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The impact of manufacturing flexibility on inventory investments in a distribution network consisting of a central depot and a
number of local stockpoints is investigated. The lead time of outstanding orders in the pipeline of the central depot can be
shortened by the use of flexibility. Stock levels are controlled by a periodic review echelon-order-up-to-policy under service level

constraints.

1. Introduction

In this paper we consider the impact of manufacturing
flexibility on inventory investment in a distribution net-
work consisting of a central depot and a number of local
stockpoints. In practice manufacturing flexibility is ex-
ploited by planners that reduce the manufacturing
throughput time of a particular production order in case
the actual need date is earlier than was initially planned
for. Such a reduction in throughput time can be realized
by giving this order priority at bottleneck work stations.
The rescheduling of orders by giving some orders priority
may lead to the delay of other orders unless some excess
capacity is available to prevent this happening. The
amount of excess capacity needed to maintain due dates
depends, among other things, on the frequency of re-
scheduling. In practice often implicit or explicit infor-
mation is available about the frequency of rescheduling
orders for particular products. Thereby, it is possible to
make a trade-off between the frequency of rescheduling
orders, which is a measure for manufacturing flexibility,
and the capital investment in end products inventory.
To investigate the impact of this type of flexibility we
consider a single-product/two-echelon model consisting
of a central depot and multiple retailers. The retailers face
stochastic demand. The demand for the product at the
retailers in subsequent time periods is i.i.d. The lead time
of orders from the retailers at the depot is constant, but
may be different for different retailers. The lead time of
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orders from the depot at the manufacturer of the product
is a constant Ly but may be shortened as explained below.
Both the depot and the retailers order according to pe-
riodic review echelon-order-up-to-policies. The review
period is the same for both depot and retailers.

After ordering of both depot and retailers the situation
may occur that the depot has insufficient stock to satisfy
the retailer orders. In that case the depot attempts to
make outstanding orders available immediately. This
speeding up of orders already in the pipeline is exploited
until the depot is able to satisfy the retailer orders or
further speeding up is impossible. However, how many
orders can effectively be made available without any time
delay depends on an exogenous stochastic process. The
assumption that the extent to which orders can be
speeded up is governed by an exogenous stochastic pro-
cess can be motivated as follows. The opportunity for
expediting manufacturing orders depends on the overall
workload, the available capacity, and agreements with
other customers/depots. In reality a planner at the man-
ufacturer must solve a complex multi-product, multi-pe-
riod, finite capacity production planning and scheduling
problem. The outcome of this planning process is neither
observable nor controllable by the individual depot.
Therefore, from an individual product’s point of view, the
outcome of this planning process seems to generate ran-
dom opportunities for use of manufacturing flexibility.
Based on past experience, i.e., historical data, the depot
determines the probability that the order to arrive at the
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beginning of the next period can be made available in-
stantaneously, the probability that the next two out-
standing orders can be delivered instantaneously, etc. It is
interesting to note that our description of the stochastic
process governing manufacturing flexibility can be used
to describe different strategies for allocating flexibility to
individual products at the manufacturer.

Before speeding up orders the depot is informed about
how many orders in the pipeline can be speeded up. Since
orders placed in earlier periods: (i) may already be avail-
able; (ii) for these orders materials are replenished earlier
at the manufacturer; and (iii) the manufacturing process
has progressed, they can be expedited more easily.
Therefore, we assume that earlier orders can be speeded
up first, that is that the speeding up process of the re-
plenishment pipeline follows a First-In-First-Out (FIFO)
priority rule. The availability of speeding up opportunities
is exogenous whereas the decision about the use of order
expediting is endogenous. Thus it may be that, even after
speeding up the maximum number of orders, the depot is
still not able to satisfy all retailer orders. The shortage that
remains is allocated among all retailers according to some
rationing rule (van der Heijden et al., 1997).

The objective of the paper is to get insight into the
trade-off between costs of manufacturing flexibility and
costs of holding inventory and in particular how manu-
facturing flexibility should be used for individual prod-
ucts. We consider two problem formulations to investigate
this trade-off. The first problem formulation assumes a
cost for speeding up an order of a certain age. The second
formulation assumes a flexibility budget, i.e., we assume a
constraint on the workload associated with speeding up
orders. This latter formulation may be more practicable,
since it may be hard to allocate costs of manufacturing
flexibility to individual orders for individual products. In
order to compare the impact of different flexibility policies
on inventory investments we determine policies that yield
predetermined fill rates at the retailers. The fill rate is
defined as the fraction of demand satisfied from stock on
hand (the P2 measure in Silver et al. (1998)).

To our knowledge no models exist in the OR literature
that consider the relation between manufacturing flexi-
bility and capital investment for a periodic demand multi-
echelon model. For pure Poisson demand and lot-for-lot
installation stock policies (Axséiter, 1993) a similar type of
pipeline flexibility is considered by Dada (1992). Fur-
thermore, Moinzadeh and Schmidt (1991), Hausman and
Erkip (1994), Verrijdt et al. (1998) and Alfredsson and
Verrijdt (1999) consider emergency shipment models. As
for the model considered by Dada these papers only
consider pure Poisson demand. In this paper we consider
demand for normal products, which can better be de-
scribed by a periodic demand model.

The paper is organized as follows. In Section 2, the
dynamics of the inventory system are described. The
analysis of the model is outlined in Section 3. Section 4
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reports on a simulation study to test the quality of the
approximations made in the analysis. Managerial insights
into supply lead time flexibility are derived from numer-
ical examples in Section 5 and conclusions are drawn in
Section 6.

2. The two-echelon inventory model

The two-echelon inventory system consists of a Central
Depot (CD) and N retailers as depicted in Fig. 1. The
retailers face stochastic customer demand which is inde-
pendent in time and among retailers. If the external de-
mand at a retailer exceeds the available stock on-hand,
the shortage is backordered. In order to avoid large
shortages, every retailer has to guarantee a predetermined
target service level. The retailers control their inventory
according to periodic review order-up-to-policies. These
require that, at the beginning of every review period,
every retailer i places an order at the CD to raise its
inventory position (stock on-hand plus stock in-transit
minus backorders) to the order-up-to-level S;.

The CD controls its inventory according to a periodic
review echelon-order-up-to-policy, where the inventory is
reviewed immediately after the retailer orders have been
received at the CD. The depots echelon inventory posi-
tion (stock on-hand plus stock in-transit plus sum of all
inventory positions of the retailers) is raised to Sy by
placing an order at the external supplier. The supplier
satisfies every order, unless specified otherwise, within a
deterministic lead time of Ly > 0 review periods. The CD
is allowed to hold stock up to a maximum level of A. This
parameter is equal to the difference of Sy and the sum
of the retailers order-up-to-levels. For a stockless depot
(A =0) all stock arriving at the depot is immediately
shipped to the retailers. In the case of infinite depot stock
(A = ), the N stockpoints operate independently.

