

Improved force-directed scheduling in high-throughput digital
signal processing
Citation for published version (APA):
Verhaegh, W. F. J., Lippens, P. E. R., Aarts, E. H. L., Korst, J. H. M., Meerbergen, van, J., & Werf, van der, A.
(1995). Improved force-directed scheduling in high-throughput digital signal processing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 14(8), 945-960. https://doi.org/10.1109/43.402495

DOI:
10.1109/43.402495

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.1109/43.402495
https://doi.org/10.1109/43.402495
https://research.tue.nl/en/publications/86df54d1-8b02-434a-899a-97402a54d912

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 945 -

Improved Force-Directed Scheduling in
High-Throughput Digital Signal Processing

Wim F. J . Verhaegh, Paul E. R. Lippens, Emile H. L. Aarts, Jan H. M. Korst,
Jef L. van Meerbergen, Senior Member, IEEE, and Albert van der Wed, Member, IEEE

Abstract-This paper discusses improved force-directed
scheduling and its application in the design of high-throughput
DSP systems, such as real-time video VLSI circuits. We present
a mathematical justification of the technique of force-directed
scheduling, introduced by Paulin and Knight, and we show how
the algorithm can be used to find cost-effective time assignments
and resource allocations, allowing trade-offs between processing
units and memories. Furthermore, we present modfications that
improve the effectiveness and the efficiency of the algorithm.
The significance of the improvements is illustrated by an
empirical performance analysis based on a number of problem
instances.

I. INTRODUCTION
IGH-LEVEL synthesis is the translation of a behavioral H description into a register transfer level description,

which specifies the system’s structure that implements the
behavior. A behavioral description is often represented by
a signal flow graph, which consists of nodes representing
operations and arcs representing signal flow. An important
problem in high-level synthesis is that of scheduling opera-
tions, such that a certain objective function is minimized. This
objective function may reflect different criteria or combina-
tions of them, such as area, execution time, throughput, and
power consumption. The choice of an appropriate scheduling
algorithi strongly depends on the application domain and on
the synthesis approach that is pursued. To shed some light
on these issues, we start by briefly discussing the application
domain.

A. High-Throughput Digital Signal Processing
In digital signal processing, signal flow graphs must be exe-

cuted repeatedly, with a fixed period. The period of repetition
is determined by the sampling frequency. High-throughput
applications such as real-time video, at which the design
methodology PHIDEO [l l] is targeted, are characterized by
the fact that sampling frequencies are close to clock frequen-
cies. Furthermore, the number of operations that has to be

Manuscript received October 22, 1993; revised January I t , 1995. This
work was supported by the EC in the ESPRIT 2260 project. This paper was
recommended by Associate Editor M. McFarland.

W. F. J. Verhaegh, P. E. R. Lippens, J. H. M. Korst, J. L. van Meerbergen,
and A. van der Werf are with the Philips Research Laboratories, 5656 AA
Eindhoven, The Netherlands.

E. H. L. Aarts is with the Philips Research Laboratories, 5656 AA
Eindhoven, The Netherlands and the Eindhoven University of Technology,
5600 MB Eindhoven, The Netherlands.

IEEE Log Number 9412155.

executed each clock cycle is large [15]. These are important
characteristics which distinguish the application domain from
applications with low or medium sampling frequencies, such
as audio applications. Furthermore, this distinction has quite
an impact on the architecture and on the synthesis approach
that is pursued. High-throughput applications lead to hardwired
architectures, complex processing units, large memory areas,
and to pipelining.

In case of low or medium sampling frequencies, a mi-
crocoded architecture is often used, consisting of a limited
number of multifunctional processing units, e.g., an ALU
with 30 different instructions, and a limited number of central
memories [2]. Many different operations of the signal flow
graph can be mapped onto the same processing unit, and a
microcoded controller is used to select the correct instruction
at the appropriate time. In case of high sampling frequencies,
however, only a few operations can share the same processing
unit, and one often chooses each processing unit to perform
one dedicated, complex function. Therefore, a hardwired ar-
chitecture is used, which is characterized by a large number
of processing units operating in parallel and a large number
of memories.

In high-throughput applications, processing units usually
perform complex functions, e.g., complete filter functions.
These processing units not only contain arithmetical and
logical operations and algorithmic delays, but they also contain
local decision-making, which can be used to deal with local
conditions in the application. In this paper we do not consider
global conditions, but they can be handled in the same way
as is done in [21]. In order to meet the high clock frequency,
retiming, including pipelining [lo], [16], [29], is used. Doing
this, inputs and outputs of a processing unit may be shifted
in time with respect to each other, which has to be taken into
account during scheduling.

Another characteristic of the application domain is the sig-
nificant role of memories. Existing chips for high-throughput
video applications reveal that a large part of the area is occu-
pied by memories. So, during scheduling not only processing
units but also memories must be taken into account as an
important area-consuming resource. A trade-off between the
two types of resources must be made. However, in contrast
to processing units whose area is known before scheduling,
the area occupied by memories has to be estimated during
scheduling, based on the maximum number of variables alive
simultaneously and the maximum number of simultaneous
accesses.

02784070/95$04.00 0 1995 IEEE

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

946 IEEE TRANSACTIONS ON COMPUTER-AIDED DEStGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL. 14, NO. 8. AUGUST 1995
I

Another characteristic of the application domain is the need
for pipelined execution of DSP algorithms [18]. We have
to make a distinction between two notions of time. On the
one hand we have the algorithm period, which is the time
between two consecutive executions of the algorithm, and
which is a measure of the throughput. On the other hand
we have the latency, which is the time between inputs and - corresponding outputs, i.e., the time needed to execute one
iteration of the algorithm. Usually, the algorithm period is
fixed in DSP applications, and there is an upper bound on
the latency. If the latency is larger than the algorithm period,
which is often the case in high-throughput applications, then
successive executions of the signal flow graph overlap in time,
and we speak of pipelined execution. In this paper we do
not consider deep nestings of large loops, as is the subject
of e.g., [26]. Nevertheless, small loops can be handled by
flattening them. The only loop remaining is the most outer
loop of infinite repetition of the algorithm, including data
dependencies between different iterations.

B. High-Throughput DSP Scheduling

Informally speaking, the high-throughput DSP scheduling
problem can be stated as follows. Given a signal flow graph,
an algorithm period, and some timing constraints, assign the
operations to clock cycles and allocate resources, such that the
total area is minimized, and such that timing constraints and
data dependencies are met.

Since the scheduling problem we discuss is NP-hard [4]
and since practical instances are too large to be solved ex-
haustively, our aim is to find a good approximation algorithm.
An overview of existing scheduling algorithms in high-level
synthesis can be found in [14]. To position force-directed
scheduling, we discuss the following two extremes.

First, we have list scheduling [6], [13], which is a fast al-
gorithm that gives reasonable-quality solutions. Traditionally,
list scheduling is an algorithm that tries to find a minimal
execution time, for given constraints on the number of pro-
cessing units. Additionally, list scheduling can be modified
such that memory requirements are reduced, as long as the
execution time is not increased. On top of this, one can then
iterate on the number of processing units, in order to find
a minimal solution that still meets the timing constraints. A
drawback of list scheduling is that it requires a decomposition
into several levels, which complicates the trade-off between
processing units and memories.

Second, we have integer linear programming [5], [7], which
is a general approach to combinatorial optimization. This
approach can optimally solve problems in their entirety, i.e.,
without a decomposition. Hence, trade-offs between different
objectives, e.g., processing units and memories, are made auto-
matically. In general this goes at the expense of an exponential
time complexity. Therefore, integer linear programming may
be well applicable to small instances, but running times grow
hazardously fast to impracticable heights as the instances get
larger or as more refinements are added to the scheduling
problem.

Force-directed scheduling is situated in between. Its time
complexity is only slightly worse than that of list scheduling.

However, the ability of simultaneously trading off processing
units and memories is attained, which may result in solutions
with a quality close to those obtained by integer linear pro-
gramming. At the same time, this raises the question whether it
is possible to further improve the effectiveness and efficiency
of force-directed scheduling, in order to achieve the best of
both extremes.

Force-directed scheduling was introduced by Paulin and
Knight [19], [21], [22]. It tries to minimize the number of
resources by smoothing the resource requirements in time, for
given timing constraints. Since its introduction, the technique
of force-directed scheduling has gained interest from a number
of other research groups [l], [SI, [17], [23], [25], [27]. Refine-
ments of the algorithm to include memory costs, pipelined
scheduling, multitime operations, multifunctional processing
units, etc., can be done in a very straightforward way [21],
which makes force-directed scheduling a widely applicable
scheduling technique.

