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Improved Force-Directed Scheduling in 
High-Throughput Digital Signal Processing 

Wim F. J .  Verhaegh, Paul E. R. Lippens, Emile H. L. Aarts, Jan H. M. Korst, 
Jef L. van Meerbergen, Senior Member, IEEE, and Albert van der Wed, Member, IEEE 

Abstract-This paper discusses improved force-directed 
scheduling and its application in the design of high-throughput 
DSP systems, such as real-time video VLSI circuits. We present 
a mathematical justification of the technique of force-directed 
scheduling, introduced by Paulin and Knight, and we show how 
the algorithm can be used to find cost-effective time assignments 
and resource allocations, allowing trade-offs between processing 
units and memories. Furthermore, we present modfications that 
improve the effectiveness and the efficiency of the algorithm. 
The significance of the improvements is illustrated by an 
empirical performance analysis based on a number of problem 
instances. 

I. INTRODUCTION 
IGH-LEVEL synthesis is the translation of a behavioral H description into a register transfer level description, 

which specifies the system’s structure that implements the 
behavior. A behavioral description is often represented by 
a signal flow graph, which consists of nodes representing 
operations and arcs representing signal flow. An important 
problem in high-level synthesis is that of scheduling opera- 
tions, such that a certain objective function is minimized. This 
objective function may reflect different criteria or combina- 
tions of them, such as area, execution time, throughput, and 
power consumption. The choice of an appropriate scheduling 
algorithi strongly depends on the application domain and on 
the synthesis approach that is pursued. To shed some light 
on these issues, we start by briefly discussing the application 
domain. 

A. High-Throughput Digital Signal Processing 
In digital signal processing, signal flow graphs must be exe- 

cuted repeatedly, with a fixed period. The period of repetition 
is determined by the sampling frequency. High-throughput 
applications such as real-time video, at which the design 
methodology PHIDEO [ l l ]  is targeted, are characterized by 
the fact that sampling frequencies are close to clock frequen- 
cies. Furthermore, the number of operations that has to be 
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executed each clock cycle is large [15]. These are important 
characteristics which distinguish the application domain from 
applications with low or medium sampling frequencies, such 
as audio applications. Furthermore, this distinction has quite 
an impact on the architecture and on the synthesis approach 
that is pursued. High-throughput applications lead to hardwired 
architectures, complex processing units, large memory areas, 
and to pipelining. 

In case of low or medium sampling frequencies, a mi- 
crocoded architecture is often used, consisting of a limited 
number of multifunctional processing units, e.g., an ALU 
with 30 different instructions, and a limited number of central 
memories [2]. Many different operations of the signal flow 
graph can be mapped onto the same processing unit, and a 
microcoded controller is used to select the correct instruction 
at the appropriate time. In case of high sampling frequencies, 
however, only a few operations can share the same processing 
unit, and one often chooses each processing unit to perform 
one dedicated, complex function. Therefore, a hardwired ar- 
chitecture is used, which is characterized by a large number 
of processing units operating in parallel and a large number 
of memories. 

In high-throughput applications, processing units usually 
perform complex functions, e.g., complete filter functions. 
These processing units not only contain arithmetical and 
logical operations and algorithmic delays, but they also contain 
local decision-making, which can be used to deal with local 
conditions in the application. In this paper we do not consider 
global conditions, but they can be handled in the same way 
as is done in [21]. In order to meet the high clock frequency, 
retiming, including pipelining [lo], [16], [29], is used. Doing 
this, inputs and outputs of a processing unit may be shifted 
in time with respect to each other, which has to be taken into 
account during scheduling. 

Another characteristic of the application domain is the sig- 
nificant role of memories. Existing chips for high-throughput 
video applications reveal that a large part of the area is occu- 
pied by memories. So, during scheduling not only processing 
units but also memories must be taken into account as an 
important area-consuming resource. A trade-off between the 
two types of resources must be made. However, in contrast 
to processing units whose area is known before scheduling, 
the area occupied by memories has to be estimated during 
scheduling, based on the maximum number of variables alive 
simultaneously and the maximum number of simultaneous 
accesses. 

02784070/95$04.00 0 1995 IEEE 
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Another characteristic of the application domain is the need 
for pipelined execution of DSP algorithms [18]. We have 
to make a distinction between two notions of time. On the 
one hand we have the algorithm period, which is the time 
between two consecutive executions of the algorithm, and 
which is a measure of the throughput. On the other hand 
we have the latency, which is the time between inputs and - corresponding outputs, i.e., the time needed to execute one 
iteration of the algorithm. Usually, the algorithm period is 
fixed in DSP applications, and there is an upper bound on 
the latency. If the latency is larger than the algorithm period, 
which is often the case in high-throughput applications, then 
successive executions of the signal flow graph overlap in time, 
and we speak of pipelined execution. In this paper we do 
not consider deep nestings of large loops, as is the subject 
of e.g., [26]. Nevertheless, small loops can be handled by 
flattening them. The only loop remaining is the most outer 
loop of infinite repetition of the algorithm, including data 
dependencies between different iterations. 

B. High-Throughput DSP Scheduling 

Informally speaking, the high-throughput DSP scheduling 
problem can be stated as follows. Given a signal flow graph, 
an algorithm period, and some timing constraints, assign the 
operations to clock cycles and allocate resources, such that the 
total area is minimized, and such that timing constraints and 
data dependencies are met. 

Since the scheduling problem we discuss is NP-hard [4] 
and since practical instances are too large to be solved ex- 
haustively, our aim is to find a good approximation algorithm. 
An overview of existing scheduling algorithms in high-level 
synthesis can be found in [14]. To position force-directed 
scheduling, we discuss the following two extremes. 

First, we have list scheduling [6], [13], which is a fast al- 
gorithm that gives reasonable-quality solutions. Traditionally, 
list scheduling is an algorithm that tries to find a minimal 
execution time, for given constraints on the number of pro- 
cessing units. Additionally, list scheduling can be modified 
such that memory requirements are reduced, as long as the 
execution time is not increased. On top of this, one can then 
iterate on the number of processing units, in order to find 
a minimal solution that still meets the timing constraints. A 
drawback of list scheduling is that it requires a decomposition 
into several levels, which complicates the trade-off between 
processing units and memories. 

Second, we have integer linear programming [5], [7], which 
is a general approach to combinatorial optimization. This 
approach can optimally solve problems in their entirety, i.e., 
without a decomposition. Hence, trade-offs between different 
objectives, e.g., processing units and memories, are made auto- 
matically. In general this goes at the expense of an exponential 
time complexity. Therefore, integer linear programming may 
be well applicable to small instances, but running times grow 
hazardously fast to impracticable heights as the instances get 
larger or as more refinements are added to the scheduling 
problem. 

Force-directed scheduling is situated in between. Its time 
complexity is only slightly worse than that of list scheduling. 

However, the ability of simultaneously trading off processing 
units and memories is attained, which may result in solutions 
with a quality close to those obtained by integer linear pro- 
gramming. At the same time, this raises the question whether it 
is possible to further improve the effectiveness and efficiency 
of force-directed scheduling, in order to achieve the best of 
both extremes. 

Force-directed scheduling was introduced by Paulin and 
Knight [19], [21], [22]. It tries to minimize the number of 
resources by smoothing the resource requirements in time, for 
given timing constraints. Since its introduction, the technique 
of force-directed scheduling has gained interest from a number 
of other research groups [l], [SI, [17], [23], [25], [27]. Refine- 
ments of the algorithm to include memory costs, pipelined 
scheduling, multitime operations, multifunctional processing 
units, etc., can be done in a very straightforward way [21], 
which makes force-directed scheduling a widely applicable 
scheduling technique. 

We have studied force-directed scheduling in order to use 
it in the design methodology PHIDEO. Besides a mathematical 
formulation of force-directed scheduling that justifies the orig- 
inal approach proposed by Paulin and Knight, we have been 
concentrating on modifications to improve the effectiveness 
and the efficiency of the algorithm without reducing its ap- 
plicability. The effectiveness improvements are achieved by 
the use of global spring constants and gradual time-frame 
reduction. The efficiency improvements are achieved by an 
incremental way to calculate the changes in the distribution 
function. 

C. Organization 

The organization of this paper is as follows. In Section 11, 
we give a mathematical model of the high-throughput DSP 
scheduling problem. In Section I11 we present the mathematical 
justification of a basic force-directed scheduling algorithm and 
discuss its time complexity. In Section IV we show how 
we apply force-directed scheduling to the high-throughput 
DSP scheduling problem. Next, we present modifications to 
improve the effectiveness and the efficiency of the algorithm, 
in Sections V and VI, respectively. Finally, Section VI1 
illustrates the significance of the improvements by means of 
some experimental results. 

11. MATHEMATICAL MODELING 

A. Signal Flow Graphs 

Input for scheduling is a signal flow graph representing 
a DSP algorithm, an algorithm period, and some timing 
constraints. The time unit we maintain throughout this paper 
is the clock cycle, and all time points are given by clock 
cycles c E Z. The operations represented by the nodes must 
be executed on dedicated processing units, i.e., we consider 
a one-to-one relation between operation types and processing 
unit types. In order to model the signal flow graph, we first 
define operation types and the corresponding processing unit 
types. 
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Definition 11.1 (Operation types): The operation types are 

given by a 6-tuple (T, Z, 0, r ,  s ,  a), where T is a set of types 
and for each t E T 

T( t )  is a set of input ports; 
0 ( t )  is a set of output ports; 
r ( t , p )  E Z is a retiming; for each port p E P ( t )  = 

s ( t )  E N is a restart time; and 
0 

The retiming of a port denotes the shift in time of that 
port. The restart time denotes the number of clock cycles 
that an execution of an operation occupies the corresponding 
processing unit, without interruption. If an operation of type 
t is scheduled in clock cycle c E Z, then the production or 
consumption of a variable at port p E P(t )  falls in clock cycle 
c + r ( t , p ) ,  and the processing unit on which the operation is 
executed is occupied in the clock cycles c, . . . , c + s ( t )  - 1. 