The CD decides how to allocate the available stock
among the retailers. If possible, all retailer inventory

Fig. 1. Two-echelon inventory system.
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positions are raised to the desired order-up-to-levels S; by
shipping an order to retailer i, which arrives after L; re-
view periods. All remaining stock is retained at the CD.
In case of stock insufficiency at the CD, the available
stock is rationed, i.e., each retailer only receives part of
the ordered quantity.

Just before rationing, our model allows for exploiting
some flexibility which is the (random) possibility that
some orders in the pipeline towards the CD can be made
available immediately. If all outstanding orders can be
speeded up, i.e., there is the opportunity to reduce all
(remaining) lead times to zero we call this ““full flexibili-
ty”’. Specifically, suppose just before rationing the CD has
insufficient stock to satisfy all retail order. Then, with
probability .#; an order placed j periods ago (and all
outstanding orders placed in earlier periods) can be made
available. For this ‘speeding up’ process, we assume a
FIFO priority rule without order splitting. Usually it is
easier and less expensive to speed up orders placed in
earlier periods and it is often impossible to split a lot after
the start of processing. Hence, #; is monotonously in-
creasing in j. Further, we assume that these probabilities
only depend on the age of an order and not on either its
size or on the workload given by all orders in the pipeline.
This assumption appears to be reasonable if the addi-
tional workload for rescheduling orders is dominated by
planning activities and setups. The incorporation of such
dependencies would require a more detailed modeling of
production scheduling and is a matter of further investi-
gations.

If the depot shortage cannot be covered in the case of
insufficient flexibility, the shortage is rationed among the
retailers as known from the traditional distribution
models (van der Heijden et al., 1997). We introduce the
following notation. The index i represents a facility. Index
0 corresponds to the CD, whereas an index 1 <i< N

corresponds to retailer i. For i =0,1,..., N we define:

S; = Order-up-to-level of facility i.

L; = Lead time of facility i.

Di_ ., = Customer demand at retailer i (if 1 <i < N), or

' at all retailers (if i = 0), during [t — s, 7).

D; = Customer demand at retailer i (if 1 < i < N), or
at all retailers (if i = 0), during s periods.

OH; = Mean stock on-hand at facility i just after an
order arrival.

PS; = Mean stock in the pipeline to facility i.

U = Expected single period demand at facility i.

o; = Standard deviation of single period demand at
facility i.

h; = Inventory holding cost parameter at facility i.

For all integer ¢ we define

I; = Inventory position of retailer i just after the allo-
cation at time ¢, (1 <i < N).
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X; = Highest rank of the order in the pipeline towards
the CD at time ¢, which cannot be speeded up.
Y; = Number of orders speeded up by the CD at time ¢.
0, = Number of nonempty orders in the pipeline towards
the CD at time ¢, just before the possible use of
. flexibility.
0, = Number of nonempty orders in the pipeline towards

the CD at time ¢, just after the possible use of
flexibility.

The objective of this paper is to determine the order-up-
to-levels {$;}", and the flexibility function #, such that
the mean holding costs associated with pipeline invento-
ries PS; and on-hand inventories OH;, i =0,...,N in the
system are minimized under the constraints that the fill
rate attained at retailer 7 is at least the target fill rate ;.
The speeding up of orders is incorporated into the opti-
mization problem in two different ways. In Problem 1, we
incur costs for rescheduling orders whereas in Problem 2,
the workload E(Y) required to reschedule orders is limited
by the available capacity Y*. Let ¢/ denote the cost of
speeding up an order of age j, and a; be the workload of
rescheduling an order of age j, j =0,...,Ly — 1. The ex-
pected number of orders of age j being rescheduled per
period is denoted by p;. Similar to the assumption con-
cerning the speeding up probabilities & we assume that
the ¢/ and a; are independent of the associated order sizes.
Thus, these problems can be formulated as follows.

e Problem 1

N
mingg v hy x (PSo + OHp) + > i x (PS; + OH;)
i=1

Lo—1

+ZC£XP/,
J=0
subject to f5; > B, i=1,...,N.

e Problem 2

N
mingg v 5 hy x (PSo+ OHy) + > hi x (PS; + OH),
=1

1

subject to f5; > f, i=1,...,N,
Ly—1
Zaj X pj < Y*.
=0

Note that the mean pipeline inventory for any retailer is
given by its respective expected demand during the lead
time, i.e., PS; = Lju;,, i =1,...,N.

3. Analysis

A prerequisite to solve the aforementioned optimization
problems is that given the control parameters {Sl-}fvzo and
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{7 ,}L0 ! we are able to determine: (i) the fill rate f; at-
tdlned at some retailer i; (ii) the expected number p; of
orders of age j being speeded up per period; and (iii) the
mean holding costs in the system. In Sections 3.1-3.3 we
subsequently will elaborate on how these aforementioned
expressions can be derived.

3.1. Determination of f;

From a sample path argument it can be shown that the fill
rate attained at retailer i equals
5, = lim ( ED, 11 = 1) = Bl 1;‘>+>

—00

Hi

i=1,...,N.

(1)
From (1) it is obvious that in order to compute f3; we need
an expression for I’ To obtain such an expression we
closely examine the system dynamics. The inventory po-
sition of a retailer 7 at time ¢ just after rationing depends
on whether the CD has sufficient stock available to satisfy
all retail orders, and if not, how the available stock is
rationed among the retailers. In order to determine
whether the CD has sufficient stock we examine which
orders in the pipeline are available for speeding up (see
Section 3.1.1). Next, we model the use of the flexibility

process together with the rationing process (see Section
3.1.2).

3.1.1. The availability process

The pipeline of the CD at time ¢ immediately after the
regular arrival of an order and the placement of the latest
order of size DY Lo is depicted in Fig. 2. Because of the use
of the flexibility in previous periods, the pipeline consists
of 0; full and Ly — 0, empty orders.

Let X; denote the highest rank of the order in the
pipeline at time ¢, which cannot be made available. Then,
X; = 0 implies that all orders can be speeded up (even the
order just placed), whereas X, = Ly means that no orders
can be speeded up. The probability that the order placed j
periods ago can be speeded up is given by

Minner et al.

