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It is discussed how the equilibrium properties of the Ising model are described by an Hamiltonian with an
antiferromagnetic low temperature behavior if only an heat bath dynamics, with the characteristics of a Proba-
bilistic cellular automaton, is assumed to determine the temporal evolution of the system.
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[. INTRODUCTION tiferromagnetic phase. This behavior is absent if a serial
dynamics is implemented, for which at most one spin of the
In this Brief Report we discuss the equilibrium propertiessystem is updated at any time.
of probabilistic cellular automatdCA’s) reversible with re- The paper is organized as follows. In Sec. Il we define the
spect to a Gibbs measure derived by a suitable HamiltoniarPCA under consideration and the spin model Hamiltonian,
A PCA [1-3] is a lattice model with discrete variables that H. determining the heat bath single spin rates. In Sec. Iil the
are subject to a probabilistisimultaneousupdating in dis- ~ Structure and the low temperature antiferromagnetic proper-
crete time steps: all configurations are accessible in a singlées ofH’ are discussed in the case of the standard nearest
updating. PCA’s arise as an extended definition of determinh€ighbor Ising model and in the case of theo body next-
istic cellular automata in which the updating follows a set ofto-nearest neighbor interaction. The dynamical generation of
deterministic local rules. The huge number of possible detefdntiferromagnetic couplings is reviewed in the concluding
ministic (or probabilistiy rules makes the topic of cellular remarks.
automata overwhelmingly abundant. One of the most famous
cellular automata systems is Conway’s “game of lif|4];
in spite of the very simple deterministic majority rule as-
signed, the system, which is a kind of spin lattice, presents Let A be a finite two-dimensional square lattice dri
an extremely rich and complex evolution pattern. its cardinality. For eack=(X;,X,),y=(y1,Y,) € A we de-
PCA's have been studied in a wide variety of contexts,note by |x—y| the Euclidean distance on the lattice. Let
ranging from biology to the theory of automation. Theseq(x)e{—1,+1} a spin variable associated to the site
models can be thought of as interacting particle systems: @ A; the spacg1,—1}" of configurations is denoted hsg.
particular class of cellular automata, known as bootstrap pel-et us consider a generic HamiltoniaH(o) and the
colation, has been introduced([i] to model the propagation corresponding  equilibrium  Gibbs  measureu (o)
of cracks in solidgsee alsd6]). A wide discussion on nu- =exp{—BH())/E . sexp{—BH(7)} with B the inverse of
merical and rigorous results on bootstrap percolation can bge temperature. We now define the heat bath single spin

found in [7] and[8]. The connections with statistical me- r4tes: given the sitee A, we consider the Gibbs equilibrium
chanics models have been further investigate@jrand in a  measure foro, with respect to a fixed configuratiom on

number of papers with a mathematical physics[d@-12. A\{x}. Lettingae{—1,+1}, we have
The particular family of automata we study is obtained by Y

implementing in parallel fashion the heat bath dynamics

[11]. In other terms, we define a rule for the transition prob- exp{—BH(a,o)}

abilities such that all single spins of a lattice are updatecpx(a|‘7)= exp{—BH(a,0)} +exp{— BH(—a,0)}’ @

simultaneously with heat bath rates. This amounts to defining

a Markov chain for the evolution of the spin system, having

the characteristics of a PCA. where (+a,o) are the configurations equal ® on A\{x}
We observe that the way of implementing the heat batrand to £a on x. Note that the normalization condition

dynamics reflects into a qualitative modification of the equi-py(a|o) +py(—alo)=1 is trivially satisfied.

librium properties of the model. In particular, an Ising-like ~ We can now implement the heat bath dynamics in a serial

ferromagnetic Hamiltonian with two body interactions, de-fashion, namely, we can consider the Markov chajn(t

fines a PCA reversible with respect to a Gibbs measure déseing the discrete time temporal varighlevith transition

termined by an Hamiltonian allowing a low temperature an-probabilities

II. COUPLING PROLIFERATION IN REVERSIBLE PCA’S
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(UADpx(n(x)|o) if IxeA suchthato=7 on A\{x},
0 otherwise

