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In 

Abstract: We study the value of the mean entropy production as a function of the level of 
description. We prove that by coarsening the system, we obtain a lower entropy production. 
As main example we consider the Lorentz lattice gas and prove that the microscopic entropy 
production is strictly larger than the one predicted by the Boltzmann equation. 

1 Introd uction 

The value of the entropy production of a physical system depends on the level of description 
and the choice of macro-variables. E.g. in [5] a reversible dynamics for fluctuations on a 
macroscopic scale is derived from an asymmetric exclusion process, i.e., from an irreversible 
stochastic dynamics (Le., zero macroscopic entropy production and non-zero microscopic one). 

Within the space-time Gibbsian formalism developed in [8],[9],[12], the mean entropy pro
duction is the relative entropy density of the distributions of the forward and the backward 
process. Consequently, the entropy production vanishes if the process is reversible, and the 
converse can be proved for various stochastic dynamics, see [11], [13]. 

From the convexity of the relative entropy density, we have as a general inequality 

s(Q 0 TIP 0 T) $ s(QIP), (1.1) 

where T is any stochastic kernel. The transition from a microscopic description towards a 
more macroscopic description can be viewed in many cases as such a stochastic kernel (e.g., 
from actual positions of particles towards densities). We thus expect that going to a more 
macroscopic description of a system implies a decrease in entropy production. 

In this paper, we give three examples illustrating this phenomenon, and we show that the 
inequality can be strict. Our first example is a 'fuzzy' stochastic process that can be obtained 
when we observe a stochastic process with "goggles" that cannot distinguish between certain 
states. Secondly, we consider an effective uncoupled Markovian dynamics obtained as a 'kinetic 
limit' of a coupled system. The stochastic Lorentz lattice gas is studied as a third example. We 
compute the entropy production for the environment process (the configuration of scatterers 
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as seen from a particle starting at the origin), and prove that it is zero if and only if the 
scattering rule is such that forward and backward scatterings have the same probability. Next 
we consider the kinetic limit which is a linear Boltzmann equation. This equation corresponds 
to a Markov process of velocities, of which the entropy production can be computed. If the 
scattering rule depends in a non-trivial way on the configuration of scatterers, then the entropy 
production associated with the Boltzmann equation is strictly smaller than the microscopic 
one. 

2 Entropy production for Markov processes 

2.1 Setting 

In this section we briefly review some definitions and results from [12]. Let 0 be a compact 
metric space, and {at: t ?;:O} a pure jump Markov process on 0, with generator, acting on 
bounded Borel measurable functions, of the type 

Lf(a) = L c(a, "7) (J("7) - f(a)) (2.1) 
1JEf), 

where c(a, "7) is non-negative and for each a, the set 

{"7: c(a,'f/) > O} 

is finite. A probability measure J.J, on the Borel-a-field of 0 is stationary for the process if for 
all f: 

/ LfdJ.J, = O. 

This implies that started with ao distributed according to j..t, {at, t ?;: O} is a stationary process. 
Trajectories of the process will be denoted by W = WO<t<T, and 1P' J.t denotes the path space 
measure of the process started with ao distributed according to J.J, 

2.2 Time reversal 

For 

a homeomorphism such that 1[' 01['= id, we define the 1['-time reversal en of a trajectory w: 

(en(W))(t) = 1['(w(T - t)) (2.2) 

For 1[' the identity, this is the ordinary time reversal. However, if 0 contains variables such as 
velocities, then it is natural to combine the tiJlle-reversal with an involution which reverses 
the velocities. 

Definition 2.3 A probability measure j..t on 0 invariant under 1[' is called 1['-reversible if 

(2.4) 

2 



For a given 7r-invariant probability measure {L, let L denote the L2 ({L) generator of the reversed 
process {7r(XT-t) : 0 ::; t ::; T}. 