3.1.2. The ordering process

Let 0, denote the number of nonempty orders in the
pipeline towards the CD, i.e., which have not been pulled
to the CD, just before deciding upon the use of the op-
erating flexibility. At least the order placed at the begin-
ning of ¢ is available, thus 1 < 0, < Ly. At time ¢, after
determining which orders can be speeded up, each retailer
places an order at the CD to raise its inventory position
to its order-up-to-level. Whether the CD is capable of
satisfying all these orders strongly depends on the real-
ization of X;. We distinguish between two cases.

3.1.2.1. The case X, > 0,. This means that all the orders in
the pipeline cannot be speeded up. Then from a sample
path argument it follows that the number of products in
the pipeline equals Dt 0,.- Hence, the echelon stock of the
CD equals Sy — D¥ O When this echelon stock exceeds
SV, S we know that all retail orders can be satlsﬁed

On the other hand, when Sy — D% o, 18 less than Z Si
we need to allocate the available echelon stock of the CD
appropriately to the retailers. Most models discussed in
the literature use linear allocation functions (van der
Heijden, 1997), although, an optimal allocation scheme
under a cost framework is non-linear (Diks and de Kok,
1998). For an overview and a numerical comparison of
different allocation functions we refer to van der Heijden
et al. (1997). For the remainder of this paper we use the
simple variant of the Balanced Stock (BS) rationing
policy (van der Heijden, 1997), adapted according to de
Kok (1999). In this policy the shortage of the CD (to
satisfy all retail orders) i is allocated to the retailers by the
allocation fractions {¢;}_,, which are set to

2
o; 1w

2 22\111 02 2 Zn 1 ,un

qi =

Hence,

I'=58—q(D),,—N", i=1,...,N. (3)

Note that BS rationing requires the generalized balance
assumption (de Kok ez al., 1994), which assumes that the
inventory position after rationing is always larger than
just before rationing.

3.1.2.2. The case X, < 0,. Here, the CD is able to speed

F;=PX <J) anv J=0,...,Ly—1 up the 0, — X, consecutive, nonempty orders ‘nearest’ to
. the CD. If, indeed, the CD decides to speed up all these
with f, = P(X, = n) and fi, =1—F 1. 0; — X; orders, the number of products left in the pipeline
0 0 0
Dy, Dy 544 Dy g, +—0,41 O] 10 CD
[ Lo—0:

Fig. 2. The pipeline of the central depot.
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would be equal to D? X Then the echelon stock of the
CD would be equal to So DY, . If this echelon stock
would be less than Z 1 Si, we know that all available
nonempty orders will be speeded up, and that it is still not
sufficient to satisfy all retail orders On the other hand, if
the echelon stock exceeds ZilS,, then we know that
sufficient products can be made available to satisfy all the
retail orders. From this it follows that
I'=58-qD),—AN)", i=1..N. (4)
From (3) and (4) it follows that the inventory position
of retailer i at time ¢, just after using the flexibility equals

I'=8 — q,(D,mm(M -A)", i=1,...,N. (5

t
To evaluate (1) we need to characterize the stationary
behavior of f; . Suppose that the stationary behavior of 6,
is given by the distribution 7; = lim,_, P(0; = j). Then,
we are able to evaluate f; as follows. By first substituting
(5) into (1), and next conditioning on X; and 0, (for
t — 0o0) we obtain

Ly Lo
1
pi=1-3 3~ {E(DL 1+ 4Dy — A = 8)"
=1 =0 Hi
— E(D}, + qi(Diynyy — ) = 5)" }- (6)

The fill rate f; can be computed from (6) by using the
following procedure. First, we fit a suitable distribution
to the first two moments of Dmm< - We suggest to use
a mixture of two Erlang dlstrlbutlons since it is closely
related to the gamma distribution. Therefore all advan-
tages of using the gamma distribution as an approxima-
tion of the true lead time demand distribution (Burgin,
1975) remain valid, but computations are greatly simpli-
fied. If we fit a mixed Erlang distribution to the first two
moments of a non-negative real random variable X, we
mean that X follows an E,, ;, with probability w;, and an
E,, ;, with probability w;. In Tijms (1994) several fitting
procedures are described to determine the parameters
M, A2, 11,72, @1, and w, based on the first two moments.
Second, after fitting a mixed Erlang distribution to
D?nin(j ) We compute the first two moments of
Dmm(/ ) —A)". We apply the following formulae to
compute the first two moments of a random variable
(X —¢)", when X follows a mixed Erlang distribution as
described above.

S+ 1-m

Third, we fit mixed Erlang distributions to Dj +
qi (Dmm(] ) —A)" and D —i—q[(D?ninW) —A)", respectively.

e . (8)
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Finally, we determine E(Dj +lJrq,(D

+ +
! min(j,/) A) - Si)

and E(Dj, +¢i(D),,;—A) " —S:)" by applying (7).

The remainder of this section is devoted to determine

the steady-state probabilities {7;}.

3.1.3. Steady-state probabilities {m;}
To determine the steady-state distribution of 0,, where ¢
tends to infinity, we use the following relation

Y+ 1). )

First, we derive an approximation for the distribution of
Y;. Next, we use discrete-time Markov theory to deter-
mine {nj}jL.i]. The number of orders speeded up by the
CD at time ¢ equals

y, = Jargmingeico x{D] g\, <A} X <0,
0 X, >0,

This implies that orders are pulled into the CD (following
a FIFO rule) until the remaining pipeline stock is less
than or equal to A or that all available orders are pulled
(Y, = 0, — X;) but the remaining pipeline stock is still
larger than A. To determine the distribution of ¥;, again,
we distinguish between two cases.

0t+1 - min(L(), 6; -

(10)

3.1.3.1. The case X; > 0,. In this case the CD is not able
to speed up any order. Hence, ¥, = 0.

3.1.3.2. The case X; < 6, From (10) it follows that

P(Y,=0)=PD" 0[<A) For i=1,2,...,0,— X, we
find
P(Yt:i) (Xt<91_l)XP(Dt9+llt>ADt 6,+zt§A)
+ P, = 0,— 1) X P(D) 41, > A),
=F9-i X (P(D? iy = A) _P(Dtof()ﬂrifl,t
<A Dt 0,+it = A))
i x (1= P(DY 4, < ),
:g;oﬁix (FD? omf(A) FD? O+i— (A))

+ﬁ)z i X (1 —FDO

=0 +it

(4))-

So far the derivation has been exact. However, it is rather
difficult to compute the distribution of ¥;, since the value
of 6, includes some information about the cumulative
orders in the pipeline. If for instance the pull process in a
previous period stopped because the depot shortage was
covered, then the remaining pipeline stock was less than
or equal to A whereas the inventory plus the last order
pulled exceeded A. To obtain an easy and good approx-

imation for Y; we suggest to approximate Y, as follows
Pt = i)~ Foi x (Fy (8) = Fy | (4)
+ fo,-i ¥ ( —Fpp t(A))-
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Note that this approximation assumes that the demand

during the interval [t — 0, + i, ] is stochastically identical

to the demand during (0, — i) arbitrary periods in time.
From this it can easily be seen that

(1 —;0/7.9,_1) + Fo_1 x0p 1=0,

F op—i X (0tg,—i — dg,—i1) + fo,—i X (1 — oig,—;)
i: 1,...,0[_)([.

