times tend to infinity. Since the waiting time grows to infinity in the
limiting case, [P11] focuses on the asymptotic scaled waiting time W1/E[S] as E[S] → ∞,
where the ratios of the setup times remain constant. In order to derive these asymptotics,
[P11] builds upon a result of [42] which derives a strong relation between the waiting
time distributions in models with and without setup times. This relation is established by
relating the similarities in the offspring generating functions of the underlying branching
processes and by expressing the differences between the underlying immigration functions.

In particular, [42] shows that the LST of the waiting time distribution of a type-1
customer is given by

E[e−ωW1 ] = E[e−ωW0
1 ]

e−E[S]H̃(h̃1(1−ω/λ1)) − e−E[S]H̃(1−ω/λ1)

E[S][H̃(1 − ω/λ1) − H̃(h̃1(1 − ω/λ1))]
, (2.39)

where W 0
1 is the waiting time in the corresponding polling system with zero setup times.

At this point, we feel it is worth reminding the reader that no closed-form expression for

E[e−ωW0
1 ] is known. Furthermore, H̃(y) is defined as

H̃(y) :=
∞

∑

k=0

N
∑

i=1

λi(1 − f̃
(k)
i (y)). (2.40)

Since the mean number of type-1 customers present at the start of a visit to queue 1 is
exactly equal to the average offspring of customers which arrived during a setup time, we
have the following relation between H̃ ′(1) and E[X1],

E[X1] = −E[S]H̃ ′(1), (2.41)

and, thus, by applying (2.12),

H̃ ′(1) = − λ1

Φ1

1 − ρ1

1 − ρ
. (2.42)
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The decomposition as expressed in (2.39) can be used to derive an explicit expression
for the LST of the distribution of the asymptotic scaled waiting time as presented in the
lemma below.

Lemma 2.2.8 In case of deterministic setup times, the LST of the distribution of the
asymptotic scaled waiting time is given by

E[e
−ω

W1
E[S] ] → 1 − ρ

(1 − ρ1)ω

(

e
−

1−Φ1
Φ1

1−ρ1
1−ρ

ω − e
− 1

Φ1

1−ρ1
1−ρ

ω

)

, (E[S] → ∞). (2.43)

Proof. First of all, the term E[e−ωW0
1 ] in (2.39) does not depend on S implying that

E[e
−ω

W0
1

E[S] ] → 1, (E[S] → ∞). (2.44)

Next, we observe that

E[S]H̃(1 − ω

λ1E[S]
) = − ω

λ1

H̃(1 − ω
λ1E[S]

) − H̃(1)

− ω
λ1E[S]

E[S]→∞−−−−−→ − ω

λ1
H̃ ′(1) =

1

Φ1

1 − ρ1

1 − ρ
ω,

(2.45)

where the first equation follows from the fact that H̃(1) = 0 and the last equation from
(2.42). Similarly, we have that

E[S]H̃(h̃1(1 − ω

λ1E[S]
)) = − ω

λ1

H̃(h̃1(1 − ω
λ1E[S]

)) − H̃(h̃1(1))

− ω
λ1E[S]

E[S]→∞−−−−−→ − ω

λ1
H̃ ′(h̃1(1))h̃′

1(1)

=
1 − Φ1

Φ1

1 − ρ1

1 − ρ
ω, (2.46)

where the last equality follows from the definition of the exhaustiveness factor and (2.42).
Substituting (2.45) and (2.46) into (2.39) completes the proof (after some rewriting). ¤

Since the righthand side of (2.43) is recognized as the LST of the uniform distribution,
Lemma 2.2.8 leads to the following result for the distribution of the asymptotic scaled
waiting time.

Theorem 2.2.9 In case of deterministic setup times, the distribution of the asymptotic
scaled waiting time is given by

W1

E[S]

d−→ 1 − ρ1

1 − ρ
U1, (E[S] → ∞), (2.47)

where U1 is uniformly distributed on [ 1−Φ1
Φ1

, 1
Φ1

].

Proof. Follows directly from Lemma 2.2.8 in combination with the convergence theorem
of Feller for LSTs (see, e.g., p. 652 of [68]). ¤

Below we continue our example.

Example 2.2.10 Let us return to the policies introduced in Example 2.2.2.
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1. In case of the exhaustive discipline at queue 1, the scaled waiting time, as the setup
times tend to infinity, is uniformly distributed on [0, 1−ρ1

1−ρ
].

2. When the gated discipline is implemented at queue 1, the scaled waiting time for
increasing setup times follows a uniform distribution on [ ρ1

1−ρ
, 1

1−ρ
].

¤

Increasing load and increasing setup times. If we take a closer look at (2.35) we see
that in heavy traffic the impact of higher moments of the setup times on the waiting time
distribution vanishes, i.e., the scaled asymptotic waiting time depends on the marginal
setup time distributions only through the first moment of the total setup time in a cycle.
Building upon this observation, Winands [P11] studies the scaled asymptotic waiting time
in branching-type polling systems with generally distributed setups under heavy traffic when
the setup times tend to infinity. The only restriction made on the setup times is that the
first two moments of all the setup times should exist, i.e., they should be finite. Firstly,
[P11] lets the arrival rates increase in such a way that ρ tends to 1 (while the service
time distributions and the ratios of the arrival rates are fixed), which allows to exploit the
heavy-traffic results from [165]. Secondly, [P11] lets the mean total setup time in a cycle
E[S] tend to infinity. This step-by-step plan is formalized in the following lemma.

Lemma 2.2.11 In case of general setup times, the LST of the distribution of the asymp-
totic scaled waiting time under heavy traffic is given by

E[e
−ω(1−ρ)

W1
E[S] ] → 1

(1 − ρ1)ω

(

e
−

1−Φ1
Φ1

(1−ρ1)ω − e
− 1

Φ1
(1−ρ1)ω

)

,

(ρ ↑ 1 and then E[S] → ∞). (2.48)

Proof. First of all, we let ρ tend to 1 in such a way that we can apply the limit theorems
of [165], which imply that (2.35) holds. Applying the following standard limit result,

lim
x→∞

(

a

a + b
x

)cx

= e−
bc
a , (2.49)

to the scaled waiting time (1 − ρ) W1
E[S]

in (2.35) completes the proof (after some straight-

forward manipulations). ¤

Lemma 2.2.11 has the following immediate consequence.

Theorem 2.2.12 In case of general setup times, the distribution of the asymptotic scaled
waiting time under heavy traffic is given by

(1 − ρ)W1

E[S]

d−→ (1 − ρ1)U1, (ρ ↑ 1 and then E[S] → ∞), (2.50)

where U1 is uniformly distributed on [ 1−Φ1
Φ1

, 1
Φ1

].

Proof. Follows directly from Lemma 2.2.11 in combination with the convergence theorem
of Feller for LSTs (see, e.g., p. 652 of [68]). ¤

We note that in the case of deterministic setup times Theorem 2.2.12 with ”ρ ↑ 1 and
then E[S] → ∞” replaced by ”E[S] → ∞ and then ρ ↑ 1” is implied by Theorem 2.2.9 and,
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subsequently, letting ρ tend to 1. This implies that also in this limiting regime the scaled
waiting time is uniformly distributed on [ 1−Φ1

Φ1
, 1

Φ1
].

Winands [P11] extends Theorems 2.2.9 and 2.2.12 in various directions: to queue length
distributions at polling instants, to joint distributions of the queue lengths and to systems
with the globally-gated service policy [52] (which does not satisfy Property 2.2.1). Fur-
thermore, [P11] suggests simple closed-form expressions for the waiting time distributions
in systems with finite setup times and provides conjectures for the asymptotic behavior of
systems with renewal arrivals. The interested reader is referred to [P11] for more details.
Finally, we return to our example.

Example 2.2.13 For the final time, we return to the policies introduced in Example 2.2.2.

1. In case of the exhaustive discipline at queue 1, the scaled waiting time under in-
creasing setup times in heavy traffic is uniformly distributed on [0, 1 − ρ1].

2. When the gated discipline is implemented at queue 1, the scaled waiting time, when
setup times tend to infinity, in heavy traffic follows a uniform distribution on [ρ1, 1].

¤

We close this subsection with a remark.

Remark 2.2.14 For general traffic settings we have seen that all moments, and in par-
ticular the standard deviation, of the queue length in branching-type polling systems can
be obtained numerically (see, e.g., [65; 132]). However, these procedures are complicated,
time-consuming and lack transparency, which raises the importance of explicit, either ex-
act or approximate, expressions for the standard deviation. Explicit exact formulae for
the standard deviation have only been derived in systems with two queues without setup
times [201] and with setup times [83], in symmetric systems with two, three or four queues
[137] and symmetric continuous polling systems with deterministic setup times [95], i.e.,
systems consisting of an infinite number of queues. Explicit approximate expressions for
the standard deviations are scarce as well; only approximations for heavily loaded systems
and models with large setup times have been derived so far. Although such approximations
can be used in some specific traffic situations, their accuracy worsens for decreasing load
and decreasing setup times, respectively. Motivated by these challenges, Winands [P12]
develops a novel closed-form approximation, which is accurate over the entire range of
parameters, by using results for symmetric continuous polling systems in conjunction with
heavy-traffic results. Support for the quality of the approximation is, first of all, provided
by results of an extensive numerical evaluation. Second, in some specific systems [P12]
analytically derives bounds for the standard deviations based on the approximation, which
are proven to be tight. Finally, [P12] proves that the approximation is in line with existing
results for the aforementioned extreme cases, i.e., for heavily loaded systems, for systems
with large setup times and for systems with an infinite number of queues. ¤

2.2.3 k-limited policy

In the present subsection, we study the k-limited service discipline which does not
satisfy Property 2.2.1. In contrast to branching-type policies, for k-limited policies no
exact general framework exists which reveals itself in the limited results available in the
literature. Below we discuss these scarce results.

2.2.3.A Stability. For the k-limited discipline, a necessary and sufficient stability con-
dition reads (see [103] for a rigorous proof),

ρ + E[S] max
1,2,...,N

λi

ki
< 1. (2.51)
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If the system is stable, (2.51) may be rewritten by using (2.5) as follows, for i = 1, 2, . . . , N ,

λiE[C] < ki. (2.52)

In words, this means that for a stable system the average number of type-i customers
arriving in a cycle is smaller than the service limit ki, i.e., the maximum number of type-i
customers served in a cycle. Throughout the assumption is made that (2.51) is fulfilled.

2.2.3.B Queue length distribution. To this very day, not only hardly any exact results
for the queue length distribution, or even the means, in polling systems with the k-limited
service policy have been obtained, but also their derivations give little hope for extensions
to more realistic systems. That is, Groenendijk [116] and Ibe [122] give an explicit LST for
the waiting time distribution in a two-queue 1-limited/exhaustive system. For two-queue
systems where both queues are served according to the 1-limited discipline, the problem
of finding the queue length distribution can be shown to translate into a boundary value
problem [46; 49; 70; 84]. Fuhrmann [105] obtains the mean queue length in symmetric
1-limited polling systems with an arbitrary number of queues. For general k, an exact
evaluation for the queue length distribution is only available for very few special two-
queue cases (see Lee [145] and Ozawa [176; 177]). In these models one (low-priority) queue
is served by the k-limited service strategy, whereas the other (high-priority) queue is served
by the exhaustive policy. Furthermore, [145; 176; 177] make the restrictive assumption of
zero setup times. Although the complexity of exhaustive and gated systems typically go
hand in hand, the exception that proves the rule is the two-queue gated/k-limited model
that, even in the case the service limit equals 1, appears to defy an exact analysis. In the
absence of exact results for the marginal queue length distributions, people have resorted
to numerical approaches, such as the power series algorithm [41] and techniques based on
discrete Fourier transforms [147]. The main disadvantage of both methods is that time
and memory requirements are exponential functions of the number of queues.

2.2.3.C Pseudo-conservation laws. In case of the k-limited policy, the general form of
the pseudo-conservation law as shown in (2.31) still holds. However, the unknowns E[Mi]
form the stumbling block to the straightforward application of this law. That is, if we
denote by Yi the number of customers served at queue i in a cycle, we have

E[Mi] = (E[Xi] − (1 − ρi)E[Yi]) E[Bi], (2.53)

where, due to stability, E[Yi] = λi
E[S]
1−ρ

. In contrast to branching-type policies, for the k-

limited policy no exact results for E[Xi] are known. Everitt [88] expresses these unknown

quantities in terms of E[Y
(2)

i ] = E[Yi(Yi − 1)], the second factorial moments of the number
of customers served at queue i per cycle, for i = 1, 2, . . . , N ,

E[Xi] =
1

ki

(

λiE[Yi]E[Wi] −
1 − ρi

2
E[Y

(2)
i ] + ρiE[Yi]

)

+ (1 − ρi)E[Yi], (2.54)

which yields,

N
∑

i=1

ρi

(

1 − E[Yi]

ki

)

E[Wi] = ρ

N
∑

i=1

λiE[B2
i ]

2(1 − ρ)
+

ρ

2E[S]
Var[S] +

E[S]

2(1 − ρ)

N
∑

i=1

ρi(1 − ρi) +

E[S]

1 − ρ

N
∑

i=1

ρ2
i

ki
−

N
∑

i=1

ρi(1 − ρi)

2

E[Y
(2)

i ]

λiki
. (2.55)
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For the special case that all service limits ki equal 1, we can compute E[Y
(2)

i ] explicitly.
That is, we know that one service is completed per cycle with probability E[Yi] and no

service with probability 1 − E[Yi] which implies that E[Y
(2)

i ] = 0 and, thus,

E[Mi] = ρiE[Yi] (E[Wi] + E[Bi]) . (2.56)

In case of general ki, we have to resort to approximations of and bounds on the unknown

terms E[Y
(2)

i ], for which we refer to [59; 60; 88] and the references therein.

2.2.3.D Asymptotics. Besides the paper of Lee [145] for a two-queue model, no studies
have appeared so far analyzing the asymptotic behavior, due to either increasing load or
increasing setup times, of the k-limited discipline in an exact setting. More specifically,
[145] investigates a two-queue model without setup times, where queue 1 is served exhaus-
tively and queue 2 is served according to the k-limited policy. Now, we fix λ2 and increase
λ1 in such a way that ρ tends to one. In this limit queue 1 remains stable, i.e., it behaves
like an M/G/1 system with vacations with arrival rate λ1, service time LST β1(·) and
vacation time LST βk

2 (·). Queue 2, however, becomes unstable in the limit and the scaled
amount of work in this queue equals the scaled amount of work in an M/G/1 queue in
which two customer classes are combined into one customer class with arrival rate λ1 + λ2

and service times with LST λ1
λ1+λ2

β1(·) + λ2
λ1+λ2

β2(·). The main result of [145] is that in

the limit the number of customers in queue 1 and the scaled amount of work in queue 2
become independent.

2.2.4 Contributions of the present monograph

Chapter 1 has already positioned our contributions in the area of production-inventory
systems. Now, we relate these contributions to the field of polling systems both to the
class of branching-type policies and the k-limited policy. We stress the one-to-one corre-
spondence between this distinction and the research objectives of Chapter 1.

Branching-type policies. As elaborated on in the preceding subsection, the analysis
of branching-type policies is a well-trodden area in terms of results, but it is relatively
unexplored in terms of methodology. That is, results are not obtained via a single unify-
ing approach and part of the results is obtained by applying deep theorems from multi-
type branching processes. These observations have motivated us to develop a unifying
framework, the so-called Mean Value Analysis (MVA) framework, for the most important
representatives of the branching class (the exhaustive and gated discipline). By confin-
ing ourselves to average performance measures, we show that all results discussed, i.e.,
marginal waiting times, pseudo-conservation laws and asymptotics, can by obtained by
calling only upon two basic queueing results: the PASTA property, i.e., Poisson arrivals
see time averages [220] and Little’s Law [154]. Finally, the MVA framework allows us to
analyze a myriad of scheduling disciplines, besides the traditional FCFS policy, implying
that we can solve the scheduling decision to optimality.

k-limited policy. For the k-limited discipline, we have observed a paucity of results.
We present the first exact analysis of a two-queue k-limited/exhaustive system with (state-
dependent) setup times and we indicate the difficulties in extending the analysis to a more
general system. Furthermore, we develop an accurate, robust and computationally effi-
cient approximate algorithm for the evaluation of k-limited polling systems with a general
number of queues and generally distributed interarrival, setup and service times. The
methodology used in this algorithm goes beyond the k-limited policy and, therefore, we
can look upon this algorithm as a pilot study for the approximation of a general class
of polling systems. Finally, we present a simulation study, which examines the quality
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of the k-limited policy as priority mechanism and gives some explorative results for the
optimization of the service limits.



Chapter 3

MVA framework

In the present chapter we develop a mean value analysis (MVA) framework for the com-
putation of mean waiting times in exhaustive and gated polling systems. We start the
development of this MVA framework in Section 3.1 with the computation of the mean
marginal waiting times and the derivation of the corresponding pseudo-conservation law
for general traffic settings. Next, we extend the framework to the asymptotic regime of
high utilization of capacity due to either high load or large setup times in Sections 3.2 and
3.3, respectively. Subsequently, we show that within the MVA framework examination of
various scheduling disciplines is possible (see Section 3.4). Finally, the chapter is wound
up in Section 3.5 with conclusions and a list of possible extensions.

3.1 General traffic settings

The present section, which is an abridged version of the papers [P15; P16; P17], is
concerned with the exhaustive and gated service disciplines. The single most important
performance measure for polling systems is, in many applications, the mean waiting time of
a customer. Unfortunately, explicit closed-form expressions for the mean waiting times in
polling systems with exhaustive-type or gated-type service are only known in very special
cases (see, also, Chapter 2). We develop a novel approach to compute the mean waiting
times in general continuous-time polling systems with either exhaustive or gated service,
the so-called MVA.

In the past several other approaches have been proposed for computing these mean wait-
ing times, of which some extend to the computation of higher moments as well. One such
method is the buffer occupancy method as developed by [71; 72; 83], which is closely related
to the classical generating function approach as expounded in Chapter 2. This method is
based on the buffer occupancy variables Xi,j , which denote the queue length at queue j at
a polling instant of queue i, i, j = 1, 2, . . . , N . The buffer occupancy method requires the
solution of N3 linear equations with unknowns E[Xi,jXi,k] to compute the mean waiting
times in all N stations simultaneously. These equations may be efficiently solved in an
iterative manner requiring O(N3 logρ ǫ) operations (additions and multiplications), where ǫ
is the relative accuracy required (see [150]). Based on this buffer occupancy method, [132]
developed the descendant set method; an iterative technique that computes the mean wait-
ing time at each queue independently of the other queues. The descendant set approach
is based on counting the number of descendants of each customer in the system. This
method requires O(N logρ ǫ) operations for the computation of the mean waiting time in a
single station. A second well-known method based on the buffer occupancy method is the
individual station technique [197], which also allows, as the name suggests, the individual

35
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computation of the mean waiting time at each queue. The individual station technique is,
however, not an iterative approach. The mean waiting time at a single queue is computed
in O(N2) operations, which obviously does not depend on the system utilization contrary
to the computational complexities of the aforementioned methods.

Besides the techniques based on the buffer occupancy method, another school of ap-
proaches is the one embroidering on the station time method [96]. In the station time
approach, all mean waiting times are obtained simultaneously starting from the station
time variables θi, i = 1, 2, . . . , N . The station time θi is composed of the time the server
spends servicing customers at queue i plus the preceding setup time in case of exhaustive
service or plus the succeeding setup time in case of gated service. The station time tech-
nique induces a set of N2 linear equations with unknowns E[θiθj ], which can be solved
iteratively in O(N2 logρ ǫ) operations leading to all N mean waiting times. An extension
of the station time method is the approach developed by [187]. Their approach induces a
set of only N linear equations, which is, however, less sparse. Solving this set of equations
requires O(N3) operations for all N waiting time figures.

Recently, Hirayama et al. [120] developed a third alternative method for obtaining the
mean waiting times. The authors analyze first the mean waiting times conditioned on the
state of the system at an arrival epoch. Then, from the analysis of the system at polling
instants, a set of linear functional equations for these conditional waiting times is obtained.
By applying a limiting procedure, they derive a set of N(N + 1) linear equations for the
unconditional mean waiting times, which can be solved in O(N6) operations. With respect
to this computational complexity, it should be noted that the method of [120] shows some
similarities with the buffer occupancy approach and that it, therefore, may be possible to
construct more efficient iterative algorithms to solve their set of equations.

With respect to the above-mentioned methods, two issues are noteworthy. Firstly, each
of the approaches can be readily adapted to a discrete-time counterpart, apart from some
occasional subtleties (see, e.g., [133; 184; 200]). The second important observation is that
when comparing the use of the aforementioned approaches in the open literature over the
recent years, it immediately strikes the eye that the buffer occupancy method and its
variations can be - or at least have been - applied to the widest variety of polling systems.
In fact, this method appears to be applicable to the complete class of service disciplines
satisfying the branching property (see Chapter 2). However, the techniques based on the
station time method and Hirayama’s method have been applied to a restricted class of
polling systems only. For example, it is known that the station time method cannot be
used in polling systems with mixed service, where some of the queues are served according
to the exhaustive policy and some by the gated strategy.

The objective of the present section is the development of a novel approach to compute
the mean waiting times for exhaustive-type or gated-type polling systems in a purely
probabilistic manner. More specifically, we derive a set of N2 and N(N+1) linear equations
for these waiting time figures in case of exhaustive and gated service, respectively, with
the help of the following two basic queueing results: (i) the PASTA property, i.e., Poisson
arrivals see time averages [220] and (ii) Little’s Law [154]. The unknowns in these equations
are E[Qi,j ], the mean queue length at queue i at an arbitrary epoch within a station time
of queue j. The method of the present section can be looked upon as a MVA for general
polling systems with exhaustive or gated service. MVA is known as a powerful tool to
determine mean performance measures in all kinds of queueing models (see, e.g., [142]),
but it has never been applied to polling systems.

The main contribution of the present section is two-fold. The first main contribution
can be found in the set of equations itself. In contrast to most of the above-mentioned
approaches, the unknowns in these equations are all first moments of (residual) random
variables and, thus, no correlation terms are required. Furthermore, MVA evaluates the
polling system at arbitrary epochs in time and not on embedded points such as polling
instants. An additional merit of MVA is the fact that it allows for an evaluation of polling
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systems with mixed service. Finally, MVA results in the solution of no more than N2 and
N(N + 1) linear equations for all N mean waiting times in case of exhaustive and gated
service, respectively. In the past, various efficient algorithms have been developed based
on the buffer occupancy method and the station time approach, which require systems of
up to N3 equations. It may, therefore, be possible to construct just as efficient iterative
algorithms based on MVA. We emphasize that the development of such an algorithm is
not within the scope of the present monograph.

The second main contribution, which is perhaps even more important, lies in the deriva-
tion of the set of equations by MVA. This derivation is based on standard queueing results
and has a probabilistic interpretation all the way. Consequently, it is rather straightfor-
ward to apply MVA to variants of the considered polling systems: (i) systems with Poisson
batch arrivals, (ii) systems with fixed polling tables and (iii) discrete-time polling systems.
Finally, MVA may open new ways for the evaluation, both in an exact and approximate
manner, of other polling systems.

In the course of our analysis, we obtain short proofs of three seminal results for (exhaus-
tive) polling systems as by-product. First, we present an elementary proof of the variance
absorption result (see, e.g., [187; 73]), which states that an interchange exists among the
variance in service and setup times such that the mean waiting times remain unchanged.
Second, it turns out that a by-product of MVA is a simple proof of the decomposition re-
sult, which establishes that the mean waiting times in polling systems without setup times
and systems with deterministic setup times differ only by simple constants (see, e.g., [106;
198]). Third, we obtain a short derivation of the pseudo-conservation law for exhaustive
polling systems (see [47]), which gives a linear relation between the mean waiting times of
customers of all queues.

The structure of the present section is as follows. First, Subsection 3.1.1 introduces
further notation. Subsection 3.1.2 presents the main result of the section: the derivation
of a set of equations for the mean waiting time in polling systems with exhaustive service.
In Subsection 3.1.3 we build upon these results to obtain the pseudo-conservation law for
the system under consideration. As a by-product MVA computes second-order moments
of the station times and, in particular, the correlation between successive station times
as elucidated in Subsection 3.1.4. In Subsection 3.1.5, it is shown that the application of
MVA to systems with gated service, with mixed service or with fully gated service is rather
straightforward.

3.1.1 Notation

The system of interest is the basic N -queue polling system as introduced in Chapter 2
with service at each queue either according to the exhaustive or gated discipline (for the
case of mixed service we refer to Subsection 3.1.5). For presentation reasons, we first focus
on the case E[S] > 0. When the total setup time is equal to zero, some subtleties appear
due to the fact that the number of cycles with zero length tends to infinity. The station
time θi of queue i, i = 1, 2, . . . , N , is composed of the service period of queue i, the time
the server spends servicing customers at queue i, plus the preceding setup time in case of
exhaustive service or plus the succeeding setup time in case of gated service. By virtue of
these two different definitions, a queue is empty exactly at the end of its station time in
case of exhaustive service, while the queue before the gate is empty at the beginning of
a station time in case of gated service (all customers waiting for service are then placed
behind the gate).

Since the server is working a fraction ρi of the time on queue i, the mean of a station
period of queue i reads, for exhaustive service,

E[θi] = ρiE[C] + E[Si], i = 1, 2, . . . , N, (3.1)
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and, for gated service,

E[θi] = ρiE[C] + E[Si+1], i = 1, 2, . . . , N. (3.2)

We define an (i, j)-period θi,j as the sum of j consecutive station times starting in queue
i, for i, j = 1, 2, . . . , N . The corresponding mean is given by

E[θi,j ] =

i+j−1
∑

n=i

E[θn], i = 1, 2, . . . , N, j = 1, 2, . . . , N. (3.3)

Notice that in case j = 1 and j = N , E[θi,j ] is equal to the mean station period E[θi] of
queue i and the mean cycle length E[C], respectively.

The fraction of time qi,j the system is in an (i, j)-period equals

qi,j =
E[θi,j ]

E[C]
, i = 1, 2, . . . , N, j = 1, 2, . . . , N, (3.4)

where, by definition, qi,N equals 1. Moreover, the mean of a residual (i, j)-period is given
by

E[Rθi,j ] =
E[θ2

i,j ]

2E[θi,j ]
, i = 1, 2, . . . , N, j = 1, 2, . . . , N, (3.5)

with the remark that the second moments E[θ2
i,j ] are still unknown at this stage. Notice

that since for each fixed (i, j) the successive (i, j)-periods are not independent, they do
not form a renewal process. This means, among others, that (3.5) does not directly follow
from the theory of regenerative processes. For a proof why this result is nevertheless still
valid see, e.g., [99].

Our main interest is in the mean waiting time E[Wi] of a type-i customer, i = 1, 2, . . . , N .
By Little’s Law, these mean waiting times are obviously related to the mean queue lengths
(excluding the customer possibly in service) E[Qi], i = 1, 2, . . . , N . The analysis of the
present section is oriented towards the determination of E[Qi,n], the mean queue length
at queue i at an arbitrary epoch within a station time of queue n, i, n = 1, 2, . . . , N . The
corresponding unconditional mean queue length E[Qi] can be expressed in terms of E[Qi,n]
as follows

E[Qi] =
N

∑

n=1

qn,1E[Qi,n], i = 1, 2, . . . , N. (3.6)

3.1.2 Mean value analysis

The goal of the present section is the derivation of the mean waiting times in exhaustive
polling systems by using MVA. This typically starts with the derivation of a so-called arrival
relation with the help of the PASTA property. Therefore, consider a tagged customer at
the moment he arrives at queue i, i = 1, 2, . . . , N . Based on PASTA, we know that the state
distribution seen by this tagged customer is identical to the equilibrium distribution. That
is, this customer has to wait for the servicing of all customers Qi, who were already waiting
in this queue upon his arrival. Further, with probability ρi the server is working at queue
i upon his arrival and the tagged customer has to wait for the residual service time of the
customer in service as well. On the other hand, with probability E[Si]/E[C] the server is
in a setup phase for queue i and the waiting time of the customer is increased by a residual
setup time. Finally, with probability 1 − qi,1 the server is at one of the other queues and
the service of the tagged customer is delayed until the server starts service again at queue
i. The latter time period is obviously equal to the sum of a residual (i + 1, N − 1)-period
and a setup time for queue i.
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Hence, we have the following arrival relation for the mean waiting time E[Wi] of a type-i
customer, i = 1, 2, . . . , N ,

E[Wi] = E[Qi]E[Bi] + ρiE[RBi ] +
E[Si]

E[C]
E[RSi ] + (1 − qi,1)

(

E[Rθi+1,N−1 ] + E[Si]
)

. (3.7)

Application of Little’s Law, stating that E[Qi] = λiE[Wi], yields

E[Qi] =
λi

1 − ρi

(

ρiE[RBi ] +
E[Si]

E[C]
E[RSi ] + (1 − qi,1)

(

E[Rθi+1,N−1 ] + E[Si]
)

)

. (3.8)

Summarizing, we can say that (3.8) has been derived by a standard application of MVA,
i.e., combining the arrival relation with Little’s Law. However, the unknowns E[Rθi+1,N−1 ]
form the stumbling block to the straightforward computation of the mean queue lengths
via this equation. To obtain the unknowns E[Rθi+1,N−1 ], we relate them to E[Qi,n] and
derive a set of equations for these quantities.

Firstly, as under the exhaustive policy no type-i customers are left at the end of a
station time of queue i, the following property can be obtained. The number of type-i
customers present at an arbitrary moment within an (i + 1, j)-period equals the number
of Poisson arrivals during the age of this (i + 1, j)-period. Since the age is in distribution
equal to the residual time, the following equation holds

i+j
∑

n=i+1

qn,1

qi+1,j
E[Qi,n] = λiE[Rθi+1,j ], i = 1, 2, . . . , N, j = 1, . . . , N − 1. (3.9)

Secondly, substitution of (3.6) into (3.8) yields, for i = 1, 2, . . . , N ,

N
∑

n=1

qn,1E[Qi,n] =
λi

1 − ρi

(

ρiE[RBi ] +
E[Si]

E[C]
E[RSi ] + (1 − qi,1)

(

E[Rθi+1,N−1 ] + E[Si]
)

)

.

(3.10)
It is easily seen that (3.9) and (3.10) represent a set of N2 linear equations for the unknowns
E[Qi,n] and E[Rθi,j ]. In the remainder of this section, we derive additional equations by
expressing E[Rθi,j ] in terms of E[Qi,n].

Thereto, we first focus on E[Rθi,1 ]. At an arbitrary moment within a station time
of queue i, Qi,i type-i customers are waiting, who all initiate a busy period with mean
E[Bi]/(1 − ρi). Furthermore, with probabilities ρiE[C]/E[θi,1] and E[Si]/E[θi,1] an addi-
tional busy period with mean E[RBi ]/(1− ρi) and E[RSi ]/(1− ρi) is induced, respectively.
So, we have

E[Rθi,1 ] =
1

1 − ρi

(

E[Qi,i]E[Bi] +
ρiE[C]

E[θi,1]
E[RBi ] +

E[Si]

E[θi,1]
E[RSi ]

)

, i = 1, 2, . . . , N.

(3.11)
Next, we turn our attention to E[Rθi,2 ]. With probability qi+1,1/qi,2, the interval Rθi,2

is simply equal to Rθi+1,1 . On the other hand, with probability qi,1/qi,2 this residual period
equals Rθi,1 + Si+1 plus the busy periods initiated by the type-(i + 1) customers arriving
during Rθi,1 + Si+1 and by the type-(i + 1) customers present at an arbitrary moment
within a station time of queue i. That is, we have, for i = 1, 2, . . . , N ,

E[Rθi,2 ] =
qi,1

qi,2

(

(E[Rθi,1 ] + E[Si+1])

(

1 +
λi+1E[Bi+1]

1 − ρi+1

)

+
E[Qi+1,i]E[Bi+1]

1 − ρi+1

)

+(1 − qi,1

qi,2
)E[Rθi+1,1 ]

=
qi,1

qi,2

(

E[Rθi,1 ]

1 − ρi+1
+

E[Si+1] + E[Qi+1,i]E[Bi+1]

1 − ρi+1

)

+ (1 − qi,1

qi,2
)E[Rθi+1,1 ]. .(3.12)
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The derivation of E[Rθi,j ] for general j proceeds along the same lines and is, therefore,
omitted. Thus, we have derived the following set of MVA equations for the unknowns
E[Qi,n] and E[Rθi,j ] as summarized in the theorem below.

