

Proceedings of VVSS2005 - verification and validation of
software systems : 24th November 2005, Eindhoven, The
Netherlands
Citation for published version (APA):
Punter, H. T., & van Eekelen, M. (Eds.) (2005). Proceedings of VVSS2005 - verification and validation of
software systems : 24th November 2005, Eindhoven, The Netherlands. (Computer science reports; Vol. 0530).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/c7783dd7-a0f7-4765-adf0-b52d5d8c7b74

technische universiteit eindhoven

CS-Report 05-30

Proceedings of

VVSS2005 - Verification
and Validation of
Software Systems

24th November 2005,
Eindhoven, The Netherlands

Teade Punter

Marko van Eekeien

/ department of mathematics and

computer science

ISSN 0926-4515

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

Proceedings of

VVSS2005 - Verification and Validation of Software Systems

24ть November 2005, Eindhoven, The Netherlands

Editors:
Teade Punter

Marko van Eekelen

All rights reserved
editors: prof.dr. Р.М.Е. De Bra

prof.dr.ir. J.J. van Wijk

05/30

Reports are availaЫe at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&So
rt:;::::Author&level=l and
http :/ /library. tue.nVcatalog/TUEPublication.csp ?Language=dut&Type=ComputerScienceReports&So
rt=Year&Level=l

Computer Science Reports 05/30
Eindhoven, November 2005

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

Proceedings of

VVSS2005 - Verification and Validation of Software Systems

24Th November 2005, Eindhoven, The Netherlands

Editors:
Teade Punter

Marko van Eekelen

Organized Ьу LaQuSo - Laboratory tor Quality Software

TUE Computer Science Reports 05-30
ISSN 0926 - 4515

All rights reserved
Series editors: prof.dr. Р.М.Е. De Bra

prof. dr.ir. J.J. van Wijk

ТаЫе of Content

x_'Preface

Presentations
Keynote presentations

'1s • Ed Brinksma, Embedded Systems Engineering р. 1
• Bart Jacobs, А Security Review of the Вiometric Passport р. 2

Track 1 - Requirements Analysis - Track chair: Jan Friso Groote
• Aleksandar Brzic - Closing the Loop - Ensuring testaЫe Requirements р. 3
• Tinus Vellekoop - Better software and lower costs? Start improving your р. 8

requirements

Track 2 - Test specification - Track chair: Jack van Wijk
-f....• Timea Illes, What is а "good" test specification? р. 15

• Pieter Koopman, Testing with functions as specification р. 25

Tool track 3 - Test tools - Track chair: Jan Tretmans
• Маге van Lint, MaintainaЫe test scripts in Rational Functional Tester р. 35
• Nicky Williams, Pathcrawler - toolfor automatic generation of path tests, р. 44

comblning static and dynamic analysis

Track 4 - Architecture analysis - Track chair: Jan Friso Groote
• Stef Joosten, А tool for Analysis of architectures р. 50
• Aad Mathijssen, Specification, Analysis and Verification of ап Automated р. 55

Parking Garage

Track 5 - Test process Track chair: Jack van Wijk
• Tim Koomen, Smarter selling oftesting р. 56
• Alain Vouffo Feudjio, Towards Pattern-Oriented Test Development based оп р. 63

Abstract Test Notations

Tool track 6 - Test tools - Track chair: Jan Tretmans
• Niels Buijtendijk, Business Process Testing: Next generation ofTest р. 70

Automation just got better (Mercury: What 's new in business process testing
8.2.1)

• Michael Feord, New Paradigm in Test Center Provisioning, Tooling оп р. 78
Demand

Track 7 - Test strategy - Track chair: Alessandro di Bucchanico
• Henry Peters, Measurements for controlling test effort and depth
• Rob Henzen, Measuring software reliabllity

Track 8 - Security analysis - Track chair: Jos Baeten
• Mario de Boer, Closed source application security testing
• Maike Gilliot, Testing Security issues using Methods from Conformance

testing

Track 9 - Test automation - Track chair: Pieter Koopman
• Roger Miiller, Test case generation using symbolic execution

I

р. 87
р.97

р. 103
р. 110

р. 116

• Frank Piessens, ASM-based run-time verification of application protocols

Track 10-Business Process Validation - Track chair: Wil van der Aalst
е A1bert Kisjes, Business Process Control
• Klaas Smit, Gestructureerd accepteren van bedrijfsprocessen

Track 11 - Code analysis - Track chair: Jos Baeten
• Alexander Serebrenik, Code assessment of а toy train security system

(Huizing, Kuiper, Punter, Serebrenik: Lookingfor Stabllity)
• Geijon de Vries, Measure to Manage Software Change

Track 12- Test projects - Track chair: Paul De Bra
• Marie11e Stoelinga, Test coverage for risk-based specijications
• Niels Malotaux, Optimizing the Contribution of Testing to Project Success

Track 13 -Performance analysis - Track chair: Jos Baeten
• Guy Broadfoot, Meeting the quality challenge of untestaЫe software
• Loek Hassing, Benchmarking

Track 14- Usabllity and interactive systems - Track chair: Paul De Bra
• Martijn van Berkum, Monitoring and debugging ofweb applications
• Rob Hendriks, Discount Usabllity Testing

Track 15 -Quality in healthcare- Track chair: Peter Lucas
• Steef Peters, Ап integrated test environment at Nucletron
• Milan Petkovic, Privacy and Security in Healthcare

Poster Presentations

IQPS ~ Improving the Quality of Protocol Standards, Judi Romijn
Metric View - Christian Lange, Martijn Wijns and Michel Chaudron
ProM - Process Mining - Anne Rozinat, Wil van der Aalst
SpecTec - Interface Specification, Ruurd Kuiper, Jos Baeten and Erik Luit
Yasper- Kees van Нее, Maarten Leurs, Reinier Post

Fact Sheets Tool Exhibltioners

LibRT - Valens
Mercury
MetaStore
Mithun Training
PS Testware
Programming Research
Refis
Sogeti
V erum Consultants

II

р. 126

р. 136
р. 147

р. 148

р. 162

р. 170
р. 171

р. 181
р. 194

р.208

р.209

р.216

р.221

р.232

р.234

р.235

р.236

р.237

р.238

р.240

р.242

р.244

р.245

р.246

р.247

р.248

р.249

Preface

VVSS2005 aims at presenting the state-of-the-art in industry applicaЪle research in the areas
of testing and verification and validation. VVSS2005 is the second European Symposium on
Verification and Validation of Software Systems and Testing organized Ьу LaQuSo on 24th of
November 2005 in Eindhoven, the Netherlands. This year's motto for the VVSS symposium
is ' Where innovations in testing are presented '.

Software testing is confronted with а demand to reduce its costs. Moreover, testing should Ье
аЫе to guarantee the quality of software systems whose complexity increases continuously.
This requires innovative testing that clearly shows its effectiveness and efficiency. At the
same time we see а growing interest in Verification and Validation (V &V) methods, e.g., in
automotive industry and for conformance checking in business software, e.g., according to
Sarbanes Oxley regulations.

Compared to the first VVSS symposium last year (VVSS2004) the same structure remained:
presentations, tool exhiЬition and poster sessions. However, we extended the presentations
part of the program from 2 to 3 parallel tracks resulting in 30 speakers apart from this year' s 2
keynote speakers: Prof. Dr. Н. Brinksma (Embedded Systems Institute, Eindhoven) and Prof.
Dr. B.P.F. Jacobs (Radboud Universiteit Nijmegen). The track topics were inspired Ьу the
LaQuSo Case Study Methodology1

, which summarizes the most relevant topics for future
innovation in Verification and Validation.

These proceedings consist of three parts:
• Presentations

о the slides, paper or an abstract of the presentations given Ьу (keynote) speakers from
industry and academia.

• Poster presentations
о short overview presented at VVSS2005 on а larger poster format.

• Tool exhiЬition
о fact sheet on services or products of the tool exhiЬitioners.

We would like to thank all people from LaQuSo, especially Corine Peeters, Henk Schimmel,
Kees van Нее and Riet van Buul, for helping organizing VVSS2005. We also like to thank the
track chairs, the LaQuSo Program board and the Advisory board for their participation in the
organization.

VVSS2005 Programme Chairs:

Teade Punter
Technische Universiteit Eindhoven
LaQuSo Eindhoven

and Marko van Eekelen
Radboud Universiteit Nijmegen
LaQuSo Nijmegen

1 Case Study Methodo\ogy LaQuSo, LQ0047, Мау 2005.

III

*' * Where innovations in testing are presented

Keynote and Speaker Presentations

Embedded Systems Engineering

Ed Brinksma
Embedded Systems Institute (ESI), Eindhoven

Riding a wave of exponential growth the application of embedded technology promises to affect almost any
aspect of modern life. The very fabric of society is changing as intelligence in the form of software systems is
finding its way into all sorts of old and new products and services, ranging from those of existential importance -
- e.g. health, traffic, and energy systems - to more mundane applications for convenience or entertainment - e.g.,
consumer electronics and gaming. In spite of its obvious importance for the world of today, the design and
engineering of high-technology embedded systems is still practiced as a craft that relies on ad-hoc methods and
heuristics and the talents of (few) gifted individuals.

In the light of the above, we want to discuss how to meet one of the most important technological challenges of
today, viz. how to raise embedded system design from a craft to a scientifically based engineering discipline.
Among the problems to be confronted are the huge diversity of embedded systems, the heterogeneity and
complexity those results from their interaction with the physical world, and the often demanding requirements
regarding their reliability and performance.

In our presentation we will suggest how research on embedded systems engineering can be structured, and what
interaction between academia, knowledge institutes and industry is required to advance this field, both in the
Dutch and the European context.

Prof. Dr. H. Brinksma is Scientific Director and Chair of the Embedded Systems Institute (ESI) in Eindhoven,
the Netherlands. He is also professor of the Formal Methods and Tool Group of the Computer Science
department at University of Twente in Enschede, the Netherlands.

Page 1

A Security Review of the Biometric Passport

Bart Jacobs

Radboud University Nijmegen and Technische Universiteit Eindhoven

bart@cs.kun.nl

Abstract

Many countries are currently developing a biometric passport with a chip that contains fingerprints and
a facial scan of the passport holder. The regulations and technology involved will be discussed and
reviewed in this talk, including the relevant protocols for authentication and secure transmission.

The speaker is member of an expert panel on biometry of the ministry of internal affairs of the
Netherlands. In that context his research group at Nijmegen has received a test version of the new
passport and has developed terminal-side software to communicate with the chipcard.

Bart Jacobs is Professor of Software Security and Correctness and Research Director of the Institute
for Computing and Information Sciences, Security of Systems (SoS) Group at Radboud University
Nijmegen, The Netherlands. He is also Professor of Design and Verification of Secure Software
Systems in the Formal Methods (FM) Group of the Department of Mathematics and Computer Science
at Technische Universiteit Eindhoven.

Page 2

Closing the Loop

- Ensuring Testable Requirements -

drs. Aleksandar Brzic

Mithun Training & Consulting B.V.
P.O. Box 898
3800 AW Amersfoort
Netherlands
T +31 (0)33-457 0840
F +31 (0)33-457 0839
W www.mithun.nl
M info@mithun.nl

Stakeholdership:
Communication and trust problem?
An age-old dilemma:

“Unsere Wünsche sind Vorgefühle
desjenigen, was wir zu leisten imstande

sind.”

‘Aus meinem Leben. Dichtung und Wahrheit.’ Teil 1-3 by Johann
Wolfgang von Goethe (1811-1813)

Page 3

A fundamental aspect…
Requirements and the V-Model

User
Requirements

System
Requirements

Architectural
Design

Component
Development

Component
Development

Component
Development

Component
Development

Component

Assembly

System

Operational
CapabilityAcceptance Test

System Test

Integration Test

Unit Test

So, how do we know then?
Testable requirements

• What is a testable requirement?
• A testable requirement is a requirement that has been

broken down to a level where it is precise, unambiguous,
and not divisible into lower level requirements.

• But then: what is “precise”, “unambiguous” and when exactly is
it “not divisible” anymore? And are they realistic and
achievable?

• Therefore: standards, firm agreements, frameworks, “thought
spaces” and tools for maintaining them throughout the whole
project space and time are indispensable!

• Reasons: continuity, accountability, security…

Page 4

Some Industry Software Quality Standards

Generic: IEEE / ISO 9000-3 SQA
Medical: FDA & GxP
Defense:

– DoD (1988)
Std-2168 Defense System Software Quality Program

– MoD (1984) Defence Standard 00-16: Guide to the Achievement
of Quality in software

– MoD (1991)
Interim Defence Standard 05-95: Quality System Requirements
for the Development, Supply and Maintenance of Software

– NATO (1993)
Quality Standard AQAP-150: Requirements for Quality
Management of Software Development

Beware: Selecting appropriate standards

• A warning first: “… standards or templates cannot in themselves
provide a general structuring mechanism for requirements. Rather, …
the structure has to be developed for the particular context or
problem in hand. …” (Kovitz 1999).

• But: the common ground necessary in a project can never be
reached without standards, both internal and external.

• So, what should one choose? Look at the context of the problem
itself and choose related standards.

• For example, when RE-eing a SarbOx- or IFRS-compliant system,
the best practices for CRM might just be irrelevant…

• Not investing time in this part of the necessary choices can be fatal!

Page 5

Traceability
User

Acceptance
test

Integration
test

Unit
test

Solution
Component

System
Req.

User
Req.

Traceability through tasks in the WBS

Plans are nothing, planning is everything (Dwight D. Eisenhower)

Initial Plan

Objectives
Risks

Deliverables
Strategy

…

R
R
R
R
R
R
R
R
R

F
F

F

F
F
F

Project
Plan

CR

BUG?CR

CR
CRCR

BUG

BUG

PLA
N

M1

PLA
N

Mn

PLA
N

M2

WHAT? HOW? WHO & WHEN?

Page 6

Falling out from the Walhalla?

“Requirements validation is difficult for two
reasons. The first reason is philosophical in
nature, and concerns the question of truth
and what is knowable. The second reason
is social, and concerns the difficulty of
reaching agreement among different
stakeholders with conflicting goals.”
(Nuseibeh & Easterbrook 2000)

Nevertheless, it DOES pay off!

• Most CRM projects fail! (Gartner 2003)
• A “third-time-lucky” SAP implementation
• All because the requirements were

incomplete, incomprehensible and
probably even wrong.

• Therefore: testable requirements anyone?
(We should think so…)

Page 7

Better software and lower costs?
Start improving your requirements!

Tinus Vellekoop

VVSS, Eindhoven

November 24, 2005

Effects of inappropriate req’s

• 56% defects related to requirements

(Source: James Martin, An Information Systems Manifesto)

• 82% effort defect repair related to requirements

(Source: Martin & Leffinwell)

• 44% reasons to cancel projects

(Source: The Standish Group, Chaos Report)

• 54% initial requirements being realised

(Source: The Standish Group, Chaos Report)

• 45% realised requirements being used

(Source: Jacobs)

42

67
54

0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

s

1994
(1995)

2000
(2001)

2002
(2003)

Page 8

Results of improvements

• 25% savings on software development

• Savings also in requirements development

• Relation between requirements and cost overrun

– < 8% on requirements process, 70 – 200% overrun

– 8 – 14% on requirements process, < 70% overrun

Definitions of requirements

Karl E. Wiegers:

– A statement of a customer need or objective, or of a
condition or capability that a product must possess
to satisfy such a need or objective. A property that a
product must have to provide a value to a
stakeholder.

IEEE Std 610.12:

– 1.A condition or capability needed by a user to solve
a problem or achieve an objective

– 2.A condition or capability that must be met or
possessed by a system or system component to
satisfy a contract, standard, specification, or other
formally imposed document

– 3.A documented representation of a condition or
capability as in (1) or (2)

Needs, not solutions

Page 9

User
requirements

(what)

Business
requirements

(why)

System
requirements

(how)

Requirements structure

N
o
n

f

u

n

c

t

i

o

n

a

l

F

u

n

c

t

i

o

n

a

l

Requirements processes

Requirements management

Change control

Version control

Requirements status tracking

Requirements tracing

A
Elicitation Analysis Specification Validation

Requirements development

B
as

el
in

e

Requirements management

Change control

Version control

Requirements status tracking

Requirements tracing

A
Elicitation Analysis Specification Validation

Requirements development

B
as

el
in

e

RequirementsLifecycle Management

Requirements management

Change control

Version control

Requirements status tracking

Requirements tracing

A
Elicitation Analysis Specification Validation

Requirements development

Requirements management

Change control

Version control

Requirements status tracking

Requirements tracing

A
Elicitation Analysis Specification Validation

Requirements development

RequirementsLifecycle Management

B
as

el
in

e
B
as

el
in

e

Requirements lifecycle

Application lifecycle

Release
Project

Release
Project

Application lifecycle

Release
Project

Release
Project

ReleaseRelease
ReleaseRelease

Requirements lifecycle

Application lifecycle

Release
Project

Release
Project

Application lifecycle

Release
Project

Release
Project

ReleaseRelease
ReleaseRelease

Page 10

Start with improvement

• Quality of requirements (descriptions)

• Requirements administration

• Requirements Management

• Organisation of roles

• The Tester’s view
Validate requirements Prepare logical test cases

• Requirements will be used by …
Requirements will be validated by …

• Standards for levels and types of requirements

• Basic criteria
(IEEE 830, IEEE 1233,
ISO 9126, …)

1 - Quality of requirements
• Complete - full description of functionality

• Correct - accurate description of functionality

• Feasible - possible to implement

• Necessary - something users really need

• Prioritized - indication of essentiality

• Unambiguous - single, consistent interpretation

• Verifiable - can be tested

User
requirements

(what)

Business
requirements

(why)

System
requirements

(how)

User
requirements

(what)

Business
requirements

(why)

System
requirements

(how)

A
Elicitation Analysis Specification Validation

A
Elicitation Analysis Specification Validation

B
as

el
in

e
B
as

el
in

e

Page 11

2 - Requirements administration

Attributes of requirements

• Identification

• Version

• Description

• Priority

• Status

• Source

• Owner

• Relations

• Stability

Attributes
User

requirements
(what)

Business
requirements

(why)

System
requirements

(how)

User
requirements

(what)

Business
requirements

(why)

System
requirements

(how)

Levels

Central repository

requirements

Let a requirements management tool support you

Support changes, versions, base lining,
impact, tracking and tracing

Requirements management

Change control

Version control

Requirements status tracking

Requirements tracing

A
Elicitation Analysis Specification Validation

Requirements development
B
as

el
in

e

Requirements management

Change control

Version control

Requirements status tracking

Requirements tracing

A
Elicitation Analysis Specification Validation

Requirements development
B
as

el
in

e

Requirements management

Change control

Version control

Requirements status tracking

Requirements tracing

A
Elicitation Analysis Specification Validation

Requirements development

Requirements management

Change control

Version control

Requirements status tracking

Requirements tracing

A
Elicitation Analysis Specification Validation

Requirements development
B
as

el
in

e
B
as

el
in

e

Glance at a tool

Page 12

3 – The right time for management

Where is the dynamic?

When do requirements change?

When … version … status … traceability … impact …

Requirements management

Change control

Version control

Requirements status tracking

Requirements tracing

A
Elicitation Analysis Specification Validation

Requirements development

B
as

el
in

e

Requirements management

Change control

Version control

Requirements status tracking

Requirements tracing

A
Elicitation Analysis Specification Validation

Requirements development

B
as

el
in

e

Requirements management

Change control

Version control

Requirements status tracking

Requirements tracing

A
Elicitation Analysis Specification Validation

Requirements development

Requirements management

Change control

Version control

Requirements status tracking

Requirements tracing

A
Elicitation Analysis Specification Validation

Requirements development

B
as

el
in

e
B
as

el
in

e
It all starts here

4 - Organisation of roles

Reporting

Authorisation

Glossary

Base lining
Administration

Requirements
validationRequirements

specification
Requirements

analysis

Requirements
elicitation

Stakeholders
analysis Organise

co-operationIntroduction

Teaming

Requirements Analysts, Requirements Manager, Requirements Administrator

What is there to do? Who is doing what?

How can we manage?

Page 13

Summary

• Requirements are the key to improve quality and to
decrease overrun

• Improvements pay off

• Improvements

– Basic approach: pyramid and processes

– Quality of requirements

– Administration

– Manage & Develop

– Roles (Requirements Manager)

It’s a people challenge

Walk your talkWalk your talk

Talk your walkTalk your walk

Page 14

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Institut für Informatik
Neuenheimer Feld 348
69120 Heidelberg
http://www-swe.informatik.uni-heidelberg.de
illes@informatik.uni-heidelberg.de

Timea Illes

WhatWhat IsIs a „Good“ Test a „Good“ Test
SpecificationSpecification? ?
VVSS 2005VVSS 2005

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 2

Evaluation of
Present
Approaches

Motivation
„Each test performed during this phase is
documented in a set of test specifications that detail
the environment used and the outputs obtained.“
Bedington 1956: „Production of Large Computer Programs“

1970 – Specification of test cases
very important, tests should not be
performed by a programmer

1956 – Specifying test cases =
Specify the environment and the
outputs

„During the testing phase, with good documentation
the manager can concentrate personnel on the
mistakes in the program. Without good
documentation every mistake, large or small, is
analyzed by one man who probably made the
mistake in the first place because he is the only man
who understands the program area.“
Royce 1970: „Managing the Development of Large Software
Systems“

1982 – IEEE Standard for
Software Test Documentation

Test case documentation =
Inputs, expected outcomes,
execution steps

„Documentation specifying inputs, predicted
results, and a set of execution conditions for a
test item.”
IEEE Standard for Software Test Documentation

Documentation of test activities
considered important from the beginning!!

Page 15

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 3

Evaluation of
Present
Approaches

Why Do We Need a Test Specification?
Test documentation …

… facilitates communication
between the participants of the
testing process

… facilitates reuse of test
cases

… facilitates execution of test
cases by unexperienced
testers

… facilitates planning and
effort estimation
…

Test-
spezifikation

Executable Test
Cases

Test-
spezifikation

Test-
Specification (TS)

Anforderungs-
spezifikation

Requirements
Specification

AND: facilitates transition from
requirements to test execution

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 4

Evaluation of
Present
Approaches

What is a Test Specification?

… Documentation of all test cases

What is a test case?

A set of input values, execution preconditions, expected
results and execution postconditions, developed for a
particular objective or test condition, such as to exercise a
particular program path or to verify compliance with a
specific requirement. (ISTQB)

„… a test case is a question that you ask of the program.
The point of running the test is to gain information, for
example whether the program will pass or fail the test. It
may or may not be specified in great procedural detail, as
long as it is clear what is the idea of the test and how to
apply that idea to some specific aspect (feature, for
example) of the product.“ (Kaner, „What Is a Good Test Case?“)

?
Detail
Formalism

…
Notation

What is a GOOD
test specification?

Page 16

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 5

Evaluation of
Present
Approaches

The Model

Stakeholder

produces as
output

performs Testing Tasks
& Activities

Decision
makes

requires

Criteria
implicate

Test
Specification

expressed
for

serves as

input

serves as
input

Refined by

* involved in the sw
development process / testing
process

* interested in (parts of) the
test specification

* e.g. test manager, tester,
test automator, requirements
engineer (RE)

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 6

Evaluation of
Present
Approaches

Test Designer

Test
Designer

produces as
output

performs Testing Tasks
& Activities

Decision
makes

requires

Criteria
implicate

Test
Specification

expressed
for

serves as

input

serves as
input

Design & document
test cases

* Which logical test cases?
* Which logical test data?
* What automate? Aggregated

Prioritized Structured

Generalized

Traceable

Expressive

Learnable

Writable

* Which parts will be affected by a
change?

Maintain
test specification

Concise

Visual

Readable Simulatable

Semi-formal

Page 17

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 7

Evaluation of
Present
Approaches

Tester

Tester

produces as
output

performs Testing Tasks
& Activities

Decision
makes

requires

Criteria
implicate

Test
Specification

expressed
for

serves as

input

serves as
input

Execute test cases
Capture and compare
test results
Report test results

* Sequence of test cases?
* Concrete test data / test steps?
* Test passed or failed?
* Severity of defect?
* Blocking defect?

Complete

Evaluable

UnambiguousCorrect

Semi-formal

Efficient
execution Sequentialized

Concise

Visual

Readable

Simulatable

Learnable

Detailed

Repeatable

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 8

Evaluation of
Present
Approaches

Current Approaches (1)

TTCN-3
Tree and Tabular Combined Notation
Standardized test specification and test implementation language

Key concepts
Imports
import of definitions in other TTCN-3 modules or other languages
Data types
user defined data types
Test data
templates, values transmitted
Test behaviour
dynamic test behaviour
Test configuration
definition of test components and ports

Page 18

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 9

Evaluation of
Present
Approaches

Current Approaches (2)

U2TP
UML Testing Profile (OMG) based upon UML 2.0

Key concepts
Test Architecture
test context, test configuration, test component, SUT,
arbiter
Test behaviour
test case, verdict, validation action, defaults
Test Data
logical partitions, pattern matching

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 10

Evaluation of
Present
Approaches

Current Approaches (3)

IEEE
Standard for software test documentation
Key concepts: Detailed documentation of the whole testing project

UML-based approaches
Subsumes all approaches which derive test cases from (enriched) UML models

1. Test Plan Identifier
2. References
3. Introduction
4. Test Items
5. Software Risk Issues
6. Features to be Tested
7. Features not to be Tested
8. Approach
9. Item Pass/Fail Criteria

10. Suspension Criteria
11. Test Deliverables
12. Remaining Test Tasks
13. Environmental Needs
14. Staffing and Training Needs
15. Responsibilities
16. Schedule
17. Planning Risks and Contingencies
18. Approvals
19. Glossary

Page 19

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 11

Evaluation of
Present
Approaches

Evaluation of TTCN-3

Traceable
Parametrization of test case execution
Import of test data definitions/ modules

No explicite traceability to requirements
No explicite traceability between test-cases <-> test data

Generalizable
Test Data:

Wildcards, Templates

Template book mySpecialBook := {
ISBN := ?,
title := „mySpecialBookTitle“,
author := ?
…
}

Template bookList mySpecialBookList := {
mySpecialBook
mySpecialBook}

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 12

Evaluation of
Present
Approaches

Evaluation of TTCN-3

Prioritizable
No explicite prioritization
Prioritization programmable

implicite

Structurable
Modules encapsulate

Test data
Functions
Test components
Test cases

Control {
…

execute (search_for_valid_book)
execute (search_for_not_existant_book)

…
} /* end control

module {
Type set of bookList;
Type record book {

integer ISBN,
charstring title,
charstring author
…

Function performSomeCommonTestSteps ()
..

testcase search_for_valid_book
testcase not_existant_book

…
}

Page 20

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 13

Evaluation of
Present
Approaches

Evaluation of TTCN-3

Expressive
Test data

Proprietary type system
Composed data types
No complex conditions

Test behaviour
in functions or test cases
Alternatives
Conditional execution

System states
Implicite (History)
Inquiry

Functional test

Testing quality
requirements

Performance test

testcase myTestCase_1 ()
runs on myTestComponentType

myPort.send (requestURL);
localTimer.start;
alt {

[] myPort.receive (mySpecialBookList) {
localTimer.stop;

setVerdict(pass)}

[] myPort.receive {
localTimer.stop;
setVerdict (fail)}

[] localTimer.timeout {
setVerdict (fail)}

} /* end alt

} /* end testcase

type record url {
charstring protocol,
charstring host,
charstring file

}

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 14

Evaluation of
Present
Approaches

Evaluation of TTCN-3

Readable

Not learnable: Programming language
Visual & simulable
But

No abstraction!
No representation for test data

Not concise

Page 21

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 15

Evaluation of
Present
Approaches

Evaluation of TTCN-3

testcase myTestCase_1 ()
runs on myTestComponentType

myPort.send (requestURL);
localTimer.start;
alt {

[] myPort.receive (mySpecialBookList) {
localTimer.stop;
setVerdict(pass)}

[] myPort.receive {
localTimer.stop;
setVerdict (fail)}

[] localTimer.timeout {
setVerdict (fail)}

} /* end alt

} /* end testcase

myTestComponentType SUTType

mySpecialBookList

bookListType

requestURL

URLType

pass

fail

fail

alt

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 16

Evaluation of
Present
Approaches

How GOOD Are Present Approaches?

Test-
spezifikation

Executable Test
Cases

Test-
spezifikation

Test-
Specification (TS)

Anforderungs-
spezifikation

Requirements
Specification

U2TP

TTCN-3

IEEE

UML-based
approaches

Use-Cases

Programming language
for executable test cases

Notation to design
the architecture of an
executable test system

Describes the
„maximum“
information

A test focused model,
allows a better derivation
of test cases than the
development focused
model

Model requirements from
user‘s the point of view

formal

detailed

automatable

not readable

semi-formal
visual

incomplete

not formal
expressive

not aggregable

Semi-formal
not expressive

incomplete

detailed
not formal

incomplete

Page 22

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 17

Evaluation of
Present
Approaches

Good for WHOM?

Test-
spezifikation

Executable Test
Cases

Test-
spezifikation

Test-
Specification (TS)

Anforderungs-
spezifikation

Requirements
Specification

U2TP

TTCN-3

IEEE

UML-based
approaches

Use-Cases

Programming language
for executable test cases

Notation to design
the architecture of an
executable test system

Describes the
„maximum“
Information

A test focused model,
allows a better derivation
of test cases than the
development focused
model

Model requirements from
user‘s the point of view

formal

detailed

automatable

not readable

semi-formal
visual

incomplete

not formal
expressive

not aggregable

Semi-formal
not expressive

incomplete

detailed
not formal

incomplete

Test automator

Test automator
Test (system)
designer

Developer
Tester

Test Designer
Experienced Tester
(RE)

RE
(Test Designer)

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 18

Evaluation of
Present
Approaches

Conclusion

What is a „GOOD“ test specification?

Facilitates tasks and activities
of ALL stakeholders!

Page 23

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 19

Evaluation of
Present
Approaches

Conclusion

No approach defines
generalization and traceability mechanism
prioritization mechanism for test sequences or test cases

No approach exists
for conceptual modelling test cases
which combines the needs of a test designer AND tester / test
automator
which supports testing activities AND managerial activities

Consequence

What Is a „Good“ Test Specification?
VVSS - 2005

Motivation

Timea Illes
illes@informatik.uni-heidelberg.de

What is a Good Test
Specification?

Stakeholder &
Criteria

Conclusion

© 2005 Institut für Informatik
Ruprecht-Karls-Universität Heidelberg

Folie 20

Evaluation of
Present
Approaches

New platform for test tool evaluation

… for test tool vendors: Evaluate own products according to defined criteria

… for practitioners, researchers: Inquiry of test tools according to selected/entered
criteria

New platform providing current information on test related themes

… for practitioners: Services offered by the Software Engineering Group in
Heidelberg (training & coaching, conjoint research, collaboration in teaching)

… for researchers & practitioners: Current research results (publications, talks)

November/December 2005

Page 24

Pieter Koopman
Radboud University Nijmegen

The Netherlands

testing with functions as specifications

Pieter Koopman vvss2005 2

overview

• the scene:
automatic testing of reactive systems

specification of properties needed
•specification of reactive systems

transition functions
•conformance

relation between specification and tested object
• testing conformance

on-the-fly testing
•some examples
•other uses of the transition function
•conclusion and future work

Page 25

Pieter Koopman vvss2005 3

the scene

• testing:
planned experiments with implementation
to determine quality aspects
formal quality requirements needed

•functional testing:
focus on behaviour of (software) systems
– relation between input and output

• reactive systems:
reaction depends on input and state
state determined by the history

Pieter Koopman vvss2005 4

specification of reactive systems

• based on FSM / statecharts
e.g.: machine produces Coffee or Tea after making
a choice by pressing a button and inserting a coin
reaction on Coin depends on history

input: Coin
output: Coffee

partial specification:
effect of Coin undefined

Idle SteaScoffee

initial
state

state

CoffeeBut / [] TeaBut / []

Coin / [Coffee] Coin / [Tea]

Page 26

Pieter Koopman vvss2005 5

nondeterminism

•nondeterminism is needed if
system is really not deterministic
not the entire state is known in the specification
– machine produces coffee if there is water and beans,

but specification does not know if this condition is met

Coin / [Coin]

2 transitions
for input Coin

Idle SteaScoffee

CoffeeBut / [] TeaBut / []

Coin / [Coffee] Coin / [Tea]

Surprise / []Surprise / []

2 transitions
labelled Surprise / []

Pieter Koopman vvss2005 6

ESM: Extended State Machines

• state, input and output can be any type
in particular there can be arguments

OnOff / n=0; []

condition

state change

Idle

Button | n>0 / n-=1; [Coffee]

Paid n

Coin /
n+=1; []

OnOff / []

otherwise
do nothing

InsertCard / n = n; []
Charge c /
n=n+c; [Card]

Card n

Button | n==0 /
[Beep] Button | n>0 / []

nondeterministic

Page 27

Pieter Koopman vvss2005 7

specification as transition table

•pictures of statecharts are nice,
but a tool requires an other representation

•a table is fine for finite state machines,
but not for extended state machines

variables causes state explosion

Paid 2[]ButtonPaid 2
Paid 1[Coffee]ButtonPaid 2

...

Paid 0[Coffee]ButtonPaid 1
Paid 1[]ButtonPaid 1
Paid 0[Beep]ButtonPaid 0

...
Idle[]OnOffPaid 2
Idle[]OnOffPaid 1
Idle[]OnOffPaid 0

Paid 0[]OnOffIdle
stateoutputinputstate

OnOff
/ n=0; []

Idle

Button | n>0 / n-=1; [Coffee]

Paid n

Coin /
n+=1; []

OnOff / []

Button | n==0 /
[Beep] Button

| n>0 / []

Pieter Koopman vvss2005 8

nondeterministic transition function

• list all possible transitions
spec :: State x Input → Set (State x List Output)
spec (Stea , Coin) = { (Idle , [Tea]) }
spec (Idle , Surprise) = { (Stea , []), (Scoffee , []) }
spec (Scoffee, Coin) = { (Scoffee, Coin), (Idle, [Coffee]) }
...

• single function couples output and target state
collection of pairs

Idle SteaScoffee

CoffeeBut / [] TeaBut / []

Coin / [Coffee] Coin / [Tea]

Surprise / []Surprise / []

Coin / [Coin]

Page 28

Pieter Koopman vvss2005 9

transition function in FPL

•advantages of functional programming languages
needed data types can be stated clear and directly
concise, high level functions
generic programming yields reuse and control

:: State = Idle | Paid Int
:: Input = OnOff | Coin | Button
:: Output = Coffee | Beep

spec :: State Input -> [(State,[Output])]
spec Idle OnOff = [(Paid 0,[])]
spec (Paid n) OnOff = [(Idle,[])]
spec (Paid n) Coin = [(Paid (n+1),[])]
spec (Paid n) Button

| n>0 = [(Paid (n-1),[Coffee]),(Paid n,[])]
spec (Paid 0) Button = [(Paid 0,[Beep])]
spec s i = []

OnOff
/ n=0; []

Idle

Button | n>0 / n-=1; [Coffee]

Paid n

Coin /
n+=1; []

OnOff / []

Button | n==0 /
[Beep] Button

| n>0 / []

Pieter Koopman vvss2005 10

not any statechart is a valid specification

•not every statechart can be used as specification
states must contain enough information
inputs allowed must be clear
transitions must be completely specified

•correct functions can always be used

On

Idle

Button | not empty /
decrease state; [Coffee]

Paid

Coin /
n+=1

Off

Button | empty /
[Beep]

Button | not empty / []

no output

interpretation
of input

n undefined

Page 29

Pieter Koopman vvss2005 11

testing

• SUT: System Under Test
assumed to be black box state machine

apply input;
observe output
behaves as extended
state machine
input enabled

SUT
Button

[Coffee]

S0

S1

S2

S3

OnOff / []OnOff / []

Coin / []

Coin / []

Coin / []

Button /
[Coffee]

Button /
[Coffee]

Button /
[Beep]

Pieter Koopman vvss2005 12

conformance

• specification transition function
nondeterministic extended state machine
can be partial
– nothing defined for some states and inputs

• implementation
black box
input enabled state machine

•conformance relation:
if the specification does not cover an input for
some state, anything is allowed

– testing yields no information
otherwise, only the specified transitions are allowed

Page 30

Pieter Koopman vvss2005 13

testing conformance
• SUT is not conform to the specification

?

[Coffee]ButtonPaid 2
[Beep]ButtonPaid 1

[Coffee]ButtonPaid 3
[]CoinPaid 2
[]CoinPaid 1
[]CoinPaid 0
[]OnOffIdle

outputinputstate

SUTspecification

S0

S1

S2

S3

OnOff / []OnOff / []

Coin / []

Coin / []

Coin / []

Button /
[Coffee]

Button /
[Coffee]

Button /
[Beep]

OnOff
/ n=0; []

Idle

Button | n>1 / n-=1; [Coffee]

Paid n

Coin /
n+=1; []

OnOff / []

Button | n==0
/ [Beep] Button

| n>1 / []

no new state:
error found

Pieter Koopman vvss2005 14

on-the-fly testing
repeat N times:

select input allowed in current state;
apply input to SUT and observe output;
if output allowed by specification

compute new state;
else

report error;

•advantages
testing is fast and reliable
no problems with state space explosion
better testing by changing a parameter
tests corresponds always to current specification

•on-the-fly testing tools
for these specifications: Gast
related tools: Torx, Spec Explorer, T-Uppaal, ..

spec

SUT test
tool

verdict

Page 31

Pieter Koopman vvss2005 15

test tool Gast

• transition function
function in fpl Clean
spec (n, Button) | n > 0 = (n-1, [Coffee])
1-1 mapping between statechart and function

• interface to SUT depends on situation
e.g.: C-API, dll, TCP/IP, ..

• test execution
fully automatic
very flexible:
– number and length of test runs can be changed
– input selection in a state can be controlled
– trace information if that is desired
– ..

n
Button | n>0 / n-=1; [Coffee]

Pieter Koopman vvss2005 16

some applications with Gast

•FSM in industrial context
over 300 states and 11,000 transitions in C++
error found although SUT was proven to be correct
– the proof was correct, but incomplete (as usual)

• java-card electronic purse
extended state machine, much too large for a table
errors found in all 25 mutants (each within 1 sec)

•web-server
under development, first results look fine

•errors are found quickly
typically within seconds, but it is possible to
construct errors that are very hard find
errors found in SUT and in specification

Page 32

Pieter Koopman vvss2005 17

other uses of the transition function

• simulation / validation
•proof properties of model

model checking
•test properties of model

e.g. fairness of transitions in coffee machine
reachability of states
able to produce Coffee as output
..

Pieter Koopman vvss2005 18

testing fairness in coffee machine
fair s i (o,t) = value s + value i == value o + value t
fair spec s i = fair s i For spec s i
Start = test (fair spec1)

OnOff
/ n=0; []

Idle

Button | n>1 / n-=1; [Coffee]

Paid n

Coin /
n+=1; []

OnOff / []

Button | n==0
/ [Beep] Button

| n>1 / []

S0

S1

S2

S3

OnOff / []OnOff / []

Coin / []

Coin / []

Coin / []

Button /
[Coffee]

Button /
[Coffee]

Button /
[Beep]

Page 33

Pieter Koopman vvss2005 19

conclusion

•manual testing is good
very flexible

• script based testing is better
executing tests is fast and accurate
easy to repeat tests

•model based on-the-fly testing is best
tests always conform the current specification
use a small specification instead of large test suites
number of tests controlled by parameter

•simple formal specification needed
testing helps to improve SUT and specification
specification also used for validation and verification

Pieter Koopman vvss2005 20

future work

•applications
web-servers
large embedded systems
Dutch biometric passport
– contains smart card with biometric data

..
• theory/tool development

using UML specifications
determine quality of tests
determine quality of system after tests
time in specifications and tests
asynchronous communication in model
..

Page 34

®

IBM Software Group

© IBM Corporation

Maintainable Tests in
Rational Functional Tester

LaQuSo – 24 November 2005

IBM Software Group | Rational software

2

Wie is Marc van Lint?

IBM

Hardware SW Group Global Services

Websphere Tivoli Rational Lotus DB2

Functie: Rational Technical Specialist
Focus: Kwaliteit in Software Ontwikkeling

IBM Nederland N.V.
Johan Huizingalaan 765
1066 HV Amsterdam
Telefoon: +31-20-513-3065
Mobiel: +31-6-53244587

E-Mail: marc_van_lint@nl.ibm.com

Marc van Lint
IBM Software Group
Rational Specialist

Page 35

IBM Software Group | Rational software

3

Operations

Business

Discover, develop, and deploy assets
Discover business & technology assets

Business priorities
Requirements
Middleware and software assets

Develop at the speed of business
Rapid application development
Model-driven architecture
Asset-based development
Direct-to-middleware productivity

Deploy to closed-loop environments
Automated applications deployment
Streamlined composite application
management
Direct-to-operations productivity

Prioritize Plan Manage Measure

Optimize Iterate

IBM Software Group | Rational software

4

Key Principles for Business-Driven Development

Page 36

IBM Software Group | Rational software

5

Analyst Architect Developer Tester

Rapidly
construct,
transform,
integrate

and
generate

code

Design,
create,

and
execute

tests

Model,
simulate,
assemble,

and monitor
processes

Visually
model

applications
and data

Provision,
configure,
tune and

troubleshoot
applications

Follow a common process
Manage and measure
projects and portfolios
Manage requirements

Manage change
and assets
Manage qualityProject

Manager

Executive
Align investments with business objectives
Analyze and monitor project portfolios

Deployment
Manager

The IBM Software Development Platform
A complete, open, modular, and proven solution

IBM Software Group | Rational software

6

IBM Products

Customer
Extensions

3rd Party
ISV Tools

Rational
Software
Architect

Rational
Application
Developer

Rational
Functional

Tester

Rational
Performance

Tester

Tivoli
Configuration

Manager

WebSphere
Business

Integration
Modeler

& Monitor
Tivoli

Monitoring

Rational
Web

Developer

Analyst Architect Developer Tester Deployment
Manager

Project
Manager

Executive Rational Portfolio Manager

Rational Unified Process
Rational ClearCase
Rational ClearQuest

Rational RequisitePro
Rational TestManager
Rational ProjectConsole

Rational
Software
Modeler

Rational
Manual
Tester

Rational
PurifyPlus

Windows
UNIX / Linux

Page 37

IBM Software Group | Rational software

7

Execute & AnalyzeSchedule WorkloadBuild ScriptsPlan & Design

IBM Software Group | Rational software

8

Rational TestManager: The control center

VIEW RESULTSPass
Fail

Coverage
reports

Generate
change

requests

PLAN &
DESIGN

OS/Ver
MemDisk

Test Iterations

Test Configurations

Test Cases

TEST INPUTS

INPUT

Cross-platform

Any kind of
test: unit,

functional,
load,

manual
Many tests at

same time

EXECUTION

Rational
TestManager

Requirements
Spreadsheets

Models

Page 38

IBM Software Group | Rational software

9

Use Case to Test Suite

Use Case

Test Case A

Test Case B

Test Case C

Test Case D

Test SuiteTest Plan

IBM Software Group | Rational software

10

Rational Manual Test (RMT)

Drag and drop
reusable test steps
onto Reuse palette

Single point updating
of reused content

Automated data entry
and verification

capabilities

Custom properties to
capture data and metrics

to fit any process

Rich text editing
including images,
attachments, and

granular and high level
verifications

Import content from
Word or Excel

Page 39

IBM Software Group | Rational software

11

IBM Rational Functional Tester (RFT)

Eclipse based

Environments:
Web/Java
MS VS.NET

Code:
Java
VB.NET

Full IDE Integration

Data driven

IBM Software Group | Rational software

12

RFT: Data driven testing

Separation of program and data

Easy testing on exceptions

(TestManager)
Data

Stores

Test
Script

Program

Page 40

IBM Software Group | Rational software

13

RFT: Shared Object Library

Separation of program and objects

Change object updates all programs

Object has various properties and weight for recognition

Test
Programs

Shared
Test

Objects

Program

IBM Software Group | Rational software

14

IBM Rational Functional Tester

Page 41

IBM Software Group | Rational software

15

RFT: ScriptAssureTM

Determines
Match

Version 1.0 Version 2.0

Tester
Sees

Tool
Sees

IBM Software Group | Rational software

16

Granularity

195000

10000=100x100.value

9500=100x95.type

0=0x90.id

ResultRecognizedValueProperty

Recognized = 0
Not found = 100

No change 0

0 10K 20K5K1K

Page 42

IBM Software Group | Rational software

17

Conclusion

All ‘traditional’ techniques can be applied
Data driven testing

Rational Functional Tester can utilize a shared object library
Centralized object maintenance
Object attribute includes recognition weight

ScriptAssure™ is integrated recognition intelligence
No additional programming

Better control on script maintenance
Amount of maintenance
Corrections according to planning

www.ibm.com/software/rational

Page 43

Pathcrawler - tool for automatic generation of path tests, combining static
and dynamic analysis

Nicky Williams, Bruno Marre Patricia Mouy and Muriel Roger
CEA/Saclay, DRT/LIST/SOL/LSL, 91191Gif sur Yvette, France

{Nicky.Williams Bruno.Marre Patricia.Mouy Muriel.Roger}@cea.fr

Abstract

PathCrawler is a prototype tool for the automatic
generation of test-cases which are guaranteed to
exhibit all possible behaviours, i.e. feasible
execution paths, of the program under test. This
program must be a sequential program written in an
imperative programming language such as C and its
source code must be available. PathCrawler is based
on a novel combination of code instrumentation and
constraint solving which makes it both efficient and
open to extension. It suffers neither from the
approximations and complexity of static analysis,
nor from the number of executions demanded by the
use of heuristic algorithms in function minimisation
and the possibility that they fail to find a solution.