We have studied force-directed scheduling in order to use
it in the design methodology PHIDEO. Besides a mathematical
formulation of force-directed scheduling that justifies the orig-
inal approach proposed by Paulin and Knight, we have been
concentrating on modifications to improve the effectiveness
and the efficiency of the algorithm without reducing its ap-
plicability. The effectiveness improvements are achieved by
the use of global spring constants and gradual time-frame
reduction. The efficiency improvements are achieved by an
incremental way to calculate the changes in the distribution
function.

C. Organization

The organization of this paper is as follows. In Section 11,
we give a mathematical model of the high-throughput DSP
scheduling problem. In Section I11 we present the mathematical
justification of a basic force-directed scheduling algorithm and
discuss its time complexity. In Section IV we show how
we apply force-directed scheduling to the high-throughput
DSP scheduling problem. Next, we present modifications to
improve the effectiveness and the efficiency of the algorithm,
in Sections V and VI, respectively. Finally, Section VI1
illustrates the significance of the improvements by means of
some experimental results.

11. MATHEMATICAL MODELING

A. Signal Flow Graphs

Input for scheduling is a signal flow graph representing
a DSP algorithm, an algorithm period, and some timing
constraints. The time unit we maintain throughout this paper
is the clock cycle, and all time points are given by clock
cycles c E Z. The operations represented by the nodes must
be executed on dedicated processing units, i.e., we consider
a one-to-one relation between operation types and processing
unit types. In order to model the signal flow graph, we first
define operation types and the corresponding processing unit
types.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

VERHAEGH er al.: IMPROVED FORCE-DIRECTED SCHEDULING IN DIGITAL SIGNAL PROCESSING ' 947 -
Definition 11.1 (Operation types): The operation types are

given by a 6-tuple (T, Z, 0, r , s , a), where T is a set of types
and for each t E T

T(t) is a set of input ports;
0 (t) is a set of output ports;
r (t , p) E Z is a retiming; for each port p E P (t) =

s (t) E N is a restart time; and
0

The retiming of a port denotes the shift in time of that
port. The restart time denotes the number of clock cycles
that an execution of an operation occupies the corresponding
processing unit, without interruption. If an operation of type
t is scheduled in clock cycle c E Z, then the production or
consumption of a variable at port p E P(t) falls in clock cycle
c + r (t , p) , and the processing unit on which the operation is
executed is occupied in the clock cycles c, . . . , c + s (t) - 1.

Input and output nodes of a signal flow graph are modeled
as operations with no input ports and no output ports, respec-
tively. Now we can define a signal flow graph as follows.

Dejinition 11.2 (Signalflow graph): A signal flow graph G
is given by a 6-tuple (V, t , I, 0, E, d) , where

V is a set of operations;
t (w) E T is the operation type, for each U E V;
I = { (w , z) l w E V A z E I(t(w))} is a set of operation

0 = {(v,o)Iw E V A o E O(t(w))} is a set of operation

E C 0 x I is a set of weighted, directed edges represent-

0
An edge e = (p , q) E E with weight d (e) denotes that for

each exesution of the signal flow graph, operation output port
p produces a variable, which is consumed at operation input
port q, d(e) executions of the signal flow graph later. So, the
variable produced at port p is delayed d (e) executions. For
each operation input port, the number of incoming edges is
at most one.

Z (t) U 0 (t) ;

a (t) 2 0 is an area cost.

input ports;

output ports;

ing data dependencies; and
d(e) E Z is an edge weight, for each e E E.

B. Feasible Schedules

A signal flow graph is executed repeatedly, with an algo-
rithm period F E N. Each execution is identified by an integer
I C . Since the executions are periodic, the lcth execution takes
place lcF clock cycles after the zeroth execution. Therefore,
we take the zeroth execution of the signal flow graph as a
reference. For a broader discussion on periodic scheduling,
we refer to [9].

Definition 11.3 (Schedule): For a given signal flow graph G,
a schedule a: V --+ Z assigns to each operation 'U a clock cycle
a(.) in which the zeroth execution is scheduled. The set of

0
The timing constraints that can be imposed by the user give

lower bounds and upper bounds on the clock cycles in which
operations have to be scheduled, e.g., on input and output
operations. For each operation w E V they are given as a
closed interval S(v) = [Sl(v),S,(w)] Z U {-oo,+oo},

all possible schedules is denoted by C.

which we call the spun of operation W. Note that we use
the interval notation for a discrete set of integer numbers, so
[a, 61 = {a, . - . , 6 } . We use this notation throughout the paper.

A schedule is called feasible if and only if all operations
are scheduled within their spans and all variables are produced
before they are consumed. The first of these two constraints
is equivalent to

v V E V : a (w) E S(7J). (1)

For the second constraint we first have to determine when
variables are produced or consumed. The clock cycle in which
a variable is produced at operation output port p = (U, 0) E 0
in the zeroth execution of the signal flow graph, is c (p) =
a(v)+r(t(v) , 0). Similarly, the clock cycle in which a variable
is consumed at operation input port q = (U, i) E I in the zeroth
execution of the signal flow graph, is c (q) = a(u)+r(t(u) , i) .
Now, the constraint that variables must be produced before
they are consumed, is equivalent to

The set of all feasible schedules is denoted by E'.

C. Objective Functions

Next, we determine an objective function, which reflects for
a given schedule the total area cost. This area is determined
by the maximum number of processing units of each type
occupied simultaneously, the maximum number of variables
that are simultaneously alive, and the maximum number of
simultaneous memory accesses. Therefore, we define a set of
resource types T* = T u { t,, t a } , where t, is the resource type
corresponding to variable lifetimes, with area cost a(t,) per
variable, and t , is the resource type corresponding to memory
accesses, with area cost a(t,) per access.

Dejnition 11.4 (Requirement function): Given a signal flow
graph G, a set of resource types T*, and an algorithm period
F, the requirement function N: C x T' x Z --+ N U {0} gives
for a schedule g, resource type t , and clock cycle c the number
of required resources N (a , t , e). This number is equal to

N(a , t , c) = C N o (a , t , c + k F) ,
k E 2

where No(a, t , c) is the requirement function taking only
0

For processing units, the requirement function is given by
execution zero of the signal flow graph into account.

For variable lifetimes, the requirement function is determined
as follows. We restrict ourselves to variables produced at
operation output ports p that are also consumed at some
operation input ports q, since the other variables do not need
to be stored. So we only consider operation output ports in
0' = {p E 013,,1: (p , q) E E}. Note that there is a one-to-
one relation between variables and the operation output ports
p = (w, 0) where they are produced, so we can denote a

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

948 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 ..

variable by the port p E 0' at which it is produced. Next,
we assume that a variable is alive from the first clock cycle
after its production up to and including the clock cycle of its
last consumption. Then for execution zero of a signal flow
graph, the number of variables alive in clock cycle c for a
given schedule (T is given by

For memory accesses, the requirement function is determined
as follows. A variable produced in the zeroth execution of a
signal flow graph at an operation output port p E 0' causes an
access in clock cycle c if and only if it is produced in clock
cycle c, i.e., c (p) = c, or there exists an operation input port
q with (p , q) E E for which the consumption falls in clock
cycle c, i.e., c(q) + d ((p , q))F = c. So

Definition 11.5 (Area cost of a schedule): Given a signal
flow graph G, a set of resource types T*, and an algorithm
period F, the area cost f(a) of a schedule is given by

0

I Note that since the requirement function N is periodic with
I
l

period F, the maximum over Z can be replaced by a maximum
over the discrete interval [0, F - 11.

D. Problem Formulation

Now the high-throughput DSP scheduling problem can be
defined as follows.

DeJnition 11.6 (High-Throughput DSP Scheduling (HTDS)):
Given a signal flow graph G, a set of resource types T*, an
algorithm period F, and a span S(w) for each operation v E V,
find a feasible schedule U E C' such that the total area cost

The decision variant of HTDS is NP-complete. For a proof,
f(u) is minimal. 0

we refer to [28].

I .

I
111. BASIC FORCE-DIRECTED SCHEDULING

In this section we present a mathematical model of the basic
force-directed scheduling algorithm introduced by Paulin and
Knight. For reasons of simplicity, the presentation is based on
a less elaborate scheduling problem. In this less elaborate prob-
lem, which is used in this section only, precedence relations

~

I
I are explicitly given by a set of arcs between operations instead

A. Scheduling to Minimize Resources
We consider the following scheduling problem.
Dejnition 111. I (Scheduling to Minimize Resources (SMR)):

Given are a set T of resource types t7 each with cost a (t) 2 0,
and an acyclic, directed graph G = (Vi A), where V is a set of
unit-time operations, and A is a set of arcs. Furthermore, we
are given a makespan M = [l, m] Z, and for each operation
w E V a corresponding resource type t (w) E T. A schedule
a assigns to each operation w E V a clock cycle a (v) E Z
in which w is scheduled. The set of all possible schedules is
denoted by C. A schedule (T E C is called feasible if and
only if

VIVEv: a (v) E M and V(u,v)EA: a(u) <(.(U).