P(Y, = 1) =

(11)
o = P(D? < A) represents the probability that the depots
cumulative demand over j arbitrary periods does not
exceed A.

Now the process {0, }, can be modeled as a discrete-time
Markov chain (see Fig. 3), since from (9) it follows that the
realization of 6,,, only depends on 60, and Y, (which only
depends on 6, due to the approximation assumption).

The steady-state transition probabilities y; ; := lim,
P(0,41 = j|0, = i) are given by

W/,}H_l:P(Yt:())%a(ixgifl—l-l—fi,l,
1<i<Ly—1,

=~
|

Vi,i+lfj:P( j),
Fij ¥ (ij = oiji1) + fioj X (1 = o),

%

=
|

Vo or1— = P(Y: =J),
F 1g—j X (0rg—j — Org—jr1) + fro—j X (1 —0tzy—j),
1 <j <Ly,
Viore =PV < 1) = (1= f1,) X o1 + 1,
+ fro—1 X (1 —ogy—1).

Depending on % and A, two special cases can occur.
Suppose Z#; =0 for some 0 <i < Ly, then the steady-
state probabilities for all states j < i are zero. Suppose
A=0, ;=1 for some 0 <i<Ly and &, 1 <1 then
state 7 is an absorbing state. For all other cases the steady-
state probabilities m; = lim,_,,, P(0, = i) are given by the
solution of the following L linear equations:

%
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Ly Lo
Znn =Lm=y_; XM+ ZVJ'J xmj, 2 <i< L.
n=1

: (12)

These equations can be transformed into 7; = ¢; X 7z,. By
defining ¢z, := 1 we obtain

Lo

Ci-1 = (Ci - ch X Vj,i) /Vil.,i 2<i< Lo,
J=i

(13)

for theLcoeﬁicients ¢;i. The m, is computed from
T, X oy =1

3.2. Determination of p; and E(Y)

The expected number of orders of age j being speeded up
per period is given by the probability that an order of age
Jj is speeded up. In order to be able to speed up the order
of age j in period ¢ there have to be at least j+ 1 full
orders in the pipeline to the CD, i.e., 0, > j + 1. Then, the
order of age j is speeded up if the number of pulled orders
Y; is larger than or equal to 6, — j. Therefore,

Ly i
p()=Y PO=i)x Y P(Yi=k), j=0,....Ly— L.
i=j+1 k=i—j

(14)
Using the results of Section 3.1, we find

Loy i
pj= Z T X Z (F i (g — Oigt1) + fick (1 — 0ik)).

i=j+1 fe=i—j
(15)

Then, the expected workload is E(Y) = Z]L.igl ap;.

In the case where the rescheduling cost or the added
workload is the same for all outstanding orders we are
able to find a simpler expression for the expected number

E(Y;) of orders being pulled. By definition, the expected

VLo,1 VLo,2 VLo,i
WLO—M WLO—1,2 ‘VLO—M
. o f
Y %ia Y %2 :
. .
72,1 Vii—1 Yit1,i YLo,Lo—1
71,2

Yi—1,i
1,1 V2,2

Fig. 3. The discrete-time Markov chain of {6,},.

Yiyi

Vi i4+1

YLo,Lo
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number of orders pulled in period ¢ is given by the ex-
pected number of full orders in the depot pipeline at
the beginning of period ¢ before exploiting the flexibility
minus the expected number of full orders at the end
of ¢ after the use of flexibility. Therefore, it is necessary
to derive the steady-state probability distribution 7;,
i=0,...,Lyof 0,

From the following theorem it is evident how to
compute E(Y;).

Theorem 1. E(Y;) =1 — 7.
Proof. By definition it holds that

0,1 = min(6,, Lo — 1) + 1. (16)

Suppose the pipeline towards the CD at time ¢, after using
flexibility, consists of at least one ‘empty’ order. Then at
the beginning of review period ¢+ 1, an ‘empty’ order
arrives at the CD. Otherwise, a nonempty order arrives at
the CD (thus the number of nonempty orders decreases
by one). After this arrival a new order is placed in the
pipeline (thus the nonempty orders increases by one).
From (16) we obtain

1 <i<ly,

i= L. (17

S
=1 . R
TL,—1 + 7g,

From the definition of ¥; it follows that
Ly Ly
E(Y) = E(0) ~ E@) = im— Y iw. (18)
=1 =0

After substituting (17) in (18), and rewriting the result we
obtain E(Y,) =1 — @y,. |

So to compute E(Y;) we only need a tractable expression
for 7;,. By definition we have

iz, = lim PO, = Ly) = lim P(60, = LoA

Yl:o) :nlo(fLo—i_(l_fLo)aLo)' (19)

3.3. Determination of the objective function

To evaluate the objective function we need to compute
OH; and PSy. From a sample path argument it can be
shown that the stock on-hand at the CD at time ¢, just
after allocation of the depot stock equals (A — D?_g t)*.
Hence, "
0\t 0+
OH, = E(A — DFO,J) ~ > #mEA- D))"
i=0
Note that the distribution {7;} can easily be obtained
from (17) and (19).
The stock on-hand at a retailer i at time 7+ L;, just
after the arrival of an order, equals E(I; — D;, )
Hence,

OH;=E(I -D})", i=1,...,N.
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Substituting (4) into the expression above, and next ap-
plying the procedure discussed in Section 3.1.2 yields an
approximation of OH;.