Lemma 2.5 For any 7r-invariant measure {L we have: 

1. Let L * be the adjoint of L in L2 ({L), then 

L 7rL*7r (2.6) 

2. {L is 7r-reversible if and only if 

rrL*rr = L (2.7) 

3. If p is 7r-reversible, then {L is stationary 

Proof. The first two statements follow immediately from definition 2.3. For the third state
ment, let f : Sf -+ lR, then 

J L1 d{L = j f L*l d{L = ! f (7rL(7r1)) dp = 0 (2.8) 

where in the last step we used 7r1 1 and L1 = O. • 
2.3 Entropy production 

For a given involution 7r, and a 7r-invariant stationary measure p, the random variable entropy 
production is defined as a function on path space by 

(2.9) 

Clearly, this is a priori not well-defined. However, we will restrict ourselves to the case 
where rr is such that c(x, y) > ° if and only if c(rry,7rx) > 0 (this is usually called "dynamic 
reversibility"). In that case, with generator of the type (2.1), the Radon Nikodym derivative 
[7] in (2.9) can be spelled out as 

rT 
log c(ws-, ws+) dNs(w) 

./0 C(7rWs+,7rWs-) 

loT (c(Ws-, Ws+) - C(7rWs+, 7rWs-)) ds (2.10) 

where Nt(w) denotes the number of jumps of the trajectory W in the time interval [0, t]. The 
mean entropy production (MEP1r(p)) is defined as 

(2.11) 

which in our set-up reads 

MEP7r ({L, L) = L p(o-)c(a, 1]) log -----'-'--,.- (2.12) 
u,1]En 
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From (2.11) one sees that MEP1r (IL, L) is equal to the relative entropy density of the path 
space measure IF J.L 0 6:n with respect to the path space measure IF w Therefore M EP:n (IL, L) is 
non--negative and equal to zero if and only if IF M o6:n = IF w In what follows we will often omit 
the dependence on L and simply write MEP1r (IL). 
For a discrete time stochastic process {Xn : n EN}, with Xo distributed according to IL, a 
1T-invariant probability measure on n, the random variable entropy production is defined as 
follows 

The mean entropy production is 

MEP(X) = lim ~ ~ IF[Xl 
'11, ..... 00 n L

Xt,··,Xn 

provided this limit exists. 

3 Example 1: fuzzy processes 

(2.13) 

(2.14) 

Let w = {I, "j N} be the state space of a discrete time process {Xn : n E Z}. Consider a 
function F : {I, .. , N} -+ {I, .. , K} for some K ~ N. The F-fuzzy version of the X process is 
denoted {Yn : n E Z} defined via Yn F(Xn). In case K < Nand Xn a Markov chain, Yn is 
in general not Markovian. For the entropy production to both the processes Xn and Yn, we 
now prove the following theorem: 

Theorem 3.1 

M EP(Y) ~ M EP(X) 

with equality if and only if F is a bijection. 

Proof By definition 

MEP(Y) 

= I: 

< 

4 

(3.2) 
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4 Example 2: effective Markovian dynamics 

We consider a Markov process on a state space of the form n S x A where S and A are 
finite sets. The generator of the process is of the form 

L,J(a,o:) = L ka(a, u')(f(c/, 0:) J(u,o:)) + L (f(u, 0:' ) J(a,o:)) (4.1) 
u'ES a'EA 

In words, this means that the a evolves with rates depending on 0: and the state 0: itself 
changes at rate c 1 . To avoid trivialities, we assume that ka(a,u' ) =1= kal(u,u') for at least 
one pair 0: =1= 0:', U, u' . For simplicity we suppose that the rates satisfy 

(4.2) 

which implies that the stationary measure is uniform on S x A. For the involution 1r we take 
the identity. The prefactor c 1 indicates that the time-scale on which 0: varies (Le., time 
between successive jumps of the a-process) is of order E. Therefore we expect that in the limit 
E -+ 0 the a-process decouples from the u-process and the latter becomes Markovian with 
rates 

- I 1 ~ I 
k(u,a) = !AI L.Jka(a,a). 