Again, we denote the set of all feasible schedules by E'.
Now the problem is to find a feasible schedule a E C' that
minimizes the total resource cost, given by

where N (u , t , c) = I{w E Vlt(w) = t A a(.) = e}[is the
requirement function, i.e., the number of operations of type t

U
The decision variant of SMR is NP-complete. A reduc-

tion from Precedence Constrained Scheduling [4] is straight-
forward.

To describe the force-directed scheduling algorithm we
i) reformulate the problem by giving an approximate-cost
function; and ii) introduce an iterative approach in order to
find good solutions.

scheduled in clock cycle c in schedule a.

B. Towards a Solution Approach

The cost function of (3) can be rewritten as

where ~ (t) = (l/rn)l{w E Vlt(w) = t}l is the average number
of operations of type t over the makespan M. The first term
of f(u) can be omitted since it is a constant, and with an eye
to the solution method, we approximate the remaining term by

which reflects minimizing the resource cost by smoothing
the distribution of resources over time, i.e., by minimizing
the deviation from the average value. In the approximation
algorithm we discuss below, this quadratic cost function has
the advantage that it is more global than the cost function
based on maxima. Rewriting f ' ((~) again, gives

of data dependencies. Furthermore, we restrict ourselves to

do not take memory costs into account. In Section IV we

problem. tET cEM tET

minimizing the area occupied by processing units, i.e., we f'((T) = a(t) (N (u , '7 - 2 N (a 7 t l c)b(t) + P @ I 2)
tET cEM

show how the algorithm is applied to the more general HTDS = 4 t) N (0 , t l - 4 t) N2,

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

VERHAEGH et al. : IMPROVED FORCE-DIRECTED SCHEDULING IN DIGITAL SIGNAL PROCESSING 949

’ ASAP
: schedule

ALAP
: schedule

, - clockcvcle
1 2 3 4 5 .

operation time

1 8
2 8
3 *
4 +
5 *
6 *
7 t
8 8
9 +

Fig. 1 .
time frames, depicted as black bars.

An example of ASAP and ALAP schedules and the resulting initial

in which the second term is again a constant, that can be
omitted. So, in the following, we use the approximate-cost
function

f”(0) = a (t) N (a , t , C l 2 , (4)
t €T CEM

and the mathematical motivation of force-directed scheduling
that is given in the following sections, can be extended to any
cost function of this form. Hence, the motivation is also valid
for the extensions with memory related costs, as discussed in
Sections IV-B-2) and IV-B-3).

C. An iterative Approach

Next; we discuss an approximation algorithm that finds
near-optimal solutions by constructing a sequence of partial
solutions, where in each iteration an unscheduled operation
is assigned to .a clock cycle. The set of partial solutions
can be defined as follows. Instead of a single clock cycle
.(U) for each operation U, we have a time frame, which is a
discrete interval [a ~ (v) , a,(v)] 5 Z, al(v) 5 a,(v), and which
means that operation U has to be scheduled in a clock cycle
.(U) E [ol(v),a,(v)]. In this way we get a schedule frame
6 = (al, ou), and we denote the set of all possible schedule
frames by E. A schedule frame 6 is called feasible if and
only if

V v ~ v : OI(V) E MA u,(u) E M and

V (~ L , ~) E A : al(u) < o l (V) A a,(.) < a u (v) .

This in fact means that a1 and a, are both feasible schedules.
Now, the set of partial solutions is given by the set of feasible
schedule frames, and is denoted by 2’. Initially, the time
frames are chosen as large as possible by initializing the
a l (w) ’ s with the clock cycles of the ASAP (as soon as possible)
schedule and the oU(v)’s with the clock cycles of the ALAP
(as late as possible) schedule. Fig. 1 shows an example of the
initial time frames of a graph with nine operations, two types
of resources, and a makespan of length five.

1 .o

0.0 C

1 2 3 4 5

p(+ = 0.6

Fig. 2. An example of a resulting distribution function.

Next, the cost of a partial solution is estimated as follows.
We define a distribution function N (6 , t , e) as the expected
number of operations of type t in clock cycle c in schedule
frame 6. For this, we determine the probability P(6, U , c) that
operation v is eventually scheduled in clock cycle c, given
schedule frame 6. Because of the precedence relation, these
probabilities are generally not independent. Nevertheless, we
estimate them by assuming a uniform probability of assigning
an operation to any clock cycle in its time frame, i.e.,

Now for each resource type t we take the summation of
probabilities of the operations for each clock cycle c E M .
The resulting distribution function is given by

N (C , t , C) = P (r ? , U , C) , (6)
v € V (t)

where V (t) = {v E Vlt(w) = t}. See Fig. 2 for the
distribution function for the initial schedule frame of the
example in Fig. 1.

Next we define a cost function for schedule frames, similar
to the approximate-cost function for schedules, by

J(6) = a (t) N (6 , t , c y .
t€T CEM

Note that if q (w) = a,(w) = o(v), for all w E V, then
N (6 , t , c) = N (a , t , c) , and thus f (0) = f”(a). So we want
to find a schedule frame 6 which minimizes f (6) , under the
constraint al(v) = a,(v) for all U E V.

Now, the iterative approach is defined as follows. First,
a schedule frame 6 is initialized by initializing 01 to the
ASAP schedule and a, to the ALAP schedule. Next, in each
iteration a neighborhood N(6) 5 9’ is searched for the best
neighboring solution. A neighborhood h/(O) of a schedule
frame 6 consists of solutions 7 = (7 - 1 , ~ ~) that can be obtained
by scheduling an operation v with a~(w) < a,(.) in a clock
cycle c E [~ (I J) , a,(w)], and updating the time frames of the
other operations. See Fig. 3 for an example of the effect of
scheduling operation 7 in clock cycle 4 in the example of
Fig. 1. The assignment of an operation U to a clock cycle c
is chosen such that a neighboring schedule frame 7 E N(6)
is obtained, for which

Af(c?,?) = J(?) - f(6)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

950 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8. AUGUST 1995
I

opaahon new tune frame
1. - I1.11
2 s - 11.11
3 s P [2,21
4 + 13.31
5 . -4 I121
6 s f2.31
7 + 14.41

9 + l2.51
8 0 11.41

' 1 ' 2 ' 3 ' 4 ' 5 ' clockcycle

C

1 0

0 0 C
1 2 3 4 5

Fig. 3.
frames and on the distribution function.

The effect of scheduling operation 7 in clock cycle 4 on the time

is minimal. Iterations are repeated until a feasible schedule is
obtained.

This iterative approach is identical to basic force-directed
scheduling as defined by Paulin and Knight except that in
their approach the assignment of operation v to clock cycle
c is chosen for which a so-called force F (v , c) is minimal,
instead of Af". The definition of F(v , c) is given in Section
111-D. The difference is only minor. Indeed, if we define

AN(6,?, t , a) = N(?, t , a) - N (6 , t , a) ,

for all t E T and a E M, then we obtain

Af(6,7) = a (t) [(N (6 , t , a)
tET aEM

+ AN(6,?, t , u)) ~ - N(6, t , u) ~]

= a (t) (2N(6, t , a)
tET aEM

+ Afi(6 , ?, t , u))AN(6, ?, t , a) .

Hence,

iAf (6 , ?) = d (t) #(el t , a) A N (6 , ?, t , a)
t € T aEM

+ x a (t) i (A * (6 , 7 , t , ~)) ~ . (7)
t € T aEM

As we show in the following sections, the first term in this
equation is equal to F(v , c) and the second term strongly
resembles the look-ahead introduced by Paulin and Knight,
as a modification of the first term.

D. Springs and Forces

For the selection of the assignment of an operation v to a
clock cycle c , Paulin and Knight introduced a force F(w,c)
in the following way. Consider a schedule frame 5 and the
schedule frame f E N(6) that is obtained by scheduling
operation v in clock cycle c. The changes in the probabilities
P(6, U ! a) of all operations U E V are determined as

AP(6, ?, U , U) = P(?, U , a) - P (6 , U , U) .