Finally, it can easily be seen that the amount of
products in the pipeline towards the CD at time ¢, just
after allocation, equals D?,g - Hence,

t

Lo
0 ~ ~ (1]
PS) = E(Dtia_) ~ Y wE(DY).
i=0

4. Validation of the algorithm

In this section we test the quality of the approximations
derived in Section 3 for all relevant performance char-
acteristics. Note that these approximations are based on
the following two assumptions: (i) no imbalance when
rationing shortages; and (ii) demand during the interval
(t— 0,4+ 1,1 is equal in distribution to a sum of 0, —i
i.i.d. period demands. We set up a simulation experiment
consisting of 320 distribution systems each run during
200 000 periods, which ensures stationary behavior. The
parameters describing these distribution systems are
varied as follows.

e Number of retailers N € {2,4}. The retailers are di-
vided into two groups of identical retailers.

e Depot lead time Ly € {2,3}. For Ly =2 we choose
fe {(0,1,0),(1,0,0)}. For Ly=3, fe{(1,0,0,0),
(0,1,0,0),(0,0,1,0)}. We set a; =1 V, therefore we
can use the simplified expression for the expected
number of rescheduled orders.

e Mean demand p; = 10 for the first and p, € {10,20}
for the second service group.

e Coeflicient of variation (v = o/u) for the first v; = 0.4
and the second v, € {0.4,0.8} service group.

e Retailer lead times L; = 1 and L, € {1,2}.

e Service levels f; = 0.9 and f8; € {0.9,0.95}.

e Maximum physical depot stock A € {0.5 x Ly X py,

LQ X ,Uo}

We compute the average and maximum deviation in
service, expected pipeline and on-hand stock at the CD,
sum of retailer on-hand stocks and in the expected
number of rescheduled orders which are reported in
Table 1.

The numbers for service levels and rescheduled orders
are absolute errors whereas the deviations in expected

Table 1. Deviations of analytical from simulated performance
measures

Bi FSyp + OH, >, OH; E(Y)
(%) (%)
Average 0.0006 4.2 0.1 0.0086
Maximum 0.0076 15.6 0.6 0.0718
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stock levels are given as relative errors. The errors re-
ported for the sum of depot pipeline and on-hand stock
can be reduced to 0.05% on average and 0.4% at maxi-
mum when the refinements outlined in the Appendix are
applied instead of the ones given in Section 3.3. We
conclude that the approximations derived in Section 3
perform well and are suited for use in an optimization
scheme. In the next section we present a number of
managerial problems related to supply lead time flexibil-
ity. The approach developed in this paper enables us to
gain insights into these problems. This is of considerable
practical interest, since supply flexibility is still a concept,
which is not well-understood.

5. Managerial insights into supply lead time flexibility

Now that we have modeled supply lead time flexibility in
a realistic way and have shown that the resulting ap-
proximations perform well, we return to the objective of
our paper. The objective is to evaluate the contribution of
supply lead time flexibility to the performance of a supply
chain consisting of a depot and multiple retailers. The
apparent questions to be answered are:

1. What is the impact of supply lead time flexibility on
total operating costs?

2. What is the structure of the optimal rescheduling
policy? And, in case the optimal rescheduling policy
turns out to be impracticable,

3. Do practicable rescheduling policies exist that are
near-optimal?

Questions 2 and 3 are answered in the context of either
minimization of total operating costs, including resched-
uling costs, subject to fill rate constraints (Problem 1), or
minimization of holding costs subject to a rescheduling
capacity and fill rate constraints (Problem 2). However, in
general we do not know the optimal policy. Instead we
determine the optimal policy within a special class of
policies that can be modeled by the flexibility function % .
To get insight into the questions posed above we consider
the following set of models.

N =2 (identical), Ly € {1,2}, Li=1, hg = 1, h; € {1,3},
B =09, < €{10,20,...,100}, c! € {0.0,0.25,...,1.0}
xc% ap=1, a €{0.0,0.25,...,1.0} x ap, Y*€{0,0.2,
oo 1} =10, 0; € {4,8}.

Note that for Problem 1 the rescheduling costs ¢/ are
relevant, whereas for Problem 2, the a; and Y* are rele-
vant. For each case with Ly = 1 we varied A between zero
and 30. For each case with Ly = 2 we varied A between
zero and 60. The maximum values of A have been selected
based on the observation in de Kok ef al. (1994) that if A
exceeds 1.5 times the demand during the depot lead time,
then an increase in A does not have any effect on the
retailer stocks. The optimal policies without rescheduling
opportunities and different depot lead times are given in
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Table 2 for reference purposes. Note that L = 0 refers to
independent retailers that operate with a lead time of ;
periods.

In the following Tables 3 and 4 we first present some
selected optimal policies for Ly =1 and Ly = 2. AC de-
notes the relative cost reduction compared with the cost
in case of no flexibility. Recall that f; = 1 implies full

Table 2. Optimal policies without rescheduling

hi=1 hi =3
Gi:4 01'28 61‘:4 O'i:8
L a* cr A C* A* c A C*
0 00 291 00 483 00 872 0.0 145.0
1 00 507 00 716 183 111.6 169 1747
2 00 722 00 947 40.1 1346 38.6 200.8

Table 3. Optimal policies for Ly = 1

hi o ! " A* C* AC(%)
1 4 10 1 0.0 39.1 23
1 8 10 1 0.0 58.3 19
1 4 50 0 0.0 50.7 0
1 8 50 0 0.0 71.6 0
3 4 10 1 0.0 97.2 13
3 8 10 1 0.0 155.0 11
3 4 50 0 18.3 111.6 0
3 8 50 0 16.9 174.7 0
Table 4. Optimal policies for Ly = 2

h; g; ! c! o ff A C* AC (%)
1 4 10 10 1 0 0.0 39.1 46
1 8 10 10 1 0 0.0 58.3 62
1 4 40 10 0 1 0.0 60.7 16
1 4 40 40 1 0 0.0 69.1 4
1 4 60 15 0 1 0.0 65.7 9
1 4 60 60 O 0 0.0 72.2 0
1 8 40 100 0 1 0.0 81.6 14
1 8 40 40 1 0 0.0 88.3 7
1 8 60 15 0 1 0.0 86.6 9
1 8 60 60 O 0 0.0 94.7 0
3 4 10 10 1 0 0.0 97.2 28
3 8 10 10 1 0 0.0 155.0 23
3 4 40 100 0 1 18.3  121.6 10
3 4 40 40 1 0 0.0 1272 5
3 4 60 15 0 1 18.3  126.6 6
3 4 60 60 O 0 40.1 1346 0
3 8 40 100 0 1 169 1843 8
3 8 40 40 1 0 0.0 185.0 8
3 8 60 I5 0 1 16.9  189.1 6
3 8 60 60 O 0 38.6 2008 0
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flexibility for all lead times Ly. For Ly = 1 no flexibility is
equivalent to fy = 0, while for Ly =2 no flexibility is
equivalent to (fo,f1) = (0,0). We deduce the following
observations: (i) supply lead time may have a major im-
pact on total costs; (ii) the optimal policy either prescribes
a probability of one or zero for being able to pull a cer-
tain order if needed. In this respect the optimal policy has
a ““bang-bang” characteristic; (iii) if the retailers add no
value, then the optimal policy is to set A equal to zero;
and (iv) if the retailers add value, then the optimal value
of A depends on the size of the rescheduling cost para-
meters. If all orders can be speeded up at a relatively low
cost, there is no need for central inventories. If resched-
uling is expensive and therefore completely avoided, A is
close to the expected demand during the manufacturing
lead time. For a sufficiently small cost of rescheduling the
next arriving order in the case of Ly = 2 we observe that it
is beneficial only to reschedule this order. Then, the op-
timal policy is to set A to the optimal value obtained from
a model without rescheduling and a lead time of one
period (see Table 2).