P(o,m)= (2)

for all o, 7 S. The transition probabilitie€?) are reversible =3, , 1, x0(X)a(y)o(2) with the three body couplings

with respect to the Gibbs measure, i.e., the detailed balanck , , symmetric with respect to permutations of the indices

condition is satisfied or, equivalently, the equilibrium mea-and such thad, , ,#0 if and only if x#y+#z#x. Then the

sure is the Gibbs measure. problem of showing the reversibility of the parallel dynamics
A different point of view can be takei1]: we define the can be reduced to the problem of finding a functi¢ns

transition probabilitiesP(o,7) in such a way that all the eS— ¢(o)<eR such that

spins aresimultaneouslyand independently updated, in a

parallel fashion, with the heat bath ra{d$. Thus, instead of 3 J
Eq. (2) we consider the Markov chaia, defined by ¢(o) ﬂ”(x)yyzg\{x} xy20(Y)o(2)
P(o,n)= H px(n(X)|o) Vo,nes8. (3 =¢(n)—3Ba(x) E Iy, z(Y) 1(2),
xe A y,ze A\{x

. - ... which has no solution.
This amounts to defining a PCA. In general the equilibrium Let us now discuss the main feature of reversible heat

properties of the Markov chaifB) are not tr|V|a_1I, for in- bath derived probabilistic automata. As it has been seen
stance it is not obvious that there exists a Gibbs measurg

such that the detailed balance principle is satisfied. above, if the starting Hamiltonian is given by E), then

Let us consider, now, the case of the two body interaC:[he Markov chain(3) is reversible with respect to the Gibbs

. o measure with Hamiltoniad’ given by Eq.(6). It is clear
tions and suppose that the Hamiltonian has the form that new kind of interactions, different from the one present

in the original HamiltoniarH, arise wherH' is considered.
H(o)=— 2 Jyyo(X)a(y)— 2 hyo(x), (4) Suppose, for instance, that the starting Hamiltonian has
xyeh xeh ranger>0, namelyJ,,=0 for anyx,ye A such that|x
whereJ, , € R are the pair couplings between spins at sites_y|>tr'f-rhen we hfi\fsx(a.):.EV:F)J'X*yl‘frl‘I]X'VUEy)J:jhxb’( it
x,y, andh, e R is the external magnetic field acting on the a sort of average ot In€ spins INside a ball centered aksite

spin at sitex. For physical reasons we suppose that the pai}"’Ith ra_d|us equa_l to. Hence, by ex_pandmgl asasum of
couplings are symmetric, namely ,=J.,, for all X,y e A potentials we will get all the possible couplings inside the
7 'y yyX 1 .

g ; . ball, starting from the two body up to the(r) body inter-
The heat bath [ t
e heat bath single spin rates are given by action, withN(r) the number of sites inside the ball. In some

1 sense these new couplings are dynamically generated. In the
1+ exp(— BIH(—a,0)—H(a,o) ]} following we will discuss few interesting particular cases.

px(a| o)=

. TWO EXAMPLES

1
=—[1+atanh , 5 ) _ )
2[ BS( )] ® Let us consider the standard nearest-neighbor Ising model

with no external magnetic field, namely, we consider &J.
where S,(0) =2y c n\pdxyo(y) The for any oeS andx  with J, ,=J/2 for any x,ye A such that|x—y|=1, J,,
eA. Itis easy to show11] that the probabilistic cellular =g otherwise, anch,=0 for anyxe A. The Hamiltonian
automaton(3) with single spin ratess) is reversible with  p js the sum of averages performed over the four site
respect to the Gibbs measyie on S associated with the  crosses centered at each site of the lattice. We then expect all
Hamiltonian the possible interactions inside the cross.
As it as been seen ifil3] it is possible to extract the

H'(o)=—B> hao(x)— 2 logcostigS(a)]. (6) potentials and rewrite the Hamiltoniat’ in the following
xeA xeA way:

In other words the detailed balance condition , _

P (o, 7)exp(—H’ (a)}=P(7,0)exp—H'(7)} is satisfied for H' (o)== 2 o(X)a(y)=3, 2 a(x)a(y)
any o,n7€S. This means thaH’(o) is the equilibrium
Hamiltonian of a system governed by(o) and evolving
with the law (3). =33 2 a(a(y)o(w)o(2), (7)