Q 

(4.3) 

More precisely, on the time scale of the jumps of a component, the 0: component is in equi
librium in the limit E -+ O. This is proved in the following lemma 

Lemma 4.4 In the limit t -+ 0, the process {Ut : t ;::: O} becomes a Markov process with 
generator 

Le/f f(u) = L k(a, a')(f(a') f(a)) (4.5) 

Proof. Let us denote expectation in the Markov process with generator L€, and 
expectation in the Markov process with generator Lefj. Pick f : S -+ R and denote {at : t ;::: 
O} the Markov process with generator 

Lg(o:) = L(g(o:l) - g{o:)) 
QI 

on 9 : A -+ R Then we have, using the definition of the generator (4.1): 

The distribution of O:t converges in total variation norm to the uniform measure /-LA = 
I~I I:aEA 6a , for every initial 0:0 = 0:. Therefore, 

(4.7) 
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At this stage, we have to prove that every limiting process of {O"t : t E [0, T]} as E -+ O} is 
Markovian. Indeed, in that ca."le we derive from (4.7) that the generator of this limiting Markov 
process is LeI I and finally the existence of a limit of the distributions of {O"t : 0 :s; t :s; T} 
follows from the tightness criterion, [4] Theorem 1.3, p. 51. To prove the Markov property, 
we need some more notation: 

Ff = O"{O"s:O:S;s:s;t} 

FtO< = O"{ as : 0 :s: 8 :s: t} 

Ft = O"{(O"s,as): O:S; s:S; t} 

We have to prove that for 0 < s < t: 

(4.8) 

(4.9) 

where lEo- denotes expectation in the Markov process with generator Leff started from 0". By 
the Markov property of {(O"t, at) : t ~ OJ, we have 

(f(O"t) IF:) - ~,a (~,o: (f(O"dIFs) IF:) 
= ~,a (~,a (f(O"t)IO"s, as) IF:) ( 4.10) 

Hence, it suffices to prove that 

(4.11) 

The left hand side of (4.11) equals 

(4.12) 

where we used (4.7). • 
Let /-LS denote uniform measure on 8 and /-LA uniform measure on A. MEp€(/-LS x /-LA) 

denotes the entropy production of the process {(O"t,at) : t ~ O} and MEP(/-Ls) denotes the 
entropy production for the limiting process with generator Leff. We obtain the following 
proposition as a direct consequence of (2.11) the strict convexity of x -+ x log(x) and the 
previous lemma. 

Proposition 4.13 1. For every E > 0: 

(4.14) 

2. The entropy production of the limiting process is given by 

1 "" - I k( 0",0"') 
MEP(/-LS, LeI!) = -181 L.. k(O",O") log k(O"' 0") 

(J',cr'ES ' 

(4.15) 

3. For every E > 0 we have the inequality: 

{4.16} 
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5 Example 3: the stochastic Lorentz lattice gas 

In this section we compare the microscopic entropy production of a stochastic Lorentz lattice 
gas with the entropy production of its kinetic limit given by a linear Boltzmann equation, and 
show strict inequality in the non-reversible case. 

5.1 The process 

Let A : Zd -t {O, I} denote a configuration of scatterers on the regular lattice Zd and write 
n for the set of all such configurations. For x E Zd, A{X) = 0,1 is respectively interpreted 
as the absence and presence of a scatterer at site x. For A E 0, and x E Zd we denote 
TxA(Y) = A(Y + x). We suppose that A are randomly distributed according to a translation 
invariant and ergodic probability measure p, on 0 Let Sd == {e E Zd : lei = I} be the set of 
unit vectors in Zd. By means of any A E 0 and x E Zd, a 'scattering law' P>..,x : Sd x Sd -t [0,1] 
is introduced. The scattering law P>..,x depends locally on the scatterer configuration around 
x E Zd and this dependency is assumed to be translation invariant, i.e. P>..,x = PT,,>",O. 