1. Introduction

Rigorous testing of delivered software, by its
implementers or by external certifiers, is increasingly
demanded, along with some quantification of the
degree of confidence in the software implied by the
test results. The reasons for this include the increase
in the deployment of embedded software systems
and in the re-use of software components. This sort
of testing cannot be based on a restricted set of hand-
crafted test objectives or use-cases, which may have
to be manually updated if the software requirements
change. Testing must be made as automatic as
possible, with automatic generation of a large
number of test-cases according to a well-justified
selection criterion.

We present the PathCrawler tool for the automatic
generation of test-cases satisfying the rigorous 100%
feasible execution paths criterion. In the following
section we compare Pathcrawler to other work on
automatic test-case generation. We then give an
overview of our approach and describe its principal
stages: Instrumentation, Substitution and Constraint
Solving. We describe the current status of the
implementation and present some performance
results. In conclusion, we discuss the application of

PathCrawler to different types of program and
describe work in progress.

2. Related Work

There has been much research on the automatic
generation of structural test-cases but many
techniques do not scale up to full coverage of
realistic-sized programs, mainly because they were
not actually designed to generate complete test sets
guaranteeing full coverage. Instead, most previous
work addresses the problem (called the Test Data
Generation Problem (TDGP) in [4]) of finding data
to cover a "test purpose" in the form of a particular
node, branch or path of the control flow graph.

Static approaches to test-case generation
[2][3][11] typically select a path from the control
flow graph covering the test objective, derive the
path predicate as a set of constraints on the input
values and then solve these constraints to find a test-
case which activates the path. In theory, symbolic
execution can be used to construct the path
predicate. However, in practice symbolic execution
encounters problems in the detection of infeasible
paths (notably in the case of loops with a variable
number of iterations), the treatment of aliases and the
complexity of the formulae which are gradually built
up.

Dynamic approaches [1][4][6] avoid the problems
of symbolic execution by dispensing with the path
predicate and using general heuristic function
minimisation techniques to modify the input data so
that the test objective is covered. The first set of
input data is arbitrarily selected and the program is
instrumented so as to indicate the branches taken and
evaluate their "distance" from the test objective.
Function minimisation must reduce this distance to
zero. The disadvantages of these techniques are that
they may need a great many executions before a test-
case is found, they may fail to find a test-case even
when one exists and they do not terminate if the
desired path is actually infeasible.

As we address a different problem to that of most
previous work, we adopt a different solution. Our

Page 44

execution

substitution

definition domain of program

source code

instrumented source

instrumentation

compilation

injection of input values

execution path

path predicates
of previous tests

conjunction

path predicate

instrumented object

domain not yet covered

difference

constraint solving

input values for next test

Figure 1 : Our approach

objective is the automation of testing with full
structural coverage. PathCrawler is based on the
most rigorous structural coverage criterion: 100%
coverage of feasible execution paths. However, its
test generation strategy can be modified to relax this
criterion in a disciplined way if there are too many
feasible execution paths in the program to be tested.
The TDGP is not the best formulation of the
problem of test-case generation for full structural
coverage. We do not need to construct the control
flow graph, enumerate all the paths in the graph,
many of which will be infeasible, and search for a
test for each. Instead, we iteratively cover "on the
fly" the whole input space of the program under test.
This is an extension of the idea sketched out in [10]
but we apply it to path coverage instead of branch
coverage and we do not risk leaving feasible paths
uncovered by limiting exploration of each previous
path predicate to only one prefix.

Like the dynamic approaches to test data
generation, PathCrawler is based on dynamic
analysis, but instead of heuristic function
minimisation, it uses constraint logic programming
to solve a (partial) path predicate and find the next
test-case, as in the approaches based on static
analysis. It suffers neither from the approximations
and complexity of static analysis, nor from the
number of executions demanded by heuristic
algorithms used in function minimisation and the
possibility that they fail to find a solution.

3. Our approach

Our approach (see Figure 1) starts with the
instrumentation of the source code so as to recover
the symbolic execution path each time that the
program under test is executed. The instrumented
code is executed for the first time using a "test-case"
which can be any set of inputs from the domain of
legitimate values. The symbolic path which we

recover is transformed into a path predicate which
defines the "domain" of the path covered by the first
test-case, i.e. the set of input values which cause the
same path to be followed. The next test-case is found
by solving the constraints defining the legitimate
input values outside the domain of the path which is
already covered. The instrumented code is then
executed on this test-case and so on, until all the
feasible paths have been covered

4. Instrumentation

The instrumentation stage is an automatic
transformation of the source code so as to print out
the symbolic execution path, i.e. a sequence of
assignments and satisfied conditions on C variables
referenced by the program. These include scalar
variables and access paths (containing e.g. element
indices, pointer de-referencing, pointer
arithmetic,…) for elements of structured data. In the
rest of the paper we will use the term “variable” to
refer to both scalar variables and elements of
structured data.

A trace instruction is automatically inserted after
each control point, i.e. sequential block of
instructions or branch of the source code. A table is
automatically generated to give the sequence of
assignments or branch condition corresponding to
each control point. This table is used generate the
symbolic execution path corresponding to the
recorded trace.

The instrumentation is implemented using the
CIL library [9]. Certain source-code statements are
decomposed, notably multiple conditions (which
reinforces our test criterion, bringing it close to all-
paths combined with MC/DC). Along with pointers,
the C language offers alternative notations to access
elements of structured data but in our trace
instructions, all data access paths are represented in a
canonical form. This rewriting of access paths,

Page 45

which is purely syntactic, simplifies the substitution
stage.

5. Substitution

A path predicate is a conjunction of constraints
expressed in terms of the values (at input) of the
input variables. However, the symbolic conditions
output by the instrumentation of the conditional
statements in the source code may be expressed in
terms of local variables (or intermediate values of
input variables, which we will also refer to as local
variables). The substitution stage of our approach
carries out the projection of these conditions onto the
values of the inputs. The sequence of statements
output by the execution of the instrumented program
is traversed and each assignment is used to update a
"memory map" which stores the current symbolic
value of each local variable in terms of the input
values. When a condition is encountered, all
occurrences of local variables are replaced by their
current symbolic values. The resulting list of
conditions is the path predicate.

Because we analyse a single, unrolled, path, we
do not need to use the SSA form used in [2] and can
treat aliases (two or more ways of denoting the same
memory location) with relative ease, as we now
explain.

When the same memory location is denoted in
different ways in a program then these different
names for the same memory location are called
“aliases”. In the example code fragment of Figure 2,
for execution paths for which the condition in line 3
is true, *pt is an alias for tab[x] after execution
of the assignment in line 4. Unlike classical static
analysis approaches, we do not have to represent
more than one possible value for pt in line 7
because we treat one execution path at a time. We
simply look up the current symbolic value of pt in
the memory map.

However, aliases do pose a problem for us when a
variable access path contain the names or access
paths of other variables. In the code fragment in
Figure 3, the array element whose value is updated
in line 5 depends on the value of x and consequently
the value of tab[y] in line 6 could be 8, 4 or 10,
depending on the values of x and y. If x = y then the
branch condition for line 5 is 8 < z. If x ≠ y and y =
0 then the condition is 4 < z. If x ≠ y and y = 1 then
the condition is 10 < z. The path predicate for any
path in which this condition is satisfied should
therefore contain the following disjunction to
represent this condition: (x = y ∧ 8 < z) ∨ (x ≠ y ∧ y
= 0 ∧ 4 < z) ∨ (x ≠ y ∧ y = 1 ∧ 10 < z). Note that
each disjunct is made up of one condition which is
the interpretation of the branch condition in the
source code and one or more other conditions on

input values. Let us call these other relations on
input

void f (int x,int y,int tab[]){ (1

 int *pt (2
 if (x < 2) (3
 pt = &tab[x] (4
 else (5
 pt = &tab[y] (6
….

Figure 2 : first alias example

variables which lead to different symbolic values for
the variables in a branch condition “alias relations”.
Note that among the theoretically possible alias
relations in such a disjunction, some may not be
consistent with the legitimate input values or the rest
of the path predicate.

Instead of treating path predicates containing such
disjunctions, we choose to treat separately the paths
arising from each disjunct. In our example, we
therefore consider that the execution path in which
the condition in line 6 is satisfied has up to 3
different predicates. We insert into the predicate just
the alias relation effectively satisfied by the inputs in
the test case whose execution gave rise to this path,
along with the corresponding interpretation of the
path condition. The test case in which x = 1 and y =
1 would therefore result in the predicate x = y ∧ 8 <
z. Our test-case generation process naturally leads to
the exploration of the other possible alias relations
and corresponding path conditions.

Assignments, such as that in line 5 in our
example, in which the variable name is indexed by
another variable name (which does not have a
constant value) pose the problem of how to update
the memory map. The memory map must be
enriched in order to treat such assignments. The first
extension is to number all assignments in the
execution path so as to determine their order. On
each update of the memory map, the number of the
assignment is stored along with the symbolic value.
Moreover, in the case of an assignment to a data
structure element whose access path is indexed by
another variable, we determine the value of the index
for the test set which gave rise to the execution path.
It is this element which is updated in the memory
map but its value now stands for the value of all
other elements which satisfy the same alias relation.
To ensure that this is the case, we store in the
memory map, along with the

Page 46

void f (int x,int y,int z){ (1

 int tab[2]; (2
 tab[0] = 4 (3
 tab[1] = 10 (4
 tab[x] = 8 (5
 if (tab[y] < z) (6
….
Figure 3 : second alias example

 DD1

PP1

 DD0 DD2

PP1

PP2

t1

t2 t2

t1 t1

Figure 4 : input domains

new symbolic value and assignment number, the
symbolic value of any variable indices used in the
left hand side of the assignment. For the assignment
in line 5 of our example and the execution path
resulting from the test case in which x = 1 and y = 1,
we therefore store for the element tab[1] the
information that the symbolic value of the index is x.
In any future updates of the memory map entry for
this element, the different symbolic values used for
the indices in past assignments, and the number of
the most recent assignment employing each such
symbolic index value, must also be memorized.
Furthermore, any alias relations which condition the
evaluation of the current assignment must be stored
(imagine the assignment tab[tab[x]] = 8 !).
By carefully taking account of this information when
looking up values in the memory map, we can
correctly establish the alias relations and add them to
the path predicate.

6. Test Selection and Constraint Solving

The starting point of the test generation process is
the input domain of the program under test. This is
the set of all legitimate input vectors, i.e.
combinations of values of the different input
variables. By input variables, we mean all scalar
variables or elements of structured data whose value
may be read during execution of the program under
test without having previously been assigned by the
program. This may include global variables and
those referred to using pointers. The set of input
variables may vary with the execution path and is
difficult to determine precisely using static analysis.
This is why Pathcrawler currently generates a set of
possible input variables which may include some
which are not, in fact, input variables for any
feasible execution path. The user can eliminate such

variables from the set. This may include providing
an upper limit on the possible size of certain arrays.
PathCrawler also asks the user to define the precise
set of legitimate input vectors. By default, this is the
cartesian product of all values within the C type of
each input variable. However, the set of input
vectors to be used during testing may be much
smaller than this. The possible values of a particular
input variable may in fact be far fewer than those
allowed by the C type. Moreover, there may be
preconditions on combinations of input values which
must be respected, either to avoid errors at execution
due to e.g. division by zero, or just for the algorithm
implemented by the program under test to be correct.
The user can define the legitimate range of each
input variable and any preconditions on values of
sets of variables, using a limited form of universal
quantification if necessary.

The first test-case t1 is chosen within a selection
domain SD0 which is just this input domain of the
program under test (see Figure 4). From the
execution of t1, we derive the corresponding path
predicate PP1. In order to cover a new path, we have
to generate test inputs from the difference, SD1, of
SD0 and the domain of PP1. If SD1 is empty, this
means that there are no more paths to cover.
Otherwise, we can generate a new test-case t2, from
SD1, which exercises a new path whose predicate is
PP2. This process is repeated until an empty
selection domain SDn is reached, in which case we
have covered every feasible path of the program
under test.

Each path predicate PPi is the ordered
conjunction of the number pi of successive
conditions Ci,j encountered along the corresponding
path:

PPi = Ci,1 ∧ … ∧ Ci,pi
The negation of each path predicate PPi is just the

disjunction of all the prefixes of PPi with the last
condition negated :

¬ PPi = ¬ Ci,1 ∨ V (Ci,1 ∧…∧ Ci,m-1 ∧ ¬ Ci,m)
 m=2.. pi

Note that each term of such a disjunction is a
conjunction of conditions corresponding to a
(possibly infeasible) path prefix which is unexplored
at the ith step of our selection strategy.

To find a solution in each selection domain SDi,
we choose to solve the longest feasible conjunction
in ¬PPi, which we call MaxCi. If all the conjunctions
in ¬PPi are infeasible, the longest unsolved feasible
conjunction, MaxCi-1, in ¬PPi-1, is tried, and so on.
Our strategy corresponds in this sense to a depth-first
construction of the tree of feasible execution paths.

Test selection and constraint solving are
implemented in the Eclipse constraint logic
programming environment [12]. Note that solving
non-linear constraints is decidable only for data

Page 47

types with finite domains, such as integers.
However, current research [7][11] holds the promise
of decidable and precise constraint solving for
floating-point numbers too. Solving constraints over
finite domains is NP-complete in the worst case but
we base our work on heuristics developed for test-
case generation problems [3][5] which display low
complexity in practice. In the case of data-structures
whose size may not be the same in all the test cases,
constrained variables representing the elements of
the data-structure are defined only as needed. Our
"labelling" heuristic (used to generate and test values
after constraint propagation) is to choose dimension
values as low as possible. This has the advantage
that we are sure to generate tests for empty data-
structures (where they are allowed), whose treatment
is often a source of bugs. Moreover, as there is often
a link between data-structure dimensions and the
number of loop iterations, smaller data-structures can
result in fewer superfluous test cases for the k-path
criterion. For variables other than dimensions,
labelling uses a random generator, biased towards
the middle of the variable's domain after constraint
propagation.
An advantage of our test generation strategy is that
we only analyse feasible path predicates. Of course
during the search for MaxCi, we may construct other
path predicate prefixes which turn out to be
unsatisfiable, but this is always due to the negation
of the last condition. We make use of this property
when selecting the next variable for labelling.
Moreover, when a path predicate prefix has no
solution, the strategy does not construct or explore
any path predicates starting with this prefix.

7. Status

Our approach is applicable to all sequential
programs coded in an imperative language and the
prototype has been implemented for C. The only
parts of ANSI C for which we have not yet had time
to implement the treatment are function pointers and
recursive functions.

Our test generation strategy has an extremely
efficient implementation. This is because we can use
the backtrack mechanism and stack in Eclipse to
effectively store the symbolic variable values and
constraint store resulting from the partial path
predicate for each prefix of each treated path. This
avoids recalculating them when treating another path
which has the same prefix.

We tried PathCrawler on three well-known
examples from the testing literature: TriType, Bsort
and Sample. Given the sides of a triangle, TriType
carries out a series of tests on them to classify the
triangle. It has no loops and only 14 feasible
execution paths but is interesting because the path
predicates include simple arithmetic expressions and

not just inequalities as in the other examples. Bsort is
a bubble sort containing two nested loops, one
iterating over all the elements of the array to be
sorted and the other over the elements after the
current one. Sample compares the content of two
arrays to a reference value in two successive loops,
each with a fixed number of iterations of the length
of the array. We also describe in [13] our
experiments with the Merge program which fuses
two ordered arrays to produce another sorted array
and contains many infeasible paths. For this
program, we defined a maximum number, k, of loop
iterations (see Section 8). We generated the tests 10
times for each program, in order to evaluate the
variation caused by our random labelling heuristic.
Table 1 shows the number of tests, number of
infeasible prefixes, mean execution time in seconds
and variation in the execution times over 10 runs for
these programs.

Table 1. Experimental results

progra
m

array
dimn. tests

In-
feasible
prefixes

mean
exec.
time

min.
exec.
time

max.
exec.
time

TriType - 14 3 0.01 0.01 0.02
Bsort 0 - 5 153 349 1.16 1.14 1.17

Sample 4 241 0 0.27 0.22 0.29
Merge
k = 5 - 337 317 0.78 0.75 0.81

Merge
k = 10 - 20993 15357 116 - -

8. Further work

Some programs have so many execution paths
that path testing is infeasible, even when test inputs
are automatically generated and an oracle program is
available. A combinatorial explosion in the number
of execution paths of a program can have several
causes. We are studying these causes in order to
design and implement new test strategies which keep
the number of tests reasonable. Fortunately,
PathCrawler’s test generation strategy can easily be
modified to take into account information obtained
either statically (e.g. from specifications or static
analysis of the source code) or dynamically (e.g.
from further instrumentation).

One cause of a combinatorial explosion in the
number of execution paths is the presence of loops
with a variable number of iterations. Strict path
testing demands an individual test for all paths which
differ only in the number of iterations of a certain
loop. This is why the k-path criterion is often used in
practice. This allows the user to define a limit, k, to
the maximum number of iterations of this sort of

Page 48

loop in tested paths. In [13], we show how
PathCrawler was easily modified to implement this
strategy and generate a reduced number of tests. The
instrumentation was modified to indicate which
conditions were loop heads and constraint solving
was modified to take these annotations into account.

Function calls also cause a large number of
execution paths, some of which may only vary in the
path taken within a called function. We currently
treat function calls by classic in-lining techniques.
By annotating the conditions in called functions, the
exploration of different paths in these functions
could be restricted. Another solution which we are
currently investigating is the use of specifications of
called functions as “stubs” in integration testing [8].

Finally, reactive software, in which the system is
first initialized and then the same program is called
repeatedly to process the new input data arriving in
each cycle, poses another problem for path testing.
Should path testing be limited to one cycle, or should
a “path” be interpreted as the sequence of paths
taken in several successive cycles? In such
programs, the current state of the machine is usually
updated in each cycle and stored in static or global
variables for use in the next cycle. We can only limit
path testing to one cycle if the user can characterize
(in the definition of the input domain) all the
possible states at the beginning of a cycle. This is not
usually the case. We are currently studying how best
to modify PathCrawler’s strategy in order to adapt it
to this type of software. This is particularly
important in the case of one potential application of
PathCrawler: the automatic generation of test-cases
for the measurement of worst-case execution time,
which is another subject of our current investigations
[14].

10. References

[1] M.J. Gallagher and V.L. Narasimhan, ADTEST : A
Test Data Generation Suite for Ada Software Systems,
IEEE Transactions on Software Engineering, Vol. 23, No.
8, August 1997
[2] A. Gotlieb, B. Botella and M. Reuher, A CLP
Framework for Computing Structural Test Data, In Proc.
CL2000, LNAI 1891, Springer Verlag, July 2000, pp 399-
413.
[3] S-D Gouraud, A. Denise, M-C. Gaudel and B. Marre,
A New Way of Automating Statistical Testing Methods, In
Proc. ASE 2001, Coronado Island, California, November
2001
[4] B. Korel, Automated Software Test Data Generation,
IEEE Transactions on Software Engineering, Vol. 16, No.
8, August 1990
[5] B. Marre and A. Arnould, Test sequences generation
from Lustre descriptions: GATeL, In Proc. ASE 2000,
Grenoble, pp 229--237, Sep. 2000
[6] C. Michel and G. McGraw, Automated Software Test
Data Generation for Complex Programs, In Proc. ASE
1998, Oct 1998, Honolulu

[7] M. Rueher and Y. Lebbah, Solving Constraints over
Floating-Point Numbers, In Proc. CP'2001, LNCS vol.
2239, pp 524-538, Springer Verlag, Berlin, 2001
[8] P. Mouy, Vers une méthode de génération de tests
boîte grise "à la volée", In Approches Formelles dans
l'Assistance au Développement de Logiciels (AFADL'04),
June 2004, Besançon, France
[9] G.C. Necula, S. McPeak, S.P. Rahul and W. Weimer,
CIL: Intermediate Language and Tools for Analysis and
Transformation of C Programs, In Proc. Conference on
Compiler Construction, 2002
[10] R.E. Prather and J.P. Myers, The Path Prefix Testing
Strategy, IEEE Transactions on Software Engineering,
Vol. 13, No. 7, July 1987
[11] N.T. Sy and Y. Deville, Consistency Techniques for
Interprocedural Test Data Generation, In Proc.
ESEC/FSE'03, September 1-5, 2003, Helsinki, Finland
[12] M. Wallace, S. Novello and J. Schimpf, ECLiPSe: A
Platform for Constraint Logic Programming, IC-Parc,
Imperial College, London, August 1997
[13] N. Williams, B. Marre, P. Mouy and M. Roger,
PathCrawler: Automatic Generation of Path Tests by
Combining Static and Dynamic Analysis, In Dependable
Computing - EDCC 2005: 5th European Dependable
Computing Conference, Budapest, Hungary, April 20-22,
2005, pp 281-292, LNCS Vol. 3463/2005, Springer-Verlag
GmbH,
[14] N. Williams, WCET measurement using modified
path testing, In Proc. 5th International Workshop on Worst
Case Execution Time (WCET) Analysis, Palma de
Mallorca, Spain, July 2005

Page 49

An Architecture Process for Repeatable Design
Stef Joosten1,2, Rieks Joosten3

1Ordina
2Open University of the
Netherlands

3 TNO Informatie- en
Communicatie Technologie

stef.joosten@ordina.n
l

stef.joosten@ou.nl H.J.M.Joosten@telecom.tno.nl

Abstract
Architects face the challenge to make their work

more concrete in the eyes of their clients, their users
and other stakeholders. Their mission is to create a
coherent and consistent structure of applications,
systems, and business processes that satisfies the
rules and requirements of the business. However,
members of an architecture team sometimes get
caught in the middle of complex terminology
discussions, deadlines and extremely large amounts
of design artifacts. So how are they going to deliver
useful results for the business? This paper presents a
software tool that signals inconsistencies and
incompleteness in business, application and
infrastructure architecture. An architecture team can
monitor its collective work in real time, allowing
architects to remove the last inconsistency. Besides,
the software provides project managers with an
objective instrument to monitor architecture
projects.

1. Launching Business Initiatives

After putting men on the moon, NASA wanted to
intensify space travel. She was in dire need for more
repeatable, safer, more reliable and cost efficient
means to make frequent trips to space. That is why
the space shuttle program was developed.
Information Technology is in a similar situation. In
order to make further progress, IT must become
more repeatable, safer, more reliable and cost
efficient. Rather than managing every IT project
individually (comparable to Saturn missions),
organizations conduct IT programs (comparable to
the space shuttle program) to make IT more
manageable, less costly, and more predictable.
Organizations that depend on continuous innovation
must launch business initiatives at ever shorter time
intervals. This justifies a substantial effort to turn
innovation a repeatable process. That is why
organizations are willing to invest in architecture.
Scientific developments in this area focus on patterns
[e.g. 1, 2], enterprise frameworks [e.g. 3], or

methodology [e.g. 4]. Our approach is to study the
architecture process, referring to the work of
architects that is concerned with developing
satisfactory and feasible system concepts,
maintaining the integrity of those system concepts
through development, certifying built systems for
use, and assuring those system concepts through
operational and evolutionary phases [5]. An
architecture process serves as a booster rocket,
fuelling the innovation process to perform reliably
when launching new business initiatives.

This article focuses on the architecture process,
which we view as a process of rule making and
monitoring. We will show how these rules can be
used to monitor the architecture process in real time.
This brings the idea of IT architecture from a
description mechanism towards a control
mechanism. Only then architecture might do for IT
what the electricity plug has done for home
appliances: more freedom to bring new ideas to
larger markets with a better chance of success.

Essential ingredients of architecture are business
rules, i.e. rules that are verifiably true or false,
universally valid in a particular context, and provide
relevant information to the business when violated.
Throughout this paper, we use the word rule or
business rule in this particular meaning. Otherwise
we use the word principle or guideline.

This paper starts with a discussion on the
architecture process. We then discuss the role of an
architecture monitoring tool. The tool we have built
uses the ArchiMate1 language [6] in the role of
“standardized electricity plug”. Then we discuss an
experiment conducted with that tool. The results
show that the rules, which govern architecture, can
be used to build architecture checkers in a generative
way. That provides IT-governance with a concrete
instrument for checking architecture compliance.

1 The ArchiMate project (http://ArchiMate.telin.nl) was partially
funded by the Department of Economic Affairs and delivered on
December 31st, 2004.

Page 50

This paper adheres to the architecture definitions
from the IEEE Recommended practice 1471-2000
[5].

2. Designing Repeatably

The quality of a large design depends largely on
the level of coordination an architecture team can
achieve. Members of an architecture team spend
much of their time trying to match design decision
with business requirements, trying to fit solutions in
the infrastructure, trying to solve difficulties with
legacy applications, trying to avoid inconsistencies,
communicating with stakeholders, trying to keep
users involved, and so on. Making a large design
consistent and complete often requires many
meetings, peer reviews, and lots of interviews and
workshops. Coordination is the name of that game.
In our analysis we have identified the following
(groups of) stakeholders:

• architect: wants clarity, less discussion and
more results;

• Architecture team: wants a concrete result in
a consistent, buildable way, with support of
all stakeholders;

• Project leader: wants to manage a team of
architects;

• Acquirer (e.g. an executive who has assigned
an architect to a project): wants assurance,
low cost, control;

• Customer: wants fast, flexible and fine
services.

The purpose of architecture is to accelerate and

improve the innovation process such that new
business initiatives can be launched routinely and
reliably. The research focuses on the question how
an architecture process fosters repeatability.

3. Managing Architecture

Architects face the challenge of structuring
complex situations. They must bring clarity and
reduce perceived chaos by providing simple icons
and metaphors that inspire stakeholders. They are
put to the challenge of curbing that complexity. This
broader challenge must be understood before turning
to solutions. To that end, we have studied the
architecture process.

If architecture makes innovation into a repeatable
process, and a repeatable innovation process is
required to launch business initiatives, a strong
resemblance with the space shuttle program emerges.
The large fuel tank corresponds to the innovation
process, where architecture and management serve

as booster rockets (figure 1)2. The launching of the
shuttle itself represents the launching of business
initiatives, which is done repeatedly, reliably, and
relatively cost efficient. The entire system is
designed to bring large numbers of business
initiatives into orbit.

In our analysis we have identified three levels of
architecture: the project, the program and the
corporate level. architects provide concrete form and
meaning in all three levels. In IT projects they create
innovations that affect both the organization and
information technology. Depending on the
particulars of each project, various kinds of
designers are involved, such as business designers,
process designers, application designers,
infrastructure designers, etcetera. One level up, at the

program level, architects make rules and principles
for the purpose of coordinating individual project
efforts. Here, architects study commonalities of large
numbers of projects, enforce standards, create
reference models, collect best practices in the
domain, and disclose their work to all stakeholders
involved in projects within that program. On the next
level, corporate architects set standards, devise rules
that implement governance principles (such as IFRS,
the Sarbanes-Oxley act of 2002, safety regulations,
etc.), implement corporate policies, etcetera. The
project, the program and the corporate levels
correspond to the operational, tactical and strategic
management levels of the innovation process.

Architecture can be understood as a process of
rule making and rule monitoring on all three levels.

2 The idea of an architecture process and a management process
that support the innovation process from two sides is due to Tinus
de Gouw, who currently works with Rabobank.

Architecture ManagementInnovation Process

Strategic
performance
management

Program
management

Project
management

Corporate
Architecture

Domain
architecture

Project
architecture

Domain program

Project

Strategy process

Evaluation Operational
management

Operations

figure 1

Page 51

On the corporate level, architecture provides the
rules and principles that are valid throughout the
organization. Within each program, rules are defined
that are valid throughout the program but not
beyond. Each project must abide by the rules of the
program and the corporate rules. Besides, every
project may have its own architecture, setting
particular rules within the project. In this analysis,
architects require a rule base in which a rule is valid
within its particular context.

Any omission and any violation of a rule made by
an architect may yield problems when the design is
realized. It always takes extra time, but may also
cause rework or even redesign, leading to possible
setbacks in the innovation process. Thus, violations
of rules pose a direct threat to the repeatability and
reliability of the innovation process. If designs are
guaranteed to be free of architectural violations, this
increases repeatability of innovation, and decreases
the risk of launching new business initiatives.

In order to obtain flawless designs, we need a
mechanism to signal violations. This requires to
know which rules apply to a design, a mechanism to
compute signals on the basis of violations, and a way
to communicate those signals to a stakeholder with
the authority to act upon each signal. Computer
support is needed here. There are many different
rules that are valid within many different contexts in
an organization, so it is not reasonable to manage
those rules ‘by hand’ and expect no mistakes. There
are many different projects and a vast amount of
design artifacts, so it is far too much work to take out
all rule violations without the help of computers.
These requirements inspired us to build an
architecture checker.

As a result, an architecture process can be
implemented as depicted in figure 2. If all design
changes are fed into a repository, a checker can
produce signals and feed them back into the
architecture process. A signal confronts an architect
instantaneously with design decisions of his or her
peers. The mechanism is limited to a signaling
function only. Enforcement is left to the individual
style of each project.

Our analysis shows that designers need more than
tools for drawing and software generation. Besides
the available tools, a checker to monitor architecture
is useful to keep team members aligned with the
rules of the business.

4. Checking the Rules

The architecture checker that was built has a
simple structure (figure 3). A repository is the
foundation. It contains information about business
processes, roles, applications, services, nodes,
communication paths, etcetera, according to a
structure described in the ArchiMate project. This
choice was made because the ArchiMate architecture
language has a reknown status in the Netherlands
and is acknowledged by Dutch professionals
throughout science and industry. The ArchiMate
reference manual [7] provides an accurate
description of the language structure in terms of a
metamodel. Semantic rules however, are described
in natural language. Most of these rules describe
multiplicity restrictions, i.e. omissions and
ambiguities that might arise from design errors. The
repository (written in MySQL) satisfies the
ArchiMate structure (the metamodel) and the rules of
ArchiMate have been translated into a software
component (written in PHP) that checks for
violations (the service layer) and presents them as
signals in a browser (the presentation layer).

Architects gain access to the repository and
checker by means of a browser. The repository
allows multiple users, so any changes made by one
architect are visible for the team members. The
visualization component is currently (at the time of
writing) being installed at the Telematica Institute in
Enschede. The repository and checker have been
built at Ordina. The design is such that later
extensions can be made without excessive effort.

Designers can use the checker by inspecting and
analyzing signals from the checker and changing the
design (as represented in the repository) accordingly.
In doing so, new signals may arise from the checker.

Architecture process

Archimate

Changes Signals

Architect

Repository

Browser

Architect

Browser

Future
Archimate
Services

Web

Semantic
Checker Archimate

Reference
Manual

comply

comply

Visualiser

figure 3

figure 2

Page 52

By dividing the total design space among
themselves, architects can distribute the work. For
instance, one might concentrate on the business
architecture, another on the application architecture
and a third on the infrastructure. If for example, a
team member defines a new service, an omission
arises in one of the tables in the repository, saying
that a node is required on which to run that service.
When an application is defined to use that service, a
signal is risen when there is no interface to make that
service available. These examples (and all others)
show how an architecture checker provides
architects with useful information to complete or
correct their work. The repository stores concrete
design choices in tables, such as the assignment of
application components to processes, business roles
to business interfaces, network components to
software components, etcetera. Whenever a signal
occurs, it is up to the designer to determine the
meaning of that signal (diagnosis). The checker
provides the signals only, relating them to the
particular rule being violated. When a team is done
and all signals are resolved, the checker guarantees
that the design satisfies all of ArchiMate’s rules.

5. Experimenting with the checker

The first experiment was carried out on
September 12th 2005. The purpose of this experiment
was to gain insight in practical questions: Can
architects grasp the idea quickly enough? Does the
tool impose unreasonable restrictions? What can an
architecture team achieve in a limited amount of
time? Is the software sufficiently robust? And most
importantly: do architects feel that this type of tool is
useful?

We picked three experienced architects, one of
which was knowledgeable with Archimate. We
confronted the subjects with the design of a
(fictitious) insurance company, ArchiSurance [6].
Before the experiment, the ArchiSurance design was
translated literally from Archimate documentation
into the repository. The team was asked to prepare
by studying an Archimate primer [6] and the
Archisurance case contained in that primer. The
experiment consisted of resolving all signals
detected by the checker in one hour. Since the
checker was new to all team members, a short oral
instruction was provided just before the experiment.
Each team member was given one part of the design
space as his own responsibility. By keeping the
preparation down to an absolute minimum, the
experiment provided a good indication about the
threshold of use.

During the experiment, it took the team about 15
minutes to get used to what the tool showed them
and to get going. After an hour, the team had
investigated twenty signals and resolved thirteen.

Team members would typically trace a signal
straight back to the original design, and negotiate
who would make the necessary adjustments.

In a retrospection session, both the architecture
process and the tool were experienced positively.
Team members focused their attention especially to
the rules, questioning whether the right rules were
being checked. They experienced the nature of
ArchiMate’s rules to be too general. Control
questions showed that the subjects were very much
aware of what they were doing. For example, they
were able to place the checker flawlessly in the
upper left area of figure 1 (without having read this
paper…) The fact that the entire design was
represented in a repository allowed them to get down
to work straight away. None of the team members
had felt the urge to address terminology of
definitions underlying the architecture. The primary
contribution was seen in the mutual coordination
among architects in a team.

6. Results

The results of the experiment show that the

checker has supported the team as intended. On the
basis of these results, more experiments and more
specific experiments will be conducted in the near
future.

The architecture checker means different things to
different stakeholders.

Designers have an instrument to coordinate their
work. They can freely invent their designs, but their
work may yield signals elsewhere. The discussions
that arise are concrete, since they are based on
concrete signals. Also, these discussions are
necessary in order to resolve signals. The experiment
showed that these discussions are necessary, relevant
and to the point, indicating that the checker indeed
helps to avoid abstract, pointless discussions.

For the team as a whole, the checker results in a
consistent result. Once all signals have been
resolved, all rules are satisfied and consequently the
design complies to the architecture. Only when rules
are not being checked, signals might still occur. The
entire result is like the team has worked as one
architect. Since abstract discussions (e.g. about
terminology) are avoided, the team effort as a whole
is more manageable and predictable.

The project manager can benefit from the list of
signals, because it measures rule violations in an
objective way. This provides managers with real-
time feedback on progress in the team. It reduces
their dependencies on reports from team members,
which may be subjectively flawed. Besides, the lists
of omissions and ambiguities provide an attractive
means for work distribution among team members.

An acquirer gets more assurance about the quality
of designs. The absence of signals about a particular

Page 53

rule means that the design satisfies that requirement
for 100%. Besides, more predictable design times
translate directly into a reduced project risk. Finally,
and most importantly, every business rule satisfied is
a business requirement fulfilled. This can even be
guaranteed in writing and signed off by a chief
architect.

Customers have indirect benefits, albeit not less
noticeable. For consistent architecture yields a
flexible and maintainable system, which enables the
organization to respond adequately and flexibly to
the individual and continuously changing needs of
their customers.

Besides results for stakeholders, there is one
observation of scientific interest. The responses of
subjects in the usability experiment have provided a
new insight. Apparently, the set of rules coming
from ArchiMate were not sufficiently relevant for
the architects. They were considered too general.
Architects require a more specific level, but this
would make ArchiMate either impractically loaded
with terms or far to specific to be of use for many
architecture projects. This is subject for further
research.

Our findings correspond to predicted findings in
earlier work [8]. Benefits of concreteness in
architecture and a speed-up of the work of an
architecture team were corroborated in this
experiment.

4. Conclusions

Monitoring architecture processes by means of an
automated checker can bring repeatability in
innovation. This has been demonstrated by building
the checker and performing the usability experiment.

The Archimate reference manual has proven to be
an adequate basis for building tools. Practically all of
that manual could be implemented directly.

The usability experiment has shown that real-time
feedback provided by the checker is definitely an
improvement of the architecture process. It allows
architects to act more professionally, and renders the
architecture process more predictable and reliable.

Further research must be conducted to include
project specific rules into the checker.

10. References

[1] M. Fowler, Analysis Patterns - Reusable Object
Models, Addisson-Wesley, Menlo Park, 1997.

[2] E. Gamma and R. Helm and R. Johnson and J.
Vlissides, Design Patterns - Elements of Reusable Object-
Oriented Software, Addison-Wesley, London, 1995.

[3] M.E. Fayad, D.S. Hamu, and D. Brugali, Enterprise
Frameworks Characteristics, Criteria, and Challenges,
Communications of the ACM, October 2000/Vol. 43, No.
10, pp. 39-46.

[4] S.M. Yacoub and H.H. Ammar, UML Support for
Designing Software Systems as a Composition of Design
Patterns, in: M. Gogolla and C. Kobryn (Eds.): UML 2001,
Springer-Verlag Berlin Heidelberg, LNCS 2185, pp. 149-
165, 2001.

[5] IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems, IEEE Std
1471-2000.

[6] Marc Lankhorst and the ArchiMate team, ArchiMate
Language Primer: Introduction to the ArchiMate
Modelling Language for Enterprise Architecture, version
1.0, Telematica Instituut, 25-08-2004.
http://doc.telin.nl/dscgi/ds.py/Get/File-43840/

[7] René van Buuren, Stijn Hoppenbrouwers, Henk
Jonkers, Marc Lankhorst, Gert Veldhuijzen van Zanten,
Architecture Language Reference Manual, version 4.0,
Telematica Instituut, Radboud Universiteit, 13-12-2004.
http://doc.telin.nl/dscgi/ds.py/Get/File-31626

[8] Joosten, S.M.M., Architectuur met rendement,
Database systems conferentie, RAI Amsterdam, 24 april
2002

Page 54

Page 55

Analysis and Verification of an Automated Parking Garage

Aad Mathijssen and A. Johannes Pretorius
OAS Group and VIS Group of Mathematics and Computer Science Department

Technische Universiteit Eindhoven
a.h.j.mathijssen@tue.nl, a.j.pretorius@tue.nl

Abstract

We discuss the software design of an automated parking garage. Our major focus is on safety. For the design of
this safety part we have used behavioural modelling techniques. This amounts to creating a high-level
behavioural model of the design, and checking if this model satisfies a set of requirements.

The model is created incrementally using simulation, with which we can investigate specific scenarios of the
system. A custom made visualisation tool greatly improved the speed and ability with which insights in the
design were obtained. More importantly, it made communication of the design to people from outside the field of
behavioural modelling techniques much more effective. Finally, by means of verification we have checked the
requirements the design should satisfy. This means that each requirement is checked on every state of the model.

Page 56

Smarter selling of testing

Tim Koomen

VVSS, Eindhoven

November 24, 2005

Selling of testing … ?

Why?
What?

Who?

When?
How?

Page 57

Value of testing

• Finding (and correcting) defects prevents
damage

• Known defects still prevent some damage

• Confidence

• Project tracking information

(from Rex Black’s keynote at Eurostar 2002)

Who…

Customer

Developer Users

System
management CM&CC

Test team

Test
dept.

Project
board

Project
manager

Other
tests

QA

Test
manager

…

Page 58

When?

• At the start: plan

• During and to the end: progress and results

• Less: at the end…

How…?

• Use a transparent process, using business
terms

• Substantiate with facts

• Employ your soft skills

Page 59

How: test information

• Cost

• Time

• Risks

• Benefits

– What can we earn

– What goals will be achieved

How can we communicate on
these elements?

At the start

Test Process
Management

Product Risk Analysis

Test Strategy

Estimation

ReportingTest
Activities

Assignment

Planning + FBL

T
E
S
T
P
L
A
N

Page 60

During and at the end …

Test Process
Management

Product Risk Analysis

Test Strategy

Estimation

ReportingTest
Activities

Assignment

Planning + FBL

Defects reports

Errors

Faults/defects

Failures

Damage

Scope of defect report

Page 61

Progress report

• Test progress

• Quality of the test object (benefits)

–status (this moment)

–trends (history)

–related to project progress

• Product risks

• Bottlenecks

• Quality of test process (optional)

Advice on the quality (risks / alternatives)

0

10

20

30

40

50

60

wk1 wk2 wk3 wk4 wk5 wk6 wk7 wk8 wk9 wk10

Soft skills

• Communication

– Language of the receiver, WIIFM

– Advisor, sales

• Presentation and writing skills

• Neutral, objective

• Trustworthy

• Persistent but pragmatic

Page 62

Summary

Test Process
Management

Product Risk Analysis

Test Strategy

Estimation

Reporting
Test

Activities

Assignment

Planning + FBL

benefits

risks

time

money

www.tmap.net

Page 63

Towards Pattern-Oriented Test Development based on Abstract Test
Notations

Alain-G. Vouffo Feudjio

Fraunhofer Fokus, Berlin, Germany
vouffo@fokus.fraunhofer.de

Abstract

The Testing and Test Control Notation TTCN-3
[1] is increasingly gaining popularity in testing
reactive systems for conformance, interoperability
and performance. TTCN-3 is a standardized test
notation which resulted from redesigning the Tree
and Tabular Combined Notation TTCN. Reaching
far beyond TTCN’s traditional domain of protocol
conformance testing, TTCN-3’s scope now includes
almost all kinds of testing of software-based systems.
In the TT-medal1 project we looked into approaches
for enabling and facilitating the reuse of TTCN-3
test artifacts to speed up the TTCN-3 test
development process and reduce costs. The use of
patterns in the general software development
process has proven to be potentially beneficial in
helping to achieve those goals. In a previous work,
we proposed to introduce that concept to TTCN-3
test development and pointed out which phases of the
process would benefit most from it. In this paper, we
present how a pattern-oriented test development
process can effectively reduce the production time
for test systems and more precisely for the
specification of the abstract test suite (ATS). Our
approach combines automated generation of test
skeletons with manual processing. Some examples
produced with prototype implementations are also
presented to underline the validity of the concept.