Input and output nodes of a signal flow graph are modeled 
as operations with no input ports and no output ports, respec- 
tively. Now we can define a signal flow graph as follows. 

Dejinition 11.2 (Signalflow graph): A signal flow graph G 
is given by a 6-tuple (V, t ,  I, 0, E, d) ,  where 

V is a set of operations; 
t ( w )  E T is the operation type, for each U E V; 
I = { ( w , z ) l w  E V A z E I(t(w))} is a set of operation 

0 = {(v,o)Iw E V A o E O(t(w))} is a set of operation 

E C 0 x I is a set of weighted, directed edges represent- 

0 
An edge e = ( p , q )  E E with weight d ( e )  denotes that for 

each exesution of the signal flow graph, operation output port 
p produces a variable, which is consumed at operation input 
port q,  d(e) executions of the signal flow graph later. So, the 
variable produced at port p is delayed d ( e )  executions. For 
each operation input port, the number of incoming edges is 
at most one. 

Z ( t )  U 0 ( t ) ;  

a ( t )  2 0 is an area cost. 

input ports; 

output ports; 

ing data dependencies; and 
d(e)  E Z is an edge weight, for each e E E. 

B. Feasible Schedules 

A signal flow graph is executed repeatedly, with an algo- 
rithm period F E N. Each execution is identified by an integer 
I C .  Since the executions are periodic, the lcth execution takes 
place lcF clock cycles after the zeroth execution. Therefore, 
we take the zeroth execution of the signal flow graph as a 
reference. For a broader discussion on periodic scheduling, 
we refer to [9]. 

Definition 11.3 (Schedule): For a given signal flow graph G, 
a schedule a: V --+ Z assigns to each operation 'U a clock cycle 
a(.) in which the zeroth execution is scheduled. The set of 

0 
The timing constraints that can be imposed by the user give 

lower bounds and upper bounds on the clock cycles in which 
operations have to be scheduled, e.g., on input and output 
operations. For each operation w E V they are given as a 
closed interval S(v) = [Sl(v),S,(w)] Z U {-oo,+oo}, 

all possible schedules is denoted by C. 

which we call the spun of operation W. Note that we use 
the interval notation for a discrete set of integer numbers, so 
[a, 61 = {a, . - . , 6 } .  We use this notation throughout the paper. 

A schedule is called feasible if and only if all operations 
are scheduled within their spans and all variables are produced 
before they are consumed. The first of these two constraints 
is equivalent to 

v V E V :  a ( w )  E S(7J). (1) 

For the second constraint we first have to determine when 
variables are produced or consumed. The clock cycle in which 
a variable is produced at operation output port p = (U, 0) E 0 
in the zeroth execution of the signal flow graph, is c (p )  = 
a(v)+r(t(v) ,  0). Similarly, the clock cycle in which a variable 
is consumed at operation input port q = (U,  i )  E I in the zeroth 
execution of the signal flow graph, is c (q )  = a(u)+r(t(u) , i ) .  
Now, the constraint that variables must be produced before 
they are consumed, is equivalent to 

The set of all feasible schedules is denoted by E'. 

C. Objective Functions 

Next, we determine an objective function, which reflects for 
a given schedule the total area cost. This area is determined 
by the maximum number of processing units of each type 
occupied simultaneously, the maximum number of variables 
that are simultaneously alive, and the maximum number of 
simultaneous memory accesses. Therefore, we define a set of 
resource types T* = T u  { t,, t a }  , where t, is the resource type 
corresponding to variable lifetimes, with area cost a(t,) per 
variable, and t ,  is the resource type corresponding to memory 
accesses, with area cost a(t,) per access. 

Dejnition 11.4 (Requirement function): Given a signal flow 
graph G, a set of resource types T*, and an algorithm period 
F, the requirement function N: C x T' x Z --+ N U {0} gives 
for a schedule g, resource type t ,  and clock cycle c the number 
of required resources N ( a ,  t ,  e). This number is equal to 

N(a , t , c )  = C N o ( a , t , c + k F ) ,  
k E 2  

where No(a, t ,  c) is the requirement function taking only 
0 

For processing units, the requirement function is given by 
execution zero of the signal flow graph into account. 

For variable lifetimes, the requirement function is determined 
as follows. We restrict ourselves to variables produced at 
operation output ports p that are also consumed at some 
operation input ports q,  since the other variables do not need 
to be stored. So we only consider operation output ports in 
0' = {p E 013,,1: ( p , q )  E E}. Note that there is a one-to- 
one relation between variables and the operation output ports 
p = (w, 0) where they are produced, so we can denote a 
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variable by the port p E 0' at which it is produced. Next, 
we assume that a variable is alive from the first clock cycle 
after its production up to and including the clock cycle of its 
last consumption. Then for execution zero of a signal flow 
graph, the number of variables alive in clock cycle c for a 
given schedule (T is given by 

For memory accesses, the requirement function is determined 
as follows. A variable produced in the zeroth execution of a 
signal flow graph at an operation output port p E 0' causes an 
access in clock cycle c if and only if it is produced in clock 
cycle c, i.e., c ( p )  = c, or there exists an operation input port 
q with ( p , q )  E E for which the consumption falls in clock 
cycle c, i.e., c(q) + d ( ( p ,  q ) )F  = c. So 

Definition 11.5 (Area cost of a schedule): Given a signal 
flow graph G, a set of resource types T*, and an algorithm 
period F, the area cost f(a) of a schedule is given by 

0 

I Note that since the requirement function N is periodic with 
I 
l 

period F, the maximum over Z can be replaced by a maximum 
over the discrete interval [0, F - 11. 

D. Problem Formulation 

Now the high-throughput DSP scheduling problem can be 
defined as follows. 

DeJnition 11.6 (High-Throughput DSP Scheduling (HTDS)): 
Given a signal flow graph G, a set of resource types T*,  an 
algorithm period F, and a span S(w) for each operation v E V, 
find a feasible schedule U E C' such that the total area cost 

The decision variant of HTDS is NP-complete. For a proof, 
f(u) is minimal. 0 

we refer to [28]. 

I .  

I 
111. BASIC FORCE-DIRECTED SCHEDULING 

In this section we present a mathematical model of the basic 
force-directed scheduling algorithm introduced by Paulin and 
Knight. For reasons of simplicity, the presentation is based on 
a less elaborate scheduling problem. In this less elaborate prob- 
lem, which is used in this section only, precedence relations 

~ 

I 
I are explicitly given by a set of arcs between operations instead 

A. Scheduling to Minimize Resources 
We consider the following scheduling problem. 
Dejnition 111. I (Scheduling to Minimize Resources (SMR)): 

Given are a set T of resource types t7  each with cost a ( t )  2 0, 
and an acyclic, directed graph G = (Vi A), where V is a set of 
unit-time operations, and A is a set of arcs. Furthermore, we 
are given a makespan M = [l, m] Z, and for each operation 
w E V a corresponding resource type t ( w )  E T. A schedule 
a assigns to each operation w E V a clock cycle a (v )  E Z 
in which w is scheduled. The set of all possible schedules is 
denoted by C. A schedule (T E C is called feasible if and 
only if 

VIVEv: a ( v )  E M and V(u,v)EA: a(u) <(.(U).  

Again, we denote the set of all feasible schedules by E'. 
Now the problem is to find a feasible schedule a E C' that 
minimizes the total resource cost, given by 

where N ( u , t , c )  = I{w E Vlt(w) = t A a(.) = e}[ is the 
requirement function, i.e., the number of operations of type t 

U 
The decision variant of SMR is NP-complete. A reduc- 

tion from Precedence Constrained Scheduling [4] is straight- 
forward. 

To describe the force-directed scheduling algorithm we 
i) reformulate the problem by giving an approximate-cost 
function; and ii) introduce an iterative approach in order to 
find good solutions. 

scheduled in clock cycle c in schedule a. 

B. Towards a Solution Approach 

The cost function of (3) can be rewritten as 

where ~ ( t )  = (l/rn)l{w E Vlt(w) = t}l is the average number 
of operations of type t over the makespan M. The first term 
of f(u) can be omitted since it is a constant, and with an eye 
to the solution method, we approximate the remaining term by 

which reflects minimizing the resource cost by smoothing 
the distribution of resources over time, i.e., by minimizing 
the deviation from the average value. In the approximation 
algorithm we discuss below, this quadratic cost function has 
the advantage that it is more global than the cost function 
based on maxima. Rewriting f ' ( ( ~ )  again, gives 

of data dependencies. Furthermore, we restrict ourselves to 

do not take memory costs into account. In Section IV we 

problem. tET cEM tET 

minimizing the area occupied by processing units, i.e., we f'((T) = a(t)  ( N ( u ,  '7 - 2 N ( a 7  t l  c)b(t) + P @ I 2 )  
tET cEM 

show how the algorithm is applied to the more general HTDS = 4 t )  N ( 0 ,  t l  - 4 t )  N2, 
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’ ASAP 
: schedule 

ALAP 
: schedule 

, - clockcvcle 
1 2 3 4 5 .  

operation time 

1 8  
2 8  
3 *  
4 +  
5 *  
6 *  
7 t  
8 8  
9 +  

Fig. 1 .  
time frames, depicted as black bars. 

An example of ASAP and ALAP schedules and the resulting initial 

in which the second term is again a constant, that can be 
omitted. So, in the following, we use the approximate-cost 
function 

f”(0) = a ( t )  N ( a ,  t ,  C l 2 ,  (4) 
t €T  CEM 

and the mathematical motivation of force-directed scheduling 
that is given in the following sections, can be extended to any 
cost function of this form. Hence, the motivation is also valid 
for the extensions with memory related costs, as discussed in 
Sections IV-B-2) and IV-B-3). 