The discrete time scattering process {(Xn, Vn) : n E N} on K Zd x Sd, is defined by 
means of the transition operator 

(P>..f) (x, v) = E[f(Xk, vk)l(xk-b Vk-l) = (x, v)] (5.1) 

= (1 - A(x))f(x + v, v) + 'x(x) L P>..,x(v, e)f(x + e, e) 
eESd 

In words this means the following: a particle, moving in a scatterer configuration A arrives 
at site x E Zd with a unit velocity v. If 'x(x) 0, then the particle moves one step in the 
direction of its incoming velocity v. If ,X{x) = 1, then the particle is scattered according to 
the probability law P>..,x, i.e., the particle gets a new velocity e with probability P>..,x(v,e) and 
moves one step in the direction of e. We assume that the probability law p(v, e) is doubly 
stochastic, i.e., for all ,X E 0, x E Zd 

L P>..,x(v, e) = L P).,x(v, e) = 1 
vESd 

The case P>..,x(v, e) = 1/2d is denoted as 'isotropic scattering'. 

5.2 The environment process 

The environment process {( TXn A, Vn ) : n E N} is a Markov process defined by the transition 
operator 

(Pf)(,X, v) = E[J( TXk A, Vk)I(TXk_l'x, Vk-l) = (1}, v)] (5.2) 

= (1 -1}(O))f(Tv1}, v) + 1}(O) L p>",o(e, V)f(Te1}, e) 
eESd 

In words this means that we follow the configuration of scatterers as seen from the scattered 
particle, and keep track of the velocity. 

The continuous time version of the environment process is defined via the generator 

Lf(A,V) = (l-,X(O))(j(Tv'x,v) - f(A,V)) - 'x(0) L P>..,o(v, e) (j (re'x' e) - f(,X,v)) (5.3) 
eESa 
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In this process the particle jumps on the event times of an independent mean one Poisson 
process. 

The following lemma characterizes the scattering laws for which the environment process 
(EP) {(TXt, 1ft) : t E [0, Tn is 1r-reversible. The proof, a straightforward computation, can be 
found in appendix A. Define fJ = JL X Jd 2:.:eESd 6e. The natural time reversal in our context is 
given by 

(5.4) 

Lemma 5.5 1. For every translation invariant doubly stochastic scattering rule P>..,x, fJ is 
a stationary measure for the EP. 

2. fJ is a 1r-reversible measure for the EP iff 

P>',o(v,w) =P>",o(-w,-v) (5.6) 

Remark 5.7 1. The fact that fJ is stationary for the EP is a consequence of the assumption 
of a doubly stochastic scattering law P>.,o (v, e) i. e. 

for any A E fl. 

2. 1r-reversibility is established for the particular involution 1r defined by (5.4) as 

This is easily understood as v denotes the incoming velocity becomes an outgoing velocity 
and changes sign under time-reversal. 

3. The conditionp>..,o(v,w) =P>.,o(-w,-v) means that probabilities of forward and back
ward scattering are equal. 

5.3 The random variable entropy production 

The random variable entropy production is defined on all trajectories w == {(As, vs) : s E [0, Tn 
by means of the time reversal involution 9 1r : 

(9 1r (w)(t) = 1rWT-t = (LVT_tAT-t, -VT-t) 

To compute the random variable entropy production S;(w) (cf. (2.9)), we introduce the 
reference process Jl»~, corresponding to the 1r-reversible stochastic Lorentz gas where p(v, e) = 
1/2d. The random walk is assumed to be started from x = 0, at unit speed Vo. We have 

log ~ (w) = loT log [2dp>'$_ ,o{vs-, vs)]dNs{w) 

T . 