Theorem 3.1.1 For i = 1, 2, . . . , N , and j = 1, 2, . . . , N − 1,

N
∑

n=1

qn,1E[Qi,n] =
λi

1 − ρi

(

ρiE[RBi ] +
E[Si]

E[C]
E[RSi ] +

(1 − qi,1)(E[Rθi+1,N−1 ] + E[Si])
)

, (3.13)

λiE[Rθi+1,j ] =

i+j
∑

n=i+1

qn,1

qi+1,j
E[Qi,n], (3.14)

E[Rθi,1 ] =
1

1 − ρi

(

E[Qi,i]E[Bi] +
ρiE[C]

E[θi,1]
E[RBi ] +

E[Si]

E[θi,1]
E[RSi ]

)

, (3.15)

and for j = 2, 3, . . . , N − 1,

E[Rθi,j ] =
qi,1

qi,j

(

E[Rθi,1 ]
∏j−1

n=1(1 − ρi+n)
+

j−1
∑

n=1

E[Si+n] + E[Qi+n,i]E[Bi+n]
∏j−1

m=n(1 − ρi+m)

)

+(1 − qi,1

qi,j
)E[Rθi+1,j−1 ]. (3.16)

¤

Eliminating E[Rθi,j ] from (3.13) and (3.14) with the help of (3.15) and (3.16) renders

a set of N2 linear equations for equally many unknowns E[Qi,n]. After solving these
equations, the unconditional mean queue lengths and mean delays can be computed via
(3.6) and Little’s Law. It is noteworthy that the residual cycle lengths E[Rθi,N ], i =
1, 2, . . . , N , which are not required for the computation of the mean delays, satisfy (3.16)
as well. Below we provide a significant simplification of the MVA equations by decomposing
the mean waiting time into two terms, cf. [73]. The first term is a simple function of the
sum of the mean setup times, whereas the second term equals the mean waiting time in a
polling system obtained from the original one by modifying the service time variances and
setting the mean setup times equal to zero.

Relating systems with and without setup times. We start our analysis with the
following lemma, which shows the construction of an alternative system with no setup time
variance, but the same conditional, and thus also unconditional, queue lengths. This result
is known as the variance absorption result (see [187] and [73]) and its proof is remarkably
simple thanks to the structure of the MVA equations.

Lemma 3.1.2 For i = 1, 2, . . . , N and n = 1, 2, . . . , N ,

E[Qi,n] = E[Q̃i,n], (3.17)

where E[Q̃i,n] is the mean conditional queue length in an exhaustive polling system with the

same arrival rates, deterministic setup times with mean E[Si] and service times B̃i with

mean E[B̃i] = E[Bi] and variance Var[B̃i] = Var[Bi] + Var[Si]
λiE[C]

.



3.1 General traffic settings 41

Proof. In the MVA set (3.13)-(3.16), second-order moments of both the service and setup
times only show up in (3.13) and (3.15). Moreover, they only appear in the fixed combi-

nation ρiE[RBi ] + E[Si]
E[C]

E[RSi ] implying that the mean conditional queue lengths remain

constant as long as the value of this combination remains unchanged. It is straightfor-
wardly verified that the alternative system defined in the lemma satisfies this condition
and, thus, the proof is completed. ¤

In the present section, we denote the counterpart of each random variable X in the
corresponding polling system with deterministic setup times by X̃. A direct implication
of Lemma 3.1.2 is, of course, that also the mean residual station times are identical in the
original and the introduced alternative system. By recalling that the term λiE[C] precisely

equals the mean number of type-i customers served per cycle, the second term in Var[B̃i]
apportions the setup time variance to each of these customers fairly. Lemma 3.1.2 shows
that the variance absorption result occurs at the level of the conditional queue lengths and
that the result at the level of the unconditional queue lengths, as observed by [187] and
[73], is a derivative. Furthermore, the proof of Lemma 3.1.2 shows that a variety of trade-
offs exists between service and setup time variance, all of which yield the same conditional
queue lengths and that, thus, the one stated in the main text of the lemma is just one of
the possibilities.

Next, we prove the following result which states that, for deterministic setup times, the
mean unconditional queue length can be expressed as the sum of the mean queue length
in a system without setup times and a simple function of the sum of the mean setup times
(see, also, [106; 198]).

Lemma 3.1.3 For i = 1, 2, . . . , N ,

E[Q̃i] = E[Q̃0
i ] + λi

E[S]

2

1 − ρi

1 − ρ
, (3.18)

where E[Q̃0
i ] is the mean unconditional queue length in an exhaustive polling system with

the same arrival rates, with zero setup times and service times B̃i.

Proof. The main ingredient of the proof is the additivity property of linear mappings.
Therefore, we write the solution of the MVA set (3.13)-(3.16) as follows,

E[Q̃i,n] = E[Q̃′
i,n] + E[Q̃′′

i,n], i = 1, 2, . . . , N, n = 1, 2, . . . , N, (3.19)

E[Rθ̃i,j
] = E[Rθ̃′

i,j
] + E[Rθ̃′′

i,j
], i = 1, 2, . . . , N, j = 1, 2, . . . , N − 1. (3.20)

First, the unknowns E[Q̃′
i,n] and E[Rθ̃′

i,j
] satisfy the MVA set (3.13)-(3.16), where we set

all random variables related to setup times equal to zero, i.e., for i = 1, 2, . . . , N and
j = 1, 2, . . . , N − 1,

N
∑

n=1

qn,1E[Q̃′
i,n] =

λi

1 − ρi

(

ρiE[RB̃i
] + qi+1,N−1E[Rθ̃′

i+1,N−1
]
)

, (3.21)

λiE[Rθ̃′

i+1,j
] =

i+j
∑

n=i+1

qn,1

qi+1,j
E[Q̃′

i,n], (3.22)

E[Rθ̃′

i,1
] =

1

1 − ρi

(

E[Q̃′
i,i]E[B̃i] +

ρiE[C]

E[θi,1]
E[RB̃i

]

)

, (3.23)



42 MVA framework

and for j = 2, 3, . . . , N − 1,

E[Rθ̃′

i,j
] =

qi,1

qi,j

(

E[Rθ̃′

i,1
]

∏j−1
n=1(1 − ρi+n)

+

j−1
∑

n=1

E[Q̃′
i+n,i]E[B̃i+n]

∏j−1
m=n(1 − ρi+m)

)

+(1 − qi,1

qi,j
)E[Rθ̃′

i+1,j−1
]. (3.24)

Unfortunately, the set (3.21)-(3.24) does not allow for a closed-form solution. However,
later on we derive the MVA set for systems with zero setup times. Foregoing the details of
this derivation, we relate the solution of the set (3.21)-(3.24) to the unknowns in systems
without setup times which are indicated by a superscript 0 (which is easily verified - when
we present the results for systems with zero setup times - by exploiting the similarities
between both sets),

E[Q̃′
i,i+n] =

ρi+n

qi+n,1
E[Q̃0

i,i+n], i = 1, 2, . . . , N, (3.25)

n = 0, 1, . . . , N − 1,

E[Rθ̃′

i,j
] =

∑i+j−1
n=i ρn

qi,j
E[Rθ̃0

i,j
], i = 1, 2, . . . , N, (3.26)

j = 1, 2, . . . , N − 1.

Second, the unknowns E[Q̃′′
i,n] and E[Rθ̃′′

i,j
] satisfy the MVA set (3.13)-(3.16), where we

set all residual service times equal to zero, i.e., for i = 1, 2, . . . , N , and j = 1, 2, . . . , N − 1,

N
∑

n=1

qn,1E[Q̃′′
i,n] =

λi

1 − ρi

(

E[Si]
2

2E[C]
+ (1 − qi,1)(E[Rθ̃′′

i+1,N−1
] + E[Si])

)

, (3.27)

λiE[Rθ̃′′

i+1,j
] =

i+j
∑

n=i+1

qn,1

qi+1,j
E[Q̃′′

i,n], (3.28)

E[Rθ̃′′

i,1
] =

1

1 − ρi

(

E[Q̃′′
i,i]E[B̃i] +

E[Si]
2

2E[θ̃i,1]

)

, (3.29)

and for j = 2, 3, . . . , N − 1,

E[Rθ̃′′

i,j
] =

qi,1

qi,j

(

E[Rθ̃′′

i,1
]

∏j−1
n=1(1 − ρi+n)

+

j−1
∑

n=1

E[Si+n] + E[Q̃′′
i+n,i]E[B̃i+n]

∏j−1
m=n(1 − ρi+m)

)

+(1 − qi,1

qi,j
)E[Rθ̃′′

i+1,j−1
]. (3.30)

One can verify that the set (3.27)-(3.30) has a closed-form solution, which reads

E[Q̃′′
i,i] =

λi

2

(

E[C] − E[θi,1] +
E[Si]

E[θi,1]
E[C]

)

, i = 1, 2, . . . , N, (3.31)

E[Q̃′′
i,i+n] = λi

(

E[θi+1,n−1] +
1

2
E[θi+n,1]

)

, i = 1, 2, . . . , N, (3.32)

n = 1, 2, . . . , N − 1,

E[Rθ̃′′

i,j
] =

1

2
E[θi,j ], i = 1, 2, . . . , N, (3.33)

j = 1, 2, . . . , N − 1,
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where E[θi+1,0] = 0.
It is readily seen that the additivity property implies that (3.19) and (3.20) indeed hold.

Subsequently, combining the solutions (3.25)-(3.26) and (3.31)-(3.33) gives

E[Q̃i] = E[Q̃′
i] + E[Q̃′′

i ] =

N
∑

n=1

qn,1E[Q̃′
i,n] +

N
∑

n=1

qn,1E[Q̃′′
i,n]

= E[Q̃0
i ] + λi

E[S]

2

1 − ρi

1 − ρ
, (3.34)

which completes the proof. ¤

The main consequence of the above two lemmas is that for the computation of mean
waiting times in general polling systems we can focus on systems with zero setup times,
for which the MVA set is significantly less intricate as shown below.

Systems without setup times. In the analysis of systems with zero setup times, we
have to be careful since, if the setup times tend to zero, then each time the system becomes
empty, the server will execute an infinite number of cycles in a finite time interval. This
implies that the mean station times, and also the mean cycle lengths, converge to zero,
which causes problems in the definition of the probabilities qi,j . To circumvent these
difficulties, we modify the definition for a mean (i, j)-period as follows

E[θi,j ] =

i+j−1
∑

n=i

ρnE[C], i = 1, 2, . . . , N, j = 1, 2, . . . , N, (3.35)

where we can leave the value of E[C] unspecified, since it appears that, in case of zero
setup times, this quantity cancels out in all steps of the analysis. Then, the probabilities
qi,j are again well defined and change accordingly to

qi,j =

i+j−1
∑

n=i

ρn, i = 1, 2, . . . , N, j = 1, 2, . . . , N. (3.36)

By replacing all variables related to setup times by zeros and applying (3.35), the mean
waiting time in polling systems with zero setup times can be computed as well. After some
straightforward but tedious manipulations - omitted in the interest of brevity - which
eliminate the unknowns E[Rθi,j ], the resulting MVA set looks as presented in the following
theorem.

Theorem 3.1.4 For i = 1, 2, . . . , N ,

N
∑

n=1

ρn
1

λi
E[Q̃0

i,n] − 1

λi
E[Q̃0

i,i] = −E[RB̃i
], (3.37)

and for i = 1, 2, . . . , N and j = 1, 2, . . . , N − 1,

j−1
∑

n=0

ρi+1+n
1

λi
E[Q̃0

i,i+1+n] +

j−1
∑

n=0

ρi+1+n
1

λi+j
E[Q̃0

i+j,i+1+n] − 1

λi
E[Q̃0

i,i+j ] = −E[RB̃i+j
].

(3.38)
¤
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The unconditional mean queue lengths can, subsequently, be obtained from

E[Q̃0
i ] =

N
∑

n=1

ρnE[Q̃0
i,n], i = 1, 2, . . . , N. (3.39)

Now, (3.37) and (3.38) form a set of N2 linear equations for equally many unknowns E[Q̃0
i,n].

After solving these equations, the unconditional mean queue lengths and mean waiting
times can be computed via (3.39) and Little’s Law. Application of Lemmas 3.1.2 and
3.1.3, subsequently, yields the mean queue lengths and waiting times for the corresponding
polling system with setup times (possibly for a number of setup time scenarios).

It is important to remark that the coefficient matrix of the MVA set formed by (3.37)
and (3.38) has N4 elements of which only a fraction 1/N is nonzero implying that this
matrix is very sparse, which can be exploited in the efficient storage and manipulation of
this set. Below we illustrate the above procedure in the evaluation of a specific system,
but first we present a remark.

Remark 3.1.5 In the case of a symmetric system, such that all queues are statistically
identical, (3.37) and (3.38) allow for a closed-form solution of the mean conditional queue
lengths, i.e., we have for i = 1, 2, . . . , N and j = 1, 2, . . . , N − 1,

E[Q̃0
i,i] =

λi

1 − ρ
E[RB̃i

], and E[Q̃0
i,i+j ] =

λi(1 − (N + 1 − 2j)ρi)

(1 − ρ)(1 − ρi)
E[RB̃i

], (3.40)

which can be verified by substitution. ¤

Example 3.1.6 Let us consider a general two-queue exhaustive polling system without
setup times. The set of equations formed by (3.37) and (3.38) can be written in matrix
form as







1 − ρ1 −ρ2 0 0
0 1 − ρ2 0 −ρ2

−ρ1 0 1 − ρ1 0
0 0 −ρ1 1 − ρ2

















1
λ1

E[Q̃0
1,1]

1
λ1

E[Q̃0
1,2]

1
λ2

E[Q̃0
2,1]

1
λ2

E[Q̃0
2,2]











=









E[RB̃1
]

E[RB̃2
]

E[RB̃1
]

E[RB̃2
]









. (3.41)

The coefficient matrix A on the lefthand side possesses the following determinant,

det(A) = (1 − ρ)(1 − ρ + 2ρ1ρ2), (3.42)

which clearly indicates that the MVA equations have a unique solution if ρ < 1 (i.e., when
the system is stable). ¤

3.1.3 Pseudo-conservation law

We now return to the general exhaustive polling system with stochastic setup times and
aim to derive the pseudo-conservation law in such a system. First of all, Lemmas 3.1.2
and 3.1.3 give the following expression for the mean total amount of work in the original
system with stochastic setup times,

N
∑

i=1

E[Bi]E[Qi] =

N
∑

i=1

E[Bi]E[Q̃0
i ] + +

E[S]

2(1 − ρ)

N
∑

i=1

ρi(1 − ρi). (3.43)

The first term in the righthand side of (3.43) equals the mean total amount of work in
the transformed system without setup times (excluding the customer possibly in service).
Due to the work-conservative nature of the exhaustive discipline, this amount equals the
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corresponding amount of work in an FCFS M/G/1, in which all customer classes are
lumped together into one customer class with arrival rate Λ = λ1 +λ2 + . . . λN and service
times with mean

∑N
i=1

λi
Λ

E[B̃i] and second moment
∑N

i=1
λi
Λ

E[B̃2
i ]. That is,

N
∑

i=1

E[Bi]E[Q̃0
i ] = ρ

N
∑

i=1

λiE[B̃2
i ]

2(1 − ρ)
= ρ

N
∑

i=1

λiE[B2
i ]

2(1 − ρ)
+

ρ

2E[S]
Var[S]. (3.44)

Since the last term in the righthand side of (3.43) only depends on known input parameters,
this leads to the pseudo-conservation law for exhaustive polling systems (after application
of Little’s Law),

N
∑

i=1

λiE[Wi] = ρ
N

∑

i=1

λiE[B2
i ]

2(1 − ρ)
+

ρ

2E[S]
Var[S] +

E[S]

2(1 − ρ)

N
∑

i=1

ρi(1 − ρi). (3.45)

For more information on pseudo-conservation laws, we refer to Chapter 2.

3.1.4 Correlations

The set of MVA equations can also be applied for the computation of the mean of
residual (i, j)-periods E[Rθi,j ]. Thereupon, the variance of an (i, j)-period can be obtained
via

Var[θi,j ] = 2E[Rθi,j ]E[θi,j ] − E[θi,j ]
2, i = 1, 2, . . . , N, j = 1, 2, . . . , N, (3.46)

where E[θi,j ] is given by (3.3). From these variances it is also possible to compute the
covariance Cov[θi, θi+n] and correlation Cor[θi, θi+n] of the station periods θi and θi+n via
the following lemma.

Lemma 3.1.7 Given random variables X, Y and Z, the covariance of X and Z can be
obtained as follows

Cov[X, Z] =
1

2
(Var[X + Y + Z] − Var[X + Y ] − Var[Y + Z] + Var[Y ]).

Proof. By definition,

Var[X + Y + Z] = Var[X] + Var[Y ] + Var[Z] + 2(Cov[X, Y ] + Cov[Y, Z] + Cov[X, Z]),

and

Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X, Y ],

Var[Y + Z] = Var[Y ] + Var[Z] + 2Cov[Y, Z].

which, after some rewriting, completes the proof. ¤

Using Lemma 3.1.7, one may verify that for i = 1, 2, . . . , N and n = 1, 2, . . . , N − 1,

Cov[θi, θi+n] =
1

2
(Var[θi,n+1] − Var[θi,n] − Var[θi+1,n] + Var[θi+1,n−1]), (3.47)

where Var[θi+1,0] = 0. Finally, the correlation follows by using

Cor[θi, θi+n] =
Cov[θi, θi+n]

√

Var[θi]Var[θi+n]
, i = 1, 2, . . . , N, n = 1, 2, . . . , N − 1. (3.48)



46 MVA framework

Following the above analysis, we can prove that in a symmetric system with setup
times these correlations admit the following remarkably simple form for i = 1, 2, . . . , N
and n = 1, 2, . . . , N − 1,

Cor[θi, θi+n] =
ρ

N − (N − 1)ρ
. (3.49)

It immediately strikes the eye that the correlations between station times remain constant
(within a single cycle) and that they are independent of the setup times and the service time
distributions. Furthermore, they are always positive and monotone increasing (decreasing)
in the total load ρ (in the number of queues N).

3.1.5 Model variations

The present subsection shows that MVA can directly be generalized to a variety of
model variations of the exhaustive system analyzed in Subsection 3.1.2, i.e., systems with
gated service, systems with mixed service and systems with fully gated service (see [38]).

Gated service. In case of gated service, all customers waiting in queue at the start of
a station time of this queue are placed behind a gate meaning that they are served in
the current cycle. However, customers arriving during a station time of their queue are
placed before this gate and are, thus, only served in the next cycle. With this difference
understood, it is clear that, in case i = n, Qi,n is the sum of two auxiliary variables, i.e.,

Qi,i = Q̄i,i + Q̂i,i, i = 1, 2, . . . , N, (3.50)

where Q̄i,i and Q̂i,i represent the queue length behind and before the gate, respectively.
Recall that the customer in service is excluded. In case i 6= n, all customers in queue i are
obviously located before the gate, i.e.,

Qi,n = Q̂i,n, i 6= n = 1, 2, . . . , N. (3.51)

The corresponding unconditional queue length Qi has mean

E[Qi] = E[Q̂i] + qi,1E[Q̄i,i] =
N

∑

n=1

qn,1E[Q̂i,n] + qi,1E[Q̄i,i], i = 1, 2, . . . , N. (3.52)

Again, our analysis extensively makes use of Little’s Law and the PASTA property. We
tag a customer at its arrival to queue i, i = 1, 2, . . . , N . By the PASTA property, we know
that this customer sees the system in equilibrium. So, the tagged customer has to wait for

the service of all customers Q̂i, who were already waiting before the gate on his arrival.
Furthermore, he has to wait until the first polling instant of queue i equalling a residual
(i, N)-period, i.e., a residual cycle. By definition of the gated policy, this extra waiting
time is incurred even in case the tagged type-i customer arrives in a station time of queue
i. Consequently, the mean waiting time E[Wi] of a type-i customer is given by

E[Wi] = E[Q̂i]E[Bi] + E[Rθi,N ], i = 1, 2, . . . , N, (3.53)

which, in combination with Little’s Law gives us the following relation

E[Qi] = ρiE[Q̂i] + λiE[Rθi,N ], i = 1, 2, . . . , N. (3.54)

Once more, the mean residual periods have to be obtained, where we choose the same
solution approach as in the exhaustive case.
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The gated policy, together with the definition of a station time, clearly implies that the
number of type-i customers before the gate at an arbitrary moment within an (i, j)-period
is equal to the number of Poisson arrivals during the age of an (i, j)-period, which is in
distribution again equal to a residual (i, j)-period. That is,

i+j−1
∑

n=i

qn,1

qi,j
E[Q̂i,n] = λiE[Rθi,j ], i = 1, 2, . . . , N, j = 1, 2, . . . , N. (3.55)

Secondly, if we substitute (3.52) into (3.54), we get

(1 − ρi)
N

∑

n=1

qn,1E[Q̂i,n] + qi,1E[Q̄i,i] = λiE[Rθi,N ], i = 1, 2, . . . , N. (3.56)

Now, we see that (3.55) and (3.56) comprise a set of N(N +1) linear equations for E[Q̄i,i],

E[Q̂i,n] and E[Rθi,j ]. To eliminate the unknown mean residual (i, j)-periods from this set,

below these quantities are rewritten in terms of E[Q̄i,i] and E[Q̂i,n].
Starting with E[Rθi,1 ], we recognize that this period lasts at least the sum of the service

times of the customers behind the gate. With probability ρiE[C]/E[θi,1] a residual service
time and a setup time for queue i + 1 is induced, while with probability E[Si+1]/E[θi,1]
only a residual setup time for queue i + 1 is generated. Consequently, we have

E[Rθi,1 ] = E[Q̄i,i]E[Bi] +
E[Si+1]

E[θi,1]
E[RSi+1 ] +

ρiE[C]

E[θi,1]
(E[RBi ] + E[Si+1]), i = 1, 2, . . . , N.

(3.57)
In case of an (i, 2)-period, Rθi,2 equals Rθi+1,1 with probability qi+1,1/qi,2. With prob-

ability qi,1/qi,2, however, this residual period equals Rθi,1 + Si+2 plus the service times of
the type-(i + 1) customers present at an arbitrary moment within a station time of queue
i and of the type-(i + 1) customers arriving during Rθi,1 . This yields, for i = 1, 2, . . . , N ,

E[Rθi,2 ] =
qi,1

qi,2

(

E[Rθi,1 ] + E[Si+2] + (λi+1E[Rθi,1 ] + E[Q̂i+1,i])E[Bi+1]
)

+

(1 − qi,1

qi,2
)E[Rθi+1,1 ]

=
qi,1

qi,2

(

E[Rθi,1 ](1 + ρi+1) + E[Si+2] + E[Q̂i+1,i]E[Bi+1]
)

+

(1 − qi,1

qi,2
)E[Rθi+1,1 ]. (3.58)

The derivation of E[Rθi,j ] for general j is similar. After some straightforward calcula-
tions, the following expression can be derived for i = 1, 2, . . . , N and j = 2, 3, . . . , N ,

E[Rθi,j ] =
qi,1

qi,j

(

E[Rθi,1 ]

j−1
∏

n=1

(1 + ρi+n) +

j−1
∑

n=1

(E[Si+n+1] +

E[Q̂i+n,i]E[Bi+n])

j−1
∏

m=n+1

(1 + ρi+m)
)

+ (1 − qi,1

qi,j
)E[Rθi+1,j−1 ]. (3.59)

To conclude, elimination of E[Rθi,j ] from (3.55) and (3.56) with the help of (3.57) and

(3.59) yields a set of N(N + 1) linear equations for equally many unknowns E[Q̄i,i] and

E[Q̂i,n]. Together with (3.52) and Little’s Law, the solution to these equations yields the
unconditional mean queue lengths and mean waiting times.
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Systems with mixed service. To treat the case of mixed service polling systems, we
first have to realize that the two different definitions of the station times conflict. It is,
therefore, necessary to do the conditioning of the queue lengths on the system state in a
more detailed manner. That is, we introduce Mi,n and Ni,n as the queue lengths at queue i
at an arbitrary epoch within a setup time and a service period of queue n, i, n = 1, 2, . . . , N ,
respectively. Recall that in the purely exhaustive and gated systems, we could aggregate
a setup time and a service period in a single random variable, the station period. It goes
without saying that for the gated queues we again have to distinguish between the queue
length behind and before the gate. The total number of variables, and thus the total
number of linear equations, is now equal to 2N2 + K with K ≤ N the number of queues
deploying the gated discipline.

Fully gated strategy. A minor but interesting variant of the gated discipline is the
so-called fully gated strategy [38], also called the reserved gated strategy [47]. Under this
fully gated policy, all, and only, customers found by the server at the start of the setup
time are served. For this fully gated strategy, the definition of the station time can be
chosen identical to the definition for exhaustive service, which simplifies the analysis of a
mixed exhaustive/fully gated system considerably (the conditioning of the queue lengths
on the system state can obviously be done in the standard manner of Subsection 3.1.1).

Finally, we want to stress that for all of the above model variations (and, actually, many
more as touched upon in Section 3.5) similar results as in the exhaustive case, such as
pseudo-conservation laws, could be derived. In a similar vein, the remainder of the present
chapter focusses on the exhaustive discipline, but all results can straightforwardly be ap-
plied to the above model variations. We omit, however, these results in the interest of
space and refer the interested reader to the corresponding papers [P4; P5; P9; P10; P15;
P16; P17].

3.2 Increasing load

The present section is a shortened version of [P5], of which some preliminary results
appeared in [P4]. We consider the exact asymptotic analysis of the mean waiting time
in exhaustive polling systems in heavy traffic, i.e., as ρ tends to one. In the past several
approaches have been suggested for deriving heavy-traffic asymptotics in polling systems.
Coffman et al. [66; 67] use a heavy-traffic averaging principle to study a two-queue model
with exhaustive service at both queues and show that, under heavy-traffic assumptions
and scalings, the total amount of unfinished work converges to a known process. These
observations lead to explicit expressions for the moments of the waiting time at both queues.
They also suggest that, based on a partial conjecture, the analysis can be extended to
systems with more than two queues. Exploring the averaging principle, Reiman and Wein
[181] and Markowitz et al. [157; 158] study the problem of determining optimal dynamic
schedules by approximating the dynamic scheduling problems by diffusion control problems
(see, also, the literature review on the SELSP in Chapter 2). Kudoh et al. [137] use the
classical buffer-occupancy technique, which is based on an expression for the probability
generating function of the joint queue length distribution at successive polling instants, to
derive explicit expressions for the second moment of the waiting time in fully symmetric
systems with gated or exhaustive service at each queue for models with two, three and four
queues. They also give conjectures about the heavy-traffic limits of the first two moments
of the waiting time for systems with an arbitrary number of queues. Kroese [136] uses
the theory of age-dependent branching processes to study the heavy-traffic behavior of
continuous polling systems and shows that the steady-state number of waiting customers
has approximately a gamma distribution. Van der Mei and co-authors [161; 162; 164; 167;
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174; 175] explore the recursive relations of the descendant set approach to derive closed-
form expressions for the asymptotic waiting time distribution in heavy traffic for polling
systems with a multi-type branching structure both for cyclic and periodic server routing.
Most results in these papers are generalized and unified in [165] (see, also, Chapter 2).

We propose a new technique to derive heavy-traffic limits for the expected waiting time
at each of the queues by using the MVA analysis of the preceding section as the starting
point. By taking the proper heavy-traffic limits of the MVA set, we obtain a highly
simplified but dependent set of linear equations that determines the heavy-traffic limits
of E[Qi,n] up to a scaling constant. Finally, the scaling constant is obtained by adding
a linear equation that follows from the pseudo-conservation law of the system cf., (3.45).
These results do not only provide a new means to obtain heavy-traffic asymptotics for
the expected waiting time, but also lead to the observation that the correlations between
successive station times converge to one as the load tends to one. The latter observation
gives rise to asymptotic expressions for the covariance between successive station times.
The results of the present section could be used as approximate closed-form expressions for
stable systems, i.e., with load less than one, allowing for back-of-the-envelope calculations.
Numerical results in [P4; P5] show that such approximations are accurate when the load
is roughly 90% or more.

The remainder of this section is organized as follows. Section 3.2.1 presents some ad-
ditional notation. Subsections 3.2.2 and 3.2.3 analyze the MVA equations in heavy traffic
and obtain closed-form expressions for the mean asymptotic waiting time and the covari-
ances between successive station times, respectively. Finally, in Subsection 3.2.4 we show
that our results lead to new (managerial) insights in the impact of high load on exhaustive
lot-sizing policies.

3.2.1 Notation

Throughout the present section the mean waiting time E[Wi] of a type-i customer,
i = 1, 2, . . . , N , is considered as a function of ρ, where the arrival rates are variable, while
the service time distributions and the ratios of the arrival rates are fixed. In case ρ ↑ 1, all
queues become unstable and, thus, E[Wi] tends to infinity for all i. To be precise, E[Wi]
has a first-order pole at ρ = 1 (cf. [P6; P7]),

E[Wi] =
E[W ∗

i ]

1 − ρ
+ o((1 − ρ)−1), ρ ↑ 1, i = 1, 2, . . . , N, (3.60)

where g(x) = o(f(x)) means that g(x)/f(x) → 0 as x ↑ 1. The analysis of the present
section is oriented towards the determination of a closed-form expression for

E[W ∗
i ] = lim

ρ↑1
(1 − ρ)E[Wi], i = 1, 2, . . . , N, (3.61)

which is referred to as the mean asymptotic scaled waiting time at queue i. More col-
loquially, we can say that E[W ∗

i ] indicates the rate at which E[Wi] tends to infinity as
ρ ↑ 1.

The fact that E[Wi], i = 1, 2, . . . , N , has a first-order pole at ρ = 1 implies that E[Qi,n],
i, n = 1, 2, . . . , N , has a first-order pole at ρ = 1 as well. Therefore, the following limits
are well defined,

E[Q∗
i,n] = lim

ρ↑1
(1 − ρ)E[Qi,n], i = 1, 2, . . . , N, n = 1, 2, . . . , N. (3.62)

Finally, for each variable x that is a function of ρ, its value evaluated at ρ = 1 is denoted
by x̂.
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3.2.2 Mean value analysis

In the present subsection we explore the use of the MVA framework to derive heavy-
traffic asymptotics for the model with exhaustive service. Starting point is the MVA set
given by (3.13)-(3.16), which in general can not be solved in closed-form, but below an
explicit solution is derived in the limit of ρ ↑ 1. Multiplying both sides of (3.13) - (3.16)
by (1 − ρ) and letting ρ ↑ 1 renders the corresponding set of equations in heavy traffic for
i = 1, 2, . . . , N and j = 1, 2, . . . , N − 1,

N
∑

n=1

ρ̂nE[Q∗
i,n] = λ̂iE[Rθ∗

i+1,N−1
], (3.63)

∑i+j
n=i+1 ρ̂nE[Q∗

i,n]
∑i+j

m=i+1 ρ̂m

= λ̂iE[Rθ∗

i+1,j
], (3.64)

E[Rθ∗

i,1
] =

1

1 − ρ̂i
E[Q∗

i,i]E[Bi], (3.65)

and for j = 2, 3, . . . , N ,

E[Rθ∗

i,j
] =

ρ̂i
∑i+j−1

n=i ρ̂n

(

E[Rθ∗

i,1
]

∏j−1
n=1(1 − ρ̂i+n)

+

j−1
∑

n=1

E[Q∗
i+n,i]E[Bi+n]

∏j−1
m=n(1 − ρ̂i+m)

)

+

∑i+j−1
n=i+1 ρ̂n

∑i+j−1
n=i ρ̂n

E[Rθ∗

i+1,j−1
]. (3.66)

The variables E[Rθ∗

i,j
] are defined by

E[Rθ∗

i,j
] = lim

ρ↑1
(1 − ρ)E[Rθi,j ], i = 1, 2, . . . , N, j = 1, 2, . . . , N. (3.67)

The fact that E[Wi], i = 1, 2, . . . , N , has a first-order pole at ρ = 1 implies that E[Rθi,j ],
j = 1, 2, . . . , N , also has a first-order pole at ρ = 1 and, thus, the limits in (3.67) are well
defined.

After some matrix manipulations, the following set of N2 equations for equally many
unknowns E[Q∗

i,n] is obtained, for i = 1, 2, . . . , N ,

N
∑

n=1

ρ̂nE[Q∗
i,n] − E[Q∗

i,i] = 0, (3.68)

and for i = 1, 2, . . . , N and j = 1, 2, . . . , N − 1,

j−1
∑

n=0

ρ̂i+1+n
1

λi
E[Q∗

i,i+1+n] +

j−1
∑

n=0

ρ̂i+1+n
1

λi+j
E[Q∗

i+j,i+1+n] − 1

λi
E[Q∗

i,i+j ] = 0, (3.69)

The set (3.68) - (3.69) can be solved up to some unknown scaling factor c ∈ R as shown in
the following theorem.

Theorem 3.2.1 The solution of the set (3.68) - (3.69) is given by

E[Q∗
i,i] = cλ̂i(1 − ρ̂i), i = 1, 2, . . . , N, (3.70)

E[Q∗
i,i+n] = cλ̂i(2

n−1
∑

m=1

ρ̂i+m + ρ̂i+n), i = 1, 2, . . . , N, n = 1, 2, . . . , N − 1,(3.71)

with c ∈ R.
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Proof. By Cramer’s rule we know that the homogeneous set (3.68) - (3.69) has (an infi-
nite number of) non-degenerate solutions if and only if the determinant of the coefficient
matrix vanishes. Substitution shows that (3.70) and (3.71) is indeed a solution of this set.
After elementary, but tedious, row and column operations, the final row reduced form of
the coefficient matrix shows that the rank of the matrix equals N2 − 1, which completes
the proof. ¤

Since the dimension of the null space of the coefficient matrix of (3.68) - (3.69) equals
one, adding the non-homogeneous pseudo-conservation law (3.45) gives a unique solution
for the unknown scaling factor c as done in the theorem below.