C. An iterative Approach 

Next; we discuss an approximation algorithm that finds 
near-optimal solutions by constructing a sequence of partial 
solutions, where in each iteration an unscheduled operation 
is assigned to .a clock cycle. The set of partial solutions 
can be defined as follows. Instead of a single clock cycle 
.(U) for each operation U, we have a time frame, which is a 
discrete interval [ a ~ ( v ) ,  a,(v)] 5 Z, al(v) 5 a,(v), and which 
means that operation U has to be scheduled in a clock cycle 
.(U) E [ol(v),a,(v)]. In this way we get a schedule frame 
6 = (al, ou), and we denote the set of all possible schedule 
frames by E. A schedule frame 6 is called feasible if and 
only if 

V v ~ v :  OI(V)  E MA u,(u) E M and 

V ( ~ L , ~ ) E A :  al(u) < o l ( V )  A a,(.) < a u ( v ) .  

This in fact means that a1 and a, are both feasible schedules. 
Now, the set of partial solutions is given by the set of feasible 
schedule frames, and is denoted by 2’. Initially, the time 
frames are chosen as large as possible by initializing the 
a l ( w ) ’ s  with the clock cycles of the ASAP (as soon as possible) 
schedule and the oU(v)’s with the clock cycles of the ALAP 
(as late as possible) schedule. Fig. 1 shows an example of the 
initial time frames of a graph with nine operations, two types 
of resources, and a makespan of length five. 

1 .o 

0.0 C 

1 2 3 4 5  

p(+ = 0.6 

Fig. 2. An example of a resulting distribution function. 

Next, the cost of a partial solution is estimated as follows. 
We define a distribution function N ( 6 ,  t ,  e )  as the expected 
number of operations of type t in clock cycle c in schedule 
frame 6. For this, we determine the probability P(6,  U ,  c )  that 
operation v is eventually scheduled in clock cycle c,  given 
schedule frame 6. Because of the precedence relation, these 
probabilities are generally not independent. Nevertheless, we 
estimate them by assuming a uniform probability of assigning 
an operation to any clock cycle in its time frame, i.e., 

Now for each resource type t we take the summation of 
probabilities of the operations for each clock cycle c E M .  
The resulting distribution function is given by 

N ( C , t , C )  = P ( r ? , U , C ) ,  (6)  
v € V ( t )  

where V ( t )  = {v E Vlt(w) = t}. See Fig. 2 for the 
distribution function for the initial schedule frame of the 
example in Fig. 1. 

Next we define a cost function for schedule frames, similar 
to the approximate-cost function for schedules, by 

J(6) = a ( t )  N ( 6 ,  t ,  c y .  
t€T  CEM 

Note that if q ( w )  = a,(w) = o(v),  for all w E V, then 
N ( 6 ,  t ,  c )  = N ( a ,  t ,  c ) ,  and thus f ( 0 )  = f”(a). So we want 
to find a schedule frame 6 which minimizes f (6) ,  under the 
constraint al(v) = a,(v) for all U E V. 

Now, the iterative approach is defined as follows. First, 
a schedule frame 6 is initialized by initializing 01 to the 
ASAP schedule and a, to the ALAP schedule. Next, in each 
iteration a neighborhood N(6)  5 9’ is searched for the best 
neighboring solution. A neighborhood h/(O) of a schedule 
frame 6 consists of solutions 7 = ( 7 - 1 , ~ ~ )  that can be obtained 
by scheduling an operation v with a~(w) < a,(.) in a clock 
cycle c E [ ~ ( I J ) ,  a,(w)], and updating the time frames of the 
other operations. See Fig. 3 for an example of the effect of 
scheduling operation 7 in clock cycle 4 in the example of 
Fig. 1. The assignment of an operation U to a clock cycle c 
is chosen such that a neighboring schedule frame 7 E N(6)  
is obtained, for which 

Af(c?,?) = J(?) - f(6) 
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9 +  l2.51 
8 0  11.41 

' 1 ' 2 ' 3 ' 4 ' 5 ' clockcycle 

C 

1 0  

0 0  C 
1 2 3 4 5  

Fig. 3. 
frames and on the distribution function. 

The effect of scheduling operation 7 in clock cycle 4 on the time 

is minimal. Iterations are repeated until a feasible schedule is 
obtained. 

This iterative approach is identical to basic force-directed 
scheduling as defined by Paulin and Knight except that in 
their approach the assignment of operation v to clock cycle 
c is chosen for which a so-called force F ( v ,  c) is minimal, 
instead of Af". The definition of F(v , c )  is given in Section 
111-D. The difference is only minor. Indeed, if we define 

AN(6,?,  t ,  a )  = N(?, t ,  a )  - N ( 6 ,  t ,  a ) ,  

for all t E T and a E M, then we obtain 

Af(6,7)  = a ( t )  [ ( N ( 6 ,  t ,  a )  
tET aEM 

+ AN(6,?,  t ,  u ) ) ~  - N(6, t ,  u ) ~ ]  

= a ( t )  (2N(6,  t ,  a )  
tET aEM 

+ Afi(6 ,  ?, t ,  u))AN(6, ?, t ,  a ) .  

Hence, 

iAf (6 ,  ?) = d ( t )  #(el t ,  a ) A N ( 6 ,  ?, t ,  a )  
t € T  aEM 

+ x a ( t )  i ( A * ( 6 , 7 , t , ~ ) ) ~ .  (7) 
t € T  aEM 

As we show in the following sections, the first term in this 
equation is equal to F(v , c )  and the second term strongly 
resembles the look-ahead introduced by Paulin and Knight, 
as a modification of the first term. 

D. Springs and Forces 

For the selection of the assignment of an operation v to a 
clock cycle c ,  Paulin and Knight introduced a force F(w,c) 
in the following way. Consider a schedule frame 5 and the 
schedule frame f E N(6)  that is obtained by scheduling 
operation v in clock cycle c. The changes in the probabilities 
P(6,  U !  a) of all operations U E V are determined as 

AP(6,  ?, U ,  U )  = P(?, U ,  a )  - P ( 6 ,  U ,  U ) .  

Then a self force, a successor force, and a predecessor force are 
determined, which are added to yield the total force, given by 

F(w, c )  = AP(c7, ?, U ,  a )  N ( 6 ,  t (u) ,  a )  a ( t (u) )  
uEV aEM 

= C a ( t )  AP(6,?,u,a) N(.,t,a) 
t € T  aEM u ~ V ( t )  

= a( t )  C A f i ( 6 ,  f ,  t ,  a )  N ( 6 !  t ,  a),  (8) 
t € T  aEM 

which is equal to the first term in (7). The total force can 
be seen as a sum of forces needed to stretch a number of 
springs, each with a spring constant a(&, t (u) ,  a) a ( t ( u ) ) ,  by 
an amount AP(6,  ?, U, a ) .  

E. bok-Ahead 

To improve the effectiveness of the force-directed schedul- 
ing algorithm, Paulin and Knight [21] proposed a look-ahead 
scheme. The idea is to replace the value of &(til t (u) ,  a) in (8) 
by a value somewhere between the current one and the value 
that would be obtained after the current iteration. They then 
propose to replace it by N ( 6 ,  t(u), a) + vAP(C, 7,  U ,  a), but 
according to the idea, one should replace it by N ( 8 ,  t (u) ,  a) + 
vAfi(5,  ?, t (u) ,  a). This gives an additional term to the total 
force in (S), which is equal to 

AP(6,  ?, U ,  a )  vAN(6, ?,t(u),  a )  a ( t (u ) )  
uEV aEM 

= a( t )  AP(6 ,  ?, U ,  U) vAN(6, ?, t ,  a )  
t € T  aEM u € V ( t )  

= Ca(t) 9 (AN(6,?, t ,a))2.  
tET aEM 

If 7 = i, the additional term is exactly equal to the second 
term in (7). 

F. The Algorithm 

summarized as follows. 
The basic force-directed scheduling algorithm can now be 

Basic force-directed scheduling 
Step 1 Initialize time frames to ASAP and ALAP 

schedules. 
Step 2 Calculate the distribution function. 
Step 3 For each operation v that is not scheduled yet, 

and each clock cycle c E [ q ( v ) ,  ( T , , ( w ) ] ,  

calculate Af"(6, ?), where ? E N(6)  is the 
feasible schedule frame obtained from 8 
by scheduling operation v in clock cycle c. 

Step 4 Schedule that operation v in that clock cycle c 
for which Af"(6,?) is minimal; i.e., assign 

Step 5 Update time frames of predecessors and 
successors of U. 

Step 6 Update the distribution function. 
Step 7 If not all operations are scheduled, return to 

Step 3. 

Here we say that an operation 

q ( v )  = au(w) = c. 

is scheduled if and only if 
g1('U) = au(v>. 
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G. Time Complexity 
The worst-case time complexity of the basic force-directed 

scheduling algorithm is 0(mZn3), when implemented in a 
straightforward way, where m is the length of the makespan, 1 
is the maximum length of the initial time frame of any of the 
operations, and n is the number of operations. This complexity 
can be derived as follows. 

In each iteration at least one operation is scheduled. As 
a side effect of scheduling an operation, successor or 
predecessor operations may be scheduled too, so at most 
n iterations are needed. 
In each iteration, there are at most n operations that still 
must be scheduled. 
For each of these operations there are at most 1 clock 
cycles in which it can be scheduled. 
For each tentative scheduling of an operation in a clock 
cycle, the probabilities of O(n)  operations may change 
and there are m clock cycles where they may change, so 
calculating Af takes 0(mn) steps. 

We return to the time complexity in Section VI. 

IV. APPLICATION IN HIGH-THROUGHPUT DSP 
In this section we discuss how we can apply force-directed 

scheduling to the high-throughput DSP scheduling problem. 
First, we discuss how to handle the precedence constraints, 
next we discuss the distribution function, and finally we 
discuss the impact of these modifications on the algorithm’s 
time complexity. 