1. Introduction

The benefits of using a standardized abstract test
notation like TTCN-3 have been described in
numerous publications anterior to this one. The fact
that, it is a general-purpose and technology
independent test notation lead it to be adopted in a
wide range of application domains beyond the
traditional telecommunications and datacom sectors.
However, despite all those advantages and the
maturity reached by the language, the process of
specifying test suites with TTCN-3 can still be quite

1 www.tt-medal.org

tedious and error-prone. This is especially the case
for those new application areas originally not
covered by its predecessor TTCN-2. One reason for
that is the fact that many practical experiences of
using the notation for other purposes than protocol
conformance testing in big projects have not yet
been published. E.g. the TT-medal CORBA-Testing
case study in the TT-medal project was actually, to
our best knowledge, the first attempt to effectively
use the IDL-TTCN3 mapping standard to test real
CORBA-based systems. Some of the issues we
identified in that case study even go beyond IDL,
because they are related to testing of operation- (i.e.
synchronous communications-) based systems in the
broader sense. The use of test patterns and their
integration in the test development process aims at
reducing those difficulties by embodying the
knowledge acquired while developing test solutions
into the process, so that future solutions would be
achieved faster and more efficiently.

2. The TTCN-3 Test Development

Process

In [2], we presented the TTCN-3 development
process which can be decomposed in the following
phases:
2.1. Phase 1: Defining the test configuration
elements

 This phase consists in:
- Identifying the interfaces provided and

required by the SUT and modeling them in
equivalent Parallel Test Component (PTC)
types in the ATS with corresponding ports
mapping those interfaces;

- Defining the type of PTCs the test system
will use to communicate with the SUT.
Those PTCs must provide the ports needed
for connecting them with the SUT and
optionally some ports for internal
communication within the test system, e.g.
for synchronization or coordination purpose

Page 64

2.2. Phase 2: Defining the type system for
the test suite

The type system consists of all the data types
describing message or data structures required to
communicate with the SUT. TTCN-3 supports the
import of types and values defined in other
languages e.g. ASN.1, IDL, XML, etc. Therefore,
this phase of the development process might be
achieved automatically, using appropriate tools.

2.3. Phase 3: Specifying the data required
for testing

In TTCN-3, so-called templates are used to define
data transmitted to or received from the System
Under Test (SUT). TTCN-3 templates can also be
used to describe the parameters of a method
provided or used by the SUT via one of its
interfaces. Those templates are generally referred
to as “signature templates”.

2.4. Phase 4: Describing the test behavior
 To express test behavior, TTCN-3 supports all
the features common to functional programming
languages such as loops (for-, while-), functions,
if-statements etc. plus some concepts specific to
testing; e.g. test cases, test steps, and matching
mechanisms for evaluating SUT reactions.

3. The Pattern-oriented TTCN-3 Test
Development Process

3.1. Overview

Pattern-oriented test development consists in
integrating concepts of recurring solutions in the test
development process. In [2], we identified three
main categories of TTCN-3 test patterns:
- Architectural patterns describe how test

components can be composed and connected to a
SUT to test it for conformance, performance or
interoperability.

- Data patterns describe approaches for specifying
TTCN-3 test data.

- Behavioral patterns encapsulate the knowledge
gathered in defining test behavior with TTCN-3.

As depicted on Figure 1 below, each of these
categories of patterns can be used in the TTCN-3 test
development process to generate parts of the abstract
test suite automatically and therefore, fasten the
process.

Figure 1. Overview of the pattern-oriented
TTCN-3 test generation approach

3.2. Architectural patterns in the TTCN-3
test development process: Automated
Generation of Test Configurations

Figure 2. Example TTCN-3 Test
Configurations

In situations where the SUT has been specified
using IDL, UML component diagrams or any other
notation for which a mapping to TTCN-3 can be
defined, automatic generation of test configurations
can be achieved. Depending on whether component-
level or unit-level testing is targeted, basic test
configuration elements such as component types,
ports and timer variables could be generated
automatically to build the test system. For example,
if the SUT can be represented as a component which
provides np interfaces and requires nr interfaces, then
any test system for that SUT could be composed,
based on one TTCN-3 parallel test component type
providing n

r
+n

p
 ports and one main test component

type for coordination purposes. This is illustrated on
Figure 2, which features component or system-level
testing of an SUT providing two interfaces (One
operation-based interface and one message-based
interface) and requiring one (message-based)
interface. As depicted on that picture, the same
parallel component type can be used to build two

Page 65

different test configurations for the SUT.
Furthermore, a test configuration for
load/performance testing could also be achieved
using the same approach.To obtain the test
configuration, we apply the following patterns

For each interface provided or required by the

SUT
- Define two different port types to represent

the interface type in the test system. One of
them could be used for testing outgoing
communications (synchronous or
asynchronous) to the SUT, while the other
one’s purpose is to handle incoming
communications from the SUT e.g. replying
to incoming messages or synchronous
requests from the SUT via that interface.

- Define a parallel test component type aiming
at testing the functionality provided or
required by the SUT via that interface.

o The defined component type has at
least one instance of the different
port types mentioned above to be
able to support duplex
communication with the SUT
according to the rules described
above.

o Define a timer variable in the
component type to be used in
behaviours involving the test
component for deadlock avoidance.
Timers are essential in test systems
to avoid deadlocks in testing
reactive systems. E.g. if a timer is
not started before a stimulus is sent
to the SUT in expectation of a
response and for any reason
whatsoever, the SUT does not
respond according to the specified
expectations, then the test systems
enters in a deadlock state and the
test will have to be interrupted
without any verdict. The value of
the generated timer should be set to
a default value representing the
maximum delay to be expected
when issuing requests or messages
to the SUT. This default value must
be customizable via the management
interface for more flexibility.

- Define a component type representing the
functionality provided or required by each
interface of the SUT that is externally visible.
This component type has the same ports as
the one mentioned above with the only
difference being that, in this case no timer
definition is required.

The test configuration we define with this pattern
is suitable for unit-level testing, but could not be
used for system-level testing which generally
involves several different interfaces. For subsystem
and system level testing we apply the following
pattern to obtain the test configuration:

- Define a component type containing ports
representing all interfaces available at the
SUT following similar rules as those
mentioned above. The difference lies in the
fact that, this time around the defined
component type has ports allowing it to
support bi-directional communication with
all interfaces provided or required by the
SUT.

- In analogy to the previous rule, define a
component type representing the whole SUT
and containing ports mapping all its
interfaces to allow mapping operations in the
ATS.

3.3. Data Patterns in the TTCN-3
Development Process: Generation of Test
Data

The specification of test data is the most time-
consuming part of TTCN-3 test development. This
fact becomes more obvious for systems in which
complex structured data types are used containing
several dozens of fields, with some of those also of
complex structured types. Specifying templates to
represent test data for those data types is then a
highly error-prone and thus time-consuming activity,
if appropriate tool support is not available. Currently
no TTCN-3 test specification environment provides
tool support for template definition in the form of
context-sensitive type completion, wizards or
skeletons. Therefore improving this process will
have a deep impact on the test development process
as a whole in terms of production time and costs
reduction. With semi-automatic generation of test
data, we can dramatically fasten TTCN-3 test data
specification. The approach consists in generating
TTCN-3 data patterns, i.e. reusable generic TTCN-3
templates and parameterized templates
automatically, that can easily be imported and reused
as-is by the test developer, or customized with little
effort using TTCN-3’s modifies keyword. The
pattern used for generating the test data is as follows:

For each structured data type potentially
exchanged as a message or a parameter in the
communication between test system and SUT,
define a generic template for outgoing
communication from the test system to the SUT.
For such templates the following rules are used:
- The value for all optional fields is set to omit

Page 66

- The value for simple type fields is set to a
default value based on a module parameter
whose exact value could be modified by the
test executer through the test management
interface.

- The value for structured type fields is set to a
generic template of the processed field’s
type. Enumerations and Unions must be
treated differently, because their value
depends on the actually selected variant. One
possible approach for solving this issue is by
providing a facility for the test developer (i.e.
the person writing the test suite) to indicate
which of the variant should be selected per
default and then use that variant every time a
value of the enum- respectively union type is
needed. Another approach might consist in
generating a different template for each of
the possible variants of a union or enum type.
However, this might lead in some cases to an
explosion of the number of possible
combination and hence too much code being
generated with the potential of breaking
existing tools by exceeding the maximal
supported file size. For that reason, we opted
for the first solution and in case that a variant
was not selected as default, we assume that it
does not matter for testing and chose one
randomly. Figure 3 below depicts an
example of TTCN-3 data type specification
copied from a test suite for the SIP protocol
and Figure 4 contains the generic TTCN-3
template generated for the
L_Message_Request type depicted on Figure
3.

Figure 3. Example of TTCN-3 data type
definitions

Figure 4. Example of automatically
generated outgoing message template

Furthermore another generic template for
incoming communication at the test system from
the SUT is generated using the following rules:
- The value for all optional fields is set to “*”
- The value for any non-optional field is set to

“?”
- If a field is of record or set type and all its

subfields are optional, then that field is set to
“?”

Figure 5 below presents an example of generic
incoming template, based on the same type as the
outgoing template depicted on Figure 3.

template L_MESSAGE_Request
L_MESSAGE_Request_s_0 := {
 requestLine := {
 method := INVITE_E,
 requestUri := {
 scheme := DEFAULT_SCHEME,
 userInfo := omit,
 hostPort := {

host := DEFAULT_HOST,
portField := omit },

 urlParameters := omit,
 headers := omit },
 sipVersion := DEFAULT_SIPVERSION },
 msgHeader := ?,
 messageBody := omit
}

type set L_MessageHeader {
 Authorization authorization optional,
 CallId callId optional,
 Contact contact optional,
 CSeq cSeq optional,
 Expires expires optional,
 From fromField optional,
 RecordRoute recordRoute optional,
 Route route optional,

To toField optional,
 Via via optional,
 MaxForwards maxForwards optional,
 ContentLength contentLength optional,
 WwwAuthenticate wwwAuthenticate optional
}

type record RequestLine {
 Method method,
 SipUrl requestUri,
 charstring sipVersion
}

type record L_MESSAGE_Request {
 RequestLine requestLine,
 L_MessageHeader msgHeader,
 charstring messageBody optional
}

Page 67

Figure 5. Example of generic incoming
template (cf. Figure 3)

The generic templates can also be reused to define
new data using the TTCN-3 modifies keyword. This
is illustrated by the code snippet on Figure 6, which
features reuse of the template definition displayed on
Figure 4.

Figure 6. Example of reuse of generic
template (cf. Figure 3)

3.4. Behavioral Patterns in the TTCN-3
Development Process: Generation of Test
Behavior

A test behavior pattern can be defined as a (s,r,P)
triple, i.e. the combination of a stimulus s, the
response r the test system (TS) expects or initiates
following that stimulus s, given a set of parameters
or constraints P.

Depending on whether the SUT uses a
synchronous or an asynchronous communication
scheme different behavior patterns can be used to
generate TTCN-3 test skeletons that will provide the
base for specifying more complex test scenarios, i.e.
sets of (s,r,P) triples in sequence or running in
parallel.

Table 1 below lists the behavior patterns that are
applicable in the case of a synchronous
communication scheme, for each method m (i.e.
equivalent to a corresponding TTCN-3 signature)
available at the SUT and potentially raising nE types
of exceptions.

Stimulus Response Parameters
Method m returns
normally: returned
value is irrelevant

- Returned
value
(irrelevant,
user-defined)

- Returned
Parameters
(irrelevant,
user-defined)

TS issues
a call of
method
m to the
SUT

Exception of type E
must be raised by
SUT

- Exception
type and value

TS returns
normally

- Returned
value (user
defined,
default)

- Returned
parameters

Incoming
call from
SUT

TS raises exception
of type E

- Exception
type and value

Table 1 Behavior patterns for SUTs
supporting operation-based (synchronous)
communication

For SUT supporting asynchronous (message-based)
communication, the behaviour patterns can be more
complex, because the sequence of events is less
predictable. However, as displayed on Table 2
below, a set of behaviour patterns can also be
identified for that case and used in the test
development process to optimize it.

Stimulus Response

SUT sends message B
SUT discards message A => Time out at
TS
SUT sends message sequence B, C and
D
SUT sends nr retransmissions of B

TS sends
message
A to the
SUT

SUT sends one of message B, C or D
TS discards message A and expects nr
retransmissions of A
TS sends message B and expects
message C
TS sends message B and expects
message C
TS sends message B which should be
discarded

TS
receives
message
A from
SUT

TS discards message A and expects no
further message from SUT

Table 2 Behavior patterns for SUTs
supporting message-based (asynchronous)
communication

template L_MESSAGE_Request
L_MESSAGE_Request_s_1(Method method_p)
modifies L_MESSAGE_Request_s_0 := {
requestLine := {
 method := method_p
}
}

template L_MESSAGE_Request
L_MESSAGE_Request_r_0 := {

requestLine := {
 method := ?, requestUri := ?,
 sipVersion := ? },

msgHeader := ?,
messageBody := *

}

Page 68

If the test system’s configuration is available,
along with the data types of the messages or
parameters to be exchanged between the test system
and the SUT, then the patterns listed in Table 1 and
Table 2 can be used to generate elements of TTCN-3
test behaviour automatically. To illustrate the
approach, we introduce the following example of an
SUT supporting operation-based communication as
depicted on Figure 7 below. Figure 7 depicts the
representation of an SUT providing one operation-
based interface consisting of 4 methods in TTCN-3.
Such a representation could be generated
automatically from the SUT’s specification language
(IDL, WSDL etc.) using a translation tool.

Figure 7. TTCN-3 Representation of an SUT

Applying the first pattern listed on Table 1 for

generating reusable code snippets of test behaviour
for the SUT defined on Figure 1 lead us to the
following result:

For each signature present at the SUT’s interfaces

2 signature templates are generated, with one for
outgoing requests on that signature and the other one
for incoming requests. Figure 8 below presents an
example of signature templates generated from the
SUT’s specification depicted on Figure 7.

Figure 8. Example of automatically

generated signature templates

For each interface provided or required at the

SUT a set of helper functions is generated for client-
side and server-side testing of the SUT. Client-side
testing means that the SUT uses the interface and
that the test system acts as a component providing
that interface as a service. On the other hand, server-
side testing means the SUT provides the interface as
a service and that the test system acts as a client to
that service.

For each signature of a given interface, a function

encapsulating a call of that signature is generated,
which takes into account the fact that the signature
might return a value or throw a previously defined
exception. The generated signature should not be
coupled to any configuration, but take the port to be
used as parameter to facilitate reuse in another
context.

group MyInterfaceInterface__ETSI {
 signature myMethod1(in float in_p, out
float out_p);
 signature myMethod2(in float in_p,
inout float in_p_2);
 signature myMethod3(in MyRecordType
 rcd_in,out MyUnionType union_out);
 signature myMethod4(
 in MyUnionType union_in_p,
 out float out_p) return MyRecordType
 exception (
 MyExceptionType);

 type port MyInterface procedure{
 inout myMethod1;
 inout myMethod2;
 inout myMethod3;
 inout myMethod4
 }

 type address MyInterfaceObject;
}

template myMethod4 myMethod4_s_0 := {
 union_in_p := {
 setVar := {
 float_field := DEFAULT_FLOAT,
 oct_field := DEFAULT_OCTETSTRING,
 hex_field := DEFAULT_HEXSTRING }
 },
 out_p := -
}

template myMethod4 myMethod4_r_0 := {
 union_in_p := -,
 out_p := ?
}

Page 69

Figure 9. Example of TTCN-3 help functions

for SUTs supporting synchronous
communication

4. Conclusions and Outlook

We applied our approach of pattern-oriented
TTCN-3 test development to implement a
conformance test suite for the OSA-Parlay API with
great success. The specified test suite was based on
the test suite structure and test purposes document
proposed by the ETSI for conformance testing of
OSA-Parlay implementations. We could generate
more than 80% of the required test code
automatically. This was a clear indication, that the
use of patterns in the TTCN-3 test development
process bears great potential, especially for systems
using synchronous communication.

We are in the process of further investigating
approaches for pattern-based test development for
systems using asynchronous communication.

Furthermore, we believe that the introduction of a
meta-language for testing, that would focus on the
test intent and the test scenario and hence would

combine the strength of a standard test notation like
TTCN-3 with the more abstract concept of test
patterns, would be very beneficial for test- and
system developers alike. However, to ensure that we
do not create yet another (test) notation, analyzing
existing notations such as UML or the UML2 Test
Profile (U2TP) will on suitability for that purpose
will be a prerequisite of any further work in that
direction.

5. References

[1] European Telecommunications Standards Institute
(ETSI), ETSI European Standard (ES) 201 873
(2002/2003), The Testing and Test Control Notation
Version 3 (TTCN-3), Part 1: TTCN-3 Core Language,
Part 2: Tabular Presentation Format for TTCN-3
(TFT), Part 3: Graphical Presentation Format for
TTCN-3 (GFT), Part 4: Operational Semantics, Part
5: The TTCN-3 Runtime Interface (TRI), Part 6: The
TTCN-3 Control Interfaces (TCI), European
Telecommunications Standards Institute (ETSI),
Sophia-Antipolis (France), 2002/2003.

[2] A. Vouffo Feudjio, I. Schieferdecker, “Test Patterns
with TTCN-3”, Formal Approaches to Software
Testing: 4th International Workshop, FATES 2004,
Linz, Austria, Springer-Verlag GmbH, Linz, Sep.
2004, pp. 170-179.

[3] Robert V. Binder, Testing Object Oriented Systems:
Models, Patterns and Tools, Addison Wesley,
Reading, Mass., 1999

[4] European Telecommunications Standards Institute,
ETSI TS 102 351 v1.1.1 Methods for Testing and
Specification (MTS); IP Testing; TTCN-3 IPv6 Test
Specification Toolkit, ETSI, Sophia-Antipolis
(France), Sep. 2004

[5] P. Mäki-Asiala, M. Kärki, A. Mäntyniemi,
D.Lehtonen, A. Vouffo, I. Schieferdecker,
Requirements of Reusable TTCN-3 Tests (1.0),
Project Technical Report, Test & Testing
Methodologies with Advanced Languages (TT-
Medal), Oulu (Finland), 2004

function call_viaPort_myMethod4(
 inout MyInterface port_p,
 inout template myMethod4 in_templ_p,

template MyRecordType rtn_templ_p)
runs on ExampleModule_PTC return
MyRecordType {

 var MyRecordType rtnValue := {
 int_field := 0,
 str_field := ""
 };

 port_p.call (myMethod4: in_templ_p,
T_CLIENT) {
 [] port_p.getreply (
 myMethod4_r_0 value rtn_templ_p) ->
value rtnValue {
 log ("Method myMethod4 invoked
successfully");
 }
 [] port_p.catch (myMethod4,
MyExceptionType: ?) {
 setverdict (inconc);
 }
 [] port_p.getreply {
 setverdict (fail);
 }
 [] port_p.catch {
 setverdict (fail);
 }
 [] port_p.catch (timeout) {
 setverdict (fail);
 }

}
 return rtnValue;
}

function call_myMethod4(inout template
myMethod4 sig_out_p) runs on
ExampleModule_PTC return MyRecordType {
 return
call_myMethod4_onPort(MyInterface_client,
sig_out_p, ?);
}

Page 70

APPLICATION DELIVERY

WHAT’S NEW IN
MERCURY BUSINESS PROCESS TESTING 8.2.1:

THE “NEXT WAVE” OF FUNCTIONAL
TESTING GETS EVEN BETTER

Page 71

INTRODUCTION

Quality assurance (QA) engineers are responsible for assuring the

viability and functionality of the enterprise’s mission-critical applications.

But applications turn out better when the enterprise’s line of business

(LOB) experts help support QA’s vital role. Limited business analyst

involvement during testing can lead to miscommunications and defects

and breakdowns in critical business processes. Conflicting priorities

between content experts and quality engineers result in time-consuming

test rework.

Introduction …………………………………………………………………………2

Mercury Business Process Testing Overview ……………………………………3

New Features in Mercury Business Process Testing 8.2.1 ……………………4

1. Support for Mercury WinRunner Customers………………………………4

2. User Acceptance Testing ……………………………………………………5

3. Component Grid View ………………………………………………………5

4. Copy/Paste Support …………………………………………………………5

5. New Component Options in the Document Generator ………………6

6. Enhanced Component Request Wizard …………………………………6

7. Non-Automated Components ………………………………………………6

New Accelerators ……………………………………………………………………6

Implementing a Complete End-to-End Solution …………………………………6

Summary and For More Information ………………………………………………7

TABLE OF CONTENTS

Page 72

To ensure the health of an enterprise’s applications, testing should be conducted throughout the

application lifecycle. Defects caught early in development are much easier and less expensive to fix than

problems uncovered late in the lifecycle or in production. One key to developing and launching high-

quality applications is to involve business analysts early in QA’s application testing processes. Input from

these content experts can help QA determine if the applications are meeting all business requirements

and better ensure the proper functionality is being developed correctly and thoroughly tested.

The classic problem with involving business analysts early in the testing cycle is that most of today’s

functional testing products are too technical for anyone other than highly skilled quality engineers to

use. This technical hurdle has now been solved with the introduction of easy-to-use business process

testing solutions. These solutions enable content experts who know how the applications are supposed

to work to play a supporting role in QA. With intuitive tools, these individuals can easily write tests

based on what application functionality they need. Involving business process experts early in the

quality lifecycle complements QA’s testing processes, enhancing the quality and functionality of the

enterprise’s key applications.

Mercury Business Process Testing Overview

Mercury Business Process Testing™ provides a complete role-based test automation system that

enables content experts to build, data-drive, execute, and document test automation without any

programming knowledge, allowing them to focus on creating high-level test flows that mirror actual

business process. This contribution to QA’s testing efforts can free up more technical QA engineers to

concentrate their efforts on areas that facilitate automation.

Mercury Business Process Testing does the following:

• Greatly simplifies and speeds up the test design process by using reusable components (business

process building blocks).

• Allows QA and testing teams to start the test design process much sooner — during system design —

accelerating time-to-deployment for high-quality software.

• Generates automated tests and test case documentation in a single step, eliminating the expensive

and time-consuming processes of creating and maintaining test records.

• Enables QA teams to use prepackaged test assets and best practices to implement test automation

for leading enterprise resource planning (ERP) and customer relationship management (CRM)

applications, saving time and leveraging the knowledge of experts.

• Eases the adoption of test automation, because the solution is so easy to deploy and use.

APPLICATION DELIVERY

WWW.MERCURY.COM 3Page 73

APPLICATION DELIVERY

Mercury Business Process Testing also enables enterprises to leverage their investments in the tools

they have already purchased. It is part of Mercury Quality Center™, an integrated set of software,

services, and best practices for automating key quality activities, including requirements management,

test management, defect management, and functional testing. Mercury Business Process Testing

integrates smoothly with any work already done with Mercury QuickTest Professional™ or Mercury

WinRunner® — Mercury Quality Center products that support more than 90 percent of the Fortune 500

and more than 65 percent of all automated software quality initiatives.

Mercury Business Process Testing allows for significant increases in the productivity of subject matter

experts and QA/test engineers alike. As such, many IT organizations have seen measurable return on

investment (ROI) benefits and fast payback from their investments in Mercury Business Process Testing.

New Features in Mercury Business Process Testing 8.2.1

Mercury Business Process Testing version 8.2.1 offers several significant new capabilities. The following

sections will describe some of the new product enhancements:

1. Support for Mercury WinRunner Customers

Mercury WinRunner is one of the most widely used functional and regression testing tools in the

industry. For many years, customers have been creating tests assets in WinRunner to support their

QA initiatives. Business Process Testing 8.2.1 now supports Mercury’s existing WinRunner customers.

Mercury WinRunner users can now leverage integration with Mercury Business Process Testing to

accomplish the following:

• Plug into the industry’s only web-based, end-to-end collaborative platform for scaling quality

automation.

• Significantly reduce test maintenance costs using the Mercury Business Process Testing auto-

update mechanism.

• Test sooner in the software lifecycle, even before the application is delivered to QA.

Mercury WinRunner users can leverage integration with Mercury Business Process Testing to:

• Convert existing programmatic scripts into Mercury Business Process Testing components.

• Create new scripted components in Mercury WinRunner 8.2.

• Combine Mercury WinRunner and Mercury QuickTest Professional components together in a

Mercury Business Process Testing test.

Mercury WinRunner customers can either create new Mercury Business Process Testing components

directly using WinRunner, or convert their existing WinRunner scripts into reusable Mercury Business

Process Testing components. Tests created in WinRunner can be edited and debugged within

WinRunner using the same processes that are familiar to users who work with WinRunner tests today.

WWW.MERCURY.COM 4Page 74

APPLICATION DELIVERY

In the past, Mercury customers had to choose whether to build their test assets in either Mercury

WinRunner or Mercury QuickTest Professional, based on the particular application environment they

were testing. With Mercury Business Process Testing 8.2.1, that requirement becomes irrelevant. Now

customers can create end-to-end test scenarios that cover environments as diverse as mainframe and

.Net using a single, unified solution.

One of the most significant benefits gained from Mercury Business Process Testing support for

Mercury WinRunner is that Mercury Business Process Testing automates what the majority of

WinRunner customers are already doing today by using complex Excel spreadsheets and text files. (To

take advantage of the many benefits offered by Mercury Business Process Testing, Mercury WinRunner

customers will need WinRunner version 8.2 and must be running Mercury Quality Center and Mercury

Business Process Testing 8.2.1.)

2. User Acceptance Testing

User Acceptance Testing is the last phase in the QA process when LOB users certify and sign-off on

test plans and tests. The need for User Acceptance Testing is becoming even more critical as more

testing projects are outsourced and off-shored. It is the only way the business can validate the work

done by third-party testing teams.

With support for User Acceptance Testing, Mercury Business Process Testing 8.2.1 makes it easy for

quality automation teams to close the loop with the business. Testing teams can run existing business

process tests manually in the Test Lab module. Each component iteration is treated as a step in the

test. Testers can view and use input and output parameters in the steps and can store the results of

each component in the manual test run without having to duplicate any additional work in Microsoft

Word or Excel.

3. Component Grid View

With Mercury Business Process Testing 8.2.1, it is now possible to view all components in a project in

the grid view, which offers advanced search and filtering capabilities.

4. Copy/Paste Support

Mercury Business Process Testing 8.2.1 provides the ability to copy and paste components, business

process tests, and test sets containing business process tests within and between Mercury Quality

Center projects and servers.

WWW.MERCURY.COM 5Page 75

APPLICATION DELIVERY

5. New Component Options in the Document Generator

It is now possible to include component information for all or selected components in project

documents that are created using the Document Generator. The component information can include

component step details, attached snapshots, and the list of tests that use each component.

6. Enhanced Component Request Wizard

When creating component requests, a new step in the wizard provides the ability to enter manual

steps for the components.

7. Non-Automated Components

New components in the Business Components module are created as non-automated components.

Testers can add manual steps to the component and run the component manually within a business

process test. It is also possible to convert a non-automated component to an automated Mercury

WinRunner or Mercury QuickTest Professional component. When converting a non-automated

component to an automated component, any existing manual steps are converted to comments

within the automated component.

New Accelerators

One of the most exciting realities of Mercury Business Process Testing is that it has enabled an

ecosystem of partners to build value added solutions — called Accelerators — that run on top of the

Business Process Testing Platform. Business Process Testing Accelerators are pre-packaged

customizable business components and test flows that significantly reduce time-to-test.

The Accelerator concept is simple. Customers can deploy pre-packaged test solutions faster than if

they were build them on their own. And because Accelerators are built using the Business Process

Testing Platform, they are cheaper, easier, and require less work to maintain and upgrade than

traditional test scripts.

Mercury recently teamed up with solution partners who specialize in ERP/CRM and technology vendors

in the security testing space to deliver additional Mercury Business Process Testing Accelerators for

SAP, Oracle, and security testing.

Implementing a Complete End-to-End Solution

When adopting any new technology, organizations must focus on managing change so that it happens

quickly and with the least amount of disruption. This is why Mercury offers comprehensive consulting

services, to make it easy for organizations to get up and running with Mercury Business Process Testing.

Mercury Consulting™ uses a proven implementation methodology to guide customers through their

complete project lifecycle. As part of this approach, Mercury includes a review of the changes involved

in the customer’s day-to-day processes, as well as guidance on user adoption and overall rollout of

Mercury Business Process Testing. Mercury best practices are used as key part of the services delivery.

These include methods through which content experts can assist in the testing process. Mercury

Consulting Services also provides documentation describing the products, people, and process best

practices for Mercury implementations.

WWW.MERCURY.COM 6Page 76

APPLICATION DELIVERY

To help ensure that customers are successful rolling out and scaling Mercury Business Process Testing

throughout their organizations, Mercury Consulting Services for Mercury Quality Center offers two

service delivery options: Mercury Business Process Testing QuickStart™, and time and materials

engagements that are mapped out to meet customer’s specific needs. Both options allow Mercury

Consulting Services to help customers leverage Mercury best practices, maximize ROI, and ensure the

lowest possible risk to the customer’s Mercury Business Process Testing initiatives.

Both of these services offer excellent implementation guidance and training to maximize Mercury

Business Process Testing’s role-based team collaboration features and quickly make customers self-

sufficient on the solution.

Summary and For More Information

Business process testing solutions close the gap between the business needs of the application and

the enterprise’s more comprehensive QA testing processes. Close collaboration between the

enterprise’s business process experts and QA team makes testing processes much more efficient and

results in higher-quality applications.

Mercury Business Process Testing removes the technical complexity and specialized expertise from the

test design process. Subject matter experts can facilitate early testing by focusing on business

processes rather than running the tests. It also centralizes and simplifies test and documentation

creation and maintenance, resulting in substantial savings for today’s enterprises.

Mercury’s newest release — Mercury Business Process Testing 8.2.1 — brings even more features and

functionality to the testing process. With support for Mercury WinRunner customers, User Acceptance

testing, and more, Business Process Testing delivers an even higher level of productivity to test teams

and dramatically improve the quality of finished software applications. For more information on Mercury

Business Process Testing or any Mercury products and services, please visit www.mercury.com.

WWW.MERCURY.COM 7Page 77

© 2005 Mercury Interactive Corporation. Patents pending. All rights reserved. Mercury Interactive, the Mercury logo, Mercury Quality Center, Mercury Business Process Testing, Mercury Business Process Testing QuickStart, Mercury
Consulting, Mercury QuickTest Professional, and Mercury WinRunner are trademarks or registered trademarks of Mercury Interactive Corporation in the United States and/or other foreign countries. All other company, brand, and product
names are marks of their respective holders. WP-1496-0705

Mercury is the global leader in business technology optimization (BTO). We are committed to helping customers optimize the business value of IT.
WWW.MERCURY.COM

Page 78

August 2004

Six Sigma
And The
Compuware
Application
Reliability
Solution

Compuware Corporation
One Campus Martius
Detroit, Michigan 48226
313.227.7300

Scott Margolis, PMP
QA/PM Subject Matter Expert

Salil Raje
Six Sigma Black Belt

Page 79

Six Sigma And The Compuware Application Reliability Solution

Page 2

Background
In the late 1980’s, Motorola developed a business process to
continuously improve manufacturing processes. Through a
process of defining what is to be measured, measuring the
results of the process, analyzing the results, implementing
improvements and changes to improve the process, and
controlling the overall process, an organization can work
towards a manufacturing goal of 99.97% accuracy, 4 defects
per million, six standard deviations or “Six Sigma” of a normal
statistical distribution.

This document is being written to provide insight into what
Six Sigma is, and how a CARS implementation relates to
those organizations considering or embracing Six Sigma. Six
Sigma at its basis is a manufacturing process that to this
point, has related primarily to objects that can be physically
measured, such as with a micrometer or other physical
measuring device, or with integer values for those items
found to be acceptable by other more subjective measures.
The further purpose is to provide better service to our
customers who may be interested in or are in the process of
organizationally adopting the Six Sigma approach and may
wish to learn how a CARS engagement relates.

Compare and Contrast: The broad assumption in this
document is that the reader has been previously exposed to
the Compuware Corporation CARS offering to some extent.
Some of the terminology utilized within this document may be
specific to CARS, and some to Six Sigma practices. The
objective is to compare similar ideas within the two methods
to provide a baseline from which to understand the use of
CARS within an organization in process of, or considering the
adoption of, Six Sigma processes.

What Is Six Sigma?
Six Sigma is a multi-faceted approach to business
improvement. It includes a philosophy, set of metrics, set
of improvement frameworks and a toolkit. When
discussing Six Sigma, it is important to put in context to
which of these aspects we are relating.

Six Sigma as a philosophy: The Six-Sigma philosophy is to
improve customer satisfaction through defect elimination and
prevention and as a result, to increase business profitability.
“Defects” are defined in terms of the customer’s (not
engineer’s) point-of-view. Bear in mind that a customer in
the Six Sigma view may be either (or both) internal or
external. The business profitability motive is crucial;
improvement for improvement’s sake, without positive impact
on the bottom-line, does not align with the Six Sigma
philosophy. Six Sigma was originally targeted at
manufacturing operations and, due to the phenomenal
success of Six Sigma in this environment, has lead to a

Page 80

Six Sigma And The Compuware Application Reliability Solution

Page 3

dramatic increase in the number of organizations considering
application of Six Sigma to the elusive and intangible world of
software and systems development process improvement.

Six Sigma projects begin and end with business
considerations. Project selection and tracking focus on
maximizing the benefit delivered to the business bottom line.
While there may be plenty of fundamental metrics and
statistics en route, Six Sigma project success is measured in
financial terms. ‘Process maturity” is not an interest in itself
– the focus is on quantitatively measured business benefits.
Perhaps the most important distinction between Six Sigma
and other approaches to process improvement in software lies
in its almost obsessive preoccupation with financially
measured business results. Six Sigma caters primarily to the
concerns of the CEO and CFO – process maturity is not
viewed as a business benefit in and of itself. Those
organizations adopting CARS and the QualityPoint™ method
have found process maturity comes as a beneficial by-
product.

Success of Six Sigma in software requires more than just an
understanding of the Six Sigma philosophy and tools. It also
requires learning how the tools and philosophy apply to the
specific business area being addressed.

Six Sigma frameworks - There are currently two main Six
Sigma frameworks: DMAIC and DFSS.

DMAIC (Define-Measure-Analyze-Improve-Control) is used
to improve and optimize existing processes and products.
This may be heard pronounced “duh-may-ick” within Six
Sigma conversations.

DFSS (Design for Six Sigma) is used to design new products
and processes. It is also used to redesign existing processes
and products that have been optimized but still do not meet
performance goals. DFSS uses DMADV (Define, Measure,
Analyze, Design, and Verify) as steps.

When thinking about the connection between Six Sigma
DFSS/DMADV and DMAIC one can visualize a temporal
relationship and a tendency for these views to live in different
quadrants of the Six Sigma space. The relationship is
temporal in the sense that one clearly cannot apply DMAIC to
a product or process that does not exist (i.e. software), so in
that sense DFSS comes first—although clearly many products
and processes exist that were not created using the DFSS
approach. Hence, the boundary between DFSS and DMAIC is
“fuzzy” in practice. When products or processes were created
using DFSS we will have created a lot of valuable information
and context that can be revisited to advantage when we later
start a DMAIC project. When that is not the case, we may

Page 81

Six Sigma And The Compuware Application Reliability Solution

Page 4

need to reach back into the DFSS space from within a DMAIC
project to create what is missing.

The boundary is also fuzzy in the sense that DFSS tends to
focus externally and strategically, while DMAIC has a
tendency to focus internally and tactically. Broadly speaking,
DFSS projects are often more closely connected to the voice
of the customer (VOC), while DMAIC projects are often more
closely tied to the voice of the business—as with every
generalization, there are exceptions and border conditions.

Six Sigma metrics – 3.4 defects per million opportunities is
the most cited metric. Other measures are defect rate (parts
per million), Sigma level, Defects Per Unit (DPU), and Yield.

Sigma is a Greek letter used to describe the amount of
deviation in a process or procedure. In the parlance of the
statistician, sigma is the term applied to one standard
deviation from the mean of a population (?) or sample (s).
An inclusive, higher sigma value indicates less deviation or
fewer defects. The central idea behind Six Sigma is that if
you can measure how many “defects” you have in a process,
you can systematically figure out how to eliminate them as
close to their source as possible and get close to “zero
defects”. This same philosophy is embodied in the CARS
QualityPoint™ method.

Six Sigma toolset – relate to the 5-steps of the DMAIC
process as per the following:

Define Measure Analyze Improve Control
Benchmark ♦ 7 basic tools - ♦ Cause and Effect

Diagrams
♦ Robust Design ♦ Non-Statistical

Controls:
♦ Procedural

adherence
♦ Performance

Management
♦ Preventive

Activities
Baseline ♦ Defect Metrics ♦ FMEA ♦ Tolerancing
Project Charter ♦ Data collections

methods
♦ Decision and Risk

Analysis
♦ Modeling ♦ Statistical

Controls:
♦ Control Charts
♦ Time Series

Methods
Kano Model ♦ Sampling

Techniques
♦ Capability ♦ Design of

Experiments

Voice of the
Business

♦ Measurement
System
Evaluation

♦ Reliability

Voice of the
Customer

 ♦ Systems
Thinking

QFD ♦ Root Cause
Analysis

Process Flow Map
Project
Management

Management by
Fact

Page 82

Six Sigma And The Compuware Application Reliability Solution

Page 5

Note: It is important to remember that the Six Sigma toolkit
is dynamic and organization-specific. The decisions to adapt,
add, or focus on specific methods should be based on the
improved ability to deliver on customer needs and business
benefit.

QualityPoint™
The process used within the CARS solution to drive
applications toward higher quality is the Compuware
Corporation patented QualityPoint™ method.

Where’s the risk? Among the processes followed within Six
Sigma is the early determination of areas or items of risk. By
the use of a process of risk identification and quantification,
areas of exposure in a manufacturing or other process can be
ascertained early. As a result, those areas with the potential
to cause the most problem can be planned for and risk
management strategies instituted. One of the process tools
that can be applied to this risk identification process in Six
Sigma is called the Failure Mode & Effects Analysis, or FMEA
(fuh-me-uh). Key items related to the cause and effect,
frequency of occurrence, the “detectibility” of defects and
possible costs of defects (value) are inserted into the model.
The result is a detailed listing of what can go wrong in a
manufacturing system or process, with a prioritization (Risk
Priority Number) listing allowing organizational management
to accept, mitigate or transfer risk as is most economically
prudent, as well as recalculate the risk score after a risk
strategy is selected. Figure 1 shows what a FMEA for a
process might look like:

Service/Process
Potential

Failure Mode

Potential
Effects of
Failure

S
EV

 Potential Cause
of Failure

O
C
C

D
E
T

R
P

N

Recommended
Action Who Acts

Action
Taken

S
EV

O
C
C

D
E
T

R
P

N

Enter a Order
Order is
wrong

Ordered items
need to be
returned 8

Confusing user
interface 3 8 192

Retrain Order
Takers Sales Mgr

Order-
takers
retrained 8 2 2 32

On-site
recruiting

On-site
recruiting
process is not
implemented

Insufficient
number of
employees 8

No one available
to conduct on-
site recruiting 6 3 144

Cross-train all
recruiters on
the on-site
recruiting
process

Branch
Managers
1/15/04

Recruiters
cross-
trained 8 3 2 48

Figure 1: A Sample Failure Mode & Effects Analysis

While the FMEA has proven to work quite well for a system of
processes such as manufacturing or business processes, its
use for software development has not been successfully
demonstrated in this format.

The CARS QualityPoint™ method has taken giant strides in
remediating the problem of proactive risk determination
through the use of the Functional Decision Tree (FDT) and the
Test Decision Tree (TDT) that are at the heart of the patented
QualityPoint™ method.

Page 83

Six Sigma And The Compuware Application Reliability Solution

Page 6

Within the process of recording the function points and test
cases of the software under consideration, QualityPoint™ and
CARS allows organizations to apply risk determination in
much the same manner as a FMEA, but with the ability to
account for specific risks, or values that are important to the
customer and the business (VOC and VOB). The risks can be
unique to a project, cycle or line of business. In any case,
CARS give the organization the flexibility to determine the
factors that are most important to their customer and
business situation.

By following the QualityPoint™ risk based testing methods
that that are an intricate part of the CARS solution,
organizations successfully incorporate risk determination and
weighting into the process. When completed with this
patented process, the distribution of risks appears to
approximate a normal distribution. (Figure 2)

Figure 2:
A Normal Distribution of
Requirement Priorities

µ

Requirements with
Higher Risk

Requirements with
Lower Risk

Compuware’s risk management assessment within the
QualityPoint™ method is the most effective application of risk
evaluation in a process that is specifically designed for use in
software systems development. Much like the FMEA, the
QualityPoint™ Functional and Test Decision Tree’s help an
organization that is either creating new software, or
implementing packaged software requiring customization,
such as an ERP, CRM or MRP package, to be able to identify
early and accurately, those requirements and test cases with
the highest risk and the highest value, so that management
may take appropriate prioritization and risk mitigation steps
in a well planned, well thought out process that leaves
nothing to chance. The ability to then improve the process if
and when defects are discovered is the distinction between
the high degree of flexibility offered by QualityPoint™, and
other more rigid software development and testing
methodologies.

Page 84

Six Sigma And The Compuware Application Reliability Solution

Page 7

Six Sigma Elements In CARS
In mapping CARS to the Six Sigma philosophy, we find that
CARS is motivated by similar aspects in its philosophy, which
is to improve customer satisfaction through defect elimination
and prevention and, as a result, to increase business
profitability in the context of software and business systems
quality. Specifically, CARS addresses the cost of planning for
quality, testing software applications, establishing metrics,
(Figure 3) and reducing the time it takes to test applications
consistently and rigorously. CARS strives to improve
Customer Satisfaction at two levels – the users (Voice of the
Customer), and the IT Management responsible for delivering
quality applications to those users (Voice of the Business).
Using QualityPoint™, CARS seeks to prevent defects (as
defined by the user) through a focus on Requirements
Definition as implemented through the Function Decision Tree
and structured use of Compuware integrated technologies.
Through the Scope Analysis, Statement of Work and
Assessment activities, CARS seeks to prevent defects (as
defined by the IT and QA Management) prior to their
emergence as a defect that is recognized in production
– the essence of Six Sigma.

Figure 3:
Establishment of Metrics:
Exit Criteria by Requirement Risk

High Risk
Requirement -
More Stringent

Exit Criteria

Low Risk
Requirement -
Less Stringent
Exit Criteria

25%25% 50%

As much as Six Sigma is process-centric, CARS also has a
well-outlined delivery process defined by 7 Key Process Area’s
(KPA) that account for all quality activities in the software
development lifecycle, from planning through process
feedback. More importantly the seven KPA’s of QualityPoint™
confirms the “process-centricity” of CARS. In the
customization and deployment of CARS, these seven KPA’s
are evaluated by the CARS QA Architect against the existing
testing processes of the client to determine gaps, which need
to be filled to improve the client’s test processes.