Theorem 3.2.2 The quantity c is given by

c =
1 + βδE[S]

2βδ
, (3.72)

where β = E[B]

E[B2]
and δ = 1 −

∑N
i=1 ρ̂2

i .

Proof. Combining Theorem 3.2.1, (3.6) and Little’s Law yields the unconditional mean
asymptotic scaled waiting times,

E[W ∗
i ] = c(1 − ρ̂i), i = 1, 2, . . . , N, (3.73)

which satisfy a scaled version of pseudo-conservation law (3.45). Thus, multiplying both
sides of (3.45) by (1 − ρ) and letting ρ ↑ 1 yields

N
∑

i=1

ρ̂iE[W ∗
i ] =

1 + βδE[S]

2β
, (3.74)

where β = E[B]

E[B2]
and δ = 1−∑N

i=1 ρ̂2
i . Combining (3.73) and (3.74) completes the proof. ¤

Theorem 3.2.2 together with (3.73) brings us in the position to obtain a closed-form
expression for the mean asymptotic scaled waiting time E[W ∗

i ] at each of the queues as
exposed in the following corollary.

Corollary 3.2.3 For i = 1, 2, . . . , N ,

E[W ∗
i ] = (1 − ρ̂i)

1 + βδE[S]

2βδ
. (3.75)

Corollary 3.2.3 is in agreement with results of [67] and [166] and explicitly reveals the
impact of the system parameters on the mean asymptotic scaled waiting time as stated in
the following property (see also [167]).

Property 3.2.4 For i = 1, 2, . . . , N ,

1. E[W ∗
i ] is independent of the visit order;

2. E[W ∗
i ] depends on the service time distributions only through the first two moments

of the service time of an arbitrary customer;

3. E[W ∗
i ] depends on the setup time distributions only through the first moment of the

total setup time in a cycle.

¤

It is important to note that the properties discussed above are in general not valid for
stable systems, i.e., with ρ < 1.
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3.2.3 Correlations

Similar to the mean waiting time E[Wi], we study the correlation Cor[θi, θi+n] of the
station periods θi and θi+n as a function of ρ, where the arrival rates are variable. Observe
that (3.65) and (3.66), together with the results for the mean conditional queue lengths,
yield the following expression for the mean asymptotic scaled residual (i, j)-period E[Rθ∗

i,j
],

E[Rθ∗

i,j
] =

1 + βδE[S]

2βδ

i+j−1
∑

m=i

ρ̂m, i = 1, 2, . . . , N, j = 1, 2, . . . , N. (3.76)

Combining (3.46) and (3.76) together with the following obvious observation for the mean
of a scaled asymptotic (i, j)-period E[θ∗

i,j ],

E[θ∗
i,j ] = lim

ρ↑1
(1 − ρ)E[θi,j ] = E[S]

(

i+j−1
∑

m=i

ρ̂m

)

, i = 1, 2, . . . , N, j = 1, 2, . . . , N,

(3.77)
yields for the corresponding scaled asymptotic variance Var[θ∗

i,j ],

Var[θ∗
i,j ] = lim

ρ↑1
(1−ρ)2Var[θi,j ] =

E[S]

βδ

(

i+j−1
∑

m=i

ρ̂m

)2

, i = 1, 2, . . . , N, j = 1, 2, . . . , N.

(3.78)
The above expression in conjunction with (3.47) and (3.48) gives rise to the following
result for the scaled asymptotic covariance Cov[θ∗

i , θ∗
i+n] and the asymptotic correlation

Cor[θ∗
i , θ∗

i+n] of the station periods θi and θi+n under heavy traffic defined by, respectively,

Cov[θ∗
i , θ∗

i+n] = lim
ρ↑1

(1 − ρ)2Cov[θi, θi+n], i = 1, 2, . . . , N, n = 1, 2, . . . , N − 1,(3.79)

Cor[θ∗
i , θ∗

i+n] = lim
ρ↑1

Cor[θi, θi+n], i = 1, 2, . . . , N, n = 1, 2, . . . , N − 1,(3.80)

with the remark that these limits are again well defined due to the fact that E[Wi], i =
1, 2, . . . , N , has a first-order pole at ρ = 1.

Corollary 3.2.5 For i = 1, 2, . . . , N and n = 1, 2, . . . , N − 1, we have

Cov[θ∗
i , θ∗

i+n] =
ρ̂iρ̂i+n

βδ
E[S], (3.81)

Cor[θ∗
i , θ∗

i+n] = 1. (3.82)

¤

From Corollary 3.2.5 the following properties about the dependence of the scaled asymp-
totic covariance and the asymptotic correlation with respect to the system parameters can
be perceived.

Property 3.2.6 For i = 1, 2, . . . , N and n = 1, 2, . . . , N − 1,

1. Cov[θ∗
i , θ∗

i+n] and Cor[θ∗
i , θ∗

i+n] are independent of the visit order;

2. the station time θi of queue i is perfectly correlated with the station time θi+n of
queue i + n;
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3. Cov[θ∗
i , θ∗

i+n] depends on the service time distributions only through the first two
moments of the service time of an arbitrary customer;

4. Cov[θ∗
i , θ∗

i+n] depends on the setup time distributions only through the first moment
of the total setup time in a cycle.

¤

Notice that for symmetric systems, Property 3.2.6 directly follows from (3.49). Finally,
for heavy-traffic results for gated service obtained via the MVA framework we refer to [P4;
P5]. In these papers, also closed-form approximations - based on the heavy-traffic asymp-
totics - for various performance measures have been suggested and numerically tested. We
close this subsection with some remarks.

Remark 3.2.7 Corollary 3.2.5 shows that the scaled asymptotic covariance of successive
station times equals zero in systems with zero setup times. This observation actually holds
for the covariances of station times in stable systems as well. That is, in systems without
setup times the number of visits with zero length tends to infinity and, consequently, the
mean and variance of (i, j)-periods both tend to zero implying that the covariance of suc-
cessive station periods converges to zero. ¤

Remark 3.2.8 Corollary 3.2.5 can intuitively be explained from the results of Coffman et
al. [66; 67]. They prove a heavy-traffic averaging principle (HTAP) for a two-queue polling
system with exhaustive service at both queues, from which they conjecture that the same
result applies for systems with more than two queues. This HTAP says that, in heavy
traffic, the total workload in the system converges to a known process, while on the time
scale of this process, the individual workloads change at an infinite rate. This means that
the work is shifting between the queues in a rather deterministic way for a period of time,
in which the total workload stays relatively constant. This deterministic behavior in the
shifting of the workload manifests itself in the perfect correlations between the successive
station times. As such, the results rigorously proven in the present subsection support the
validity of the partially conjectured results in [66; 67]. ¤

Remark 3.2.9 Corollary 3.2.5 deals with the correlation of successive station times within
a single cycle. This result can, however, be extended to correlations of successive times not
belonging to the same cycle by modifying (3.16) in an obvious way. Hence, we obtain that
the station time θi of queue i is perfectly correlated with the station time θi+n of queue
i + n, i.e.,

Cor[θ∗
i , θ∗

i+n] = 1, i = 1, 2, . . . , N, n = 1, 2, . . . . (3.83)

¤

3.2.4 Managerial insights

As described in Chapter 1, the SELSP is a common problem in process industries, where
the utilization of capacity is typically extremely high. Thus, the heavy-traffic results of
the present section can be used to get fundamental new insights into the behavior and
performance of exhaustive lot-sizing policies in process industries. In particular, numerical
tests in [P4; P5] show that the correlations among production runs for exhaustive lot-sizing
policies are relatively high even in moderate traffic load. This not only implies that the
cycle lengths are highly variable, but also that the system may drift away from average
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behavior for a significant period of time. Both effects may lead to higher inventory levels
and costs at the production facility itself, are undesirable from an organizational point
of view and hamper short-term decision making. Below, we elaborate further on these
idiosyncrasies of exhaustive lot-sizing policies revealed by our heavy-traffic results.

First, the high correlations between production runs result in very long cycles from
time to time, which increases the amount of safety stocks needed at the production facility
and the concomitant holding costs. Bounding the production runs, and thus the cycle
lengths, would be an effective strategy to solve this issue in environments with moderate
or high capacity utilization (see, also, Chapter 4). However, we should bear in mind that
in situations with extremely high load this bounding may be infeasible since it may lead
to instability of some of the queues or even of the whole system.

Second, the high variance in cycle lengths caused by the correlations provides breeding
ground for the conjecture that exhaustive lot-sizing policies do not lead to stability, regular-
ity and discipline on the work floor. These properties are desirable from an organizational
point of view, since they facilitate maintenance scheduling, workforce planning, purchas-
ing of raw material, scheduling of subsequent processes and shipment of finished products
(see, e.g., Chapter 1 of Van Nyen [172]). Schmidt et al. [191] report on a real-life case,
where they actually observe the organizational flaws of exhaustive lot-sizing policies in a
make-to-order production environment. By replacing the exhaustive policy in the plant by
a strategy which stabilizes the cycle lengths, many direct and indirect improvements could
be observed. Our heavy-traffic results can be seen as theoretical explanation of the lack of
stability and discipline of exhaustive lot-sizing policies as observed in practice.

Third, the strong correlations between the lengths of production runs in heavy traffic
prove that the performance of exhaustive lot-sizing policies in terms of, e.g., delivery times
or WIP fluctuates strongly over time which may hinder short-term decision making. That
is, the actual performance of the system is better than average for some periods of time,
but for other periods the performance is below average. As Stoop [199] mentions, in the
latter periods managers tend to make nervous myopic decisions in an attempt to reach
average performance as quickly as possible, which may result in additional costs and lower
long-term performance. The present subsection is closed with a remark.

Remark 3.2.10 Although the main motivation for our interest in correlations of station
times is application oriented, these correlations are of theoretical interest as well. For
example, they give an indication of the lengths of simulation runs needed to obtain suffi-
ciently narrow confidence intervals of performance measures. The higher the correlations,
the longer the simulation should be. As such, the results of the present section provide a
theoretical explanation for the inefficiency of simulation techniques for (k-limited) polling
systems as observed by, e.g., Blanc [41]. ¤

3.3 Increasing setup times

The present section, which is a strongly condensed version of [P10], presents an exact
asymptotic analysis of the waiting time distribution in exhaustive polling systems when the
deterministic setup times tend to infinity. To the best of our knowledge there exist only
three papers in the vast polling literature addressing the problem of large setup times.
[163] explores the descendant set approach in combination with the strong law of large
numbers for renewal reward processes to analyze polling systems with deterministic setups
and mixtures of exhaustive and gated service. [173] presents a somewhat simpler analysis
in the case of an exhaustive system with deterministic setups, where the order of service
is determined by a polling table. These results are generalized by the author in [P11]
to, among other things, the complete class of policies allowing for a multi-type branching
process interpretation (see Chapter 2). The main result in all of these papers is the fact that
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the scaled waiting time distribution converges in distribution to a uniform distribution.
The objective of the present section is the development of a new approach to derive the

scaled waiting time distribution for polling systems with increasing deterministic setups.
The main building block of our analysis is the MVA for polling systems, which shows that
the scaled intervisit times converge in probability to a constant as the setup times increase
to infinity. This result immediately leads to the known asymptotic expression for the scaled
waiting time distribution. As such, an approach originally developed for the computation
of mean waiting times (MVA) is straightforwardly applied to derive the asymptotic result
for the complete waiting time distribution.

The remainder of the present section is organized as follows. Subsection 3.3.1 presents
the main theorem, while subsequently Subsection 3.3.2 is mainly devoted to the proof of
this theorem. Lastly, Subsection 3.3.3 argues that our results deepen the understanding of
the behavior and performance of exhaustive lot-sizing policies in production environments
with significant setup times.

3.3.1 Main result

The performance measure of interest is the waiting time Wi of a type-i customer, i =
1, 2, . . . , N , in case the deterministic setup times tend to infinity. Since the waiting time
grows to infinity in the limiting case, we focus on the asymptotic scaled waiting time
Wi/E[S] as E[S] → ∞, where the ratios of the setup times ai = E[Si]/E[S] remain constant,
i = 1, 2, . . . , N . By assuming that the mean of the scaled waiting time converges, it turns
out that all limits in the present section are well defined.

The key result of the present section is the following theorem, where we take
p−→ to

represent convergence in probability and
d−→ to represent convergence in distribution.

Theorem 3.3.1 In case of deterministic setup times, we have for i = 1, 2, . . . , N ,

Wi

E[S]

d−→ W ∗
i , (E[S] → ∞), (3.84)

where W ∗
i is uniformly distributed on [0, 1−ρi

1−ρ
]. ¤

An intuitive explanation of the uniform distribution emerging in the above theorem is
that it represents the position of the server in the cycle, of which the length converges to
a constant, on arrival of a tagged customer. With the help of Theorem 3.3.1 we can derive
similar results for the PGF of the distribution of the scaled queue length Qi/E[S] of queue
i at arbitrary moments in time. That is,

E[y
Qi

E[S] ] = E[e
−λiE[S](1−y

1
E[S] )

Wi
E[S] ]

E[S]→∞−−−−−→ E[yλiW∗

i ], (3.85)

where the first equality follows from application of the distributional form of Little’s law
[130] and the subsequent limit from the following standard limiting result,

lim
x→∞

x
(

1 − a
1
x

)

= − ln(a). (3.86)

We immediately observe from (3.85) that Qi/E[S] equals λiW
∗
i in distribution as E[S] → ∞

implying that - although the individual service requests are discrete - the scaled queue
length distribution converges to a continuous uniform distribution in the limit of increasing
setup times as well. Intuitively, we can say that, when the setup times tend to infinity, the
system behaves like a fluid model where customers keep trickling in and out like water.
We come back to this issue in Remark 3.3.4.

From Theorem 3.3.1 we can perceive the following properties how the asymptotic scaled
waiting time distribution depends on the system parameters.
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Property 3.3.2 For i = 1, 2, . . . , N ,

1. W ∗
i is independent of the visit order;

2. W ∗
i depends on the arrival rate and service time distribution of queue i only through

the occupation rate ρi;

3. W ∗
i depends on the other queues only through the total occupation rate ρ.

¤

Finally, throughout the present section, for each variable x its scaled counterpart x/E[S]
as E[S] → ∞ is denoted by x∗.

3.3.2 Proof of main result

In order to prove Theorem 3.3.1, we use the following well-known relation between the
waiting time Wi and the residual intervisit time RIi at queue i (see, e.g., [203]),

Wi = RIi + W
M/G/1
i , i = 1, 2, . . . , N, (3.87)

where W
M/G/1
i is the waiting time in an M/G/1 queue with arrival rate λi and service

time with first two moments E[Bi] and E[B2
i ]. Note that RIi and W

M/G/1
i are mutually

independent. Since W
M/G/1
i is independent of S, we can restrict ourselves to the intervisit

times. To study these unknowns, we shift attention to the MVA set given by (3.13)-
(3.16). As observed before, this set has no closed-form solution for general parameter
settings. However, if the setup times are deterministic, we have E[S2

i ] = E[Si]
2 and, thus,

E[RSi ] = E[Si]/2, i = 1, 2, . . . , N . If we now divide both sides of this set by E[S] and let
E[S] → ∞, we obtain for i = 1, 2, . . . , N , and j = 1, 2, . . . , N − 1,

N
∑

n=1

qn,1E[Q∗
i,n] =

λi

1 − ρi

( (1 − ρ)a2
i

2
+ (1 − qi,1)(E[Rθ∗

i+1,N−1
] + ai)

)

, (3.88)

i+j
∑

n=i+1

qn,1

qi+1,j
E[Q∗

i,n] = λiE[Rθ∗

i+1,j
], (3.89)

E[Rθ∗

i,1
] =

1

1 − ρi

(

E[Q∗
i,i]E[Bi] +

E[Si]

E[θi,1]

ai

2

)

, (3.90)

and for j = 2, 3, . . . , N − 1,

E[Rθ∗

i,j
] =

qi,1

qi,j

(

E[Rθ∗

i,1
]

∏j−1
n=1(1 − ρi+n)

+

j−1
∑

n=1

ai+n + E[Q∗
i+n,i]E[Bi+n]

∏j−1
m=n(1 − ρi+m)

)

+(1− qi,1

qi,j
)E[Rθ∗

i+1,j−1
],

(3.91)
where we stress the similarities with the set (3.27)-(3.30) used in the proof of Lemma
3.1.3. Remark that terms like qi,j and E[Si]/E[θi,1] represent fractions of time, obviously
independent of (the limit of) S.

The scaled set (3.88)-(3.91) does have a closed-form solution given by (as can be verified
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by substitution),

E[Q∗
i,i] =

λi

2

(

E[C∗] − E[θ∗
i,1] +

E[Si]

E[θi,1]
E[C∗]

)

, i = 1, 2, . . . , N, (3.92)

E[Q∗
i,i+n] = λi

(

E[θ∗
i+1,n−1] +

1

2
E[θ∗

i+n,1]

)

, i = 1, 2, . . . , N, (3.93)

n = 1, 2, . . . , N − 1,

E[Rθ∗

i,j
] =

1

2
E[θ∗

i,j ], i = 1, 2, . . . , N, (3.94)

j = 1, 2, . . . , N − 1,

where E[θ∗
i+1,0] = 0 and E[C∗] = 1

1−ρ
and E[θ∗

i,j ] =
∑i+j−1

n=i ( ρn
1−ρ

+an). We refer to Remark

3.3.4 for an intuitive explanation of the solution (3.92)-(3.94).
It is easily verified from (3.94) that

Var[θ∗
i,j ] = 0, i = 1, 2, . . . , N, j = 1, 2, . . . , N − 1. (3.95)

Since an immediate consequence of Chebyshev’s inequality (see, e.g., [183]) is that a random
variable with zero variance follows a deterministic distribution, Lemma 1 in [173] gives us,
for i = 1, 2, . . . , N , and j = 1, 2, . . . , N − 1,

θi,j

E[S]

p−→ E[θ∗
i,j ] =

i+j−1
∑

n=i

(
ρn

1 − ρ
+ an), (E[S] → ∞). (3.96)

By definition, this leads for i = 1, 2, . . . , N to

Ii

E[S]

p−→
i+N−1
∑

n=i+1

(
ρn

1 − ρ
+ an) + ai =

1 − ρi

1 − ρ
, (E[S] → ∞). (3.97)

Subsequently, we recall the following well-known relation between the cumulative distribu-
tion function (CDF) FIi(·) of Ii and the probability density function (PDF) fRIi

(·) of RIi

for i = 1, 2, . . . , N , (see, e.g., [183])

fRIi
(·) =

1 − FIi(·)
E[Ii]

, (3.98)

which, in combination with the fact that convergence in probability implies convergence in
distribution, leads to for i = 1, 2, . . . , N ,

RIi

E[S]

d−→ 1 − ρi

1 − ρ
U, (E[S] → ∞), (3.99)

where U is a uniform random variable on [0, 1]. Using (3.87) and recalling that W
M/G/1∗
i

p−→
0 as E[S] → ∞ completes the proof. ¤

We close the present subsection with some remarks.

Remark 3.3.3 The astute reader has already noticed that we use the assumption of
deterministic setup times only in the derivation of the closed-form solution (3.92)-(3.94) of
the scaled MVA equations (3.88)-(3.91). In fact, we know that the MVA equations form
a set of linear equations, where the E[RSi ] only show up in the right-hand sides. Due
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to continuity of linear transformations, we can extend the result of Theorem 3.3.1 - and,
thus, the results of [163] and [173] - by replacing the assumption of deterministic setup
times by the following, less restrictive, one that E[RSi ] approaches 1

2
E[Si] as E[S] → ∞,

i = 1, 2, . . . , N . Since E[RSi ] can be rewritten as, for i = 1, 2, . . . , N ,

E[RSi ] =
1

2
E[Si]

(

1 +
Var[Si]

E[Si]2

)

, (3.100)

this means that the variance of the setup times should remain finite in the limiting case

of infinite setup times (or, at least, Var[Si]

E[Si]2
→ 0 as E[S] → ∞). ¤

Remark 3.3.4 The explicit solution of the MVA equations represented by (3.92)-(3.94)
has an intuitively appealing interpretation, certainly worth mentioning. That is, in the
case of increasing deterministic setup times the polling system converges to a deterministic
cyclic system with continuous deterministic service rates 1/E[Bi] and continuous demand
rates λi at queue i, i = 1, 2, . . . , N . This means that in the limit the customers arrive to the
system and are served at constant rates with no statistical fluctuation whatsoever and that
the scaled queue lengths can be seen as continuous quantities, see (3.85). The station times
and conditional lengths emerging in (3.92)-(3.94) are precisely equal to the corresponding
quantities in such a deterministic cyclic system. This explanation also clearly indicates the
difficulties arising in a system with increasing stochastic setup times, since it is certainly
not obvious how such a polling system behaves in the limit. ¤

Remark 3.3.5 The present section demonstrates that MVA makes the asymptotic analy-
sis of the waiting time distribution strikingly simple in case the setup times tend to infinity.
The underlying reason for this is the fact that MVA explicitly gives, as by-product, the
second moments of the station times, intervisit times and cycle lengths. In the case of
deterministic setup times tending to infinity, MVA in particular reveals that the scaled
intervisit times converge in probability to a constant immediately leading to the result of
Theorem 3.3.1. ¤

Remark 3.3.6 The derivation of the results presented here, in particular the closed-form
solution of the MVA equations, relies on the assumption that the setups are deterministic
(see also Remark 3.3.3). However, in heavy traffic the impact of higher moments of the
setup times on the waiting time distribution vanishes (see Section 3.2). By incorporating
the heavy-traffic results for the variance of the intervisit times derived in Section 3.2, this
implies that, as ρ tends to 1, the results of the present section can be easily extended to
generally distributed setup times. That is, in case of general setup times, the distribution
of the asymptotic scaled waiting time under heavy traffic reads, for i = 1, 2, . . . , N ,

(1 − ρ)Wi

E[S]

d−→ W ∗
i , (ρ ↑ 1 and then E[S] → ∞), (3.101)

where W ∗
i is uniformly distributed on [0, 1 − ρi] (see, also, Chapter 2). ¤

3.3.3 Managerial insights

We want to start this section by stressing the dissimilarities between the two sources
of high capacity utilization - due to either high load or large setup times - in polling
systems unearthed by the MVA framework. That is, in heavy traffic caused by high
load a diffusion limit has turned out to apply, which implies that the (variable) gamma
distribution is prevalent, for example, in the scaled cycle lengths and the marginal queue
lengths at polling instants. In contrast, in the case of increasing setup times a fluid limit is
obtained with a central role for the deterministic and uniform distributions revealing itself



3.3 Increasing setup times 59

again, e.g., in the scaled cycle lengths and the marginal queue lengths. In particular, given
the dissimilarities between the two asymptotic regimes revealed by the MVA framework,
it is extremely important in practice to identify the actual source of high utilization of
capacity in order to control and improve system performance.

We think that it is prudent to remind the reader that in Chapter 2 we have already
presented results of the author on (branching-type) polling systems with large setup times.
From a practical perspective, the most important result is - as shown in Theorem 2.2.9 -
that the WIP level under the exhaustive lot-sizing policy is stochastically smaller than the
WIP level under any alternative lot-sizing policy. More colloquially, this implies that the
exhaustive lot-sizing policy is optimal, in terms of WIP levels, in systems with extremely
large setup times and that, thus, production runs should not be bounded in such settings.
This is, however, not true for general systems (with smaller setup times) where bounding
of production runs can lead to significant improvement of system performance as we show
in Chapter 4.

The author has analyzed practical cases of the SELSP in process industries, where
the setup times were extremely large and deterministic. We believe that the results of
the present section give, therefore, new and fundamental insights into the behavior and
performance of (exhaustive) lot-sizing policies in process industries. In particular, we have
shown that, in the case of increasing deterministic setup times, the polling system converges
to a deterministic cyclic system. One would expect that, in practice, production managers
rely more on rigid (deterministic) production strategies in case of large setups than they
do in case of small setups in which dynamic (stochastic) policies are expected to be seen.
This observation gives birth to two interesting lines of research.

First, the deterministic counterpart of the SELSP, the so-called ELSP - which has been
proven to be NP-hard (see Hsu [121]) - has received lots of attention in the literature over
the past decades (for surveys see, e.g., Elmaghraby [86] and Salomon [186]). Two major
differences can be seen between production plans for the SELSP and the ELSP. First, a rigid
cyclic production plan will not suffice anymore in a stochastic environment, since one has to
be responsive to the dynamic changes in this environment. This means that dynamics have
to be included in the production plan. Second, in a stochastic environment the inventories
for the individual products play a more important role than in the deterministic case, as
indicated by Sox et al. [195]. Inventories now do not only reduce the number of setups
in a cycle, but they also serve as hedge against stock-outs and scheduling conflicts due
to the variation in demand, production or setup times. It would be highly interesting
to theoretically investigate whether in the limit of increasing setup times the difference
between the SELSP and the ELSP for a large class of policies indeed vanishes and whether,
consequently, theoretical results obtained for the latter - especially, for the sequencing
decision - could be applied to the SELSP.

Motivation of this first research question is provided by numerical tests in Olsen [173],
which show that limit theorems as obtained here for polling systems carry over to more
general queueing systems. Moreover, Boxma et al. [50; 51] proposed a method to design
effective polling tables - basically, solving the sequencing decision for fixed-sequence base-
stock policies - based on a lower bound resulting from the deterministic counterpart of
the polling systems. The accuracy of the method itself as well as the performance of the
deterministic lower bound increases in systems with large setup times (see Olsen [173]).
The results in the present section, obviously, give a strong theoretical foundation of these
observations.

Second, we advocate a large-scale empirical practical study that investigates the main
characteristics of production strategies in environments both with no - or negligible - setup
times on the one hand and extremely large setup times on the other hand. In this way,
one could survey the amount of dynamics incorporated into the production plan, which
is hypothesized to have a negative correlation with the amount of setup times in a cycle.
Although it is impossible to define a single proxy for the degree of dynamics, a possibility
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is to measure the ratio of the safety stocks and the total amount of stock in the system. As
the total setup time in the system is increased from zero to infinity, based on the limiting
results derived this ratio is conjectured to decrease from (almost) one to zero.

3.4 Other scheduling disciplines

Recall that in the SELSP the scheduling of orders within a queue is irrelevant due to
the indistinguishability of the replenishment orders at the product facility and the inability
to measure the production time of an order before the start of production (see Chapter
1). However, polling models have recently been used to study the Bluetooth and 802.11
protocols as well as scheduling policies at routers and i/o subsystems in web servers. In
such settings, the system operator must decide on the order in which jobs within each
queue are served. Since in many of these computer settings the workloads are known to
have high variability, while it is often desirable to give different requests different priority
levels in order to provide differentiated service, using a policy other than FCFS within the
queues is appealing. Motivated by this application we now want to spend some time on the
scheduling decision, which dictates how to schedule jobs within each queue. This section
is based on part of the results in [P9].

Although both the number of papers analyzing polling systems and the number of
papers analyzing scheduling policies are impressive, the combination of the two has received
very little attention. There are only a few exceptions where the effect of priority-based
policies is studied in polling systems, for example, [98; 192; 207; 210]. However, the results
attained for such priority-based policies are mostly limited to pseudo-conservation laws
and approximations that are exact only in special cases, e.g., symmetric polling systems.
In the present section, we illustrate that the developed MVA framework allows the exact
analysis of a variety of scheduling policies (many for the first time) implying that we can
solve the scheduling decision to optimality.

The rest of the section is structured as follows. In Subsection 3.4.1 some additional
notation is introduced. Subsection 3.4.2 deals with the MVA analysis of scheduling policies
in polling systems with exhaustive service.

3.4.1 Notation

The number of jobs served during a visit to a queue is determined by the exhaustive
service discipline. Then, during the visit to each queue, we allow jobs to be scheduled for
service according to the m-class priority discipline or one of the disciplines summarized in
Table 3.1. However, we limit the discussion to work-conserving disciplines. Our main inter-
est is in the mean response time (sojourn time) E[Ti] of a type-i customer, i = 1, 2, . . . , N ,
which is defined as the time in steady state from a customer’s arrival at queue i until the
completion of his service. Often, it is more convenient to study the mean delay, E[Di],
which is defined as E[Ti] − E[Bi]. We stress that this mean delay E[Di] does not neces-
sarily have to equal the mean waiting time E[Wi]. For clarity, we explicitly denote the
dependency of these performance measures on the scheduling disciplines by superscripts.

3.4.2 Mean value analysis

To begin our study of scheduling in exhaustive polling systems, we consider the mean
delay of a tagged arrival of size x, jx, to queue i. When the tagged job arrives, it needs to
wait at least until the server returns to queue i (a residual intervisit period), which equals,
cf. (3.7),

E[RIi ] =
E[Si]

E[C]
E[RSi ] + (1 − qi,1)(E[Rθi+1,N−1 ] + E[Si]). (3.102)

In addition to waiting E[RIi ] before receiving service and to the job size x itself, de-
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Scheduling disciplines

FCFS First Come First Served serves jobs in the order they arrive.
LCFS Last Come First Served non-preemptively serves the job that arrived the most

recently.
PLCFS Preemptive Last Come First Served preemptively serves the most recent arrival.
SJF Shortest Job First non-preemptively serves the job in the system with the smallest

original size.
SRPT Shortest Remaining Processing Time preemptively serves the job with the shortest

remaining size.

Table 3.1: A brief description of the scheduling policies.

pending on the scheduling policy, the delay of jx may include time devoted to serving
(i) jobs that arrive after jx begins service, (ii) jobs that arrived before jx, (iii) jobs that
arrived after jx and before jx receives service. We denote the contribution of the first piece
as c1(x) and the second piece as c2(Vi), where Vi represents the stationary work at queue
i. To simplify the computation of the third component, we notice that many common
scheduling policies obey the following property:

Property 3.4.1 The contributions to the delay of jx from all jobs that arrive after jx and
before jx receives service, denoted c3(Bi), are i.i.d. Further, once jx receives service, no
service is given to any other jobs that arrived before jx.

Many common policies obey Property 3.4.1, e.g., FCFS, LCFS, PLCFS, SJF and SRPT.
Any policy which obeys Property 3.4.1 has the following representation for the mean delay
Di(x) of a job of size x:

E[Di(x)] = E[c1(x)] + E[RIi ] + E





NA(RIi
)

∑

j=1

θ
c3(B

(j)
i )

(c3(B
(j)
i ))



 + E[θc3(Bi)(c2(Vi))]

= E[c1(x)] + E[RIi ]

(

1 +
λiE[c3(Bi)]

1 − λiE[c3(Bi)]

)

+
E[c2(Vi)]

1 − λiE[c3(Bi)]

= E[c1(x)] +
E[RIi ] + E[c2(Vi)]

1 − λiE[c3(Bi)]
, (3.103)

where NA(Y ) is the number of arrivals during time Y , B
(j)
i is the job size of the jth arrival,

and θBi(Y ) is the length of a busy period started by Y work where service requirements
of arrivals have i.i.d. sizes Bi.

Using (3.103), we can now easily obtain formulae for the mean delay of a handful of
common scheduling policies under exhaustive polling models.

FCFS. The mean delay E[Di] of FCFS in exhaustive polling systems equals the mean
waiting time E[Wi] and has, consequently, been obtained in Section 3.1, but it serves as a
useful example of applying (3.103). In the case of FCFS, only arrivals before the tagged
job contribute to the delay of the tagged job. Thus, E[c1(x)] = 0, E[c2(Vi)] = E[Vi] =
ρiE[RBi ] + E[Qi]

FCFS
E[Bi] and E[c3(Bi)] = 0, which gives

E[Di(x)]FCFS = E[RIi ] + E[Vi] = E[RIi ] + ρiE[RBi ] + E[Qi]
FCFS

E[Bi], (3.104)

and, thus, with the help of Little’s Law,

E[Di(x)]FCFS =
E[RIi ] + ρiE[RBi ]

1 − ρi
. (3.105)
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In order to view this in terms of the mean residual cycle length E[RCi ] = E[Rθi+1,N ], we
use the well-known result that (see, e.g., Boxma [47]),

E[Di(x)]FCFS = E[RCi ](1 − ρi), (3.106)

where a cycle obviously starts at a departure epoch of the server from queue i. Via (3.104)
and (3.105), it follows that

E[RCi ] =
E[RIi ] + E[Vi]

1 − ρi
=

E[RIi ] + ρiE[RBi ]

(1 − ρi)2
. (3.107)

This identity turns out to be useful for other policies as well since all work-conserving
policies have the same mean residual cycle length E[RCi ]. In the remainder of this section,
we derive for each individual scheduling discipline an arrival relation in terms of E[RCi ].
In this way, we isolate the effects of the setup times and the dependencies between station
times into one quantity, which allows us to perform qualitatively simple comparisons of
the mean delays across all the scheduling disciplines. These mean residual cycle lengths
can be computed numerically via the developed MVA framework, since MVA provides - as
a by-product - the mean residual station times, and thus the mean residual cycle lengths,
which are independent of the scheduling discipline (as long as it is work-conserving).

