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Abstract

High resolution Near-field Acoustic Holography (NAH) is not a widely discussed
topic in open literature. For instance articles on automotive or naval applications do
not discuss resolutions beyond one centimetre. Electronic appliances on the other
hand demand a high spatial resolution, since the components of printed circuit boards
become smaller and smaller. These applications require a spatial resolution in the
order of millimetres. As an example, components such as Surface Mounted Devices
(SMDs) carry high frequent switching voltages, which may have a noise generating
effect. Even sound power levels as low as 30 dB(A) can be annoying to the customer,
requiring a diagnostic tool such as NAH to localise the sound source(s) of relatively
low acoustic levels at a high spatial resolution. To obtain high-resolution acoustic
images, the acoustic signal processing and measurement set-up have to be tuned
carefully. The paper focuses upon the determination of optimal measurement and
reconstruction parameters to enable highly accurate source reconstructions, which in
this case are limited to stationary, coherent sources only. To illustrate the high-
resolution capabilities of Planar Near-field Acoustic Holography (PNAH) a test case
is used. The test case is a plate containing three baffled sources, each two millimetre
in diameter, half a millimetre apart. The measurements show that the sources are
identified with sub-millimetre resolution.



INTRODUCTION

One of the main interests of Planar Near-field Acoustic Holography (PNAH) on small
objects is the maximum achievable resolution of the acoustic field information at the
source plane. This resolution depends on a number of parameters that can be set either
by the measurement or the post-processing properties. The different parameters
affecting the resolution of the acoustic images will be discussed in this chapter. Also a
post-processing algorithm to determine the optimal k-space filter parameters will be
introduced. The work of Williams [1] is used as a basis for PNAH acoustic signal
processing.

THEORETICAL SPATIAL RESOLUTION
Spatial sampling

Sampling in the spatial domain is determined by the acoustic sensor positions. The
distances Ax and Ay between the measurement positions on the measurement plane
make up the spatial discretisation and can be seen as a spatial AD-conversion. The
Nyquist criterion [2] for analogue to digital signal processing is equally valid in the
spatial domain. Consider a noise-free acoustic measurement in the near-field. The
minimum distance between two acoustic sensors or spatial samples determines the
maximum observable wavenumber, kmax. The minimum observable wavelength is 2
samples long, or

A =2Ax [m]. 1)
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This makes the highest observable wavenumber:
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The resolution of an acoustic image can be defined as the minimum distance between
two acoustic sources that can be observed. This minimum change in acoustic quantity
can at best be observed by two neighbouring sensor positions of which one is, for
example, sensing a high sound pressure and the other a low sound pressure. In the
noise-free case the resolution of the acoustic image will be
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Thus, the maximum resolution of the acoustic image is at first determined by the
sensor distance, which is the absolute upper boundary and should be chosen with care.
So, if the sensor distance is too large compared to the wavenumbers one is interested
in the process will fail and the resolution will not be adequate. A second bounding



property for the maximum resolution of an acoustic image is the signal-to-noise ratio,
which will be discussed in the next paragraph.

Influence of measurement noise on resolution

In case there are no evanescent waves available from the measurements and the grid
spacing is smaller than 2Ax, the resolution R is determined by the free field acoustic
wavelength A:

R. =

min

A
5 [m]. 4)
This can be defined as the minimum resolution for an acoustic image, which, in fact,
is the resolution that can be obtained by beam-forming or acoustic holography. In
practise the resolution that can be obtained by PNAH will be in-between Ryin and
Rmax- To increase the spatial resolution beyond R, it is clear that a measurement in
the near-field of the object is necessary to acquire information about the evanescent
waves.

The error level of an actually measured hologram contains some intrinsic
error, also referred to as noise, which includes background sound, diffraction from the
microphone, electric noise, calibration errors, etc. Interesting information about the
noise is the difference between signal and noise, also known as signal-to-noise ratio
(SNR), or dynamic range D, which is defined as

M
D =20"1og — |, 5
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where M is the maximum measured field amplitude and E is the noise amplitude. This
is an important quantity because the dynamic range D influences the maximum
observable wavenumber as a function of the source-hologram distance (zy-z). From
[3] we know that we can write

T
R= =
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for the resolution of the acoustic image that is possible with dynamic range D. For
D=0dB there are no evanescent waves available and R is equal to the resolution
obtained by beam-forming, Rpi, in (4). So, the better the dynamic range of your
measurement, the higher the resolution of your acoustic image when measuring in the
near-field.