A. Precedence Constraints 

In high-throughput DSP scheduling, precedence constraints 
are due to the fact that variables must be produced before 
they are-consumed. In (2) this is formulated in terms of the 
clock cycles in which variables are produced and consumed 
at operation ports. In terms of the clock cycles in which 
operations are scheduled, these constraints are given by 

~ e = ( ( U , O ) , ( U , i ) ) € E :  

.(U) + ~ ( t ( u ) ,  0) < a(v)  + ~ ( t ( w ) ,  i )  + d(e)F.  (9) 

On the given node set V, we now define an arc set A C V x V 
as 

A = { ( U , w ) P o , i :  ( (u ,o ) ,  (.,i)) E E ) ,  

and we define weights w(a) for arcs a = ( U ,  w) E A as 

w(a)  = max{r(t(u): 0) - ~ ( t ( w ) ,  i )  - d(e)F + l ( e  

= ( ( U ,  0)) (U, 2)) E E ) .  

v(u,v)EA:  4.1 - 4.) 2 w((u, U)). 

Now (9) is equivalent to 

(10) 

In this way we get a weighted, directed graph H = (V, A) ,  
which we call a precedence graph. In general, weights may be 
negative, and H may contain cycles. However, if H contains a 
cycle for which the sum of the arc weights is positive, then no 
schedule c exists for which (10) holds, and hence no feasible 
schedule exists. 

B. Distribution Functions 

Similar to the requirement function, we determine the 
distribution function No(C?,t,c) for all t E T* considering 
only execution zero of the signal flow graph, and with that 
function we determine the distribution function 

R(6, t ,  c)  = 1 No@, t ,  c + IcF). 
LE2 

Note that similar to the requirement function, also the distri- 
bution function N is periodic with a period F. Therefore it is 
sufficient to determine it for one period, [O, F -  11, and compute 
the A i  criterion only over the clock cycles in [0, F - 11. 

We next have to determine the distribution function for pro- 
cessing units, for variable lifetimes, and for memory accesses. 
Once obtained, the application of force-directed scheduling 
to the high-throughput DSP scheduling problem is straight- 
forward. Before we ’discuss the distribution function in more 
detail, we mention that the first demand posed on it is that it 
should be equal to the requirement function if all operations 
are scheduled. 

1)  Distribution functions for processing units: The dis- 
tribution function for processing unit types is similar to 
the one used in basic force-directed scheduling in Section 
111, with the exception that now an operation can occupy a 
processing unit for more than one clock cycle. This is one of 
the refinements that were also presented by Paulin and Knight 
[21]. The probability that operation w occupies a processing 
unit in clock cycle c is given by 

The distribution function for processing units is then given by 

No(6, t ,  c )  = P(6,  21, e) .  
V € T ( t )  

2) Distribution functions for variable lifetimes: In this sec- 
tion we determine the probability that a variable is alive in 
a clock cycle. The probability function presented by Paulin 
and Knight [21] is very rough, and leads to a very inaccu- 
rate distribution. For instance, for an inverse discrete cosine 
transformation application (IDCT, see Fig. 1 l ) ,  the maximum 
number of variables at the beginning of the scheduling al- 
gorithm was estimated at 275, whereas after scheduling the 
eventual maximum number of variables was 19. This is too 
inaccurate to make good quantitative trade-offs. With the 
probability function described below, the initial maximum 
number of variables is about 20, and the eventual number is 17. 

This more refined probability function is derived as follows. 
As already mentioned, we denote a variable by the operation 
output port at which it is.produced. First, we determine in 
which clock cycles variable p = (u ,o )  E 0’ may begin to 
live, and in which ones it may end living. 

The earliest possible clock cycles for the beginning and 
the end of a variable’s lifetime are determined by the earliest 
possible schedule, 01, and the latest ones are determined by 
the schedule uu. The earliest possible clock cycle in which 
variable p can begin to live, is bl (p)  = CTI(U)  + T ( ~ ( u ) ,  0) + 1, 
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and the latest possible clock cycle in which it can begin to live, 
is b,(p) = nu(.) + r( t (u) ,  0) + 1. Note that a variable begins 
to live one clock cycle after it is produced, as discussed in 
Section 11. 

Given a schedule G, then variable p = ( U ,  0) is consumed at 
operation input port q = (U, i), with ( p ,  q )  E E ,  in clock cycle 
a(v) + r ( t ( v ) ,  i )  + d ( ( p ,  q ) ) F .  Considering all consumptions, 
variable p ends living in clock cycle max{a(v) + r(t(w), i) + 
d(e)Fle = ((u,o),(v,i)) E E } .  So, for the end of variable 
p’s lifetime, the earliest possible clock cycle is given by 

If we assume uniform probability for all clock cycles in this 
interval, then the probability that a write action occurs in clock 
cycle c is given by 

l l ( . w u ( P )  - W d P )  + 1)  
if c E [Wl(P>,  WU(P)l, { 0 otherwise. 

P w ( 6 , p , c )  = 

’ - k ~ d  actions only take Place at operation input Ports in 
I’ = ( 4  E 113~~0:  h q )  E E ) ,  i.e., at operation input 
ports that are connected to operation output ports. Note that 
each port q E I’ is connected to exactly one p E 0. 
For port q = (w,i) E I’, a read action of the variable e l (p)  = max{crl(w) + r(t(w),i) + d(e)Fle  

I The latest possible clock cycle is given by 

eu(p) = max{a,(w) + r(t(w),i) + d(e)Fle  

= ( ( U ,  o), (U, i ) )  E E ) .  

Now eventually, when all operations are scheduled, variable 
p begins to live in a clock cycle b and ends living in a clock 
cycle e for which h(p)  I b I bu(p),el(p) I e I eU(p), 
and 6 5 e. So, its lifetime can be represented by a pair 
( b , e )  E L ( p ) ,  where 

L(P) = { ( b ,  e)lh(p) I b I bIl(p) A e1(p) I e 
F eu(p) A b I e ) .  

If we now assume that all pairs ( b ,  e )  E L ( p )  occur with equal 
probability in the eventual schedule, then the probability that 
variable p is alive in clock cycle c is given by 

I 

I 
If b, , (p) . I  el(p), then this function is piecewise linear. If 
bu(p) > el(p), the function is quadratic, but since a piecewise 
linear function has some computational advantages, we replace 
it by a piecewise linear approximation. For more detail, we 
refer to [28]. 

The distribution function for variable lifetimes is now given 

pEO‘ 

3) Access distribution functions: For memory accesses we 
again have to consider only variables in 0’. Let p = (U. o) E 
0’ be such a variable. A memory access for this variable 
occurs in a clock cycle c if and only if a write or a read action 
for this variable takes place in clock cycle c ;  simultaneous 
actions for one variable result in only one access. We first 
determine the probabilities of these actions. 

The write action for variable p takes place in a clock cycle 
in [ W [ ( p ) .  w , ( p ) ] .  where 

’ 

I 

w(p) = du) + T ( t ( U ) ,  0) = h ( p )  - 1 

and 

= au(u) + r ( t (u) ,  0) = bu(p)  - 1 

p with e = ( p , q )  E E takes place in a clock cycle in 

ru(q) = nu(w) + r(t(w),i)  + d(e)F. If we again assume 
uniform probability for all clock cycles in this interval, then 
the probability that a read action at operation input port q 
occurs in clock cycle c ,  is given by 

[n(q) , r , (q) l ,  where v ( q )  = m ( v )  + r ( t ( v ) , i )  + 4 e ) F  and 

Now the probability that a memory access for variable p occurs 
in clock cycle c is equal to the probability that a write or a 
read action occurs. If we assume that these actions are mutually 
independent, then the memory access probability is given by 

p a ( c , p ,  c) = 1 - (1 - p w ( 6 , ~ ,  c)) . n (1  - pr(6, q ,  e)). 
9: (P&)EE 

Given the memory access probability function, the memory 
access distribution function is given by 

No(6,ta, C )  = p a ( a , p , c ) .  
PEO’ 

C. The Algorithm for HTDS 

The force-directed scheduling algorithm for high-throughput 
DSP scheduling can now be derived straightforwardly. The 
outline of the algorithm is the same as for the basic force- 
directed scheduling algorithm, discussed in Section 111-F. 
However, the ASAP and ALAP schedules, and the neighbor- 
hood N(8)  are now based on the new precedence constraints. 
Furthermore, the A i  criterion is now given by 

A!(*,?) = a ( t )  ( 2 N ( 6 , t , c )  
t€T* c€[O,F-l] 

+ A N ( S , ? , t , c ) )  A N ( C , ? , t , c ) ,  (12) 
where 

AN(C?,? , t , c )  = N(?, t , c )  - N ( + , t , c ) ,  (13) 

for all resource types t E T* and clock cycles c E [0, F - 11. 

D. Time Complexity Revisited 

The worst-case time complexity of the algorithm when 
applied to the high-throughput DSP scheduling problem, is 
O(FZn3), compared to O(mZn3) for the basic algorithm; 
see Section 111-G. Here, n is the number of operations, Z is 
the maximum length of the initial time frame of any of the 
operations, and F is the algorithm period. The difference stems 
from the calculation of A N .  
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In the basic algorithm, a tentative assignment of an operation 
to a clock cycle may change the probability functions of 
O(n) operations, and they may change in m clock cycles, 
so calculating A N  takes O(mn) steps. In the algorithm 
for the high-throughput DSP scheduling problem, a tentative 
assignment of an operation to a clock cycle may change the 
time frames of O(n) operations, and thus O(n)  probability 
functions for processing units, variable lifetimes, and memory 
accesses may change. So, p(n )  operations and variables 
contribute to AN,. Next, AN has to be computed over one 
period [O,F - 11, which is given by 

- 

AN(6,7,  t ,  C )  = ANo(6,?, t ,  c + k F ) ,  
k€Z 

and since the probability functions are piecewise linear, this 
can be done in a total of O(Fn)  steps. 