LCFS. For LCFS, we have E[c1(x)] = 0, E[c2(Vi)] = ρiE[RBi ], and E[c3(Bi)] = E[Bi]
and, thus,

E[Di(x)]LCFS =
E[RIi ] + ρiE[RBi ]

1 − ρi
= E[RCi ](1 − ρi) = E[Di(x)]FCFS . (3.108)

In fact, LCFS is not alone in having E[Di] the same as FCFS. As in the M/G/1 queue,
all non-preemptive policies that do not use size information have the same mean delay in
exhaustive polling systems.

PLCFS. Moving beyond non-preemptive policies, let us now consider PLCFS. Since all
arrivals after the tagged job contribute to the delay, we have E[c1(x)] = ρix/(1 − ρi).
Further, E[c2(Vi)] = 0 and E[c3(Bi)] = E[Bi], which gives,

E[Di(x)]PLCFS =
ρix + E[RIi ]

1 − ρi
= E[RCi ](1 − ρi) +

ρi

1 − ρi
(x − E[RBi ]). (3.109)

Thus, we can see that E[Di(x)]PLCFS ≤ E[Di(x)]FCFS ⇔ x ≤ E[RBi ], which is the same
relation as in the M/G/1 setting.

Extending the framework. Since determination of E[c2(Vi)] for priority-based policies
can be problematic, we need to extend the framework. To handle such policies we view
E[c2(Vi)] as the work in a “transformed” FCFS queue, which allows us to mimic the FCFS
derivation. In particular, it can be verified that the following property holds under SJF,
SRPT and many other priority-based policies.

Property 3.4.2 The contribution c2(Vi) can be viewed as the work in a “transformed”
FCFS system where jobs arrive according to a Poisson process with rate λi having i.i.d.
sizes c′2(Bi) and a different (maybe dependent) stream of jobs may arrive while the server
is idle following a general (maybe non-Poisson) process. The resulting stationary amount
of remaining work of the job receiving service is denoted c′′2 (RBi).

1

1Note that this quantity does not assume that there is a job at the server and, thus, is a function
of the load as well as the service distribution.
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Examples of transformed systems are given below, but let us first examine the impli-
cations of Property 3.4.2. That is, denote the number of jobs in the queue of the “trans-

formed” system as Q′
i and the delay in the transformed FCFS queue as DFCFS′

i . Recall
that the mean delay in a FCFS queue equals the mean work in the system plus E[RIi ],

thus E[Di]
FCFS′

= E[RIi ] + E[c2(Vi)]. Given a policy obeys Property 3.4.2, we can write

E[Di]
FCFS′

= E[RIi ] + E[c′′2 (RBi)] + E[Q′
i]E[c′2(Bi)], (3.110)

which gives, using Little‘s law,

E[Di]
FCFS′

=
E[RIi ] + E[c′′2 (RBi)]

1 − λiE[c′2(Bi)]
. (3.111)

Combining the above with (3.103) and (3.107) gives

E[Di(x)] = E[c1(x)] +
E[RIi ] + E[c′′2 (RBi)]

(1 − λiE[c′2(Bi)])(1 − λiE[c3(Bi)])

= E[RCi ]

(

(1 − ρi)
2

(1 − λiE[c′2(Bi)])(1 − λiE[c3(Bi)])

)

+

(

E[c1(x)] − ρiE[RBi ] − E[c′′2 (RBi)]

(1 − λiE[c′2(Bi)])(1 − λiE[c3(Bi)])

)

. (3.112)

The form of (3.112) is quite illustrative. The first term captures the growth as a function
of the mean residual cycle length and the second term captures the tradeoff between giving
priority to jobs that arrived earlier versus jobs that arrived later. In addition, (3.112)
illustrates an important comparison between the M/G/1 model and exhaustive polling
systems. Recalling that E[Di]

FCFS = E[RCi ](1 − ρi), we have that

E[Di(x)] = E[Di(x)]FCFS

(

(1 − ρi)

(1 − λiE[c′2(Bi)])(1 − λiE[c3(Bi)])

)

+

(

E[c1(x)] − ρiE[RBi ] − E[c′′2 (RBi)]

(1 − λiE[c′2(Bi)])(1 − λiE[c3(Bi)])

)

. (3.113)

The important point about the above is that the contribution functions ci(·), c′i(·) and c′′i (·)
are independent of the polling system. So, the only place the polling system impacts (3.113)
is through E[Di(x)]FCFS . Thus, the qualitative relationships between the mean delay of
policies that satisfy Properties 3.4.1 and 3.4.2 are insensitive to the underlying structure
of the polling system and only depend on the fact that queues are served exhaustively.
Note that the quantitative differences between policies do depend on the structure of the
polling systems though, since the relative weights of the two terms in (3.113) depend on
the magnitude of E[Di(x)]FCFS .

SJF. To analyze SJF, which optimizes the mean delay among all non-preemptive policies,
consider a transformed FCFS queue where jobs of size ≥ x are only allowed to arrive at
the moment they begin to receive service in the standard SJF queue. Thus, jobs of size
< x still obey a Poisson process but jobs with size ≥ x do not. The mean delay for the
tagged job is the same in both of these queues. Thus, for SJF, we have that E[c1(x)] = 0,
E[c′2(Bi)] = E[Bi1[Bi<x]], E[c′′2 (RBi)] = ρiE[RBi ], and E[c3(Bi)] = E[Bi1[Bi<x]]. Applying
(3.112) gives

E[Di(x)]SJF =
E[RIi ] + ρiE[RBi ]

(1 − ρi(x))2
= E[RCi ]

(

1 − ρi

1 − ρi(x)

)2

, (3.114)
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where ρi(x) = λiE[Bi1[Bi<x]]. Thus, we can see that E[Di(x)]SJF ≤ E[Di(x)]FCFS ⇔
ρi(x) ≤ 1 −√

1 − ρi, which also holds in the M/G/1 setting.
To obtain the overall mean delay of SJF, we can simply integrate (3.114) as follows

E[Di]
SJF = E[RCi ]

∫ ∞

0

(

1 − ρi

1 − ρi(x)

)2

fi(x)dx. (3.115)

Unfortunately though, no closed-form solution is available for this integral, but it can be
proved that E[Di]

SJF ≤ E[Di]
FCFS .

SRPT. As in the M/G/1 setting, SRPT optimizes the mean delay in exhaustive polling
systems. However, the mean delay of SRPT has not been derived in this setting. In the
case of SRPT, the transformed system that we use has jobs with original size < x arrive at
the same instants as normal, but has jobs with original size ≥ x arrive to the server at the
moment they obtain remaining size x. Thus, they always arrive when the transformed sys-
tem is idle. Thus, we obtain E[c′2(Bi)] = E[Bi1[Bi<x]] and E[c′′2 (RBi)] = ρ̂i(x)E[Rmin(Bi,x)],
where ρ̂i(x) = λiE[min(Bi, x)]. Further, noting that new arrivals contribute to the delay
of the tagged job only when they are smaller than the remaining size of the tagged job, we

have E[c3(x)] = E[Bi1[Bi<x]] and E[c1(x)] =
∫ x

0
( 1
1−ρi(t)

−1)dt =
∫ x

0

ρi(t)
1−ρi(t)

dt, where dt
1−ρi(t)

should be interpreted as the mean length of a busy period started by dt work including all
new arrivals of size < t. Applying (3.112) gives

E[Di(x)]SRPT =

∫ x

0

ρi(t)

1 − ρi(t)
dt +

E[RIi ] + ρ̂i(x)E[Rmin(Bi,x)]

(1 − ρi(x))2

= E[RCi ]

(

1 − ρi

1 − ρi(x)

)2

+

∫ x

0

ρi(t)

1 − ρi(t)
dt −

ρiE[RBi ] − ρ̂i(x)E[Rmin(Bi,x)]

(1 − ρi(x))2
. (3.116)

As with SJF, we can obtain the overall mean delay of SRPT by integrating (3.116);
however, such integration must be done numerically. But, without resorting to numerics,
it is already evident that SRPT can provide significant reductions in mean delay when
compared to FCFS and even SJF.

m-class priority queues. We now move to the m-class priority discipline, where we limit

our discussion to the non-preemptive variant. The mean delay of a class j job, E[D
(j)
i ],

is again easily derived from (3.112). Foregoing the details since they parallel the analysis

of SJF, we have that E[c1(Bi)] = 0, E[c′2(Bi)] = E[B
(k)
i 1[k≤j]], E[c′′2 (Bi)] = ρiE[RBi ], and

E[c3(Bi)] = E[B
(k)
i 1[k<j]]. Thus, (3.112) gives

E[D
(j)
i ] = E[RCi ]

(

(1 − ρi)
2

(1 − ∑

k<j ρ
(k)
i )(1 − ∑

k≤j ρ
(k)
i )

)

, (3.117)

where ρ
(j)
i = λ

(j)
i E[B

(j)
i ]. Notice that the mean delay of SJF can be obtained by taking

the appropriate limits. From (3.117) we can calculate the overall mean delay using

E[Di] =
∑

j

λ
(j)
i

λi
E[D

(j)
i ]. (3.118)
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Although this formula is easy to write, it hides the behavior of the mean delay as a function
of the job sizes of each class. Since it is straightforward to show that the mean delay is
minimized when priority is given to the classes that have small service requirements, it
makes sense to consider threshold based policies. However, in general we cannot derive a
closed-form expression for the optimal thresholds except in the case of two priority classes
as shown below.

In this case, we can simplify the expression for the mean delay. In particular, letting t
be the threshold used by the policy, we have

E[Di]

E[Di]FCFS
=

λ
(1)
i

λi

1 − ρi

1 − ρ
(1)
i

+
λ

(2)
i

λi

1

1 − ρ
(1)
i

=
1 − ρiFi(t)

1 − ρ
(1)
i

. (3.119)

Differentiating this expression, we find

d

dt

(

E[Di]

E[Di]FCFS

)

=
−ρifi(t)(1 − ρ

(1)
i ) + λitfi(t)(1 − ρiFi(t))

(1 − ρ
(1)
i )2

, (3.120)

which gives that the mean delay is minimized, when the threshold satisfies

t

E[Bi]
=

1 − λi

∫ t

0
sfi(s)ds

1 − ρiFi(t)
. (3.121)

Although this expression is not explicit, it can be solved easily in the case of many common
service distributions (see [P9]). Furthermore, notice that the optimal threshold is ≥ E[Bi]
for all service distributions (note that the optimal threshold is an increasing function of λi

and as λi → 0, t → E[Bi]) and depends on the shape of the distribution.
In [P9] we have extended the analysis of scheduling disciplines within the MVA frame-

work to the case of gated service. One of the most striking observations provided by this
framework is the fact that a large class of scheduling policies behaves the same in ex-
haustive polling models as in the standard M/G/1 model as seen in the present section,
whereas scheduling policies in gated polling models have a very different effect than in the
M/G/1 model. This difference manifests itself not only in the complexity of the analysis,
but also in the impact a scheduling discipline has on the overall mean delay. Furthermore,
[P9] presents some simple numerical experiments illustrating the performance of scheduling
policies in exhaustive and gated polling systems and shows that the impact of scheduling
within queues can be dramatic. One could postulate the (perhaps intuitively appealing)
claim that scheduling within a queue has only a minor effect on overall system perfor-
mance. Namely, one could argue that such a local decision only influences a small part of
the delay of a customer, since a major part consists of the time until the server returns to
the queue under consideration, which is unaffected by the scheduling policy. The results
in [P9] refute this assertion. The explanation for this is that at an polling instant there is
often a large batch of jobs waiting for service and, thus, the order in which these jobs are
served really matters. We close this section with a remark.

Remark 3.4.3 Although we have seen that many common policies obey Properties 3.4.1
and/or 3.4.2, there are also policies that do not satisfy them. Foremost, all processor
sharing (PS) type policies such as discriminatory, weighted, and multi-level PS do not
satisfy either 3.4.1 or 3.4.2, implying that our analytic framework does not apply to these
policies. In fact, these policies are fundamentally more difficult to analyze in exhaustive
polling systems than they are in the M/G/1 model. To see this, notice that an analysis of
the mean delay of PS in exhaustive polling systems depends on understanding the transient
behavior of the queue length distribution under PS in the M/G/1 model, which is known
to be a very difficult problem [131]. Thus, we leave the analysis of PS-type policies as an
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open question and note that, unlike policies that satisfy Properties 3.4.1 and/or 3.4.2, the
behavior of PS is very different than it is in the stationary M/G/1 setting. However, not
every policy that violates Properties 3.4.1 and/or 3.4.2 is difficult to analyze in exhaustive
polling systems. In particular, the foreground-background policy violates these properties
but can be analyzed directly. ¤

3.5 Conclusion and possible extensions

In the present chapter, we have introduced an MVA framework for the computation
of the mean delays in exhaustive-type or gated-type polling systems. Without seriously
complicating the analysis, MVA can be carried over to variants of the considered polling
systems: (i) systems with Poisson batch arrivals, (ii) systems with fixed polling tables and
(iii) discrete-time polling systems. Extensions to other polling systems, either in an exact
or approximate way, are not inconceivable as well.

In particular, an interesting, and challenging, topic for further research would be the
classification of a general class of polling systems for which the MVA framework can be ap-
plied. More specifically, one could examine whether the MVA approach could be extended
to the complete class of branching-type policies. However, it turns out that there does not
exist a one-to-one correspondence between the branching and the MVA class. That is, the
author has successfully applied the MVA technique to the following models which do not
satisfy the branching property: a two-queue 1-limited/exhaustive system, cf. [116], a cyclic
polling system with the globally-gated service policy, cf. [52], a closed polling system with
a fixed number of permanent customers, cf. [34] and a hybrid polling system with both
permanent and transient customers, cf. [35]. For the sake of presentation, we omit these
derivations, but they are available from the author upon request.

Given the sparsity and structure of the coefficient matrix of the MVA set it is not
inconceivable that an efficient (iterative) algorithm can be developed to solve this set. Fur-
thermore, using a software package for symbolic formula manipulation, the same structure
and sparsity allow an explicit solution for moderate values of N , where we have to remark
that in the open literature these solutions have only been published for very small values of
N . Although the resulting solutions will, without doubt, be very cumbersome expressions,
they may be used to gain additional theoretical insights into the behavior of the system.
They could, for example, be used to give error bounds on and speed of convergence of the
asymptotic heavy-traffic expressions for the mean delay as obtained in Section 3.2.



Chapter 4

Bounding production runs

The present chapter aims to get us a step nearer to answering the question raised in
Chapter 1: What is the gain in performance of bounding production runs by means of the
quantity-limited lot-sizing policy in multi-item production-inventory systems? We start
this investigation with an exact analysis of a two-queue k-limited system, after that we
move to the approximate analysis of a multi-queue k-limited system and, eventually, we
conclude with simulative numerical evaluations on the k-limited policy. Since in the SELSP
- and in various other applications of polling systems - the objective function oftentimes
depends not only on the mean queue lengths but on the complete marginal queue length
distributions, the main interest of the present chapter is in these distributions.

4.1 Systems with two queues

The present section, which is an abridged version of the manuscripts [P14; P18], consid-
ers a two-queue state-dependent polling model, in which a setup is incurred for a queue only
when it is non-empty. In this model, the single server serves the high-priority queue exhaus-
tively and the low-priority queue according to the k-limited service strategy. Throughout
the present monograph, we have assumed that the machine incurs a setup for a certain
product even when there is no shortfall for this product, which is of course suboptimal, as
argued by Sox et al. [195]. This observation makes the practical relevance of the inclusion
of state-dependent setups in the studied queueing model evident.

As comprehensively expounded in Chapter 2, for general k, an exact evaluation for
the queue length distribution is only known in two-queue exhaustive/k-limited systems
with zero setup times (see Lee [145] and Ozawa [176; 177]). In many applications such
as the SELSP, however, the setup times may be substantial and the presence of these
setup times may be crucial for the operation of the system. Nearly all of the existing
literature on polling systems makes the assumption of state-independent setups. Notable
exceptions are the recent studies of Altman et al. [32], Günalay and Gupta [117], Gupta
and Srinivasan [118] and Singh and Srinivasan [193], where exhaustive-type and gated-type
service disciplines are explored in combination with state-dependent setups. The choice of
modeling state-independent setups is generally not motivated by an application but by the
tractability of the resulting analysis. The present section is the first study combining the
k-limited service discipline and (state-dependent) setups.

We think that it is appropriate that we also bring the paper of Borst et al. [43] to
the attention, in which approximate optimal values of the service limits with respect to
a weighted sum of mean waiting times are obtained for general k-limited polling systems
with state-independent setup times. Of particular interest to the present section is the

67
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fact that they derive a (partially conjectured) rule stating that for optimal operation of
these systems the queues with the highest priority (i.e., the queues with the highest value
of the ratio between cost factor and mean service time) must have their service limit set
at infinity. In a two-queue system this would result into the priority rule of the present
section providing additional evidence for the significance of the present study.

The main contribution of the present section is two-fold. First, the model in [145] is
generalized by including state-dependent setups. In particular, we obtain the transforms
of the queue length and sojourn time distributions under the assumption of Poisson ar-
rivals, generally distributed service times and generally distributed setup times. Second,
we demonstrate how the results of the analysis can be applied in the evaluation of a two-
item instance of the SELSP. We observe significant cost reductions by application of the
k-limited policy, compared to the standard exhaustive policies, in such settings indicating
the potential of the k-limited service discipline as priority rule in production environments.

The rest of the present section is organized as follows. In Subsection 4.1.1, we present the
model description including the stability conditions and the balance equations. Subsection
4.1.2 derives the PGFs of the joint queue length distributions both at service completion
epochs and at arbitrary instants. The penultimate subsection is devoted to the application
in the SELSP. Some concluding remarks are presented in Subsection 4.1.4.

4.1.1 Model description

We start this subsection with the specific notation and assumptions used throughout
the present section. Then, we present the state description together with the corresponding
balance equations.

Notation and assumptions. Consider a two-queue case of the basic polling system as
described in Chapter 2, in which the high-priority queue 1 is served exhaustively, whereas
the low-priority queue 2 is served according to the k-limited strategy. The combination of
these service policies obviously creates a preferential treatment of type-1 customers. Unlike
the basic polling system of Chapter 2, the setup times are assumed to be state-dependent,
i.e., the server incurs a setup for a queue only when it is non-empty. When both queues
are empty, the server stops working. He starts again upon arrival of a new customer and,
then, he has to setup irrespective of the type of the last customer served before the idle
time. Moreover, if the server has served k customers of the low-priority queue and the
high-priority queue is empty, the server starts a new sequence up to k customers of this
low-priority class after a new setup time of the low-priority queue. However, in this case no
setup is incurred for the high-priority queue (which is the standard assumption in polling
systems with state-independent setup times). It is important to note that the analysis
of the present section also fully holds in the case of state-independent setups, mutatis
mutandis.

We define Ui(z1, z2) and Ri(z1, z2) as the PGFs of the number of type-1 and type-2
arrivals during a service time and a setup time at queue i, respectively. That is,

Ui(z1, z2) = βi(λ1(1 − z1) + λ2(1 − z2)), i = 1, 2, (4.1)

Ri(z1, z2) = σi(λ1(1 − z1) + λ2(1 − z2)), i = 1, 2. (4.2)

The quantities

r1 =
λ1

λ1 + λ2
, and r2 =

λ2

λ1 + λ2
, (4.3)

denote the probabilities that the server switches to queue 1 and 2 after an idle period,
respectively.

Winands et al. [P18] heuristically derive the stability conditions for the two queues by
deploying arguments similar to those used by Ibe and Cheng [123], who study the stability
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conditions for a variety of polling systems without state-dependent setups. Furthermore, in
[P18] the heuristic derivation has been proved rigourously by using fluid limit methodology
described by Dai [75] and Dai and Meyn [76] and applied to polling models by Down [81]
(see the theorem below).

Theorem 4.1.1 The two-queue system is stable if and only if

ρ̂ = ρ1 + ρ2 +
λ2

k
(E[S2] + rE[S1]) < 1, (4.4)

where r represents the probability that the number of type-1 arrivals during a setup time
plus k successive service times at queue 2 is not equal to zero, i.e.,

r = 1 − R2(0, 1)(U2(0, 1))k. (4.5)

Proof. See Winands et al. [P18]. ¤

State description and balance equations. We study the system at embedded epochs
of service completions of customers. The state of the system Q(n) just after the nth

departure from the system can be described by the following three variables:

1. Q1(n) : the number of customers in queue 1;

2. Q2(n) : the number of customers in queue 2;

3. C(n) : equals zero when the nth departure is a type-1 customer, while it equals the
number of type-2 departures since the last setup when the nth departure is a type-2
customer.

The associated stochastic process,

Q(n) = {
(

Q1(n), Q2(n), C(n)
)

, n = 1, 2, . . .}, (4.6)

is an aperiodic and irreducible three-dimensional Markov chain. Let

π(q1, q2, c) = lim
n→∞

P [
(

Q1(n), Q2(n), C(n)
)

= (q1, q2, c)], (4.7)

be the limiting probability and define the corresponding generating functions for this
Markov chain as follows

p1(z1, z2) =

∞
∑

q1=0

∞
∑

q2=0

π(q1, q2, 0)zq1
1 zq2

2 , (4.8)

p2,j(z1, z2) =

∞
∑

q1=0

∞
∑

q2=0

π(q1, q2, j)z
q1
1 zq2

2 , j = 1, 2, . . . , k. (4.9)

Now, the following set of k + 1 balance equations for equally many unknowns p1(z1, z2)
and p2,j(z1, z2), j = 1, 2, . . . , k, holds

p1(z1, z2) =
U1(z1, z2)

z1

{

p1(z1, z2) − p1(0, z2) + (4.10)

[

c0r1z1 +

k−1
∑

j=1

[p2,j(z1, 0) − p2,j(0, 0)] + p2,k(z1, z2) − p2,k(0, z2)
]

R1(z1, z2)
}

,

p2,1(z1, z2) =
U2(z1, z2)R2(z1, z2)

z2
α(z2), (4.11)

p2,j(z1, z2) =
U2(z1, z2)

z2

{

p2,j−1(z1, z2) − p2,j−1(z1, 0)
}

, j = 1, 2, . . . , k, (4.12)
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with

c0 = p1(0, 0) +
k

∑

j=1

p2,j(0, 0), (4.13)

the probability that the system is left idle at a departure epoch and

α(z2) = c0r2z2 + p1(0, z2) − p1(0, 0) + p2,k(0, z2) − p2,k(0, 0). (4.14)

These balance equations are formulated by considering all the possible states at the
previous departure epoch from which we can reach the current state. We explain (4.10),
which describes the case that the current departure is a type-1 customer. First of all, the
previous departure could be a type-1 departure which did not leave the system idle. This
event corresponds to the term p1(z1, z2) − p1(0, z2). Secondly, the term c0r1z1 represents
the event that the previous departure left the system idle and that the first new arriving
customer is of type 1. Thirdly, the term

∑k−1
j=1 [p2,j(z1, 0) − p2,j(0, 0)] represents the event

that the last departure was a type-2 customer that was not the kth in the sequence and
that left queue 2, but not the complete system, idle. Finally, p2,k(z1, z2) − p2,k(0, z2)
corresponds to the event that the last departure was a type-2 customer that was the kth

in the sequence and that queue 1 was not empty. The explanations of (4.11) and (4.12)
are similar.

The function α(·) is recognized as the generating function of the number of type-2
customers at moments a setup for queue 2 is initiated. Since at these specific points in
time Q1 and C are both equal to zero, the state description can be reduced to a single
dimension represented by the function α(·). The analysis of the next subsection is oriented
towards relating the unknown generating functions p1(·) and p2,j(·, ·) to this function α(·).

4.1.2 Exact analysis of queue lengths

This subsection presents the derivation of the generating functions of the joint queue
length distributions at service completion epochs, which are, thereupon, used to derive
expressions for the PGFs of the marginal queue size distributions at arbitrary instants.

Joint queue lengths at service completion epochs. To derive the generating func-
tions of the joint queue length distributions at service completion epochs, we successively
substitute (4.12) into itself and, then, into (4.11) which yields, for j = 1, 2, . . . , k,

p2,j(z1, z2) =
U j

2 (z1, z2)R2(z1, z2)α(z2) −
∑j−1

l=1 zj−l
2 U l

2(z1, z2)p2,j−l(z1, 0)

zj
2

. (4.15)

Notice that (4.15) gives an expression of p2,j(·, ·), j = 1, 2, . . . , k, as a function of the
unknown functions α(·) and p2,l(·, 0), l = 1, 2, . . . , j − 1.

Now, we turn our attention to p1(·, ·). Substituting (4.15) for j = k into (4.10) and
using (4.13) and (4.14) gives us, after some straightforward manipulations,

(

z1 − U1(z1, z2)
)

p1(z1, z2) = U1(z1, z2)
{

c0r1z1R1(z1, z2) + (R1(z1, z2) − 1)p1(0, z2) +

(( U2(z1, z2)

z2

)k

R2(z1, z2)α(z2) − α(z2) + c0r2z2 + (4.16)

k−1
∑

j=1

[

1 −
(U2(z1, z2)

z2

)j]

p2,k−j(z1, 0) − c0

)

R1(z1, z2)
}

.
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We eliminate p1(0, z2) from the above equation by rewriting (4.14) as follows

p1(0, z2) = α(z2) − c0r2z2 + p1(0, 0) − p2,k(0, z2) + p2,k(0, 0)

= α(z2) + c0(1 − r2z2) −
(U2(0, z2)

z2

)k

R2(0, z2)α(z2) (4.17)

−
k−1
∑

j=1

[

1 −
(U2(0, z2)

z2

)j]

p2,k−j(0, 0),

which yields

(

z1 − U1(z1, z2)
)

p1(z1, z2) = U1(z1, z2)
{

(
β(z1, z2)

zk
2

− 1)α(z2) +

R1(z1, z2)

k−1
∑

j=1

δj(z1, z2)

zk
2

p2,k−j(z1, 0) + (4.18)

D(z1, z2) − (R1(z1, z2) − 1)

k−1
∑

j=1

δj(0, z2)

zk
2

p2,k−j(0, 0)
}

,

where

D(z1, z2) = c0

[

r1z1R1(z1, z2) + r2z2 − 1
]

, (4.19)

β(z1, z2) = Uk
2 (z1, z2)R1(z1, z2)R2(z1, z2) − Uk

2 (0, z2)(R1(z1, z2) − 1)R2(0, z2),(4.20)

δj(z1, z2) = zk
2 − zk−j

2 U j
2 (z1, z2). (4.21)

It is again important to notice that via (4.18), p1(·, ·) is also expressed as a function of the
unknown functions α(·) and p2,j(·, 0), j = 1, 2, . . . , k − 1.

It is well known that for each (fixed) |z2| ≤ 1 the term z1 − U1(z1, z2) in (4.18) has
exactly one zero z1 = ξ(z2) with |z1| ≤ 1 if ρ1 < 1. More specifically,

z1 = ξ(z2) = θ1[λ2(1 − z2)], (4.22)

where θ1(·) is the LST of the busy period of a standard M/G/1 queue with arrival rate
λ1 and LST of the service time β1(·) (see, e.g., Takács [201]). Thus, ξ(·) can be seen as
the PGF of the distribution of the number of type-2 arrivals during such an M/G/1 busy
period.

Remark 4.1.2 It is interesting to note that the function β(ξ(z), z) is the PGF of the
number of type-2 customers arriving in a cycle for queue 2 in which the maximum of k
customers is served. ¤

By analyticity of p1(z1, z2), the right-hand side of (4.18) should vanish when z1 = ξ(z2).
Hence,

α(z) =
D(ξ(z), z)zk + R1(ξ(z), z)

∑k−1
j=1 δj(ξ(z), z)p2,k−j(ξ(z), 0)

zk − β(ξ(z), z)
−

(R1(ξ(z), z) − 1)
∑k−1

j=1 δj(0, z)p2,k−j(0, 0)

zk − β(ξ(z), z)
, (4.23)
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and α(z) is formulated as a function of the unknown functions p2,j(·, 0), j = 1, 2, . . . , k−1.
To eliminate these unknown functions, we differentiate the numerator and denominator

of (4.15) j times with respect to z2 and, by L’Hospital’s rule, we obtain the following
recursion, for j = 1, 2, . . . , k − 1,

p2,j(x, 0) =

j
∑

l=1

cl
dj−l

dyj−l [U
j
2 (x, y)R2(x, y)]

∣

∣

∣

y=0

(j − l)!
−

j−1
∑

l=1

dl

dyl [U
l
2(x, y)]

∣

∣

∣

y=0

l!
p2,j−l(x, 0), (4.24)

where cl, l = 1, 2, . . . , k− 1, represent the probabilities that l type-2 customers are present
at the start of a setup for this queue, i.e.,

cl =

dl

dyl [α(y)]
∣

∣

∣

y=0

l!
, l = 1, 2, . . . , k − 1. (4.25)

From this interpretation of cl one can easily deduce a probabilistic interpretation of (4.24)
as well, i.e., left and right hand side clearly represent the PGF of the number of customers
in queue 1 when the server leaves queue 2 due to the fact that the latter queue is empty
after j customers are served, j = 1, 2, . . . , k − 1. Of course, we could have derived (4.24)
directly by using this probabilistic interpretation and, hence, avoid use of L’Hospital’s rule.

By (4.24) we can write p2,j(·, 0) as a function of the unknown probabilities cj , j =
0, 1, . . . , k−1. Moreover, with the help of (4.15), (4.18) and (4.23) the generating functions
p2,j(·, ·), p1(·) and α(·) can be expressed in terms of these constants as well. The problem
of finding these generating functions is, thus, reduced to finding the unknown probabilities
cj , which can be computed as follows. Given that (4.4) holds, the following theorem states
that the denominator of (4.23) has exactly k zeros on or within the unit circle.

Theorem 4.1.3 Under (4.4), it holds that zk = β(ξ(z), z) has k roots on or within the
unit circle.

Proof. The derivative of β(ξ(z), z) at z = 1 equals

β′(ξ(1), 1) =
λ2

1 − ρ1
(kβ2 + τ1 + τ2) −

λ2

1 − ρ1
Uk

2 (0, z2)R2(0, z2)τ1 =
kρ2 + λ2(rτ1 + τ2)

1 − ρ1
,

(4.26)
where r is defined by (4.5). Because we have assumed (4.4), we obtain β′(ξ(1), 1) < k and
the result follows from Theorem 4.A.4 in Appendix 4.A. ¤

Since α(z) is bounded in |z| ≤ 1, the zeros in the numerator must be canceled by
corresponding zeros in the denominator. One of the zeros equals one and leads to a
trivial equation. However, the normalization condition provides an additional equation
and, therefore, we have a set of k linear equations. By making the assumption that the
k roots of zk = β(ξ(z), z) on or within the unit circle are all distinct (see Remark 4.1.4),
this set of equations has a unique solution for cj , j = 0, 1, . . . , k − 1. This completes
the determination of the generating functions of the queue length distributions at service
completion epochs and, hence, in the remainder of the present section we assume that
these generating functions are known.

Remark 4.1.4 If one or more roots of zk = β(ξ(z), z) on or within the unit circle coincide,
our reasoning needs to be slightly modified. That is, for α(z) to be bounded in |z| ≤ 1,
the numerator of (4.23) should still have the same zeros as the denominator of (4.23) and
with the same multiplicity. Additional equations can, therefore, be obtained by requiring
that the derivative(s) of the numerator should also vanish where the denominator has a
zero of higher multiplicity. ¤
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Marginal queue lengths at arbitrary instants. From the results of the previous sub-
section, we can obtain expressions for the PGF qi(·) of the marginal queue size distributions
of queue i at type-i departure epochs, i.e.,

q1(z) =
p1(z, 1)

r1
, and q2(z) =

∑k
j=1 p2,j(1, z)

r2
. (4.27)

By using a standard level crossing argument, in combination with PASTA, it can be shown
that the marginal queue length distribution of queue i at type-i departure epochs and at
arbitrary instants in time denoted by Li are the same. Hence, the PGFs for these marginal
distributions are given by (4.27). From (4.27) we can easily obtain the LST Ti(·) of the
sojourn time distribution of a type-i customer. Since the number of type-i customers left
behind by a tagged type-i customer equals the number of customers arrived during the
sojourn time of this tagged customer, we have

Ti(z) = qi(1 − z

λi
), i = 1, 2, (4.28)

which is known as the distributional form of Little’s law (see, e.g., Keilson and Servi [130]).

4.1.3 Application

In the present subsection, we use the analysis of the preceding subsection to numerically
evaluate a stochastic two-item instance of the SELSP. Consider a two-product instance of
the base-stock system described in Chapter 1, where for product 1 an exhaustive lot-sizing
policy is implemented, while for product 2 a quantity-limited lot-sizing policy is used.
Imitating the reasoning expounded in the first introductory chapter, we can argue that
the shortfall distribution of product i at the production facility is identical to the queue
length distribution of queue i in the queueing model of the present section. Hence, by the
procedure presented in Subsection 4.1.2, the steady-state net stock level distribution for
both products can be computed. Thereupon, assuming negligible setup costs and a linear
cost structure for the holding cost hi and penalty costs pi for product i yields the optimal
base-stock levels b∗i (see, again, Chapter 1),

b∗i = min{n ∈ N0|P [Li ≤ n] ≥ pi

pi + hi
}, i = 1, 2, (4.29)

and the concomitant costs Z(b∗),

Z(b∗) = E[
N

∑

i=1

ci (b∗i − Li)]. (4.30)

Of course, a whole plethora of cases can be studied: different values of the quantity limit,
choice of service time distributions and their parameters, choice of setup distributions and
their parameters, different (ratios between) cost factors, etcetera. However, the aim of the
present subsection is to present some illustrative cases which show the potential of the
k-limited service policy in the context of the SELSP.