The choice of the two body interaction in E¢) is o

strictly connected to the reversibility of the resulting proba-where the three sunisee Fig. 1a)] are, respectively, per-
bilistic cellular automaton(3) [2,3]. For example, con- formed over the pairs of next-to-nearest neighb@ites at
sider the three body interaction Hamiltoniakl(o) distancey/2), the pairs of third neighborsites at distance

(xy) 2 (Xy)2

057103-2
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% ++++ -+ -+ -——-
r ++++ + -+ - -— -
2 ++++ -+ -+ - ===
Ja + 4+ + + + -+ - -— ==
Jy J3 \\ 3 FIG. 2. The three ground statég, ¢ , » depicted from the left
/z to the right.

and negative magnetization. Hence, by combining in all the
(a) (b) possible ways the two phases we get, for the original model,
the three different low temperature phases corresponding to
FIG. 1. Couplingsd,, J,, and J; for the Hamiltonian(7) the three ground statef,, ¢ ,, (see Fig. 2
[Hamiltonian(9)] are shown in(a), (b). It is of some interest a direct study of the Hamilton{Zin
) ) ground states can be defined as those configurations on
2), and the four site diamond shaped clust@gquettes \yhich the Gibbs measure’, associated to the Hamiltonian
with side length equal ta/2). The coupling constants are H’, is concentrated when the limjg—c is considered,

given by namely as the minima of the energyE(o)
1 1 1 =IimB%} H'(0)/B=—2,.4|S(c)| uniformly in oeS. It
J1=Zlog cosli2BJ)~ EB‘J' J2=§J1, is rather clear that with periodic boundary conditions there

exist three coexisting minimayg,¥q,¥,€S (see Fig.
2), with energy —4|A|, such that go(x)=+1, (X)

=(—1)2"*2, and ¢,(x)=—1 for all x=(X;,X,) € A. No-
tice thatys, is the chessboard configuration.

The problem is, now, to understand if this coexistence of
where “~" means the limiting behavior foB—o. There different states persists at a finite small temperature, namely,
exist several possible ways to extract the potentials. A veryf the system undergoes a low temperature phase transition.
natural one, in the case of spin variable, is to consider th&Ve give an heuristic argument: at finite temperature ground
function (o) =log Cos[ﬁ(IBJ/Z)EyEAXO-(y)], where A, states are perturbed_ becguse small droplets of _different
={yeA:ly—x|=1} is the set of nearest neighbors of sife phases show up. The idea is to calculate the energetic cost of

it ; ) )T ith th a pertl_eration of one of the four cpexisting states v[a the
and its expansionp,(0) =2xc, C(X)yexoly) with the oo of a square droplet of a different phase. A simple

coefficientsc(X) given by calculation, se¢13], shows that the energy cost of a square

droplet of side lengttn of one of the two homogeneous

ground states plunged in one of the two chessbo@ndsice

versa is equal to &. On the other hand, if an homogeneous

phase is perturbed as above by the other homogeneous

where, we recall|A,|=4 is the cardinality ofA, . phase, or one of the two chessboards is perturbed by the
It is important to remark that the second nearest neighbodther one, then the energy cost isnléience, from the en-

interaction,J;, is positive and dominating; hence we expectérgetical point of view the most convenient excitations are

a low temperature antiferromagnetic phase to exist. Whathose in which an homogeneous phase is perturbed by a

appears interesting is that we have derived an antiferromaghessboard or vice versa. Moreover, for each sigie), , i,

netic behavior in a purely dynamical way as a result of thethere exist two possible energetically convenient excitations:

coupling proliferation. If a parallel heat bath Ising dynamicsthere is no entropic reason to prefer one of the four ground

is implemented, the equilibrium Gibbs measure shows a lovtates to the others when a finite low temperature is consid-

temperature antiferromagnetic phase despite the Simp@red. This remark indicates that at small finite temperature

physical ferromagnetic coupling of the Ising model. Thisthe three ground states still coexist.

phenomenon is, obviously, absent if the Ising heat bath dy- Let us consider, now, the Ising model with no external

namics is implemented in a serial fashion. magnetic field and next-to-nearest neighbor interaction,
The equilibrium properties of the model can be under-namely, we consider Ed4) with J, ,=J/2 for anyx,ye A

stood by remarking that two independent models are found i$uch thafx—y|= V2, Jyy=0 otherwise, ant,=0 for any

the lattice is partitioned into two square sublattices with stepxe A. It is possible to extract the potentials as seen above.