Then a self force, a successor force, and a predecessor force are
determined, which are added to yield the total force, given by

F(w, c) = AP(c7, ?, U , a) N (6 , t (u) , a) a (t (u))
uEV aEM

= C a (t) AP(6,?,u,a) N(.,t,a)
t € T aEM u ~ V (t)

= a(t) C A f i (6 , f , t , a) N (6 ! t , a), (8)
t € T aEM

which is equal to the first term in (7). The total force can
be seen as a sum of forces needed to stretch a number of
springs, each with a spring constant a(&, t (u) , a) a (t (u)) , by
an amount AP(6, ?, U, a) .

E. bok-Ahead

To improve the effectiveness of the force-directed schedul-
ing algorithm, Paulin and Knight [21] proposed a look-ahead
scheme. The idea is to replace the value of &(til t (u) , a) in (8)
by a value somewhere between the current one and the value
that would be obtained after the current iteration. They then
propose to replace it by N (6 , t(u), a) + vAP(C, 7, U , a), but
according to the idea, one should replace it by N (8 , t (u) , a) +
vAfi(5, ?, t (u) , a). This gives an additional term to the total
force in (S), which is equal to

AP(6, ?, U , a) vAN(6, ?,t(u), a) a (t (u))
uEV aEM

= a(t) AP(6 , ?, U , U) vAN(6, ?, t , a)
t € T aEM u € V (t)

= Ca(t) 9 (AN(6,?, t ,a))2.
tET aEM

If 7 = i, the additional term is exactly equal to the second
term in (7).

F. The Algorithm

summarized as follows.
The basic force-directed scheduling algorithm can now be

Basic force-directed scheduling
Step 1 Initialize time frames to ASAP and ALAP

schedules.
Step 2 Calculate the distribution function.
Step 3 For each operation v that is not scheduled yet,

and each clock cycle c E [q (v) , (T , , (w)] ,

calculate Af"(6, ?), where ? E N(6) is the
feasible schedule frame obtained from 8
by scheduling operation v in clock cycle c.

Step 4 Schedule that operation v in that clock cycle c
for which Af"(6,?) is minimal; i.e., assign

Step 5 Update time frames of predecessors and
successors of U.

Step 6 Update the distribution function.
Step 7 If not all operations are scheduled, return to

Step 3.

Here we say that an operation

q (v) = au(w) = c.

is scheduled if and only if
g1('U) = au(v>.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

VERHAEGH el al.; IMPROVED FORCE-DIRECTED SCHEDULING IN DIGITAL SIGNAL PROCESSING 95 I

G. Time Complexity
The worst-case time complexity of the basic force-directed

scheduling algorithm is 0(mZn3), when implemented in a
straightforward way, where m is the length of the makespan, 1
is the maximum length of the initial time frame of any of the
operations, and n is the number of operations. This complexity
can be derived as follows.

In each iteration at least one operation is scheduled. As
a side effect of scheduling an operation, successor or
predecessor operations may be scheduled too, so at most
n iterations are needed.
In each iteration, there are at most n operations that still
must be scheduled.
For each of these operations there are at most 1 clock
cycles in which it can be scheduled.
For each tentative scheduling of an operation in a clock
cycle, the probabilities of O(n) operations may change
and there are m clock cycles where they may change, so
calculating Af takes 0(mn) steps.

We return to the time complexity in Section VI.

IV. APPLICATION IN HIGH-THROUGHPUT DSP
In this section we discuss how we can apply force-directed

scheduling to the high-throughput DSP scheduling problem.
First, we discuss how to handle the precedence constraints,
next we discuss the distribution function, and finally we
discuss the impact of these modifications on the algorithm’s
time complexity.

A. Precedence Constraints

In high-throughput DSP scheduling, precedence constraints
are due to the fact that variables must be produced before
they are-consumed. In (2) this is formulated in terms of the
clock cycles in which variables are produced and consumed
at operation ports. In terms of the clock cycles in which
operations are scheduled, these constraints are given by

~ e = ((U , O) , (U , i)) € E :

.(U) + ~ (t (u) , 0) < a(v) + ~ (t (w) , i) + d(e)F. (9)

On the given node set V, we now define an arc set A C V x V
as

A = { (U , w) P o , i : ((u ,o) , (.,i)) E E) ,

and we define weights w(a) for arcs a = (U , w) E A as

w(a) = max{r(t(u): 0) - ~ (t (w) , i) - d(e)F + l (e

= ((U , 0)) (U, 2)) E E) .

v(u,v)EA: 4.1 - 4.) 2 w((u, U)).

Now (9) is equivalent to

(10)

In this way we get a weighted, directed graph H = (V, A) ,
which we call a precedence graph. In general, weights may be
negative, and H may contain cycles. However, if H contains a
cycle for which the sum of the arc weights is positive, then no
schedule c exists for which (10) holds, and hence no feasible
schedule exists.

B. Distribution Functions

Similar to the requirement function, we determine the
distribution function No(C?,t,c) for all t E T* considering
only execution zero of the signal flow graph, and with that
function we determine the distribution function

R(6, t , c) = 1 No@, t , c + IcF).
LE2

Note that similar to the requirement function, also the distri-
bution function N is periodic with a period F. Therefore it is
sufficient to determine it for one period, [O, F - 11, and compute
the A i criterion only over the clock cycles in [0, F - 11.

We next have to determine the distribution function for pro-
cessing units, for variable lifetimes, and for memory accesses.
Once obtained, the application of force-directed scheduling
to the high-throughput DSP scheduling problem is straight-
forward. Before we ’discuss the distribution function in more
detail, we mention that the first demand posed on it is that it
should be equal to the requirement function if all operations
are scheduled.

1) Distribution functions for processing units: The dis-
tribution function for processing unit types is similar to
the one used in basic force-directed scheduling in Section
111, with the exception that now an operation can occupy a
processing unit for more than one clock cycle. This is one of
the refinements that were also presented by Paulin and Knight
[21]. The probability that operation w occupies a processing
unit in clock cycle c is given by

The distribution function for processing units is then given by

No(6, t , c) = P(6, 21, e) .
V € T (t)

2) Distribution functions for variable lifetimes: In this sec-
tion we determine the probability that a variable is alive in
a clock cycle. The probability function presented by Paulin
and Knight [21] is very rough, and leads to a very inaccu-
rate distribution. For instance, for an inverse discrete cosine
transformation application (IDCT, see Fig. 1 l) , the maximum
number of variables at the beginning of the scheduling al-
gorithm was estimated at 275, whereas after scheduling the
eventual maximum number of variables was 19. This is too
inaccurate to make good quantitative trade-offs. With the
probability function described below, the initial maximum
number of variables is about 20, and the eventual number is 17.

This more refined probability function is derived as follows.
As already mentioned, we denote a variable by the operation
output port at which it is.produced. First, we determine in
which clock cycles variable p = (u ,o) E 0’ may begin to
live, and in which ones it may end living.

The earliest possible clock cycles for the beginning and
the end of a variable’s lifetime are determined by the earliest
possible schedule, 01, and the latest ones are determined by
the schedule uu. The earliest possible clock cycle in which
variable p can begin to live, is bl (p) = CTI(U) + T (~ (u) , 0) + 1,

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

952 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 ...

and the latest possible clock cycle in which it can begin to live,
is b,(p) = nu(.) + r(t (u) , 0) + 1. Note that a variable begins
to live one clock cycle after it is produced, as discussed in
Section 11.

Given a schedule G, then variable p = (U , 0) is consumed at
operation input port q = (U, i), with (p , q) E E , in clock cycle
a(v) + r (t (v) , i) + d ((p , q)) F . Considering all consumptions,
variable p ends living in clock cycle max{a(v) + r(t(w), i) +
d(e)Fle = ((u,o),(v,i)) E E } . So, for the end of variable
p’s lifetime, the earliest possible clock cycle is given by

If we assume uniform probability for all clock cycles in this
interval, then the probability that a write action occurs in clock
cycle c is given by

l l (. w u (P) - W d P) + 1)
if c E [Wl(P>, WU(P)l, { 0 otherwise.

P w (6 , p , c) =

’ - k ~ d actions only take Place at operation input Ports in
I’ = (4 E 113~~0: h q) E E) , i.e., at operation input
ports that are connected to operation output ports. Note that
each port q E I’ is connected to exactly one p E 0.
For port q = (w,i) E I’, a read action of the variable e l (p) = max{crl(w) + r(t(w),i) + d(e)Fle

I The latest possible clock cycle is given by

eu(p) = max{a,(w) + r(t(w),i) + d(e)Fle

= ((U , o), (U, i)) E E) .

Now eventually, when all operations are scheduled, variable
p begins to live in a clock cycle b and ends living in a clock
cycle e for which h(p) I b I bu(p),el(p) I e I eU(p),
and 6 5 e. So, its lifetime can be represented by a pair
(b , e) E L (p) , where

L(P) = { (b , e)lh(p) I b I bIl(p) A e1(p) I e
F eu(p) A b I e) .