V. EFFECTIVENESS IMPROVEMENTS 

In this section we discuss two modifications of the algorithm 
that on the average increase the quality of the solutions without 
changing its worst-case time complexity. These modifications 
are the use of global spring constants and gradual time-jrame 
reduction. 

A. Global Spring Constants 

Consider the Afl criterion of (12) again as a sum of forces 
needed for displacements AN(6, ?, t ,  c )  of springs with spring 
constants u(t)(fi(6,t, c)  + $AN(6 ,? , t1  c ) ) .  The factor a( t )  
weighs the contribution of the different types of resources. 

Now, the situation can occur that a neighbor 7 E hi(6) 
results in a decrease of-NT(6, t l  , c1) for some value of c1 with 
N ( 6 ,  t l ,  c1) << m a ,  N ( 6 ,  t l ,  c ) ,  at the expense of an increase 
of N ( 6 , t z , c z )  for some value of cz with N ( 6 , t z , c z )  M 
max, N(6, t z .  c ) ,  as is shown in Fig. 4. This neighbor is 
undesirable, since we want to minimize 

but negative contributions to Af” of rescurce type tl might 
compensate positive contributions to Af of type t 2 ,  which 
might lead to an acceptance of such a neighbor. To prevent 
this, spring constants should be smaller if the distribution 
function of a resource type is far from its maximum value, 
and larger if it is close to it. 

Furthermore, there is a second unwanted effect of using the 
Afl criterion. If we double the area cost a(t) of a certain 
resource type, then the contribution of that type to Af is 
also doubled. However, if we double the distribution function 
of resource type t ,  which also leads to twice as much area 
for that type of resource, then this leads to a four times 
larger contribution to AS. This is a direct consequence of 
the approximate-cost function of (4). So we should change the 
Af criterion in such a way that it is linear in the distribution 
function, in order to get a better trade-off between a large 
number of low-cost resources and a small number of high-cost 
ones. 

max 

C 

1.0 

0.0 C 
1 2 3 4 

Fig. 4. 
to a large negative A f. 

The effect of _an unfavorable neighbor which may be selected due 

To overcome these two unwanted effects we propose the 
following. First, new spring constants are introduced, given by 

S(6,  ?, t ,  C) = ( N ( 6 ,  t , c )  + qAN(6 ,7 , t ,  c)) 

9 (14) 
C ) =  * (  N(C, t ,  c )  + qAfi(6,7,  t ,  c)  

max N ( 6 ,  t ,  c )  

where z is a positive number, and 77 is again a look-ahead 
factor. Experiments, not shown here, reveal that a good value 
for z is in the range 1,. . . , 5 ,  and that a good value for 77 
is i. The latter is in accordance with observations made by 
Paulin and Knight [21]. Next, for each resource type t E T*,  
a subforce is calculated, given by 

Fsub(6, ?, t )  = AN(5 ,  ?, t ,  c)S(6,?, t ,  c ) ,  
cE[O,F--l] 

and then a total force is calculated, given by 

F g s c ( @ ,  7 )  = u( t )  sign(Fsub(e-, f ,  t ) )  
t €T*  

. J I F s u b ( m t ) l ,  (15) 

where sign(z) = 1 if z > O ,  0 if z = 0, and -1  if z<O. 
In this way performing trade-offs is done more sensibly. Note 
that this change in spring constants and force function in fact 
means that we change the approximate-cost function. The extra 
work to be done in the algorithm is the determination of the 
maxima of the distribution function in each iteration. This 
however does not change the worst-case time complexity of 
the algorithm. 

B. Gradual fime-Frame Reduction 

The second modification we propose concerns a different 
iteration process for obtaining feasible schedules, which means 
that we define a new neighborhood structure hig. The aim is 
to reduce the time frames more gradually in order to obtain a 
less greedy behavior of the algorithm. Instead of reducing in 
each iteration the time frame [ q ( v ) ,  ou(w)] of an operation w 
to one clock cycle c,  which is  quite a large step, we reduce it 
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(b) 
Fig. 5. 
and in (b) the one with gradual time-frame reduction. 

Possible reductions of time frames in (a) the original iteration process 

by only one clock cycle at a time, i.e., to [ q ( w )  + 1, a,(w)] or 
to [a, ( U), ou (w) - 11. An example is given in Fig. 5. Generally, 
this leads to more iterations, but in an iteration there are 
now at most 2n neighbor schedules ? E Ng(6) that must 
be investigated. 

The criterion for selecting a neighbor solution is based on 
the forces F,,, of scheduling operations in the left-most clock 
cycle in their time frames, and in the right-most clock cycle 
in their time frames. Let Fleft(v) denote the force F,,, for 
scheduling operation w in clock cycle q ( w ) ,  and let Fright(w) 

denote the force F,,, for scheduling U in clock cycle a,(v). 
Now we first determine F,,,(v) = max{Fleft(w), 

Fright(w)}, which reflects the worst possible effect of 
scheduling operation w in the left-most or right-most clock 
cycle in its time frame. Next, we determine a quantity 
for the best possible effect of scheduling operation w 
somewhere in its time frame. This means that we have to 
determine the minimum F,,, of scheduling w in a clock cycle 
c E [al(w), a,(w)], but in order to save computation time, we 
estimate F,,, for the clock cycles c E [al(w) + 1, U,(.) - 11 
roughly to be 0. Thus, the best possible effect of scheduling 
operation ‘U somewhere in its time frame is reflected by 

I if a,(v) - al(v) > 1. 

Next, we determine Fgain(w) = Fmax(w)-Fmin(w) 2 0, which 
reflects the possible improvement by reducing the time frame 
of operation U. 

Now we choose operation w for which Fgain(w) is maximal 
and we reduce its time frame at the worst side, i.e., we reduce 
its time frame to [ol(w) + l,o,(w)] if F,,(w) = F~,fi(w), 
and to [al(w),o,(w) - 11 if Fm,,(w) = Fr ight (u) .  In case 
Fmax(v) = F l , ~ ( w )  = &ght(W), we make an arbitrary choice. 
Then the time frames and distribution function are updated, 
and the same procedure is repeated until (TI (w ) = o, (w ) for all 
‘U E V, which corresponds to a feasible schedule. 

In this way, the time frames of the operations are gradually 
reduced, and the distribution function gradually becomes a bet- 
ter estimate of the final requirement function. So, the definite 
scheduling of operations in clock cycles is postponed until 
later, when the distribution function is a better estimate. This 
modification makes the algorithm less greedy, and we may 
expect that the algorithm generally obtains better solutions. 

The worst-case time complexity of the algorithm remains 
C3(Fln3), which can be seen as follows. In each iteration at 
least one operation’s time frame is reduced by at least one 
clock cycle, leading to a maximum of In iterations. On the 
other hand, in each iteration only two instead of U(1) forces 
F,,, have to be calculated for each operation. 

VI. EFFICIENCY IMPROVEMENTS 
Since the time complexity of force-directed scheduling 

is rather large compared to other techniques such as list 
scheduling, which can be implemented to run in O(n2) or 
U ( n  log n)  time depending on the chosen priority rules, Paulin 
proposes an alternative method to compute the forces of (8) in 
the basic force-directed scheduling algorithm [20]. Roughly 
speaking, this is achieved by the following. First, in each 
iteration, calculate for each operation w E V and each clock 
cycle c E [m(w),a,(v)] 

the self force of scheduling w in clock cycle c; 
the contribution to other operation’s successor forces due 

the contribution to other operation’s predecessor forces 

Second, the precedence graph is traversed in a forward di- 
rection, in a breadth-first way, and for each operation the 
corresponding predecessor forces of its direct predecessors 
are added to its own predecessor forces. Third, the successor 
forces are added similarly by traversing the graph backwards. 
Finally, the total forces are calculated. For more detail, see 
[20]. In this way the time complexity of the basic force- 
directed scheduling algorithm is reduced from U (  mln3) to 
O(mln2). 

Unfortunately, this alternative method does not yield the 
original forces of (8) as was claimed by Paulin; it corresponds 
to a different set of forces, due to the fact that successor and 
predecessor forces are multiply counted in the case there are 
reconvergent paths in the graph. Furthermore, the approach 
cannot be applied to the following cases. 

For cyclic precedence graphs, it is not clear how to 
traverse them in a forward or backward direction. 
To determine forces in the case that the distribution 
function for variable lifetimes and/or memory accesses 
is used, in order to take memory cost into account, one 
must consider several operations simultaneously, namely 
the producing operation and all consuming operations 
of each variable. This leads to an increase of the time 
complexity, instead of a decrease. 
Look-ahead schemes different from the one proposed 
by Paulin and Knight may require the evaluation of all 
changes in the probabilities to calculate the forces. This 
also leads to an increase of the time complexity. 

The points given above have strengthened our belief that the 
approach falls short on several important points and therefore 
we developed a different way to reduce the time complexity. 
To this end, we first discuss some properties of the precedence 
constraints. Next, we present an incremental way of computing 

to a reduction of U ’ S  time frame to [c ,  o,(v)]; and 

due to a reduction of U ’ S  time frame to [al(v), c]. 
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the forces, and we show that the time complexity is reduced 
by a factor n. 

A. Precedence Constraints 

A basic step in the force-directed scheduling algorithm is 
the calculation of the effect of the change of an operation's 

. - time frame on the time frames of the other operations. This 
can be done either by traversing the precedence graph each 
time that an operation's time frame changes, or by means of 
all-pairs longest paths. The latter can be done as follows. 

For each pair of operations U ,  w E V, the maximum length 
m(u ,v )  of a path in the precedence graph from U to v is 
determined, in terms of the sum of the arc weights on the 
path, with m(u, U )  = -cc if no path from IL to v exists. Then 
(10) is equivalent to 

Vu,vEV: a(v) - ..(U) 2 m(u: U), 

and the precedence constraint for schedule frames is equivalent 
to 

Note that if the precedence graph contains cycles of positive 
length, then m(u,v)  is not properly defined, but in that case 
no feasible schedule exists. Furthermore, note that the all-pairs 
longest paths have to be determined only once. 