10 As- (0) [P>,._ ,o(vs-, vs ) - 1/2d]ds. 
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from a straigtforward application of Girsanovs theorem [7]. The process Ns (w) 'L:o<t<s I (Vt- ::f: 
'Ot) counts all scattering events that ocurred in w before time s. The random variable entropy 
production is now found as a difference of two such expressions, 

(5.8) 

(5.9) 

From this expression, we see that the random variable entropy production vanishes in the 
reversible case, where P>-,o(v, e) = P>-,o( -e, -v). However, S~ does not have a fixed sign for 
all trajectories w. 

5.4 Mean entropy production 

By taking the steady state expectation of (5.8), we obtain the mean entropy production 
M EP1r(p,) of the EP. 

Proposition 5.10 

1 J' L P>- o{'O, e) M EP7r (p,) = 2d )'(O)P>-,o( v, e) log ( ) p,( d)') 
p>- ° -e,-'O 

e,vESd ' 

(5.11) 

5.5 Kinetic limit: the Boltzmann equation 

In this subsection we pass to the kinetic limit of the stochastic Lorentz gas which gives a linear 
Boltzmann equation. The limiting equation can then be interpreted as the master equation 
of a Markovian velocity process of which we can again compute the entropy production. 

The kinetic limit is obtained as the E -+ O-limit of the processes {(Xl, vn : 0 ::; t ::; T} 
defined by the generator 

(5.12) 

where L is given in 5.3 and Lo is obtained from the same expression, putting). = 0, i.e., Lo 
corresponds to the free motion (no scattering). The introduction of the scaling parameter E 

in the generator (5.12) makes the lapse of time between two successive scattering events of 
the order e 1. Afterwards, we have to consider this process on the time scale cIt in order to 
obtain a non-trivial "kinetic" limit. More details on the derivation of the Boltzmann equation 
as a kinetic limit can be found in [2], [15]. 

Theorem 5.13 1. There exists a Markov process (Xt, Vt) on IR x Sd, such that 

2. The limiting process satisfies 

(5.14) 
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where Vt is the Markov process on Sd with generator 

Ls!(v) = L p(v,e)[f(e) - f(v)] (5.15) 
eESd 

for functions f : Sd -1 lIt 

3. The master equation of the limiting process (Xt, Vt) is the linear Boltzmann equation 

op ap "p(v, e) at (x, v, t) - v ax (x, v, t) = L.t -u [p(x, e, t) - p(x, v, t)], (5.16) 
e 

with 

p(v, e) = / >'(O)PA,o(e, v)J-t(d>.) 

Proof. For the proof the reader is referred to appendix B. • 

The mean entropy production ME P 1f (J-t) in the kinetic limit thus is the entropy production 
corresponding to the limiting velocity process with generator Ls. This yields, using (2.12), 
and strict convexity of x -1 x log x: 

Theorem 5.17 The entropy production of the limiting velocity process is given by 

------ 1" _ p(v, e) 
MEP1f (J-t) = 2d L.t p(v, e) log -(-e -v) 

e,vESd p, 
(5.18) 

Moreover, MEP7r (J-t) is less than or equal to the entropy production of the EP in (5.11), with 
strict equality if and only if PA,O depends non-trivially on >. and (5.6) is not fulfilled. 

A Proof of lemma (5.5) 

Proof 
It is sufficent to show that J gPfdfl = J f Pgfl. Observe that 

/ (1 - >'(O))f(Tv>', v)g(>., v)fl(d>., dv) 

= /(1- >.(-v))f(>.,V)g(T-v>.,v)fl(d>.,dv) 

and 

/ >'(0) LPA,O(V, e)f(Te>', e)g(>., v)fl(d>., dv) 
e 

= 2
1
d / >'(0) LPA,o(e', e)f(Te>', e)g(>., e')J-t(d>.} 

e,e' 

2~ / LPr_eA,o(e', e)>.( -e)f(>., e)g(Le>', e')J-t(d>.} 
e,e' 

= J >.( -v) LPr_VA,o(e', v)f(>., V)g(Lv>', e')fl(d>., dv) 
e' 
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Hence, 