If we now assume that all pairs (b , e) E L (p) occur with equal
probability in the eventual schedule, then the probability that
variable p is alive in clock cycle c is given by

I

I
If b, , (p) . I el(p), then this function is piecewise linear. If
bu(p) > el(p), the function is quadratic, but since a piecewise
linear function has some computational advantages, we replace
it by a piecewise linear approximation. For more detail, we
refer to [28].

The distribution function for variable lifetimes is now given

pEO‘

3) Access distribution functions: For memory accesses we
again have to consider only variables in 0’. Let p = (U. o) E
0’ be such a variable. A memory access for this variable
occurs in a clock cycle c if and only if a write or a read action
for this variable takes place in clock cycle c ; simultaneous
actions for one variable result in only one access. We first
determine the probabilities of these actions.

The write action for variable p takes place in a clock cycle
in [W [(p) . w , (p)] . where

’

I

w(p) = du) + T (t (U) , 0) = h (p) - 1

and

= au(u) + r (t (u) , 0) = bu(p) - 1

p with e = (p , q) E E takes place in a clock cycle in

ru(q) = nu(w) + r(t(w),i) + d(e)F. If we again assume
uniform probability for all clock cycles in this interval, then
the probability that a read action at operation input port q
occurs in clock cycle c , is given by

[n(q) , r , (q) l , where v (q) = m (v) + r (t (v) , i) + 4 e) F and

Now the probability that a memory access for variable p occurs
in clock cycle c is equal to the probability that a write or a
read action occurs. If we assume that these actions are mutually
independent, then the memory access probability is given by

p a (c , p , c) = 1 - (1 - p w (6 , ~ , c)) . n (1 - pr(6, q , e)).
9: (P&)EE

Given the memory access probability function, the memory
access distribution function is given by

No(6,ta, C) = p a (a , p , c) .
PEO’

C. The Algorithm for HTDS

The force-directed scheduling algorithm for high-throughput
DSP scheduling can now be derived straightforwardly. The
outline of the algorithm is the same as for the basic force-
directed scheduling algorithm, discussed in Section 111-F.
However, the ASAP and ALAP schedules, and the neighbor-
hood N(8) are now based on the new precedence constraints.
Furthermore, the A i criterion is now given by

A!(*,?) = a (t) (2 N (6 , t , c)
t€T* c€[O,F-l]

+ A N (S , ? , t , c)) A N (C , ? , t , c) , (12)
where

AN(C?,? , t , c) = N(?, t , c) - N (+ , t , c) , (13)

for all resource types t E T* and clock cycles c E [0, F - 11.

D. Time Complexity Revisited

The worst-case time complexity of the algorithm when
applied to the high-throughput DSP scheduling problem, is
O(FZn3), compared to O(mZn3) for the basic algorithm;
see Section 111-G. Here, n is the number of operations, Z is
the maximum length of the initial time frame of any of the
operations, and F is the algorithm period. The difference stems
from the calculation of A N .

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

VERHAEGH et al.: IMPROVED FORCE-DIRECTED SCHEDULING IN DIGITAL SIGNAL PROCESSING 953

In the basic algorithm, a tentative assignment of an operation
to a clock cycle may change the probability functions of
O(n) operations, and they may change in m clock cycles,
so calculating A N takes O(mn) steps. In the algorithm
for the high-throughput DSP scheduling problem, a tentative
assignment of an operation to a clock cycle may change the
time frames of O(n) operations, and thus O(n) probability
functions for processing units, variable lifetimes, and memory
accesses may change. So, p(n) operations and variables
contribute to AN,. Next, AN has to be computed over one
period [O,F - 11, which is given by

-

AN(6,7, t , C) = ANo(6,?, t , c + k F) ,
k€Z

and since the probability functions are piecewise linear, this
can be done in a total of O(Fn) steps.

V. EFFECTIVENESS IMPROVEMENTS

In this section we discuss two modifications of the algorithm
that on the average increase the quality of the solutions without
changing its worst-case time complexity. These modifications
are the use of global spring constants and gradual time-jrame
reduction.

A. Global Spring Constants

Consider the Afl criterion of (12) again as a sum of forces
needed for displacements AN(6, ?, t , c) of springs with spring
constants u(t)(fi(6,t, c) + $AN(6 ,? , t1 c)) . The factor a(t)
weighs the contribution of the different types of resources.

Now, the situation can occur that a neighbor 7 E hi(6)
results in a decrease of-NT(6, t l , c1) for some value of c1 with
N (6 , t l , c1) << m a , N (6 , t l , c) , at the expense of an increase
of N (6 , t z , c z) for some value of cz with N (6 , t z , c z) M
max, N(6, t z . c) , as is shown in Fig. 4. This neighbor is
undesirable, since we want to minimize

but negative contributions to Af” of rescurce type tl might
compensate positive contributions to Af of type t 2 , which
might lead to an acceptance of such a neighbor. To prevent
this, spring constants should be smaller if the distribution
function of a resource type is far from its maximum value,
and larger if it is close to it.

Furthermore, there is a second unwanted effect of using the
Afl criterion. If we double the area cost a(t) of a certain
resource type, then the contribution of that type to Af is
also doubled. However, if we double the distribution function
of resource type t , which also leads to twice as much area
for that type of resource, then this leads to a four times
larger contribution to AS. This is a direct consequence of
the approximate-cost function of (4). So we should change the
Af criterion in such a way that it is linear in the distribution
function, in order to get a better trade-off between a large
number of low-cost resources and a small number of high-cost
ones.

max

C

1.0

0.0 C
1 2 3 4

Fig. 4.
to a large negative A f.

The effect of _an unfavorable neighbor which may be selected due

To overcome these two unwanted effects we propose the
following. First, new spring constants are introduced, given by

S(6, ?, t , C) = (N (6 , t , c) + qAN(6 ,7 , t , c))

9 (14)
C) = * (N(C, t , c) + qAfi(6,7, t , c)

max N (6 , t , c)

where z is a positive number, and 77 is again a look-ahead
factor. Experiments, not shown here, reveal that a good value
for z is in the range 1,. . . , 5 , and that a good value for 77
is i. The latter is in accordance with observations made by
Paulin and Knight [21]. Next, for each resource type t E T*,
a subforce is calculated, given by

Fsub(6, ?, t) = AN(5 , ?, t , c)S(6,?, t , c) ,
cE[O,F--l]

and then a total force is calculated, given by

F g s c (@ , 7) = u(t) sign(Fsub(e-, f , t))
t €T*

. J I F s u b (m t) l , (15)

where sign(z) = 1 if z > O , 0 if z = 0, and -1 if z<O.
In this way performing trade-offs is done more sensibly. Note
that this change in spring constants and force function in fact
means that we change the approximate-cost function. The extra
work to be done in the algorithm is the determination of the
maxima of the distribution function in each iteration. This
however does not change the worst-case time complexity of
the algorithm.

B. Gradual fime-Frame Reduction

The second modification we propose concerns a different
iteration process for obtaining feasible schedules, which means
that we define a new neighborhood structure hig. The aim is
to reduce the time frames more gradually in order to obtain a
less greedy behavior of the algorithm. Instead of reducing in
each iteration the time frame [q (v) , ou(w)] of an operation w
to one clock cycle c, which is quite a large step, we reduce it

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

954 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 -

(b)
Fig. 5.
and in (b) the one with gradual time-frame reduction.

Possible reductions of time frames in (a) the original iteration process

by only one clock cycle at a time, i.e., to [q (w) + 1, a,(w)] or
to [a, (U), ou (w) - 11. An example is given in Fig. 5. Generally,
this leads to more iterations, but in an iteration there are
now at most 2n neighbor schedules ? E Ng(6) that must
be investigated.

The criterion for selecting a neighbor solution is based on
the forces F,,, of scheduling operations in the left-most clock
cycle in their time frames, and in the right-most clock cycle
in their time frames. Let Fleft(v) denote the force F,,, for
scheduling operation w in clock cycle q (w) , and let Fright(w)

denote the force F,,, for scheduling U in clock cycle a,(v).
Now we first determine F,,,(v) = max{Fleft(w),

Fright(w)}, which reflects the worst possible effect of
scheduling operation w in the left-most or right-most clock
cycle in its time frame. Next, we determine a quantity
for the best possible effect of scheduling operation w
somewhere in its time frame. This means that we have to
determine the minimum F,,, of scheduling w in a clock cycle
c E [al(w), a,(w)], but in order to save computation time, we
estimate F,,, for the clock cycles c E [al(w) + 1, U,(.) - 11
roughly to be 0. Thus, the best possible effect of scheduling
operation ‘U somewhere in its time frame is reflected by

I if a,(v) - al(v) > 1.