For all other values of ¢/ these observations have been
confirmed. Of course the observations are not proven
formally, yet other numerical experiments with longer
lead times confirm our observations. Using the costs of
the optimal policies under certain lead times as given in
Table 2 together with the rescheduling costs leads us to
the definition of critical values for the rescheduling cost
parameters, i.e., when to neglect flexibility, when to use
full flexibility and when to use partial flexibility (for the

Table 6. Policies for Ly =1
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Table 5. Critical values
Ly h; 0 ()F (c)F () —cl)Ff
1 1 4 21 — —
1 1 8 23 — —
1 3 4 24 — —
1 3 8 28 — —
2 1 4 43 21 22
2 1 8 46 23 23
2 3 4 47 23 24
2 3 8 56 26 30

next arriving order only). Let (c?) =C*"(Ly=2)—
C*(Lo =0), () =C*(Lo=2)—C*(Ly=1), and ("~

)F =C*"(Ly=1)—C*"(Ly=0). For Ly = 1 full flexibil-
ity is used if ¢? is less than or equal to the critical value
(c(r)) and otherw1se its use is completely avmded For
Ly=2, full flexibility is used if ¢ <(c ) and
A — ! < (P —eHF, no flexibility is used if ? > (¢ 0)F
and cr > (c 1) , whereas partial flexibility is used in the
remaining cases. The critical values for our base set of
models are given in Table 5.

From our analysis we may conclude that computing
cost-optimal policies is straightforward. Set a single

probability f; equal to one, where j is chosen from

. . * L
ji= argoglgnLo{C (L) + ¢} (20)

One of the problems one faces when addressing the
problem of usage of supply lead time flexibility is the

hi Y* o Optimal Bang-bang
1 A* E[Y] c* AC (%) fy A* E[Y] c* ACP (%)

1 0.2 4 0.20 0.0 0.2 48.8 4 0 0.0 0.0 50.7 4
1 0.2 8 0.20 0.0 0.2 68.6 4 0 0.0 0.0 71.6 4
1 0.4 4 0.40 0.0 0.4 46.3 9 0 0.0 0.0 50.7 10
1 0.4 8 0.40 0.0 0.4 65.0 9 1 20.8 0.4 71.6 10
1 0.6 4 0.60 0.0 0.6 42.8 16 1 18.1 0.6 48.5 13
1 0.6 8 0.60 0.0 0.6 60.6 15 1 15.4 0.6 66.4 10
1 0.8 4 0.80 0.0 0.8 37.3 26 1 15.2 0.8 453 21
1 0.8 8 0.80 0.0 0.8 55.2 23 1 10.4 0.8 60.8 10
1 1.0 4 1.00 0.0 1.0 29.1 43 1 0.0 1.0 29.1 0
1 1.0 8 1.00 0.0 1.0 48.3 33 1 0.0 1.0 48.3 0
3 0.2 4 0.34 18.3 0.2 110.4 1 0 18.3 0.0 111.6 1
3 0.2 8 0.37 16.9 0.2 171.3 2 0 16.9 0.0 174.0 2
3 0.4 4 0.61 17.3 0.4 108.7 3 1 20.9 0.4 109.3 1
3 0.4 8 0.74 16.9 0.4 167.7 4 1 20.8 0.4 168.2 0
3 0.6 4 0.80 16.0 0.6 106.5 5 1 18.1 0.6 106.6 0
3 0.6 8 1.00 15.4 0.6 163.1 6 1 15.4 0.6 163.1 0
3 0.8 4 0.80 6.1 0.8 102.6 8 1 15.2 0.8 103.5 1
3 0.8 8 1.00 10.4 0.8 157.5 9 1 10.4 0.8 157.5 0
3 1.0 4 1.00 0.0 1.0 87.2 22 1 0.0 1.0 87.2 0
3 1.0 8 1.00 0.0 1.0 145.0 17 1 0.0 1.0 145.0 0
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estimation of ¢/. Instead we can determine the available
rescheduling capacity, e.g., by estimating the workload
from rescheduling and estimating the total working hours
of planners available for rescheduling. From that one
derives the normalized rescheduling capacity. Finally one
may divide this number among all products produced so
that for each product the rescheduling capacity Y* < 1 is
determined. This reasoning motivates the formulation of
Problem 2. For Problem 2 we follow the same steps as for
Problem 1. In Tables 6-8 we present the results for the set
of problems defined above.

We can draw the following conclusions: (i) available
supply lead time flexibility is completely used in the opti-
mal policy; (ii) bang-bang policies are no longer optimal;
(iii) if no value is added at the retailers all stocks are pu-
shed out to the retailers, i.e., A* = 0; (iv) if we have enough

Table 7. Policies for Ly =2 and h; = 1
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capacity to provide full flexibility then A* = 0; and (v) as
flexibility increases the marginal decrease in cost increases,
i.e., flexibility pays off if it is high. As the structure of the
optimal policies is no longer of the bang-bang type, it
seems not easy to implement these policies. Therefore,
we investigate the cost penalty ACP of using the optimal
bang-bang policy instead of the overall optimal policy.
Concerning bang-bang policies we draw the following
conclusions: (i) the cost penalty is small in the case where
the retailers add value, the cost penalty may be consider-
able if the retailers add no value; and (ii) in contrast to the
optimal policy, the best bang-bang policy does not nec-
essarily use all available flexibility, however in most cases
the workload reaches the capacity limit. Further, even if
no value is added, inventories are implemented in order to
achieve feasibility of a bang-bang policy.