At a high-level, the DMAIC steps may be thought to map to
the CARS delivery process as per below:

Page 85

Six Sigma And The Compuware Application Reliability Solution

Page 8

Six Sigma
phases or
steps

DEFINE MEASURE ANALYZE IMPROVE CONTROL

CARS steps Scope Analysis /
Statement of Work

Assessment Implementation / Delivery
and Turn-over

Activities The Define phase or
the Scope Analysis
phase concentrates
on “defining” the
scope of work
through dialog with
the Project
Champion/Sponsor.
A Statement of
Work is developed.

In the Measure and
Analyze phases the CARS
Architect assesses the
current Test Process in the
context of the seven KPA’s,
in addition to conducting
analysis relating to Goals,
Culture, Organization,
Measures, Practices, Test
Personnel and other areas
determined during the
Define phase. A gap
analysis is conducted and
presented to the Project
Champion.

During these phases the
customized CARS solution is
implemented. The QA
Architect leverages the
current strengths of the
client, designs the AQW
workflow and templates,
using the knowledge gained
from the Assessment and the
Scope Analysis phases. The
trained CARS Core Delivery
Team completes the
“improvement” objective and
ensures knowledge transfer
(if needed).

Similarities CARS Statement of
Work has the
similar elements as
in the Project
Charter of a Six
Sigma project.

CARS Assessment is
similar to Decision and
Risk Analysis conducted
during a Six Sigma project

The activities involved with
during the above phases are
similar to the concept of
Robust Design and Non-
Statistical Controls stated
under the Six Sigma Toolset
above.

Differences No formal methods of
measuring Capability are
applied in CARS. See
CMM/CMMi

Design of Experiments,
Tolerancing, Modeling and
Statistical Controls are not
applicable to CARS.

One of the major benefits of the CARS process solution might
be the use of data to drive process improvement decisions, by
Six Sigma projects. CARS is a solution, which is based on
industry best practices and so the need for data may not be
applicable to a specific project. CARS, however, does attempt
to uncover data during the Scope Analysis and Assessment
phases to provide for the customized solution, as relevant to
the client organization. In this manner, this CARS phase is
analogous to Design For Six Sigma.

Process Drives Technology: It has been demonstrated in
any number of software shops that putting technology in
place without a process simply allows organizations to
automate bad habits. Much like DFSS, the CARS solution
focuses on developing a process for the organization and
bringing in the technology required to support the process.

Benefits Of CARS To A Six Sigma Organization
Besides the obvious and already stated benefits of CARS, the
QualityPoint™/AQW foundation is a desirable prerequisite for
application of Six Sigma for Software - a consistent process is
necessary for learning and improvement. It is axiomatic:
An organization that has no process, has no process to
improve.

Page 86

Six Sigma And The Compuware Application Reliability Solution

Page 9

References:
The Six Sigma Way, Peter S. Pande et al, McGraw Hill, 2000.

Compuware Corporation CARS Sales Delivery Guide, October
2003.

Compuware Corporation CARS QA Architect Boot Camp
Course Materials, January 2003.

Integrating Improvement Initiatives: Connecting Six Sigma
for Software, CMMI, Personal Software Process, and Team
Software Process, Gary A. Gack et al, Software Quality
Professional, September 2003.

Page 87

Measurements for

Controlling Test
Effort and Depth

VVSS 2005
Henry Peters

DataCase

Introduction

© DataCase

- Test Process & Control Problems

- Test Process Variables & Metrics

- Using Test Metrics, Examples, Results

Page 88

Test Process

© DataCase

Test Control Problems

- Estimation and Planning

- Adapt to Circumstances

- Determine Stop Moment

Balancing required vs. possible testing

> Metrics

Test Process

© DataCase

Page 89

Basic Test Process Variables:

A. System Volume

B. Number of Test Cases

C. Number of Defects

Test Process

specification execution

system
model

system
realisation

test cases defects P>LL>P

preparation consolidation

© DataCase

A. Volume (& complexity)

- Function Point Analysis (FPA)

- New / Modified / Unchanged ?

> Number of Function Points

Test Process Variables & Metrics

volume

test cases

defects

© DataCase

Page 90

B. Test Cases

- What is a Test Case?

- Logical = Physical

> Number of Test Cases / Function Point

volume

test cases

defects

Test Process Variables & Metrics

© DataCase

C. Defects

- What is a Defect?

- Defect Discovery Moment

> Number of Defects / Function Point

> Number of Defects / Test Case

> Number of Defects / Time (testing day)

> Number of Defects found/not found

volume

test cases

defects

Test Process Variables & Metrics

© DataCase

Page 91

Effort Estimation:

Effort = Function Points * Test Hrs/ FP

Number of Test Cases/ FP * Hrs / Test Case

Test Depth Productivity

Metrics for Planning

plan

control

stop

© DataCase

Number of Test Cases / FP:
Indications, from Implementation Aftercare:plan

control

stop

© DataCase

Metrics for Planning

Page 92

Function Points and Test Cases?

Simply entry function:
- 1-15 DETs, 1 LGV

- 1- 4 DETs, 2 LGVs

= 3+ function points

Metrics Examples

plan

control

stop

© DataCase

Test with 3+ Test Cases ?

Test Quality Elaboration: the Detection Rate

Defects found / Total # Defects

= Defects found in test process

+ Defects found afterwards (within certain time)

Not: All Defects in Application !!

plan

control

stop

© DataCase

Metrics for Planning

Page 93

Number of test cases / fp: from measurements:
plan

control

stop

© DataCase

Metrics for Planning

“Special” Cases:

- 1st time Testing,
Exploring the Application

- Regression Testing,
Application release N

Metrics Examples

plan

control

stop

© DataCase

Page 94

Control: Adapt to Project Changes:
Function Points: Skip/Add Appl.Parts

Test Cases: Increase/Decrease Depth

Defects: Postpone Repair, Reject Appl.Parts

(+ Regular Project Management Metrics)

plan

control

stop

© DataCase

Metrics for Control

Criteria:

Planned Test Cases executed ?
Sufficient for Estimated Detection Rate?

Expected New Defects Manageable?
Using the Defect Curve

plan

control

stop

© DataCase

Metrics for Determining the Stop Moment

1

2

Page 95

Defect Curve
plan

control

stop

© DataCase

Metrics for Determining the Stop Moment

Check Extrapolation with Real Data ?

Use Results for Better Estimates ?

Determine System/Project Profiles ?

Metrics Examples

© DataCase

Page 96

Questions ...

www.datacase.nl

© DataCase

?

Page 97

© Refis system reliability engineering

Measuring Software Reliability

VVSS2005VVSS2005
24 november 200524 november 2005

24-11-05© Refis 2

Content

DefinitionDefinition of reliabilityof reliability
PrinciplesPrinciples of a reliability of a reliability analysisanalysis
ApplicationApplication
AddedAdded valuevalue

Page 98

© Refis system reliability engineering

24-11-05© Refis 3

Definition of “Reliability”

"The probability that an item
will perform a required
function without failure under
stated conditions for a stated
period of time”

24-11-05© Refis 6

Reliability growth curve

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7

interval

re
lia

bi
lit

y

period = 5
period = 40
period = 100
period = 170

Page 99

© Refis system reliability engineering

24-11-05© Refis 8

Statistical models

JalinskiJalinski--morandamoranda
MusaMusa basicbasic
MusaMusa--OkumotoOkumoto
LittlewoodLittlewood--VerallVerall
SchneidewindSchneidewind
YamadaYamada

24-11-05© Refis 12

Selection of appropriate models
atomic model

x = van toepassing
o = optioneel

leeg = niet van toepassing

1 time-between-failure 2
2 failure-count per testinterval 2 x x x x
3 all testing intervals are of the same length 3 x
4 software operated in similar manner as anticipated in operational use 3 x x x x x x x x x x
5 all failures do not have same chance of detection 2
6 all failures are equally likely to occur 2 x x x
7 detections of faults are independent of each other 2 x x x x x x
8 each failure is of the same severity as any other failure 1
9 failure detection rate forms a geometric progression and is constant between failure occurances 3 o

10 failure detection is proportional to current fault content 2 o o o
11 failure rate remains constant over the interval between failure occurences 3 o
12 the expected number of failures is a logarithmic (or proportional) function of time 3 o o
13 the failure initensity decreases exponentially with the expected number of failures found 3 o
14 the cumulative number of failures detected at any time follows a Poisson distribution 3 o o
15 the hazard rate is proportional to the number of failures remaining in the program 1 o
16 succesive TBF's are independent random variables with exponential distribution 2 o o
17 program may get less reliable if more failures are inserted than are removed during correction 3
18 failures are corrected instantaneously (at end of interval) without introducing new failures 3 x x x x x x x
19 the failure correction rate is proportional to the failure occurrence rate 1 x
20 the total number of failures expected to be seen has an upper bound 2 o o o o
21 there is no upper bound to the total number of failures 2 o o o

total score 36% 44% 25% 56% 33% 46% 57% 80% 79% 83%
total score incl. optional 71% 83% 58% 88% 87% 69% 93% 100% 100% 100%

G
eo

m
et

ric

Je
lin

sk
i-M

or
an

da

Li
ttl

ew
oo

d-
Ve

rr
al

l (
lin

ea
r a

nd
 q

ua
dr

at
ic

)

assumption re
la

tiv
e

im
po

rt
an

ce

N
on

ho
m

og
eo

us
 P

oi
ss

on
 (F

C
)

Sc
hn

ei
de

w
in

d
(a

ll
3

va
ria

nt
s)

Ya
m

ad
a

S-
sh

ap
ed

M
us

a
ba

si
c

M
us

a-
O

ko
m

ot
o

N
on

ho
m

og
eo

us
 P

oi
ss

on
 (T

B
F)

G
en

er
al

iz
ed

 P
oi

ss
on

 (i
cl

. S
ch

ic
k-

W
ol

ve
rto

n)

Page 100

© Refis system reliability engineering

24-11-05© Refis 13

Results (1)

Reliability for 8 hours

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1,10

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71
testinterval

re
lia

bi
lit

y

Generalized Poisson Schneidewind: all

24-11-05© Refis 14

Results (2)

Reliability for 1 year for defects with severity =1

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1,10

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71
testinterval

re
lia

bi
lit

y

Schneidewind: all

Reliability for 1 year
= 0,9014

Page 101

© Refis system reliability engineering

24-11-05© Refis 15

Results (3)

Cumulative number of defects

0

10

20

30

40

50

60

70

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Test interval

N
um

be
r o

f d
ef

ec
ts

Generalized Poisson Schneidewind: all Act. cumulative number of failures

Expected number of defects
In production = 5 of 6

24-11-05© Refis 16

Added value

Increasing software reliabilityIncreasing software reliability
Support management inSupport management in

Risk management Risk management
Service level management Service level management
Predict necessary capacity for incident Predict necessary capacity for incident
managementmanagement

Cost saving in development and Cost saving in development and
testingtesting

Page 102

© Refis system reliability engineering

24-11-05© Refis 18

Merellaan 5
3722 AK Bilthoven
T +31(0)30 225 36 37
F +31(0)30 225 36 49
W www.refis.nl
E info@refis.nl

Page 103

������ ����	�
����	

���
��	���
��
��
���

���������

�������������	
���
���
����

��������

��
�����������

2

������

�����	
	����������
�	
�

�������������� ��!��"
���#���$
#
������%�&��
�
	
'
��!#
����(����� ���������
���	��
����$

�)���	&�	
�����'
���*

�+,�����
��

�-.�/��
����$

�0���!��
����� ��
����$�!
�%��#���
��	
�����
�
����� ��
����$*�

�1�$���2����������	���

�3
�&��4��
����� ��
����$

�� ��
#��
����� ��
����$

�.!!����������
����� ��
����$

Page 104

3

� ���#�� ����
��&
��

	�������
����5
��
����� ��%�
�!!������������
���
5�'��$����
�������5
������
���	

� ���$
�����	
���
��*
����!
��
	�#�����������%�&��

�6��!����7���##
��������%�&��
�
� +'
�����
�
����$�%�����%�&��
�%���&5��5��5
������
�
��	
�����!
�

� ���"
���
�)5���	��&
�&�������	
�
�#��
8
��������'
�����	 ��#����
����$
�.���#����$��5
��
���
�9
�����

������ ����	�

��� ��	�������

���	����

��

�����
���
�
��
������

4

���
������ ��� ���%�&��
��%�&5��5� ���	������
4��&�

�5�&����$����������
	���� ����� ��
#����	

�5�&����&��4�

)
�&��5����4��&*

�:��&��!���
���

�������4��&��#��&��
8

���
�������������4��&����#!��
���8

� +��� �!�����

��� ���	

��
�5�	�%����!�
�	��$

��
�5�	��%�������������;��%
�����

�
���
����
��	�������!
�
���"�
��
��#

�������	

���

�
��
��

$%&

Page 105

5

�
���
�����������	���
�

.� ���	
�����������
����� �'���
��������
�

)
�&5��5����4��&*

�
�	��$�(�����

�
�#!�
<�� ��%��5
���	

�=�
��%�	��$
�����������
�;��	��$��������������

� +��� �!�����;�����4����%��

��������%��5
��!!���������
<!��
	�����5
������	
�
&���	

�������%��5
��!!����������!
����������4

�=�
����!����%��
����
����.�����
�&��4����
����
���

�
� !��$��!5������
�$�5

6

 �
������!�
�
������"�'�#

��

�	�
�
�����*�!
�%��#��
����$��%��5
�
��%�&��
�&��5����
<
�����$��5
���%�&��
�

� +<�#!�
�*

�.��� 2��$�����&��	�������%��

�.	'����$
*����'�������
<
���

�����	'����$
*���#��
	��
�����

�.��� 2��$��5
������������	�%��#���5
����	

�.	'����$
*���#!�
����
<
���

�����	'����$
*���#��
	��
������

�������
#����$���	���	
����� ���

�.	'����$
*�'
� �!�&
�%����
�����

�����	'����$
*�
<!
����
�����

	
	

Page 106

7

 �
������!�
�
������"�'�#

�(��
��	�
�
�����*�!
�%��#��
����$��%��5
�
��%�&��
�� �
<
�����$��5
���%�&��
���	�
#��������$��5
��
5�'���

� +<�#!�
�*

����������$��%��
�&��4�����
��������%��
���	�	��4�
���
�����
$���� ����
����
��

�.	'����$
*�
�� ����
<
���

�����	'����$
*���#��
	������#
���	���#!�
�
�
��

��
��$$��$*����
�'��$���������$��!!��������

�.	'����$
*�'
� �!�&
�%����
�����

�����	'����$
*�
<!
����
�����

	
	

8

$�
��

�	��

�	�
��
�����!���!
�
��

��!
�
��

(��)

����*��

+���

��
	
���

+����

(��,��-�,�
�
	

.����

�

����*���
	���

$�
�����
	���

Page 107

9

$�
��

�	��

�	�
��
�����!��
��
��

�����	
���
��!
�
��

/����
	�������
�
	���
�����

(��)

����*��

+���

��
	
���

+����

(��,��-�,�
�
	

/�����
�
��
�� ���
��	����0��

+���1�
��	���
�

.����

�

����*���
	���

$�
�����
	���

%�����	���

10

�
��*�-

 ���
���� 2�

$�
��

�	���
��	
��
����!���!
�
��

�����	
��
��!
�
��

 ���
������

�$		����
��!����'���3�

�$		����
�������
��

�$		����
����
���3

�(�*������

+��3��

���!
�
������*�����
�-�	�
��

4�00��
��
��
������
�

Page 108

11

 ���
���� 2�

�
��*�-

 ���
���� 2�

$�
��

�	���
��	
��
����!��
��
��

�����	
��
��!
�
��

 ���
������

�$		����
��!����'���3�

�$		����
�������
��

�$		����
����
���3

�(�*������

+��3��

�
��
�� ���*�����
�-�	�
��

12

��

�	
�����
	���1��

�.���������
	���	��
!
�����
�&� ��%����� 2��$�
�5
��
����� ��%���%�&��

�-���4��
�����

�.����$
�!�����%��5
����� ���������
�!
�%��#
	�
����#������� ������#��
�	
����
	����� ����
#���������� ��������
�
����

Page 109

13

5-
�����

�)
�&�������������
��5
��
�5��(�
����
	����
����#�������������
����$�� �$�'��$���#
�

<�#!�
�

��
������$���#!�
<�� �������
<
������

��������$��� !��$��!5���������
�

��������$�
<!�������
�&
�4�
��
�����
<
������
�

��5
��!!����������%��5
�
��
�5��(�
����
�
	��$
����������
��5
�
�����"�������&
����
�
��
	�� �#����
��

14

4��
���

�����(�
���������	�#��
���%��#�����*

������	
���
�

��
�����������

�����

Page 110

Testing Security Issues Using Methods from
Conformace Testing

Institute for Computer and Social Studies,
Dept. of Telmatics

Albert-Ludwig University,
Freiburg, Germany

Maike Gilliot

Maike Gilliot 2Workshop VVSS 2005: Testing Security

Overview: Testing

Generation of test cases for
functional conformance

• based on formal specification
(SDL, ESTELLE)

• based on specification in UML
artefacts

• Degree of automation:
– addition of test objects
– addition of contracts

Advantages:
– evaluation of tests

possible
– „higher“ quality of test

cases

Generation of test cases for
security issues

• based on information about
vulnerabilities (CERT, Bugtraq)

• Techniques:
– Fault injection testing
– Penetration testing

less formal
lower degree of automation

Page 111

Maike Gilliot 3Workshop VVSS 2005: Testing Security

Importance of Security

Security is a self-contained attribute of software
gaining importance:

• towards service-oriented systems
– more connectivity, more attacks
– integration of security is a precondition (cf. EVENT)

• evolving systems
organizations (and thus their systems) are no longer stable,
but adapting continuously to their environment (cf. Truex)

Goal:
„better“ security tests by generating them automatically

Maike Gilliot 4Workshop VVSS 2005: Testing Security

Security vs. functionality

Security:
Integrity, cofidentiality, availability and accountability of data and
communication

Ref: Whittaker: How to break Software Security

Security vulnerability: side effects of (unintended) functionalities that
can lead to a violation of the security goals.

intended
functionality

traditional
faults

actual software
functionality

unintended,
undocumented or
unknown
functionality

Page 112

Maike Gilliot 5Workshop VVSS 2005: Testing Security

Vulnerabilities: Classification

• Dependency:
An application relys on the network, the file system, other systems to work
correctly.
Is the application still secure if those components fail?

• Context:
The same application can work differently depending on its context.
Is the application in a different context still secure?

• User interface:
Is the application secure when getting unexpected or malformed user input
(sql-injection, bufferover flows)?

• Violated execution order:
Is it possible to execute actions that are not secure in this state?

Maike Gilliot 6Workshop VVSS 2005: Testing Security

Adding Information: Misuse Cases

Idea:
Add security relevant information to the specification using misuse cases:

1. Add misuse cases to specification,
2. derive test cases and
3. invert the test verdict

Misuse Cases:
• Used to elict non-functional requirements
• Negative szenarios to look at the application from an attackers‘ point of view.

Page 113

Maike Gilliot 7Workshop VVSS 2005: Testing Security

By example

• Given: specification

• Add some misuse cases for
Vulnerabilities
– due to dependencies
– due to context
– due to malformed or

unexpected inputs
– due to violations of the

execution order

0

3

2

1

? login_name

? passwd

! logged_in

! try_again

Maike Gilliot 8Workshop VVSS 2005: Testing Security

Conclusion

• Degree of automation is limited:
– misuse cases have to be added manually:
– to find misuse cases means to find security vulnerabilities. This can

(probably) not be done automatically (cf. Firesmith, FMEA)

• Difficult to add misuse cases for all types of vulnerabilities:
– a specification is suppose to represent an application (and not its

environment, ist context or its dependencies)

Specification may not be the right basis for security tests

Page 114

Maike Gilliot 9Workshop VVSS 2005: Testing Security

Next steps

Use vulnerabilities as basis for security tests

1. Model vulnerabilities
• which information necessary?
• choose/ extend/ build model

2. derive security test out of this vulnerability model

Maike Gilliot 10Workshop VVSS 2005: Testing Security

The End

Thank you!

Questions?

Page 115

Maike Gilliot 11Workshop VVSS 2005: Testing Security

Literature

• Ian Alexander, “Misuse Cases Help to Elict Non-Functional Requirements”, source:
http://easyweb.easynet.co.uk/~iany/consultancy/misuse_cases/
misuse_cases.htm (verified: Nov, 2005)

• Bugtraq: Vulnerability database, source: http://www. cert.org/nav/index_red.html
• CERT Vulnerability database, source: http://www.cert.org/nav/index_red.html
• Wenliang Du, Aditray P. Mathur, “Vulnerability Testing of Software System Using

Fault Injection”, Technical Report at Purde University, West Lafayette, IN, US, April
1998.

• Donald G. Firesmith, “Analyzing and Specifying Reusable Security Requirements”
Journal of object technology, Vol. 3, No.1, 2004, source: http://www.jot.fm.

• Clementine Nebut, Frankch Fleurey, Yves Le Traon, Jean-Marc Jezequel,
“Requirements by Contracts allow Automated System Testing”, Proceedings of 14th
international Symposium on Software Reliability Engineering, 2003 pp. 85-96.

• C.Pachon, “Une approche pour la génération automatique de tests de robustness”,
Journal : InfoComm Sciences for Decision Making : Permanent online journal.
Source: http://isdm.univtln.fr/PDF/isdm13/isdm13a119_pachon.pdf.

• Stefan Sackmann, Jens Strüker, „Electronic Commerce Enquête 2005 - 10 Jahre
Electronic Commerce: Eine stille Revolution in deutschen Unternehmen“, Insitut für
Informatik und Gesellschaft, Telematik, Universität Freiburg, 2005, Konradin-IT-
Verlag, Leinfelden.

• Duane P. Truex, Richard Baskerville, Heinz Klein, “Growing Systems in Emergent
Organisations”, Communications of the ACM, Vol. 42, No. 8, 1999, pp 117-123.

• James A. Whittaker, Herbert H. Thompson, “How to Break Software Security”,
Pearson Education Inc, 2004

Page 116

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Roger A. Müller
Generating Test Cases Using a Symbolic
Virtual Machine

1

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Introduction: Quality of Software

Quality of software can be split into different aspects and
techniques:

testing, debugging, verification, validation, metrics, refactoring, reviews,
coding guidelines …
only a few techniques are employed outside university, e.g. reviews and
simple unit- or integration tests

Problems
lack of (experienced) employees familiar with concepts of software quality
strict time and monetary constraints in development department
how to measure the quality of the quality assurance? („Manual testing of
software is self-contradictory.“ Beizer 1990)

our primary focus: automated testing of software

Page 117

2

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Introduction: Testing

software testing:
test criteria
generation of test cases
saving of test cases
execution of test cases

test criteria
functional (black-box)
structural (glass-box)

generation of test cases
random
dynamic
static

3

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Running Example

symbolic execution
static analysis
features of (functional) logic languages
virtual machine
constraint solving

running example: binary search
static int binsearch(int[] a , int low, int high, int x){
int mid;
while (low <= high){

mid = (low + high) / 2;
if (a[mid] < x) low = mid + 1;
else if (a[mid] > x) high = mid - 1;
else return mid;}
return -1;

}

Page 118

4

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Design Decisions

byte code vs. source code
influence of compiler
several languages compiling for the same virtual machine
stability of specification

language of our choice: Java
object oriented
stability of the specification of the VM
is used in theory and practice in our department

Java virtual machine
stack-based
intermediate code
platform independent
simple language

„binsearch“ in byte code

5

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Byte Code

0: iload_1
1: iload_2
2: if_icmpgt 47
5: iload_1
6: iload_2
7: iadd
8: iconst_2
9: idiv
10: istore 4
12: aload_0
13: iload 4
15: iaload
16: iload_3
17: if_icmpge 28
20: iload 4
22: iconst_1
23: iadd

24: istore_1
25: goto 0
28: aload_0
29: iload 4
31: iaload
32: iload_3
33: if_icmple 44
36: iload 4
38: iconst_1
39: isub
40: istore_2
41: goto 0
44: iload 4
46: ireturn
47: iconst_m1
48: ireturn

Page 119

6

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Byte Code (cont.)

7

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Basics

expressing variables w.r.t constants and input
variables:

mid=(low+
high)/2

Page 120

8

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Branching

branching depending on
alternatives
test criterion
evaluation of constraints

branching can occur on
im- or explicit exceptions
conditional jumps or switches
method invocations

each branching adds a constraint to a global constraint system describing
the current path w.r.t. to input parameters and constants

needed for branching
constraint solver system
test criterion
backtracking to cover all applicable paths

9

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Branching (cont.)

each branching adds a constraint to a global constraint system describing the
current path w.r.t. to input parameters and constants
examples:

1. if (a>3) then B else C
execution of B: a>3 on stack
execution of C: a<=3 on stack

2. if (a>3) then B else if (a>1) then D else E
execution of: a>3 on stack
execution of D: a<=3^a>1 (i.e. 1<a<=3) on stack
execution of E: a<=3^a<=1 (i.e. a<=1) on stack

preconditions:
constraint solver system
testcriteria
backtracking capabilities
branching strategy

Page 121

10

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Branching (example)

1
2

A
B

11

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Exectution: Constraint Solver System

duties
compute result

input variable values
return value if applicable

feasibility check
system still solvable when adding a constraint

capabilities
- linear / non-linear constraints
- integer / non-integer constraint
- symbolic / numeric computation
- equalities / inequalities
- constraint solver manager

iterative solution
classification and breakup of constraint
choosing an appropriate constraint solver

Page 122

12

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Constraint Solver System (cont.)

Constraint Stack

x>= 0
x<=10

y>= 5

Constraint
System

x>= 0
x<=10

y < 5

Constraint
System

Stack Element

x>= 0
x<=10

y>= 5

Constraint
System

x>= 0
x<=10

y < 5

Constraint
System

Stack Element

x>= 0
x<=10

y>= 8

Constraint
System

x>= 0
x<=10

y<= 3

Constraint
System

Stack Element

Normalizer

Simplifier

Constraint
Solver

Selection
Unit

BooleanSolver

EliminationSolver

BisectionSolver

NewtonSolver

GaussianSolver

BuchbergerSolver

SimplexSolver

SolverManager
ControllerSJVM

13

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Backtracking

current execution ends:
result
invalid path
uncaught exception

backtracking
well known from the implementation of functional-logical programming
languages
return to prior program state, e.g. to a branching instruction, method
invocation
naïve approach: just copy the whole program state, better approach:
choice points: save information about the prior program state (e.g. program
counter, pointer to constraint system, trail …)
trail: save prior state of a variable (stack element …) once at the first change
of value

Page 123

14

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Backtracking (example)

0: iload_1
1: iload_2
2: if_icmpgt 47

47: iconst_m1
48: ireturn

5: iload_1
6: iload_2
7: iadd
8: iconst_2
9: idiv
10: istore 4
…

…
#1

high low

#2
…

…

2

Stack

LV Heap (host JVM) PC

Trail

CP Stack

…
#1

high low

#2
…

…

5

Stack

LV Heap (host JVM) PC

Trail

CP Stack

if_icmpgt 47

Code:

propagation to global
constraint system

47

15

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Backtracking (example)

…
#1

high low

#2
#4

…

9

Stack

LV Heap (host JVM) PC

Trail

CP Stack
47

+ 2

/

0

…
#1

high low

#2
#4

…

10

Stack

LV Heap (host JVM) PC

Trail

CP Stack
47

+ 2

/

0

Var 4

0: iload_1
1: iload_2
2: if_icmpgt 47

47: iconst_m1
48: ireturn

5: iload_1
6: iload_2
7: iadd
8: iconst_2
9: idiv
10: istore 4
…

Code:

istore 4

Page 124

16

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Arrays

0: iload_1
1: iload_2
2: if_icmpgt 47

5: iload_1
6: iload_2
7: iadd
8: iconst_2
9: idiv
10: istore_4
12: aload_0
13: iload 4
15: iaload
16: iload_3
17: if_icmpge 28

binsearch(int[] a , int low, int high,
int x)

Initialisierung: int[] = null

NullPointerException

17

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Arrays

0: iload_1
1: iload_2
2: if_icmpgt 47

5: iload_1
6: iload_2
7: iadd
8: iconst_2
9: idiv
10: istore_4
12: aload_0
13: iload 4
15: iaload
16: iload_3
17: if_icmpge 28

binsearch(int[] a , int low, int high,
int x)

Initialisierung: int[] = new int[0]

ArrayIndexOutOfBoundsException

Page 125

18

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Symbolic Execution: Arrays (cont.)

0: iload_1
1: iload_2
2: if_icmpgt 47

5: iload_1
6: iload_2
7: iadd
8: iconst_2
9: idiv
10: istore_4
12: aload_0
13: iload 4
15: iaload
16: iload_3
17: if_icmpge 28

binsearch(int[] a , int low, int high,
int x)

Initialisierung: int[] = new int[1]

Annahme: mid=0, dann in 15 keine Exception

19

Generating Test Cases Using a Symbolic Virtual Machine

Roger A. Müller, Christoph Lembeck, Herbert Kuchen

Summary

open ends
binary shifts
concurrent programming
precision of calculation
state explosion

summary
tool generation of structural tests
using elements of functional-logical programming and a
constraint solver (manager)
flexible test criterion
prototype: Eclipse plug-in

Page 126

1KATHOLIEKE
UNIVERSITEIT
LEUVEN

ASM-based Run-time Verification of
Application Protocols

Jan Smans, Bart De Win, Wouter Joosen, Frank Piessens
K.U.Leuven

André Mariën, Johan Van Oeyen
Ubizen

2KATHOLIEKE
UNIVERSITEIT
LEUVEN

Overview

• Problem Statement
• Background
• Run-time Verification of Application Protocols

– Mapping application events to actions
– Implementation and Tool support

• Deriving model programs from valid client code
• Conclusions and Future Work

Page 127

3KATHOLIEKE
UNIVERSITEIT
LEUVEN

Problem Statement

• Correct (secure) functioning of a distributed
application can depend on the client adhering to
an (often implicit) protocol or workflow
– Stateless session beans on the application server
– Protocol coded in web tier or client tier

Web Client Web Server App Server DB

Client Intranet

4KATHOLIEKE
UNIVERSITEIT
LEUVEN

Problem Statement

• Example: prototypical e-commerce application
– Stateless service methods

– Expected client operation

Product lookupProduct(String key)
void processPayment(String customer, int amount)
void shipProducts(String customer, Basket b)
int computePrice(Basket b)

1) lookup several products and possibly put in basket
2) compute price of basket
3) ask confirmation from the user
4) process payment for computed amount
5) Ship all products in basket

Page 128

5KATHOLIEKE
UNIVERSITEIT
LEUVEN

Problem Statement

• If client workflow is enforced through coding,
there can be a substantial risk that workflow
logic is changed or bypassed
– Example: workflow is implemented in a web tier

• Can be bypassed through forceful browsing or parameter
tampering

– Example: workflow is implemented in client tier
• Can be bypassed through reverse engineering of, and

tampering with client-side components

6KATHOLIEKE
UNIVERSITEIT
LEUVEN

Problem Statement

• How can we ensure that a (possibly remote)
component of a distributed application adheres
to an (implicitly or explicitly) expected protocol?
– With a focus on application-level protocols in object

oriented languages (C#, Java, …)
• Our approach:

– Position a (configurable) filter right in front of the
application server

– What is a good language for specifying the behavior
of the filter?

Page 129

7KATHOLIEKE
UNIVERSITEIT
LEUVEN

Background
• Model automata [1]:

– Are a variant of Abstract State Machines
• states are first-order structures

– Can be thought of as Labeled Transition Systems
• actions look like (atomic) method invocations

• Model programs
– Compactly encode large automata
– Programmed in Spec# [3] or AsmL

• The Spec Explorer tool [1,2]:
– Compiles model programs to .NET assemblies
– Provides support for exploring the state space
– Supports model-based test case generation

8KATHOLIEKE
UNIVERSITEIT
LEUVEN

Overview

• Problem Statement
• Background
• Run-time Verification of Application Protocols

– Mapping application events to actions
– Implementation and Tool support

• Deriving model programs from valid client code
• Conclusions and Future Work

Page 130

9KATHOLIEKE
UNIVERSITEIT
LEUVEN

Run-time verification

General approach:
– Position a filter between the two components at the side of

the trusted component
– Filter is programmed with a model program
– If an observed application event does not correspond to a

possible action in the model program, defensive measures
are taken

• Abort session
• Log event
• …

App ServerClient Filter

Model program

10KATHOLIEKE
UNIVERSITEIT
LEUVEN

Mapping application events to model
program actions

• Choice 1: action = method invocation
– Relatively easy to write
– In some cases inappropriate

• Non-atomic method bodies (e.g. callbacks)
• Full method invocation information is only known upon return of a

method, hence too late to block method call

• Choice 2: action = method entry or method return
– Most general
– Harder to write good model programs

• In this presentation, we focus on choice 1

Page 131

11KATHOLIEKE
UNIVERSITEIT
LEUVEN

Example Model Program
enum ShoppingState {ProductSelection, ReadyToPay, ReadyToShip, End};
ShoppingState state = ShoppingState.ProductSelection;
int topay = 0;
Product product = null;

public Product LookupProduct(String key) requires state == ShoppingState.ProductSelection; {
return <call real product lookup here>; }

public int ComputePrice(Product p) requires state == ShoppingState.ProductSelection; {
state = ShoppingState.ReadyToPay;
topay = <call real price computation logic here>
product = p;
return topay; }

void ProcessPayment(int amount) requires state == ShoppingState.ReadyToPay;
requires amount == topay; {

state = ShoppingState.ReadyToShip;
<call real process payment> }
…

Client State

State Update

Action Precondition

12KATHOLIEKE
UNIVERSITEIT
LEUVEN

(Part of) Corresponding Model
Automaton

(graph generated with the Spec Explorer tool from Microsoft Research)

Page 132

13KATHOLIEKE
UNIVERSITEIT
LEUVEN

Implementation & Tool Support

• Spec Explorer
– Explore specified application protocol

• Is this desired client behavior?
– Automatically instrument code to call the model program
– Compile the model program to a .NET assembly that

implements the desired filter
• Improving performance

– If the state space is finite, a much more efficient
implementation can be generated that checks the FSM
generated by Spec Explorer

14KATHOLIEKE
UNIVERSITEIT
LEUVEN

Overview

• Problem Statement
• Background
• Run-time Verification of Application Protocols

– Mapping application events to actions
– Tool support

• Deriving model programs from valid client code
• Conclusions and Future Work

Page 133

15KATHOLIEKE
UNIVERSITEIT
LEUVEN

Deriving model programs from client
code

• Writing the model programs can be labor-intensive
• An implementation of a valid client is also a

specification of the protocol
– But possibly an over-specification
– Not immediately usable to program a filter

• Our approach
– Compile a non-deterministic pseudo-code client program to a

model program
– Possibly compact the generated model automaton through

state grouping

16KATHOLIEKE
UNIVERSITEIT
LEUVEN

Example pseudo client code

Product p;
bool buy;
String key;
int price;

key = choose String;
p = lookupProduct(key);
price = computePrice(p);
buy = choose bool;
if (buy) {

processPayment("XYZ",price);
shipProducts("XYZ", p);

}

Client Program State: values for vars + PC

All action sequences
generated by this non-deterministic
client program are allowed

Page 134

17KATHOLIEKE
UNIVERSITEIT
LEUVEN

Construction of corresponding model
program

• Client program state (cps):
– Values for variables + Program Counter (PC)
– Is stable if the PC points to a method call to the server

• Client State CS in model program
– Set of possible stable client program states

• Precondition for a method call
– There exists a cps in CS that is ready to perform that call

• Client State update after a call
– Filter all cps that don’t have the observed call enabled
– Reduce all remaining cps’s to a stable cps

18KATHOLIEKE
UNIVERSITEIT
LEUVEN

Discussion

• Advantages:
– Pseudo client programs are much easier to write,
– … and can even be derived from existing client code by

replacing user input with choose statements
– Pseudo client programs have a “default deny” semantics

• Disadvantages:
– Pseudo client programs sometimes over constrain the

protocol
– Performance of the filter is much worse

• But this could in principle be improved through more advanced
compilation techniques

Page 135

19KATHOLIEKE
UNIVERSITEIT
LEUVEN

Conclusion and Future Work
• Model-programs are a suitable specification formalism

for application protocols
– Easy to implement protocol checking filter

• Model-programs can be written as independent
specifications of the application level protocol

• Or model programs can be derived from existing client
code

• This is work in progress:
– Implementations are only in the prototype stage
– Correctness proofs for the derivation of model programs have

yet to be constructed

20KATHOLIEKE
UNIVERSITEIT
LEUVEN

References
[1] Model-Based Testing of Object-Oriented Reactive

Systems with Spec Explorer. Colin Campbell, Wolfgang
Grieskamp, Lev Nachmanson, Wolfram Schulte, Nikolai
Tillmann and Margus Veanes. Microsoft Research
Technical Report, May 2005

[2] Online Testing with Model Programs. Margus Veanes,
Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte,
and Nikolai Tillmann. In ESEC/FSE 2005

[3] The Spec# programming system: An overview. Mike
Barnett, K. Rustan M. Leino, and Wolfram Schulte. In
CASSIS 2004, LNCS vol. 3362, Springer, 2004.

Page 136

1

Page 1

Business Process
Control

Albert W. Kisjes
++31 6 5585 3729

Turning
Internal Control Compliance

into
Competitive Advantage

���������� 	�
� 	���
����
�����

���
������

- 2 -

Assess
Exposure

Manage
Risk

Implement
Control

Introduction Deloitte Enterprise Risk Services

Process and
CRM/MCS/ ERP

assessment
and Project QA

Process &
System Management

incl. Integrity
Control & Security

Assurance Control &
security
solutions

Enterprise Risk Management

Information
Security

Assessments

Information
Security
Solutions

Data Quality Improvement

Enterprise
(boardroom)

Processes

Data

Technical
Infrastructure

Audit
support

Operational & IT audit
support & cosourcing

Page 137

2

Page 2

- 3 -

Introduction

• Business
– is for entrepreneurs

• Business Management
– is for mba’s to make entrepreneurs more effective

• Business Process Management
– is a tool for managers to improve business operations effectiveness

• Business Process Reliability Management
(or Business Process Control)

– Guarantees reliable structured operational management information
(information quality)

– Turns Internal Control Compliance into Competitive Advantage

- 4 -

Why business process management

• NEXT WAVES IN BUSINESS MODEL DEVELOPMENT

� �������������������������������� ��!"�����!�#��$��!"�"�#	�
�

� ���!"��"��	��	�!���	�	��%���%&�	�!��'(��)�

� �&���������%��	�!���!�*���!��'�
()

� �&��%	����!"��&��������	!��*����"�	!��
�����������
�	!�

� �&�	!�������������&���&��	!*�'�����������
����������)

� ��!���%	���	�!�����&�����	!*��&!��	�!��	!��
���"�����	�����!����

� &���������+���%������!"������%�

• MANAGEMENT NEEDS OF THE PROCESS ENTERPRISE

� ���&�	!*����+�
�%"�����%&�

� �	!��&!	!*��
����*�!	���	�!�%���"�%

� �&�����	!*��
�����������!�����	��

� ���
!	��%����%	���	�!���!�*���!��,��&������-�	!������&��&���
������	�!�

Page 138

3

Page 3

- 5 -

Why business process management

I. Operating Model II. Organisation

III. Process Management Plan IV. Performance Management & Metrics

Month 0-6

20%

10%

18%

10%

5%

8%

5%

5%

3%

1%

0%

Fu
nc

tio
n

Performance Measurements

18%Finance

Month 6-12

Distribution

Operations

HR

Month 12+

09/16/01 continuousHugh
McColl

Measure and
improve process

09/16/01 continuousMike
Stegeman

Train and coach
staff

09/16/0108/16/01Bradd
Craver

Document new detailed
processes

08/23/0108/16/01Rod
Sides

Assign tasks and
responsibilies

08/15/0108/01/01Mike StegemanDesign Process

ENDSTARTWHOTASK

CEO

VP - Distribution VP - Sales

Mgr.

Mgr.

Mgr.

Mgr.

Mgr.

Develop
Dis tribution
Network & Log
L-010

Develop Material
Storage & Handl
L-020

Address Mat'l
Dispos & Waste
Mgt L-030

Manage Physical
Inventory L-040

Provide Customer
Education & Aware
C-010

Respond to
Customer Inquiries
C-020

Provide Field
Service & Support
C-030

Manage Customer
Returns C-040

Manage Prod
Warrant & Recall
Act C-050

Support
Aftermarket
Service Requir
C-060

Develop
Manufacturing
Strategy M-010

Plan Product ion
M-020

Schedule
Production M-030

Execute
Production M-040

Perform
Setup/Changeover
M-050

Manage Line
Replenishment
M-060

Manage Product
Disposition M-070

Control & Report
Production Operati
M-80

Maintain
Product/Process
Data M-090

Develop &
Execute Market ing
Plans S-020

Forecast Demand
S-030

Develop &
Manage
Relat ionships
S-040

Develop New
Product Concepts
S-050

Plan Program
Development
D-010

Summarize
Business Strategy
D-020

Refine Product
Concepts D-030

Refine Process
Concepts D-040

Develop Sourcing
Strategies: Comp
D-050

Develop Program
Financials D-070

Manage Facility
Modifications
D-080

Design & Develop
Products D-090

Design & Develop
Processes, Tool
D-100

Manage Customer
Prototype Build
D-110

Acquire Tools,
Equipment &
Gauges D-130

Develop &
Implement Human
Resourc D-140

Validate
Production
Capability D-150

Deployment D-160

Develop &
Manage Quotes
D-060

Source
Components &
Materials D-120

Capture Orders
O-010

Process Orders
O-020

Pick & Pack
Orders O-030

Ship Orders O-040

Bill Revenue
O-050

Process Receipts
O-060

Develop
Procurement
Strategy P-010

Maintain Supplier
Data & Monitor
P-020

Manage Contracts
& Supplier Relat
P-030

Create & Maintain
Purchase Req
P-040

Purchase
Materials &
Services P-050

Receive Materials
& Services P-060

Determine
Discrepant
Materials P-070

Manage Contracts
& Sell Products
S-060

Launch New
Products D-170

Manage
Program/Product
Changes D-180

Measure Program
Performance
D-190

Manage
Collections O-070

Manage Payables
P-080

Market & Sell
Products/Ser ...

Develop & Manage Programs (D) Perform Order Management (O) Procure Materials & Services (P) Manufacture Products (M) Manage
Logistics (L)

Provide
Customer Su ...