As described before, the PGFs derived in the previous subsection have to be finished off
with a number of zeros, which are numerically computed by using the Chaudhry QROOT
software package [64]. We, then, use the method presented by Abate and Whitt [24]
to numerically invert these PGFs. Unfortunately, for large quantity limits, numerical
problems have been encountered in the procedure. Therefore, we confine ourselves to cases
with small quantity limits. In the numerical evaluation we also present results for the
special case of k = ∞, which amounts to a two-product model with an exhaustive lot-sizing
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Product information

Parameter Product 1 Product 2
Demand (rate) Poisson(0.375) Poisson(0.375)
Processing times Exp(1.0) Exp(1.0)
Setup times Exp(0.25) Exp(0.25)
Holding costs 10 1
Backlogging costs 90 9

Table 4.1: Product information for Case 1.

policy for both products. In this case, we do not use the procedure of Subsection 4.1.2,
but we have implemented a discrete event simulation. Each simulation run is sufficiently
long such that the widths of the 95% confidence intervals of the performance measures of
interest are smaller than 1% of the estimated value.

The examination starts with an initial case, which is subsequently being perturbed into
6 cases to study the effect of (1) (ratio between) the loads, (2) (ratio between) cost factors,
(3) setup times.

Case 1 (Initial case). Suppose that product 1 is a product with high costs, whereas
product 2 is of secondary importance compared to the first product. Table 4.1 shows the
detailed specifications for these two products (where the numbers between brackets are
the means of the corresponding distributions). Table 4.2 shows the costs Zi per product,
the total costs Z and the optimal base-stock levels b∗i as a function of the quantity limit
k. Firstly, we observe that the costs for product 2 are decreasing in the quantity limit,
whereas the costs for product 1 increase with this limit. Secondly, the optimal value of
the quantity limit with respect to total costs is equal to 2. For smaller limits the amount
of capacity available for production is too low, while larger limits lead to more variable
cycle lengths. Thirdly, the optimal base-stock levels for product 2 are non-increasing in the
quantity limit, while the optimal base-stock levels for product 1 are non-decreasing in this
limit. Finally, it is interesting to compare this table with the total costs equalling 59.2 that
would be incurred if a standard exhaustive policy were implemented for both products.
Via a k-limited policy for product 2, we may, thus, save 35.0% compared to the latter
policy clearly showing the advantage of the k-limited policy in a production environment.

Case 2 and 3 (Effect of the load). These cases are similar to the initial case, except
that the demand rates are perturbed, i.e., in Case 2 the demand rates of product 1 and 2
equal 0.15 and 0.6, whereas in Case 3 product 1 and 2 have demand rates 0.6 and 0.15,
respectively. Comparing the results in Tables 4.3 and 4.4 with the costs for exhaustive base-

Output

k b∗1 Z1 b∗2 Z2 Z

1 3 27.5 13 13.9 41.4
2 3 28.8 9 9.8 38.5
3 3 30.5 7 8.7 39.2
4 3 32.5 7 8.1 40.6
5 3 34.6 6 7.7 42.3
6 4 36.5 6 7.4 43.9

Table 4.2: Case 1.



4.1 Systems with two queues 75

Output

k b∗1 Z1 b∗2 Z2 Z
1 1 13.8 24 24.9 38.7
2 1 15.4 12 12.5 27.8
3 1 17.1 10 10.6 27.7
4 2 18.6 9 9.8 28.4
5 2 19.2 8 9.3 28.5
6 2 19.9 8 9.0 28.8

Table 4.3: Case 2.

Output

k b∗1 Z1 b∗2 Z2 Z
1 5 47.6 5 6.6 54.2
2 5 48.7 4 5.8 54.5
3 5 49.9 4 5.4 55.3
4 5 51.0 4 5.2 56.2
5 5 52.0 4 5.0 57.0
6 5 53.0 3 4.9 57.9

Table 4.4: Case 3.

Output

k b∗1 Z1 b∗2 Z2 Z
1 3 13.7 13 13.9 27.6
2 3 14.4 9 9.8 24.2
3 3 15.2 7 8.7 24.0
4 3 16.2 7 8.1 24.3
5 3 17.3 6 7.7 25.0
6 4 18.3 6 7.4 25.6

Table 4.5: Case 4.

Output

k b∗1 Z1 b∗2 Z2 Z
1 3 5.5 13 13.9 19.4
2 3 5.8 9 9.8 15.5
3 3 6.1 7 8.7 14.8
4 3 6.5 7 8.1 14.6
5 3 6.9 6 7.7 14.6
6 4 7.3 6 7.4 14.7

Table 4.6: Case 5.

stock policies equalling 49.3 and 61.7, respectively, once more significant cost reductions
are observed by application of the k-limited policy. Of course, the advantages of the k-
limited policy are much more pronounced in case the low-priority product 2 has the highest
demand rate.

Case 4 and 5 (Effect of the cost factors). In the fourth and fifth case, we consider
systems similar to that of the initial case and perturb the cost factors. That is, the cost
factors for product 2 remain unaltered, while the holding and penalty costs for product 1
are decreased to 5 and 45 for Case 4 and to 2 and 18 for Case 5, respectively. Although
the same conclusions as in Case 1 can be drawn from Tables 4.5 and 4.6, it should be
observed that the advantages of the k-limited discipline are a bit less pronounced in these
cases due to the leveling of the costs among the products. In fact, application of exhaustive
policies for both products, which is normally done, would lead to total costs of 32.3 and
16.1, respectively.

Case 6 and 7 (Effect of the setup times). In Cases 6 and 7 we examine what the effects
are of the sizes of the setup times. We therefore study two cases similar to the initial case,
but in which the mean setup times equal 0.5 and 0.1, respectively. See Tables 4.7 and 4.8
for the results. Notice that for Case 6 the system is not stable when the quantity limit is
chosen to be equal to 1. In case we implement the exhaustive base-stock policy for both
products, the total costs are given by 62.7 and 56.3. This leads to the intuitively appealing
conclusion that the advantages of the k-limited service discipline slightly increase in case
the setup times vanish, but we stress that even in the case of large setup times the k-limited
strategy still shows its superiority over the exhaustive policy.

In the present subsection we have presented some cases, which lead to the conjectures
that the widely used exhaustive policy is not the most effective strategy in (frequently
encountered) asymmetric production situations as well as that it may be desirable that
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Output

k b∗1 Z1 b∗2 Z2 Z
1 − − − − −

2 3 30.2 16 16.9 47.1
3 3 32.4 11 12.1 44.5
4 4 34.7 9 10.4 45.0
5 4 36.0 8 9.4 45.4
6 4 37.6 7 8.8 46.4

Table 4.7: Case 6.

Output

k b∗1 Z1 b∗2 Z2 Z
1 2 26.7 8 8.8 35.4
2 3 28.3 7 7.9 36.2
3 3 29.8 7 7.5 37.2
4 3 31.5 7 7.2 38.6
5 3 33.3 6 7.0 40.3
6 3 35.3 5 6.7 42.0

Table 4.8: Case 7.

production runs of low-priority products are bounded in these environments.

4.1.4 Conclusions

The present section has presented an exact analysis of a two-queue state-dependent
polling system with k-limited service extending the polling literature on both the k-limited
service discipline and on state-dependent setups; containing the non-preemptive priority
model and the model of Lee [145] as special cases. Moreover, the results of the analysis
have been applied to a two-product case of the SELSP, which provides us with theoretical
evidence that the k-limited strategy leads to considerable cost reductions compared to
widely used (standard) exhaustive policies. The generating functions derived in the present
section provide an excellent breeding ground for the development of simple (closed-form),
accurate and efficient approximations for tail probabilities along the lines of the dominant
pole approximation as described in, e.g., Tijms [208]. In that respect, our work may
complement the results in recent work of Chang and Down [61; 62].

As stated in Chapter 1, the k-limited policy violates the branching property for polling
systems implying that extensions of the analysis of the present section to more realistic
systems are, in most likelihood, outside the borders of possibility and that one has to resort
to approximations in these cases. In that sense, it is important to observe that one of the
key steps of our approach (the reduction of the multi-dimensional stochastic process to
a single dimension represented by the function α(·)) already breaks down in the simplest
extension of the model, i.e., a two-queue case where both queues are served according
to the k-limited service discipline. This observation unearthes the fact that the present
study has indeed reached the borders of tractability. Therefore, in the following section
we develop an efficient and accurate approximate decomposition approach for k-limited
polling systems under the assumption of generally distributed arrival, service and setup
distributions. The section is closed with a remark.

Remark 4.1.5 [J.S.H. van Leeuwaarden, personal communication]. As mentioned at vari-
ous places throughout the present monograph, polling systems find a variety of applications
in many fields (in particular, k-limited polling systems have proved their merit in computer
and communication systems [43; 63]). In the context of the present section, we want to
mention the application in the control of traffic lights. In polling jargon, the stream that
is being given green light corresponds to the queue receiving service. As explained in Van
den Broek [56], the k-limited policy can be effectively applied to mimic the so-called fully-
actuated control strategy for traffic lights, where the traffic lights are controlled based on
the presence of vehicles. The analysis of the present section can be extended by assuming
that vehicles arrive according to a general discrete process - note that the Poisson distri-
bution is also a discrete distribution - and therewith model the system in discrete time.
Such a discrete arrival process is the common assumption in traffic engineering (see, for
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example, Van den Broek et al. [57]) and allows us to study distributions with a larger co-
efficient of variation, distributions with a finite support or distributions fitted to empirical
data. Van den Broek [56] states that in the past traffic engineers were sceptic about the
fully-actuated control strategy, although they certainly recognized the practical potential,
due to its reliance on heuristics rather than on exact analysis for dimensioning. Therefore,
the exact analysis of the present section can be regarded as a valuable methodological
contribution in the field of traffic engineering as well. ¤

4.2 Systems with multiple queues

The present section, which is an abridged version of [P8], aims to approximate the
marginal queue length distributions in a continuous-time polling system with k-limited
service under the assumption of general arrival, service and setup distributions. A feasible
approximate approach for the queue length distribution in a k-limited polling system is the
decomposition method, in which the polling system is decomposed in vacation systems,
for which the vacation distributions are computed in an iterative approximate manner. At
each step in the iteration the mathematical analysis focuses on a single queue, whereas the
other queues in the system determine the length of the vacation period. This decomposition
method is adopted by the present research as well. We have to remark that decomposition
methods seem to be applicable to a wide variety of queueing systems (see, e.g., [77; 112;
216; 217]). In the past, some systems related to the one of the present section have been
studied by the decomposition approach, i.e., a k-limited polling system with finite buffers
under the assumption of Poisson arrival processes [139] or a k-limited polling system in
combination with a reservation mechanism [146]. The qualitative observations of these
studies seem to carry over to the system of the present section.

The key observation, which is at the same time the mathematical motivation of the
present study, is the fact that it is extremely important to capture the correlations among
the different queues, since these correlations have a significant impact on the performance
measures. Whereas [139] does not take these dependencies into account, [146] proposes
to take a weighted sum of a completely uncorrelated and a perfectly correlated system in
each step of the iteration by using a pre-defined mixing probability. Although the method
of [146] clearly outperforms the procedure that ignores the correlations, this procedure is
unable to compensate for correlations in systems with only two queues and also is difficult
to apply for systems with more than two queues. That is, since the quality of the procedure
strongly depends on the mixing probability, it is rather complicated to find an expression for
this probability providing accurate results over the entire range of parameters. Further,
the procedure of [146] is based on generating functions, the numerical determination of
zeros and the numerical inversion of characteristic functions, considerably increasing the
computational complexity of the algorithm. Finally, due to special features of the protocol
studied in [146] the correlations between the queue lengths are relatively small compared
to our system (e.g., in case all queues have a service limit of 1 the correlations vanish),
which makes the approach of [146] well suited for that particular protocol.

Therefore, the goal of the present study is the development of a computationally efficient
iterative approximation method for the marginal queue length distributions in the k-limited
polling model. The main challenge can be found in the estimation of the correlations
between the queue lengths in each step of the iterative algorithm. The vast majority of the
literature on polling systems is devoted to waiting time figures, while almost no attention
has been given to the analysis of such correlations. Recall that in Chapter 3 we have derived
heavy-traffic asymptotics for the covariances between successive station times in polling
systems with mixtures of gated and exhaustive service under the assumption of Poisson
arrivals. However, to the best of our knowledge no results are known for the correlations
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among queues in polling systems with k-limited service.
The key ideas of the approach undertaken in the present section for polling systems

with k-limited service are as follows:

1. The dependence between the queue under consideration and the other queues is
taken into account by the introduction of conditional vacations (also called intervisit
periods), i.e., the length of the intervisit period is positively correlated to the length
of the preceding visit period.

2. The mutual dependencies of the other queues are approximated via standard prob-
abilistic arguments and the conditional intervisit periods.

The main contribution of the present section is the development of a novel iterative
approximation scheme for k-limited polling systems with general arrival, service and setup
distributions. The algorithm developed in the present section only needs information on
the first two moments of all distributions. The accuracy of the approximation scheme
is verified by means of an extensive simulation study. The approximation scheme turns
out to be robust and computationally efficient, while the differences between the exact
and approximate values are small within a reasonable margin. In particular, the time
complexity is only polynomial in the number of queues and the service limits. The main
building block of this algorithm is a k-limited service vacation model with state-dependent
vacations, which has not been studied before in the open literature. In this vacation model,
the vacation length depends on the length of the preceding visit period to the queue. As
a spin-off, we present an exact analysis for this vacation model with the help of matrix-
analytic techniques. A final word on the applicability of the algorithm is that it can also
be used as approximation for the exhaustive discipline by taking a ”large” value of the
service limits. Therefore, our algorithm can also be seen as extension of the algorithm
of Federgruen and Katalan [89] for the exhaustive polling system with Poisson arrivals to
systems with general arrival processes.

The rest of the present section is organized as follows. Subsection 4.2.1 gives, besides
the introduction of the model and further notation, a high-level view of the approximation
scheme. In Subsection 4.2.2 the approximations for the mean and the variance of the condi-
tional intervisit period are presented. Building on these results, Subsection 4.2.3 analyzes
a k-limited vacation model with state-dependent vacations. Subsection 4.2.4 contains an
overview of the iterative procedure to calculate the performance measures of interest. An
extensive numerical study to test the accuracy of the approximation algorithm is presented
in the penultimate subsection. Finally, the last subsection describes the main conclusions
of the present research and indicates some possible directions for further research.

4.2.1 Model description

We consider the basic N -queue polling system described in Chapter 2, where each queue
is served according to the k-limited policy. In particular, it is assumed that the setup times
are state-independent again. However, the Poisson arrival processes introduced in Chapter
2 are extended implying that we assume that customers arrive at all queues according to
independent (general) processes. The mean and second moment of the interarrival times
are denoted by E[Ai] and E[A2

i ], i = 1, 2, . . . , N , respectively. Our main interest is in Li,
the queue length (including the customer possibly in service) at queue i at an arbitrary
point in time, i = 1, 2, . . . , N . The main result of the present section is the development
of an iterative scheme to approximate the complete distribution of Li.

We continue with a high-level description of our approximation method. The key ap-
proximation idea is that we decompose the original k-limited polling system with N queues
into a set of N separate k-limited single-queue models with vacations. At each step in the
iteration the mathematical analysis focuses on a single queue i, whereas the other queues
in the system determine the length of the vacation period (intervisit period) of queue i,
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i = 1, 2, . . . , N . The bottleneck in this approximation is the derivation of the distribution
of the intervisit period, which will be done in an iterative way. If we assume that the
distribution of the intervisit period is known in step n of the iteration, the distribution of
the visit period in step n + 1 is derived by means of a queueing analysis for the k-limited
single-queue model with vacations (see Subsection 4.2.3). In its turn, the latter distribu-
tion can be used to compute the distribution of the length of the intervisit period in step
n + 1 (see Subsection 4.2.2).

Since it is more likely that a long (short) visit period is followed by a long (short)
intervisit period, conditional intervisit periods are introduced. That is, the length of an
intervisit period is assumed to be positively correlated to the number of customers served
in the preceding visit period. The subsequent two subsections aim to answer the following
questions:

1. What are the first two moments of an intervisit period for queue i given that
l = 0, 1, . . . , ki customers are served in queue i in the preceding visit period (see
Subsection 4.2.2)?

2. What is the distribution of the number of customers served in a visit period for queue
i given the first two moments of the conditional intervisit periods (see Subsection
4.2.3)?

4.2.2 Intervisit period

The present subsection computes the first two moments of an intervisit period for queue
i given that l = 0, 1, . . . , ki customers are served in queue i in the preceding visit period.
The input of the present subsection are the stationary probabilities πj(l) that l customers
are served during this visit period of queue j. These probabilities follow from the analysis
of the vacation model in the previous iteration step as expounded in Subsection 4.2.3. For
presentation reasons, we omit throughout this subsection the superscript n in all random
variables denoting the corresponding iteration step n.

First moments. The intervisit period of a queue i is obviously positively correlated to
the preceding visit period of queue i, i = 1, 2, . . . , N . Therefore, we introduce so-called
conditional visit periods Vi(l), intervisit periods Ii(l) and cycles Ci(l) conditioned on the
number of customers Di = l served in the visit period of queue i, l = 0, 1, . . . , ki.

The mean conditional cycle lengths may be approximated by using approximate balance
equations for Ci(l) as proposed by [138],

(ρ − ρi)E[Ci(l)] + lE[Bi] ≈ E[Ci(l)] − E[S], i = 1, 2, . . . , N, l = 0, 1, . . . , ki, (4.31)

which equate the amount of work arriving (left hand side) and the amount of work departing
during conditional cycles (right hand side). The balance equation (4.31) is obviously an
approximation, since it assumes balance within each conditional cycle which may not hold.
Notice the similarity with the exact balance equation for the unconditional cycle length,
for which work-in is equal to work-out. Solving (4.31) results in

E[Ci(l)] ≈
l · E[Bi] + E[S]

1 − ρ + ρi
, i = 1, 2, . . . , N, l = 0, 1, . . . , ki. (4.32)

We extend the approximation of [138] by multiplying the individual values E[Ci(l)] with a
scaling factor ci ∈ R,

E[Ci(l)] ≈ ci
l · E[Bi] + E[S]

1 − ρ + ρi
, i = 1, 2, . . . , N, l = 0, 1, . . . , ki, (4.33)
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and we set the ci as

ci =
E[C]

∑ki
l=0 πi(l)E[Ci(l)]

, i = 1, 2, . . . , N, (4.34)

which implies that the correct unconditional cycle length as given by (2.5) is maintained.
This scaling obviously facilitates the convergence and stability of the algorithm.

Then, the mean conditional intervisit periods Ii(·) can be approximated in the following
way,

E[Ii(l)] ≈ E[Ci(l)] − l · E[Bi], i = 1, 2, . . . , N, l = 0, 1, . . . , ki. (4.35)

Finally, we define a conditional visit period V j
i (l) as the length of the visit period of queue j

given that in the preceding visit to queue i precisely l customers are served, l = 0, 1, . . . , ki.
The mean of this random variable reads

E[V j
i (l)] ≈ ρjE[Ci(l)], i = 1, 2, . . . , N, l = 0, 1, . . . , ki, (4.36)

j = i + 1, . . . , N, 1, . . . , i − 1,

which completes the analysis of the conditional first moments.
We have to remark that the approximations of the present subsection only compen-

sate for the correlations between the visit period and the immediately following intervisit
period. Although it is not inconceivable that one may come up with more sophisticated ap-
proximations, the numerical evaluation of Subsection 4.2.5 shows that our approximations
are still very effective in capturing the correlations among the queues.

Second moments. The goal of the present subsection is the development of an approx-
imation for the variance of the conditional intervisit periods Ii(·). The starting point of
our analysis are the unconditional intervisit periods Ii. Since the setup times are assumed
to be uncorrelated (see Chapter 2), the variance of such an unconditional intervisit period
Ii is given by

Var[Ii] =
∑

j 6=i

Var[Vj ] +
∑

j

Var[Sj ] + 2
∑

j 6=i

∑

k>j
k 6=i

Cov[Vj , Vk] +
∑

j
k 6=i

Cov[Sj , Vk], (4.37)

where the latter two summations include all the covariances among the various visit periods
and among the setup times, respectively, within an intervisit period of queue i. Therefore,
the > sign in this summation means that queue k is visited after queue j in this intervisit
period.

The terms Var[Vj ] in the right-hand side of (4.37) represent the variance of unconditional
visit periods Vj of queue j. The second moment of such a visit period can be approximated
as follows. Conditioning on the number of customers served during the visit period of this
queue and ignoring the correlations between the length of the service times and the number
of customers served during the visit period yields

E[V 2
i ] =

ki
∑

l=0

πi(l)E[V 2
i (l)] ≈

ki
∑

l=0

πi(l)(lE[B2
i ] + l(l − 1)E[Bi]

2), i = 1, 2, . . . , N. (4.38)

Now, the variance of Vi can be obtained via standard probabilistic arguments.
Since the terms Var[Sj ] are assumed to be input of the system, one does not need to

approximate them. By definition, the covariance terms Cov[Vj , Vk] appearing in (4.37) can
be rewritten as

Cov[Vj , Vk] = E[VjVk] − E[Vj ]E[Vk], (4.39)
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where the terms E[Vj ] and E[Vk] follow from (2.7). To compute the unknown quantity
E[VjVk], we condition on the number Dj of customers served in queue j during the last
visit period as follows

E[VjVk] =

kj
∑

l=0

E[VjVk|Dj = l]πj(l)

≈
kj
∑

l=0

lE[Bj ]E[V k
j (l)]πj(l), (4.40)

where πj(l) follow from the analysis of Subsection 4.2.3 and E[V k
j (l)] can be approximated

by (4.36).
Finally, in case a queue k is visited before queue j in the intervisit period of queue i, Vk

and Sj are obviously uncorrelated. In case queue j is visited first, we assume independence
between setup times and visit periods as well, i.e.,

Cov[Sj , Vk] ≈ 0, (4.41)

and, thus, all terms in (4.37) have been specified. Asymptotic numerical results in Van
Vuuren and Winands [P8] show that this assumption is valid as long as the setup times
are not too variable.

By definition, the coefficient of variation cIi of an unconditional intervisit period is,
subsequently, given by

cIi =

√

Var[Ii]

E[Ii]
, i = 1, 2, . . . , N. (4.42)

We approximate the variance of the conditional intervisit periods Ii(·) by assuming equality
of the coefficients of variation of all periods, i.e.,

Var[Ii(l)] ≈ c2
Ii

· E[Ii(l)]
2, l = 1, 2, . . . , ki, i = 1, 2, . . . , N, (4.43)

where an approximation of E[Ii(·)] is given by (4.35). We add that we have also exper-
imented with other approximations for the variance of conditional visit period such as
assuming equality of the coefficients of variation of all conditional cycle lengths. Approxi-
mation (4.43), however, turned out to be the most accurate one. Finally, notice that the
expression in the righthand side of (4.43) is increasing in l.

4.2.3 Visit period

The present subsection aims to compute the distribution of a visit period for queue i
given the first two moments of the conditional intervisit periods as computed via (4.35) and
(4.43) in the preceding subsection. By means of matrix-analytic techniques, we analyze a
single-station vacation model with k-limited service, in which the vacation length depends
on the length of the preceding visit period. The author is aware of only one other study
in which this specific dependency is studied (under the restrictive assumption of Poisson
input [153]). Comprehensive surveys on vacation models can be found in [79; 80; 204].

Since the present subsection is focussing on a single queue i in a specific iteration step
n, the subscript i and superscript n are dropped from all random variables. Throughout
the present subsection, the distribution functions of the interarrival and the service times
are needed. However, the only information available for these random variables are the
first two moments. A common way to obtain an approximate distribution is to fit a phase-
type distribution on the first two moments as elucidated in Van Vuuren and Winands [P8]
(cf., e.g., [208]). In the remainder of the present subsection, we assume that the fitted
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distributions are used as substitute for the arrival and service distributions and that the
number of phases needed equal nA and nB , respectively.

In the preceding subsection, we have computed the first two moments of the conditional
intervisit periods I(·) conditioned on the exact number of customers served in the pre-
ceding visit period. To keep the size of the state space for the k-limited vacation model
manageable, some of these intervisit periods are aggregated. That is, we draw a distinction
between intervisit periods I(0), I(k) and I(∗) in which there have been zero, the maximum
number or any other number of customers served in the preceding visit period, respectively.
In case the service limit at a queue equals one, only I(0) and I(1) have to be distinguished.
The period I(∗) is, thus, defined as,

I(∗) :=

∑k−1
l=1 π(l)I(l)
∑k−1

l=1 π(l)
, (4.44)

with first two moments,

E[I(∗)] :=

∑k−1
l=1 π(l)E[I(l)]
∑k−1

l=1 π(l)
, and E[I(∗)2] :=

∑k−1
l=1 π(l)E[I(l)2]
∑k−1

l=1 π(l)
, (4.45)

where the π(l) follow from the previous iteration step. We have tested this aggregation
of intervisit periods for a wide variety of cases, from which we concluded that it has only
negligible (negative) impact on the results, which is outweighted by the gain in efficiency.

In sum, the system under consideration is a single-server k-limited vacation model with
three different kinds of intervisit periods dependent on the number of customers served in
the preceding visit period. In order to construct these intervisit periods in an efficient way,
we introduce the auxiliary mutually independent random variables Ĩ(∗) and Ĩ(k), which
are independent of I(0) as well. These random variables satisfy

I(∗) = Ĩ(∗) + I(0), and I(k) = Ĩ(k) + I(∗), (4.46)

which is always possible since the variances of the conditional intervisit periods are increas-
ing in l as shown in (4.43). Thereupon, phase-type distributions are fitted on I(0), Ĩ(∗)
and Ĩ(k) (see Van Vuuren and Winands [P8] for further details) in such a way that the first
two moments of I(∗) and I(k) are correct. If we assume that the number of phases needed

for the description of I(0), Ĩ(∗) and Ĩ(k) equal nI(0), nĨ(∗) and nĨ(k), respectively, the total
number nI of phases for the intervisit process is given by nI = nI(0) + nĨ(∗) + nĨ(k).

The k-limited vacation model can be described by a continuous-time Markov process
with states (i, j, m). The state variable i = 0, 1, . . . denotes the total number of customers
in the specific queue under consideration, whereas the state variable j = 1, 2, . . . , nA in-
dicates the phase of the arrival process A. Finally, m = 1, 2, . . . , nD indicates the phase
of the departure process D, which is the combination of the service process and vacation
processes I(0), Ĩ(∗) and Ĩ(k). These latter two processes can be modeled by a single vari-
able, since the server is either serving customers or is on vacation. When the server is
serving customers, one has to keep track of the phase of the service process and of the
number of customers already served in the corresponding visit period. On the other hand,
when the server is on vacation the phase of the corresponding vacation period is needed.
Consequently, the total number of states for the departure process is nD = k × nB + nI .
The phases of this departure process are grouped as follows: first, we group all phases
related to the k service processes and, then, the phases of Ĩ(k), Ĩ(∗) and I(0).

Refer by level i to the set of states with i customers in the system and group the states by
these levels, so that (i, j, m) precedes (i′, j′, m′) if i < i′. Within each level, the states are
grouped according to the arrival phase, so that (i, j, m) precedes (i, j′, m′) if j < j′. Lastly,



4.2 Systems with multiple queues 83

the states are ordered by the departure phase, so that (i, j, m) precedes (i, j, m′) if m < m′.
Now, one may verify that the introduced Markov process is a quasi-birth-and-death (QBD)
process where the infinitesimal generator Q has the following block-tridiagonal structure,

Q =











B00 B01

B10 A1 A0

A2 A1 A0

. . .
. . .

. . .











. (4.47)

Below we specify the submatrices in Q, where we use the concept of Markovian Arrival
Process (MAP) (see, e.g., [37]) to describe the arrival and departure processes. In general,
a MAP is defined in terms of a continuous-time Markov process with finite state space
{0, · · · , m − 1} and generator G0 + G1. The element G1(i, j) denotes the intensity of
transitions from i to j accompanied by an arrival. For i 6= j element G0(i, j) denotes the
intensity of the remaining transitions from i to j, while the diagonal elements G0(i, i) are
strictly negative and chosen such that the row sums of G0 + G1 are zero.

The arrival process can be straightforwardly represented by such a MAP, the states of
which correspond to the phases of this process. Its generator can be expressed as GA

0 +GA
1 ,

where the transition rates in GA
1 are the ones that correspond to an arrival of a customer

to the system. For the transition rates of the GA
0 and GA

1 matrices, we refer to Van Vuuren
and Winands [P8].

The MAP for the departure process with generator GD
0 + GD

1 is a little more involved.
All transitions related to the vacation periods do not cause departures and are, thus, within
GD

0 . Completion of a service process, obviously, leads to a departure implying that the
corresponding rates are in GD

1 . Transitions within a service process not causing departures
are, of course, part of GD

0 . Further, we have to distinguish between the situation when
there are two or more customers in the system or not. In the first situation, if a departure
is not the kth departure the next service process is started and if it is the kth departure
a new vacation period is begun. To deal with the situations in which there are only zero

or one customers present, we have to introduce matrices G̃
D
0 and G̃

D
1 , representing the

transition within level 0 and the transitions from level 1 to level 0, respectively. We can
recognize two differences between these matrices and GD

0 + GD
1 . First, when a service

process is completed which is not the kth service, a vacation period is commenced instead
of the next service. Second, when a vacation period is finished, we jump to process I(0)
instead of to the service process of the first customer in the visit period. The transition

rates for GD
0 , GD

1 , G̃
D
0 and G̃

D
1 are, again, summarized in Van Vuuren and Winands [P8].

Now, we are in the position to describe all the submatrices in Q, i.e.,

B01 = G
A
1 ⊗ InD , (4.48)

B00 = G
A
0 ⊗ InD + InA ⊗ G̃

D
0 , (4.49)

B10 = InA ⊗ G̃
D
1 , (4.50)

A0 = G
A
1 ⊗ InD , (4.51)

A1 = G
A
0 ⊗ InD + InA ⊗ G

D
0 , (4.52)

A2 = InA ⊗ G
D
1 , (4.53)

where In is the identity matrix of size n and if A is an n1 × n2 matrix and B an n3 × n4

matrix the Kronecker product A ⊗ B is an n1n3 × n2n4 matrix defined by

A ⊗ B =







A(1, 1)B · · · A(1, n2)B
...

...
A(n1, 1)B · · · A(n1, n2)B






. (4.54)
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N  : =  A 1L   : =  A 0M  : =  A 2W  : =  A 1d i f  : =  1
w h i l e  d i f  >  e
{
   X  : =  - N - 1 L
   Y  : =  - N - 1 M
   Z  : =  L Y
   d i f  : =  | | Z | |
   W  : =  W  +  Z
   N  : =  N  +  Z  +  M X
   Z  : =  L X
   L  : =  Z
   Z  : =  M Y
   M  : =  Z
}
R  : =  - A 0 W - 1

Figure 4.1: Algorithm of [169] for finding the rate matrix R, where ‖.‖ denotes a matrix-
norm and ǫ some positive number.

This completes the description of the QBD. If we let qi denote the equilibrium proba-
bility vector of level i, the corresponding balance equations are given by

qn−1A0 + qnA1 + qn+1A2 = 0, n ≥ 2, (4.55)

and

q0B00 + q1B10 = 0, (4.56)

q0B01 + q1A1 + q2A2 = 0. (4.57)

Introducing the rate matrix R as the minimal nonnegative solution of the nonlinear matrix
equation,

A0 + RA1 + R
2
A2 = 0, (4.58)

it can be proved that the equilibrium probabilities satisfy (see, e.g., [170]),

qn+1 = qnR, n ≥ 1. (4.59)

To determine this matrix R we use the algorithm developed by [169] as listed in Figure
4.1. The vectors q0 and q1 follow from the boundary conditions (4.56), (4.57), and the
normalization condition. This queue length distribution qi yields the following expression
for the distribution of the number of customers served in a visit period,

π(l) =
h(l)

∑k
i=0 h(i)

, l = 0, 1, . . . , k, (4.60)

where h(l) is the total rate of jumps to a vacation period after serving l customers. To
calculate h(l) we have to sum all transition rates from a state where l − 1, l = 1, 2, . . . , k,
customers are served (or 0 customers when l = 0) to a vacation, multiplied by the prob-
ability of being in that specific state. Further, we recall that the indices of q·(·) within
the brackets correspond to lexicographically ordered states of the arrival and departure
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processes. So,

h(0) =

nA
∑

i=1

nI(0)
∑

j=1

(

q0((i − 1)nD + knB + nĨ(k) + nĨ(∗) + j) × (4.61)

B00((i − 1)nD + knB + nĨ(k) + nĨ(∗) + j, (i − 1)nD + knB + nĨ(k) + nĨ(∗) + 1)
)

,

h(l) =

nA
∑

i=1

nB
∑

j=1

q1((i − 1)nD + (l − 1)nB + j) ×

B10((i − 1)nD + (l − 1)nB + j, (i − 1)nD + knB + nĨ(k) + 1), (4.62)

l = 1, . . . , k − 1,

h(k) =

nA
∑

i=1

nB
∑

j=1

r((i − 1)nD + (k − 1)nB + j) ×

A2((i − 1)nD + (k − 1)nB + j, (i − 1)nD + knB + 1), (4.63)

where

r =

∞
∑

i=1

qi =

∞
∑

i=1

q1R
i−1 = q1(InA×nD − R)−1, (4.64)

which completes the analysis of the k-limited vacation model.