Next, we determine Fgain(w) = Fmax(w)-Fmin(w) 2 0, which
reflects the possible improvement by reducing the time frame
of operation U.

Now we choose operation w for which Fgain(w) is maximal
and we reduce its time frame at the worst side, i.e., we reduce
its time frame to [ol(w) + l,o,(w)] if F,,(w) = F~,fi(w),
and to [al(w),o,(w) - 11 if Fm,,(w) = Fr ight (u) . In case
Fmax(v) = F l , ~ (w) = &ght(W), we make an arbitrary choice.
Then the time frames and distribution function are updated,
and the same procedure is repeated until (TI (w) = o, (w) for all
‘U E V, which corresponds to a feasible schedule.

In this way, the time frames of the operations are gradually
reduced, and the distribution function gradually becomes a bet-
ter estimate of the final requirement function. So, the definite
scheduling of operations in clock cycles is postponed until
later, when the distribution function is a better estimate. This
modification makes the algorithm less greedy, and we may
expect that the algorithm generally obtains better solutions.

The worst-case time complexity of the algorithm remains
C3(Fln3), which can be seen as follows. In each iteration at
least one operation’s time frame is reduced by at least one
clock cycle, leading to a maximum of In iterations. On the
other hand, in each iteration only two instead of U(1) forces
F,,, have to be calculated for each operation.

VI. EFFICIENCY IMPROVEMENTS
Since the time complexity of force-directed scheduling

is rather large compared to other techniques such as list
scheduling, which can be implemented to run in O(n2) or
U (n log n) time depending on the chosen priority rules, Paulin
proposes an alternative method to compute the forces of (8) in
the basic force-directed scheduling algorithm [20]. Roughly
speaking, this is achieved by the following. First, in each
iteration, calculate for each operation w E V and each clock
cycle c E [m(w),a,(v)]

the self force of scheduling w in clock cycle c;
the contribution to other operation’s successor forces due

the contribution to other operation’s predecessor forces

Second, the precedence graph is traversed in a forward di-
rection, in a breadth-first way, and for each operation the
corresponding predecessor forces of its direct predecessors
are added to its own predecessor forces. Third, the successor
forces are added similarly by traversing the graph backwards.
Finally, the total forces are calculated. For more detail, see
[20]. In this way the time complexity of the basic force-
directed scheduling algorithm is reduced from U (mln3) to
O(mln2).

Unfortunately, this alternative method does not yield the
original forces of (8) as was claimed by Paulin; it corresponds
to a different set of forces, due to the fact that successor and
predecessor forces are multiply counted in the case there are
reconvergent paths in the graph. Furthermore, the approach
cannot be applied to the following cases.

For cyclic precedence graphs, it is not clear how to
traverse them in a forward or backward direction.
To determine forces in the case that the distribution
function for variable lifetimes and/or memory accesses
is used, in order to take memory cost into account, one
must consider several operations simultaneously, namely
the producing operation and all consuming operations
of each variable. This leads to an increase of the time
complexity, instead of a decrease.
Look-ahead schemes different from the one proposed
by Paulin and Knight may require the evaluation of all
changes in the probabilities to calculate the forces. This
also leads to an increase of the time complexity.

The points given above have strengthened our belief that the
approach falls short on several important points and therefore
we developed a different way to reduce the time complexity.
To this end, we first discuss some properties of the precedence
constraints. Next, we present an incremental way of computing

to a reduction of U ’ S time frame to [c , o,(v)]; and

due to a reduction of U ’ S time frame to [al(v), c].

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

VERHAEGH et al.: IMPROVED FORCE-DIRECTED SCHEDULING IN DIGITAL SIGNAL PROCESSING 955

the forces, and we show that the time complexity is reduced
by a factor n.

A. Precedence Constraints

A basic step in the force-directed scheduling algorithm is
the calculation of the effect of the change of an operation's

. - time frame on the time frames of the other operations. This
can be done either by traversing the precedence graph each
time that an operation's time frame changes, or by means of
all-pairs longest paths. The latter can be done as follows.

For each pair of operations U , w E V, the maximum length
m(u ,v) of a path in the precedence graph from U to v is
determined, in terms of the sum of the arc weights on the
path, with m(u, U) = -cc if no path from IL to v exists. Then
(10) is equivalent to

Vu,vEV: a(v) - ..(U) 2 m(u: U),

and the precedence constraint for schedule frames is equivalent
to

Note that if the precedence graph contains cycles of positive
length, then m(u,v) is not properly defined, but in that case
no feasible schedule exists. Furthermore, note that the all-pairs
longest paths have to be determined only once.

If we now have a feasible schedule frame 6 and we
change the time frame of an operation U to [al/(u), ah(u)]
[q(u) ; a,(u)], then the time frame of an operation v becomes
[+J), .:(.)I, where

.;(U) = max{al(v), a[(u) + m(u, U)} and

aL(v) = min{a,,(v),a:,(u) - m(v,u)} . (16)

So, the effect on the other operations' time frames is easy to
determine. Furthermore, the effect of U on v is completely
determined by m(u, v) and m(v, U), i.e., it is independent of
the time frames of other operations. This characteristic is used
in the next section.

B. Distribution Function Differences

Running the force-directed scheduling algorithm with grad-
ual time-frame reduction for a number of examples shows that
the average number of operations for which the time frames
have changed in an iteration is rather low, i.e., typically less
than two operations; see Fig. 16. This opens the possibility for
further efficiency improvements by making use of incremental
calculations. The amount of work to be done in one iteration
is then substantially reduced if only a few operations are
affected. On the other hand, if many operations are affected
in an iteration, a large step has been made towards a final
solution. So, if little progress has been made, little work has
to be done, and if much progress has been made, the same
amount of work has to be done as in the case where no use is
made of incremental calculations. This results in a lower order
worst-case time complexity, as we show in Section VI-D.

' 0 1 1 ' 2 ' 3 ' 4 ' 5 ' 6 1 7 ' 8 ' 9 ~ ' 0 '1 ' 2 ' 3 1 4 ' 5 ' 6 ' 7 ' 8 ' 9 ' ~ c
iteration; -1 iteration;

Fig. 6. A precedence graph and the operations' time frames before and after
scheduling operation b in clock cycle 5, in iterations j - 1 and j . In iteration
j - 1 only operation d's time frame is changed, from [3, 81 to [3, 71. So, only
the effect on this operation is different.

Let the schedule frame C (j) and the time frames
[a ~ (v , j) , au(w,j)] be functions of the iteration number
j , and let for an iteration j , C (j) be the subset of operations
for which the time frames have changed in the previous
iteration, so

C (j) = {U E vlf l l (v , j) # U l (W , j - 1)v
a u (v , j) # O " (V , j - 1)).

Now, for each operation 'U E V and for clock cycles
c = a l (v , j) and c = a u (v , j) , we want to determine
Fgsc(6(j),?(j)) of (15), where ? (j) is the schedule frame
obtained from 6 (j) by scheduling operation U in clock cycle
c. For this, we distinguish between two ways of computing

If 'U E C (j) , then the effect on other operations' time frames
due to scheduling operation v in clock cycle c is most likely
different from the effect in the previous iteration. Therefore,
we just compute AN as given by (13), i.e.,

Afi(.(j), w, 4 a).

A f i (e (j) , ? (j) , t , a) = N (? (j) , t , a) - fi(C(j),t,u). (17)

If w $ C (j) , then the time frame of v in iteration j equals
the one in iteration j - 1, and scheduling operation 'U in clock
cycle c is already attempted in iteration j - 1. If we now want
to determine the effect on other time frames, by means of (16),
then we see that for operations U $ C (j) this effect is the same
as in the previous iteration. Only for operations U E C (j) the
effect may be different. For an example, see Fig. 6. There we
have six operations, of which only one time frame has changed
in iteration j - 1, namely of operation d, i.e., C (j) = { d } .
In the figure the effect is shown of scheduling operation b in
clock cycle 5 , for iteration j - 1 and j . Only the effect on
operation d ' s time frame is different; for the other operations
the effect in iteration j is the same as in iteration j - 1.