The potential of NAH is a direct result of the dynamic range with which the
evanescent waves are measured in the near-field. Compared to beam-forming or
acoustic holography, NAH will result in a much higher resolution given a high
dynamic range. Consider for example the acoustic radiation at a single angular
frequency of ®s=2m1000 rad/s at different distances zy-zs. The resolution of the
acoustic image depends on the dynamic range D as shown in Figure 1, where the



upper graph gives the resolution for beam-forming where no resolution improvement
is obtained for higher dynamic range. From (4) and ws=271000 rad/s it follows that
len:().17 m.
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These graphs tell us that distance from acoustic sensors to the source should be as
small as possible (but not too small, as will be seen in the next section) and the
dynamic range of the measurement should be as large as possible in order to
maximize resolution.

Spatial aliasing

An important issue when acquiring a holographic measurement is the distance from
the tip of the sensor to the source plane, or as stated above: zy-z;. From (6) we know
that the resolution strongly depends on this distance and decreasing it will boost
resolution. There are two main reasons why decreasing the hologram distance zp-zs
has its limits.

The first reason is the influence of the sensor on the acoustic behaviour of the
source. Diffraction and a change in acoustic impedance can be of great importance on
short distances. The second reason is the spatial sampling spacing, or Ax and Ay. The
spatial sampling and hologram distance are interlinked because of aliasing effects.
Aliasing is a well-known issue in digital signal processing and is a result of the under-
sampling of data. Take for example the sine wave with a high wavenumber as
illustrated in Figure 2. This sine wave is sampled by Ax, which results in the sampling
points marked by the black dots.

Figure 2: Under-sampling
of a sine wave.

Ax

When only considering the sampled data, which is the only data available after
acoustic array measurements, the sine wave that fits these points has a much
larger wavelength (also illustrated in Figure 2). Thus, spatial aliasing causes an
inability to reconstruct the exact sound field.



In time domain digital signal processing, typically, a low-pass filter applied
before sampling is used to ensure that frequencies higher than half the sampling
frequency are not present. However, it is not possible to apply an analogue filter for
spatial acoustic data because the high wavenumbers are present in the near-field of the
source and cannot be suppressed without interrupting the acoustic properties of the
field between source and hologram plane. A spatial low-pass filter can be made
effective by a proper choice of the hologram distance, since the highest observable
wavenumber is dependant on this distance. Because it is assumed that sources only
exist in the half space z<0, there is no source that could produce higher wavenumbers
at the hologram plane, for a given distance to the source. This can be seen as a natural
anti-aliasing filter.

Coupling of spatial sampling, hologram distance and dynamic range

In accordance with the Nyquist criterion we have seen that 0.5k is the maximum

sample
observable wavenumber in a noise free environment. A noise free environment
implicates that D — o« and the resolution R from (6), which considers the effect of
measurement noise on the resolution only, becomes approximately zero. This effect is
limited by the “other” resolution from (3) due to spatial sampling. When the
inequality,

2
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is true, aliasing occurs. In other words, there exists a distance z, —z, below which, at

a certain dynamic range, aliasing occurs at a chosen spatial sampling frequency,
because from this distance on evanescent waves higher than the Nyquist wavenumber
are observable. Inequality (7) couples spatial sampling, hologram distance and
dynamic range, which makes it possible to wisely set your measurement parameters.
Figure 3 illustrates inequality (7). It also shows that the frequency of the signal plays
an unimportant role.
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Figure 3: Spatial aliasing
slaeing due to dynamic range and
hologram distance.
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SPATIAL RESOLUTION MEASUREMENT
Measurement

In order to verify the above stated properties and limitations of spatial PNAH
resolution, a measurement is performed. The set-up is pictured in Figure 4a and b.
The object comprises three holes in a baffled plate. The three holes, each with a 2 mm
diameter, are positioned in line, 0.5 mm apart. A cylindrical cavity is connected to all
three holes and the cylindrical cavity is connected to a closed speaker box, which
results in in-phase acoustic waves coming out of the holes.

b) plate in baffle ¢) Measured hologram at 3 mm

a) holes in aluminium plate and £=2365Hz

Figure 4: Measurement information

The hologram distance zp-zs is 3 mm and the spatial sampling distance in both x- and
y-direction is 0.3 mm, which is based on (7), a dynamic range of approximately 45dB
and the required resolution of at least 0.5 mm. The hologram as illustrated in Figure
4c should give us enough information to reconstruct all three sources.

Post-processing and L-curve Regularization in PNAH

The acoustic hologram is partly processed as illustrated by the block diagram in
Figure 5.

k-space

» Kk-space _.J_, Plxy.z,)

» solution to the

hologram

V ‘

P(x.1.z,) —»| border-padding

4

spatial window & zero-padding | inverse problem filter i A
Ble. k5 Bileokz)  SOUCE

Figure 5: Block diagram of PNAH post-processing



The basics of this technique are described in [1], an expansion with zero- and border-
padding is described in [4], and a thorough description of the full post-processing
strategy and its performance can be found in [5].