4.2.4 Iterative algorithm

As described at the end of Subsection 4.2.1, the performance characteristics of the
k-limited polling system are approximated by an iterative scheme. The algorithm is as
follows.

Outline of the algorithm.

• Step 0 : Choose initial characteristics for all queues (for details see below).

• Step 1 : For i = 1 to N , determine the first two moments of the conditional intervisit
period Ii(·) for queue i from (4.35) and (4.43), respectively.

• Step 2 : For i = 1 to N , determine the distribution of the number of customers served
in the visit period Vi from (4.60).

• Step 3 : Repeat Steps 1 and 2 until the characteristics for all queues have converged.

• Step 4 : For i = 1 to N , compute the performance measures of interest for queue i.

Initialization. In Step 0 of the algorithm, we have to choose initial values for πi(l),
l = 0, 1, . . . , ki and i = 1, 2, . . . , N . The assumption is made that all of these probabilities
are zero except for πi(ki), i = 1, 2, . . . , N . Notice that, via the approach developed in
Subsection 4.2.2, the correct mean cycle lengths are obtained as computed by (2.5). We
note that we have experimented with a large number of initial values, from which we
concluded that the starting values of the algorithm have no, or at least negligible, impact
on the results.
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Test bed

Parameter Notation Value

low medium high
Number of queues N 2 5 10
Load ρ 0.45 0.60 0.75
Service limit ki 1 5 10
SCV interarrival times Ai 0.25 1 2
SCV service times Bi 0.25 - 1
SCV setup time Si 0.25 - 1
Imbalance interarrival times IAi

1:1 - 1:10
Imbalance service time IBi

1:1 - 1:10
Ratio service and setup times IBi/Si

1:1 - 10:1

Number of instances 2592

Table 4.9: Test bed.

Convergence criterion. After Steps 1 and 2 we check whether the iterative algorithm
has converged by comparing the probabilities πi(·), i = 1, 2, . . . , N , in the (n − 1)-th and
n-th step. We decide to stop when the maximum of the absolute values of the differences
is less than ε; otherwise we repeat Step 1 and 2. Hence, the convergence criterion is

max
l=0,1,...,ki

∣

∣

∣
π

(n)
i (l) − π

(n−1)
i (l)

∣

∣

∣
< ε, ∀i=1,2...,N , (4.65)

where ε is chosen to be 10−4. Of course, we may use other stop-criteria as well, e.g., mean
queue lengths or mean intervisit periods.

Complexity analysis. The complexity of this method is as follows. Within the iterative
algorithm, solving a subsystem, i.e., a vacation model, consumes most of the time. In a
single iteration step N subsystems are solved. The number of iterations needed is difficult
to predict, but in practice this number is about 10 to 15 iterations. The time consuming
part of solving a subsystem is the calculation of the R matrix. This can be done in O(n3

i )
time, where ni is the size of the R matrix of subsystem i. Then, the time complexity of
one iteration becomes O(N maxi(n

3
i )). This means that the time complexity is polynomial

in the number of queues, the service limits and the number of phases for each process.

4.2.5 Numerical validation

The present subsection reports on an extensive numerical study designed to assess the
accuracy of the approximation method developed. We compare the first two moments
and tail probabilities of the queue length distribution with the ones produced by discrete
event simulation. Each simulation run is sufficiently long such that the widths of the 95%
confidence intervals of the performance measures of interest are smaller than 1% of the
predicted value. A first important remark is that the computation time of our algorithm
is considerably less than the simulation time, which can mount up to fifteen minutes or
more. This inefficiency of simulation techniques for (k-limited) polling systems has been
observed before by, e.g., [41].

Parameter setting. We use a broad set of parameters for the tests. The number of
queues in the system is varied between 2, 5 and 10, whereas the service limits are either
1, 5 or 10. The total load on the system varies between 0.45, 0.60 and 0.75; as mentioned
in Chapter 2 this load does not include the setup times. Hence, especially for small values
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of the service limits ki the effective load on the system is considerably higher. For this
reason, some cases are unstable, meaning that (2.51) does not hold, and are thus removed
from the test bed.

The squared coefficients of variation of the interarrival, service and setup times for each
queue are identical and are varied between 0.25 and 2 and between 0.25 and 1, respectively.
Since the variations in the setup and service times tend to be small in production systems -
in contrast to telecommunication systems where heavy-tailed random variables are common
- we only consider cases in which these variations are indeed relatively small. We refer the
reader to [P8] for test cases with highly variable input. Furthermore, we test cases for
which the setup times are 10 times smaller than the service times and cases for which
setup and service times are equal.

Furthermore, both balanced and imbalanced polling systems are considered. In the
balanced cases we set the arrival rates of all queues equal to 1. We test imbalance in the
average interarrival times by making the load of the most heavily loaded queue 10 times
higher than that of the least heavily loaded queue, and by letting the arrival rates of the
other queues change linearly such that the overall mean arrival rate is maintained at 1. For
example, in case of 5 queues we get arrival rates (0.182, 0.591, 1.000, 1.409, 1.818). Testing
imbalance in the service times proceeds along the same lines. This leads to a total of
3425 = 2592 test cases, which are summarized in Table 4.9. After removing the unstable
cases, we end up with a total of 2088 cases. For further reference, we have classified the
values for each parameter in the categories low, medium and high.

The performance measures under consideration in the present numerical study are the
mean, standard deviation, 0.90-quantile and 0.95-quantile of the marginal queue length
distributions, where the α-quantile of the distribution of a random variable X can be
defined as the smallest value x such that

P[X ≤ x] ≥ α. (4.66)

The importance of these quantiles lies in the fact that the optimal base-stock levels in
the SELSP precisely equal these quantiles (see Chapter 1). More details on the standard
deviation as being an important performance metric in production-inventory systems are
given in Section 4.3.

Results. Table 4.10 summarizes the performance of the approach developed in the present
section showing the average errors and for four error-ranges the percentage of the cases
which fall in that range. Overall, we can say that for all performance measures the average
error is around 7%, while the errors are for the majority of the cases less than 10%. We
believe that these errors are in general satisfactory in view of the complexity of the system
under consideration: we study a k-limited service discipline - containing the exhaustive
policy as special case - under the assumption of general arrival processes, whilst the fact
that our interest is in the complete queue length distribution constitutes an additional
complicating factor.

To give this statement a more scientific basis, we compare the performance of our
approach to the standard decomposition approach. In such a standard decomposition
approach the dependencies among the individual queues are completely ignored. That
is, the length of the intervisit period is assumed to be independent of the length of the
preceding visit period, thus the need for conditional cycles and conditional (inter)visit
periods cancels, and the correlations among the lengths of the individual visit periods are
set equal to zero. Remark that the application of this standard approach to k-limited
polling systems has not been published in the open literature.

The results for the latter approach are listed in Table 4.11. Comparing this table to
Table 4.10, we can conclude that our approach not only halves the mean errors for all per-
formance measures, but also that the standard approach, in contrast to our approach, quite



88 Bounding production runs

Errors approach of present section

Aver. (%) 0-10 % 10-20 % 20-30 % > 30%

Mean queue lengths 7.26 76.25 17.77 5.12 0.86
SD queue lengths 8.34 71.02 20.16 5.51 3.30
0.90-quantile 6.58 75.62 14.80 5.75 3.83
0.95-quantile 7.33 73.37 15.95 6.80 3.88

Table 4.10: Overall results approach of present section.

Errors standard approach

Aver. (%) 0-10 % 10-20 % 20-30 % > 30%

Mean queue lengths 15.40 40.95 30.94 15.61 12.50
SD queue lengths 15.26 40.37 29.98 16.91 12.74
0.90-quantile 13.45 57.95 16.52 11.69 13.84
0.95-quantile 13.26 54.02 17.10 14.08 14.80

Table 4.11: Overall results standard approach.

often results in more than 30% error. This observation clearly underpins the statement
made in the introduction that it is extremely important to capture the correlations among
the different queues, since these correlations have a significant impact on the performance
measures. In particular, the performance of the standard approach significantly degrades
as the total load increases as shown in Table 4.13, which is in agreement with our result
in Chapter 3 that the correlation between successive station times converges to one as the
total load tends to one for the cases of exhaustive and gated polling systems with Poisson
arrivals. Table 4.12 shows that the accuracy of our approach decreases in heavy traffic as
well; the decrease in accuracy is, however, not so severe as for the standard decomposition
approach.

It would also be interesting to compare the performance of our approach to the one of
the alternative approach developed in [146]. In this study, it is proposed to take a weighted
sum of a completely uncorrelated and a perfectly correlated system in order to capture the
correlations among the queues. A good choice of the desired mixing probability is an
interesting problem in itself and the probability used in [146] has not been developed for
the k-limited polling system covered in the present section, rather for a modification of
this system, i.e., inclusion of a reservation mechanism. Directly applying the same mixing
probability to our setting would certainly wrong the approach of [146] leading to an unfair
comparison. Essentially, this observation reveals a weakness of the procedure of [146]: the
quality of this procedure strongly depends on the choice of the mixing probability. Taking

Errors approach present section (%)

low medium high

Mean 4.43 6.72 11.64
SD 5.20 6.23 14.95
0.90-quantile 4.11 5.87 10.67
0.95-quantile 4.63 6.50 11.85

Table 4.12: Average errors for approach
present section as function of ρ.

Errors standard approach (%)

low medium high

Mean 8.22 14.54 25.88
SD 8.32 14.09 25.78
0.90-quantile 10.11 9.22 22.75
0.95-quantile 6.06 11.71 25.55

Table 4.13: Average errors for standard ap-
proach as function of ρ.
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Errors mean queue lengths (%)

Parameter low medium high
N 8.96 7.17 5.74
ρ 4.43 6.72 11.64
ki 9.35 6.91 6.39
Ai 6.70 6.96 8.14
Bi 6.79 - 7.74
Si 6.92 - 7.61
IAi

7.32 - 7.19
IBi

5.17 - 9.51
IBi/Si

5.07 - 8.67

Table 4.14: Average errors for the mean.

Errors SD queue lengths (%)

Parameter low medium high
N 8.77 10.21 6.16
ρ 5.20 6.23 14.95
ki 9.39 7.87 8.18
Ai 6.56 8.25 10.22
Bi 7.72 - 8.97
Si 8.18 - 8.51
IAi

8.21 - 8.51
IBi

6.07 - 10.78
IBi/Si

5.65 - 10.07

Table 4.15: Average errors for the SD.

Errors 0.90-quantile (%)

Parameter low medium high
N 9.50 5.87 4.49
ρ 4.11 5.87 10.67
ki 8.55 6.43 5.60
Ai 6.65 5.79 7.31
Bi 6.15 - 7.02
Si 6.47 - 6.69
IAi

6.84 - 6.26
IBi

4.63 - 8.67
IBi/Si

5.23 - 7.45

Table 4.16: Average errors for 0.90-quantile.

Errors 0.95-quantile (%)

Parameter low medium high
N 7.61 9.23 5.25
ρ 4.63 6.50 11.85
ki 9.29 6.90 6.60
Ai 6.59 7.51 7.87
Bi 7.02 - 7.64
Si 7.08 - 7.57
IAi

7.67 - 6.90
IBi

5.04 - 9.78
IBi/Si

5.85 - 8.27

Table 4.17: Average errors for 0.95-quantile.

the above into account, we confine ourselves to a more qualitative comparison between
the two approaches. That is, when comparing the errors reported in [146] to the ones
listed in Table 4.10, one can conclude that they are of the same order of magnitude. The
approximation method of [146] has, however, only been tested in a system with smaller
inherent dependencies for the special case of Poisson arrivals. We have to remark that
Tables 4.14 through 4.17 show that the interarrival distribution has no or at least negligible
effect on the accuracy of our approach.

More specifically, Tables 4.14 through 4.17 show the detailed results for our approach,
when fixing one parameter at a certain level. When a row is partially empty, it means
that this parameter is only tested on two levels. Our approximation method seems to be
fairly insensitive to different parameter settings. In this respect, the parameter having
the largest impact on the performance is the total utilization ρ as earlier illustrated in
Table 4.12. Moreover, we observe that imbalance in the service times and a decrease in the
setup times have negative impact on the accuracy, whereas the accuracy of our approach
increases as the service limits become larger. This latter observation tempts one to use
the approach of the present section as approximation for the exhaustive policy as well, as
touched upon in Subsection 4.2.6.

Finally, the present subsection has shown the accuracy of the developed approximation
for a wide range of cases. The test bed is, undoubtedly, not only representative for practical
instances of the production application motivating the present research but also for most
applications in communication systems. In Van Vuuren and Winands [P8], the applicability
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of the approximation is, however, evaluated beyond all limits and the accuracy of the
approximation is tested thoroughly in the following asymptotic regimes:

1. Highly variable setup and/or service times;

2. Heavy traffic, i.e., ρ ↑ 1;

3. Large setup times, i.e., E[S] → ∞;

4. Large number of queues, i.e., N → ∞.

Due to the fact that polling systems, typically, show aberrant behavior in these asymptotic
cases (see, also, Chapter 3), one cannot expect to be able to develop a single algorithm
which is accurate both in standard traffic settings and for all possible asymptotic regimes.
In Van Vuuren and Winands [P8] it is shown that the approach of the present section
loses accuracy in the first two regimes, but compared to the standard approach still wins
by a mile, whereas it becomes even more, or at least remains, accurate for the latter two
regimes. From a practical point of view, the fact that our approach is less accurate in the
first two asymptotic regimes is not a serious limitation since these situations only occur
in ill-designed systems. That is, in case of highly variable input whencesoever, managers
should obviously not rely on the k-limited but on the time-limited policy, while heavy traffic
indicates improper dimensioning of the service limits. For more details on the results in
the above asymptotic regimes, we refer to Van Vuuren and Winands [P8]. We close this
subsection with a remark.

Remark 4.2.1 In the past, pseudo-conservation laws have been applied quite often to
develop approximations for mean waiting times in polling systems (and, thus, mean queue
lengths as well). Throughout the present section, we have deliberately left this approach
aside, because our approach does not use this technique and because this technique only
gives approximations for mean performance measures for the special case of Poisson ar-
rivals (for more information see Chapter 2). An additional complexity that shows up when
applying pseudo-conservations laws to polling systems with k-limited service is that in
such systems these laws still contain some unknown terms that have to be approximated
as shown in Chapter 2. Note that the most accurate algorithm [60] based on such a pseudo-
conservation law can still give up to 20% errors for the mean waiting times in k-limited
polling systems. ¤

4.2.6 Conclusions

In the present section, we have created a novel iterative approximation scheme for k-
limited polling systems with general arrival, service and setup distributions to compute the
complete queue length distributions. The multi-queue polling system has been decomposed
into single-queue vacation systems with state-dependent vacations and k-limited service.
We have analyzed this vacation model by means of matrix-analytic techniques under the
assumption of general arrival, service and vacation processes. The main challenge was
found in the computation of the correlations among the queues in each step of the iterative
scheme. The accuracy of the approximation scheme has been validated via an extensive
simulation study. The developed approximation turned out be accurate, robust and com-
putationally efficient. As shown in Van Vuuren and Winands [P8], possible improvement
of the algorithm may be obtained in heavy traffic and in cases with highly variable in-
put. The numerical evaluation has shown that the algorithm converged relatively fast; a
rigorous proof of convergence is, however, left as subject of further research.

With minor adjustments, the algorithm developed can be carried over to variants of the
considered polling systems, e.g., systems with batch arrivals, discrete-time polling systems
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or systems with finite buffers. The latter extension is of practical interest, since it allows
to evaluate the lost sales variant of the SELSP. Application of our algorithm to polling
systems with so-called gated-type k-limited service, i.e., the servers serves only k customers
in a queue who arrived before the server’s visit, is also not inconceivable. A related remark
is that for deterministic service times the k-limited coincides with the time-limited strategy
with fixed time limits. By choosing service times with a negligible coefficient of variation
as input, the algorithm of the present section can also be used for the evaluation of this
time-limited policy. Moreover, due to the efficiency of the algorithm, it could be used
directly as approximation for the standard exhaustive and gated policy as well by choosing
a ’large’ value for the service limits. In that sense, our algorithm may be considered as
extension of the procedure of [89] for exhaustive and gated polling systems, which relies
on a Poisson assumption. Finally, the algorithm of the present section may be extended
to the computation of derivatives of performance measures with respect to the service
limits. Such an extension would allow application of gradient methods to optimize system
performance and sensitivity analysis with respect to these control variables. Due to the
low computational complexity of the developed procedure, it can be used as subroutine in
such an optimization procedure.

The present and preceding section have transformed the evaluation of the k-limited
policy into a well-studied topic. The next section makes a step backwards and provides an
explorative investigation of the quality of the k-limited policy itself.

4.3 Numerical evaluation

The goal of the present section, which stems from some unpublished material of the
author, is to probe the exhaustive and k-limited policies. First of all, we compare the
performance of both policies and discuss the value and behavior of optimal choices of the
service limits (see Subsection 4.3.1). Second, we discuss the inclusion of idle times in the
cycle, which has the potential to improve system performance (see Subsection 4.3.2).

Although it is a common belief that bounding visit times is an excellent tool for prioritiz-
ing among queues in polling systems, studies on the impact on overall system performance
are scarce. An exception is [63], which is, however, mainly concerned with (overload) sit-
uations less relevant in the context of production applications. Triggered by this lacuna
in the literature, we present an explorative study of the quality of the k-limited policy as
means to prioritize among queues for improving total system performance. It is shown that
the k-limited policy can significantly improve system performance - especially in asymmet-
ric systems - proving the relevance of the quantity-limited lot-sizing policy in multi-item
production settings.

Since it is impossible to find a single measure as a proxy for system performance, we
study both the mean and standard deviation of the marginal queue length distribution.
That is, our objectives are to find the service limits ki that minimize the following weighted
sums,

min
k1,k2,...,kN

N
∑

i=1

ciE[Li] and min
k1,k2,...,kN

N
∑

i=1

ciσLi , (4.67)

where ci is the cost parameter of queue i, i = 1, 2, . . . , N .
The importance of the mean queue length has been discussed at length in the present

monograph, the importance of the standard deviation might need some explanation. First
of all, within the cost-optimization framework introduced in Chapter 1, Zipkin [225] argues
that the standard deviation captures the gross behavior of performance over a wide range
of systems - as long as the input is not pushed to extremes - whereas no other performance
metric of comparable simplicity does so. In a similar vein, it is shown that other important
performance measures, such as the service level, are (nearly) proportional to the standard
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deviation (see, also, Gallego and Moon [109]). Furthermore, standard deviations can be
used for estimating tail probabilities via Chebyshev’s inequality [183] or for approximating
the entire probability distribution via a two-moment fit [208]. Moreover, the standard de-
viation has to a lesser degree the disadvantage, opposed to more advanced cost functions,
that extremely large effort is required in order to estimate the performance measure ac-
curately, i.e., with small relative error or a narrow confidence interval. Finally, we should
recall that the results of the present study are certainly not limited to the described pro-
duction setting, but may be used in the design and optimization phase of many other fields
of applications. For instance, in telecommunication systems one often wants to guarantee
a homogeneous quality-of-service level expressed in the standard deviation of the queue
length. Therefore, we refrain from testing a cost function only applicable for production
environments.

4.3.1 Performance

The goal of the present subsection is not to test a myriad of cases, rather we analyze a
number of representative cases in order to examine when the k-limited policy outperforms
the exhaustive policy and the other way around. Within this examination, we compare
the exhaustive policy with the k-limited policy for an optimal choice of the service limits.
Optimization of k-limited systems is, however, even more intricate than evaluation implying
that hardly any optimization studies have appeared in the vast polling literature. Borst
et al. [43] develop an approximate approach to determine these service limits so as to
minimize a weighted sum of the mean queue lengths, which has shown to be very effective.
Van der Mei [160] presents extensions of the so-called power series algorithm, e.g., for
systems with Bernoulli service, to calculate derivatives of performance measures which
could be used in gradient methods for optimization. Similar procedures may be developed
for the k-limited policy.

Due to this paucity of optimization results for k-limited polling systems for the standard
deviation (and other performance measures), we resort to simple enumeration techniques
for the optimization which causes no problems due to the size of our test bed. Recall,
however, that the approximate algorithm developed in Section 4.2 possesses all properties
required for the application of efficient and accurate gradient methods to optimize system
performance. Since we do not want to be diverted by other effects induced, e.g., by
inaccuracies of approximations, a discrete event simulation is used in the experiments
instead of the approximation of the previous section. Each simulation run is sufficiently
long such that the widths of the 95% confidence intervals are smaller than 0.25% of the
predicted value.

Numerical results are presented in Tables 4.18 - 4.21, in which we compare the costs
Z as defined in (4.67) for the optimal values of the service limits and the costs in case
the exhaustive discipline is implemented for each queue. In these tables we restrict atten-
tion to deterministic setup time and service time distributions motivated by the observed
robustness of the optimal service limits with respect to these distributions by Borst et
al. [43]. The most important observation from these tables is that the k-limited policy
outperforms the exhaustive policy in asymmetric systems due to either cost or physical
factors (as concluded several times before in the present monograph).

As said, optimization of the service limits is a very intricate problem. In case of a
symmetric system with setup times, we can however analytically prove that the mean
queue lengths are minimized by setting the service limits at infinity. That is, in Levy et al.
[152] it is proven for a wide class of policies that the total amount of unfinished work at
time t in the system when the exhaustive policy is employed is smaller than when another
policy is employed. An immediate consequence is that the steady-state mean amount of
unfinished work in the system is minimized for the exhaustive policy, from which it follows
that the mean queue lengths in symmetric systems are minimized by serving all queues
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N = 2, ρ = 0.6, λ1 = λ2,
E[B1] = E[B2] = 1,

E[S1] = E[S2] = 0.25

Mean SD
(c1, c2) (k1, k2) Z (k1, k2) Z
(1, 1) (∞, 10) 1.31 (8, 8) 1.82

(∞,∞) 1.31 (∞,∞) 1.82
(10, 1) (∞, 1) 6.60 (∞, 2) 9.11

(∞,∞) 7.22 (∞,∞) 10.01
(1, 10) (1,∞) 6.60 (1,∞) 9.11

(∞,∞) 7.22 (∞,∞) 10.01

Table 4.18: Output system 1.

N = 2, ρ = 0.6, λ1 = 2λ2,
E[B1] = E[B2] = 1,

E[S1] = E[S2] = 0.25

Mean SD
(c1, c2) (k1, k2) Z (k1, k2) Z
(1, 1) (∞, 8) 1.30 (∞, 8) 1.79

(∞,∞) 1.30 (∞,∞) 1.79
(10, 1) (∞, 1) 8.09 (∞, 1) 10.13

(∞,∞) 8.63 (∞,∞) 10.79
(1, 10) (2, 8) 5.01 (2, 8) 7.79

(∞,∞) 5.67 (∞,∞) 8.89

Table 4.19: Output system 2.

N = 2, ρ = 0.6, λ1 = 4λ2,
E[B1] = E[B2] = 1,

E[S1] = E[S2] = 0.25

Mean SD
(c1, c2) (k1, k2) Z (k1, k2) Z
(1, 1) (∞,∞) 1.27 (∞,∞) 1.71

(∞,∞) 1.27 (∞,∞) 1.71
(10, 1) (∞, 1) 9.48 (∞, 1) 11.05

(∞,∞) 9.78 (∞,∞) 11.39
(1, 10) (2, 9) 3.70 (1, 9) 6.49

(∞,∞) 4.20 (∞,∞) 7.47

Table 4.20: Output system 3.

N = 5, ρ = 0.75, λ1 = . . . = λ2,
E[B1] = . . . = E[B5] = 1,

E[S1] = . . . = E[S5] = 0.05

Mean SD
(c1, c2−5) (k1, k2−5) Z (k1, k2−5) Z

(1, 1) (∞,∞) 2.19 (5, 6) 3.78
(∞,∞) 2.19 (∞,∞) 3.78

(10, 1) (7, 1) 5.36 (7, 1) 9.45
(∞,∞) 6.14 (∞,∞) 10.59

(1, 10) (1, 9) 16.10 (1, 9) 28.24
(∞,∞) 17.96 (∞,∞) 31.00

Table 4.21: Output system 4.

exhaustively. In case of asymmetric systems the numerics confirm the conjecture of [43]
that if ci/E[Bi]=maxj=1,2,...,N cj/E[Bj ] then the service limit ki should be equal to infinity
(the cases where this conjecture does not seem to hold are most likely due to numerical
inaccuracies of the simulation and the flat behavior of the objective function).

If we want to minimize the standard deviations, however, we are unable to pronounce
upon the optimal values of the service limits, but what we do see is that the optimal
service limits in this case are (almost) identical to the optimal service limits in case one
wants to minimize the means. This suggests - although we realize that the tests have only
been performed under a limited variety of environmental settings - that the approaches
developed by [43] may also be directly applicable to minimization of standard deviations
and, possibly, of other performance metrics as well. We want to stress that we have
performed more tests, all confirming this observation. We close this subsection with a
remark.

Remark 4.3.1 Although we have confined ourselves in the experiments to systems with
a small or moderate number of queues, we can, however, argue what happens in the limit
of an increasing number of queues (cf. Borst et al. [43]). That is, we can distinguish four
(stable) cases as N → ∞ for i = 1, 2, . . . , N ,

1. λi fixed, E[Bi] = O(1/N) and E[Si] fixed;

2. λi = O(1/N), E[Bi] fixed and E[Si] = O(1/N);
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3. λi fixed, E[Bi] = O(1/N) and E[Si] = O(1/N);

4. λi = O(1/N), E[Bi] fixed and E[Si] fixed.

Since the mean number of customers arriving at queue i per cycle, λi
E[S]
1−ρ

, approaches in-

finity in Case 1, each queue should be served exhaustively. In Case 2, the system reduces
to a continuous polling system - where no distinction of different service disciplines exists
- and, therefore, the choice of the service limits of k is irrelevant. In Cases 3 and 4, which
are equivalent up to a scaling of time by N , taking ki = ∞ for all i is often a good rule of
thumb, since an increment of ki by one typically reduces ciE[Li] and ciσLi more than it

increases
∑N

j 6=i cjE[Lj ] and
∑N

j 6=i cjσLj , respectively. Via rough reasoning this statement

is made plausible in [43] for the mean queue lengths. ¤

4.3.2 Idle times

Fifteen years ago Sarkar and Zangwill [188; 221] published two papers, which caused
a great deal of controversy. In the first paper, they numerically show that reduction of
setup times can, counterintuitively, increase the mean queue lengths in polling systems and
cyclic production systems (see, also, Example 4.3.2). In a subsequent provocative paper,
Zangwill [221] contends that these results expose a flaw in Japanese production theory
which is based on the benefits of reducing setup times. This latter paper triggered off a
heated discussion in Interfaces [82; 111; 159; 222], which was accompanied by a statement
of the editor-in-chief that [221] alone drew more response than all other articles combined
while he was editor and we can add to this that the debate is still not closed.

Example 4.3.2 To illustrate the anomalous effect that insertion of idle times decreases
the expected waiting time, we follow the analysis of [74]. That is, we consider a simple
symmetric exhaustive polling systems for which the mean waiting times are given by (see
Chapter 3),

E[W ] =
ρ

1 − ρ
E[RB ] +

Var[S]

2E[S]
+

E[S]

2

1 − ρ/N

1 − ρ
. (4.68)

If we now increase the total setup time in a cycle by a constant δ while the variance of the
total setup time remains unchanged, (4.68) changes accordingly into

E[W ] =
ρ

1 − ρ
E[RB ] +

Var[S]

2E[S] + 2δ
+

E[S] + δ

2

1 − ρ/N

1 − ρ
, (4.69)

where we remark that the first term is the standard M/G/1 term independent of δ and that
the second and third term are decreasing and increasing in δ, respectively. From (4.69) we
can derive the optimal shift δ∗,

δ∗ =

(√

Var[S]
1 − ρ

1 − ρ/N
− E[S]

)+

. (4.70)

Now, we clearly see that the counterintuitive effect that the mean waiting times can be
decreased by increasing the setup times occurs if

Var[S]

E[S]2
>

1 − ρ/N

1 − ρ
. (4.71)

This example shows that the persistent belief that reduction in setup times always leads
to reduced waiting times, and thus queue lengths, is in general not true. ¤
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As a side issue we want to mention - although we certainly do not want to intervene in
the discussion on applicability and validity of [188; 221; 222] - that the observed counter-
intuitive phenomenon only occurs if the setup times are ”variable enough” (see Example
4.3.2 and [74]). As seen in (4.71) this requires unrealistically - at least for production set-
tings - high coefficients of variation for these setup times, which tempts us to the statement
that the significance of the observed effect should not be overestimated.

Motivated by the above observations, Federgruen and Katalan [91] study the impact of
insertion of idle times on the queue length distribution and discover improvements in terms
of cost reductions (even in systems without setup costs). In an accompanying paper [90],
they prove that, for exhaustive and gated polling systems, a single idle time inserted prior
to any of the queues can be used without loss of optimality implying that the search for
optimal idle times can be reduced to that for a single scalar. Further, this implies that the
queue length distribution is invariant with respect to deterministic shifts in setup times so
long as the net shift is zero, ceteris paribus.

The main contribution of the present subsection is the extension of the result of [90] to a
much more general setting. That is, we rigorously prove for a very general class of policies
(including the exhaustive, gated and k-limited policies as special cases) that, if setup times
are decreased (increased) by a fixed total amount, it is immaterial which specific setup
times are decreased (increased). The only restriction enforced on the policy is that it is
allowed to use local information only. Finally, for more information on the impact of setup
times on (exhaustive and gated) polling systems we refer to [74] and the references therein.

Consider the basic polling system as introduced in Chapter 2. For the time being, we
assume that the server follows the exhaustive service discipline, but this is extended later

on. Let Sbi
i = Si + bi denote the setup time which results when the original setup time Si

is shifted by bi ∈ [−bmax
i ,∞] time units where bmax

i ∈ R
+, with R

+ the set of nonnegative
reals, is the infimum of the support of Si, i = 1, 2, . . . , N . Below, we show that the queue
length distributions depend on the vector of shifts only via its aggregate sum. For the sake
of presentation, we assume that the setup times themselves are deterministic (but this is
not required for the result to hold as long as the shifts are deterministic). Without loss of
generality, we focus on queue 1.

Theorem 4.3.3 For a system with setup times Sbi
i , the distribution of the queue length

L1 depends on the vector (b1, b2, . . . , bN ) only via its sum b.

Proof. We start with characterizing the impact of the shifts on the length of queue 1 at
a polling instant of this queue. For that purpose, we consider the customers in the system
to belong to one of the following two disjoint sets:

1. type-i customers arrived during setup times after the last visit to queue i, i =
1, 2, . . . , N ;

2. all other customers.

First of all, we observe that the numbers of customers in both sets are obviously indepen-
dent.

Moreover, at a polling instant of queue 1 the type-1 customers in the first set are those
who arrived during the total setup time E[S] + b in the cycle. This number is a Poisson
distributed random variable, which clearly shows that this subpopulation depends on the
shifts only through their aggregate sum. Note that the numbers of type-i customers (with
i 6= 1) in the first set are, however, dependent on the placements of the shifts.

Furthermore, the subpopulations of all customer types in the second set also are inde-
pendent of the specific placement of the shifts. To see this, consider two identical systems
which differ only in the placement of the shifts (but have the same total amount of shifts).
Assume that at time 0 the numbers of customers of all subpopulations in the second set are
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Input

Queues N = 2
Arrival (λ1, λ2) = (1.0, 1.0)
Service (E[B1], E[B2]) = (0.25, 0.25)

(c2B1
, c2B2

) = (1.0, 1.0)

Setup (E[S1], E[S2]) = (0.25, 0.25)
(c2S1

, c2S2
) = (5.0, 5.0)

Limits (k1, k2) = (20, 20)
Case 1 b = 0.0
Case 2 b = 0.1
Case 3 b = 0.2
Case 4 b = 0.3
Case 5 b = 0.4

Table 4.22: Input of the system.

identically distributed in both systems. For specificity, assume that time 0 was a polling
instant of queue 1. This means that at time 0 the numbers of type-1 customers in the first
set also are equally distributed, but the distributions of the number of type-i customers,
where i 6= 1, in the first set may differ.