As a consequence, only the operations in C (j) have a
contribution to the changes in processing unit distribution
function AN that differs from the one in the previous iteration,
and only for variables produced or consumed by operations in
C (j) new contributions have to be calculated to the changes
in the distribution function for variable lifetimes and memory
accesses. So, if we define for the operations

AP(5 ,? , U , a) = P(?, U, CL) - P(6, u,u),

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

then for t E T the changes in the processing unit distribution
function can be written as

A f i W) , w, t , a)

= 1 CAP(cr (j) , ? (j) , u ,a+ICF)
uEV(t) k € Z

+ AN(i?(j - l) , ?(j - l), t , a)
- A P (6 (j - l) , ? (j - l), U, a + k F)

u ~ V (t) k € Z

= A N (& (j - I), ?(j - I), t , a)

- A P (6 (j - l),?(j - l) , u , a + k F)] . (18)

Similarly, the changes in the distribution function for variable
lifetimes and memory access_es can be computed incrementally
[28]. Now, computing A N incrementally is restricted to
computing the changes in the probability functions of the
operations and variables that have been affected in the previous
iteration. So, if only a few operations have been affected, the
gain in computational effort is substantial.

C. Improved Force-Directed Scheduling

can now be written as follows.
The improved force-directed scheduling (IFDS) algorithm

Improved force-directed scheduling
Step 1 Initialize time frames to ASAP and ALAP

Step 2 Calculate N (6 , t , s).
Step 3.For each operation v which is not scheduled yet,

schedules.

and for c = (TI (U) and c = (T, (U) , calculate
AN(&, ?, t , a), where 7 is the schedule frame
obtained from 6 by scheduling 'U in clock cycle c.
Do this by
0 calculating A N from scratch if is affected in

the previous iteration or if this is the first
iteration, and

0 otherwise, calculate A N incrementally, using
the stored A N from the previous iteration.

Step 4 Store AN(6 , ?, t , s) and compute Fgsc(6, ?).
Step 5 Take operation v for which Fgain(v) is maximal,

and reduce its time frame to [(TI(ZI) + 1, a,(w)]
if FmaX(v) = Fl,ft(v), and to [~ I (u) , uu(v) - 11
otherwise.

Step 6 Update time frames of the operations and detect
which operations and which variables are
affected.

Step 7 Update N (6 , t , s).
Step 8 If not all operations are scheduled, return to

Step 3.

Note that at most 2n functions A N over domain T* x [0, F - 11
have to be stored, since the gradual time-frame reduction
requires only two forces per operation to be calculated.

D. Erne Complexity of IFDS
The worst-case time complexity of the improved algorithm

is O(Fln2), where n is the number of operations, 1 is the
maximum length of an operation's initial time frame, and F
is the algorithm period. This can be shown as follows.

The amount of work for determining A N is as follows.
a) In the first iteration A N is determined according to

(17), for all 'U E V and c = q (v) and c = uU(v).
Calculating (17) takes O(Fn) steps, resulting in a
total number of calculations for this step given by
O(Fn2).

b) If in an iteration the total slack, i.e., the sum of the
lengths of the operations' time frames, is reduced by
k, then at most IC operations are affected, and thus
determining A N in the next iteration takes O(ICFn)
steps, since for O (k) operations we use (17) which
takes O(Fn) steps, and for O(n) operations we use
(18) which takes O(ICF) steps.

c) The total slack is O(ln), so the total number of steps
to determine Af i in the iterations after the first one
is O(Fln2).

The amount of work for determining the forces is as

a) In each iteration two forces have to be determined for
O(n) operations, which is a sum of O (F) products,
so per iteration this requires O(Fn) steps.

b) The total slack is O(ln) and in each iteration the
slack is decreased, so there are O(Zn) iterations.
Therefore, the total amount of work to determine
d l forces is O(Fln2) .

The amount of work for updating the distribution function

a) If in an iteration the total slack of the operations is
reduced by I C , then at most IC operations are affected,
and thus O(k) operations and O (k) variables have
contributions to the A N function. These have to be
determined for O (F) clock cycles, so updating N
takes O(ICF) steps.

b) The total slack is O(ln), so the total amount of work
to update the distribution function is O(F1n).

Note that the worst-case time complexity of the improved
algorithm is not only determined by the calculation of the
changes in the distribution function, but also by the calculation
of the forces.

follows.

is as follows.

VII. EXPERIMENTAL RESULTS
In this section we discuss some experimental results to

illustrate the significance of the effectiveness and efficiency
improvements. For comparison to related work on force-
directed scheduling [l], [21], [22] we note that the latter
approaches are comparable to the basic algorithm given in
Section 111, although they may contain extensions. Therefore,
the improvements presented here may also be achieved when
applying our ideas to those approaches.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

VERHAEGH er al. : IMPROVED FORCE-DIRECTED SCHEDULING IN DIGITAL SIGNAL PROCESSING 957

.

.
0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 C

Fig. 7. An optimal schedule for the fifth-order digital elliptical wave filter
for a makespan of 17 clock cycles, which uses 3 multipliers and 3 adders.
A11 edges have a weight d(e) = 0.

t cost

" % # @ % g q i g g @ g z g g
m = 17 m = 18 m = 19 m = 2 1

Fig. 8. Adder and multiplier allocations for the filter example for the four
algorithms and for different makespans, in case of nonpipelined multipliers.

A. Effectiveness Improvements

We illustrate the effectiveness improvements by means of
four algorithms: the basic algorithm given in Section I11 (FDS),
the algorithm with gradual time-frame reduction (GTFR),
the algorithm with global spring constants (GSC), and the
algorithm with both modifications (IFDS). In all algorithms
we use 7 = $, i.e., in the Af" criterion in FDS and GTFR
we replace the factor 4 for A N by 4. Furthermore, we take
z = 3 for the global spring constants in GSC and IFDS.

The effectiveness improvements are shown by means of
three examples. The first example is the notorious fifth-order
digital elliptical wave filter from Dewilde, Deprettere, and
Nouta [3]. A graphical representation of this example is
given in Fig. 7. The graph is scheduled without overlapping
executions in a makespan of m clock cycles, where we have
taken several values of m. For this example we minimize the
number of functional units, by taking a(+) = a(*) = 1.0.
The retiming of all ports equals 0, except for the output ports
of the multipliers, which have retiming 1. The restart time of
an addition s(+) = 1. The restart time of a multiplication is
s(*) = 2 in case of a nonpipelined multiplier, and s (*) = 1
in case of a pipelined multiplier.

Fig. 8 shows the results for nonpipelined multipliers, and
Fig. 9 shows the results in case of pipelined multipliers.
Running times vary between 3 and 34 seconds on an Apollo
HP 425t. All algorithms find optimal solutions in all cases,
except FDS and GTFR for nonpipelined multipliers and a
makespan equal to 18.

For the filter example, the graph shown in Fig. 7 is repeat-
edly executed. For this purpose the original graph was cut at
iteration boundaries in order to get a graph without cycles.

f

m= 17 m = 18 m = 19

Fig. 9. Adder and multiplier allocations for the filter example with pipelined
multipliers, for different makespans.

Fig. 10. The original graph of the fifth-order digital elliptical wave filter,
optimally scheduled in a span [0, 321 and an algorithm period F = 16. The
backward edges have weight 1, the others have weight 0.

TABLE I
SCHEDULING AND ASSIGNMENT FOR THE FIFTH-ORDER

DIGITAL ELLIpnCAL WAVE FILTER, FOR AN ALGoRrnUl
PERIOD OF 17 CLCCK CYCLES AND PIPELINED MULTIPLIERS

IFDS SAM S A M HAL
adders 2 3 3 3
multipliers 1 2 2 2
registers 12 12 14 12
mun inputs 26 31 28 31
conncctions 44 so 49 -

However, since we can handle cycles as well, it is better to
start with the original graph, shown in Fig. 10. For this graph it
is possible to find a feasible schedule for an algorithm period
equal to 16.

For comparison to other work, we have scheduled the cyclic
graph with IFDS, with an algorithm period of 17 clock cycles,
and with pipelined multipliers. After this, we have manually
assigned operators and registers. The results are compared
to the results on the acyclic graph reported by Cloutier and
Thomas (SAM) [l] and Paulin and Knight (HAL) [22]; see
Table I. As we can see, IFDS not only results in a solution
with less adders and multipliers, but also with less interconnect
costs.

The second example we use is an inverse discrete cosine
transform (IDCT) [30], shown in Fig. 11. There are 30 ad-
ditions/subtractions with restart time 1 and retiming 0 for all
ports, and there are 16 multiplications with restart time 1,
and retiming 0 for the input port and 1 for the output port.
The cost of an adderhubtracter equals 2.5 and the cost of
a multiplier equals 4.0. The input operations i l , 22, . . , i 8
are executed in clock cycles 0,2 , . . . ,14, respectively, and

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

958 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995

22.5 -
20.0 -
17.5 -
15.0 -
12.5 -
10.0 -
1.5 -
5.0 -
2.5 -
0.0

0 ad&non/subtracnon 0 muluplicanon

Fig 1 1
weight 0

Graphical representation of the IDCT algonthm. All edges have

2

25.0

v: variables
m: multiplier
a: adder/subtracter

(a) (b)

Fig. I? .
variable lifetime?.