If we now have a feasible schedule frame 6 and we 
change the time frame of an operation U to [al/(u), ah(u)] 
[q(u) ;  a,(u)], then the time frame of an operation v becomes 
[+J), .:(.)I, where 

.;(U) = max{al(v), a[(u) + m(u, U)} and 

aL(v) = min{a,,(v),a:,(u) - m(v,u)} .  (16) 

So, the effect on the other operations' time frames is easy to 
determine. Furthermore, the effect of U on v is completely 
determined by m(u, v)  and m(v, U),  i.e., it is independent of 
the time frames of other operations. This characteristic is used 
in the next section. 

B. Distribution Function Differences 

Running the force-directed scheduling algorithm with grad- 
ual time-frame reduction for a number of examples shows that 
the average number of operations for which the time frames 
have changed in an iteration is rather low, i.e., typically less 
than two operations; see Fig. 16. This opens the possibility for 
further efficiency improvements by making use of incremental 
calculations. The amount of work to be done in one iteration 
is then substantially reduced if only a few operations are 
affected. On the other hand, if many operations are affected 
in an iteration, a large step has been made towards a final 
solution. So, if little progress has been made, little work has 
to be done, and if much progress has been made, the same 
amount of work has to be done as in the case where no use is 
made of incremental calculations. This results in a lower order 
worst-case time complexity, as we show in Section VI-D. 

' 0 1 1 ' 2 ' 3 ' 4 ' 5 ' 6 1 7 ' 8 ' 9 ~  ' 0 '1  ' 2 ' 3 1 4 ' 5 ' 6 ' 7 ' 8 ' 9 ' ~ c  
iteration; -1 iteration; 

Fig. 6. A precedence graph and the operations' time frames before and after 
scheduling operation b in clock cycle 5, in iterations j - 1 and j .  In iteration 
j - 1 only operation d's time frame is changed, from [3, 81 to [3, 71. So, only 
the effect on this operation is different. 

Let the schedule frame C ( j )  and the time frames 
[ a ~ ( v , j ) ,  au(w,j)] be functions of the iteration number 
j ,  and let for an iteration j ,  C ( j )  be the subset of operations 
for which the time frames have changed in the previous 
iteration, so 

C ( j )  = {U E vlf l l (v , j )  # U l ( W , j  - 1)v 
a u ( v , j )  # O " ( V , j  - 1)). 

Now, for each operation 'U E V and for clock cycles 
c = a l ( v , j )  and c = a u ( v , j ) ,  we want to determine 
Fgsc(6(j),?(j)) of (15), where ? ( j )  is the schedule frame 
obtained from 6 ( j )  by scheduling operation U in clock cycle 
c. For this, we distinguish between two ways of computing 

If 'U E C ( j ) ,  then the effect on other operations' time frames 
due to scheduling operation v in clock cycle c is most likely 
different from the effect in the previous iteration. Therefore, 
we just compute AN as given by (13), i.e., 

Afi(.(j), w, 4 a). 

A f i ( e ( j ) , ? ( j ) , t , a )  = N ( ? ( j ) , t , a )  - fi(C(j),t,u). (17) 

If w $ C ( j ) ,  then the time frame of v in iteration j equals 
the one in iteration j - 1, and scheduling operation 'U in clock 
cycle c is already attempted in iteration j - 1. If we now want 
to determine the effect on other time frames, by means of (16), 
then we see that for operations U $ C ( j )  this effect is the same 
as in the previous iteration. Only for operations U E C ( j )  the 
effect may be different. For an example, see Fig. 6. There we 
have six operations, of which only one time frame has changed 
in iteration j - 1, namely of operation d, i.e., C ( j )  = { d } .  
In the figure the effect is shown of scheduling operation b in 
clock cycle 5 ,  for iteration j - 1 and j .  Only the effect on 
operation d ' s  time frame is different; for the other operations 
the effect in iteration j is the same as in iteration j - 1. 

As a consequence, only the operations in C ( j )  have a 
contribution to the changes in processing unit distribution 
function AN that differs from the one in the previous iteration, 
and only for variables produced or consumed by operations in 
C ( j )  new contributions have to be calculated to the changes 
in the distribution function for variable lifetimes and memory 
accesses. So, if we define for the operations 

AP(5 ,? ,  U ,  a )  = P(?, U,  CL) - P(6,  u,u), 
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then for t E T the changes in the processing unit distribution 
function can be written as 

A f i W ) ,  w, t ,  a )  

= 1 CAP(cr ( j ) , ? ( j ) , u ,a+ICF)  
uEV(t) k € Z  

+ AN(i?(j  - l ) ,  ?( j  - l), t ,  a )  
- A P ( 6 ( j  - l ) , ? ( j  - l), U, a + k F )  

u ~ V ( t )  k € Z  

= A N ( & ( j  - I), ?( j  - I), t ,  a )  

- A P ( 6 ( j  - l),?(j - l ) , u , a + k F ) ] .  (18) 

Similarly, the changes in the distribution function for variable 
lifetimes and memory access_es can be computed incrementally 
[28]. Now, computing A N  incrementally is restricted to 
computing the changes in the probability functions of the 
operations and variables that have been affected in the previous 
iteration. So, if only a few operations have been affected, the 
gain in computational effort is substantial. 

C. Improved Force-Directed Scheduling 

can now be written as follows. 
The improved force-directed scheduling (IFDS) algorithm 

Improved force-directed scheduling 
Step 1 Initialize time frames to ASAP and ALAP 

Step 2 Calculate N ( 6 ,  t ,  s). 
Step 3.For each operation v which is not scheduled yet, 

schedules. 

and for c = (TI ( U )  and c = (T, ( U ) ,  calculate 
AN(&, ?, t ,  a), where 7 is the schedule frame 
obtained from 6 by scheduling 'U in clock cycle c. 
Do this by 
0 calculating A N  from scratch if is affected in 

the previous iteration or if this is the first 
iteration, and 

0 otherwise, calculate A N  incrementally, using 
the stored A N  from the previous iteration. 

Step 4 Store AN(6 ,  ?, t ,  s) and compute Fgsc(6, ?). 
Step 5 Take operation v for which Fgain(v) is maximal, 

and reduce its time frame to [(TI(ZI) + 1, a,(w)] 
if FmaX(v) = Fl,ft(v), and to [ ~ I ( u ) ,  uu(v) - 11 
otherwise. 

Step 6 Update time frames of the operations and detect 
which operations and which variables are 
affected. 

Step 7 Update N ( 6 ,  t ,  s). 
Step 8 If not all operations are scheduled, return to 

Step 3. 

Note that at most 2n functions A N  over domain T* x [0, F -  11 
have to be stored, since the gradual time-frame reduction 
requires only two forces per operation to be calculated. 

D. Erne Complexity of IFDS 
The worst-case time complexity of the improved algorithm 

is O(Fln2),  where n is the number of operations, 1 is the 
maximum length of an operation's initial time frame, and F 
is the algorithm period. This can be shown as follows. 

The amount of work for determining A N  is as follows. 
a) In the first iteration A N  is determined according to 

(17), for all 'U E V and c = q ( v )  and c = uU(v). 
Calculating (17) takes O(Fn)  steps, resulting in a 
total number of calculations for this step given by 
O(Fn2).  

b) If in an iteration the total slack, i.e., the sum of the 
lengths of the operations' time frames, is reduced by 
k, then at most IC operations are affected, and thus 
determining A N  in the next iteration takes O(ICFn) 
steps, since for O ( k )  operations we use (17) which 
takes O(Fn)  steps, and for O(n) operations we use 
(18) which takes O(ICF) steps. 

c) The total slack is O(ln),  so the total number of steps 
to determine Af i  in the iterations after the first one 
is O(Fln2).  

The amount of work for determining the forces is as 

a) In each iteration two forces have to be determined for 
O(n) operations, which is a sum of O ( F )  products, 
so per iteration this requires O(Fn)  steps. 

b) The total slack is O(ln) and in each iteration the 
slack is decreased, so there are O(Zn) iterations. 
Therefore, the total amount of work to determine 
d l  forces is O(Fln2) .  

The amount of work for updating the distribution function 

a) If in an iteration the total slack of the operations is 
reduced by I C ,  then at most IC operations are affected, 
and thus O(k)  operations and O ( k )  variables have 
contributions to the A N  function. These have to be 
determined for O ( F )  clock cycles, so updating N 
takes O(ICF) steps. 

b) The total slack is O(ln),  so the total amount of work 
to update the distribution function is O(F1n). 

Note that the worst-case time complexity of the improved 
algorithm is not only determined by the calculation of the 
changes in the distribution function, but also by the calculation 
of the forces. 

follows. 

is as follows. 

VII. EXPERIMENTAL RESULTS 
In this section we discuss some experimental results to 

illustrate the significance of the effectiveness and efficiency 
improvements. For comparison to related work on force- 
directed scheduling [l], [21], [22] we note that the latter 
approaches are comparable to the basic algorithm given in 
Section 111, although they may contain extensions. Therefore, 
the improvements presented here may also be achieved when 
applying our ideas to those approaches. 
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Fig. 7. An optimal schedule for the fifth-order digital elliptical wave filter 
for a makespan of 17 clock cycles, which uses 3 multipliers and 3 adders. 
A11 edges have a weight d(e) = 0.  

t cost 

" % # @ %  g q i  g g @  g z g g  
m =  17 m =  18 m =  19 m = 2 1  

Fig. 8. Adder and multiplier allocations for the filter example for the four 
algorithms and for different makespans, in case of nonpipelined multipliers. 