Operational Processes

Conduct Market,
Customer & Comp
S-010

Develop
Dis tribution
Network & Log
L-010

Develop Material
Storage & Handl
L-020

Address Mat'l
Dispos & Waste
Mgt L-030

Manage Physical
Inventory L-040

Provide Customer
Education & Aware
C-010

Respond to
Customer Inquiries
C-020

Provide Field
Service & Support
C-030

Manage Customer
Returns C-040

Manage Prod
Warrant & Recall
Act C-050

Support
Aftermarket
Service Requir
C-060

Develop
Manufacturing
Strategy M-010

Plan Product ion
M-020

Schedule
Production M-030

Execute
Production M-040

Perform
Setup/Changeover
M-050

Manage Line
Replenishment
M-060

Manage Product
Disposition M-070

Control & Report
Production Operati
M-80

Maintain
Product/Process
Data M-090

Develop &
Execute Market ing
Plans S-020

Forecast Demand
S-030

Develop &
Manage
Relat ionships
S-040

Develop New
Product Concepts
S-050

Plan Program
Development
D-010

Summarize
Business Strategy
D-020

Refine Product
Concepts D-030

Refine Process
Concepts D-040

Develop Sourcing
Strategies: Comp
D-050

Develop Program
Financials D-070

Manage Facility
Modifications
D-080

Design & Develop
Products D-090

Design & Develop
Processes, Tool
D-100

Manage Customer
Prototype Build
D-110

Acquire Tools,
Equipment &
Gauges D-130

Develop &
Implement Human
Resourc D-140

Validate
Production
Capability D-150

Deployment D-160

Develop &
Manage Quotes
D-060

Source
Components &
Materials D-120

Capture Orders
O-010

Process Orders
O-020

Pick & Pack
Orders O-030

Ship Orders O-040

Bill Revenue
O-050

Process Receipts
O-060

Develop
Procurement
Strategy P-010

Maintain Supplier
Data & Monitor
P-020

Manage Contracts
& Supplier Relat
P-030

Create & Maintain
Purchase Req
P-040

Purchase
Materials &
Services P-050

Receive Materials
& Services P-060

Determine
Discrepant
Materials P-070

Manage Contracts
& Sell Products
S-060

Launch New
Products D-170

Manage
Program/Product
Changes D-180

Measure Program
Performance
D-190

Manage
Collections O-070

Manage Payables
P-080

Market & Sell
Products/Ser ...

Develop & Manage Programs (D) Perform Order Management (O) Procure Materials & Services (P) Manufacture Products (M) Manage
Logistics (L)

Provide
Customer Su ...

Operational Processes

Conduct Market,
Customer & Comp
S-010

Tools & Dashboards that will assist and focus
management in achieving on-going performance
improvements

Well positioned & focused organisation to
support future growth and profitability

More efficient processes and operations
to position the Company for the future

Tactical plan for mobilising and managing process
performance realising enduring improvements
beyond the quick hits

- 6 -

��
���.�

�/�������

��
���.�
*
�0�1

��
���.��
2�����3/���4

�1�
�1����
�
�����

��
���.��2�����3�
��0���(������
0��1���
���.��
.
�0�1

���������.
�����
5����(

��
���.�
���������3

����.�(���

�
���

����������
%�5�
�.�

��
��� ������4�3��
�5�
�
�6���
���.��7�����3

��(�������

�
�����
���3

����
��3

	�6�
(������
2�����3

�
������8����3

��(�������(�3��(�
�5��
��
6�
(��������
�����.�
�1����(��������
	�6�
(������2�����3

A Critical Driver of Investor Trust: Financial Information Quality

Page 139

4

Page 4

- 7 -

Deployment
phase

Implementation
phase

After the implementation most organisation do not pay speciifc
attention to proces monitoring & management…

1. Process
Scoping

2. Process
Modelling

3. Process
Implementation

4. Process (Control)
Monitoring

Re-implement

Opportunuties for Process improvement
/ process innovation and

design of business controls

Excellerate !

Align focus and scope of the organisation
and its business processes

Most organisations stop here!!

5. Competitive
advantage

- 8 -

• Qualitative self
assessment

– Employees answer questions on their
own work

– Simultaneous they are updated on
best practices

– And identify bottlenecks en solutions

• Quantitative assessement:
– Focus on “hard” metrics (what gets

measured gets done)
– Less organisational change

component due to less direct
involvement of individual employees

Qualitative
Self assessment

Quantitative
Data System
Measurement

Quantitative
Questionnaires

Qualitative
Research

Employee
involvement

Quantitative data

Qualitative data

Less employee
involvement

…while business process reliability management and controls
compliance monitoring can be implemented in different ways.

Page 140

5

Page 5

- 9 -

Business Process Control (or business process reliability
management) results in …………

• Uniformity and transparancy
– Uniform business procedures

– Uniform results

– Employees share information

• Better control on operations
and management information
– Uniform management information

– Specific information regarding
bottlenecks and issues

– Business Processes on the
management agenda

– Comply with regulations (incl

SoX)

…

• Motivation of employees
– Commitment of employess

– Employees start to deploy the
business processes

• Continous business process
improvement (More effective and
efficient processes)
– Relevante information any time any

format on subjects that are regarded
as important

– Think and communicate business
processes is the basis for
improvements

……………turning business process management and
process monitoring into competitive advantage

- 10 -

My Business Process Enablement Layermodel
Implementation phase

Manual business process procedures

Automated business process procedures (Workflow)

Implementation of application functionality

Master Data/Coding implementation

ERP/ eBusiness
“LEGO” standard
components

ADD
ON

Build in controls and security

Page 141

6

Page 6

- 11 -

My Business Process Enablement Layermodel
Deployment phase

Manual business process procedures

Automated business process procedures (Workflow)

Implementation of application functionality

Master Data/Coding implementation

ERP/ eBusiness
“LEGO” standard
components

ADD
ON

Build in controls and security

Business Process (Controls) Compliance Monitoring

- 12 -

CRM,
Mission Critical Systems (MCS)

ERP

Employee
portal

Mail
BEP
Business
Exchange
Platform

BOP
Business
Operating
Platform

BIP
Business
Information
Platform

Layermodel for IT-architecture

Supplier
& Customer

portals

Management
stakeholder

portal

Process
- Modelling,

- Performance Management
and -Compliance Monitoring

Knowledge
Management
Warehouse

Business
Information
Warehouse

Process
Performance
Warehouse

Process
portal

Page 142

7

Page 7

- 13 -

Tranport
services ����������

	�
�����
��
�
�
���

���������� ���������

Operations
Control
Center

Customer management

Supporting
Processes

��������
���	����

��
����
�������

���
��
�������

���
�����
��	
������

����	
���

�����
���

���
����
�������
������

 ����
��
���
�

���!��
�
���

�	���
�
	��"����

�
	
������
������
���
���	����

Staff

Equipment ����������
	�
�����

��
�
�
���

���������� ���������

Infrastructure
����
���������
�
�����
���

 �
����� ������������

Process Management processes and ICT processes

Recording to reporting (statutory as well as management; financial as well as non financial)

Layermodel for Process-architecture
Example processes in a Metro Organisation in a big city

- 14 -

Business Process Control Framework

Aspects of Quality
Validity
Auditability
Accuracy
Efficiency
Effectiveness, etc

Components of Control
Control Awareness
User Procedures
Policies and Standards
Training

Direction of Control
Detective
Preventive

Areas of Focus
Business Process ControlBusiness Process Control
ERP Security & AuthorizationsERP Security & Authorizations
Data IntegrityData Integrity
Information Technology Information Technology
IntegrityIntegrity

Business Drivers
Risk Management
KPI’s/PPI’s/CPI’s
Business Balanced Scorecard

Business Process Control
Methodology

Business
Reliability

Effectiveness,
Efficiency,
Reliability,
of Information

Effectiveness,
Efficiency,
Reliability,
of Information

Business Process Control Framework
Internal Control Framework
SOX/ 8 th Directive requirements
Risk Driven

(Internal) Audit Approach (IA)
Audit Methodology
State of the art tools

Page 143

8

Page 8

- 15 -

Monitoring

Information and Communication

Control Activities

Risk Assessment

Control Environment

OPERATIO
NS

FIN
ANCIA

L

REPORTIN
G

COMPLIA
NCE

U
N

IT
 A U

N
IT

 B

A
C

T
IV

IT
Y

 1

A
C

T
IV

IT
Y

 2

Control Activities: The policies and
procedures that help ensure that
actions are identified to manage risk
are executed and timely

Control Environment: The control
conscience of an organization. The
“tone at the top”

Monitoring: The process to
determine whether internal control is
adequately designed, executed
effective and adaptive

Information and Communication:
The process which ensures that
relevant information is identified and
communicated in a timely manner.

Risk Assessment: The evaluation of
internal and external factors that
impact an organization’s performance

COSO Internal Control Framework

© 1992 by the American Institute of Certified Public Accountants, Inc. Reprinted with permission.

- 16 -

Internal Control Cost Drivers – Management’s Tasks

• For the auditor to satisfactorily complete an audit of
ICFR, management must do the following:
– Accept responsibility for the effectiveness of the company's

internal control
– Evaluate the effectiveness of its internal control over financial

reporting using suitable control criteria
– Support its evaluation with sufficient evidence
– Present a written assertion about the effectiveness of its

internal control over financial reporting

• Disclaimer in case of non compliance

Page 144

9

Page 9

- 17 -

Deploy
ment

Reliability Assessment IReliability Risks and
Exposures Reliability Design Reliability

Configuration
Reliability

Implementation

Determine BPRM Scope
and Approach

Develop BPRMWorkplan

Update BPRM Scope, Approach and Work plan

Testing and Testing and
DeliveryDeliveryConfigurationConfigurationRedesignRedesignVisioning Visioning

and Targetingand Targeting
Scoping and Scoping and

PlanningPlanning

Business
Process Roles

Update BPRM
Monitoring plan

Execute
PPI + CPI

monitoring

Monitor
ÍCT controls

Continous Process
Reliability

improvement

Monitor
Infertace Reliability

effectiveness

Verify
Data Conversions

effectiveness

Monitor
Security Compliance

Continous
Applcations

Security improvement

Business Process (Reliability)
Modelling activities and deliverables

B
us

in
es

s
P

ro
ce

ss

R
el

ai
bi

lit
y

In
fo

rm
at

io
n

Te
ch

no
lo

gy

In
te

gr
ity

In
te

rf
ac

es
 a

nd

C
on

ve
rs

io
n

s
A

p
pl

ic
at

io
n

S
ec

ur
ity

P
ro

je
ct

M
an

ag
em

t

Information Technology
activities and deliverables

Security & Authorisations
activities and deliverables

Interfaces and data cleansing and conversion
activities and deliverables

Business Process Control Projects:

- 18 -

Lessons from Business Process Control Projects

CARRY OUT
INITIAL RISK
ASSESSMENT

DEFINE
SCOPE

DOCUMENT

DOCUMENT
INTERNAL
CONTOL

EVALUATE
CONTROL

DESIGN

TEST
CONTROL

OPERATION

IDENTIFY CONTROL GAPS

R
E

M
E

D
IA

T
E

EVALUATE CONCLUDE CAPITALISE

MGT
REPORT

Phase II Phase IV Phase V Phase VI

PILOT
PROJECT

CALIBRATE

Phase III

AUDIT
REPORT

PREPARE

KICKOFF

UNDERSTAND
CONTROL

ENVIRONMENT

Phase I

OPERATE
and

OPTIMISE

������	
���

	�����

������

���	���

������	

��
	��

�

�����������

��
�	�������	�

���

�����������

��

���
�	��

���	

	��
�

���������	��

��

	��
���

�����	����

���	��
�

�	
	��

�������	
	����

�
���

��
����
	�

�������	�

�
�
�����	

��	���

�

���	��
�

�
����
��

�����
��

��	���
	���

���	
������
�
���������������	�������
�����

�	�����

������	��	��

���	�

����

���

�	
��
�����

Page 145

10

Page 10

- 19 -

Business Process Control portal components

Processes

Data Organi
zation

Applications
+ Infa

Mission and strategy

Master
data

repository

Process
repository

Risk+
Controls

repository

Security
repository

Work
instructions
repository

Enterprise
Risk Mgmt
repository

Process
Modelling

Controls+
security

implementations

Process
Performance
Management

KPI +
benchmark
repository

Continuous
process risk +

controls mgmt +
monitoring

Continuous
appl security
monitoring

Business
Continuity

management

Management
reporting

Enterprise
Risk Management

support

Opinion
Surveys

Help
functions
repository

Continuous
process

improvement

Project
management

support

ISO 9001
ISO 14000

HSE, FDA, GMP
etc

Integration
engine

Functionality
components

Repositories

- 20 -

What is the competitive advantage

• Standardardized and documented processes enable
– Uniformity and transparancy (across departments

and organisations)

• Build in controls and security enable
– Better control on operations and management

information (more reliability)

• Process compliance monitoring enables
– Motivation of employees
– Continous business process improvement (more

effective and efficient processes)

Page 146

11

Page 11

- 21 -

Conclusion:
Get Your Business Processes Measured, Monitored , Managed, Mature

• Processes and Data

» survive applications and organisational models

» should be under User control (CPO organisation)

» should be supported by an integrated process
management portal

» control, risk management, quality and (internal)
audit functions should leverage the semantics and
documentation

» process modelling is one, managing process
performance and continuous proces improvement is
2,3,4 ….n

in order to Turning Internal Control Compliance into Competitive Advantage

- 22 -

To be a Business Process (Control) Pilot requires
a long horizon, a reliable engine, adequate training, a professional crew,

and a strong hand on the controls …..

………..in order to assure
a smooth flight and a safe landing and arrival

Page 147

Gestructureerd accepteren van bedrijfsprocessen

Klaas Smit

Atos Origin, Groningen, the Netherlands

Page 148

LOOKING FOR STABILITY

Cornelis Huizing, Ruurd Kuiper, Teade Punter, Alexander Serebrenik

Laboratory for Quality Software (LaQuSo)
Department of Mathematics and Computer Science

Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{C.Huizing, R.Kuiper, T.Punter, A.Serebrenik}@tue.nl

ABSTRACT: Tools ranging from code structure met-
rics to assertion checking are applied to assessment of
stability under future modification. The example code
and documentation concern a moderately-sized but re-
alistic Java implementation of a safety layer for a model
train system. The experiences show added value of com-
bining tools and, somewhat surprisingly, indicate that
assertion checking tools not only provide positive infor-
mation but also help in finding errors that would go un-
noticed even applying exhaustive approaches like model
checking.
Keywords: stability, ISO 9126, software product assess-
ment, static analysis, tools.

1 INTRODUCTION

We present experiences with computer-assisted assess-
ment of the stability under modification of software, by
means of static analysis. The experiments are carried
out in the context of the laboratory of Quality Soft-
ware (LaQuSo) at Eindhoven University of Technology
(TU/e), The Netherlands. One of the aims of LaQuSo is
to assess code from industry, e.g., for certification.

Static analysis on the code is appropriate, because
for stability it is code properties that are decisive rather
than the behavior per se. Furthermore, not only code but
also documentation is relevant for stability. Tool support
serves two different purposes: First, it provides the effi-
ciency to make it feasible to assess larger code, second it
provides the rigor that is necessary for validation and cer-
tification purposes. We therefore think it justified to try
to draw conclusions that, although being directly based

on our experiments, extend to product software.
Our contribution is twofold. First, we present an op-

erationalization of stability assessment by means of five
static analyses. Each of the analyses has been carried out
using an out-of-the-box tool: Sotograph, SA4J, IntelliJ
IDEA, Gemini, and ESC Java. The tools range from high
level assessment of the structure of code to lower level
checking of code against assertions from the specifica-
tion. Second, we assess the feasibility of the approach by
performing a case study.

We present a case study concerning the assessment
of the stability of a model train security system, written
in Java. The software and its documentation were devel-
oped as a student software engineering project at TU/e.

On the whole we are cautiously positive about the
possibilities provided by the tools we used. We mention
two general observations. First, we experienced that it is
advantageous to use the tools in an incremental fashion.
Order of application is important: e.g., some structural
properties are prerequisites to make assertion checking
feasible—it makes for efficient use of tools to find out
what is feasible quickly, and early on. Furthermore, the
combination of results from different tools shows that
Aristotle’s adage “the whole is more than the sum of
its parts” applies. For example, the development process
can be assessed, without this assessment being a specific
result of one tool.

Second, we found that especially the assertion check-
ing tool is not only, as one might suppose, useful to show
rigorously that code does satisfy specified properties, but
also reveals faults: because of the fine grained modular-
ity of the checks, the faulty code can be closely identi-

Page 149

fied. In particular, some malpractices detrimental to sta-
bility where brought to light that no behavioral check,
even an exhaustive approach like model checking, would
have exposed.

The paper is structured as follows. Section 2 intro-
duces the notion of stability, based on the ISO standard.
Five stability related issues are identified. In Section 3
the case is described. The most extensive Section 4 con-
tains the experiences. This section is organized accord-
ing to the stability-related issues identified in Section 2.
In Section 5 we conclude.

2 STABILITY

Assessing software quality is a difficult task. To formal-
ize the intuition of software being good or bad the Inter-
national Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC) have
proposed a series of standards [4, 6, 7, 5]. The standards
specify product quality characteristics, such as function-
ality, reliability, efficiency and maintainability, divide
them further into subcharacteristics and suggest meth-
ods of evaluating them. For example, maintainability is,
according to [4], the capability of the software product
to be modified. Modifications may include corrections,
improvements or adaptation of the software to changes
in environment, requirements, and functional specifica-
tions. Maintainability is further divided into analyzabil-
ity, changeability, stability, testability and maintainabil-
ity compliance. In this paper we focus on software sta-
bility.

Definition. 1 ([4]) Stability is the capability of the soft-
ware product to avoid unexpected effects from modifica-
tions of the software.

We consider quality of the software itself, so called inter-
nal quality [7], rather than quality of the computer-based
system including the software [6] or effects of using the
software in a specific context of use [5].

ISO 9126-3:2003 specifies two stability metrics mea-
suring internal quality, namely change impact and modi-
fication impact localization. Both metrics are based on
calculating some value after a modification. Unfortu-
nately, this information is not always readily available.

For instance, not all pre-release modifications of the soft-
ware might be kept. Moreover, documentation may be
missing, incomplete or inconsistent with the implemen-
tation. Therefore, the ISO-recommended metrics are not
applicable and we need a way to infer stability-related
information from the software implementation.

Instead, we identify the following five stability-
related issues. These issues are intended as a reasoned
attempt to operationalize the ISO definition of stability.
Two ideas guide our reasoning: We consider out-of-the-
box tools that provide information that appears relevant
to stability. We aim to cover the most important levels at
which design and implementation can be assessed. More
experiments and evaluation are needed to quantify how
well they correlate with the definition.

The stability-related issues are then the following.
Each of these issues is addressed for the case study in
a separate subsection of Section 4.

• functional decomposition. By functional decom-
position we understand division of the system in
a number of independent but cooperating units. In
particular, we are interested in detecting discrepan-
cies between the functional decomposition as pre-
sented in the documentation and as implemented
in the software.

• coupling. By coupling we understand a degree of
interdependence between a pair of units. By cou-
pling we understand a degree of interdependence
relations between a pair of units. For the analy-
sis of such interdependencies we have a look on
interface descriptions and compare those descrip-
tions as they were documented with how they are
actually implemented. We focus on call relations
(inbound and outbound calls) on package level, be-
cause this will provide us information about the in-
tensity of the relationship on an adequate abstrac-
tion level.

• dependency structure. By dependency structure
we understand the entire system of relationships
between different units of the system. For instance,
it is well-known that a modification in a tangled
unit, i.e., a unit belonging to a set of units such that
any of them depends on any other one, is likely to
diffuse through the entire tangle.

Page 150

• code duplication. By code duplication we un-
derstand presence of identical or almost identical
code fragments. By “almost identical” we un-
derstand minor syntactical differences between the
fragments such as renaming variables. Introducing
modifications into one instance of the duplicated
code necessitates propagation of the modification
to other instances.

• implementation malpractices. Some malpractices
do not affect code functionality and reliability but
code stability. In presence of such malpractices,
for instance, in object-oriented languages adding a
new class that inherits from the existing one can
lead to unexpected behavior of the resulting sys-
tem.

The first three issues can be viewed as features of the
design, the latter two more directly belong to the realm
of implementation.

As means to assess each of the characteristics above
we opt for static analysis techniques, i.e. analysis on the
code rather than the more usual dynamic analysis on the
behavior of the running program. The motivation is, that
for stability it is code properties that are decisive rather
than the behavior per se.

3 CASE STUDY

The software we have chosen as a case study implements
a safety layer for a Märklin model railway system. The
railway system consists of a number rail tracks, which
can include switches and turnouts. The railway topology
has been fixed; a rough idea of its complexity can be ob-
tained from Figure 1. At every moment of time up to
eighty model trains can ride simultaneously on the rail-
way. The user can manually operate the system by pro-
viding commands like “add a new train”, “turn the lights
off” or “prohibit an entry to a rail track”. The safety
layer takes care of minimizing the number of collisions
and derailments. Moreover, it enforces the riding trains
to move with the maximal speed that does not contradict
the safety requirements.

The software has been developed by a team of eight
third-year students as a part of their software engineer-
ing assignment. The implementation has been done in

Java and Delphi. We have restricted our attention to
the Java part, which consists of 9 packages, 164 classes
and counts 17828 lines of code. The implementation
makes use of seven different API packages, including
java.nio.channels.∗ and javax.comm.∗. As part of
the assignment, the students also provided a Software
Requirements Document (SRD) and an Architectural
Design Document (ADD).

Stability assessment has been required due to the in-
tention to reuse the implementation as the basis for a
more advanced train management system assignment.

4 ANALYSIS

4.1 Functional decomposition

A proper functional decomposition is an important factor
in the quality of software. It enables to handle complex-
ity by distributing functionality over several components.

We did not find tooling for a direct objective quan-
titative measure for the structural quality functional de-
composition of software. However, in the design phase a
proper functional decomposition should be defined. This
can be compared to the decomposition in the actual im-
plementation. Discrepancies between these two are a
potential cause for instabilities. One reason for this is
that undocumented deviations from the design are often
violations of architectural rules and causes of increased
complexity. Another reason is that later changes based
on the documentation can have unexpected effects if the
documentation is inaccurate.

In the case study software, the documented func-
tional decomposition into packages could not be com-
pared with the package structure of the actual software.
The reason is, that the relationships between packages
in the former are use relations and in the latter part-of
relations. Therefore, we used the tool Sotograph [11]
to derive the package communication diagram. Compar-
ing the diagrams reveals some differences: one package
has fewer connections than documented, some packages
have more connections.

The overall picture is that the package decomposi-
tion corresponds to the documented functional decompo-
sition. It is difficult to make strong claims about the func-
tional decomposition. When more information about the

Page 151

Figure 1: Railway topology

Page 152

intended architecture is available, a better assessment can
be made about the design itself and also as to how well
this is implemented.

4.2 Coupling (Interfaces)

Given a structural decomposition, further assessment can
be done on the coupling between programming elements
as well as on the (internal) cohesion of such elements.
Coupling is the degree of interdependence between pro-
gramming elements, i.e. modules, packages or classes. It
is an attribute of a set of pairs of these elements, rather
than of a complete design. Low coupling between ele-
ments is desirable in general, as it allows a divide and
conquer approach to complexity; it enhances stability in
particular, because modifications on one element have
little effect elsewhere. Cohesion concerns the interde-
pendence inside a programming element. High cohesion
is desirable, as it confirms that only strongly dependent
material is grouped together.

We assess coupling only; a similar assessment of co-
hesion would be possible, but we expected most insights
in the tool practicability to show up already for coupling.

In the case study, coupling is expressed as between
particular packages X and Y. The interdependencies can
be of several types, such as calls, polymorphic calls,
reads and type accesses. For our analysis several cou-
pling relationships were examined by comparing the in-
terface design documentation as planned to be imple-
mented (see Figure 2) and the call graphs of the imple-
mented code.

The call graph on package level is produced with So-
tograph (see Figure 3). The call graph on class level can
be viewed as a refinement of the call graph on package
level: the nodes are classes and packages, respectively.

Starting with the interface design document, we ex-
pected to find coupling relationships between the pack-
ages Train control, BSinterface, Security and HAL (hard-
ware abstraction layer). These packages call each other
and provide data according to a layered pattern. BSinter-
face and HAL are the interfacing packages with the rest
of the packages. Commands are sent from Train Con-
trol to Security, after which a confirmation or eventually
an error message is sent from Security to Train Control.
Then a next Command can be sent. In addition, events
will be sent that report about what is happening in the

traffic and the Security layer. There is also communi-
cation between Security and Configuration, which con-
cerns a logging facility for maintenance purposes. A
third type of communication is for error handling and
concerns Exceptions and the rest of the packages.

Figure 3 provides the Call graph of the implemented
code as produced with Sotograph. Looking at the cou-
pling types (the arrows) we found call relationships be-
tween the packages Train Control, BSinterface, Security
and HAL. These call relations are set according to what
we expected to find in a layered pattern of communica-
tion. Also the communication between Exceptions and
the rest of the packages is according to what we expected
to find. There are many throws of exceptions between
the methods of the concerned classes and packages. Ex-
ceptions are thrown if a precondition of a method is not
valid. The methods that receive such thrown exceptions
should send it further (throw) to the calling method to
deal with it or handle it themselves (catch). However,
looking at the third type of communication, between the
packages Configuration and Security we see that the first
package is not exclusively coupled to the Security pack-
age as it was planned. In fact the package is related to
many more packages: Train Control and HAL are also
communicating with the Configuration directly, instead
of via the Security package. The intertwined coupling
relationships that result from this makes the communica-
tion harder to understand and we regard this as a nega-
tive impact on the stability of the system. On behalf of
these findings we conclude that the overall coupling rela-
tionships in the system concern exchange of data. They
are well designed and the implementation is rather good.
A clear interface between Configuration and other pack-
ages is missing. From a coupling perspective of the sys-
tem, the systems Stability is well enough, not good.

4.3 Dependency structure

In this section we consider a number of malpractices re-
lated to software architecture as regards the dependency
structure. Presence of these malpractices can bear wit-
ness of a problematic design or of a violation of the orig-
inal design.

By a structural malpractice, also called an anti-
pattern, we understand a system of inter-element depen-
dencies that facilitates propagation of a change. A typical

Page 153

Figure 2: Calls according to the documentation

Figure 3: Calls according to the implementation

Page 154

example of such a malpractice would be a so-called local
breakable, an element such that many other elements de-
pend on it. In such a case, when the element is changed,
elements that depend on it might require modifications.
Local breakables are typically undesirable because they
“know too much”. In order to improve stability it is ad-
visable to refactor a local breakable into several elements
to distribute its dependencies. A dual notion is a notion
of a local butterfly, i.e., an element that immediately de-
pends on many other elements. Typical examples of lo-
cal butterflies in Java are basic interfaces, abstract base
classes, or utilities. Local butterflies are not necessarily
problematic, but in an unstable system changes can affect
areas beyond immediate notice. Local breakable which is
also a local butterfly is called a local hub. Local hubs are
typically undesirable because they amplify the effects of
change throughout the system. The global counterparts
of the notions of a breakable, a butterfly and a hub con-
sider transitive closure of the “depends” relation. Simi-
larly to local butterflies, global butterflies in Java are usu-
ally interfaces or utilities. Global breakables typically
are implementations of the highest-level concepts in a
system. Except for high-level concrete implementations,
global breakables are generally undesirable because they
indicate lack of modularity in the system. Global hubs
are very harmful and indicate a poorly conceptualized,
unstable system. Global hubs imply that the entire sys-
tem is entangled and interdependent. Small changes can
have ramifications that spread throughout the system. Fi-
nally, a tangle is set of elements such that a change in
one element can affect all other elements. Tangles are
known to be a major cause of instability in large systems.
Therefore, there should be no tangles of more than two
elements. Based on the discussion above we classify lo-
cal and global butterflies as less important anti-patterns,
local breakables, global breakables and local hubs as im-
portant anti-patterns, and global hubs and tangles of more
than two elements as very important anti-patterns.

Architectural malpractices introduced above can be
viewed as parameterized by the interpretations of “an el-
ement”, of the “depends” relationship and of the “many”
threshold. Provided that we work with an object-oriented
language we consider packages and classes as elements.
One can consider many different kinds of depends rela-
tions, such as accesses, calls, contains, extends, imple-
ments, instantiates, references, throws or uses. For ex-

ample, when a class A contains an instanceof-test or a
casting to a class B we say that A references B. Threshold
values for different kinds of malpractices might depend
on configuration of a measurement tool.

To discover presence of anti-patterns in the case
study software we have used a freely-available tool called
SA4J, abbreviating “Structural Analysis for Java”. The
tool has been developed at IBM and can be downloaded
from [10]. Table 1 summarizes threshold values of SA4J
for different kinds of anti-patterns and results of the ap-
plication of the tool to the case study software. For local
anti-patterns the threshold values are absolute, while for
the global ones they are expressed as percents of the to-
tal number of elements. It should be noted that for hubs
two threshold values should be taken into account: the
in-threshold and the out-threshold.

SA4J discovered that one of the tangles involves 24
classes and packages (17%).

The “depends” relation discussed above allows to
measure stability as a function of an average number
of elements affected by a modification of one element,
where affected should be understood as a transitive clo-
sure of “depends”. Formally, stability metrics calculated
by SA4J is the percentage of elements that are not ex-
pected to be affected by a change. For highly-stable sys-
tems this value should exceed 90%. For the case study
software the value of the metrics was 65%, far below the
desired threshold.

Summarizing the discussion above, we observe that
the system contains a significant number of impor-
tant anti-patterns (tangles, global hubs, global and local
breakables) and that the dependency metrics is out of the
stability boundaries. Therefore, we can conclude that
from the architectural perspective stability of the case
study software is poor.

4.4 Code duplication

Code duplication is a known problem in software de-
velopment. Generally, speaking when one of the in-
stances changes, the modification has to be propagated
to all other instances although the instances do not “de-
pend” on each other. Moreover, some of the architectural
anti-patterns can be eliminated by code duplication with-
out actually improving the design. For instance, if A is
a local breakable that depends on classes B, . . . ,Z one

Page 155

Anti-pattern Importance Threshold Count %
Tangle High 2 4 n/a
Global hub High 10%, 10% 30 22%
Local hub Medium 8, 8 11 8%
Global breakable Medium 15% 62 45%
Local breakable Medium 6 27 19%
Global butterfly Low 15% 90 66%
Local butterfly Low 10 25 18%

Table 1: Anti-patterns in the case study software

might have replicated A to AB, . . . ,AZ such that AB de-
pends solely ob B, ..., and AZ depends solely on Z. Such
a situation is clearly undesirable. Therefore we need to
consider code duplication.

A number of different techniques have been proposed
to identify the clones, among them those based on para-
metric string matching and metrics fingerprints. The
first category of approaches extracts an abstract token
stream from the code and then looks for maximal match-
ing strings in the stream with help of a suffix tree. While
these methods allow intricate duplication to be fund, they
sometimes can produce many insignificant results. By
insignificant results we understand segments of code that
match but are not necessarily cloned code. For instance,
one-line code duplication is typically insignificant. The
second group of approaches generates “fingerprints” by
calculating a number of metrics such as maximum level
of nesting, cyclomatic complexity, total number of lines,
number of parameters and number of global variables
for each function in the code. Functions with identical
fingerprints are potential duplicates. A clear disadvan-
tage of this approach is that it is restricted to functions as
entities and hence, partially duplicated functions are un-
noticed. Therefore we opted for string-matching-based
technique and applied a filtering function to the results.

We used two tools for assessing code duplication, In-
telliJ IDEA 4.5 and Gemini.

4.4.1 IntelliJ IDEA 4.5

One tool we used to locate duplicates is IntelliJ IDEA
4.5 [3]. IntelliJ IDEA is an integrated development en-
vironment supporting various development tasks such as
editing, compiling, analyzing malpractices and perform-

ing refactoring. Search for duplicated code in IntelliJ
IDEA starts with an abstraction step that anonymizes lo-
cal variables, fields, literals and simple expressions vis-
ible from outside of the duplication scope. To measure
simplicity of the expressions to be anonymized and to
filter out some insignificant results IntelliJ IDEA applies
a function, say f , based primarily on number of atomic
expressions and atomic statements in the analyzed scope.

Code duplication turned out to be present in the case
study software. 27 different clone groups have been dis-
covered, some of them counting seven or eight instances.
The longest clones appeared twice and consisted of eigh-
teen lines of code. The highest value of f is 57. We
compared these results with those obtained for a content
management platform InfoGlue. In InfoGlue 153 differ-
ent clone groups were detected, one of them counting
seventeen instances. The longest clone appeared in three
files and consisted of 53 lines of code. The highest value
of f is 293. We have seen that the clone groups ratio
(153 : 27∼ 5.66) roughly corresponds to the methods ra-
tio (5853 : 1018 ∼ 5.75).

4.4.2 Gemini

We have also applied a special code duplication locat-
ing tool, called Gemini developed at the Osaka Univer-
sity [12]. Gemini is based on an earlier tool, CCFInder,
which identifies code duplicates. Based on this informa-
tion Gemini presents the user with a number of metrics
and statistics on code duplication. We have observed
that the lion share of the code duplication was found in
the bsinterface package and between configuration
and old parser packages. Similarity between the files
was measured by means of a similarity ratio RSA defined

Page 156

for a given file f as

RSA(f) =
1

LOC(f) ∑
c∈CF(f)

LOC(c),

where LOC(c) is the number of lines of code c, and
CF(f) is a set of code fragments which are included in
file f and have clone relation in other files. In the summa-
tion overlapping code fragments are counted only once.
We have observed that the similarity ratio achieved 0.7,
i.e. 70% of some files was considered as a clone of the
remaining files of the system. Based on the information
provided by Gemini we computed the number of dupli-
cated lines of code, which turned out to exceed 1270, i.e.,
approximately 7% of the total number of lines of code.

4.4.3 Results

The tools applied agree on presence of code duplication.
Code duplication ratio of 7% corresponds to the 5 to 10%
code duplication in a typical large software system re-
ported in [9]. Therefore, stability of the software with
respect to code duplication issues can be estimated as av-
erage.

4.5 Implementation malpractices

To assess the quality of software, and in particular the
stability, the actual implementation can not be ignored.
However, most tools only analyze the structure of the
code, not its behavior. For behavior analysis mainly test-
ing and code review by humans are at hand. Testing is
not very suited for assessing stability, since its results
apply only to the current code, not to the code after a
possible change. Human code review is very costly and
for the case under study difficult, because the documen-
tation of the code was lacking in some aspects. Hence,
the code review should be supported by automatic tools.
We chose to apply a tool that performs behavioral checks
on the code against a formal specification. Potentially,
this is very involved, since a formal specification of the
code is not available and writing a full formal specifica-
tion is costly and not trivial. A less ambitious approach
is to check some properties that are evidently desired, but
are not evidently valid. Examples of such properties are:
any time a method is called, the reference to the callee is

non-null; every array index is within its bounds; when a
reference is cast to a subtype, the referred object is actu-
ally of that type. In general, these properties are easy to
check at runtime. Unfortunately, checking these proper-
ties at runtime does not guarantee that the properties hold
for all possible executions as opposed to executions cor-
responding to test cases. Thus, we need to apply static
techniques. One can expect two types of results: either
the property of interest has been formally established, or
the tool has failed to achieve this. The latter can be due
either to the fact that the property of interest indeed does
not hold, or due to the fact that the analyzer was not in-
telligent enough to prove it. Because of the fine grained
granularity of the checks, a failing step the analysis can
focus the reviewer’s attention to a potentially problem-
atic fragment.

A significant number of extra properties in the form
of pre/postconditions of methods and class invariants
have to be proved to conclude that desired properties do
hold. These efforts are, in fact, very informative about
the stability of the code. When it is very difficult to prove
them, it can mean that correct functioning of the code is
depending on a long and subtle chain of inferences that
could easily be disrupted by a change in the code. For
this purpose, we applied the approach of assertion check-
ing by theorem proving, using the tool ESC/Java 2[2, 1].
This tool checks Java code against a specification in Java
Modeling Language (JML) [8]. The subset of JML that
is supported includes pre/postconditions, class invariants,
loop invariants, and general assertions expressed in first-
order predicate logic. ESC/Java proves these properties
without intervention of the user, if it succeeds. It it fails
to do so, it can only be helped by adding or chang-
ing assertions, the proving process itself cannot be in-
fluenced. ESC/Java proves properties completely mod-
ular. It proves correctness of each class in isolation,
without using the implementation of other classes. Only
the specification of other classes is used. This makes
this approach different from model checking techniques,
where a global property is checked against a model of a
(sub)system that is usually larger than a single class. Fur-
thermore, properties are directly checked against the real
code, not against some model that has been created for
the purpose of the assessment. Modular checking puts
an extra burden on the verifier, since it requires to write
specifications that are strong enough to prove correct be-

Page 157

havior of all other classes and at the same time remain
true in any context the class may be used. Although
more difficult, this latter consequence of modular verifi-
cation is very important for quality assessment in general
and stability assessment in particular. Stability implies
that behavior of a class should not be compromised by a
change elsewhere and this is exactly what modular veri-
fication proves. We performed only a partial verification
with ESC/Java of the code under study. The reasons for
this are:

1. no formal specification was available;

2. although the proving process is automated, finding
the proper assertions to prove frequent properties
such as absence of index errors is a time consum-
ing task that requires much insight into the code;

3. many classes depended on classes from the Java
library such as java.util.Vector, which are not
completely specified.

In spite of these limitations, we found malpractices in the
code that could compromise stability and are hard to find
with other means than a careful code review. We stress
that the malpractices found should not be considered as
errors—functionality and reliability of the software are
not violated. However, these malpractices can lead to
unexpected results when software is modified. We give
two examples.

4.5.1 Casting error reveals stability risk

In several places the method boolean equals(Object)
from the class Object was reimplemented as follows:

public boolean equals(Object switch) {
return getID() == ((Switch)switch).getID();

}

ESC/Java produced a potential casting exception for this
method, since it could be called with an argument that
is not of the type Switch. In the actual code, however,
it is never called this way and hence no errors will be
observed in even an exhaustive test. The problem can
not be solved by adding a precondition that requires the
parameter switch be of the type Switch, since this pre-
condition will be stronger than the precondition defined

in the class Object for this method and hence violates the
requirements of polymorphism. The only solution is to
change the code (implementation or signature).

4.5.2 Correctness proof reveals immature code

A certain method contained an array index that could not
be proved safe at first hand. Then it turned out that a
parameter of the method was only called with the value
0, thus avoiding the indexing problem. It is clear that it
could not have been the original intention of the program-
mers to use the method in this manner: why would they
otherwise have included the parameter in the first place?
The reason was that a proper treatment of other values
than 0 had been postponed and never been included due
to lack of time.

4.5.3 Inferred coding malpractices

From the proofs it appeared that both long chains of
method calls as well as circular dependencies between
classes are present in the code.

4.5.4 Results

The verdict about the code quality of the example is thus
that this is rather poor. This judgment follows from the
combination of directly identified malpractices like the
casting error, encountered immature code and derived
malpractices like long call chains and circular dependen-
cies.

About the applicability of tooling we observe that al-
though the assertion checking has been limited and cov-
ering only parts of the code, it revealed some serious
quality problems that would be difficult to find with tools
that do not take into account the behavior of the program.
The casting error is a known malpractice and could be
revealed by a search for code smells, but only when the
search included this malpractice explicitly. The imma-
ture code problem was in fact a missing TODO comment
and it will be certainly missed by tools that do not look at
the actual behavior of the code. In general we conclude
that assertion checking is an important complement to
tools that only do a structural analysis of the code, in
particular when stability is an issue.

Page 158

Stability issue Tool Information used Assessment
Functional decomposition Sotograph Package communication dia-

gram
Conform documenta-
tion

Coupling Sotograph Call graph Well enough
Dependency structure SA4J Anti-patterns (no., percentage) Poor
Code duplication 1 IntelliJ IDEA4.5 Clone groups (no., instances

per group)
Average

Code duplication 2 Gemini Clone groups (similarity ratio) Average
Implementation malpractices ESC/Java2 Code correctness versus speci-

fication
Poor

Table 2: Assessment of the case study software

4.6 Summary

We summarize the results in Table 2. The issues are or-
dered from high-level structural assessments to low-level
code assessment.

The overall stability assessment for the example is:
“Bad code compromises good design”.

• Design is quite satisfactory

• Implementation

– violates the design
∗ flawed package communication
∗ flawed architecture

– Malpractices are introduced

• Implementation agrees with typical Software En-
gineering Project development practice:

– Emphasis on early stages of development
(design)

– Lack of time and resources during the imple-
mentation.

We observe that the off-shelf tools have been suc-
cessfully used for stability assessment. The interplay be-
tween different tools allows a quick and efficient estimate
what can and cannot be done: e.g., if Sotograph infor-
mation indicates that component structure and specifica-
tion structure do not concur, it can be decided that certain
further checking of properties at the ESC/Java2 level is
not feasible. Also, preliminary verdicts can be refined:

positive results, e.g., Sotograph’s positive judgment on
functional decomposition, can be further investigated by
judging coupling (“well enough”). The impact of nega-
tive results, like SA4J’s “poor” for dependency structure
(tangles!) can be further assessed by looking for code
malpractices (long call chains). Furthermore, results can
be combined, for example to assess the development pro-
cess itself (good design, but bad code is telling!).

Considering application effort of the tools an im-
portant distinction should be made between Sotograph,
SA4J, IntelliJ IDEA and Gemini, on the one hand, and
ESC/Java 2, on the other. First of all, applying ESC/Java
2 requires the code to be annotated while the remaining
tools work on the unmodified code. Second, applying
ESC/Java 2 is an iterative process: the verifier adds some
annotations, the tool succeeds in proving some of them
and fails in proving some other ones, which in its turn
triggers the user to add new annotations and to reapply
the system. All other tools are expected to be applied
once. We also need to consider an effort dedicated to
interpreting the results. The only tool that provides a
passing threshold is SA4J (“for highly-stable systems the
computed value should exceed 90%”). Understanding
values of the metrics computed by Sotograph or signif-
icance of code duplication detected by IntelliJ IDEA or
Gemini requires ability to compare the results obtained
with benchmark software. Finally, understanding the rea-
sons for failure of ESC/Java 2 to verify an assertion is a
challenging task. We summarize the discussion above in
Table 3.

Page 159

Tool Application effort Interpretation effort
Sotograph Low Medium
SA4J Low Low
IntelliJ IDEA 4.5 Low Medium
Gemini Low Medium
ESC/Java2 High High

Table 3: Application and interpretation effort

5 CONCLUSIONS

The code and documentation used in the case study are
moderately-sized but realistic: developed by a group
rather than one individual, and concerning a security
layer as present in a complete system rather than an iso-
lated protocol. Furthermore, the assessment was carried
out with the LaQuSo aim to assess software in a com-
mercially viable manner in mind rather than aiming for a
specific scientific correctness result. We therefore think
it justified to try to draw conclusions that, although be-
ing directly based on our experiments, extend to product
software.

The first, positive, observation is, that out-of-the-box
tools for quantitative assessment are available that pro-
vide support for an operationalization of the ISO def-
inition of stability into five stability issues - moreover,
support that is workable in terms of application and in-
terpretation effort.

The second encouraging observation is, that the re-
sults that the various tools produced were consistent with
one another - this applies both to the tools that assessed
different but, of course, related issues as well as to the
two tools that operated on the same issue, namely code
duplication. Furthermore, incremental use of the tools
is possible and profitable, the combination providing in-
sights that individual tools do not supply. For example,
none of the tools even addresses the development pro-
cess, but good design and bad implementation suggests
a process problem, like unbalanced allocation of time to
these two phases.

Third, on the downside we observe that although the
measurements themselves are quite clear, and consistent,
it is not always clear how to interpret and weigh them.
For example, more precise, quantitative, quality judg-
ments (beyond “good”, “average”, etc.) are hard to give.

Calibration against benchmarks and baselines would be
useful; for some but certainly not all tools this informa-
tion is present, but even then it is not always easy to judge
the value. For example, it might be required to know
more about other parameters: an administrative system
or a process control system might score quite differently
on diverse assessments but be quite similar as to stability.

Fourth, we were surprised about the positive con-
tribution of the assertion checking tools, which we ex-
pected to be of limited value, namely only aiming for
rigorously proving functional correctness rather than pro-
viding insight in stability issues. In fact the assertion
checking provided two insights:

• proof complexity reflects code complexity;

• failure to prove correctness of code with respect
to a specification that explicitly aims for stabil-
ity, reflects lack of stability—an example is spec-
ifying applicability in a more demanding environ-
ment than the one at hand in the assessed program.

