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Diffraction grating theory with RCWA or the
C method

N.P. van der Aa!

Technical University of Eindhoven n.p.v.d.aa@tue.nl

Summary. Diffraction gratings are often used in optical metrology. When an elec-
tromagnetic wave is incident on a grating, the periodicity of the grating causes a
multiplicity of diffraction orders. In many metrology applications one needs to know
the diffraction efficiency of these orders. Since the period of a grating is often of the
same order of magnitude as the wavelength, it is needed to solve Maxwell’s equations
rigorously in order to obtain these diffraction efficiencies. Two of those methods are
the rigorous coupled-wave analysis (RCWA) and the C method.

In this paper a comparison is made between RCWA and the C method with respect
to accuracy and speed. Restrictions are made to one-interface problems, which means
that only two media are involved separated by one interface, and only gratings are
considered with a periodicity in only one direction.
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1 Introduction

When the grating’s period is of the same order of magnitude as the wave-
length, rigorous methods are required to solve Maxwell’s equations. At the
time Jean Chandezon introduced his method [1, 2], another method called
rigorous coupled-wave analysis (RCWA), was already widely used [3, 4]. The
main question remains when one should use RCWA or the C method. Al-
though both methods have a completely different approach for solving the
grating problem, it is widely known, that solving eigenvalue problems is the
most computationally expensive operation in both methods. That is why this
paper concentrates on the computations of the eigenvalue problems to select a
criterion for the usage of a certain method. Therefore, the differences between
the methods will be discussed and, as an example, a sinusoidal grating is used
to illustrate the criterion.
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2 Mathematical problem

An infinitely long, one-dimensional grating with only one interface is shown
in Figure 1. One-dimensional implies that the grating is periodic, say with
period A, in the z-direction and constant in the y-direction. The fact that
the grating is assumed to be infinitely long, allows a restriction to only one
period. The domain exists of two media, denoted by {2; (usually air) and {2,
(dielectric or metal). The boundaries are denoted by I, for m =1, ..., 5.
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Fig. 1. Left: three dimensional representation of the diffraction grating; right: the
domain of interest.

The media are assumed to be linear with respect to the electromagnetic fields,
homogeneous, isotropic, time-invariant, dispersion-free, source-free and non-
magnetic. The electromagnetic fields are assumed to be time-harmonic, which
implies that the initialization phase is neglected. The incident field is either TE
or TM polarized. All these assumptions reduce the local Maxwell equations
to a generalized Helmholtz equation [2].

V2F(z,2) + k*n’(x, 2)F(z,2) = 0, (1)

where F' is either the electric field E, for TE polarized light or the magnetic
field H, for the TM case. The parameter n = \/e(z, z)uo is the refractive
index and k = w,/gguo is the wave number.

On boundaries I} and I3, the outgoing wave condition holds, which means
that the fields have to be finite for 2 — Zoo. The restriction to only one
period gives a pseudo-periodic boundary condition at I and Iy by invoking
the Floquet-Bloch theorem.

F(z,z) =F(x+ A,2)exp(isind), 0<z<A, —-oo<z<oo. (2)

The last boundary is I's and on this interface, the tangential components of
the electromagnetic fields are continuous.

3 Solution methods

From general grating theory it is known that above and below the grating
grooves, the Rayleigh expansion holds as a solution of the field:
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where the A,, are the reflection coefficients in the upper halfspace or the
transmission coefficients in the lower halfspace and k., and k.., are known
coefficients. This Rayleigh expansion is a direct consequence of the outgoing
wave condition, the pseudo-periodic boundary condition and the Helmholtz
equation that holds in the upper and lower halfspace. The reason the Rayleigh
expansion does not hold inside the grating grooves is that the complex permit-
tivity is not a constant, but a function of x and z. This leads to an eigenvalue
problem in both methods. The details of the methods are discussed separately.

RCWA

By eliminating the z-dependency of the complex permittivity, it is possible
to write the solution inside the grooves as a Fourier expansion, since only
a dependency on the periodic coordinate z is present. The way RCWA
accomplishes this, is by slicing up the grating domain such that inside
each slice, the permittivity only depends on x. At the boundaries between
two slices, the tangential components of the electromagnetic fields are con-
tinuous. In this way, the unknown reflection and transmission coefficients
of the upper and lower halfspace can be connected to each other and de-
termined. However, introducing the Fourier expansion in the Helmholtz
equation gives an eigenvalue problem of size 2NV + 1 for both TE and TM
polarization for every slice.

C method
The C method uses a completely different approach. The method uses the
idea that if the grating interface were flat, the Rayleigh expansions would
be valid for the entire domain, except at the interface. The C method
ensures the grating interface to be flat by introducing a new coordinate
system. A restriction of the method is that the interface can be described
by a function of z, i.e. z = a(z). There are parametric descriptions, but
that is only for stability purposes. The coordinate transformation is given
by

u=x, v=y, w=z—a(x). (4)

The periodicity is preserved in the coordinate u and the grating interface
is now described by a flat line given by w = 0. However, in the generalized
Rayleigh expansion, a new unknown turns up. By substituting this expan-
sion into the transformed Helmholtz equation, an eigenvalue system has
to be solved for each medium, but since TE and TM polarization cannot
be separated this time, the size is 4N + 2.

Figure 2 points out how the two methods handle the mathematical model
obtained in section 2. The main differences between the C method and RCWA
are:
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Fig. 2. Schematic representation of the way the RCWA and C method remove the
z dependency.

e There is one eigenvalue problem per layer of size 2N + 1 for RCWA vs.
one per medium of size 4N + 2 for the C method.

e RCWA solves one eigenvalue system for each polarization state, while the

C method solves one eigenvalue system for both TE and TM polarization
simultaneously.
RCWA approximates the grating interface, while the C method does not.
RCWA can handle all types of diffraction gratings, including overhang-
ing gratings, while the C method is restricted to interfaces which can be
described by a function of the periodicity coordinate.

A general eigenvalue system of size p x p takes O(p?®) flops. For the C method
only two eigenvalue systems have to be solved of twice the size of the eigenvalue
systems obtained with RCWA, but when RCWA uses ¢ layers it also has ¢
eigenvalue systems. Altogether, this implies that RCWA may have 8 times
more layers than the number of media for the C method to have an equal
number of computations.

4 Results

To show the results, test case 2 from [2] has been used. It concerns a sinusoidal
grating with a period which is equal to twice the wavelength. The refractive
index of the upper medium is 1 (air), while the one of the lower medium is
1.5 (dielectric). The amplitude of the sine equals the size of the wavelength.

Figure 3 shows the results of RCWA for several values of N and several num-
bers of layers ¢. It can be seen that it is not the number of harmonics N
that determines the diffraction efficiency mostly, but the number of layers g.
To have the relative difference between RCWA and the C method below 1 %,
RCWA already needs 15 to 20 layers, while for 0.1 % 50 to 80 layers are neces-
sary. It should be noticed that the layer thickness has been chosen equidistant.

To conclude, this paper shows that the number of layers needed to approxi-
mate the grating to obtain an accurate (defined by user) result, is the most
important criterium and not the number of harmonics. Secondly, for general
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Fig. 3. Diffraction efficiencies of the 204 5nq _1th Giffraction order as a function of
the number of layers and the number of harmonics (left) and if N = 14 a comparison
with the C method.

grating profiles the C method will obtain the answer with less computational
efforts if RCWA uses more than 10 layers to approximate the grating profile.
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