Y* c! G Optimal Bang-bang
fifi A& E[Y]  CAC(%)  fy fi A E[Y] C AC(%)

0.2 0.25 4 0.00 0.80 0 0.2 58.5 19 0 1 332 0.2 63.8 9
0.2 0.25 8 0.00 0.80 0 0.2 78.1 18 0 1 26.3 0.2 80.4 3
0.2 0.50 4 0.00 0.40 0 0.2 67.6 6 0 1 41.5 0.2 72.1 7
0.2 0.50 8 0.00 0.40 0 0.2 87.9 7 0 1 42.0 0.2 93.9 7
0.2 0.75 4 0.00 0.26 0 0.2 69.5 4 0 0 0.0 0.0 72.2 4
0.2 0.75 8 0.05 0.16 0 0.2 90.5 4 0 0 0.0 0.0 94.7 5
0.2 1.00 4 0.10 0.00 0 0.2 70.1 3 0 0 0.0 0.0 72.2 3
0.2 1.00 8 0.10 0.00 0 0.2 91.1 4 0 0 0.0 0.0 94.7 4
0.4 0.25 4 020 0.80 0 0.4 48.8 32 0 1 0.0 0.25 50.7 4
0.4 0.25 8 020 0.80 0 0.4 68.6 28 0 1 0.0 0.25 71.6 4
0.4 0.50 4 0.00 0.80 0 0.4 58.5 19 0 1 33.2 0.4 63.8 9
0.4 0.50 8 0.00 0.80 0 0.4 78.1 18 0 1 26.3 0.4 80.4 3
0.4 0.75 4 0.00 0.53 0 0.4 65.4 9 0 1 38.8 0.4 69.7 7
0.4 0.75 8 0.04 0.46 0 0.4 85.1 10 0 1 36.6 0.4 89.4 5
0.4 1.00 4 022 0.00 0 0.4 67.4 7 0 1 41.5 0.4 72.1 7
0.4 1.00 8 022 0.00 0 0.4 86.5 9 0 1 42.0 0.4 93.9 9
0.6 0.25 4 046 0.54 0 0.6 454 37 1 0 20.0 0.6 50.3 11
0.6 0.25 8 046 0.54 0 0.6 63.8 33 1 0 18.6 0.6 70.1 10
0.6 0.50 4 0.20 0.80 0 0.6 48.8 32 0 1 0.0 0.5 50.7 4
0.6 0.50 8 020 0.80 0 0.6 68.6 28 0 1 0.0 0.5 71.6 4
0.6 0.75 4 0.00 0.80 0 0.6 58.5 19 0 1 332 0.6 63.8 9
0.6 0.75 8 036 0.14 0 0.6 77.9 18 0 1 26.3 0.6 80.4 3
0.6 1.00 4 037 0.00 0 0.6 63.2 12 0 1 37.5 0.6 68.4 8
0.6 1.00 8 037 0.00 0 0.6 80.3 15 0 1 34.1 0.6 87.2 9
0.8 0.25 4 073 0.27 0 0.8 39.5 45 1 0 16.2 0.8 46.5 18
0.8 0.25 8 0.73 0.27 0 0.8 57.2 40 1 0 12.1 0.8 62.8 10
0.8 0.50 4 0.60 0.40 0 0.8 42.8 41 1 0 18.1 0.8 48.5 13
0.8 0.50 8 0.60 0.40 0 0.8 60.6 36 1 0 15.1 0.8 66.3 9
0.8 0.75 4 020 0.80 0 0.8 48.8 32 0 1 0.0 0.75 50.7 4
0.8 0.75 8 0.62 0.00 0 0.8 67.1 29 0 1 0.0 0.75 71.6 7
0.8 1.00 4 0.55 0.00 0 0.8 55.6 23 0 1 33.2 0.8 63.8 15
0.8 1.00 8 055 0.00 0 0.8 71.0 25 0 1 26.3 0.8 80.4 13
1.0 1.00 4 1.00 0.00 0 1.0 29.1 60 1 0 0.0 1.0 29.1 0
1.0 1.00 8 1.00 0.00 0 1.0 48.3 49 1 0 0.0 1.0 48.3 0
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Table 8. Policies for Ly =2 and #; = 3
Y+ c! o Optimal Bang-bang

Jo v 4" E[Y] c AC(%) fo ST A E[Y] o ACP (%)
0.2 0.25 4 0.00 1.00 33.2 0.2 122.0 9 0 1 33.2 0.2 122.0 0
0.2 0.25 8 0.00 1.00 26.3 0.2 179.1 8 0 1 26.3 0.2 179.1 0
0.2 0.50 4 0.00 0.76 39.0 0.2 130.0 3 0 1 41.5 0.2 130.3 0
0.2 0.50 8 0.00 0.95 41.1 0.2 190.9 5 0 1 42.0 0.2 191.0 0
0.2 0.75 4 0.00 0.54 39.6 0.2 131.9 2 0 1 44.6 0.2 133.0 1
0.2 0.75 8 0.00 0.60 40.2 0.2 194.8 3 0 1 48.4 0.2 196.2 1
0.2 1.00 4 0.10 0.31 39.7 0.2 132.7 1 0 0 40.0 0.0 134.6 1
0.2 1.00 8§ 0.00 0.46 40.5 0.2 196.6 2 0 1 52.5 0.2 199.6 2
0.4 0.25 4 032 0.68 17.8 0.4 110.4 18 0 1 18.3 0.25 111.6 1
0.4 0.25 8 0.39 0.61 16.9 0.4 171.7 14 0 1 16.9 0.24 174.7 2
0.4 0.50 4 0.00 1.00 33.2 0.4 122.0 9 0 1 33.2 0.4 122.0 0
0.4 0.50 8 0.00 1.00 26.3 0.4 179.1 11 0 1 26.3 0.4 179.1 0
0.4 0.75 4 0.17 0.77 38.2 0.4 127.8 5 0 1 38.8 0.4 127.8 0
0.4 0.75 8§ 0.00 1.00 36.6 0.4 186.7 7 0 1 36.6 0.4 186.7 0
0.4 1.00 4 0.14 0.64 39.2 0.4 130.0 3 0 1 41.5 0.4 130.3 0
0.4 1.00 8 0.02 0.90 40.6 0.4 190.9 5 0 1 42.5 0.4 191.0 0
0.6 0.25 4 0.67 0.33 16.8 0.6 108.0 20 1 0 20.0 0.6 108.4 0
0.6 0.25 8 0.83 0.17 16.1 0.6 166.5 17 1 0 18.6 0.6 166.7 0
0.6 0.50 4 0.34 0.66 18.3 0.6 110.4 18 0 1 18.3 0.5 111.6 1
0.6 0.50 8§ 043 0.57 16.9 0.6 171.3 15 1 0 24.0 0.6 172.5 1
0.6 0.75 4 0.00 1.00 33.2 0.6 122.0 9 0 1 33.2 0.6 122.0 0
0.6 0.75 8 0.00 1.00 26.3 0.6 179.1 11 0 1 26.3 0.6 179.1 0
0.6 1.00 4 0.00 0.19 37.5 0.6 126.6 6 0 1 37.5 0.6 126.6 0
0.6 1.00 8 1.00 0.00 35.7 0.6 184.5 8 1 0 35.7 0.6 184.5 0
0.8 0.25 4 0.79 0.21 12.4 0.8 104.5 22 1 0 16.2 0.8 104.7 0
0.8 0.25 8 1.00 0.00 12.1 0.8 159.5 21 1 0 12.1 0.8 159.5 0
0.8 0.50 4 0.82 0.18 16.2 0.8 106.5 21 1 0 18.1 0.8 106.6 0
0.8 0.50 8 1.00 0.00 15.1 0.8 163.0 19 1 0 15.1 0.8 163.0 0
0.8 0.75 4 0.34 0.66 18.2 0.8 110.4 18 0 1 18.3 0.75 111.6 1
0.8 0.75 8 1.00 0.00 21.3 0.8 169.6 16 1 0 21.3 0.8 169.6 0
0.8 1.00 4 0.00 1.00 33.2 0.8 122.0 9 1 0 33.3 0.8 122.0 0
0.8 1.00 8§ 1.00 0.00 28.4 0.8 177.2 12 1 0 28.4 0.8 177.2 0
1.0 1.00 4 1.00 0.00 0.0 1.0 87.2 35 1 0 0.0 1.0 87.2 0
1.0 1.00 8 1.00 0.00 0.0 1.0 145.0 28 1 0 0.0 1.0 145.0 0