(P*g)(A,V) = (1- A(-V))g(LVA, V) + A(-V) LPT_V>.,o(e,V)g(LvA,e) (A. 1) 

On the other hand, 

(I): 

(II): 

e 

(7rP7r)(g) (A, v) = (P(7rg)) (LvA, -v) = (J) + (II) 

(I) (1- LvA{O))(7rg)(LvT-vA, -v) 

(1 - A( -V))g(TvL2vA, v) 

= (1 - A( -V))g(LvA, v) 

e 

e 

e 

e 

A( -v) LPT_V>.,o(e, V)g(LvA, e) 
e 

(A.2) 

which is the same as (A.l). In (*) we used the 7r-reversibility condition: P>.,o(-v,e) -
P>.,o( -e, v). • 

B Appendix B: Sketch of proof of the Boltzmann equation 

Since we did not find a proof of the linear Boltzmann equation in our context, we give here 
a sketch of the proof. Proofs of the linear Boltzmann equation in other more complicated 
deterministic Lorentz gases can be found in [1], [3]. For the sake of notational simplicity we 
restrict to the one-dimensional case. 

Let us denote by lEi:,v expectation in the process with generator 

(B.l) 

Consider I, p : lRd X Sd -t lR such that for any v E Sd 1(', v) and p(., v) are Schwarz functions. 
We define 

Y/(v, I, p) = L tp(EX, v)1E~,vl(EXclt, "V::-lt) 
xEZ 

11 
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The aim is to prove that in the limit € -7 0, Y/(v, f, p) converges to f p(x, v)f(x, v, t)dx, where 
f(x, v, t) solves the linear Boltzmann equation with initial condition f(x, v, 0) = f(x, v). Using 
(B.l) we have 

! (Y/(v, f, p)) 

= 2)1- EA(X))p(€X,v) (E~,vf(€Xelt + €v, l!;;-lt) - ~,vf(eXelt, Velt)) 
xEZ 

+ L €A(X)P>.,x(v, w)p(€X, v) (~,Wf(€Xclt + €w, Vel t ) - ~,vf(€Xelt, l!;;-ld) (B.3) 
x 

Now we perform a Taylor expansion, and collect only the terms which will not vanish in the 
limit € -7 0, which gives 

:t (Y/(v,J, p)) 

= O(e} + Y/(v, v. ~~, p) 

+ L L €A(X)P>.,x(v, w)p(€X, v) (~,wf(EXelt, l!;;-lt) - ~,vf(EXeltl l!;;-lt)) (B.4) 
xEZ w 

The first term corresponds to the free motion, the second term to the scattering. The second 
term has still to be cast into the form of a Ytt' field. This can be done by performing an extra 
average over x. Let Be(x) be a lattice interval containing x with a length of [C1/ 2], then we 
write 

L L €A(X)P>.,x(v, w)p(€X, v) (~,wf(EX€-lt, l!;;-lt) - ~,vf(€Xelt, l!;;-lt)) 
xEZ w 

= L €p(eX, v) ( L l~xl A (Y)Pry).,O (v, w)) (~,wf(€Xelt, l!;;-lt) - ~,vf(€Xelt, l!;;-lt)) + o(€) 
x yEB,(x) 

- ~ €p(€X, v) (/ A(O)p).,o(v, w) f.l(dA)) (~,wf(€Xelt, Vel t ) - ~,Vf(€Xclt, l!;;-lt)) + O(E) (B.5) 

w here in the first step we used translation invariance of the scattering rule and in the last step 
we used ergodicity of the distribution of scatterers. Combination of (B.3), (B.4) and (B.5) 
gives 

! (Y{(v, f, p)) 

Yt€(V'V~~,P) + LP(v,w) (Yt€(w,f,p) - Yt€(v,f,p)) +o(€) (B.6) 
w 

which is exactly the weak form of the linear Boltzmann equation. 
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