To balance these positive remarks about the assertion
checking tools we remark that the lack of availability of
specifications for standard APIs that are needed to do the
checking is a serious limitation.

A fifth, somewhat meta-observation is, that the tool-
ing not only provided and enforced rigor but most im-
portantly made the assessments realistic and feasible in
terms of time and effort.

Summarizing the experiences:
Tooling made the assessments feasible in terms of

scale (time and size), consider for example the call graph,
rigor, consider ESC/Java, and objectivity - in the hands of
experts. Combinations of automated tools thus are essen-
tial for analysis, both for quality and to make assessment
feasible.

Page 160

Acknowledgment

We gratefully acknowledge the expert help of Erik Poll
with ESC/Java2. We also like to thank Software Tomog-
raphy GmbH in Munich for the provision of the Soto-
graph tool.

This paper appeared also in Proceedings of the Work-
shop on Development and Deployment of Product Soft-
ware (DDoPS-05), edited by Pradip Peter Dey, Ma-
hammad Amin, Sjaak Brinkkemper, Lai Xu (ISBN 0-
9742448-2-1 pp 291–304).

References

[1] Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry,
J.R., Leavens, G.T., Leino, K.R.M., Poll, E. “An
overview of JML tools and applications”, Software
Tools for technology Transfer, 2005.

[2] Flanagan, C., Leino, K.R.M., Lillibridge, M., Nel-
son, G., Saxe, J.B., Stata, R. “Extended static
checking for Java”, ACM SIGPLAN 2002, 234–
245, 2002.

[3] http://www.jetbrains.com/idea/, visited at April 29,
2005.

[4] ISO/IEC 9126. ISO/IEC 9126-1: 2001(E) Soft-
ware engineering—Product quality—Part 1: Qual-
ity model. ISO/IEC, 2001.

[5] ISO/IEC 9126. ISO/IEC 9126-4: 2001(E) Software
engineering—Product quality—Part 4: Quality in
use metrics. ISO/IEC, 2001.

[6] ISO/IEC 9126. ISO/IEC TR 9126-2: 2003(E) Soft-
ware engineering—Product quality—Part 2: Exter-
nal metrics. ISO/IEC, 2003.

[7] ISO/IEC 9126. ISO/IEC TR 9126-3: 2003(E) Soft-
ware engineering—Product quality—Part 3: Inter-
nal metrics. ISO/IEC, 2003.

[8] http://www.cs.iastate.edu/ leavens/JML/, visited at
April 28, 2005.

[9] Kapser, C., Godfrey, M. W. “Toward a taxonomy of
clones in source code: A case study”. In Proceed-
ings of the First International Workshop on Evo-
lution of Large-scale Industrial Software Applica-
tions (ELISA). IEEE, September 2003.

[10] http://www.alphaworks.ibm.com/tech/sa4j/, visited
at April 29, 2005.

[11] http://www.sotograph.com/, visited at April 29,
2005.

[12] Ueda, Y., Kamiya, T., Kusumoto, S., Inoue, K.
“Gemini: maintenance support environment based
on code clone analysis”, in Proc. Eighth IEEE Sym-
posium on Software Metrics, 4–7 June 2002, 67 –
76.

Dr. Cornelis Huizing holds a MSc degree in mathe-
matics (1985, Utrecht University) and received his PhD
in theoretical computer science at Eindhoven University
of Technology (1991), where he is currently employed.
His research interests include formal and automated ver-
ication of object-oriented programs and design patterns,
programming language design, and software visualiza-
tion.

Dr. Ruurd Kuiper works in modular veri cation
of programs against assertional and temporal logics
speci cations, using model checkers and theorem provers
for automation. Prior to joining the Formal Methods
group at Technische Universiteit Eindhoven he was em-
ployed at the Mathematical Center Amsterdam (CWI, the
Netherlands) and the Victoria University of Manchester,
the United Kingdom.

Dr. Ir. Teade Punter holds a MSc degree (Ir) in
Philosophy of Science and Society from Twente Univer-
sity and received his PhD (Dr) from Technology Man-
agement at Eindhoven University of Technology. From
1992 to 1996 he worked as courseteam leader for the
Computer Science department at the Open University of
the Netherlands in Heerlen. In 1996 he started his PhD
research on software product evaluation at Eindhoven
University of Technology and co-worked as a special-
ist for software product evaluation at Kema Nederland

Page 161

B.V. in Arnhem. From 2000 to 2004 Teade was a grou-
pleader for software product, process and subcontract-
ing assessments at the Fraunhofer Institute for Software
Engineering (Fraunhofer IESE) in Kaiserslautern, Ger-
many. Since August 2004 he works as an ICT Consul-
tant at LaQuSo (www.laquso.com), the Laboratory for
Quality Software of Eindhoven University of Technology
where he coordinates the acquisition of research projects.
Teade’s interests are in quality of software design, soft-

ware product assessment, software engineering for gam-
ing and empirical software engineering.

Dr. Alexander Serebrenik obtained a Ph.D. degree in
Computer Science (2003) from Katholieke Universiteit
Leuven, Belgium and M.Sc. degree (1999) from the He-
brew University, Jerusalem, Israel. His areas of expertise
include logic programming, termination analysis, pro-
gram transformation, abstract interpretation and process
modeling.

Page 162

www.sig.nl

Measure to Manage
Software Change

Good Cars?

Page 163

That was easy... but this one?

Looks nice enough…
One lady owner, 5 years old, ! 4800, 56.000km, Good condition,
new roadworthy.

Software Quality

• Functionality

• Performance

• Robustness

• Reliability

• Maintainability

• Changeability

• ...

Page 164

Software Change

• Maintenance more expensive than initial
development

• Software changes continuously:
• Functional (business demands)
• Technical (platforms, upgrades)

• Redundancy through mergers/take-overs

• Over time complexity increases

• Software is not designed to be changeable

Design for Change

• Architectural demands:
• Loosely coupled, modular, layered, object oriented

• Monitor:
• Size of units
• Dependencies (in/out)
• Code duplication
• Complexity/testability of code units
• Coverage and quality of tests
• Technical coding standards
• Technologies in use

Page 165

Software Portfolio Monitoring

• Heterogenic software systems

• Size and quality of complete portfolio

• Compare systems

• Measure changes over time

• Early indication of points of attention

Deliverables

Page 166

Technical Report

• Monthly report of factual (objective)
measurements

• Automated generation of report

• Visualization through charts and graphs

• Technical detail

• Based on needs of Project Management

Examples

Complexity of sourcecode

31%

22%

31%

4%

6%

2% 4%

LOC McCabe 1 - 5

LOC McCabe 6 - 10

LOC McCabe 11 - 15

LOC McCabe 16 - 20

LOC McCabe 21 - 40

LOC McCabe 40 - 60

LOC McCabe > 60

Page 167

Status Report

• Four monthly about quality of Portfolio

• Based on expert interpretation of technical
reports

• Focus on trends, correlations, and exceptions in
Portfolio

• Relation with business demands

• Recommendations for improvement

• Presentation followed by discussion

Annual Report

• State of the complete Portfolio

• Business-oriented instead of technical

• Focus on:
• Accomplished results
• Strategic achievements
• Risk management
• Next years targets

Page 168

Monitoring: Process

Recommendations
Status

report Presentation

Interpretation

Evaluation
Interviews

 4 monthly

Interviews

Summarize, relate to

strategy

Annual

report

 yearly

Repository

Sources
Technical

report
Report

Generator
Analyses

 monthly

data

Key values

• Automated analysis

• Suitable for heterogenic systems

• Simple to implement

• Useful in every organization

• Operative in weeks

• Usable at different levels in the organization

• Tuned to IT strategy

Page 169

www.sig.nl

Measure to Manage
Software Change

Page 170

Test Coverage for Fault-Based Specifications

Laura Brandán Briones, Ed Brinksma, and Mariëlle Stoelinga

Formal Methods & Tools
Department of Computer Science

University of Twente
{bandanl,brinksma,marielle}@cs.utwente.nl

Since testing is inherently incomplete, test selection is of vital importance. Coverage
measures evaluate the quality of a test suite and help the tester select test cases with
maximal impact at minimum cost. Coverage criteria for test suites are usually defined
in terms of syntactic characteristics of the implementation under test or its specification.
Typical black-box coverage metrics are state and transition coverage; white-box testing
often considers statement, condition and path coverage. A disadvantage of a syntactic
approach is that it assigns different coverage figures to systems that are behaviorally
equivalent, but syntactically different. Moreover, thosecoverage metrics do not take
into account that certain failures are more severe than others, and that more testing
effort should be devoted to uncover the most important bugs,while less critical system
parts can be tested less thorough.

In this talk, I will introduce a semantic notion of test coverage for fault-based spec-
ifications. A fault-based specification gives a weight to each potential error in an imple-
mentation. We define a framework to express coverage measures that express how well
a test suite covers such a specification, taking into accountthese error weight. Since
our notions semantic, they are insensitive to replacing a specification by one that is
behaviorally equivalent.

Moreover we present several algorithms that, given a certain minimality criteron,
compute a minimal set suite with maximal coverage. These algorithms are based on
existing and novel optization problems.

Page 171

Optimizing the Contribution of Testing to Project Success

Niels Malotaux
N R Malotaux - Consultancy

Bilthoven, Netherlands
niels@malotaux.nl

http://www.malotaux.nl/nrm/English
Copyright © 2006 by Niels Malotaux. Published by the VVSS2005 Symposium with permission

Abstract

Let’s define the Goal of development projects as:

Providing the customer with what he needs, at the
time he needs it, to be more successful than he was
without it, constrained by what we can deliver in a
reasonable period of time. Furthermore, let’s define
a defect as the cause of a problem experienced by
the users of our software. If there are no problems,
we will have achieved our goal. If there are prob-
lems, we failed.

We know all the stories about failed and partly
failed projects. Apparently, too many defects are
generated by developers, and too many remain
undiscovered by checkers, causing too many prob-
lems to be experienced by users. Solutions are
mostly sought in technical means like processes,
metrics and tools. If this really would have helped, it
should have shown by now.

Oddly enough, there is a lot of knowledge how to
reduce the generation and proliferation of defects
and deliver the right solution quicker. Still, this
knowledge is ignored in many development organi-
zations.

In 2004, I published a booklet: How Quality is
Assured by Evolutionary Methods, describing how to
organize projects using this knowledge successfully.
In this paper we’ll extend the use of this knowledge
to testing, in order to optimize the contribution of
testing to project success.

Important ingredients are: a change in attitude,
taking the Goal seriously, focusing on prevention
rather than repair, and constantly learning how to
do things better.

1. Introduction

We know all the stories about failed and partly
failed projects, only about one third of the projects
delivering according to the original goal [1].

Despite all the efforts for doing a good job, too
many defects are generated by developers, and too
many remain undiscovered by testers, causing still
too many problems to be experienced by users. It
seems that people are taking this state of affairs for
granted, accepting it as a nature of software devel-
opment. A solution is mostly sought in technical
means, like process descriptions, metrics and tools.
If this really would have helped, it should have
shown by now.

Oddly enough, there is a lot of knowledge about
how to significantly reduce the generation and
proliferation of defects and deliver the right solution
quicker. Still, this knowledge is ignored in the
practice of many software development organiza-
tions. In papers and in actual projects I’ve observed
that the time spent on testing and repairing (some
people call this debugging) is quoted as being up to
60 to 80% of the total project time. That’s a large
budget and provides excellent room for a lot of
savings.

In an earlier paper: How Quality is Assured by
Evolutionary Methods [2], I described practical
implementation details of how to organize projects
using this knowledge, making the project a success.
In an earlier booklet: Evolutionary Project Manage-
ment Methods [3], I described issues to be solved
with these methods and my first practical experi-
ences with the approach. Tom Gilb published al-
ready in 1988 about these methods [4].

In this paper we’ll extend the Evo methods to the
testing process, in order to optimize the contribution
of testing to project success.

Important ingredients for success are: a change in
attitude, taking the Goal seriously, which includes
working towards defect-free results, focusing on
prevention rather than repair, and constantly learning
how to do things better.

Page 172

http://www.malotaux.nl/nrm/English

2. The goal

Let’s define as the main goal of our software de-
velopment efforts: Providing the customer with what
he needs, at the time he needs it, to be satisfied, and
to be more successful than he was without it…

If the customer is not satisfied, he may not want
to pay for our development efforts. If he is not
successful, he cannot pay. If he is not more success-
ful than he already was, why should he have invested
in our product anyway?

Of course we have to add that what we do in a
development project is …constrained by what the
customer can afford and what we mutually benefi-
cially and satisfactorily can deliver in a reasonable
period of time.

Furthermore, let’s define a defect as the cause of
a problem experienced by the users of our software.
Defects are caused by errors made by people. If there
are no problems, we’ll have achieved our goal. If
there are problems, we failed.

3. The knowledge

Important ingredients for significantly reducing
the generation and proliferation of defects and
delivering the right solution quicker are:
• Clear Goal: If we have a clear goal for our

project, we can focus on achieving that goal. If
management does not set the clear goal, we
should set the goal ourselves.

• Prevention attitude: Preventing defects is more
effective and efficient than injecting-finding-
fixing, although it needs a specific attitude that
usually doesn’t come naturally.

• Continuous Learning: If we organize projects in
very short Plan-Do-Check-Act (PDCA) cycles,
constantly selecting only the most important
things to work on, we will most quickly learn
what the real requirements are and how we can
most effectively and efficiently realize these
requirements. We spot problems quicker,
allowing us more time to do something about
them. Actively learning is sped up by expressly
applying the Check and Act phases of PDCA.

4. Evo

Evolutionary Project Management (Evo for short)
uses this knowledge to the full, combining Project-,
Requirements- and Risk-Management into Result
Management. The essence of Evo is actively, delib-
erately, rapidly and frequently going through the
PDCA cycle, for the product, the project and the
process, constantly reprioritizing the order of what
we do based on Return on Investment (ROI), and
highest value first. In my experience as project

manager and as project coach, I observed that those
projects, who seriously apply the Evo approach, are
routinely successful on time, or earlier [5].

Evo is not only iterative (using multiple cycles)
and incremental (breaking the work into smaller
parts), like many similar Agile approaches, but
above all Evo is about learning. We proactively
anticipate problems before they occur and work to
prevent them. We may not be able to prevent all the
problems, but if we prevent most of them, we have a
lot more time to cope with the few problems that slip
through.

5. Something is not right

Satisfying the customer and making him more
successful implies that the software we deliver
should show no defects. So, all we have to do is
delivering a result with no defects. As long as a lot
of software is delivered with defects and late (which
I consider a defect as well), apparently something is
not right.

Customers are also to blame, because they keep
paying when the software is not delivered as agreed.
If they would refuse to pay, the problem could have
been solved long ago. One problem here is that it
often is not obvious what was agreed. However, as
this is a known problem, there is no excuse if this
problem is not solved within the project, well before
the end of the project.

6. The problem with bugs

In a conventional software development process,
people develop a lot of software with a lot of defects,
which some people call bugs, and then enter the
debugging phase: testers testing the software and
developers trying to repair the bugs.

Bugs are so important that they are even counted.
We keep a database of the number of bugs we found
in previous projects to know how many bugs we
should expect in the next project. Software without
bugs is even considered suspect. As long as we put
bugs in the center of the testing focus, there will be
bugs. Bugs are normal. They are needed. What
should we do if there were no bugs any more?

This way, we endorse the injection of bugs. But,
does this have anything to do with our goal: making
sure that the customer will not encounter any
problem?

Personally, I dislike the word bug. To me, it re-
fers to a little creature creeping into the software,
causing trouble beyond our control. In reality,
however, people make mistakes and thus cause
defects. Using the word bug, subconsciously defers
responsibility for making the mistake. In order to
prevent defects, however, we have to actively take
responsibility for our mistakes.

Page 173

7. Defects found are symptoms

Many defects are symptoms of deeper lying
problems. Defect prevention seeks to find and
analyze these problems and doing something more
fundamental about them.

Simply repairing the apparent defects has several
drawbacks:
• Repair is usually done under pressure, so there is

a high risk of imperfect repair, with unexpected
side effects.

• Once a bandage has covered up the defect, we
think the problem is solved and we easily forget
to
address the real cause. That’s a reason why so
many defects are still being repeated.

• Once we find the underlying real cause, of which
the defect is just a symptom, we’ll probably do a
more thorough redesign, making the repair of the
apparent defect redundant.

As prevention is better than cure, let’s move from
fixation-to-fix to attention-to-prevention.

Many mistakes have a repetitive character,
because they are a product of certain behavior or
people. If we don’t deal with the root causes, we will
keep making the same mistakes over and over again.
Without feedback, we won’t even know. With quick
feedback, we can put the repetition to a halt
immediately.

8. Defects typically overlooked

We must not only test whether functions are
correctly implemented as documented in the
requirements, but also, a level higher, whether the
requirements adequately solve the needs of the
customer according to the goal. Typical defects that
may be overlooked are:
• Functions that won’t be used (superfluous

requirements, no Return on Investment)
• Nice things (not required, added by designers or

programmers, usefulness not checked, not paid
for)

• Missing quality levels (should have been in the
requirements) e.g.: response time, security,
maintainability, usability, learnability

• Missing constraints (should have been in the
requirements)

• Unnecessary constraints (not required)
• Being late or over budget (few people learnt to

treat these as defects)
 Another problem that may negatively affect our goal
is that many software projects end at “Hurray, it
works!”. If our software is supposed to make the
customer more successful, our responsibility goes
further: we have to make sure that the increase in
success is going to happen.

This awareness will stimulate our understanding
of quality requirements like “learnability” and
“usability”. Without it, these requirements don’t
have much meaning for development. It’s a defect if
success is not going to happen.

9. Is defect free software possible?

Most people think that defect free software is im-
possible. This is probably caused by lack of under-
standing about what defect free, or Zero Defects,
really means. Think of it as an asymptote (Figure 1).

We know that an asymptote never reaches its target,
but we can do our best to approach the target level as
closely as possible. However, if we put the bar at an
acceptable level of defects, we’ll asymptotically
approach that level Only if we put the bar at zero
defects, we can asymptotically approach Zero
Defects.
Philip Crosby wrote [6]:

Conventional wisdom says that error is inevitable.
As long as the performance standard requires it,
then this self-fulfilling prophecy will come true.
Most people will say: People are humans and
humans make mistakes. And people do make
mistakes, particularly those who do not become
upset when they happen. Do people have a built-in
defect ratio? Mistakes are caused by two factors:
lack of knowledge and lack of attention. Lack of
attention is an attitude problem.

When Crosby first started to apply Zero Defects as
performance standard in 1961, the error rates
dropped 40% almost immediately [6]. In my projects
I’ve observed similar effects.

Zero Defects is a performance standard, set by
management. In Evo projects, even if management
does not provide us with this standard, we’ll assume
it as a standard for the project, because we know that
it will help us to conclude our project successfully in
less time.

Figure 1: Zero Defects is an asymptote.
The curve is also called: “learning curve”

Page 174

10. Attitude

As long as we are convinced that defect free soft-
ware is impossible, we will keep producing defects,
failing our goal. As long as we are accepting defects,
we are endorsing defects. The more we talk about
them, the more normal they seem. It's a self-fulfilling
prophecy. It will perpetuate the problem. So, let’s
challenge the defect-cult and do something about it.

From now on, we don’t want to make mistakes
any more. We get upset if we make one. Feel the
failure. If we don't feel failure, we don’t learn. Then
we work to find a way not to make the mistake
again. If a task is finished we don’t hope it’s ok, we
don’t think it’s ok, no, we’ll be sure that there are no
defects and we’ll be genuinely surprised when there
proves to be any defect after all.

In my experience, this attitude prevents half of the
defects in the first place. Because we are humans, we
can study how we operate psychologically and use
this knowledge to our advantage. If we can prevent
half of the defects overnight, then we have a lot of
time for investing in more prevention, while still
being more productive. This attitude is a crucial
element of successful projects.

Experience: No more memory leaks
My first Evo project was a project where people had
been working for months on software for a hand-
held terminal. The developers were running in
circles, adding functions they couldn’t even test,
because the software crashed before they arrived at
their newly added function. The project was already
late and management was planning to kill the pro-
ject. We got six weeks to save it.
The first goal was to get stable software. After all,
adding any function if it crashes within a few min-
utes of operation is of little use: the product cannot
be sold. I told the team to take away all functionality
except one very basic function and then to make it
stable. The planning was to get it stable in two
weeks and only then to add more functionality
gradually to get a useful product.
I still had other business to finish, so I returned to
the project two weeks later. I asked the team “Is it
stable?”. The answer was: “We found many memory
leaks and solved them. Now it’s much stabler”. And
they were already adding new functionality. I said:
“Stop adding functionality. I want it stable, not
almost stable”. One week later, all memory leaks
were solved and stability was achieved. This was a
bit of a weird experience for the team: the software
didn’t crash any more. Actually, in this system there
was not even a need for dynamically allocatable
memory and the whole problem could have been
avoided. But changing this architectural decision
wasn’t a viable option at this stage any more.
Now that the system was stable, they started adding
more functions. We got another six weeks to
complete the product. I made it very clear that I
didn’t want to see any more memory leaks. Actually
that I didn’t want to see any defects. The result was
that the testers suddenly found hardly any defect any
more and from now on could check the correct
functioning of the device. At the end of the second
phase of six weeks, the project was successfully
closed. The product manager was happy with the
result.
Conclusion: after I made it clear that I didn’t want to
see any defects, the team hardly produced any
defects. The few defects found were easy to trace
and repair. The change of attitude saved a lot of
defects and a lot of time. The team could spend most
of its time adding new functionality instead of fixing
defects. This was Zero Defects at work. Technical
knowledge was not the problem to these people:
once challenged, they quickly came up with tooling
to analyze the problem and solve it. The attitude was
what made the difference

Experience: No defects in the first two weeks of use
A QA person of a large banking and insurance
company I met in a SPIN metrics working group
told me that they got a new manager who told them
that from now on she expected that any software
delivered to the (internal) users would run defect
free for at least the first two weeks of use. He told
me this as if it were a good joke. I replied that I
thought he finally got a good manager, setting them
a clear requirement: “No defects in the first two
weeks of use.” Apparently this was a target they had
never contemplated before, nor achieved. Now they
could focus on how to achieve defect free software,
instead of counting function points and defects.
Remember that in bookkeeping being one cent off is
already a capital offense, so defect free software
should be a normal expectation for a bank. Why
wouldn’t it be for any environment?

Page 175

11. Plan-Do-Check-Act

I assume the Plan-Do-Check-Act (PCDA- or
Deming-) cycle [7] is well known (Figure 2).

Because it’s such a crucial ingredient, I’ll shortly
reiterate the basic idea:
• We Plan what we want to accomplish and how

we think to accomplish it best.
• We Do according to the plan.
• We Check to observe whether the result from the

Do is according to then Plan.
• We Act on our findings. If the result was good:

what can we do better. If the result was not so
good: how can we make it better. Act produces a
renewed strategy.

The key-ingredients are: planning before doing,
systematically checking and above all acting: doing
something differently. After all, if you don’t do
things differently, you shouldn’t expect a change in
result, let alone an improvement in result.

In Evo we constantly go through multiple PDCA
cycles, deliberately adapting strategies, in order to
learn how to do things better all the time, actively
and purposely speeding up the evolution of our
knowledge. As a driver for moving the evolution in
the right direction, we use Return on Investment
(ROI): the project invests time and other resources
and this investment has to be regained in whatever
way, otherwise it’s just a hobby. So, we’ll have to
constantly be aware whether all our actions
contribute to the value of the result. Anything that
does not contribute value, we shouldn’t do.

Furthermore, in order to maximize the ROI, we
have to do the most important things first. In prac-
tice, priorities change dynamically during the course
of the project, so we constantly reprioritize, based on
what we learnt so far. Every week we ask ourselves:
“What are the most important things to do. We
shouldn’t work on anything less important.” Note
that priority is molded by many issues: customer
issues, project issues, technical issues, people issues,
political issues and many other issues.

12. How about Project Evaluations

Project Evaluations (also called Project
Retrospectives, or Post-Mortems - as if all projects
die) are based on the PDCA cycle as well. At the end
of a project we evaluate what went wrong and what
went right.

Doing this only at the end of a project has several
drawbacks:
• We tend to forget what went wrong, especially if

it was a long time ago.
• We put the results of the evaluation in a write-

only memory: do we really remember to check
the evaluation report at the very moment we need
the analysis in the next project? Note that this is
typically one full project duration after the fact.
So there is not much benefit for the next project.

• The evaluations are of no use for the project just
finished and being evaluated.

• Because people feel these drawbacks, they tend
to postpone or forget to evaluate. After all, they
are already busy with the next project, after the
delay of the previous project.

In short: the principle is good, but the implemen-
tation is not tuned to the human time-constant.

In Evo, we evaluate weekly (in reality it gradually
becomes a way-of-life), using PDCA cycles, and
now this starts to bear fruit (Figure 3):

• Not so much happens in one week, so there is not
so much to evaluate.

• It’s more likely that we remember the issues of
the past five days.

• Because we most likely will be working on the
same kind of things during the following week,
we can immediately use the new strategy, based
on our analysis.

• One week later we can check whether our new
strategy was better or not, and refine.

• Because we immediately apply the new strategy,
it naturally is becoming our new way of working.

• The current project benefits immediately from
what we found and improved.

st
ar

t

ev
al

ua
tio

n

st
ar

t

ev
al

ua
tio

n
st

ar
t

en
d

st
ar

t

en
d

ev
al

ua
tio

n
ev

al
ua

tio
n

ev
al

ua
tio

n

Figure 3: Project and Result evaluations

Figure 2: PDCA or Deming cycle

Page 176

Evaluations are good, but they must be tuned to
the right cycle time to make them really useful. The
same applies to testing, as this is also a type of
evaluation.

13. Current Evo testing

In conventional development mode, most verifi-
cation is still executed in Waterfall mode: developers
are first allowed to inject defects (in drawings,
designs, or pieces of code), then testers and checkers
are supposed to find the defects injected, after which
the developers are supposed to repair the defects
found. In reality, testers and checkers find only part
(30 – 80%) of the defects injected (testers and
checkers are human as well). In Evo, we humbly
admit that we probably don’t know the real require-
ments, that we have to check our assumptions and
that we are prone to making mistakes. Evo testers
assist the development people to reach their goal
successfully. This includes verification of all phases
of the development process and ploughing back the
findings to the developers for optimizing the prod-
uct, the project and the process.

Developers design the order of Deliveries in such
a way that, in case they made an erroneous assump-
tion or a downright error, it will be found as quickly
as possible (Figure 4). This way, most of any undis-
covered defects will be caught before the final
delivery and, more importantly, be exploited for
prevention of further injection of similar defects.
Evo projects do not need a separate verification
(sometimes called “debugging”) phase and hardly
need repair after delivery. If a delivery is ready, it is
complete. Anything is only ready if it is completely
done, not to worry about it any more. That includes:
no defects. I know we are human and not perfect, but
remember the importance of attitude: we want to be
perfect. Because all people in the project aim for
Zero Defects delivery, the developers and testers
work together in their quest for perfection.

Note that perfection means: freedom from fault or
defect. It does not mean: gold plating.

14. Further improvement

In the original Evo concept we gained a lot by
preventing the injection of defects, because people
learn during the work: if a designer has to produce
several documents (plans, drawings, designs, pieces
of code) or pieces of hardware, he can learn from his
mistakes made in the first item, and avoid making
similar mistakes in subsequent similar work.

As long as single pieces of work are still made in
waterfall mode, first “completed” and only subse-
quently checked, we are still waiting for the
designers to inject defects first, hoping that we can
find and fix all these defects afterwards. In order to
drive prevention further, why don’t we contemplate
checking the result of designers before the first item
is completed, so that they can prevent mistakes
immediately, avoiding the waterfall-syndrome even
on single pieces of work. This may seem overkill in
case of a first small document of a large set of
documents. It makes a lot of sense, however, in case
of one single, or a relatively large document.

We can also extend the Evo project management
techniques to the QA process itself and exploit the
PDCA paradigm even further:
• Testers focus on a clear goal. Finding defects is

not the goal. After all, we don’t want defects.
Any defects found are only a means to achieve
the real goal: the success of the project.

• Testers will select and use any method appropri-
ate for optimum feedback to development, be it
testing, review or inspection, or whatever more
they come up with.

• Testers check work in progress even before it is
delivered, to feedback issues found, allowing the
developer to abstain from further producing these
issues for the remainder of his work.
“Can I check some piece of what you are work-
ing on now?” “But I’m not yet ready!” “Doesn’t
matter. Give me what you have. I’ll tell you what
I find, if I find anything”. Testers have a different
view, seeing things the developer doesn’t see.
Developers don’t naturally volunteer to have
their intermediate work checked. Not because
they don’t like it to be checked, but because their
attention is elsewhere. Testers can help by ask-
ing. Initially the developers may seem a little

Figure 4: Testing of early deliveries helps the developers to get ready
for zero-defect final delivery

Page 177

surprised, but this will soon fade. If the testers
play this game well.

• Similarly, testers can solve a typical problem
with planning reviews and inspections. Develop-
ers are not against reviews and inspections, be-
cause they very well understand the value. They
have
trouble, however, planning them in between of
their design work, which consumes their atten-
tion more. If we include the testers in the process,
the testers will recognize when which types of
review, inspections or tests are needed and
organize these accordingly. This is a natural part
of their work helping the developers to minimize
rework by minimizing the injection of defects
and minimizing the time slipped defects stay in
the system.

In general: organizing testing the Evo way means
entangling the testing process more intimately with
the development process.

15. Cycles in Evo

In the Evo development process, we use several
learning cycles (see [2] and [3] for explanations of
terms):
• The TaskCycle [9] is used for organizing the

work, optimizing estimation, planning and
tracking. We constantly check whether we are
doing the right things in the right order to the
right level of detail. We optimize the work
effectiveness and efficiency. TaskCycles never
take more than one week.

• The DeliveryCycle [10] is used for optimizing
the requirements and checking the assumptions.
We constantly check whether we are moving to
the right product results. DeliveryCycles focus
the work organized in TaskCycles. DeliveryCy-
cles normally take not more than two weeks.

• TimeLine [11] is used to keep control over the
project duration. We optimize the order of
DeliveryCycles in such a way that we approach
the product result in the shortest time, with as
little rework as possible.

During these cycles we are constantly optimizing:
• The product [12]: how to arrive at the best

product (according to the goal).
• The project [13]: how to arrive at this product

most effectively and efficiently.
• The process [14]: finding ways to do it even

better. Learning from other methods and
absorbing those methods that work better,
shelving those methods that currently work less
effectively.

If we do this well, by definition, there is no better
way.

16. Evo cycles for testing

Extending Evo to testing adds cycles (Figure 5)
for feedback from testing to development, as well as
cycles for organizing and optimizing the testing
activities themselves:

• Testers organize their work in weekly, or even
shorter TaskCycles.

• The DeliveryCycle of the testers is the Test-
feedback cycle: in very short cycles testers take
intermediate results from developers, check for
defects in all varieties and feed back optimizing
information to the developers, while the develop-
ers are still working on the same results. This
way the developers can avoid injecting defects in
the remainder of their work, while immediately
checking out their prevention ideas in reality.

• The Testers use their own TimeLine, synchro-
nized with the development TimeLine, to control
that they plan the right things at the right time, in
the right order, to the right level of detail during
the course of the project and that they conclude
their work in sync with development.

During these cycles the testers are constantly
optimizing:
• The product: how to arrive at the most effective

product. Remember that their product goal is:
providing their customer, in this case the
developers, with what they need, at the time they
need it, to be satisfied, and to be more successful
than they were without it.

• The project: how to arrive at this product most
effectively and efficiently.

• This is optimizing in which order they should do
which activities to arrive most efficiently at their
result.

• The process: finding ways to do it better.
Learning from other methods and absorbing
those methods that work better, shelving those
methods that currently work less effectively.

Figure 5: Adding testcycles to an Evo project

Page 178

Testers are part of the project and participate in the
weekly 3-step procedure [15] using about 20 minutes
per step:
1. Individual preparation.
2. 1-to-1’s: Modulation with and coaching by

Project Management .
3. Team meeting: Synchronization and synergy

with the team.
Project Management in step 2 of the 3-step

procedure is now any combination, as appropriate, of
the following functions:
• The Project Manager/Leader, for the project

issues.
• The Architect, for the product issues.
• The Test Manager, for the testing issues.

There can be only one captain on the ship, so the
final word is to the person who acts as Project
Manager, although he should better listen to the
advice of the others.

Testers participate in requirements discussions.
They communicate with developers in the
unplannable time [16], or if more time is needed,
they plan tasks for interaction with developers. If the
priority of an issue is too high to wait for the next
TaskCycle, the interrupt procedure [17] will be used.
If something is unclear, an Analysis Task [18] will
be planned. The Prevention Potential of issues found
is an important factor in the prioritization process.

In the team meeting testers see what the develop-
ers will be working on in the coming week and they
synchronize with that work. There is no ambiguity
any more about which requirements can be tested
and to which degree, because the testers follow
development, and they design their contribution to
assist the project optimally for success.

In Evo Testing, we don’t wait until something is
thrown at us. We actively take responsibility.
Prevention doesn’t mean sitting waiting for the
developers. It means to decide with the developers
how to work towards the defect free result together.
Developers doing a small step. Testers checking the
result and feeding back any imperfections before
more imperfections are generated, closing the very
short feedback loop. Developers and testers quickly
finding a way of optimizing their cooperation. It’s
important for the whole team to keep helping each
other to remind that we don’t want to repair defects,
because repair costs more. If there are no defects, we
don’t have to repair them.

In many cases, the deadline of a project is defined
by genuine external factors like a finite market-
window. Then we have to predict which require-
ments we can realize before the deadline or “Fatal-
Date”. Therefore, we still need to estimate the
amount of work needed for the various requirements.
We use the TimeLine technique to regularly predict
what we will have accomplished at the FatalDate and

what not, and to control that we will have a working
product well before that date. Testers use TimeLine
to control that they will complete whatever they have
to do in the project, in sync with the developers.

Doesn’t all of this take a lot of time? No.
My experience with many projects shows that it
saves time, projects successfully finishing well
before
expected. At the start it takes some more time. The
attitude, however, results in less defects and as soon
as we focus on prevention rather than continuous
injection-finding-fixing, we soon decrease the
number of injected defects considerably and we
don’t waste time on all those defects any more.

17. RI/CR/PR database

Most projects already use some form of database
to collect defects reported (PR/Problem Report:
development pays) and proposed changes in
requirements (CR/Change Request: customer pays).

If we are seriously in Prevention Mode, striving
for Zero Defects, we should also collect Risk Issues
(RI): issues which better be resolved before
culminating into CR’s or PR’s.

With the emphasis shifted from repair to preven-
tion, this database will, for every RI/CR/PR, have to
provide additional space for the collection of data to
specifically support the prevention process, like:
• Follow-up status.
• When and where found.
• Where caused and root cause
• Where should it have been found earlier
• Why didn’t we find it earlier
• Prevention plan
• Analysis task defined and put on the

Candidate Tasks List [19].
• Prevention task(s) defined and put on the

Candidate Tasks List.
• Check lists updated for finding this issue easier,

in case prevention doesn’t work yet.
Analysis tasks may be needed to sort out the details.
The analysis, prevention and repair tasks are put on
the Candidate Tasks List and will, like all other
candidate tasks, be handled when their time has
come: if nothing else is more important. Analysis
tasks, prevention tasks and repair tasks should be
separated, because analysis and prevention usually
have priority over repair. We better first stop the
leak, to make sure that not more of the same type of
defect is injected.

18. How about metrics?

In Evo, the time to complete a task is estimated as
a TimeBox [20], within which the task will be 100%
done. This eliminates the need for tracking consid-

Page 179

erably. The estimate is used during the execution of
the task to make sure that we complete the task on
time. We experienced that people can quite well
estimate the time needed for tasks, if we are really
serious about time.

Note that exact task estimates are not required.
Planning at least 4 tasks in a week allows some
estimates to be a bit optimistic and some to be a bit
pessimistic. All we want is that, at the end of the
week, people have finished what they promised. As
long as the average estimation is OK, all tasks can be
finished at the end of the week. As soon as people
learn not to overrun their (average) estimates any
more, there is no need to track or record overrun
metrics. The attitude replaces the need for the metric.
So, we do use metrics and measurements in Evo, but
we are very reluctant to accumulate a lot of meas-
urement data because of the limited use of the data
for project success. We rather use the data to imme-
diately learn. Once we have learnt, the old data has
no meaning any more.

It can be useful to know the average time of real-
izing certain software functions of a given size and
complexity. We can optimize these times, but they
will not become zero: there is always a finite time
needed to complete such tasks. Such metrics can be
useful for predicting the cost of the development.

For defects, however, the goal is Zero Defects.
And when there are no defects, there is no cost-of-
defects (cost of non-quality) involved. So, what’s the
use of “knowing” the number of defects “to be
expected”?

Several typical testing metrics become irrelevant
when we aim for defect free results, for example:
• Defects-per-kLoC or Defects-per-page

Counting defects condones the existence of de-
fects, so there is an important psychological rea-
son to discourage counting them.

• Incoming defects per month, found by test,
found by users. Don’t count incoming defects.
Do something about them. Counting conveys a
wrong message. We should better make sure that
the user doesn’t experience any problem.

• Defect detection effectiveness or Inspection
yield (found by test / (found by test + customer))
There may be some defects left, because perfec-
tion is an asymptote. It’s the challenge for testers
to find them all. Results in practice are in the
range of 30% to 80%. Testers apparently are not
perfect either. That’s why we must strive towards
zero defects before final test. Whether that is dif-
ficult, is beside the point.

• Cost to find a defect
The less defects there are, the higher the cost to
find the few defects that slip through from time
to time, because we still have to spend the time to

test, to see that the result is OK. This was a bad
metric anyway.

• Number and types of issues resolved or unre-
solved or Age of open customer found defects
Whether and how a defect is closed or not,
depends on the prioritizing process. Every week
any problems are handled, appropriate tasks are
defined and put on the Candidate Tasks List, to
be handled when their time has come. It seems
that many metrics are there because we don’t
trust the developers to take appropriate action. In
Evo, we do take appropriate action, so we don’t
need policing metrics.

• When are we done with testing?
Examples from conventional projects: if the
number of bugs found per day has declined to a
certain level, or if the defect backlog has
decreased to zero. In some cases, curve fitting
with early numbers of defects found during the
debugging phase is used to predict the moment
the defect backlog will have decreased to zero.
Another technique is to predict the number of
defects to be expected from historical data. In
Evo projects, the project will be ready at the
agreed date, or earlier. That includes all
appropriate testing being done.

Instead of improving non-value adding activities,
including various types of metrics, it is better to
eliminate them. In many cases (but not all!), the
attitude, and the use of the Evo techniques replace
the need for metrics. Other metrics may still be
useful, like Remaining Defects, as this metric
provides information about the effectiveness of the
prevention process. Still, even more than in conven-
tional metrics activities, we will be on the alert that
whatever we do must contribute value.

If people have trouble deciding what the most
important work for the next week is, I usually
suggest as a metric: “The size of the smile on the face
of the
customer”. If one solution does not get a smile on his
face, another solution does cause a smile and a third
solution is expected to put a big smile on his face,
which solution shall we choose? This proves to be an
important Evo metric that helps the team to focus.

19. Finally

Many software development organizations in the
world are working the same way, producing defects
and then trying to find and fix the defects found,
waiting for the customer to experience the reminder.
In some cases, the service organization is the profit-
generator of the company. And isn’t the testing
department assuring the quality of our products?
That’s what the car and electronics manufacturers
thought until the Japanese products proved them

Page 180

wrong. So, eventually the question will be: can we
afford it?

Moore’s Law is still valid, implying that the com-
plexity of our systems is growing exponentially, and
the capacity needed to fill these systems with
meaningful software is growing exponentially even
faster with it. So, why not better become more
productive by not injecting the vast majority of
defects. Then we have more time to spend on more
challenging activities than finding and fixing defects.
I absolutely don’t want to imply that finding and
fixing is not challenging. Prevention is just cheaper.
And, testers, fear not: even if we start aiming at
defect free software, we’ll still have a lot to learn
from the mistakes we’ll still be making.
Dijkstra [8] said:

It is a usual technique to make a program and then
to test it. But: program testing can be a very
effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.

Where we first pursued the very effective way to
show the presence of bugs, testing will now have to
find a solution for the hopeless inadequacy of
showing their absence. That is a challenge as well.

I invite testers from now on to change their focus
from finding defects, to working with the developers
to minimize the generation of defects in order to
satisfy the real goal of software development
projects. Experience in many projects shows that this
is not an utopia, but that it can readily be achieved,
using the Evo techniques described.

References

[1] The Standish Group: Chaos Report,

1994, 1996, 1998, 2000, 2002, 2004.
http://www.standishgroup.com/chaos_resources/
index.php

[2] N.R. Malotaux: How Quality is Assured by
Evolutionary Methods, 2004.
http://www.malotaux.nl/nrm/pdf/Booklet2.pdf

[3] N.R. Malotaux: Evolutionary Project Management
Methods, 2001.
http://www.malotaux.nl/nrm/pdf/MxEvo.pdf

[4] T. Gilb: Principles of Software Engineering
Management, 1988. Addison-Wesley Pub Co,
ISBN: 0201192462.

[5] See cases:
http://www.malotaux.nl/nrm/Evo/EvoFCases.htm

[6] P.B. Crosby: Quality Without Tears, 1984.
McGraw-Hill, ISBN 0070145113.

[7] W.E. Deming: Out of the Crisis, 1986. MIT,
ISBN 0911379010.

 M. Walton: Deming Management At Work, 1990. The
Berkley Publishing Group, ISBN 0399516859.

[8] E. Dijkstra: Lecture: The Humble Programmer, 1972.
Reprint in Classics in Software Engineering.
Yourdon Press, 1979, ISBN 0917072146.

[9] TaskCycle ref [2] chap 5.1 ref [3] chap 3C
[10] DeliveryCycle ref [2] chap 5.1 ref [3] chap 3C
[11] TimeLine ref [2] chap 5.5 and 6.8
[12] Product ref [2] chap 4.2
[13] Project ref [2] chap 4.3
[14] Process ref [2] chap 4.4
[15] 3-step procedure ref [2] chap 6.9
[16] Unplannable time ref [2] chap 6.1
[17] Interrupt procedure ref [2] chap 6.7
[18] Analysis task ref [2] chap 6.6 ref [3] chap 8
[19] Candidate Task List ref [2] chap 6.5 ref [3] chap 8
[20] TimeBox ref [2] chap 6.4 ref [3] chap 3D

Page 181

http://www.standishgroup.com/chaos_resources/
http://www.malotaux.nl/nrm/pdf/Booklet2.pdf
http://www.malotaux.nl/nrm/pdf/MxEvo.pdf
http://www.malotaux.nl/nrm/Evo/EvoFCases.htm

WSS2005 - Analytical Software Design ASD 2005/11/21

Copyright Verum Consultants BV 1

Analytical Software Design

Guy H. Broadfoot

Page 182

WSS2005 - Analytical Software Design ASD 2005/11/21

Copyright Verum Consultants BV 2

Copyright (c) 2004 Verum Consultants BVCopyright (c) 2004 Verum Consultants BV

Testing is necessary but insufficientTesting is necessary but insufficient

Modern software designs are increasingly Modern software designs are increasingly
asynchronous, concurrent, reactive and event drivenasynchronous, concurrent, reactive and event driven

Complexity, Deadlocks, NondeterminismComplexity, Deadlocks, Nondeterminism
Nondeterministic systems are untestableNondeterministic systems are untestable

Testing is an exercise in samplingTesting is an exercise in sampling
Sample is small, population is very largeSample is small, population is very large

Software specifications and designs are not verified Software specifications and designs are not verified
before implementationbefore implementation

Testing software means testing specification, design and Testing software means testing specification, design and
implementation at the same timeimplementation at the same time

Testing is the most expensive, least certain way to Testing is the most expensive, least certain way to
detect and remove defects and has maximum impact on detect and remove defects and has maximum impact on
T2MT2M

Modern software designs are increasingly asynchronous and concurrent. Such systems
are, by definition, nondeterministic, increasingly complex and introduce the potential for
design errors such as deadlocks, divergence and race conditions. These are among the
most difficult errors to detect and remove by testing. It is axiomatic that nondeterministic
systems are untestable. There is no economically feasible amount of testing that can give
us any meaningful measures of correctness and freedom from errors.