Hence, the total numbers of type-1 customers are identically distributed in both systems
and, thus, the immediately following visit times of queue 1 in both systems are identically
distributed. This establishes that at the next polling instant of the server (at queue 2),
the numbers of customers of all subpopulations in the second set still follow the same
(joint) distribution. Continuing this inductive argument shows that from time 0 on the
subpopulations of all customer types in the second set will evolve in exactly the same way
in both systems. This observation implies that, regardless of the specific placement of the
shifts, also the cycles evolve according to the same probabilistic rules in both systems.

This leads to the conclusion that at a polling instant of queue 1 the total number of
type-1 customers depends on the vector (b1, b2, . . . , bN ) only via its sum b. Since we have
observed that the cycles are invariant under the placement of the shifts as long as the
total shift remains constant, this implies that also at arbitrary moments in time the queue
length distribution of queue 1 is dependent only on the sum of the shifts. ¤

Up to now, we have been focussing on the exhaustive discipline. However, the result
presented holds for much more general service disciplines. That is, the result remains valid
as long as the service discipline decides on the number of customers to serve only based
on the number of customers present at the visited queue at the polling instant plus those
who arrived during the visit time and not on the number of customers present and arriving
at the other queues. For example, this means that also for the gated and the k-limited
policy the result holds. Notice that this distinction has its origin in the fact whether the
discipline incorporates global information or not.

We want to conclude the present subsection with an instance of a k-limited polling
system for which including idle times actually improves performance (see Table 4.22 for
the input). The output summarized in Table 4.23 shows that both the mean and standard
deviation of the queue length can be slightly decreased by adding idle times, implying that
the anomaly studied is not an idiosyncrasy of exhaustive and gated polling systems only,
but can also occur in k-limited systems. The operational implication is that the developed
quantity-limited policy can be straightforwardly extended with a single parameter, i.e., the
inserted idle time in a cycle, which can lead to cost reductions and can be optimized by a
standard method for minimization of nonlinear functions of a single variable.
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Output

Mean SD 0.90-q. 0.95-q.
Case 1 1.50 1.93 4.00 5.00
Case 2 1.47 1.87 4.00 5.00
Case 3 1.52 1.86 4.00 5.00
Case 4 1.61 1.88 4.00 5.00
Case 5 1.72 1.93 4.00 5.00

Table 4.23: Output of the system.

These results raise an interesting research direction (which we leave for further research),
i.e., a large-scale numerical study examining not only the effect of idle times on the per-
formance of general polling systems but also on the optimal values of the service limits.
In this context, it is important to observe that inclusion of (deterministic) idle times and
bounding the visit times have the same effect on the cycles, i.e., reduction of the variability
in the cycle lengths. This subsection is closed with a remark.

Remark 4.3.4 For the exhaustive policy, [90] proves that the queue lengths are increasing
in the setup times in the ≤m ordering (for the gated discipline this monotonicity is only
shown for the first two moments). In Altman et al. [33] it is, however, shown that the queue
lengths at polling instants are stochastically increasing in the sense of strong stochastic
≤st ordering - which is stronger than the ≤m ordering - for a very broad class of policies
(of which branching-type and k-limited policies are members). Besides providing a strong
foundation for the benefit of eliminating variability in setup times, this result shows that
no gain can be achieved by inserting random instead of deterministic idle times. ¤

4.4 Conclusions

In the present chapter, we have analyzed the quantity-limited lot-sizing policy. Sig-
nificant cost reductions have been observed by implementing the quantity-limited policy
instead of the traditional exhaustive lot-sizing policy. It is important to remark that this
gain can be achieved without the need of purchasing additional resources. Furthermore, the
quantity-limited policy is easy to implement, augmenting the exhaustive lot-sizing policy
by a single ”knob” for each product that can tune performance to be efficient (large quan-
tity limits and long production runs) or fair (small quantity limits and short production
runs). Finally, we wish to stress the organizational advantages of the quantity-limited lot-
sizing policy such as facilitation of maintenance scheduling, workforce planning, purchasing
of raw material, scheduling of subsequent processes and shipment of finished products.

4.A Application of Rouché’s theorem

The present appendix is based on [P1]. Apart from the results discussed over here,
[P1] dilates upon the significance of Theorem 4.A.4 in the analysis of queueing systems
and provides some examples of (heavy-tailed) discrete distributions for which the classical
approach fails, but to which our result can still be applied. In the vast majority of queueing
problems to which Rouché’s theorem is applied, the analytic function of interest is given
by zs −A(z), where s ∈ N and A(z) is the PGF of a nonnegative discrete random variable
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A. Denoting P(A = j) by aj , we have that

A(z) =
∞

∑

j=0

ajz
j , (4.72)

which is known to be analytic in the open disk {z ∈ C : |z| < 1} and continuous up to
the unit circle {z ∈ C : |z| = 1}. Note that A(z) is differentiable at z = 1 if and only
if

∑∞
j=1 jaj−1z

j−1 < ∞. If A(z) is differentiable at z = 1, it is differentiable at z for all

z ∈ C with |z| = 1.
Let us first state Rouché’s theorem (see, e.g., p. 116 of Titchmarsh [209]):

Theorem 4.A.1 (Rouché) Let the bounded region D have as its boundary a simple closed
contour C. Let f(z) and g(z) be analytic both in D and on C. Assume that |f(z)| < |g(z)|
on C. Then f(z) − g(z) has in D the same number of zeros as g(z), all zeros counted
according to their multiplicity. ¤

When A(z) has a radius of convergence larger than one, we can prove the following
result concerning the number of zeros on and within the unit circle of zs − A(z) by using
Rouché’s theorem:

Lemma 4.A.2 Let A(z) be a PGF that is analytic in |z| ≤ 1+ν, for some ν > 0. Assume
that A′(1) < s, s ∈ N. Then the function zs − A(z) has exactly s zeros in |z| ≤ 1.

Proof. Define the functions f(z) := A(z), g(z) := zs. Because f(1) = g(1) and f ′(1) =
A′(1) < s = g′(1), we have, for sufficiently small ǫ > 0,

f(1 + ǫ) < g(1 + ǫ). (4.73)

Consider all z with |z| = 1 + ǫ. By the triangle inequality and (4.73) we have that

|f(z)| ≤
∞

∑

j=0

aj |z|j = f(1 + ǫ) < g(1 + ǫ) = |g(z)|, (4.74)

and hence |f(z)| < |g(z)|. Because both f(z) and g(z) are analytic for |z| ≤ 1+ǫ, Rouché’s
theorem tells us that g(z) and f(z) − g(z) have the same number of zeros in |z| ≤ 1 + ǫ.
Letting ǫ tend to zero yields the proof. ¤

The application of Lemma 4.A.2 is limited to the class of functions A(z) with a radius
of convergence larger than 1. In case A(z) has radius of convergence 1, the results below
can be applied. Before we, however, present our main result, we first prove a result on the
number and location of zeros of zs − A(z) on the unit circle. We define the period p of a
series

∑∞
−∞ bjz

j as the largest integer for which bj = 0 whenever j is not divisible by p.

Lemma 4.A.3 Let A(z) be a PGF of some nonnegative discrete random variable with
A(0) > 0. Assume A(z) is differentiable at z = 1 and A′(1) < s, where s is a positive
integer. If zs − A(z) has period p, then zs − A(z) has exactly p zeros on the unit circle
given by the p-th roots of unity τk = exp(2πik/p), k = 0, 1, . . . , p − 1. In each of these
zeros, the derivative of zs − A(z) does not vanish.

Proof. Obviously, any zero ξ of zs −A(z) with |ξ| = 1 is simple, since |A′(ξ)| ≤ A′(|ξ|) =
A′(1) < s and, thus, sξs−1 −A′(ξ) 6= 0. Furthermore, for any z with |z| = 1, |A(z)| = A(1)
iff zk = 1 whenever ak > 0. This easily follows from the fact that |a0 + akzk| < a0 + ak
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τ0 = 1

τ1

τ2

τ3

E

r ǫ

Figure 4.2: Graphical representation of the compact set E.

if zk 6= 1. So, for z with |z| = 1 and A(z) − zs = 0 it follows that zk = 1 for all k with
ak > 0, and zs = 1. This implies that zp = 1, which completes the proof. ¤

Note that the requirement a0 = A(0) > 0 involves no essential limitation: If a0 were
zero we would replace the distribution {ai}i≥0 by {a∗

i }i≥0 where a∗
i = ai+m, am being the

first non-zero entry of {ai}i≥0, and a corresponding decrease in s according to s∗ = s−m.
In this case, we could thus rewrite zs − A(z) as zm(zs−m − A∗(z)).

We are now in a position to give the main result:

Theorem 4.A.4 Let A(z) be a PGF of some nonnegative discrete random variable with
A(0) > 0. Assume A(z) is differentiable at z = 1 and A′(1) < s, where s is a positive
integer. Also, let zs − A(z) have period p. Then the function zs − A(z) has p zeros on the
unit circle given by τk = exp(2πik/p), k = 0, 1, . . . , p− 1 and exactly s− p zeros in |z| < 1.

Proof. Lemma 4.A.3 tells us that F (z) = zs − A(z) has p equidistant zeros on the unit
circle, and so it remains to prove that this function has exactly s− p zeros within the unit
circle. Thereto, define, for N ∈ N, the truncated PGF

AN (z) =

N−1
∑

j=0

ajz
j +

∞
∑

j=N

ajz
N , (4.75)

where N is a multiple of p. Then FN (z) = zs − AN (z) has obviously s zeros in z ∈ D =
{z ∈ C : |z| ≤ 1}, since AN (z) is a polynomial satisfying A′

N (1) < s, and Lemma 4.A.2
thus applies. By Lemma 4.A.3 we know that FN (z) has p simple and equidistant zeros on
the unit circle. We further have that

|A(z) − AN (z)| ≤ 2

∞
∑

j=N

aj , |z| ≤ 1, (4.76)

|A′(z) − A′
N (z)| ≤ 2

∞
∑

j=N

jaj , |z| ≤ 1. (4.77)

Thus, AN (z) and A′
N (z) converge uniformly to A(z) and A′(z) on z ∈ D, respectively.

Moreover, if G : D → C is continuous, then G(AN (z)) is uniformly convergent to G(A(z))
on z ∈ D.
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Take some value z on C = {z ∈ C : |z| = 1}. If for all n ∈ N there is a zn ∈ D with
0 < |z − zn| < 1

n
and F (zn) = 0, then F (z) = 0 and

F ′(z) = lim
n→∞

F (zn) − F (z)

zn − z
= 0. (4.78)

However, this is impossible by Lemma 4.A.3. Hence, there is an η > 0 such that F (ξ) 6= 0
for all ξ ∈ D(z, η) := {ξ ∈ D : 0 < |ξ − z| < η}. Since C is compact, it can be covered
by finitely many D(z, η)’s. Hence, there is a 0 < r < 1 such that F (z) has no zeros in
r ≤ |z| < 1.

Now we prove that for large N the function FN (z), as the function F (z), has no zeros
in r ≤ |z| < 1. Thereto, we show that there is an ǫ > 0 and M ∈ N such that FN (z) 6= 0
for all N ≥ M and 0 < |z − τk| < ǫ, k = 0, 1, . . . , p − 1. Because F ′(z) is continuous and
F ′

N (z) converges uniformly to F ′(z) on z ∈ D, there are ǫ > 0 and M ∈ N such that for
k = 0, 1, . . . , p − 1,

|F ′
N (z) − F ′(τk)| < δ < |F ′(τk)|, 0 < |z − τk| < ǫ, N ≥ M. (4.79)

Furthermore, we have for k = 0, 1, . . . , p − 1,

|FN (z) − F ′(τk)(z − τk)| =
∣

∣

∣

∫

[τk,z]

(F ′
N (s) − F ′(τk))ds

∣

∣

∣
, (4.80)

where the integration is carried out along the straight line that connects τk and z. Hence,
for 0 < |z − τk| < ǫ and N ≥ M , we obtain for k = 0, 1, . . . , p − 1,

∣

∣

∣

∫

[τk,z]

(F ′
N (s) − F ′(τk))ds

∣

∣

∣
≤ |z − τk| max

s∈[τk,z]
|F ′

N (s) − F ′(τk)| < |z − τk|δ. (4.81)

So, it follows that for 0 < |z − τk| < ǫ and N ≥ M for k = 0, 1, . . . , p − 1,

|FN (z)| = |FN (z) − F ′(τk)(z − τk) + F ′(τk)(z − τk)|
≥ |F ′(τk)||z − τk| − |FN (z) − F ′(τk)(z − τk)|
> (|F ′(τk)| − δ)|z − τk| > 0. (4.82)

Since FN (z) converges uniformly to F (z) and F (z) 6= 0 on the compact set (see Figure
4.2)

E = {z ∈ C : r ≤ |z| ≤ 1} \
p−1
⋃

k=0

D(τk, ǫ), (4.83)

there exists a K ∈ N such that FN (z) 6= 0 for all N ≥ K and z ∈ C with r ≤ |z| < 1.
Hence, for all N ≥ K the number of zeros of FN (z) with |z| < r is equal to s − p. This
number can be expressed by the argument principle (see, e.g., Titchmarsh [209]) as follows

s − p =
1

2πi

∮

|z|=r

F ′
N (z)

FN (z)
dz. (4.84)

The integrand converges uniformly to F ′(z)/F (z), and thus

1

2πi

∮

|z|=r

F ′(z)

F (z)
dz = lim

N→∞

1

2πi

∮

|z|=r

F ′
N (z)

FN (z)
dz = s − p. (4.85)

Hence, the number of zeros of F (z) with |z| < r is also s− p. This completes the proof. ¤



Chapter 5

Miscellaneous results

This concluding chapter is divided into two parts. Section 5.1 examines the behavior of the
exhaustive and gated discipline for the general class of renewal arrival processes, which is
motivated by measurements in practice. Section 5.2 is devoted to an alternative lot-sizing
policy, the lowest inventory policy, being the optimal policy in a two-product Markovian
system without setup times.

5.1 General arrival processes

Many queueing models dictate that the interarrival times are independent and exponen-
tially distributed; the MVA framework presented in Chapter 2 relies on these assumptions
as well. The author has, however, been involved in several industry projects [P21; 185;
211; 215] - mainly from process industry - which show that the (single-item) demand
distributions may significantly deviate from the exponential distribution (recall that the
interarrival distribution in a queueing model represents the demand distributions in the
corresponding production system). Related is the study of Inman [124], who presents data
from two automotive body welding lines assessing the validity of exponential and inde-
pendence assumptions for a wide range of variables. The most important conclusions for
this section are that assuming exponential interarrival times is not appropriate, whereas
the independence assumptions do appear to be valid. Although the study of [124] and
our projects [P21; 185; 211; 215] represent only a minuscule sample of production systems,
they do show that the analysis of queueing systems with general (renewal) arrival processes
is of practical interest.

Motivated by these observations the present section studies exhaustive and gated polling
systems with general arrival processes. So far, hardly any (exact) results have been derived
for polling systems with general arrival processes apart from stability conditions and some
mean value results for global performance measures such as cycle times (see, e.g., [33] and
[81]). The main contribution of the present section, which is based on parts of [P6; P7;
P8; P11], is three-fold. First, we explain the use of the algorithm developed in Chapter
4 in case of the exhaustive policy under the assumption of general arrival processes (see
Subsection 5.1.2). Second, Subsection 5.1.3 proposes a method to rigorously prove heavy-
traffic limits for the expected waiting time in case of increasing load. Third, we provide
a conjecture regarding the behavior of systems with renewal arrivals in case of increasing
deterministic setup times; support for this conjecture is given by numerical experiments
(see Subsection 5.1.4). Below we first give a brief model description.
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5.1.1 Model description

The basic N -queue polling system described in Chapter 2 is studied, where we as-
sume that service at each queue is according to the exhaustive or the gated discipline.
However, the Poisson arrival processes introduced in Chapter 2 are generalized imply-
ing that customers arrive at all queues according to independent general renewal pro-
cesses. The mean and second moment of the interarrival times are denoted by E[Ai] and
E[A2

i ], i = 1, 2, . . . , N , respectively. Furthermore, the arrival rate at queue i is denoted by
λi := 1/E[Ai].

5.1.2 General traffic settings

In Chapter 4 we have presented an approximate algorithm for the k-limited policy
(which is directly applicable to the exhaustive policy as well) under the most general
imaginable assumptions, i.e., general number of queues each with their own service limit
in an environment with generally distributed arrival, service and setup times. Recall that
within the algorithm approximations for various distributions, such as the interarrival
distributions, are obtained by fitting phase-type distributions on the first two moments (see
[P8]). It is, however, possible to make more sophisticated use of phase-type distributions
by fitting more moments or by approximating the shape of the underlying distribution (see,
e.g., [126; 219]). In this respect, it is important to remark that the phase-type distributions
used in our fitting approach - the Coxian distributions and the Erlang distributions with
the same scale parameters - are dense in the class of all distributions on [0,∞). This
means that for any distribution F (·) on [0,∞) a sequence of phase-type distributions can
be constructed which pointwise converge at the points of continuity of F (·) (see [189; 190]).

5.1.3 Increasing load

We now focus on the heavy-traffic behavior of gated polling models, in which the arrival
process at each of the queues follows a general renewal process. In case of Poisson arrivals,
rigorous proofs for heavy-traffic limits can be obtained for models that possess a multi-
type branching process structure (see Chapter 2). In case of renewal arrivals and a general
number of queues, heavy-traffic limits have only been obtained on the basis of conjectures
[66; 67; 175]. In this subsection, which is based on Van der Mei and Winands [P7], we
study a method to derive rigorous proofs for heavy-traffic asymptotics in gated polling
models with a general number of queues under the assumption of general renewal arrivals.
The approach has its origin in [P6], where we study systems with zero setup times. At face
value the extension to nonzero setup times may seem a small one, however this extension
impels us to, considerably, modify and extend the analysis in [P6] as done below.

We start our analysis by extending a result of Bertsimas and Mourtzinou [39] to general
setup time distributions, which yields a set of linear equations for the variance of the cycle
times for polling models with renewal arrivals in heavy traffic. Exploiting the similarities
of this set with the corresponding set for systems with Poisson arrivals yields a closed-form
expression for the asymptotic pseudo-conservation law for systems with renewal arrivals in
heavy traffic. Subsequently, by taking the proper heavy-traffic limits of this set in combi-
nation with the derived pseudo-conservation law we obtain explicit closed-form expressions
for the mean asymptotic scaled waiting time in heavy traffic. We present - in the interest
of space - detailed proofs only for the gated policy, but we want to stress that the approach
is also readily applicable to the exhaustive policy.

Throughout, for each variable x that is a function of ρ, we denote its values evaluated
at ρ = 1 by x̂. Furthermore, we use the notation that h(x) ∽ g(x) as x ↑ a means that
limρ↑a h(x)/g(x) = 1. Our main interest is in the behavior of the mean waiting time E[Wi]
in heavy traffic, i.e., as ρ tends to 1. It goes without saying that, in heavy traffic, all queues
become unstable and, thus, E[Wi] tends to infinity for all i. To be precise, E[Wi] has a
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first-order pole at ρ = 1, for i = 1, 2, . . . , N ,

E[Wi] =
E[W ∗

i ]

1 − ρ
+ o((1 − ρ)−1), ρ ↑ 1, (5.1)

where g(x) = o(f(x)) means that g(x)/f(x) → 0 as x ↑ 1. For the validity of the statement
that E[Wi] has a first-order pole at ρ = 1, we refer to [P6; P7]. The main result of the
present subsection is the following.

Theorem 5.1.1 For i = 1, 2, . . . , N ,

E[W ∗
i ] =

(1 + ρ̂i)

2

(

σ2

∑N
j=1 ρ̂j(1 + ρ̂j)

+ E[S]

)

, (5.2)

with

σ2 :=

N
∑

i=1

λ̂i

(

Var[Bi] + ρ̂2
i Var[Âi]

)

. (5.3)

¤

Here, the limit is taken such that the arrival rates are increased, while keeping the
service time distributions fixed, and keeping the distributions of the interarrival times Ai,
i = 1, . . . , N , fixed up to a common scaling constant ρ (i.e., Ai =d ρIAi, where IAi,
i = 1, . . . , N , are the interarrival times at ρ = 1). Notice that in the case of Poisson
arrivals we have σ2 = E[B2]/E[B].

5.1.3.A Proof of Theorem 5.1.1

We start with reviewing and extending the asymptotic results of Bertsimas and Mourtzinou
[39] for gated polling systems with arbitrary renewal arrival processes in heavy traffic.
Starting point of our analysis is the following expression for the mean waiting time of each
customer class as ρ ↑ 1, for i = 1, 2, . . . , N (cf. [39]),

E[Wi] ∽
(1 + ρi)

2

(

Var[Ci]

E[Ci]
+ E[Ci]

)

+
(c2

Ai
− 1)E[Bi]

2
, (5.4)

where c2
Ai

is the squared coefficient of variation of the interarrival time for queue i. The
mean cycle lengths E[Ci] can be shown to be independent of the queue involved and are
given by, for i = 1, 2, . . . , N and ρ < 1 (see, e.g, [33]),

E[Ci] =
E[S]

1 − ρ
, (5.5)

whereas the variances of the cycle lengths Var[Ci], i = 1, . . . , N , can generally not be
obtained in closed form and do depend on the queue involved.

Bertsimas and Mourtzinou [39] prove that the N unknowns Var[Ci], i = 1, . . . , N , satisfy
the following set of N linear equations, for i = 1, 2, . . . , N as ρ ↑ 1,

(

1 + 2ρi − ρ3
i

2(1 + ρi)
−

i−1
∑

l=1

F
(i)
i,l −

N
∑

l=i+1

E
(i)
l,i

)

Var[Ci]

−
(

1

2(1 + ρi)
+

i−1
∑

l=1

F
(i+1)
i,l +

N
∑

l=i+1

E
(i+1)
l,i

)

Var[Ci+1] (5.6)

−
∑

k 6=i,i+1

(

i−1
∑

l=1

F
(k)
i,l +

N
∑

l=i+1

E
(k)
l,i

)

Var[Ck] ∽
Hiρi

1 + ρi
+

i−1
∑

l=1

F
(0)
i,l +

N
∑

l=i+1

E
(0)
l,i ,
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where the constant Hi is given by, for i = 1, 2, . . . , N , ρ < 1,

Hi := λiE[Ci]
(

Var[Bi] + ρ2
i Var[Ai]

)

+ Var[Si+1], (5.7)

and where the coefficients E
(k)
i,j and F

(k)
i,j are, as ρ ↑ 1, recursively defined by,

E
(0)
i,j ∽ (ai − ρiej)E

(0)
i−1,j − aifjE

(0)
i−1,j+1 + fjE

(0)
i,j+1 +

Hi−1ρi

ai−1ρi−1
, for i − j = 2, (5.8)

and for k = 1, 2, . . . , N as ρ ↑ 1,

E
(k)
i,j ∽ (ai − ρiej)E

(k)
i−1,j − aifjE

(k)
i−1,j+1 + fjE

(k)
i,j+1, for i − j = 2, (5.9)

and for k = 0, 1, . . . , N as ρ ↑ 1,

E
(k)
i,j ∽ (ai − ρiej)E

(k)
i−1,j − aifjE

(k)
i−1,j+1 + fjE

(k)
i,j+1, for i − j ≥ 3, (5.10)

F
(k)
i,j ∽ (ai − ρiej)F

(k)
i−1,j − aifjF

(k)
i−1,j+1 + fjF

(k)
i,j+1, for i − j ≥ 2, (5.11)

with initial conditions, for j = 1, 2, . . . , N as ρ ↑ 1,

E
(0)
j,j ∽ Hj , (5.12)

E
(k)
j,j ∽

{

ρ2
j , k = j,

0, else,
(5.13)

and, for j = 1, 2, . . . , N − 1 as ρ ↑ 1,

E
(0)
j+1,j ∽

Hjρj+1

1 + ρj
, (5.14)

E
(k)
j+1,j ∽











ρj(1+2ρj)ρj+1

2(1+ρj)
, k = j,

+
ρjρj+1

2(1+ρj)
, k = j + 1,

0, else.

(5.15)

Moreover, for j = 1, 2, . . . , N as ρ ↑ 1,

F
(0)
j,j ∽

Hjρj

1 + ρj
, (5.16)

F
(k)
j,j ∽











ρj(1+2ρj+2ρ3
j )

2(1+ρj)
, k = j,

− ρj

2(1+ρj)
, k = j + 1,

0, else.

(5.17)

and, for j = 1, 2, . . . , N − 1 as ρ ↑ 1,

F
(0)
j+1,j ∽

ejρj+1

1 + ρj
Hj +

fjρj+1

1 + ρj+1
Hj+1, (5.18)

F
(k)
j+1,j ∽























ejρj(1+2ρj)ρj+1

2(1+ρj)
, k = j,

+
ejρjρj+1

2(1+ρj)
+

fjρj+1(1+2ρj+1+2ρ3
j+1)

2(1+ρj+1)
, k = j + 1,

− fjρj+1

2(1+ρj+1)
, k = j + 2,

0, else,

(5.19)
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where all indices in the above expressions should be read cyclically. Finally, the constants
ai, ei and fi are defined as, respectively, for i = 1, 2, . . . , N as ρ ↑ 1,

ai ∽
ρi(1 + ρi−1)

ρi−1
, ei ∽

ρi

1 + ρi
and fi ∽

1

ai+1
. (5.20)

The complexity of the set (5.6) prevents us from solving it explicitly in general, but we
do obtain closed-form expressions in the following cases. First, if we restrict our attention
to a specific weighted sum of the solutions for Var[Ci], i = 1, . . . , N , we obtain an explicit
closed-form expression immediately leading to the pseudo-conservation law of the model
under consideration. Second, we can apply asymptotic expansions to find asymptotically
exact closed-form expressions for the dominating factors of Var[Ci] by analyzing a scaled
version of (5.6) in combination with the just derived pseudo-conservation law. First, we
present two remarks.

Remark 5.1.2 The asymptotic approach expounded in the present section is exact for
Poisson processes under any traffic intensity ρ < 1, cf. [188] (implying that all ∽-signs
could be replaced by =-signs), where we note that in this case, for i = 1, 2, . . . , N ,

c2
Ai

= 1, (5.21)

and where the constant Hi reduces to, for i = 1, 2, . . . , N ,

Hi = λiE[Ci]E[B2
i ] + Var[Si+1]. (5.22)

¤

Remark 5.1.3 In [39], the identity (5.4) and the set (5.6) are actually derived only for
the special case of deterministic setup times; details of the derivation in case of stochastic
setup times leading to (5.4) and (5.6) in full generality are available from the author upon
request. ¤

Asymptotic pseudo-conservation law. By working out an expression for the weighted
sum of the solutions for Var[Ci] of the set (5.6), the present subsection derives a pseudo-
conservation law for the mean waiting times for the model described in Section 5.1.1 as
shown in the following lemma.

Lemma 5.1.4 As ρ ↑ 1, we have

N
∑

i=1

ρiE[Wi] ∽
ρ

2E[S]

N
∑

i=1

Hi +
E[S]

2(1 − ρ)

N
∑

i=1

ρi(1 + ρi) +
N

∑

i=1

ρi

(c2
Ai

− 1)E[Bi]

2
. (5.23)

Proof. Starting point of our proof is the set of equations for Var[Ci] given by (5.6) in the
special case of Poisson arrivals. Recall that in this Poisson case (5.6) is exact under any
traffic intensity ρ < 1 and Hi is given by (5.22). Notice that the coefficient matrix in the
lefthand side of (5.6) is independent of Hi and that the righthand side of (5.6) is a linear
function of Hi implying that the solutions for Var[Ci] of (5.6) are linear functions of Hi as
well. That is, for i = 1, 2, . . . , N and ρ < 1,

Var[Ci] = gi (H1, H2, . . . , HN ) , (5.24)
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where gi : R
N → R are (unknown) linear functions of H1, . . . , HN , i.e., there exist constants

ci,j , i, j = 1, . . . , N , such that for i = 1, . . . , N ,

gi(H1, . . . , HN ) = ci,0 +
N

∑

j=1

ci,jHj . (5.25)

In order to find a closed-form expression for a weighted sum of these functions, we use the
pseudo-conservation law for gated polling systems with Poisson arrivals (see Chapter 2).
For ρ < 1,

N
∑

i=1

ρiE[Wi] =
ρ

2E[S]

N
∑

i=1

Hi +
E[S]

2(1 − ρ)

N
∑

i=1

ρi(1 + ρi). (5.26)

For this Poisson case, by using simple balance arguments the mean waiting time at Qi can
be expressed in terms of the first two moments of Ci as follows. For i = 1, 2, . . . , N and
ρ < 1,

E[Wi] =
1 + ρi

2

(

Var[Ci]

E[Ci]
+ E[Ci]

)

=
1 + ρi

2(1 − ρ)

(

gi (H1, H2, . . . , HN ) (1 − ρ)2

E[S]
+ E[S]

)

,

(5.27)
where the last equality follows from application of (5.5) and (5.25). Subsequently, substi-
tuting (5.27) into (5.26) yields the following weighted sum of gi (H1, H2, . . . , HN ) in the
Poisson case. For ρ < 1,

N
∑

i=1

ρi(1 + ρi)gi (H1, H2, . . . , HN ) =
ρ

1 − ρ

N
∑

i=1

Hi. (5.28)

Returning to the general case of renewal arrivals, (5.6) states that asymptotically Var[Ci],
i = 1, 2, . . . , N , satisfy the same set of linear equations as in the Poisson case, where the
variables Hi, i = 1, 2, . . . , N , are defined as in (5.7). Due to the fact that the coefficient
matrix in the lefthand side of (5.6) is a linear invertible mapping in conjunction with the
fact that the Hi, i = 1, 2, . . . , N , defined in (5.7), only show up at the right-hand side of
(5.6), we have that as ρ ↑ 1, i = 1 . . . , N ,

Var[Ci] ∽ gi(H1, . . . , HN ) = ci,0 +
N

∑

j=1

ci,jHj , (5.29)

where the last equality follows from (5.25). Note that the variables Hi, i = 1, 2, . . . , N ,
are generally not the same as in the Poisson case. Here, the crucial observation is that the
coefficients ci,j in (5.29) are the same as those in the Poisson case (5.25). This immediately
implies that (5.28) remains asymptotically true for renewal arrivals, i.e., as ρ ↑ 1,

N
∑

i=1

ρi(1 + ρi)gi (H1, H2, . . . , HN ) ∽
ρ

1 − ρ

N
∑

i=1

Hi. (5.30)

Finally, calling upon (5.4) in combination with (5.29) completes the proof. ¤

The above pseudo-conservation law is exact for Poisson arrival processes under any
traffic intensity ρ < 1 and, therewith, generalizes the pseudo-conservation law in gated
polling systems with Poisson arrivals [47].
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Mean asymptotic scaled waiting times. As mentioned earlier, the set (5.6) can in
general not be solved in closed form, but the present subsection finds explicit expressions for
the dominating terms of Var[Ci] in heavy traffic. Thereto, we multiply both sides of (5.6)
by (1 − ρ)2 and let ρ ↑ 1, which renders the corresponding scaled set, for i = 1, 2, . . . , N ,

(

1 + 2ρ̂i − ρ̂3
i

2(1 + ρ̂i)
−

i−1
∑

l=1

F
(i)
i,l −

N
∑

l=i+1

E
(i)
l,i

)

Var[C∗
i ]

−
(

1

2(1 + ρ̂i)
+

i−1
∑

l=1

F
(i+1)
i,l +

N
∑

l=i+1

E
(i+1)
l,i

)

Var[C∗
i+1] (5.31)

−
∑

k 6=i,i+1

(

i−1
∑

l=1

F
(k)
i,l +

N
∑

l=i+1

E
(k)
l,i

)

Var[C∗
k ] = 0,

where Var[C∗
i ] represents the variance of the asymptotic scaled i-cycle, i.e., for i =

1, 2, . . . , N ,
Var[C∗

i ] = lim
ρ↑1

(1 − ρ)2Var[Ci], (5.32)

where the existence of the limit is guaranteed by the fact that E [Wi] has a first-order pole
at ρ = 1 in conjunction with (5.4) and (5.5). The set (5.31) can be solved up to some
unknown scaling factor c ∈ R as shown in the following lemma.

Lemma 5.1.5 The solution of the set (5.31) is given by, for i = 1, 2, . . . , N ,

Var[C∗
i ] = c, (5.33)

with c ∈ R.

Proof. One can verify that in (5.31), for i = 1, 2, . . . , N ,

2ρ̂i − ρ̂3
i

2(1 + ρ̂i)
−

N
∑

k=1

(

i−1
∑

l=1

F
(k)
i,l +

N
∑

l=i+1

E
(k)
l,i

)

= 0, (5.34)

which shows that (5.33) is indeed a solution of the homogeneous set (5.31). Either by
elementary, but tedious, row and column operations or by quoting from [P6] we observe
that the rank of the coefficient matrix of (5.31) equals N −1, which completes the proof. ¤

Since the dimension of the null space of the coefficient matrix of (5.31) equals one,
adding a single non-homogeneous equation would render a unique solution for the unknown
scaling factor c. This additional equation can be readily obtained from a scaled version of
the pseudo-conservation law (5.23) as done in the lemma below.