\J2 (the even and the odd sublatticEach model is, indeed, The HamiltonianH’ can be written as

an eight vertex model with nearest neighbors coupling

next-to-nearest neighbors couplidg, and plaguette interac-

tion J;. This model has been widely studied both in two H'(0)==3; 2 o(X)a(y)—J; X a(x)a(y)

; —ilo cost‘?(Z,BJ)N_E ; -
37169 cosi(Bd) 2P

1
cX)==—— > <px<o>yHX<r<y>,

A
218 ST

[14,15 and threg 16,17 dimensions. From Eq8) and the (xy)2 (xY)22

very well known properties of the two-dimensional eight

vertex model we have that on each sublattice there are two —-Jg E a(X)o(y)o(w)o(2), 9)
coexisting low temperature phases, respectively with positive Oxywz

057103-3
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parallel heat bath dynamics. Any lattice system with two

+++ + +++ + + -+ - + -+ - body interactions and having a self-organization resembling
-+ -+ -——— + -+ - -— - - the parallel dynamics here described in the simple Ising
+ 4+ 4+ + + 4+ + + -+ + -+ - model, could evolve towards different equilibrium states.
-+ -+ - === + -+ - - ===

The role of the parallel dynamics has been studied also in
connection with the Ising-like transitions in coupled map lat-
tices (CML’s). CML'’s are lattices of interacting dynamical
systems with continuous phase spagdfferently from
PCA'’s that have discrete phase spaaed discrete time. It
where the three sunfsee Fig. {b)] are, respectively, per- has been shown that the nature of the upéstachronous or
formed over the pairs of third nearest neighbésites at  asynchronousis a relevant parameter: continuous transitions
distance 2, the pairs of sites at distance/2, the plaguettes  of two-dimensional coupled chaofj¢8] and stochastif19]
with side length equal to 2. The coupling constants are stilCML’s with Ising-like discrete broken symmetry belong to a
given by Eq.(8). new universality class. A study on Toom cellular automata
In order to study this model we remark that if the lattice is[20] seems to indicate that these particular examples of cel-
partitioned into four square sublattices with step 2, then weular automata belong to the same universality class of
obtain four independent models one on each sublattice, eagbML’s with synchronized dynamics.
model being again an eight vertex model with nearest neigh- The evolution of the system we consider is governed by
bors couplingl;, next-to-nearest neighbors couplidg and  |ocal energy(instead of local dynamical rules such as the
plaquette interactiod;. Hence, on each sublattice we have Toom rule mentioned befoydike in usual algorithms to
the two degenerate ground states with all the spins, respesimulate Ising interactions, but we consider synchronous up-
tively, equal to one and minus one. By combining in all thedating. Also our results indicate that the influence of the
possible ways these two states we get, for our mod&l, 2updating nature on the physical properties of the equilibrium
=16 different ground states. On the torus, namely, whemeasure, is certainly an interesting feature that deserves fur
periodic boundary conditions are considered, some of theéher explorations.
ground states are equivalent, so we get the seven states
Yo, 1, ... g in Figs. 2 and 3. The fact that the phase
transition persists at finite small temperature is, as seen
above, a straightforward consequence of the known behavior E.N.M.C. wishes to express his thanks to the Physics De-
of the eight vertex model. partment of the University of Helsinki for its warm hospital-
In this paper we observed the relation between the twdty. E.N.M.C. also thanks J. L. Lebowitz for having intro-
body ferromagnetic interaction of the Ising model and theduced him to the interesting topic of PCA’s and P. Dai Pra
low temperature antiferromagnetic behavior of the equilib-for a useful discussion. A.D.P. acknowledges support from
rium Hamiltonian obtained evolving the initial system with a the EU-TMR program, Contract No. CT98-0169.

FIG. 3. The four ground stategs, ¥4, s, s depicted from the
left to the right.
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