A.  Effectiveness Improvements 

We illustrate the effectiveness improvements by means of 
four algorithms: the basic algorithm given in Section I11 (FDS), 
the algorithm with gradual time-frame reduction (GTFR), 
the algorithm with global spring constants (GSC), and the 
algorithm with both modifications (IFDS). In all algorithms 
we use 7 = $, i.e., in the Af" criterion in FDS and GTFR 
we replace the factor 4 for A N  by 4. Furthermore, we take 
z = 3 for the global spring constants in GSC and IFDS. 

The effectiveness improvements are shown by means of 
three examples. The first example is the notorious fifth-order 
digital elliptical wave filter from Dewilde, Deprettere, and 
Nouta [3]. A graphical representation of this example is 
given in Fig. 7. The graph is scheduled without overlapping 
executions in a makespan of m clock cycles, where we have 
taken several values of m. For this example we minimize the 
number of functional units, by taking a(+) = a(*) = 1.0. 
The retiming of all ports equals 0, except for the output ports 
of the multipliers, which have retiming 1. The restart time of 
an addition s(+) = 1. The restart time of a multiplication is 
s(*) = 2 in case of a nonpipelined multiplier, and s ( * )  = 1 
in case of a pipelined multiplier. 

Fig. 8 shows the results for nonpipelined multipliers, and 
Fig. 9 shows the results in case of pipelined multipliers. 
Running times vary between 3 and 34 seconds on an Apollo 
HP 425t. All algorithms find optimal solutions in all cases, 
except FDS and GTFR for nonpipelined multipliers and a 
makespan equal to 18. 

For the filter example, the graph shown in Fig. 7 is repeat- 
edly executed. For this purpose the original graph was cut at 
iteration boundaries in order to get a graph without cycles. 

f 

m= 17 m =  18 m =  19 

Fig. 9. Adder and multiplier allocations for the filter example with pipelined 
multipliers, for different makespans. 

Fig. 10. The original graph of the fifth-order digital elliptical wave filter, 
optimally scheduled in a span [0, 321 and an algorithm period F = 16. The 
backward edges have weight 1, the others have weight 0. 

TABLE I 
SCHEDULING AND ASSIGNMENT FOR THE FIFTH-ORDER 

DIGITAL ELLIpnCAL WAVE FILTER, FOR AN ALGoRrnUl 
PERIOD OF 17 CLCCK CYCLES AND PIPELINED MULTIPLIERS 

IFDS SAM S A M  HAL 
adders 2 3 3 3  
multipliers 1 2 2 2 
registers 12 12 14 12 
mun inputs 26 31 28 31 
conncctions 44 so 49 - 

However, since we can handle cycles as well, it is better to 
start with the original graph, shown in Fig. 10. For this graph it 
is possible to find a feasible schedule for an algorithm period 
equal to 16. 

For comparison to other work, we have scheduled the cyclic 
graph with IFDS, with an algorithm period of 17 clock cycles, 
and with pipelined multipliers. After this, we have manually 
assigned operators and registers. The results are compared 
to the results on the acyclic graph reported by Cloutier and 
Thomas (SAM) [l]  and Paulin and Knight (HAL) [22]; see 
Table I. As we can see, IFDS not only results in a solution 
with less adders and multipliers, but also with less interconnect 
costs. 

The second example we use is an inverse discrete cosine 
transform (IDCT) [30], shown in Fig. 11. There are 30 ad- 
ditions/subtractions with restart time 1 and retiming 0 for all 
ports, and there are 16 multiplications with restart time 1, 
and retiming 0 for the input port and 1 for the output port. 
The cost of an adderhubtracter equals 2.5 and the cost of 
a multiplier equals 4.0. The input operations i l ,  22, . . , i 8  
are executed in clock cycles 0,2 ,  . . .  ,14, respectively, and 
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22.5 - 
20.0 - 
17.5 - 
15.0 - 
12.5 - 
10.0 - 
1.5 - 
5.0 - 
2.5 - 
0.0 

0 ad&non/subtracnon 0 muluplicanon 

Fig 1 1  
weight 0 

Graphical representation of the IDCT algonthm. All edges have 

2 

25.0 

v: variables 
m: multiplier 
a: adder/subtracter 

(a) (b) 

Fig. I? .  
variable lifetime?. 

Results for the IDCT example (a) without and (b) with costs for 

the output operations 0 1 ~ 0 2 ,  . . . ~ 08 are executed in clock 
cycles 24.26.. . . ,38. respectively. Furthermore, the algorithm 
period F = 16. The results of the four algorithms are 
shown in Fig. 12, for the case that only adders/subtracters 
and multipliers are taken into account (Fig. 12(a)), and for the 
case that also variable lifetimes are taken into account with 
cost n(t,,) = 0.2 (Fig. 12(b)). The figure clearly shows the 
improvements due to global spring constants, which allow a 
better trade-off between a large number of low-cost resources 
and a small number of high-cost ones. In the case of costs for 
variable lifetimes, FDS produces a solution that is over twice 
as expensive as the solution produced by IFDS. 

The third example we use is more elaborate. Its graphical 
representation is given in Fig. 13. We have input and output 
nodes and four different types of processing units, denoted 
by A.B ,C ,  and D. The processing units have restart times 
s (A)  = 2 .  s ( B )  = 2, s(C) = 1, and s ( D )  = 3. and area 
costs a(A)  = 3.0, a(B)  = 2.5 .  a ( C )  = 1.3. and a ( D )  = 2.8. 
Input and output nodes have costs 0.0. Furthermore, costs 
of variables are a( tv)  = 0.8 and costs of memory accesses 
are a(t ,)  = 1.0. Initially, the input and output nodes are 

Fig. 13. 
in 30 clock cycles. All edges have weight 0. 

Graphical representation of the more elaborate example. scheduled 

cost m . s  K 

Fig. 14. Results for the more elaborate example. 

Fig. 15. 
weight 0 

Graphical representation of the SEQ example. All edges ha\ 

fixed to the clock cycles indicated in the figure, and the other 
operations have spans [-CO> fm]. The results obtained by 
applying the four algorithms to this example are shown in 
Fig. 14. For this example a total cost of 19.4 is the best result 
ever found. FDS produces a solution with a cost more than 
35% larger than this value. 

B. EfJiciency Improvements 

In this section we give some experimental results to illus- 
trate the running time reductions obtained by the incremental 
computation of the changes in distribution function of Section 
VI. We do this by means of three examples: the fifth-order 
digital elliptical wave filter (FILTER) and the IDCT example 
of the previous section, and a theoretical example (SEQ). This 
last example consists of a sequence of 53 operations, shown 
in Fig. 15. The input and output ports of these operations 
have retiming 0, and the restart time of the operations is 1. In 
contrast to the IDCT, which allows parallelism in the execution 
of operations, this example only allows sequential execution 
of the operations involved. 

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore.  Restrictions apply. 



VERHAEGH et al.: IMPROVED FORCE-DIRECTED SCHEDULING IN DIGITAL SIGNAL PROCESSING 959 

879 
91 

425 n 

-totaJlunNngtime 
- A N  
- m t  

t i 6  t i t i  
.5 .5 .Ei .B 

6 t i  .s B 
I e 3 E 

(1.11) (1.23) (1.06) 

W FILTER SEQ 

Fig. 16. Running times in seconds for the three examples. The numbers 
between brackets give the average number of affected operations per iteration. 

We applied IFDS to these examples, with and without 
incremental computation of AG. We only considered costs of 
processing units, i.e., no costs for variable lifetimes or memory 
accesses are taken into account. The algorithms found optimal 
solutions, and the running times required are shown as bars in 
Fig. 16. For each example, the left bar gives the running time 
without incremental computation, and the right bar gives the 
running time with incremental computation. The total running 
time is split into two parts. The first one is the time needed 
to calculate Afi ,  and the second part is the time needed to 
do all the remaining calculations. As we can see, the running 
times for determining the changes in the distribution function 
is drastically reduced for all examples. 

VIII. CONCLUSION 

In this paper we have discussed the technique of force- 
directed scheduling. We have given a mathematical justifi- 
cation of the basic force-directed scheduling algorithm as 
introduced by Paulin and Knight [19]-[21], and we proposed 
modifications to improve the effectiveness and the efficiency of 
the algorithm. The effectiveness improvements are achieved by 
using global spring constants, which ensures that trade-offs are 
done better, and gradual time-frame reduction, which makes 
the algorithm less greedy. The efficiency improvements are 
achieved by an incremental method to calculate the changes in 
the distribution function, which reduces the time complexity 
of the algorithm from cubic in the number of operations to 
quadratic. The effectiveness and efficiency improvements have 
been illustrated by an empirical performance analysis based 
on a number of problem instances. We have shown that the 
improvements obtained are substantial. 

Furthermore, we have shown the application of force- 
directed scheduling to the high-throughput scheduling prob- 
lem, which occurs in the design methodology PHIDEO. Since 
this problem is NP-hard and since practical instances are 
too large to be solved exhaustively, we decided to use an 
approximation algorithm. For this, we have chosen force- 
directed scheduling because of the following advantages. First, 

force-directed scheduling is a technique that is able to make 
a trade-off between processing units and memory. This is 
important if memory constitutes a significant part of a design. 
Second, force-directed scheduling can be used for pipelined 
scheduling and for cyclic signal flow graphs, which are charac- 
teristic for DSP applications. Third, force-directed scheduling 
finds high-quality solutions. The time complexity of force- 
directed scheduling is rather high, but with the presented 
improvements the algorithm has practical running times for 
signal flow graphs with a number of operations in the order 
of magnitude of 100. 