All testing is an exercise in sampling, but in testing software systems, the sample size is
very small compared to the population size. Consider a simple software module with an
alphabet of 20 stimuli and a maximum sequence length of 10 (that is, the longest
sequence of input stimuli that results in unique behaviour). There are in the order of
1.08E13 potential execution scenarios. Now imagine two different components of this
complexity executing concurrently and communicating on a shared an alphabet of 10
events. How many potential execution scenarios are there? Now imagine compositions
of 20 such processes, or a 100 or more. How can conventional, informal design methods
address such complexity? What does testing coverage mean in this context?

Software engineering differs from all other branches of engineering in one important way;
all other branches of engineering routinely use appropriate branches of mathematics to
verify specifications and design before construction. Software engineering uniquely does
not. Most software is developed without the use of mathematics during specification and
design. Designs cannot be verified before construction. Testing must therefore test
specifications, designs and implementation. Testing is the least certain, most expensive
way to detect and remove specification and design errors because it occurs after the
software has been implemented and because the systems we design are
nondeterministic. Testing also occurs at a time when defect detection and repair has the
greatest impact of time-to-market.

Improving testing methods and tools will result in limited improvement in testing costs and
effectiveness; the greatest gain is to be made by reducing the errors in the software when
it enters testing. How can we do this?

Page 183

WSS2005 - Analytical Software Design ASD 2005/11/21

Copyright Verum Consultants BV 3

Copyright (c) 2004 Verum Consultants BVCopyright (c) 2004 Verum Consultants BV

Verum Design PrinciplesVerum Design Principles

Business Critical Software must be based on Business Critical Software must be based on
designs that are verifiably correct before designs that are verifiably correct before
implementation implementation

Software Architects and Designers must limit Software Architects and Designers must limit
themselves to designs that can be verifiedthemselves to designs that can be verified

We can follow the routine practices of other branches of engineering. Verum designs and
develops Business Critical for its Clients; that is software essential to some core product
or service our Clients provide to their customers. Predictable cost, quality and time-to-
market are key issues for our Clients. These are the two golden rules that govern how we
meet these requirements. The rest of this presentation addresses how we put the first
principle into practice.

Page 184

WSS2005 - Analytical Software Design ASD 2005/11/21

Copyright Verum Consultants BV 4

Copyright (c) 2004 Verum Consultants BVCopyright (c) 2004 Verum Consultants BV

Design

Functional
Requirements

Code

Analytical Software DesignAnalytical Software Design™™

BB:S* → R
Functional Specification

Inspection

For new software, either for new systems or for new parts of existing systems, we start
with a conventional “informal” specification in the form of the work products already
produced by our Customer’s existing development process. Step 1 is to make an ASD
specification using Sequence-based Specification techniques (SBS) to produce a so-
called Back Box Function (BB) specifying the required functional behaviour. This is a total
mathematical function mapping all possible sequences of input stimuli (events, messages
method calls etc.) onto the specified system response. We do this together with
Customer domain / technical experts. The goal here is precision, not detail as such.

For reengineering existing software components either because of required changes or
because conventional testing based approaches have been unable to solve stability or
reliability problems, we may also reverse engineer the specifications from the existing
code base, again with the involvement as needed from those familiar with the code.

When we have completed the ASD specification, we must establish 1) that it matches the
original specification 2) that the design fully implements it and 3) that the code fully
implements the design.

The first we do by inspection. This is possible because although the ASD specifications
are based on mathematical principles, they do not use difficult mathematical notations.
They are easily accessible to stakeholders and fully traceable to the original
specifications. The other questions are answered next – starting with the design.

Page 185

WSS2005 - Analytical Software Design ASD 2005/11/21

Copyright Verum Consultants BV 5

Copyright (c) 2004 Verum Consultants BVCopyright (c) 2004 Verum Consultants BV

BB:S*→R
Design

Functional
Requirements

Code

Analytical Software DesignAnalytical Software Design™™

BB:S* → R
Functional Specification

Inspection

We make the design following generally accepted, conventional approaches, the big
differences being 1) the emphasis we place on precision and 2) the way in which we
document the design. Function behaviour is captured using SBS in the form of a design
BB. Again, the ASD specifications allow full participation of other engineers because they
do not rely on much visible mathematics. Most software engineers learn this technique
quite quickly and like it.

If we are reengineering and existing component, then during the design we may reverse
engineer much of the design from the existing code.

Page 186

WSS2005 - Analytical Software Design ASD 2005/11/21

Copyright Verum Consultants BV 6

Copyright (c) 2004 Verum Consultants BVCopyright (c) 2004 Verum Consultants BV

BB:S*→R
Design

Functional
Requirements

Code

Analytical Software DesignAnalytical Software Design™™

BB:S* → R
Functional Specification

Inspection

?

Having done this, we have a “proof” obligation to discharge; namely verifying the BB
function of the design against the BB we made from the requirements. How do we know
the design implements everything in the requirements and nothing else? How do we
know it will behave according to its functional requirements?

Page 187

WSS2005 - Analytical Software Design ASD 2005/11/21

Copyright Verum Consultants BV 7

Copyright (c) 2004 Verum Consultants BVCopyright (c) 2004 Verum Consultants BV

BB:S*→R
Design

Functional
Requirements

?

Code

BB:S* → R
Functional Specification

CSP
Black Box

CSP
Specification

⊑F

Model Checking

Does the Black
Box design

refine the Black
Box specification

✓

Analytical Software DesignAnalytical Software Design™™

Inspection

We translate the BB specifications of the requirements and the design automatically to
CSP models and we use the model checker FDR to establish that the BB design exactly
complies with it. The way we apply SBS to specifications enables nondeterminism to be
captured properly, essential when describing externally visible behaviour. CSP algebra
also captures nondeterminism and the refinement principles used in CSP are able to
compare deterministic design models mathematically to nondeterministic specification
models. The mathematical verification we use in this case is called Failures Refinement.
With this, we can verify whether or not the design (i) specifies all required behaviour in the
correct way; (ii) does not specify any behaviour not specified in the specification and (iii) if
optional behaviour is specified in the design, it is designed according to the specification.
These are not inspections or tests; these are mathematical proofs so they hold for all
possible execution scenarios. We could never establish this by testing.

Page 188

WSS2005 - Analytical Software Design ASD 2005/11/21

Copyright Verum Consultants BV 8

Copyright (c) 2004 Verum Consultants BVCopyright (c) 2004 Verum Consultants BV

BB:S*→R
Design

Functional
Requirements

?

Code

BB:S* → R
Functional Specification

CSP
Black Box

CSP
Specification

⊑F

Model Checking

Analytical Software DesignAnalytical Software Design™™

Inspection

✓ Does the design
work with the

other components
it uses?

But of course, in reality, we cannot establish that a design behaves correctly without
considering how it interacts with the other components it uses. Indeed, the way in which
the design will interact with other components, HW or SW, is a key part of establishing
that the design is correct. Particularly in event driven, reactive systems with concurrent
behaviour, this cannot be done by inspecting static design specifications individually. We
need some way of exploring the dynamic behaviour of the design as it will behave
together with its runtime environment when it executes. And of course, we wish to do this
before we implement our designs in code. How do we do this?

Page 189

WSS2005 - Analytical Software Design ASD 2005/11/21

Copyright Verum Consultants BV 9

Copyright (c) 2004 Verum Consultants BVCopyright (c) 2004 Verum Consultants BV

BB:S*→R
Design

Functional
Requirements

?

Code

BB:S* → R
Functional Specification

CSP
Black Box

CSP
Specification

⊑F

CSP
Black Box

|| BB:S* → R
Functional Specification

Used
Component
InterfacesModel Checking

✓

Analytical Software DesignAnalytical Software Design™™

Inspection

Inspection

We apply SBS to analyse the externally visible behaviour of these other components and
make BB function specifications of them. This is a valuable exercise in itself; it leads to a
more complete and deeper understanding of the behaviour of these other components; it
focuses on interface behaviour and frequently raises important questions not clearly
addressed in the conventional interface specifications. It looks like new work, but it is not;
we have to do this analysis and understanding anyway in order to successfully program
against these interfaces even in a conventional development process. The new work is
just capturing this knowledge as a BB function and we get a huge payoff for this little extra
effort. We verify this work by inspection and discussion with “experts”.

When implementing new software components that are to be a part of an existing legacy
system, it is frequently the case that the current implementation of the legacy software no
longer behaves according to the existing specifications. In these situations, the ASD
specifications will be made with frequent reference to the existing legacy code base,
“recovering” the current specifications from the existing implementation.

Having done this, we generate the CSP models of these interfaces and check our design
together with these interface models.

Page 190

WSS2005 - Analytical Software Design ASD 2005/11/21

Copyright Verum Consultants BV 10

Copyright (c) 2004 Verum Consultants BVCopyright (c) 2004 Verum Consultants BV

BSDM
BB:S*→R

Design

Functional
Requirements

?

Generated
Code

CSP
Black Box

CSP
Specification

⊑F

CSP
Black Box

||

Used
Component
InterfacesModel Checking

Hand-written
Code + + Generated

Test Cases

Inspection

✓

✓
BB:S* → R

Functional Specification

BB:S* → R
Functional Specification

Analytical Software DesignAnalytical Software Design™™

Inspection

At this point, we have a design which is verified against the functional requirements. We
now have to implement this and verify the implementation against the design. The BB
specification of the design is not a good programming specification – it uses abstractions
such as infinite sequences of abstract events that are difficult to represent in most
programming languages. The “abstraction” step is too big to expect a programmer to
move directly from the BB specification to code. These abstractions have to be made
more concrete before we can program them. This is done using the Box Structured
Development Method (BSDM). This gives us a mathematically sound way to transform
the BB into a State Box (SB) in which all these difficult abstractions are replaced by state
data and state data update rules. We can program directly from this and we can check
the code against this by inspection.

But first, we must establish that we made no mistakes and the SB exactly refines the BB.

Page 191

WSS2005 - Analytical Software Design ASD 2005/11/21

Copyright Verum Consultants BV 11

Copyright (c) 2004 Verum Consultants BVCopyright (c) 2004 Verum Consultants BV

BSDM
BB:S*→R

Design

Functional
Requirements

?

?

Generated
Code

SB:(T,S)→(T’,R)
Design

CSP
Black Box

CSP
State Box

≡T

CSP
Specification

⊑F

CSP
Black Box

||

Used
Component
InterfacesModel Checking

Hand-written
Code + +

Inspection

Generated
Test Cases

Inspection

✓

✓
BB:S* → R

Functional Specification

BB:S* → R
Functional Specification

Analytical Software DesignAnalytical Software Design™™

Inspection

This we do by automatically generating the corresponding CSP model of the SB and using a
mathematical refinement called traces refinement to establish that the SB describes exactly the
same behaviour as the BB. This is checked using the model checker.

We address the issue of programming compliance with the design in three ways:

1. Some code (it depends on each project as to how much) can be generated automatically and we
do not need to check this at all;

2. Some code still has to be hand written and checking this against verified designs in the form of
SB specifications is straight forward using inspection;

3. We can generate large numbers of test cases in the form of self running test programs, execute
the tests and analyse the results automatically. This testing is based on statistical concepts and is
very cost efficient and effective.

By applying these techniques in this manner, components should enter integration testing with far
fewer defects than is usual. Also, because we are able to analyse dyanmic behaviour between
components before investing in programming, there should be far fewer difficult integration defects
to detect and remove.

Page 192

WSS2005 - Analytical Software Design ASD 2005/11/21

Copyright Verum Consultants BV 12

Copyright (c) 2004 Verum Consultants BVCopyright (c) 2004 Verum Consultants BV

ASDASD™™ AdvantagesAdvantages

Able to verify automatically that functional specifications Able to verify automatically that functional specifications
comply with safety cases comply with safety cases before design and implementationbefore design and implementation
Able to verify automatically that designs meet functional Able to verify automatically that designs meet functional
specification specification before implementationbefore implementation
Able to analyse behaviour between components for Able to analyse behaviour between components for
deadlocks, race conditions, nondeterminism, divergence and deadlocks, race conditions, nondeterminism, divergence and
correctness correctness before implementationbefore implementation
CSP models are generated automatically from ASD CSP models are generated automatically from ASD
specifications specifications -- EconomicEconomic

no need to verify models against specificationsno need to verify models against specifications
CSP model traceability is not an issueCSP model traceability is not an issue
queue models generated automaticallyqueue models generated automatically

Compatible with existing development environments Compatible with existing development environments --
mathematical expertise less importantmathematical expertise less important
Stakeholders understand the specificationsStakeholders understand the specifications

This gives us a number of important advantages.
(i) We can verify specifications and designs before we invest in implementation. This is

both cheaper and more certain than testing; it is also much quicker.
(ii) We can analyse the dynamic behaviour of designs before implementation; including

behaviour between components as well as within individual components. Because
models are generated automatically, we don’t need to verify models against
specifications and we have no traceability issues.

(iii) In safety critical areas, we can work with domain safety engineers to analyse safety
cases and formulate them as safety specifications to be verified by refinement. This
means we can verify designs mathematically and ensure that such safety case hold.
Again, this is not inspection or testing, but mathematical proof, providing a degree of
certainty not achievable any other way.

(iv) Most importantly, ASD can be added to existing project teams in existing
environments with minimum disruption and stakeholders retain control over
specifications because they can understand and verify ASD specifications.

Page 193

WSS2005 - Analytical Software Design ASD 2005/11/21

Copyright Verum Consultants BV 13

Copyright (c) 2004 Verum Consultants BVCopyright (c) 2004 Verum Consultants BV

ASD BenefitsASD Benefits

Software enters testing with 90% fewer defectsSoftware enters testing with 90% fewer defects
Conventional testing more effectiveConventional testing more effective
Testing becomes quality control instead of quality assuranceTesting becomes quality control instead of quality assurance
Testing can concentrate on aspects we cannot verify Testing can concentrate on aspects we cannot verify
mathematically and complement the development processmathematically and complement the development process
Fewer defects reach end usersFewer defects reach end users
Actual and perceived quality much higherActual and perceived quality much higher

Development costs reduced by 30% or moreDevelopment costs reduced by 30% or more
Less ReworkLess Rework
Removal of many defects early in the lifecycle means much less Removal of many defects early in the lifecycle means much less
unpredictable corrective rework later.unpredictable corrective rework later.

Development time reduced by 30% or moreDevelopment time reduced by 30% or more
Shorter TimeShorter Time--toto--MarketMarket
Fewer defects means shorter testing cycles & less reworkFewer defects means shorter testing cycles & less rework

Improved PredictabilityImproved Predictability
In terms of cost, time to market and qualityIn terms of cost, time to market and quality

This is the connection to the “bottom line” business goals of the organisation. This is our
experience and that of our Customers based on the projects we have completed so far.
Software development by ASD is cheaper, quicker and results in fewer defects reaching
end users.

All of this translates to bottom line profit increase and competitive advantage.

Because software enters testing with far fewer specification and design errors, testing can
concentrate on detecting construction errors and those defects that we cannot easily
verify mathematically.

Because we have eliminated the difficult, nondeterministic design errors such as
deadlocks and race conditions before construction, the errors that remain will be more
easily reproducible, quicker to detect by testing and quicker and cheaper to repair.

Page 194

Eindhoven, 24 November 2005

Entire contents © 2005 Gartner, Inc.
Page 2consulting

The Gartner Company

The CIO agenda 2005

Performance management

The Benchmarking principles and approach

World wide metrics

World Class Performance

Page 195

Entire contents © 2005 Gartner, Inc.
Page 3consulting

Gartner Offerings Are Grouped into 4 Business Units

Gartner
Offerings

Business Units That Produce Gartner Offerings

Gartner
Consulting

EventsExecutive
Programs

Gartner
Research

Entire contents © 2005 Gartner, Inc.
Page 4consulting

The Gartner Businesses

Gartner Research
Gartner is the premier source of objective, independent intelligence
on information technology.

Events
Gartner worldwide events such as symposia and conferences give
clients live access to insights developed from our research in a very
concentrated way. Gartner Symposium/ITxpo® is the largest and
most strategic conference for senior IT and business professionals.

Gartner Executive Programs
Building on the foundation provided by Gartner research, we offer
programs combining research with networking and advisory
opportunities for chief information officers (CIOs), their direct reports
and other senior business executives.

Gartner Consulting
Gartner provides customized project consulting and strategic advice
to CIOs and other senior business executives. Our consulting
services are provided by 600+ consultants and focus on selected
areas that are critical to clients today.

Page 196

Entire contents © 2005 Gartner, Inc.
Page 5consulting

Capabilities of Gartner Consulting

Gartner is Business-Focused.
The integration of results-oriented business strategy with all the
power of Gartner Research.

Gartner Provides Direct Access to Analysts.
Gartner consultants are working with Gartner analysts every day,
well ahead of the information curve.

Gartner Ensures Assured Accuracy.
Gartner consultants work exclusively with Gartner tools and
methodologies, including the largest and most accurate peer
databases available.

Gartner is an Independent Partner You Can Trust.
Gartner’s independence is critically important. Gartner remains
resolutely objective.

Gartner Delivers End-to-End Life Cycle Support.
From opportunity to measurement to strategy to real results,
Gartner Consulting can support you through the entire business and
technology life cycle.

Entire contents © 2005 Gartner, Inc.
Page 6consulting

Gartner’s CIO agenda 2005 results

31110Improving IT governance

**9Developing leadership in the senior IS team

**38Consolidating the IS organization and operations

817Improving the quality of IS service delivery

**126Improving business continuity readiness

1065Tightening security and privacy safeguards

**144Applying metrics to IS organization and services

223Demonstrating the business value of IS/IT

642Linking business and IT strategies and plans

**181Delivering projects that enable business growth

Rank
2003

Rank
2004

Rank
2005

To what extent is each of the following
CIO actions a priority for you in 2005?

Selected change in ranking
compared with 2004

* New question for 2005
** New question in 2004

Page 197

Entire contents © 2005 Gartner, Inc.
Page 7consulting

Next prominent needs require comprehensive performance
management

Delivering projects that enable business growth

Linking business and IT strategies and plans

Demonstrating the business value of IS/IT

Applying metrics to IS organization and services

Improving the quality of IS service delivery

Entire contents © 2005 Gartner, Inc.
Page 8consulting

The Performance management challenges

The Benchmarking principles and approach

The Benchmark Process

Page 198

Entire contents © 2005 Gartner, Inc.
Page 9consulting

For performance optimization; Determine the current level of
IT service maturity and a three-year planning

Reactive
Proactive

Change Mgmt.
Problem Mgmt.
Config. Mgmt.
Release Mgt
Continuity Mgmt
Capacity
Planning

Incident Mgmt.
Service Desk
Availability
Monitoring

Service-Level
Mgmt.
Chargeback &
Cost Mgmt
Knowledge Mgmt.
Relationship Mgmt

Service

Value

IT and business
metric linkage
Demand Forecasting
Competitive Intelligence
Revenue Maximization

Chaotic

Ad-hoc
Undocumented
Unpredictable
Multiple help
desks
Focus on IT
operations
User call notification

Tool Leverage

Service and Account Management

Business Management

Svc. Delivery Process Engineering

Operational Process Engineering

“Profit” Mgmt.

Organization
Value/
Effectiveness

Levers

Operational Excel-
lence Initiatives

Customer Focus /
Service Mgt
Initiatives

1

2

Organizations pursue process optimization through various
initiatives around high priority disciplines

Entire contents © 2005 Gartner, Inc.
Page 10consulting

Performance optimization maps out the journey to exploiting
the investment in IT

Basic

Process
Maturity

Customer
Driven

IT
Exploitation

IT maturity

Po
te

nt
ia

l E
co

no
m

ic
 V

al
ue

Inward-Focused IT Outward-Focused IT

Service
Management

Performance Optimization Solutions
Process

Reengineering

Benchmarking
Solutions

Performance
Management

Page 199

Entire contents © 2005 Gartner, Inc.
Page 11consulting

There is a danger of not properly selecting the right
performance optimization objectives

Too low in ambition

Optimizing the inward focussed IT operations and
losing the competition

Missing customer focussed and service management
opportunities

Overlooking options to improve competencies and
processes

Not being innovative and pro-active on changes in the
market

Losing responsiveness

Etc.

Entire contents © 2005 Gartner, Inc.
Page 12consulting

The typical Benchmark challenges

Manage performance
“We use benchmarking inside our performance management
programs to track our performance and to identify areas that are
performing poorly.”

Reduce costs
“When we work to identify any significant IT cost-reduction
opportunities and set target cost levels — we use benchmarking.”

Find working capital
“The results of our benchmarking studies often help us identify where
we can increase efficiencies in areas that are in maintenance mode
to fund capital investments.”

Recommend change
“We have typically used benchmarking whenever we have made
investments in infrastructure or as we make major work process
changes to justify our recommendations.”

Page 200

Entire contents © 2005 Gartner, Inc.
Page 13consulting

Varying degrees of Benchmarking provide varying levels of
Insight

Analysis
Depth, Complexity, Recommendations

Investment
Time,

Resources,
Cost

Identifies IT staffing and spending and compares
them with those of other enterprises • Provides clear
insights into the potential for improved cost-efficiency
and observations targeting where the benefits may
be realized

Identifies how the benefits can be realized • Provides
a detailed assessment focusing on both cost and
service • Offers recommendations for delivering
greater cost-efficiency of the IT function and
improved service delivery

Captures a holistic view of the IT function and
assesses how best to optimize total functionality
• A multidimensional analysis that may include any

or all of the following: cost-efficiency assessment,
service delivery assessment, application portfolio
analysis, process review, alignment assessment and
governance review

Optimization

Status

Decision

Entire contents © 2005 Gartner, Inc.
Page 14consulting

What information or metrics does a benchmark normally
provide?

IT as percentage of sales or revenue

IT investment as percentage of revenue

IT price or value related to the business process
output

IT price related to the required service levels

IT cost related to the delivered service levels

IT cost related to the total cost of ownership (TCO)

IT operating budget per employee

Number on FTE required versus the number on FTE
consumed

The salaries per FTE in the market versus the salaries
per FTE paid.

Page 201

Entire contents © 2005 Gartner, Inc.
Page 15consulting

What are the key metrics?

Using high level metrics only doesn’t help to
understand the IT performance

High level metrics don’t reveal the necessary details

High level metrics can lead to false conclusions and
therefore to ineffective performance optimization
objectives

For successful decisions in performance optimization,
one must have bottom-up supported and fact based
metrics!

Entire contents © 2005 Gartner, Inc.
Page 16consulting

The benchmark cycle

Step 2: Define the scope
of interest

Step 3: Decompose the IT
services in scope into
activities

Step 4: Analyse each
activity in scope

Step 1: The service
catalogue is in the middle

Step 5: Report the results
per activity

Step 6: Combine all
activities into an overall
performance overview

Step 7: Define the metrics
per activity

Step 8: Compare the
performance with all
industries IT metrics

Page 202

Entire contents © 2005 Gartner, Inc.
Page 17consulting

Step 1: The service catalogue is in the middle

Allocation of
price to the
used services

What?

When?

How much?

Price?

Unit of Measurement:
Used volume
Price

Basic infrastructure
services

Desktop services

Applications services

Allocate to
main cost
categories

Allocate to
main services
categories

All IT Costs From
account systems,

time writing
etc.

TCO
Model of
Gartner

FTE costs
Dis. recovery
Occupancy

Transmission
Software
Hardware

Unit of Measurement:
Activities
Cost of the activities

Service catalogueService Receiver Service Provider

Entire contents © 2005 Gartner, Inc.
Page 18consulting

Step 2: Define the scope of interest

Out scope

In scope, indirect FTE

In scope, (in)direct FTEExample : Organisational scoping

HR Fin

Proc

Arch

Board Central functions

Staff

AM

HDHDVoiceVoiceWADWADDCDC HDHDVoiceVoiceWADWADDC

Cobol

DC

Java

ADS MF

ADS MR

Page 203

Entire contents © 2005 Gartner, Inc.
Page 19consulting

Step 3: Decompose the IT services in scope into
activities

Prices Services Activities

Applications
incident management

services

Operational
Applications

support

Operational
Desktop support

Basic
incident management

services

Server
structure

Networks
structure

Helpdesk

Client
Hardware
support

Client
Hardware
support

Helpdesk

Application
support

2nd line
support

Client
Software
support

2nd line
support

Infra structure servers

application servers

LAN

WAN

Applications
services

Desktop
services

Basic
Infrastructure

services

Monthly fee for the use
of the infrastructure and

hardware

Variable price for the
different usage of the

service packages

Variable price for the
different usage of the
application packages

Entire contents © 2005 Gartner, Inc.
Page 20consulting

Step 4: Analyse each activity in scope

| | | |

hoeveelheid

€
ko

st
en

Toenemende
complexiteit

Quantity

€
C

os
ts

€HW €SW #FTE

Complexity = function (service
level, quantities, objects, ..)

IT activityin out

• DistributedComputing (# users)
• ICT Helpdesk (# calls)
• Midrange servers (# servers)
• Widearea data (# devices)
• Applications development (# functionpoints)
• Applications support (# functionpoints)

Gartner database

Efficiency (=offers_norm / offers_measured* 100%)

Effectiveness (= result_measured / result_norm *100%)
Offers_measured

Offers_norm

Productivity (= result / offers)

€ . .
Real live example Cost per MIPS

0.00
5,000.00

10,000.00
15,000.00
20,000.00
25,000.00
30,000.00
35,000.00

89
20

74
37 82

56
BOC

83
50

79
15 83

43
72

27
Clie

nt
Pe

er
92

38
84

99
78

87
81

18
81

45 90
37

Page 204

Entire contents © 2005 Gartner, Inc.
Page 21consulting

Step 5: Report the results per activity

Target Saving
Cost in €1000 per year Client Developing Average Mature value potential
Occupancy 4.405 1.479 1.599 1.699 1.599 2.805
Hardware 5.428 4.682 4.433 4.226 4.433 994
Software 3.800 1.646 1.633 1.622 1.633 2.168
Personnel direct 21.831
Personnel indirect 3.931 50.627 48.239 33.278 20.810 33.278 17.349
Personnel external 24.866
Outsourcer 0 33 325 568 0 0
Total Cost 64.259 56.079 41.268 28.926 40.943 23.316

TCO metric (cost per dev
FP/year in €) 194 170 125 87 124

Actual Normalised Developing Average Mature
Direct FTE's 386,3 309,1 413,7 297,3 196,0
Indirect FTE's 68,6 54,9 27,3 28,2 30,9
Outsourced/external 160,3 160,3 0,2 1,8 4,0
Total FTE's 615,2 524,2 441,1 327,2 230,9

in/direct ratio 13% 12% 7% 9% 15%

€ cost/FTE/year Actual Normalised Developing Average Mature
Personnel cost 56.628 70.785 109.405 102.240 91.720
Pers + Outs cost 82.290 96.572 109.441 102.685 92.602
Occupancy cost 7.159 8.402 3.354 4.887 7.359

Number on dev. FP 330.657

TCO

FTE

Salary

Cost

Entire contents © 2005 Gartner, Inc.
Page 22consulting

Step 6: Combine all activities into an overall
performance overview

Example : Overview of all activities

2003 2004 developing Average Mature Advice Saving
AD cobol 26.500 25.000 45.400 35.000 22.000 22.000 3.000
AS cobol 4.300 4.800 10.400 8.000 5.000 4.800 -
Mainframe 28.300 20.500 31.000 24.200 17.300 17.300 3.200

59.100 50.300 86.800 67.200 44.300 44.100 6.200
AD Java 2.000 2.400 5.000 3.600 2.200 2.200 200
AS Java 1.400 1.200 2.000 1.300 500 500 700
MR Unix 5.000 4.300 8.600 7.000 5.100 4.300 -

8.400 7.900 15.600 11.900 7.800 7.000 900
DC 27.300 26.000 16.100 13.000 9.400 13.000 13.000
HD 5.700 8.700 2.100 1.600 1.100 1.600 7.100
Voice 4.350 4.500 3.750 2.900 1.900 2.900 1.600
WAD 3.300 3.100 7.500 5.774 3.861 3.100 -

40.650 42.300 29.450 23.274 16.261 20.600 21.700
total 108.150 100.500 131.850 102.374 68.361 71.700 28.800

Gartner database

Page 205

Entire contents © 2005 Gartner, Inc.
Page 23consulting

Step 7: Define the metric per activity
for performance optimization

Example : Overview of all metrics

Metric 2003 2004 developing Average Mature Advice
AD cobol cost per FP 200 194 170 125 90 125
AS cobol cost per FP 21 17 30 20 15 15
Mainframe cost per MIPS 12.500 9.600 8.000 6.800 5.500 5.500
AD Java cost per FP 167 156 325 236 146 149
AS Java cost per FP 33 29 53 33 14 29
MR Unix cost per system 68.000 54.400 82.000 64.000 47.000 54.000
DC cost per user 2.600 2.450 1.500 1.200 900 1.190
HD cost per call 39 61 15 11 8 11
Voice cost per minute 0 0 0 0 0 0
WAD cost per device 716 611 418 296 219 296

Gartner database

Entire contents © 2005 Gartner, Inc.
Page 24consulting

Step 8: Compare the performance with all industries’ IT
metrics (optional)

Example : Industry
high-level metrics

IT Spending as a % of
Revenue

3.59%
4.33%

= Industry Range

= Industry Average

= Industry Middle Quartiles

= Your Company

0.0%

1.0%

2.0%

3.0%

5.0%

6.0%

7.0%

4.0%

Page 206

Entire contents © 2005 Gartner, Inc.
Page 25consulting

World class performing better on the full mix of the core value
drivers (EQFIV)

World class IT organizations increase the
competitiveness of a company, is performing better
than other companies on the full mix of the core value
drivers (EQFIV):

Efficiency (produce for low cost/unit)

Quality and effectiveness (do it the first time right)

Flexibility (ensuring availability of an attractive product range=
small lot high frequency)

Innovation (having the latest developments add to the value
of the product)

A chain of values or Network value

Entire contents © 2005 Gartner, Inc.
Page 26consulting

World Class Performance

Page 207

Entire contents © 2005 Gartner, Inc.
Page 27consulting

(ITIL) Process Performance benchmark

Service Level Agreement (SLA) benchmark

Prize benchmark

Entire contents © 2005 Gartner, Inc.
Page 28consulting

Questions?

Page 208

Monitoring and Debugging of Web applications

Quality in Practice - Tools and methodologies used at a software company

Martijn van Berkum

GX, Nijmegen, The Netherlands

Abstract

The concept quality, and in particular, quality of software, has a coherent theory. To use this theory
in practice, however, is a lot harder. To reach a defined quality level, good methodologies and tools
are a necessity. In this presentation we will give an overview of the methodologies and tools used at
GX. GX is a software company that delivers technology for the management of high-traffic dynamic
websites. We will present and sometimes shortly demonstrate several tools used at GX to log and
monitor live websites, do performance analysis and debug, check, test, validate and manage our
code.
We will give an evaluation of methodologies and tools that we use in practice and worked for us, and
those that didn't work.

Page 209

1

Discount Usability Testing

Rob Hendriks

rhe@improveqs.nl

2

Why usability?

Reduce number of user errors
Increase efficiency

– 83% of website visitors leave if many clicks have to be made

Increase user satisfaction
Increase ease of learning
Increase trust
Decrease support costs

– Company spent $900,000 due to difficulties installing printer driver

……

Page 210

3

The usability gap

Usability often a critical success factor
– 25% of IT-projects fail
– 42% of the code is user-interface code

Usability testing should be compulsory, but..

Usability in action
ATM “....only usable on an overcast day..”
Video recorder
Remote control (two user groups)
Navigation system can’t be used wearing sunglasses

Why is it
hardly tested in practice?

4

Focus

Broad view OR narrow focus How do I
leave the
help ?

“Can users carry out their tasks ?”

Page 211

5

Testing usability

A few possible ways of testing usability:
Heuristic evaluation
Questionnaire based (SUMI)
Simulation
User acceptance testing
Usability lab

Time spent on development

Room for improvements Costs of improvements

(A.P.O.S. Vermeeren)

Relatively cheap

6

When to test usability?

requirements

implemen-
tation

module/unit
test

operation

wish, law, strategy,
possibilities

opportunities
expectations

acceptance
test

system testdesign

1. Define and validate
usability requirements

2. Review the
specification and the
design from a
usability perspective

3. Verify the
implementation

4. Validate the
implementationSUMI

UAT

Heuristic evaluation

Simulation

Page 212

7

Heuristic evaluation

Testing / evaluating the usability of a
software product against a number of
usability principles
– E.g. 10 usability heuristics (Jakob Nielsen, 1993/1994)

Identifies usability problems early in the
design process in a quick manner
Predicts real life usability problems !!
Often on prototypes
Both broad and narrow focus

8

10 Heuristics

1. Visibility of system status
2. Match between system and real world
3. User control and freedom
4. Consistency and standards
5. Design useful error messages
6. Recognition rather than recall
7. Flexibility and efficiency in use
8. Aesthetic and minimalist design
9. Error prevention
10. Help and documentation

Page 213

9

Case Governmental department

Financial application
GUI guideline defined
Heuristic evaluation executed on prototype
– 20 screens
– 114 findings

SUMI executed as zero measurement

SUMI

Software Usability Measurement Inventory
Broad focus: user satisfaction
Well founded questionnaire: based on
practical research (MUSiC)
Referred to in ISO 9126 and ISO 9241
The user scores are standardised by using a
reference database
Quantitative, objective information of users’
subjective attitude to six usability aspects

Page 214

SUMI Score graph

12

Case Schiphol Airport

Replacement CISS
– Central Database System / Information Broker

Actions carried out
– Define GUI guidelines based on Heuristics
– Prototypes and final GUI tested by means of Heuristic

evaluation
– SUMI test executed on current and new system
– Acceptance criteria:

New global SUMI score no more than 10% less than
current global SUMI score

Page 215

13

Result Schiphol Airport

Little effort – great benefit

14

Conclusion

Usability is often stated as important
It has a high contribution to the product’s
success
Usability is however hardly tested in
practice
Relatively cheap techniques are available
with a high benefit
Start as early as possible

Thank you

Page 216

Testing at Nucletron

The role of integration testing
in an international organisation

Nucletron
Description

Radio Therapy treatment for Oncology
Part of Delft Instruments Medical
Offering Hardware, Software and Solutions to Oncology
departments all over the world
About 480 employees in 16 countries
Unique knowledge

Page 217

Research and Development
Treatment planning software

Development of special algorithms for
Radiotherapy doctor
Physicists

Treatment plan analysis software
Special requirements

Highly innovative
Mixture of medical physicists/informatics
Co-operation with

Other small development companies
Research groups in universities

Specific situation
Integration

Software portfolio is coming from take-overs
Chances at client sites

Decision is slowly moving from Radio Therapy department to ICT
department (application infrastructure is being standardised)

Solution
Organisation directed to

Communication
Integration

Page 218

Organisational design
Build in conflict handling
Making testing a central element in design
Making integration testing a central responsibility

management

testingdesign

Integration test
Central responsibility for integration test

Units/Modules

Applications

Integrated systems

Developers

Development center

Head quarters

Page 219

Organisation
Building of test bed at the moment of design
Developers are using test cases of test enviroment
when possible
Development center has separate test co-ordinator for
application testing based on test environment
(reporting in development center)
Development center accepts software from
development group (internal or external)
Head office uses total test bed based on workflows in
hospital RT centers to test total system

Testing function
Global integration testing, acting as

Quality check
Backwards pressure on the development organisation
Conflict between product management and level of quality

Page 220

Methods
First step was the improvement of the development
practices: CMM Level 2 (based on RUP best practices)

Second step is the improvement of the test practices:
(TMM Level 2). For the multi site environment:

Application testing at development sites;
Integration testing at HQ.

Emphasis on quality (health care software)

Page 221

1

Privacy and Security in HealthcarePrivacy and Security in Healthcare

Milan Petković
Information and System Security Department

PHILIPS Research Laboratories

Milan Petković
Information and System Security Department

PHILIPS Research Laboratories

2Research
Privacy and Security in Healthcare by Milan Petkovic 2

Research Laboratories

Outline

Introduction
Healthcare and IT
Electronic health records

Healthcare Privacy and Security Issues
Privacy and Security Requirements in Healthcare
State-of-the-art Technologies
Novel approaches

Operations on Encrypted Data
Role-based Access Control

Page 222

2

3Research
Privacy and Security in Healthcare by Milan Petkovic 3

Research Laboratories

Healthcare and IT

Healthcare – an important service sector (the largest service sector
in the US economy)
The healthcare industry is under constant pressure to become more
efficient
Driving factors of further IT deployment in Healthcare

An increasing number of elderly people and increasing costs for
healthcare
Changes in healthcare (chronic diseases make most of the costs,
people die because of chronic diseases and degenerative illness):
reactive -> proactive
The tendency for the enhancement of the quality of healthcare are
driving deployment of IT in Healthcare

Most important new applications of IT: electronic health records,
telemedicine, clinical decision support systems including pervasive
computing solutions, etc.

4Research
Privacy and Security in Healthcare by Milan Petkovic 4

Research Laboratories

Mistakes in the delivery of Healthcare

44.000 to 98.000 people die in USA hospitals each year as result of medical
errors that could have been prevented - To err is human, IOM 1999
6.1% (800.000) people in the Netherlands had wrong medical treatment -
NICTIZ (Nationaal ICT Instituut in de Zorg) NIPO Rapport, 2004, “Fouten
worden duur betald”

Reasons: (1) no insight in the medical record of the patient (2) wrong
maintenance of the medical record of the patient

Nature of mistakes:
Wrong medication (44%)
No treatment because of the lack of information (25%)
Wrong surgery or treatment (24%)
Planning mistake (18%)

Effects:
Emotional problems - 400.000 people
Physical problems – 250.000 (125.000 permanent)
Partial (14.000) or complete (36.000) invalidity

Financial effect – euro 1.4 billion a year

Page 223

3

5Research
Privacy and Security in Healthcare by Milan Petkovic 5

Research Laboratories

National EHR Systems

Recently a number of countries have introduced plans for national
electronic record (EHR, EPR, EMR, EPD, etc) systems

– UK: 2005 National Health Service all medical records to be available
electronically to all UK citizens

– Finland: fully functional in 2007
– Australia: 2000 HealthConnect first step in providing a national EHR

system
– Germany: 1995 DM500M smartcard that hold specific health information

for the individual. Also smartcard technology for stakeholders that
amongst other feature contains digital signatures

– France: SESAM-Vitale and pilot project at Montreuil sur Mer
– Belgium: 1999 smartcard that encodes fingerprints to all citizens
– US: in preparation, currently trials in some areas. HIPAA regulates the

transmission of medical information in an electronic format
– Netherlands: e-medicatiedossier and e-waarneemdossier nation wide in

2006

6Research
Privacy and Security in Healthcare by Milan Petkovic 6

Research Laboratories

Electronic Health Records and Security

Healthcare information security – one of the key
obstacles to the EHR concept
EHR goes online, but internet is the source for about
70% of all hacking attempts.
Legislation around security and privacy (HIPAA to 10
years in prison for selling the data)
Therefore, ensuring adequate information security is one
of the main IT priorities in Healthcare.

Page 224

4

7Research
Privacy and Security in Healthcare by Milan Petkovic 7

Research Laboratories

HIPAA

Health Insurance Portability and Accountability Act

HIPAA is about
Privacy
Security
Electronic transactions & code sets (e.g. diagnosis and procedure)

Covered entities:
Health Plans
Health Care Providers
Health Care Data Clearinghouses

Covered entities must comply with HIPAA standards for privacy,
security, code sets, electronic transactions, etc.

8Research
Privacy and Security in Healthcare by Milan Petkovic 8

Research Laboratories

HIPAA Requirements - Privacy

Covered entities
– cannot disclose or use PHI (Protected Health Information) for

specific purposes without the individual’s consent
– must have policies to minimize PHI disclosure (except when

disclosure in needed for treatment purposes)
They must comply with patient right to:
– Ask for a copy of health records
– Have corrections added to the record
– Receive a report on when and why his health information was

shared
– Decide if he wants to give his permission before his health data

can be used for certain purposes
– Ask that his health information not be shared
– …

Compliance with Privacy standards is required by April 14, 2003

Page 225

5

9Research
Privacy and Security in Healthcare by Milan Petkovic 9

Research Laboratories

HIPAA Requirements - Security

Meant to protect PHI from improper access, alterations
and loss
Covered Entity must implement administrative, physical
and technical security standards to
– Ensure the confidentiality, integrity, and availability of all

electronic protected health information
– Protect against any reasonably anticipated threats or hazards to

the security or integrity of such information
– Protect against any reasonably anticipated uses or disclosures

of such information
Required and addressable standards implementation
Compliance with Security standards is required by April
21, 2005

10Research
Privacy and Security in Healthcare by Milan Petkovic 10

Research Laboratories

Technical safeguards standards (HIPAA)

Access Control
– Unique user identification (R) – user, role-and/or context-based
– Emergency aspect procedure (R)
– Automatic logoff (A)
– Encryption and decryption (A)

Audit Control
– Record activities regarding PHI

Integrity
– Implement e-systems that verify that PHI is not altered or destroyed

Person or entity authentication
Transmission Security
– Assess risks
– Implement integrity control and encryption (A)

(R) - required
(A) - addressable

Page 226

6

11Research
Privacy and Security in Healthcare by Milan Petkovic 11

Research Laboratories

Privacy and Security Requirements
Data Integrity

– Basic requirement: integrity of healthcare data must be protected when data is stored, transmitted and
operated upon

Data Confidentiality
– Basic requirement: healthcare data should be protected against improper disclosure when stored,

transmitted and operated upon
– More complex (e.g. fine-grained) access control models should be supported
– Long-term protection of health data

Data Availability
– Basic requirement: healthcare data must be available to authorised parties, whenever and wherever

needed
Trade-off between data confidentiality and availability

– Basic requirement: healthcare data should be available to authorised parties only if needed
– There may be the possibility to perform operations as well as queries on encrypted data when such

operations and searches are performed by untrusted parties
– Easy and quick authentication of healthcare providers and identification of patients

User awareness and control on data use
– Basic requirement: basic patient’s rights regarding his health information should be protected by the

system
– Auditing

Accountability and Non-repudiation
– Basic requirement: accountability and non-repudiation should be supported in the system concerning all

entities
– The system should provide accountability by means of controls, processes and policies that allow the

system to trace actions to their source.