Lemma 5.1.6 For i = 1, 2, . . . , N , Var[C∗
i ] is given by

Var[C∗
i ] =

E[S]σ2

∑N
i=1 ρ̂i(1 + ρ̂i)

. (5.35)

Proof. Via Lemma 5.1.5 in combination with (5.4) and (5.5), one obtains the mean
asymptotic scaled waiting times, for i = 1, 2, . . . , N ,

E[W ∗
i ] =

(1 + ρ̂i)

2

(

c

E[S]
+ E[S]

)

, (5.36)
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which satisfies a scaled version of the pseudo-conservation law (5.23). That is, multiplying
both sides of (5.23) by (1 − ρ) and letting ρ ↑ 1 yields

N
∑

i=1

ρ̂iE[W ∗
i ] =

σ2

2
+

E[S]

2

N
∑

i=1

ρ̂i(1 + ρ̂i), (5.37)

where we have used the definition of σ2 as given in (5.3). Combining (5.36) and (5.37)
completes the proof. ¤

Lemma 5.1.6 has the following immediate consequence for the mean asymptotic scaled
waiting time E[W ∗

i ] at each of the queues, which is the main result of the present subsection.

Corollary 5.1.7 For i = 1, 2, . . . , N ,

E[W ∗
i ] =

(1 + ρ̂i)

2

(

σ2

∑N
j=1 ρ̂j(1 + ρ̂j)

+ E[S]

)

. (5.38)

¤

For Poisson arrival processes, the result in Corollary 5.1.7 has been obtained before in
the literature, see, e.g., [162]. For general renewal arrivals, only conjectures [66; 67; 175]
have been known so far and as such our approach is the first to give a rigorous proof of these
conjectures. In [P6] simple closed-form approximations for the mean waiting times in stable
systems based on (5.38) are suggested and tested, which show that such approximations
are accurate when the load is 90% or more. Furthermore, [P6] argues how the results
could be used to prove that the correlations between successive station times in gated
systems with renewal arrivals converge to one as the load tends to one (which we have
proved before in Chapter 3 for the special case of Poisson arrivals). The method might
be extended to derive heavy-traffic results for the complete waiting-time distributions as
well. That is, decomposition results for the waiting time distributions obtained in [40] may
form a starting point to obtain such results, opening up a very challenging area for further
research.

5.1.4 Increasing setup times

In the present subsection we probe exhaustive polling systems with general renewal
arrival processes when the deterministic setup times tend to infinity. In the exact MVA
analysis of Chapter 3, we have assumed that the arrival processes follow Poisson distri-
butions. If we take a second look at the intuitive interpretation of these results, one
would however expect that also in case of general (renewal) arrival processes the polling
system converges to a deterministic cyclic system when the setup times tend to infinity.
Unfortunately, the techniques used throughout in Chapter 3 rely heavily on the Poisson
assumption, i.e., we have exploited MVA results for polling systems with finite setup times
obtained under the Poisson assumption and, subsequently, we have shown that significant
simplifications result as the setup times tend to infinity. However, corresponding polling
results for general arrival processes are not known.

To numerically test the above conjecture for general arrival processes, we have performed
a couple of simulation experiments of exhaustive polling systems. We consider a symmetric
polling system with 3 queues, where the service times are exponential with mean 0.25.
Interarrival times have mean 1 and the corresponding squared coefficient of variation c2

Ai

is varied between 0.25, 0.5, 1 and 2. In order to obtain a distribution for these interarrival
times, we fit a phase-type distribution on the first two moments as described in [P11]. In
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General arrival processes

c2Ai
= 0.25 c2Ai

= 0.5 c2Ai
= 1 c2Ai

= 2

Si = 1 0.121 0.167 0.259 0.444
Si = 10 0.012 0.017 0.026 0.044
Si = 50 0.002 0.003 0.005 0.009
Si = 100 0.001 0.002 0.003 0.004

Table 5.1: Coefficient of variation of the (scaled) number of customers at queue i at a
polling instant of queue i.

case the squared coefficient of variation equals 1 the arrival process is approximated by a
Poisson process and this case is included as benchmark.

Table 5.1 shows the coefficient of variation of the (scaled) number of customers Xi at
queue i at a polling instant of queue i for varying values of the marginal deterministic
setup times Si in a cycle. From this table, we clearly see that the coefficient of variation
approaches zero when the setup times tend to infinity. It goes without saying that a highly
variable arrival process has a negative impact on how ”fast” the limiting behavior is ap-
proached. Via Chebyshev’s inequality (see, e.g., [183]) we know that a random variable
with zero variance follows a deterministic distribution and, therefore, this observation pro-
vides empirical evidence for the fact that the scaled number of customers at queue i at
a polling instant of queue i becomes deterministic. Therefore, it confirms the validity of
our conjecture that the polling system converges to a deterministic cyclic system as the
setup times increase to infinity. Obviously, a more extensive test bed is needed to test
our hypothesis more rigorously, but without doubt extending our work to general arrival
processes is a very interesting topic for further research.

Concluding we can say that the asymptotic analyses of the present section confirm the
qualitative observations made within the mathematically rigorously developed MVA frame-
work of Chapter 3 for the cases of high utilizations due to either high load or large setup
times. Although the actual numbers computed within the MVA framework may deviate
from practical measurements (due to the Poisson assumption), the predicted behavior of
the system is close to reality.

5.2 Lowest inventory policy

As seen in Chapter 2, for general instances of the SELSP there are no structural results
known to be satisfied by an optimal policy. However, for the following occurrence of
the SELSP the optimal policy is known. Consider a system without setup times and
costs and with two completely identical products with Poisson demand rate λ, exponential
production times with rate µ and identical relevant cost factors across the products. The
class of base-stock policies is optimal for this system (see Zheng and Zipkin [223]); a
production order is placed when the inventory position (physical inventory plus the stock
on order minus backorders) of a product falls below a pre-defined target inventory level.
Due to the assumption of identical products, these target inventory levels are identical for
both products. Subsequently, these production orders queue up at the machine, where we
optimize the decision which product to produce next. The optimal decision turns out to be
global and should be made according to the lowest inventory policy: the machine produces
the product having the lowest net inventory position (physical inventory minus backorders).
Furthermore, ties are resolved randomly and this policy is applied preemptively. The
optimality result only depends on the symmetry of the products and the convexity of the
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cost function (see Menich and Serfozo [168]).
Although we disregard setup times, our modeling approach allows for the inclusion of

setup costs representing external setups - which can be executed off-line - in opposition
to setup times which fully occupy the machine. Furthermore, we want to stress that
the implementation and control of the lowest inventory policy requires global information,
which is a serious drawback in production environments. Moreover, the extension of the
lowest inventory policy to general asymmetric systems or general systems with setup times
is certainly not trivial (see, e.g., [119]). That is, there exists no comprehensive account of
the optimal policy in asymmetric systems and systems with setup times; however, index
policies (see, e.g., [171]) and threshold policies (see, e.g., [48]), respectively, seem to work
well in such extensions.

It can be easily shown that the shortfall distributions for this lowest inventory policy do
not depend on the base-stock levels and equal the queue length distributions in a standard
queueing model (cf. the fixed-sequence base-stock policies introduced in Chapter 1). In this
queueing model, there are two Poisson arrival streams with rate λ and a single exponential
server with rate µ, which always works on the longer queue, i.e., on the product having
the most outstanding production orders. Therefore, the lowest inventory policy is also
known as the longest queue policy. In the remainder of the present section, we adopt
the nomenclature as used in the field of queueing theory, e.g., we talk about queue length
distribution instead of shortfall distribution. For other studies on this longest queue policy,
we refer to [26; 69; 97; 128; 223; 225] and the references therein.

The main contribution of the present section, which is an excerpt of [P2; P3], is as fol-
lows. The queue length distribution in case of the longest queue policy can be computed by
modeling the system as a quasi-birth-and-death (QBD) process and using matrix-geometric
techniques. This approach requires the determination of a so-called rate matrix R, which
in most applications needs to be computed by some iterative algorithm. In Subsection 5.2.1
we present, however, a general class of QBD processes for which R can be determined ex-
plicitly, based on probabilistic arguments. The longest queue policy falls within this class.
For models falling within this class, we reformulate the probabilistic interpretations of the
fundamental matrices in terms of Bernoulli excursions, leading to explicit expressions for
the matrix elements in terms of hypergeometric functions.

5.2.1 QBD processes with an explicit rate matrix

Consider a continuous-time Markov process {X(t) : t ∈ R
+} on the two-dimensional

state space Z
+ × {0, . . . , d}, where R

+ (Z+) denotes the set of nonnegative reals (inte-
gers) and d may be finite or infinite. The set {(i, j) : j ∈ {0, . . . , d}} is called level i,
i ∈ Z

+, whereas the second dimensional component is called the phase. Define π =
(π0, π1, π2, . . .), πi = (π(i, 0), π(i, 1), . . . , π(i, d)) and π(i, j) = limt→∞ P[X(t) = (i, j)],
i ∈ Z

+, j ∈ {0, . . . , d}. The limiting probability vector π is the stationary distribution
for the stochastic process {X(t) : t ∈ R

+}. We shall assume throughout that this process
is irreducible and positive recurrent, so that the invariant probability vector is uniquely
determined by solving πQ = 0 and πe = 1, where Q is the infinitesimal generator matrix
for the process and e is a column vector of appropriate dimension containing all ones.

A Markov process is called a homogeneous QBD process when one-step transitions are
restricted to states in the same level or in two adjacent levels, and the transition rates
are assumed to be level-independent. The generator Q then has the block-tridiagonal
structure,

Q =











B00 B01

B10 A1 A0

A2 A1 A0

. . .
. . .

. . .











. (5.39)
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The stationary probability vector π of the QBD process {X(t) : t ∈ R
+} with generator

Q satisfies the following standard result (see Latouche and Ramaswami [141]).

Theorem 5.2.1 Consider the QBD process {X(t) : t ∈ R
+} with infinitesimal generator

Q in the form of (5.39). Suppose that this stochastic process is irreducible and positive
recurrent. Then the stationary distribution π is given by

πn+1 = πnR, n ≥ 1, (5.40)

where R is the minimal nonnegative solution of the nonlinear matrix equation,

A0 + RA1 + R
2
A2 = 0. (5.41)

¤

Determining R is essentially tantamount to determining the related matrix G that
satisfies (see [141]),

A0G
2 + A1G + A2 = 0. (5.42)

The probabilistic interpretation of the element rj,k of the matrix R := [rj,k]j,k∈{0,...,d}

is the expected amount of time spent in state (i + 1, k) before the first return to any state
of level i, expressed in units of the mean sojourn time for the state (i, j), given that the
process started in state (i, j), i ∈ Z≥1 (see [141; 170]).

The related matrix G := [gj,k]j,k∈{0,...,d} is defined such that

gj,k = P[τ < ∞, X(τ) = (i, k)|X(0) = (i + 1, j)], (5.43)

where τ is the first passage time from the level i + 1 to the level i, i ∈ Z≥1 (see again
[141; 170]). Providing {X(t) : t ∈ R

+} is irreducible and positive recurrent, it follows that
τ < ∞ with probability 1 and, thus,

gj,k = P[X(τ) = (i, k)|X(0) = (i + 1, j), τ < ∞]. (5.44)

In order to obtain the stationary distribution, one should thus determine the rate matrix
R. Several iterative procedures exist for solving (5.41); an overview of such algorithms is
given in [140]. For the class of QBD processes described below, we exploit the probabilistic
interpretations of the elements rj,k and gj,k to obtain explicit solutions for R.

Special class. Denote by 〈e1, e2〉 a one-step transition of the QBD process from state
(i, j) to state (i + e1, j + e2). For the special class, possible steps in state (i, j), i ∈ Z≥1,
j ∈ {0, . . . , d − 1} are horizontal steps 〈−1, 0〉 and 〈1, 0〉, diagonal steps 〈−1, 1〉 and 〈1, 1〉,
or a vertical step 〈0, 1〉. The exponential rate at which a step occurs is denoted by r〈e1, e2〉
and the probability that a step occurs is given by

ϕ〈e1, e2〉 :=
r〈e1, e2〉

∑

steps r〈e1, e2〉
. (5.45)

For presentation reasons, the focus of the present subsection is on the case where d is
infinite and where the diagonal elements of A1 are all equal. Both restrictions are not
prohibitive (see [P2; P3]). For the introduced class, R and G are of uppertriangular form,
i.e., with rh ≡ rj,j+h and gh ≡ gj,j+h,

R =











r0 r1 r2 . . .
r0 r1 . . .

r0 . . .
. . .











, G =











g0 g1 g2 . . .
g0 g1 . . .

g0 . . .
. . .











. (5.46)
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We now consider the paths involved in the probabilistic interpretations of the elements
rj,k and gj,k and decompose the corresponding passage probabilities to derive expressions
for these fundamental matrix elements in terms of Bernoulli excursions. Although such
expressions can be directly obtained for either the R or G matrices, it can be helpful (with
respect to both the analysis and the presentation) to first consider the derivation of the
elements of the G matrix and, then, turn to consider the elements of the R matrix. The
presentation is organized accordingly.

Matrix G. We derive expressions for each element of G in (5.46), using the interpretation
(5.44). Assume that a time τ the process undergoes its ν-th transition. Our main idea is
the decoupling of paths of the QBD process into horizontal and vertical directions.

(i) Consider a path from state (i + 1, j) to (i, j + h), h ≥ 0, that consists of ν steps and
that goes from level i+1 to i only at the last (ν-th) step. Assume this path contains
s 〈−1, 1〉 steps, u 〈1, 1〉 steps and hence t = h − s − u 〈0, 1〉 steps.

(ii) We would first like to consider the path in the horizontal direction only. The di-
agonal steps 〈−1, 1〉 and 〈1, 1〉 influence both the horizontal and vertical directions.
Therefore, we decompose the diagonal steps into

〈−1, 1〉 = 〈0, 1〉 + 〈−1, 0〉, (5.47)

〈1, 1〉 = 〈0, 1〉 + 〈1, 0〉. (5.48)

(iii) The decomposition of the diagonal steps ensures that the path contains at least s
〈−1, 0〉 steps and u 〈1, 0〉 steps. Now denote the total number of 〈1, 0〉 steps by m.
We then know that the total number of 〈−1, 0〉 steps is m + 1 (including the ν-th
step). Furthermore, it should hold that m ≥ max(u, s − 1).

(iv) The path then consists of a total number of ν = 2m + t + 1 steps, 2m + 1 of which
are in horizontal direction. When we omit the ν-th step, the 2m horizontal steps
form a Bernoulli excursion (see Takács [202]). The excursion starts at (i + 1, j) and
consists of m 〈1, 0〉 steps and m 〈−1, 0〉 steps. Any sequence of steps may occur, as
long as there are, at each point during the excursion, at least as many 〈1, 0〉 steps
as 〈−1, 0〉 steps, for otherwise, level i is visited, and the condition in (i) is violated.
The number of possible Bernoulli excursions is given by the m-th Catalan number

1

m + 1

(

2m

m

)

. (5.49)

To elucidate the exposition of our derivation, let us illustrate the above procedure with
an example. In Figure 5.1 we see a path from state (i + 1, j) to (i, j + 5) that consists of
ν = 21 steps and that goes from level i+1 to i only at the ν-th step. We have indicated in
Figure 5.1 for each state the number of times it is visited. The path contains two 〈−1, 1〉
steps, one 〈1, 1〉 step and two 〈0, 1〉 steps. The diagonal steps are decomposed, leading to
the path in Figure 5.2. We then remove the vertical steps to obtain the Bernoulli excursion
in Figure 5.3.

The excursion in Figure 5.3 is just one out of the 1
10

(

18
9

)

= 4862 possible Bernoulli
excursions that consist of 2m = 18 steps. In the procedure we consider just one path
from state (i, j) to state (i, j + h), and reduce it to a Bernoulli excursion. We now change
perspectives and start from a Bernoulli excursion of length 2m and ask ourselves how many
paths from (i, j) to state (i, j + h) can be constructed with s 〈−1, 1〉 steps, u 〈1, 1〉 steps
and thus t = h − s − u 〈0, 1〉 steps. We first need some definitions.
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1 2

1

1 1

1

11

11

3

22

21

(i, j)

(i, j + 5)

Figure 5.1: Path from state (i +1, j) to (i, j +
5).

1 2

1

1 1

1

11

11

3

22

22

1

1

(i, j)

(i, j + 5)

Figure 5.2: Path without diagonal steps.

Definition 5.2.2 Define Lh(s, u, m) as the number of paths from (i + 1, j) to (i, j + h),
h ≥ 0, that consist of ν = 2m +1+ t steps and that go from level i +1 to i only at the ν-th
step. Assume each path contains s 〈−1, 1〉 steps, u 〈1, 1〉 steps and hence t = h − s − u
〈0, 1〉 steps. Let Ph(s, u, m) denote the probability of each such path. ¤

Obviously,

Ph(s, u, m) = ϕ〈−1, 1〉sϕ〈0, 1〉tϕ〈1, 1〉uϕ〈1, 0〉m−uϕ〈−1, 0〉m+1−s. (5.50)

For Lh(s, u, m) we have the following result.

Lemma 5.2.3 For values of s and u such that s + u + t = h we have that

Lh(s, u, m) =
1

m + 1

(

2m

m

)(

m + 1

s

)(

m

u

)(

2m + t

t

)

. (5.51)

Proof.

(v) Consider a Bernoulli excursion of length 2m. We will extend the Bernoulli excursion,
that describes the path in horizontal direction, by the vertical steps to reconstruct
a path from state (i + 1, j) to (i, j + h). The vertical steps consist of s + t + u 〈0, 1〉
steps. However, because of the decomposition in (ii), s steps should be matched to
〈−1, 0〉 steps and u steps should be matched to 〈1, 0〉 steps. The number of ways to
do this is

(

m + 1

s

)(

m

u

)

. (5.52)

2 7 54 1(i, j)

Figure 5.3: Bernoulli excursion.
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(vi) This leaves the t original 〈0, 1〉 steps to be placed. These steps can be placed in every
state visited by the Bernoulli excursion. This means that we have 2m + 1 possible
states in which the t 〈0, 1〉 steps should be placed. Note that possibly multiple steps
can be placed in one state. Therefore, placing the t 〈0, 1〉 steps is equivalent to
distributing t balls over 2m + 1 bins, and the number of ways to do this is

(

2m + t

t

)

. (5.53)

Combining (5.49), (5.52) and (5.53) completes the proof. ¤

Using (5.44) and gh = gj,j+h we then arrive at our main result.

Theorem 5.2.4 For all h = 0, 1, . . . we have that

gh =

h
∑

s=0

h−s
∑

u=0

∞
∑

m=max(u,s−1)

Lh(s, u, m) · Ph(s, u, m), (5.54)

with Ph(s, u, m) as in (5.50) and Lh(s, u, m) as in (5.51). ¤

Let us return to the example path in Figures 5.1-5.3. Starting from the Bernoulli
excursion in Figure 5.3, the path in Figure 5.1 is just one of the

(

10
2

)(

9
1

)(

20
2

)

= 76950 paths
that can be constructed with two 〈−1, 1〉 steps, one 〈1, 1〉 step and two 〈0, 1〉 steps.

Matrix R. Next we derive expressions for each element of R in (5.46) using their prob-
abilistic interpretation. Our analysis follows a similar approach to that above for the
elements of the G matrix. We first introduce a useful definition.

Definition 5.2.5 Let ζh denote the probability that the process reaches state (i+1, j +h),
h ≥ 0, before the first return to any state of level i, given that the process started in state
(i + 1, j). ¤

From the probabilistic interpretation of rj,k and rh = rj,j+h we see that

rh = (ϕ〈1, 0〉ζh + ϕ〈1, 1〉ζh−1) · γ · [A1]jj

[A1]kk
, (5.55)

with γ the expected number of visits to state (i + 1, j + h) before the first return to any
state of level i given state (i + 1, j + h) is reached at least once. Let us first consider γ.
Say the process is in state (i +1, j + h) for the first time. Then, the process will visit state
(i + 1, j + h) for a second time, before it returns to level i, when it moves to (i + 2, j + h),
starts a Bernoulli excursion of 2m steps (m = 0, 1, . . .), and returns from state (i+2, j +h)
to (i + 1, j + h). With ω = ϕ〈1, 0〉ϕ〈−1, 0〉 ≤ 1/4, the probability that the process visits
state (i + 1, j + h) for a second time is given by

η = ω

∞
∑

m=0

1

m + 1

(

2m

m

)

ωm = 1
2
(1 − (1 − 4ω)

1
2 ), (5.56)

see, e.g., [202], on p. 561. Thus, γ = 1 + ηγ and so γ = 1
1−η

.
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We have that ζ0 = 1 and for s = 1, 2, . . .,

ζs = ϕ〈0, 1〉ζs−1 + ϕ〈1, 0〉
s

∑

j=0

Gs−jζj + ϕ〈1, 1〉
s−1
∑

j=0

Gs−j−1ζj . (5.57)

Rewriting (5.57) gives

ζs =
ϕ〈0, 1〉ζs−1 + ϕ〈1, 0〉∑s−1

j=0 Gs−jζj + ϕ〈1, 1〉∑s−1
j=0 Gs−j−1ζj

1 − ϕ〈1, 0〉G0
. (5.58)

Hypergeometric functions. Based on the results for the elements rj,k and gj,k, we
now derive explicit expressions for these fundamental matrix elements. More specifically,
we express the elements of G and R in terms of the hypergeometric function defined as

F (a, b, c; z) =
Γ(c)

Γ(a)Γ(b)

∞
∑

n=0

Γ(a + n)Γ(b + n)

Γ(c + n)

zn

n!
, (5.59)

with the gamma function Γ(·) defined as

Γ(z) =

∫ ∞

0

tz−1e−tdt, Re(z) > 0. (5.60)

We use the following result on the gamma function.

Lemma 5.2.6 For n = 1, 2, . . . and t = 1, 2, . . .,

Γ(n + t/2) =

√
π

22(n−1)+t

Γ(2n + t − 1)

Γ(n + t/2 − 1/2)
. (5.61)

Proof. The case t = 1 can be found in Abramowitz and Stegun [25], on p. 255, and is
given by, for p = 1, 2, . . .,

Γ(p + 1/2) =

√
π

22p−1

Γ(2p)

Γ(p)
. (5.62)

For t = 2m, m = 1, 2, . . ., (5.61) reduces to

Γ(n + m) =

√
π

22(n+m−1)

Γ(2(n + m) − 1)

Γ(n + m − 1/2)
. (5.63)

This gives

Γ(n + m − 1/2) =

√
π

22(n+m−1)

Γ(2(n + m) − 1)

Γ(n + m)
=

√
π

22(n+m−1)−1

Γ(2(n + m − 1))

Γ(n + m − 1)
, (5.64)

which is equivalent to (5.62) for p = m + n − 1. For the case t = 2m + 1, m = 0, 1, . . .,
(5.61) reduces to

Γ(m + n + 1/2) =

√
π

22(n+m)−1

Γ(2(n + m))

Γ(n + m)
, (5.65)

which is equivalent to (5.62) for p = m + n. This completes the proof. ¤

We now consider the infinite series in (5.54),
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∞
∑

m=max(u,s−1)

Lh(s, u, m) · Ph(s, u, m). (5.66)

In case s − 1 ≥ u we can write (5.66) as

ϕ〈−1, 1〉sϕ〈0, 1〉tϕ〈1, 1〉uϕ〈1, 0〉s−1−u

s! t! u!

∞
∑

m=0

Γ(2m + 2s + t − 1)

Γ(m + s − u)

ωm

m!
, (5.67)

where ω = ϕ〈1, 0〉ϕ〈−1, 0〉. From Lemma 5.2.6 we get

Γ(2m + 2s + t − 1) =
22(m+s−1)+t

√
π

Γ(m + s + t
2
)Γ(m + s + t−1

2
), (5.68)

and
22s−2+t

√
π

=
Γ(2s + t − 1)

Γ(s + t
2
)Γ(s + t−1

2
)
. (5.69)

Substituting (5.68) and (5.69) into the series in (5.67) yields

∞
∑

m=0

Γ(2m + 2s + t − 1)

Γ(m + s − u)

ωm

m!
=

22s−2+t

√
π

∞
∑

m=0

Γ(m + s + t
2
)Γ(m + s + t−1

2
)

Γ(m + s − u)

(4ω)m

m!

=
(2s + t − 2)!

(s − u − 1)!
F (s + t

2
, s + t−1

2
, s − u; 4ω), (5.70)

and, thus,

∞
∑

m=s−1

Lh(s, u, m) · Ph(s, u, m) = ϕ〈−1, 1〉sϕ〈0, 1〉tϕ〈1, 1〉uϕ〈1, 0〉s−1−u

× (2s + t − 2)!

s!t!u!(s − u − 1)!
F (s + t

2
, s + t−1

2
, s − u; 4ω).

(5.71)

In a similar way, we find for the case that u > s − 1,

∞
∑

m=u

Lh(s, u, m) · Ph(s, u, m) = ϕ〈−1, 1〉sϕ〈0, 1〉tϕ〈1, 1〉uϕ〈−1, 0〉u+1−s

× (2u + t)!

s!t!u!(u − s + 1)!
F (u + 1 + t

2
, u + 1 + t−1

2
, u − s + 2; 4ω).

(5.72)

The hypergeometric function F (a, a + 1
2
, c; z) emerging in the infinite series can be

rewritten as

F (a+ 1
2
, a, c; z) = F (a, a+ 1

2
, c; z) = 2c−1Γ(c)z

1
2
−

1
2

c(1−z)
1
2

c−a−
1
2 P 1−c

2a−c((1−z)−
1
2 ), (5.73)

with P µ
ν (·) the Legendre function of the first kind (see [25], on p. 562). Using the recursion

(see [25], on p. 334),

P µ−1
ν (z) =

P µ
ν+1(z) − P µ

ν−1(z)

(2ν + 1)
√

z2 − 1
, (5.74)
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we can recursively express the Legendre function P µ
ν (·) in terms of Legendre polynomials

P 0
ν (·), i.e., µ = 0. In turn, these Legendre polynomials have the following explicit form

(see [25], on p. 775),

P 0
ν (x) =

1

2ν

⌊
ν
2
⌋

∑

m=0

(−1)m

(

ν

m

)(

2(ν − m)

m

)

xν−2m, (5.75)

implying that all involved hypergeometric functions can be computed in a finite number
of steps.

Application to the longest queue policy. The longest queue policy forms a particular
instance of the introduced class. If (i, j) denotes the state that in equilibrium the difference
D = |L1 −L2| between the two queue lengths is i and the shortest queue M = min(L1, L2)
is of length j, the QBD process describing the queue length process under the longest
queue policy is described by the following matrices,

A0 =







λ
λ

. . .






, B0 =











2λ
µ 2λ

µ 2λ
. . .

. . .











, (5.76)

and

A1 =







∆
∆

.. .






, B1 =







−2λ
∆

.. .






, A2 = B2 =







µ λ
µ λ

. . .
. . .






, (5.77)

where ∆ = −(µ + 2λ).
For the longest queue policy (with both t = 0 and u = 0), (5.71) significantly simplifies

as shown below.

Proposition 5.2.7 If s = 0 we have

∞
∑

m=0

Lh(0, 0, m) · Ph(0, 0, m) = 1
2ϕ〈1,0〉

(1 − (1 − 4ω)
1
2 ), (5.78)

and if s ≥ 1 we have

∞
∑

m=s−1

Lh(s, 0, m) · Ph(s, 0, m) = ϕ〈−1, 1〉sϕ〈1, 0〉s−1 (2s − 2)!

s!(s − 1)!
(1 − 4ω)

1
2
−s. (5.79)

Proof. (5.78) follows directly from (5.56). From (5.71) it follows that

∞
∑

m=s−1

Lh(s, 0, m) · Ph(s, 0, m) = ϕ〈−1, 1〉sϕ〈1, 0〉s−1 (2s − 2)!

s!(s − 1)!
F (s, s − 1

2
, s; 4ω). (5.80)

The fact that F (s, s− 1
2
, s; 4ω) = F (s− 1

2
, s, s; 4ω) together with the identity F (a, b, b; z) =

(1 − z)−a (see [25], on p. 556) then completes the proof. ¤

The results presented here may be used to establish asymptotic results on the powers
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of the R matrix, which can be used together with the corresponding matrix element ex-
pressions to obtain explicit large-deviation decay rates. Furthermore, in [P2; P3] we extend
the class of models for which an explicit expression for the fundamental matrices can be ob-
tained in several directions (more general transition rates, finite dimension of the phase and
more general boundary states). Some classical queueing models, relevant for production
environments, that fit within this extended class are the multi-machine lowest inventory
policy, the two-class Markovian model with non-preemptive priority [125], a hybrid make-
to-order/make-to-stock system [27], a two-machine re-entrant line [28] and many more.
Finally, [P3] presents for a subclass a recursive algorithm for calculating the elements of
the matrices in an efficient way.
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Summary

Polling, Production & Priorities

The present monograph focuses on the so-called stochastic economic lot scheduling prob-
lem (SELSP), which deals with the make-to-stock production of multiple standardized
products on a single machine with limited capacity under random demands, possibly ran-
dom setup times and possibly random production times. In the SELSP, a production policy
is needed which describes for each possible state of the system whether to continue pro-
duction of the current product, whether to switch to another product or whether to idle
the machine. The objective of the present monograph is the development and the analysis
of mathematical models that capture the behavior of the class of fixed-sequence base-stock
policies. For given base-stock levels, it is shown that the analysis of a fixed-sequence base-
stock policy is tantamount to the analysis of the queue length distribution in a classical
queueing model, the so-called polling system.

The focus of the current research is mainly on the lot-sizing decision: what should the
length of the production run be? Within the context of this lot-sizing decision the present
monograph is, in particular, concerned with the evaluation and comparison of the tradi-
tional exhaustive and gated lot-sizing policies, on the one hand, and the more sophisticated
quantity-limited lot-sizing policy, on the other hand. The latter offers the possibility to
prioritize among the different products for improving total system performance through
bounding the lengths of the production runs. Evaluation and optimization of these lot-
sizing disciplines are achieved through state-of-the-art analysis of several polling systems.
We study two research objectives as summarized below.

Research objective 1. Development of a unifying exact framework for the analysis of
the exhaustive and gated lot-sizing policies in terms of the average work-in-progress (WIP)
levels under the assumption of Poisson demand processes. ¤

In Chapter 3 an exact Mean Value Analysis (MVA) framework for the exhaustive and
gated lot-sizing disciplines is presented, which computes the average WIP levels by exploit-
ing direct mean value arguments. Within this framework the individual WIP levels can
be efficiently obtained via the solution of a sparse set of linear equations, whereas for the
total WIP level a closed-form expression is presented.

The MVA framework gives rise to explicit closed-form expressions, allowing for back-of-
the-envelope calculations, for the individual WIP levels in the asymptotic regime of high
utilization of capacity due to either customer demands or setup times. These expressions
explicitly show the impact of all input parameters, yield insensitivity and monotonicity
properties and unearth the (dis)similarities between the two sources of high utilization.
In particular, it is shown that the exhaustive and gated lot-sizing disciplines display un-
desirable behavior if the utilization rate is high due to customer demand, which reveals
itself, for example, in difficulties in the coordination between stages within the production
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process.
Motivated by the practical significance of the large setup times regime, we study this

regime in more detail for a general class of branching-type lot-sizing policies by using
more advanced techniques. The most remarkable result of this analysis is the fact that
the stochastic system converges to its deterministic counterpart in the limit of increasing
setup times implying that the exhaustive lot-sizing policy is optimal in terms of the WIP
levels and that, thus, production runs should not be bounded in systems with extremely
large setup times. For general settings, the latter conclusion does not always hold which
we analytically show in the analysis of the second research objective.

Research objective 2. Development of an efficient and accurate approximate tool for
the analysis of the quantity-limited lot-sizing policy under the assumption of general de-
mand processes. ¤

In order to gain insights into the impact of bounding production runs and not to be di-
verted by other effects, Chapter 4 starts the analysis with a basic occurrence of the SELSP
in an exact way. That is, we analyze a two-product system, in which a high-priority prod-
uct is produced exhaustively and a low-priority product according to the quantity-limited
service strategy. In this model, we observe significant cost reductions by application of
the quantity-limited policy, compared to the standard exhaustive policies, indicating the
potential of the quantity-limited service discipline as lot-sizing rule in production environ-
ments.

The results obtained in the two-product case provide us with theoretical evidence that
the quantity-limited strategy may lead to considerable cost reductions compared to the
widely used (standard) exhaustive policy. Therefore, in Chapter 4 we develop an efficient
and accurate approximate decomposition approach for the evaluation of quantity-limited
lot-sizing policies under the most general imaginable assumptions, i.e., general number of
products each with their own quantity limit in an environment with generally distributed
arrival, service time and setup time distributions. The accuracy of the approximation
scheme is verified by means of an extensive simulation study.

The last part of Chapter 4 is devoted to a numerical simulation study assessing the
quality of the quantity-limited lot-sizing policy as tool for prioritizing among products. It
is shown that the quantity-limited lot-sizing policy outperforms the standard exhaustive
policy leading to improvements in system performance for a variety of environments.

Finally, we would like to emphasize that the results of the present monograph are cer-
tainly not limited to the described production setting, but may be used in the design and
optimization phase of many other fields of application such as communication, mainte-
nance, manufacturing and transportation.
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