REFERENCES 

R. J. Cloutier and D. E. Thomas, “The combination of scheduling, 
allocation, and mapping in a single algorithm,” Carnegie Mellon Univ., 
Pittsburgh, PA, Res. Rep. CMUCAD-90-17, May 1990. 
H. De Man, F. Catthoor, G. Goossens, J. Vanhoof, J. van Meerbergen, 
and J. Huisken, “Architecture-driven techniques for VLSI implemen- 
tation of DSP algorithms,” Proc. IEEE, vol. 78, no. 2, pp. 319-335, 
1990. 
P. Dewilde, E. Deprettere, and R. Nouta, “Parallel and pipelined VLSI 
implementation of signal processing algorithms,” V U 1  and Modem 
Signal Processing, S. Y .  Kung, H. J. Whitehouse, and T. Kailath, a s .  
Englewood Cliffs, NJ: Prentice-Hall, 1985, pp. 258-264. 
M. R. Garey and D. S. Johnson, Computers and Intracrabilify: A Guide 
to the Theory of NP-Completeness. 
C. H. Gebotys and M. I. Elmasry, “A global optimization approach for 
architectural synthesis,” in Proc. ICCAD, Santa Clara, CA, Nov. 1990, 

R. Haupt, “A survey of priority-rule based scheduling,” OR Spektrum, 
vol. 11, no. I ,  pp. 3-16, 1989. 
C. T. Hwang, J. H. Lee, and Y. C. Hsu, “A formal approach to the 
scheduling problem in high level synthesis,” IEEE Trans. CAD, vol. 10, 
no. 4, pp. 464-475, 1971. 
T. Kim, J. W. S. Liu, and C. L. Liu, “A scheduling algorithm for 
conditional resource sharing,” in Proc. ICCAD, Santa Clara, CA, Nov. 
1991, pp. 84-87. 
J. H. M. Korst, “Periodic multiprocessor scheduling,” Ph.D. dissertation, 
Eindhoven Univ. of Technol., Eindhoven, The Netherlands, 1992. 
C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing synchronous 
circuitry by retiming,” in Third Caftech Cant VUI, Mar. 1983, pp. 
87-1 16. 
P. E. R. Lippens, J. L. van Meerbergen, A. van der Wed, W. F. 
J. Verhaegh, B. T. McSweeney, J. 0. Huisken, and 0. P. McArdle, 
“PHIDEO: A silicon compiler for high speed algorithms,” in Proc. 
EDAC, Amsterdam, The Netherlands, Feb. 1991, pp. 436-441. 
R. S. Martin and J. P. Knight, “Operations research in the high-level 
synthesis of integrated circuits,” Comput. Ops Res., vol. 20, no. 8, pp. 
845-856, 1993. 
M. C. McFarland, “Using bottom-up design techniques in the synthesis 
of digital hardware from abstract behavioral descriptions,” in Proc. 23rd 
DAC, Las Vegas, NV, June 1986. pp. 474-480. 
M. C. McFarland, A. C. Parker, and R. Camposano, “The high-level 
synthesis of digital systems,” Proc. IEEE, vol. 78, no. 2, pp. 301-318, 
1990. 
J. L. van Meerbergen, P. E. R. Lippens, B. T. McSweeney, W. F. 
J. Verhaegh, A. van der Werf, and A. T. van Zanten, “Architectural 
strategies for high-throughput applications,” J. V U 1  Signal Process., 
vol. 5, no. 2/3, pp. 201-220, Apr. 1993. 
S. Note, J. L. van Meerbergen, F. Catthoor, and H. de Man, “Automated 
synthesis of a high-speed CORDIC algorithm with the CATHEDRAL- 
111 compilation system,’’ in Proc. ISCAS, Helsinki, Finland, June 1988, 

A. OIBh, S .  H. Gerez. and S. M. Heemstra de Groot, “Scheduling and 
allocation for the high-level synthesis of DSP algorithms by exploitation 
of transfer mobility,” in Pmc. CompEuro, Delft, The Netherlands, 1992, 
pp. 145-150. 
N. Park and A. C. Parker, “Sehwa: A software package for synthesis of 
pipelines from behavioral specification,” IEEE Trans. Computer-Aided 
Design, vol. 7, no. 3, pp. 356370,  1988. 
P. G. Paulin and J. P. Knight, “Force-directed scheduling in automatic 
data path synthesis,” in Proc. 24th DAC, Miami Beach, FL, July 1987, 
pp. 195-202. 

New York: Freeman, 1979. 

pp. 258-261. 

pp. 581-584. 

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore.  Restrictions apply. 



960 IEEE TRANSACTIONS ON COMPUTER-AIDED DEI iIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 

P. G.  Paulin, “High-level synthesis of digital circuits using global sched- 
uling and binding algorithms,” Ph.D. dissertation, Carleton University, 
Ottawa, Canada, 1988. 
P. G. Paulin and J. P. Knight, “Force-directed scheduling for the 
behavioral synthesis of ASICs,” lEEE Trans. Computer-Aided Design, 
vol. 8,  no. 5. pp. 661479,  1989. __. “Algorithms for high-level synthesis,” IEEE Design and Test of 
Computers, vol. 6. pp, 18-31, Dec. 1989. 
L. Stok, “Architectural synthesis and optimization of digital systems,” 
Ph.D. dissertation. Eindhoven Univ. of Technol., Eindhoven, The 
Netherlands. 1991. 
W. F. J.  Verhaegh, “Scheduling problems in video signal process- 
ing,” Master’s thesis, Eindhoven Univ. of Technol., Eindhoven, The 
Netherlands, Apr. 1990. 
W. F. J .  Verhaegh, E. H. L. Aarts, J .  H. M. Korst, and P. E. R. Lippens, 
“Improved force-directed scheduling,” in Proc. EDAC, Amsterdam, The 
Netherlands. Feb. 199 1. pp. 430435. 
W. F. J. Verhaegh, P. E. R. Lippens, E. H. L. Aarts, J.  H. M. Korst, 
J. L. van Meerbergen, and A. van der Werf, “Modelling periodicity by 
PHIDEO streams,” talk presented at the Sixth High Level Synthesis 
Workshop, Dana Point Resort, Nov. 1992. 
W. F. J .  Verhaegh, P. E. R. Lippens. E. H. L. Aarts, J .  H. M. Korst, 
A. van der Werf, and J .  L. van Meerbergen, “Efficiency improvements 
for force-directed scheduling,” in Proc. ICCAD. Santa Clara, CA. Nov. 
1992. pp. 286291.  
-, “Improved force-directed scheduling in  high-throughput digi- 
tal signal processing,” Philips Research Laboratories, Eindhoven, The 
Netherlands, Nat. Lab. Rep. NL-UR-O15/94, Sept. 1994. 
A. van der Werf, B. T. McSweeney, J. L. van Meerbergen. P. E. 
R. Lippens, and W. F. J .  Verhaegh. “Hierarchical retiming including 
pipelining,” in Proc. VLSI, Edinburgh, Aug. 199 I ,  pp. 11.2.1-1 1.2.10. 
P. H. N. de With, “Motion-adaptive intraframe transform coding of video 
signals.” Philips J .  Res.. vol. 44, no. 2/3, pp. 345-364, 1989. 

Wim F. J. Verhaegh received the mathematical 
engineering degree with honors in 1990 from the 
Eindhoven University of Technology, The Nether- 
lands 

Since then, he has been with the Philips Research 
Laboratories in Eindhoven as a member of the group 
Digital VLSI Presently, he 19 working on high-level 
synthesis of DSP sy\tems tor video applications, 
with the emphasi\ on schcduling problems and 

-’- 

L 

1 techniques 

Emile H. L. Aarts received the M Sc degree 
in phy\ic\ from the University of Nijmegen, 
The Netherlands, and the Ph.D degree from the 
University of Groningen, The Netherlands 

He is with the Philips Research Laboratones in 
Eindhoven, The Netherlands a\ a Senior Scientist -- r, 

__1 

He also hold\ an appointment as a Professor of 
Computer Science with the Eindhoven University 
of Technology, and a management consultancy 
position with the Research Institute for Information 
Svstems. Maastricht. The Netherlands His research 

field is combinatorial optimization in planning and design 

Jan H. M. Korst received the M Sc degree in 
mathematics from Delft University of Technology, 
The Netherlands. and the Ph D degree from the 
Mathematics and Computing Science Department 
of the Eindhoven University of Technology, The 
Netherlands 

Since 1985 he has been with the Philips Re- 
search Laboratones in Eindhoten, where he has 
been working mainly on combinatonal optimization 
and resource management problem\ in the held\ of 
VLSI design and multimedia systems HIS research 

interests include combinatonal optimizdtion, complexity theory, and the design 
and analysis ot algorithms 

Jef L. van Meerbergen (M’87-SM’92) received 
the electncal engineering degree and the Ph D 
degree from the Katholieke Universiteit Leuven, 
Belgium, in 1975 and 1980, respectively 

In 1979 he joined the Philips Research Labo- 
ratones in Eindhoven, The Netherlands He was 
engaged in the design of MOS digital circuits, 
domain-specific processors. and general purpose 
digital signal processon In 1985. he started 
working on application-driven high-level synthesis 
Initially, this work wa\ targeted towdrds audio and 

telecom DSP applications The current research activities are concentrated on 
high-level \ynthesi\ for high-throughput video application9 

\ @  

Paul E. R. Lippens received the electncal engineer- 
ing degree with honors in 1986 from the Eindhoven 
University of Technology, The Netherlands 

Since then, he has been with the Philips Research 
Laboratones in Eindhoven as a member of the 
group Digital VLSI Preuently, he is working on 
architectural level synthesi9 of DSP systems for 
video applications / 

ot integrated circuits C 
Eindhoven University of 

Albert van der Werf (M’91) received the M.Sc. 
degree with honors in electrical engineering for 
research in the area of telecommunications in 1987 
from the University of Twente, The Netherlands. 

From 1987 to 1989 he followed a postgraduate 
courFe on the design of VLSI circuits at the Gradu- 
ate School Twente, The Netherlands. Since 1989 he 
has been with Philips Electronics Ltd. at its research 
laboratories in Eindhoven, The Netherlands. His 
present areas of interest include the development of 
computer-aided design methodologies for the design 

hrrently, he is pursuing the Ph.D. degree at the 
Technology, The Netherlands. 

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore.  Restrictions apply. 