6. Conclusions

In this paper we modeled the presence of manufacturing
flexibility at the supplier of a two-stage divergent supply
chain. We assumed that complete orders in the pipeline
can be speeded up to arrive immediately at the depot ac-
cording to FIFO. Manufacturing flexibility is modeled by
a function # = (F¢,71,...,%1,-1), Where F; equals
the probability that an order placed j periods ago can be
speeded up. To analyze the system a Markov chain model
is solved that yields an approximation of the probability
distribution of the number of orders in the pipeline im-
mediately before possible use of flexibility. The analysis
yields good approximations for the relevant performance
characteristics, such as service levels and costs.

From the analysis of a system with identical retailers
we concluded that so-called bang-bang policies are per-
forming well. Bang-bang policies prescribe that certain

orders can be made available with probability one if
needed. Which option (i.e., orders) to use depends on the
cost of flexibility. Further research will be focused on
multi-product models, where flexibility costs or flexibility
budgets are determined from models of the manufactur-
ing process itself. This also allows for modeling depen-
dencies between sizes of outstanding orders and
rescheduling parameters.
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Appendix

The approximations for depot pipeline and on-hand
stocks presented in Section 3.3 can be improved by con-
ditioning on some more information. First, the relation
between the distributions of the number of full orders at
the beginning of a period {0},_, ;. and at the end of a
i 1,y 1s exploited. Since 0, = min{Lo,

=U,...,

0, + 1},
P(O=i+1) if i<Lo—1,
PO=i)={ PO=LoAY =0) if @=Ly,
P(O=Lo)—P(O0=LoAY =0) if i=Ly—1,

= (P(X <i) x (o — 1) +P(X = i) x (1 — o))
Lo
X Z Ty
0=it1
+ 10y X X (P(X > 1) + P(X < i) x o).

This formulation includes the following four state
transition cases.

1. Pulling is possible (P(X <i)= %) and it is used
(04 — otiy1)-

2. Pulling is only possible to some extent (P(X = i) = f;)
but more would be necessary to cover the shortage

(1 — o).
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3. Pulling is possible (P(X < i) = Z,_; but there is no
depot shortage ().
4. No pulling is possible (P(X > i) =1— ;).
Given a number 6 of full orders in the pipeline at the
beginning of a period the four state transition cases to
a result of i full orders at the end of the period provide
the following additional information: (i) DY <A and
DY, > A; (i) DY > A; (iii) DY < A; and (iv) this case does
not provide any additional information. .
Replacing the steady-state distribution of 6 by the
steady-state distribution of 6 and the relevant state
transition probabilities and by conditioning the expected
amount of inventory on the additional information pro-
vided in the corresponding case we find
Lo

OHo =Y ((Fi x (% — oiy1)
i1

XE[(A _D?)+|D? < A,D?H > A]

+fi x (1 —o;) x E[(A—DY)"|DY > A]) x f: T
+m; x (1 — Fi21) x E[(A - D))*] o
+F i1 x a; x E[(A—D))*|D) < A])) + 7t x A.

PSy = i((% x (0 — 1) x E[DYDY < A, DY, | > Al
+jfl x (1 — o) x E[DY|D? > A))

X Z mg+m x ((1 — Fi1) x E[D]

+F i1 x a; x E[DY|D? < A])).

Let ¢p, (x), Fp,(x) denote the i time period demand dis-
tribution density and cumulative density function. Using
Bayes rule and P(D)=x,D},>A)=d¢p(x) x (1—
Fp, (A —x)) we find the following expressions:

E[(A— DY) DY < A, DL, > Al
A
- / (A —x)[1 — Fi, (A — x)]dFp, (x)/ (o — 241),

= <E[(A —D})"] = AFp,., (A)

+/0AxFDl (A —x)dFD,-(X)>/(°‘i — 1)

E[(A— D))"} > A] =0,
E[(A—D{)*|D) < A] = E[(A— D0)")/%;
E[D?|D? < AaD?H > A

= /0 x[1 — Fp, (A —x)]dFp,(x)/(ot; — otit1),

_ ( / " s () / ek (A —x)dFD,-<x>) / (o = )



A two-echelon inventory system
E[DO|DY > A] = / By, (x)/(1 — @),
A
A
ED?ID? < Al :/ xdFp, (x) /0.

0

By fitting a mixed Erlang distribution with parameters r,
o, and 4 on DY we find

w

Ji X Er,l(A)a

A
/ XdFp, () =2 x ME,,5(4)
0

/A h xdFp, (x) = E[DY] — /0 ’ xdFp, (x).

The integral over the function x X ¢p, (x) x Fp, (A —x)
can be analyzed by fitting a ME, , ;-distribution on the
single period depot demand. The i-fold convolution ¢p, is
given by

b =3 () x 0 (1= ) sl

=0

For the resulting product terms we find

A
/ X X €4, (x) X Ep (A —x)dx
0

" oL GA LAY
—/IXEa—&-l,Z(A) Axe x (a—l)! X; i!

X ;(—1)1 X (;)/(j+a+ 1),
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where e, ;(x) denotes the density of an a,4 — Erlang dis-
tribution.
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