12Research
Privacy and Security in Healthcare by Milan Petkovic 12

Research Laboratories

Privacy and Security Technologies
Data Integrity

– Digital signatures
– Forward-secure digital signatures
– Methods to prevent deletion
– Backups
– Software Integrity and Trusted Computing

Data Confidentiality
– Encryption
– Operations on encrypted data
– Zero-Knowledge
– Secret sharing
– Access Control
– Authentication
– Anonymization
– Privacy preserving data mining
– Private information retrieval

Data Availability
– Electronic health data management
– Redundancy

Trade-off between data confidentiality and availability
– Easy and convenient authentication
– Secret sharing, k out of n
– Databases and encryption

User awareness and control on data use
– Auditing mechanisms
– Digital Rights Management

Page 227

7

13Research
Privacy and Security in Healthcare by Milan Petkovic 13

Research Laboratories

Privacy protection in personalized services

• Health
monitor
example bph

bpl
hr
age
wt

120
70
60
27
70

profile

user server

match

similarities

bph
bpl
hr
age
wt

115
85
85
23
87

diet

3 bph
bpl
hr
age
wt

145
95
70
43
74

low salt

2 bph
bpl
hr
age
wt

120
70
60
27
70

healthy

reference
profile 1

120
70
60
27
70

healthy
low salt
diet

Stefan Maubach, Milan Petkovic, Verus Pronk, Pim Tuyls, Wim Verhaegh

14Research
Privacy and Security in Healthcare by Milan Petkovic 14

Research Laboratories

Encrypted health monitor

• User data
encrypted
before
going out

• Only user
can
decrypt
end result

bph
bpl
hr
age
wt

120
70
60
27
70

profile

similarities

user server

bph
bpl
hr
age
wt

115
85
85
23
87

diet

3 bph
bpl
hr
age
wt

145
95
70
43
74

low salt

2 bph
bpl
hr
age
wt

120
70
60
27
70

healthy

reference
profile 1

encryp-
tion

decryp-
tion

encrypted
match

encrypted
similarities

encrypted
similarities

en
cry

pte
d p

ro
file

healthy
low salt
diet

en
cry

pte
d p

ro
file

Page 228

8

15Research
Privacy and Security in Healthcare by Milan Petkovic 15

Research Laboratories

Technical challenge

Conflict: encrypt user data ↔ do personalization

Use encryption scheme with special properties:

message x → enc(x) ≅ bx

enc(x) ⋅ enc(y) ≅ bx ⋅ by ≅ bx+y ≅ enc(x+y)
enc(x)y ≅ (bx)y ≅ bx⋅y ≅ enc(x⋅y)

Enables all kinds of computations on encrypted data

16Research
Privacy and Security in Healthcare by Milan Petkovic 16

Research Laboratories Secure Management of Medical Data

GP AliceGP Alice

GP BobGP Bob

??

PoliciesPolicies

Schedule of the hospitalSchedule of the hospital

Personalized RBAC

Alice and Bob are GPsAlice and Bob are GPs
GP has access to part x of EHR data of any patientGP has access to part x of EHR data of any patient
Exceptions: Exceptions: “Alice has access, “Alice has access, not Bobnot Bob””

M. Petkovic, C. Conrado, M. Hammoutene

Page 229

9

17Research
Privacy and Security in Healthcare by Milan Petkovic 17

Research Laboratories Secure Management of Medical Data

zoomzoomHas this GP extra rights?Has this GP extra rights?

Personalized PoliciesPersonalized Policies

GP ED … FR

EL

Is he in the Exception List?Is he in the Exception List?

<<xacmlxacml>>

Ex: GP17 has no access to blocks 18 and 19Ex: GP17 has no access to blocks 18 and 19

--> Exception List List:> Exception List List:

GP(17,GP(17,--18,18,--19)19)

RoleRole BlocksBlocks

ID of the ID of the
concerned GPsconcerned GPs

He has/has not default rightsHe has/has not default rightsYes/NoYes/No

Personalized RBAC

18Research
Privacy and Security in Healthcare by Milan Petkovic 18

Research Laboratories

Efficient Key ManagementEfficient Key Management

GP GP GP GP

BobBob

Keys: Keys:
GPGP

AliceAlice

Keys: Keys:
GPGP

CarolCarol

Keys: Keys:
GPGP

DavidDavid

Keys: Keys:
GPGP

Alice, Bob Carol Alice, Bob Carol andand David David can decrypt the datacan decrypt the data

[Data][Data]K K : [: [KK]]GPGP

Cryptographically Enforced Personalized RBAC:

Page 230

10

19Research
Privacy and Security in Healthcare by Milan Petkovic 19

Research Laboratories

A B C D

BobBob

Keys: Keys:
BB

AliceAlice

Keys: Keys:
AA

CarolCarol

Keys: Keys:
CC

DavidDavid

Keys: Keys:
DD

Alice, Bob Alice, Bob andand David David can decrypt the data,can decrypt the data, notnot CarolCarol

[Data][Data]K K : [: [KK]]AA [[KK]]B B [[KK]]DD

Efficient Key ManagementEfficient Key Management
Cryptographically Enforced Personalized RBAC:

20Research
Privacy and Security in Healthcare by Milan Petkovic 20

Research Laboratories

A

B C

D E F G

BobBob

Keys: Keys:
A,A,BB,E,E

AliceAlice

Keys: Keys:
A,A,BB,D,D

CarolCarol

Keys: Keys:
A,C,FA,C,F

DavidDavid

Keys: Keys:
A,C,A,C,GG

Alice, Bob Alice, Bob andand David David can decrypt the data,can decrypt the data, notnot CarolCarol

[Data][Data]K K : [: [KK]]BB [[KK]]GG

Cryptographically Enforced Personalized RBAC:
Efficient Key ManagementEfficient Key Management

Page 231

11

21Research
Privacy and Security in Healthcare by Milan Petkovic 21

Research Laboratories

Privacy and Security in Healthcare: an important
problem that needs research because of:

Healthcare information is typically very privacy sensitive
Specific privacy and security requirements from legislation
Specific characteristics of healthcare data (e.g. long term value)

Some specific solutions
Private profile matching
Crypto-enforced Personalized RBAC

Conclusions

Page 232

Improving the Quality of Protocol Standards

Judi Romijn
OAS group, TU/e
jromijn@win.tue.nl

The NWO-funded project 'Improving the Quality of Protocol Standards' aims at protocol descritions in standards
which are formal yet readable, and formally correct. What we stated in our project proposal in 2001 has been
confirmed by our participation in three protocol standards: the quality of protocol descriptions in standards is poor,
and our contribution is dearly needed. In this project we have indeed improved the quality of the standards involved,
and have found inspiration for theoretical research based on the methods used in the standardisation process.

We have worked on three (families of) protocol standards.

 IEEE 1394.1 FireWire Bridges
This standard defines how IEEE 1394 serial buses are linked with bridges. To manage the larger network of buses,
the bridges engage in a distributed spanning tree protocol called net update. By formalising and analysing net
update, we uncovered many mistakes, unclarities and omissions, and even one crucial bug (non-termination of the
protocol) in the draft standard description. We have applied model checking to parts of the protocol with the tools
Spin, muCRL and CADP, and we have formally constructed an abstract version of the protocol and a variant with
the Feijen/vanGasteren, Owicki/Gries and Dijkstra methods. All formal construction proofs have been checked in
the theorem prover PVS.
The Spin model checking work has led to new theory about guiding simulation into the direction of suspected
errors, which is directly applicable to Spin experiments. The theory has been proved correct and besides
simulation, also allows for verification experiments on guided models, such that errors found in the guided model
are also errors of the original model.
The resulting IEEE standard contains about twice as much text describing the net update protocol. We have
participated in the Ballot Response Committee (BRC) which adjusted the draft standard after the first ballot. Based
on our feedback, the resulting description is of much higher quality, and contains a new subprotocol that deals
with the errors we found. By our suggestion, the standard includes an appendix with correctness properties
(intended functionality) for the net update protocol, enabling manufacturers to check whether their
implementation of 1394.1 works correctly.

 ISO/IEEE 1073 Medical Device Communication
In this standard concerns communication between medical devices. We have participated in the working groups
that contribute to three of its protocol standards. Although medical systems must be extremely reliable under all
circumstances, before our involvement no formal analysis was performed during the development of this family of
standards.
Some protocols were defined through state tables and textual descriptions. Our formal analysis with Spin revealed
various discrepancies and undesired behaviors. The extended and corrected state tables have been incorporated in
the standard.
One standard initially contained a set of scenarios in the shape of Message Sequence Charts (MSCs) and textual
descriptions. So there were no state tables, and only the basic scenarios were given (in terms of the MSCs). It
turned out that with current MSC techniques, one cannot properly extract state tables from these MSCs; this is
caused by a phenomenon called non-local choice. Based on this case study, we have initiated a new research
direction by proposing several ways to implement MSCs that contain non-local choice. By applying this, we have
extracted state tables from the MSCs in this standard, and these state tables will be incorporated in the standard.
We have also defined a new semantics for MSCs based on partial orders, which allows deadlocks and shows the
completeness or our earlier classification of choice-related problems in MSCs.

 ANSI HL 7 Medical Device Communication
Health Level Seven (HL7) is an ANSI standard that provides a framework for electronic health information. Our
work has focused on the HL7 specification of a communication protocol that enables health-care applications to
exchange key sets of data. We have created state diagrams for this protocol, by combining message sequence chart
(MSC) descriptions of a number of intended behaviors in the current draft standard. We have reused and extended
our MSC theory from the 1073 case study in order to solve arising problems such as deferred behaviour and non-
local choice. Our work has revealed a number of inconsistencies in the view and intention of the developers. This
has initiated much discussion in the working group, which is yet to converge to a completely new proposal.

Project information
NWO funding: Vernieuwingsimpuls, nr. 016.023.015, Dec. 2001 - Dec. 2006
People: Romijn (project leader), Goga, Mooij, Wesselink
URL: http://www.win.tue.nl/oas/index.html?iqps/index.html

Page 233

1

IQPS – Improving the Quality of Protocol Standards

Guiding Spin simulation & verification

specification

• LOTOS
• μCRL
• promela property

• invariants
• temporal logic
• behavioural

guided
specification

• promela

guiding

check property
in each guided
reachable state

syntactic restrictions
to keep only suspect behaviour

guided
model checking

/ simulation
model checking

/ simulation

check property in
each reachable state:

or

very large state space:
full DFS/BFS problematic

For many distributed systems, exhaustive verification is infeasible because the state space is too large. To limit the explored
part of the behaviour, we want to steer simulation and verification into that part of the behaviour where we suspect errors.
We have introduced a guiding technique: an extra process may be added to the specification in order to restrict three
causes of state space explosion. We have developed a theoretic framework for the language Promela (input to the model
checking tool Spin), and we have obtained promising results for the IEEE 1394.1 net update case study.

The ISO/IEEE 1073 case study: Medical Device Communications
• communication of patient-related data between medical devices
• typical devices: patient monitors, ventilators, infusion pumps, central computers, ...
• in medical applications it is crucial that the communication protocols function properly!

Doctor’s office Patient’s room

getPulse
I must have
the patient’s

pulse
alarm

network
I press the

alarm button
now!

Synthesizing proper scenario implementations
Some protocols in IEEE 1073.2 are described by scenarios, like
Message Sequence Charts (MSC). However, for constructing
protocol implementations, the choice construct poses problems, e.g.
in case of non-local choice. The typical result is an implementation
that contains implied behaviors and deadlocks. We have identified
classes of problematic scenario specifications and for some of them
we have proposed useful implementations.

pulse
getPulse

D

confirm
alarm

D

register
D

pulse
getPulse

P

confirm
alarm

P

register
P

getPulse
alarm

register
D P

???
deadlock!

msc implementation

construction validation

pulse
getPulse

D P

confirm
alarm

D P

register
D P

msc system specification

msc implied

process D: process P:
network

The IEEE 1394.1 case study: Firewire Bridges

• in-home plug-and-play networks
• interconnection of networks through bridges
• net update: protocol for maintaining a spanning tree in a distributed fashion
• network availability crucially depends on net update!

abstraction
to graphs

?

Feijen/van Gasteren method Tool Support

Constructing Correct Parallel Programs
The Feijen/van Gasteren method is an assertion-based method for constructing parallel programs that are correct by design. Starting from a
specification of the program, incrementally statements and assertions are added (or slightly modified) until a program is obtained that meets the
specification. We have used this method for the reconstruction of a version of the net update algorithm from IEEE 1394.1, and we have developed
tools to support this method.

high level
specification

(incomplete)
annotated program

correct
program

Owicki/Gries
proof obligations

proof result

proof generator

automated
theorem prover
(e.g. PVS)add statements

+ assertions

for each node v: |v.out| ≤ 1
for each edge v → w: w.dist < v.dist.
for each node v: v.out = ∅ ⇒ v.root = v
for each edge v ~ w: v.root = w.root

{v.edges ≠ ∅ }
do true ->

parallel for f: f ∈ v.edges do sig.v_f := false
...

; {? Q.v or (∃ f: f ∈ v.edges: sig.v_f)}
await (∃ f: f ∈ v.edges: sig.v_f)

od

loc_ass_8a_stat_7...proved - complete
glob_ass_11c_stat_11...proved - complete
glob_ass_11d_stat_11...proved - complete
Theory totals: 186 formulas, 186 attempted, 186 succeeded (86.08 s)

loc_ass_8a_stat_7: LEMMA
FORALL (s:state):
FORALL (v: node):
FORALL (f: edge):
lab_7(v)(s) ⇒ ass_8a(v)(f)(s)

feedback

specification

verification

proposed algorithm

reconstructionconstruction

constructed algorithm

correctness result
or errors

Funding: NWO Vernieuwingsimpuls
Project: 016.023.015
Period: December 2001 – 2005
Topic: Formal specification and analysis of

protocols (distributed algorithms)
during the standardisation process,
which leads to

• better descriptions in standards
• inspiration for improving formal

methods and tools
People: Romijn (project leader), Goga,

Mooij, Wesselink
Website: http://www.win.tue.nl/oas/iqps/

non-local
choice

/department of mathematics and computer science

Page 234

Ir. Christian Lange (C.F.J.Lange@tue.nl)
Martijn Wijns (M.Wijns@student.tue.nl)

Dr. Michel Chaudron (M.R.V.Chaudron@tue.nl)

UML model
UML model

UML model Implementation

UML model
UML model
Metric

UML model
UML model
Metric

UML model
UML modelQuality

Attribute

m
ea

su
re

s

relates to relates to

leads to

tri
gg

er
s

ch
an

ge

predicts

tri
gg

er
s

ch
an

ge

m
ea

su
re

s

Monitoring the Quality of UML Architecture and
Design Models using MetricView

• Exposes Design Smells

Within the EmpAnADa project (www.win.tue.nl/empanada)

The primary goal of this project is to develop methods to improve practitioners’ use of the UML
and model quality. A known problem of UML is the lack of formality in usage of the language.

Survey results show that UML is used rather loosely and incompleteness of models causes
problems such as miscommunication. Despite of the fact that there are no techniques to assess
model completeness, it is the most frequently reported criteria to finish the modeling phase. We
have developed a rule-set to assess model completeness. This rule-set was applied to industrial
UML models. The results of these case studies show that lacking completeness of UML models is
a critical issue in practice. The rule-set can assess model completeness and inconsistency.

MetricView visualizes the results of checks and metrics analysis on top of existing UML models.

Relations between Measurement
in UML Models and Source Code

• Combines Model &
Metrics Visualization

Controlling Completeness and Consistency
of UML Models

• Completeness is the no. 1 criterion to stop modeling, nevertheless
no method exists to quantify it.

• Methods to evaluate model completeness and find incomplete and
inconsistent spots were developed and implemented in a tool.

• Large scale industrial case studies were conducted:

• The degree of incompleteness in real world models is very
large.

• Example: a model showed 58,7% of all messages in
Sequence Diagrams did not correspond to methods

Measuring Quality
Attributes in UML Models

Metrics were developed that
combine information from
different diagram types.
Examples:

• Complexity of a class
based on state transitions and
method definitions

• Number of use cases per class
to measure functional cohesion

• Number of classes per use case
supports in prioritizing use cases

• Custom Quality Models

MetricView :

Page 235

Page 236

1

SpecTEC: Specification Tooling for
Embedded software Components

TU/e participants: dr. R.Kuiper, prof. dr. J.C.M. Baeten, dr. E.J.Luit

EES: 5141 Progress: ir.L.C.M. van Gool (aio), dr. S.(E.E.) Roubtsov(a)
(postdocs)

Industrial partner: Philips Natlab dr. H.B.M. Jonkers (user also: Océ)

Aim:
Tool support for consistency of ISpec
Interface Specifications [1].

Motivation:
The ISpec Interface Specification
approach is developed and used at Philips
for the design of complex embedded
systems. It entails many views and
diagrams (related to Rational’s Unified
Modelling Language) and notions of
refinement and composition (related to
Object-Oriented Development).

ISpec provides one model to keep all
these different descriptions consistent.
This model is described using structured
pre / post / action clause / invariant
templates. ISpec templates are user-
friendly in that they allow plug-in use of
different specification languages, at
different levels of formality, ranging from
natural languages to logics.

Innovation by SpecTEC (see picture):

• Formal underlying semantic model

• Tooling to support construction and
consistency of ispecs

Approach:
• Formal underlying semantic model

relational calculus denotational model

method call/return representation

inheritance/composition formalisation

proof system

connection to Hoare style semantics

• Tooling

Visio based tool

XML representation of model

Interface-Role Diagrams + ISpec checks

Regular Expressions for Action Clauses

Sequence Diagram checks (current work)

• Development of the Visio-based tool will be
continued

• Successful Océ pilot

• Tool to be used at Philips

[1] H.B.M. Jonkers, Interface-Centric Architecture
Descriptions, In proceedings of WICSA, The
Working IEEE/IFIP Conference on Software
Architecture (2001), pp. 113-124.

http://www.win.tue.nl/calisto/ (under construction)

ISpec
Template

Add-in

Visio

InfoPath

Informal Text

Plug-in Specification
Languages

Regular
Expressions

Z

My Favourite SL

Specification
Data (XML)

embedded
component interfaces
(COM, CORBA, Java)

specifier

UML
Diagrams

ISpec
Metamodel

Analysis Tools
Test Generation Tools

Model Checkers
Proof Tools

Semantic
Tool

Support

Context

Info

Specification

Specification
Language

Files

Page 237

Yet Another Smart Process EditoR

specify: draw process flows
as diagrams

design goal: make
simple things simple
(editing + simulation)

no attempt to replace
existing tools

no attempt to offer all
potentially useful
features

verify: execute (simulate)
manually / automatically

feed them to other tools
(e.g. for analysis)

Page 238

 VALENS EE

valens enterprise edition (EE)
VALENS EE is a tool that offers functionality to assess the quality of a

set of (logical) rules. The rules can be verified to check their logical

correctness, visualized to increase understanding of the rules and

validated to see if the behavior of the rules conforms to the desired

behavior of the rules.

valens in your organization
The user interacts with VALENS to verify and validate the rules. After

verifying and validating the rules the user has an understanding of the

quality of the rules.

VALENS is complementary to any rule-editing environment. The rules

can be exported to LibRT's rule base markup language (RBML) and

viewed in VALENS. RBML is freely available from the LibRT website

(www.librt.com). For assistance with transformations from a rule

language to RBML, contact us at info@LibRT.com.

what is verification?
Verification is the process that aims for the detection of inconsistency,

incompleteness or redundancy in a set of business rules without

consideration of the 'meaning' of the rules. This process does not take

into account the correctness of the business rules, i.e. whether their

effect is indeed the intention of the business. If verification can prove

that the rules are logically consistent and complete, the rules may still

lead to incorrect results (but they will do so in a consistent way).

what is validation?
Validation is the process that aims for the detection of incorrect results

or undesired behavior. The most common way of validating rules is to

just pass the (changed) rules to another member of the organization.

VALENS supports this process by rule visualization.

In the context of an IT-project validation is often done by testing the

application and assessing the results, or comparing the results with

previous results that were believed or known to be correct. VALENS

supports this process with functionality to test rules. Validated rules or

business cases are approved by members of the organization

responsible for the rules.

why is verification & validation important?
You know your rules, but do you know if they are right? Humans have a

hard time understanding hundreds, thousands or even twenty rules

with complex interactions. LibRT's VALENS can help you in assessing

the quality of rules by delivering detailed information on the

completeness and consistency of your rules and the consequences of

rule changes to existing rules and predefined cases. Taking new rules

into production can now be a rational decision based on the information

provided by VALENS.

valens primary aims at the business experts
Establishing the quality of rules is important for every organization

that needs to communicate and process complex regulations, expertise

and guidelines that can be translated to rules. Business users who

define rules can use VALENS to assist them in the delivery of consistent,

complete and correct rules. VALENS can also be used by IT

departments, who want to establish the quality of rules prior to

implementation, decreasing development and test time.

 about LibRT
 LibRT supports enterprise clients and software vendors with products and

services targeted at effective knowledge management in business

applications. Based in the Netherlands, LibRT does business throughout

Europe and North America with a network of partners providing

complementary technologies, services, and delivery channels. Among the

company's innovative products and designs is LibRT VALENS, the industry's

first independent product targeted at verifying and validating business rules

created in third-party business rules management systems.

 LibRT focuses on supporting the delivery of high quality business rules. The

company is a leading proponent and driver of rule qualification standards,

with active participation in ISO certification requirements for quality

assessment of rules and proper generation and selection of business rule test

cases. Information about products, services, clients, and partners can be

found at www.librt.com.

 ' The Dutch Tax and Custom Administration has recognized the need for an efficient formalization of legislation in declarative models. We verify our legal knowledge

representations to ensure proper law enforcement. LibRT has been one of the partners that assists us with our approach in insuring legal quality with their verification

engine VALENS.' Prof. Dr. T. van Engers Program manager BelastingdienstPage 239

http://www.librt.com/

screenshot
This screenshot shows the list of attention points detected during verification and two different visualizations of the same rules.

feature list
This table shows the features supported by VALENS enterprise edition.

 verification visualization validation

m
ai

n
fe

at
ur

es

ambiguity (conflicts)

self contradiction

circular reasoning

subsumption

incomplete range checking

incomplete value checking

rules

decision tree

decision table

fishbone diagram

dependency graph

scenario diagram

enter test case

generate test cases (planned for version 3.2)

save test case

after rule change:

- assess correctness of test case

- assess completeness of test case

op
tio

ns

double click on attention point to view details

view details in visualization view

compress view

navigate to definitions of variables

substitute definitions of variables

support for long names

zoom-in and zoom-out

collapse or expand branches of tree

see the list of input variables

choose from list of input values

inspect list of intermediate values

contact
For more information, information on pricing, resellers or demo's use the following contact information or go to www.librt.com.

silvie spreeuwenberg T +31 (020) 422 28 93 (GTS +1.00) silvie@librt.com Page 240

Mercury Business Process Testing™ is a complete system for test

automation, enabling non-technical subject matter experts to become an

integral part of the quality optimization process.

MERCURY BUSINESS
PROCESS TESTING

Do you find that most of today’s functional testing products are too

dependent on the programming to enable broad adoption in your

team? Do miscommunications and different priorities between

subject matter experts and quality engineers result in time-

consuming test rework? Have you found that limited subject

matter expert involvement during testing leads to defects and

breakdowns in critical business processes? Are defects found in

production instead of by your functional testing team — hurting

your group’s credibility?

Mercury Business Process Testing is the first complete role-based

test automation system to overcome these challenges and bridge

the quality chasm between subject matter experts and quality

engineers. Business Process Testing is the first Web-based test

automation solution designed from the ground up to enable subject

matter experts to build, data-drive, and execute test automation

without any programming knowledge.

Our solution reduces the overhead for automated test maintenance

and combines test automation and documentation into a

single effort. You are able to measure the quality of application

deliverables from abstract business definitions defined within the

Business Process Testing framework.

In our role-based solution, subject matter experts focus on

creating high-level test flows that mirror actual business process,

while quality engineers concentrate their efforts on areas than

enable automation.

How it Works

Business Process Testing improves on technology known as “Table-

Driven” or “Keyword Driven” testing. This next-generation approach

to test automation introduces best practices into test design, and

enables a complete solution for test design, maintenance, and

execution. The system introduces the concept of reusable business

components that drastically reduce test maintenance and improve

test creation efficiency.

The Business Process Testing system is the industry’s first Web-based, script-free test
development environment. Tests are designed using abstract terms and definitions.

Page 241

The Business Process Testing system is role-based, allowing non-

technical subject matter experts to define test cases without the

need for programming or scripting. Subject matter experts define

test flows through a Web-based interface by declaring what steps

to take and what data to use. By deploying a test-framework

approach to test automation, QA engineers are focused on enabling

automated testing assets.

Our system allows you to begin quality assurance efforts earlier in

the lifecycle of application development. A major benefit is that it

simplifies the creation of tests by leveraging a new technology,

known as “Keyword Driven Testing,” which allows English

representation of test cases. This technology eliminates the need

for scripting programming when building test assets.

Through the business component technology, Business Process

Testing also streamlines the maintenance of testing assets, as both

manual and automated testing definitions can use highly reusable

business definitions. These business components centralize test

maintenance in one repository. Furthermore, the system generates

test-plan documents (in Word format) based on test definitions

developed using Business Process Testing.

Business Process Testing sits on top of a Web-enabled enterprise-

class technology platform that is fully integrated into Mercury

Quality Center™. Our solution combines ease of use, scalability,

fast deployment, and rich functionality to support the entire

development lifecycle.

With Business Process Testing, you can test more thoroughly and, in

less time, catch more defects and release better applications than

previously possible.

Part of Mercury Quality Center

Mercury Business Process Testing is part of Mercury Quality

Center™, an integrated set of software, services, and best practices

for automating key quality activities, including requirements

management, test management, defect management, functional

testing, and business-process testing.

FEATURES AND BENEFITS

• Allows non-technical subject-matter experts to quickly build, data drive,
and document tests in one Web-based system.

• Eliminates the need for programming to define business process flows
due to script-free test design.

• Reduces the effort required for test maintenance by deploying
centralized Business Components.

• Facilitates organizations to start test automation earlier in the
development lifecycle, even before an application is delivered to
Quality Assurance.

• Automatically generates Test Plan Documentation through an innovative
Auto-Documentation mechanism.

• Enables QA efforts to best leverage talent through specific roles and
responsibilities.

• Enables User Acceptance Test (UAT) to deploy automation with
minimal training.

• Centralizes test-maintenance so application changes are automatically
propagated through automated test assets.

Business Process Testing automatically generates Test Plan documents in industry-
standard Microsoft Word format.

© 2004 Mercury Interactive Corporation. Patents pending. All rights reserved. Mercury Interactive, the Mercury Interactive logo, the Mercury logo, Mercury Quality Center, and Mercury Business Process Testing are trademarks or registered
trademarks of Mercury Interactive Corporation in the United States and/or other foreign countries. All other company, brand, and product names are marks of their respective holders. 0504

Mercury Interactive is the global leader in business technology optimization (BTO). We are committed to helping customers optimize the business value of IT.
WWW.MERCURY.COM

Page 242

The Metastore Group
http://www.metastoregroup.com

info@metastore.be

Metastore Belgium
Antwerpen

Phone: +32-32397578

Metastore Netherlands
Purmerend

Phone: +31-299414498

Metastore Luxembourg
Luxembourg

Phone: +352-26175926

Metastore France
Paris

Phone: +33-144218067

Today’s Challenges Make Enterprise Applications

Prone to Debilitating Quality Problems

 Complex multi-tier applications
 Legacy application integration
 Less time
 Fewer resources

Learn how you can improve your quality optimization with Segue

Page 243

The Metastore Group
http://www.metastoregroup.com

info@metastore.be

Metastore Belgium
Antwerpen

Phone: +32-32397578

Metastore Netherlands
Purmerend

Phone: +31-299414498

Metastore Luxembourg
Luxembourg

Phone: +352-26175926

Metastore France
Paris

Phone: +33-144218067

Solutions, distributed by Metastore in Benelux.
Contact us for more information.

Page 244

Mithun Training & Consulting B.V.

Our Promise
Mithun Training & Consulting helps organizations optimize their resources and improve their
performance by concentrating on the most important element, their ability to deliver.

What We Do
Mithun Training & Consulting is more than just a training company. We provide skill development that
is relevant to your business needs. We apply our knowledge in industry models for improving
processes to help organizations develop and manage software and systems. Our experts work closely
with you to provide complete training and mentoring programs, helping individuals and organizations
achieve their career and business goals.

Requirements Management & Engineering for outsourcing and off-shoring of ICT activities.
Many organisations are in the process of changing their ICT strategy from internal development to
outsourcing and off shoring of their ICT activities. This implies that the actual development and
implementation of ICT systems will migrate to external parties abroad. By doing so, these
organisations intend to significantly reduce the cost of their ICT activities, by large scale outsourcing
and off shoring.

In order to truly benefit from outsourcing and off-shoring, it is essential that the business units are able
to produce requirements that are complete, correct (unambiguous and SMART) and consistent, to
reduce the risk that the external party will build the wrong system.

Changing an organisation so dramatically, will have a direct impact on your employees. People will
feel insecure about their job and role in the organisation. Experience has taught us that investment in
people through training will reduce these feelings of discomfort, to support the staff to be able to better
adapt to their new roles.

We will assist your staff to be able to find, capture, analyse, document and engineer these
requirements, using a natural language, and make these requirements measurable and testable,
complemented with additional modelling techniques where required.

Our core areas of expertise are:
- Requirements Management & Engineering
- Object Oriented Analysis & Design with UML 2.0
- Real-time and Embedded Analysis & Design
- Software Engineering Processes (Agile & DSDM)

We invite you to visit us at our booth at the VVSS2005 vendor show or contact us directly at:

Mithun Training & Consulting B.V.

P.O. Box 898
3800 AW Amersfoort
Netherlands

T. +31 (0) 33-457 0840
F. +31 (0) 33-457 0839
E. info@mithun.nl
I. www.mithun.nl

Page 245

ps_testware as Independent Partner in Software Quality

Problems with the quality of your software? Need some help
in structuring your requirements or test activities? Want
information on what structured software testing really
involves, what validation can mean for you and how to
implement it? ps_testware helps to find a solution as Quality
is (y)our business.

ps_testware is a Belgian/Dutch consultancy firm with the head
office in Leuven (BE) and subsidiary in Gorinchem (NL) and
we make Software Quality (structured software testing and computer system validation)
our business since more than 13 years now.

Ps_testware has about 60 consultants working in the Netherlands, Belgium and France to
improve the quality of software for mostly large enterprises (particular in the banking,
insurance, pharmaceutical and energy sector). These consultants are all ISEB certified
and use a proven methodology (based on our Implementation (or I-)Model). They strive
for qualitative software by implementing a structured test and validation process and
hereby gaining precious time and money.

ps_testware is only satisfied when the customer is satisfied. What the customer wishes is
what we want, resulting in a shared target: to deliver a qualitative software product
through a structured and repeatable process. ps_testware delivers test and validation
services in various forms: consultancy, coaching, training, co-ordination, management
and outsourcing. Our methodology can be used for both manual processes and automated
tests (regression testing and performance testing).

To support a structured way of working, ps_testware uses the web tool QMX (Quality
Management eXpert).

QMX provides all information needed to manage and follow-up your test process:

- a clear view on the quality of the test process
- automated reporting
- linked information in an easy and synoptic way
- tracked information throughout all phases of the process
- basis for founded (release) decisions.

This test management tool was created by ps_testware based on a proven test
methodology and 10 years of practical project experience. QMX is recognised as an
Innovative Product and can count on the support by IWT (Institute for the Promotion of
Innovation by Science and Technology in Flanders), which is the only Flemish
organisation stimulating and supporting innovation. Quality Management eXpert is
currently used at several customer projects.

For more information: www.pstestware.com and www.myqmx.com

Page 246

Established in 1986, Programming Research is recognized worldwide as the leading authority in the
assessment of software quality and coding standard compliance through automated source code analysis
and process improvements and requirements solutions provider. Products are:

• IRqA, Requirements engineering;
• QA C MISRA;
• QA C++.

IRqA® competitive advantages

• IRqA® is Requirements Engineering oriented (vs Requirements Management only): The complete
specification cycle is supported via standard models:

o Requirements Capture
o Requirements Analysis
o System Specification building
o Specificacion validation (specification vs requirements)
o Acceptance Tests management
o Requirements Organization & Classification
o Requirements Management

• Provides a powerful set of modelling capabilities.
• Graphical organization and navigation model supported. Those graphical models provide key

benefits over textual capture of systems structure:
o More intuitive and flexible than "folders" approach
o Active diagrams, not just pictures
o Multiple Organization and Classification Layers
o Form the basis of RM in complex consortia co-ordination

• With IRqA®, you can implement your RE management process.
• Open RDBMS-based repository (any commercial RDBMS can be used).
• Both classical functional and O.O. approaches are suppported for requirements analysis and

specification building.
• Provides a powerful XMI interface with XMI-compliant design tools.
• Advanced Reports Generation & Management: both specific standard-based and user-defined

documents can be generated or captured.
• IRqA® provides a cost estimation module based in the concept of "Use Case-Point".
• Complexity metrics.
• Full traceability from an element to another one of any type (i.e: requirement, concept, service, test

scenario, etc).

QA·MISRA is recognized worldwide as the leading, most powerful, and most widely adopted solution for
MISRA compliance available today. QA·MISRA automatically enforces the latest MISRA guidelines now and
gives you a head-start to comply with the new SAE J2632 guidelines underway for tomorrow.
Our QA·MISRA Metrics Module delivers even more value by computing and reporting all statically
determinable metrics found in MISRA Report 5, "Software Metrics". This report identifies software attributes
and metrics which are used to measure code quality.
QA·MISRA provides an efficient, practical solution to the challenge of enforcing the MISRA standard. Today,
we deliver automatic enforcement of a remarkable, unrivaled 98% of the statically enforceable MISRA rules.
QA·MISRA Features
Detects and reports violations of the MISRA rules
Computes & reports all statically determinable metrics found in MISRA Report 5
Links warning messages directly with the text of the appropriate rule
Provides cross references via further HTML links to the appropriate rule definition and explanatory examples
Produces code quality reports which tabulate by rule, the number of violations found in each file while linking
them to the appropriate part of the source code
QA·MISRA Benefits
Allows tailoring and extension of the rules to meet local requirements
Educates developers with regard to "safe" language usage and MISRA C
Offers an automatic, repeatable and efficient code verification method
Establishes a software quality benchmark against which subsequent revisions of code can be measured and
compared Provides all the standard features of the powerful QA·C environment including metrics, code
visualization, demographics, and more.

Page 247

Refis System Reliability Engineering
Merellaan 5, 3722 AK Bilthoven
T 030 225 36 37 F 030 225 36 49
E info@refis.nl web: www.refis.nl

“Onderzoek, ontwikkeling, advies en opleiding op het
gebied van betrouwbaarheid van informatiesystemen”.

Refis houdt zich bezig met de kwaliteit van geautomatiseerde systemen in de
meest brede zin van het woord. Of het nu gaat om betrouwbaarheidsanalyses,
metrieken en meetsystemen, of het testen van informatiesystemen, Refis
adviseert, ontwikkelt en participeert in alle aspecten van kwaliteitsmeting en
–verbetering.

 Onderzoek
In nauwe samenwerking met
universiteiten, opdrachtgevers en
collega bedrijven werkt Refis aan een
brede inzetbaarheid van bestaande
betrouwbaarheidsmodellen, nieuwe
hulpmiddelen en een verspreiding
van kennis en ervaring.

 Advies
Refis adviseurs zijn betrouwbare
partners in ontwikkel-, test- en
kwaliteitszorg trajecten. Als
projectmanager, testmanager of
adviseur. Hands-on ervaring en
inzicht in bedrijfsprocessen levert
concrete ideeën die ook werkelijk
bijdragen tot verbetering.

“Bespaar kosten in
ontwikkeling, testen en
exploitatie”.

 Ontwikkeling
In nauwe samenwerking met haar
opdrachtgevers, ontwikkelt en
implementeert Refis meetsystemen
waarmee de opdrachtgever continue
inzicht heeft in de performance van
de eigen auto-matiseringsprocessen
en -producten.

 Opleiding
Refis trainingen op het gebied van
testen, kwaliteitszorg en
systeembetrouwbaarheid
onderscheiden zich door het
praktische karakter en de directe
toepasbaarheid van de lesstof.

“Verhoog de betrouwbaarheid
van informatie- en
procesbesturingssystemen”.

Page 248

Sogeti

Met meer dan 2.000 medewerkers bundelt Sogeti Nederland B.V. meer dan 30 jaar ICT-
kennis en -expertise in één bedrijf. Zij maakt onderdeel uit van een internationaal
netwerk van Sogeti bedrijven (ruim 15.000 medewerkers) en behoort tot de Capgemini-
groep (met zo'n 60.000 medewerkers wereldwijd). Het ontwerpen, realiseren,
implementeren, testen en beheren van ICT-oplossingen behoort tot haar core-business.

Software Control is een divisie van Sogeti Nederland B.V. Als eigenaar van de TMap®-
methodiek en het TPI®-model is Software Control met haar 400 specialisten een
trendsetter op het gebied van testen en quality assurance binnen het ICT-werkveld. De
dienstverlening van Software Control concentreert zich rond requirements lifecycle
management, gestructureerd testen, quality assurance en (test)procesverbetering. De
vorm van deze dienstverlening varieert van detachering via testprojecten tot volledige
uitbesteding van het testproces aan de TMap®Factory en met offshore-mogelijkheden bij
Sogeti India. De opdrachtgevers van Software Control zijn te vinden in alle segmenten
van het Nederlandse bedrijfsleven en de overheid.

Om met haar dienstverlening voortdurend de ontwikkelingen en trends in de ICT-wereld
te volgen, investeert Software Control veel in research & development. Innovaties in de
technologie, nieuwe ontwikkelmethoden, nieuwe toepassinggebieden en
trendswijzigingen in ICT-beleid van toonaangevende ondernemingen worden op de voet
gevolgd. De resultaten van research & development worden gepubliceerd in (inmiddels
14!) boeken, in de vakbladen en in (internationale) newsletters en gepresenteerd op
TMap® Test Topics seminars en de nationale en internationale (test)platforms als
Testnet, SPIder en Eurostar. Ook op www.tmap.net worden de resultaten in detail
gepubliceerd.

Wij stellen de hoogste eisen aan onze professionals. Zij zijn dan ook zonder uitzondering
van zeer hoog niveau en hebben uitgebreide training in onze dienstverlening gekregen.
Via reguliere cursussen en bijeenkomsten blijven zij op de hoogte van de laatste
vakontwikkelingen. Bijzonder is ook dat zij hun vak hebben gemaakt van onze
dienstverlening en u dus echte specialisten over de vloer krijgt.

Software Control is gecertificeerd conform ISO 9001:2000

Sogeti Nederland B.V.
Divisie Software Control
Hoofdweg 204
3067 GJ Rotterdam
www.sogeti.nl
www.tmap.net

Page 249

Verum – Making Software Work!

Software is playing an increasingly larger and more significant role in almost every aspect of our
lives. Many of the devices that we use on a daily basis are (becoming) entirely dependent on
software, from mobile phones through to automobiles, from DVD players to central heating
controllers. The same is true within industry, from medical systems to manufacturing equipment,
from process control to transport and logistic systems.

The result of this is an explosion in the size and complexity of software systems. Figures from
leading companies, including Philips and BMW, show that the size of (embedded) software
systems is increasing at an exponential rate, paralleling Moore’s Law. They also show that
software complexity is increasing at an even faster rate.

Conversely, productivity studies show that over the last 10 years software developers have
scarcely been able to keep up with demand. Figures from leading institutes, such as the SEI and
QSM, show that on average the best (embedded) software development organizations – those
that have a software process improvement program – have only doubled their productivity during
this period; average organizations have achieved much less.

The result is a capability gap between the demand for ever larger and more complex (embedded)
software systems and the average development organization’s productivity.

This gap is the source of enormous tension in the market.

Embedded software development projects are so essential to many new products that they are
rarely ever allowed to fail. Instead, organizations pump money into them until some measure of
success is achieved. The result is that software development projects often run massively over
cost, extend the end product’s time-to-market and/or ultimately deliver a poor quality solution. For
example there are an increasing number of stories about the decreasing reliability of automobiles,
with some manufacturers having already suffered market share losses as a result. Predictions for
the future indicate that this situation will continue to deteriorate across all markets.

A solution to these problems can only be achieved by a quantum leap – an innovation – in
software development efficiency, which suggests the need for a fundamental change to the way
in which software is currently developed.

Verum has developed and adapted a series of innovative mathematical software design
techniques, cumulatively referred to as “Analytical Software Design” (ASD). At the heart of this
technology lies a new unique mathematical method for which Verum has applied for Patent
Protection. ASD is capable of bringing mathematical rigour to the process of designing
behaviourally complex software systems. It is also able to increase the effectiveness of and give
statistical meaning to software testing.

The application of ASD to software development establishes mathematical completeness and
correctness in the specification and design phases of a project. The result is a greatly increased
level of precision and a dramatic reduction in defects extremely early in the development lifecycle.
The repercussions of this are felt through the entire rest of the lifecycle: Development effort can
be reduced by as much as 30%, development timescales may be reduced by 30% and the
number of defects in the software at delivery is reduced by 90%. Overall the effect of ASD is to
increase the end-to-end predictability of software development in terms of Cost, Quality and
Time-to-Market.

Please attend the presentation of Verum’s CTO Guy H. Broadfoot, called “Meeting the quality
challenge of untestable software” at 15:45 or visit our booth at the Tool exhibition for more
information.

www.verum.com

Page 250

	Presentations integrated.pdf
	KN1_Brinksma abstract.pdf
	KN2 Jacobs abstract.pdf
	Track1_Brzic_slides.pdf
	Track 1_Vellekoop_slides.pdf
	Track 2_Illes_slides.pdf
	Track 2_Koopman_slides.pdf
	Track 3_van Lint_slides.pdf
	Track 3_Williams_paper.pdf
	Track 4_Joosten_paper.pdf
	Track 4_Mathijssen_abstract.pdf
	Track 5 Koomen_slides.pdf
	Track 5_Vouffo_paper.pdf
	Track 6_Buijtendijk_paper.pdf
	Track 6_Feord.pdf
	Track 7_Peters slides.pdf
	Track 7_Henzen slides.pdf
	Track 8_de Boer slides.pdf
	Track 8_Gilliot slides.pdf
	Track 9_Mueller slides.pdf
	Track 9_Piessens slides.pdf
	Track 10_Kisjes slides.pdf
	Track 10_Smit_gegevens.pdf
	Track 11 Serebrenik paper.pdf
	Track 11_de Vries slides.pdf
	Track 12_Stoelinga_abstract.pdf
	Track 12_Malotaux paper.pdf
	Track 13_Broadfoot note pages.pdf
	Track 13_Hassing_slides.pdf
	Track 14_van Berkum_abstract.pdf
	Track 14_Hendriks_slides.pdf
	Track 15 Peters_slides.pdf
	Track 15_Petkovic slides.pdf

	Posters integrated.pdf
	X IPQS1.pdf
	X IPQS 2.pdf
	X Empanada_Lange.pdf
	X Prom_Rozinat.pdf
	X SpecTEC.pdf
	X Yasper.pdf

	Tool exhibitioners combined.pdf
	Z Librt_Valens.pdf
	Z Mercury.pdf
	Z MetaStore.pdf
	Z Mithun.pdf
	Z PS-testware.pdf
	Z Programming Research.pdf
	Z Refis.pdf
	Z Sogeti.pdf
	Z Verum.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