Extra attention is necessary for the low-pass k-space filter and especially its
regularization. Since an increasingly higher k¢, results in a “blow up” of the result, the
k-space filter cut-off variation is a good measure for application of an L-curve.

5) keo=6908rad/m

Zpin— 0 Pa
Zmax= 100 Pa

4) ko=3684rad/m

Zpin— 0 Pa
Zmax— 0.3 Pa

log |IP

3) keoe=2303rad/m

Zmin= 0 Pa
Zmax— 0.3 Pa

2) koo=1843rad/m

log "Ph N th"
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Zmax= 0.3 Pa
Figure 6: PNAH L-curve at f=2365Hz, the numbers
correspond to the reconstructions of Figure 6-1 to
6-5 at increasing cut-off wavenumber k. Notice
that Figure 6-1 to 6-4 share equal axis limits,
Figure 6-5 on the other hand has far wider limits in
the vertical axis. Absolute sound pressure [Pa] is
set out on the vertical axis in Figure 6-1 to 6-5.

1) keo=463rad/m

Zmin= 0 Pa
Zmax— 0.3 Pa

In [6] a clear description of the L-curve and its usefulness in inverse problems, like in
PNAH, is given. In short, the application of the L-curve shows the switch between
underestimation of the inverse solution by too much low-pass filtering (the right,
horizontal part of the “L”) and the “blow up” of the solution by the lack of low-pass
filtering (the left, vertical part of the “L”). Optimal regularization can be obtained by
selecting a cut-off value that corresponds to the corner of the L-curve. The “blow up”
effect by PNAH can be properly described by the norm of the k-space counterpart of

. The effect of a too tight k-space

x> NMy>“s

the spatial sound pressure result: H]%f(k k,z ]

filter can also be determined properly in k-space by taking the norm of the hologram
counterpart in  k-space minus the low-pass filtered version, or

Hﬁ(kx,ky,zh)—ﬁf (kx,ky,zh ]‘ Now, we plot Hfif(kx,ky,zsl

Hﬁ(k k,z )— fif (k k ,z ]‘ in a log-log graph, resulting in the L-curve of Figure 6.
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The effects of the low-pass filter are clearly visible in Figure 6-1 to 6-5.
Position one shows the reconstruction of the source with a very low cut-off, resulting
in only one recognizable source. The cut-off of position two is still too low, but now
two sources are recognized. When cut-offs become too high in case of position 4 and
5, the reconstruction becomes very inaccurate since noise has blown up. When we
observe the L-curve and choose the proper position in the corner of the “L”, the
properly regularised result is obtained where the three individual sources can be
recognized.

Figure 7: From left to right: absolute sound pressure [Pa] from hologram to source,
k¢;=2303rad/m corresponding with Figure 6-3.

The spatial change from the hologram plane at 3 mm in steps of 1 mm to the source
plane at 0 mm can be observed from left to right in Figure 7. Since the axis share
equal limits, the change from a distance of just 3 mm with only one recognizable
source to a distance of 0 mm with three recognizable sources is clearly visible.

SUMMARY

This work shows that a spatial resolution between 0.5 and 1 mm is possible by means
of proper measurements and improved PNAH post-processing techniques. The
coupling of spatial sampling theory, dynamic range and knowledge of aliasing
conditions prove to be very important in the set-up of a PNAH measurement. From a
post-processing point of view the application of an L-curve for PNAH is very
effective and helpful in the determination of the optimal cut-off for the k-space filter.

REFERENCES

[11 E.G. Williams, Fourier Acoustics. Sound and Nearfield Acoustical Holography (Academic Press,
1999)

[2] H. Nyquist, “Certain Topics in Telegraph Transmission Theory”, AIEE Trans., 47, 617-644
(1928)

[3] J.D. Maynard, E.G. Williams, Y. Lee, “Nearfield acoustic holography: I. Theory of generalised
holography and the development of NAH”, J.Acoust. Soc. Am., 78 (4) (1985)

[4] R. Scholte, N.B. Roozen, “Improved data representation in NAH applications by means of zero-
padding”, 10™ Intern. congress on sound and vibration, Stockholm, Sweden (2003)

[ST R. Scholte, “Improved Source Localization Techniques in Planar Nearfield Acoustic Holography”,
Master Thesis University of Twente, Philips CFT, Eindhoven, The Netherlands (2004)

[6] P.C.Hansen, “The L-curve and its use in the numerical treatment of inverse problems” (1999)