Results for the IDCT example (a) without and (b) with costs for

the output operations 0 1 ~ 0 2 , . . . ~ 08 are executed in clock
cycles 24.26.. . . ,38. respectively. Furthermore, the algorithm
period F = 16. The results of the four algorithms are
shown in Fig. 12, for the case that only adders/subtracters
and multipliers are taken into account (Fig. 12(a)), and for the
case that also variable lifetimes are taken into account with
cost n(t,,) = 0.2 (Fig. 12(b)). The figure clearly shows the
improvements due to global spring constants, which allow a
better trade-off between a large number of low-cost resources
and a small number of high-cost ones. In the case of costs for
variable lifetimes, FDS produces a solution that is over twice
as expensive as the solution produced by IFDS.

The third example we use is more elaborate. Its graphical
representation is given in Fig. 13. We have input and output
nodes and four different types of processing units, denoted
by A.B ,C , and D. The processing units have restart times
s (A) = 2 . s (B) = 2, s(C) = 1, and s (D) = 3. and area
costs a(A) = 3.0, a(B) = 2.5 . a (C) = 1.3. and a (D) = 2.8.
Input and output nodes have costs 0.0. Furthermore, costs
of variables are a(tv) = 0.8 and costs of memory accesses
are a(t ,) = 1.0. Initially, the input and output nodes are

Fig. 13.
in 30 clock cycles. All edges have weight 0.

Graphical representation of the more elaborate example. scheduled

cost m . s K

Fig. 14. Results for the more elaborate example.

Fig. 15.
weight 0

Graphical representation of the SEQ example. All edges ha\

fixed to the clock cycles indicated in the figure, and the other
operations have spans [-CO> fm]. The results obtained by
applying the four algorithms to this example are shown in
Fig. 14. For this example a total cost of 19.4 is the best result
ever found. FDS produces a solution with a cost more than
35% larger than this value.

B. EfJiciency Improvements

In this section we give some experimental results to illus-
trate the running time reductions obtained by the incremental
computation of the changes in distribution function of Section
VI. We do this by means of three examples: the fifth-order
digital elliptical wave filter (FILTER) and the IDCT example
of the previous section, and a theoretical example (SEQ). This
last example consists of a sequence of 53 operations, shown
in Fig. 15. The input and output ports of these operations
have retiming 0, and the restart time of the operations is 1. In
contrast to the IDCT, which allows parallelism in the execution
of operations, this example only allows sequential execution
of the operations involved.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

VERHAEGH et al.: IMPROVED FORCE-DIRECTED SCHEDULING IN DIGITAL SIGNAL PROCESSING 959

879
91

425 n

-totaJlunNngtime
- A N
- m t

t i 6 t i t i
.5 .5 .Ei .B

6 t i .s B
I e 3 E

(1.11) (1.23) (1.06)

W FILTER SEQ

Fig. 16. Running times in seconds for the three examples. The numbers
between brackets give the average number of affected operations per iteration.

We applied IFDS to these examples, with and without
incremental computation of AG. We only considered costs of
processing units, i.e., no costs for variable lifetimes or memory
accesses are taken into account. The algorithms found optimal
solutions, and the running times required are shown as bars in
Fig. 16. For each example, the left bar gives the running time
without incremental computation, and the right bar gives the
running time with incremental computation. The total running
time is split into two parts. The first one is the time needed
to calculate Afi , and the second part is the time needed to
do all the remaining calculations. As we can see, the running
times for determining the changes in the distribution function
is drastically reduced for all examples.

VIII. CONCLUSION

In this paper we have discussed the technique of force-
directed scheduling. We have given a mathematical justifi-
cation of the basic force-directed scheduling algorithm as
introduced by Paulin and Knight [19]-[21], and we proposed
modifications to improve the effectiveness and the efficiency of
the algorithm. The effectiveness improvements are achieved by
using global spring constants, which ensures that trade-offs are
done better, and gradual time-frame reduction, which makes
the algorithm less greedy. The efficiency improvements are
achieved by an incremental method to calculate the changes in
the distribution function, which reduces the time complexity
of the algorithm from cubic in the number of operations to
quadratic. The effectiveness and efficiency improvements have
been illustrated by an empirical performance analysis based
on a number of problem instances. We have shown that the
improvements obtained are substantial.

Furthermore, we have shown the application of force-
directed scheduling to the high-throughput scheduling prob-
lem, which occurs in the design methodology PHIDEO. Since
this problem is NP-hard and since practical instances are
too large to be solved exhaustively, we decided to use an
approximation algorithm. For this, we have chosen force-
directed scheduling because of the following advantages. First,

force-directed scheduling is a technique that is able to make
a trade-off between processing units and memory. This is
important if memory constitutes a significant part of a design.
Second, force-directed scheduling can be used for pipelined
scheduling and for cyclic signal flow graphs, which are charac-
teristic for DSP applications. Third, force-directed scheduling
finds high-quality solutions. The time complexity of force-
directed scheduling is rather high, but with the presented
improvements the algorithm has practical running times for
signal flow graphs with a number of operations in the order
of magnitude of 100.

REFERENCES

R. J. Cloutier and D. E. Thomas, “The combination of scheduling,
allocation, and mapping in a single algorithm,” Carnegie Mellon Univ.,
Pittsburgh, PA, Res. Rep. CMUCAD-90-17, May 1990.
H. De Man, F. Catthoor, G. Goossens, J. Vanhoof, J. van Meerbergen,
and J. Huisken, “Architecture-driven techniques for VLSI implemen-
tation of DSP algorithms,” Proc. IEEE, vol. 78, no. 2, pp. 319-335,
1990.
P. Dewilde, E. Deprettere, and R. Nouta, “Parallel and pipelined VLSI
implementation of signal processing algorithms,” V U 1 and Modem
Signal Processing, S. Y . Kung, H. J. Whitehouse, and T. Kailath, a s .
Englewood Cliffs, NJ: Prentice-Hall, 1985, pp. 258-264.
M. R. Garey and D. S. Johnson, Computers and Intracrabilify: A Guide
to the Theory of NP-Completeness.
C. H. Gebotys and M. I. Elmasry, “A global optimization approach for
architectural synthesis,” in Proc. ICCAD, Santa Clara, CA, Nov. 1990,

R. Haupt, “A survey of priority-rule based scheduling,” OR Spektrum,
vol. 11, no. I , pp. 3-16, 1989.
C. T. Hwang, J. H. Lee, and Y. C. Hsu, “A formal approach to the
scheduling problem in high level synthesis,” IEEE Trans. CAD, vol. 10,
no. 4, pp. 464-475, 1971.
T. Kim, J. W. S. Liu, and C. L. Liu, “A scheduling algorithm for
conditional resource sharing,” in Proc. ICCAD, Santa Clara, CA, Nov.
1991, pp. 84-87.
J. H. M. Korst, “Periodic multiprocessor scheduling,” Ph.D. dissertation,
Eindhoven Univ. of Technol., Eindhoven, The Netherlands, 1992.
C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing synchronous
circuitry by retiming,” in Third Caftech Cant VUI, Mar. 1983, pp.
87-1 16.
P. E. R. Lippens, J. L. van Meerbergen, A. van der Wed, W. F.
J. Verhaegh, B. T. McSweeney, J. 0. Huisken, and 0. P. McArdle,
“PHIDEO: A silicon compiler for high speed algorithms,” in Proc.
EDAC, Amsterdam, The Netherlands, Feb. 1991, pp. 436-441.
R. S. Martin and J. P. Knight, “Operations research in the high-level
synthesis of integrated circuits,” Comput. Ops Res., vol. 20, no. 8, pp.
845-856, 1993.
M. C. McFarland, “Using bottom-up design techniques in the synthesis
of digital hardware from abstract behavioral descriptions,” in Proc. 23rd
DAC, Las Vegas, NV, June 1986. pp. 474-480.
M. C. McFarland, A. C. Parker, and R. Camposano, “The high-level
synthesis of digital systems,” Proc. IEEE, vol. 78, no. 2, pp. 301-318,
1990.
J. L. van Meerbergen, P. E. R. Lippens, B. T. McSweeney, W. F.
J. Verhaegh, A. van der Werf, and A. T. van Zanten, “Architectural
strategies for high-throughput applications,” J. V U 1 Signal Process.,
vol. 5, no. 2/3, pp. 201-220, Apr. 1993.
S. Note, J. L. van Meerbergen, F. Catthoor, and H. de Man, “Automated
synthesis of a high-speed CORDIC algorithm with the CATHEDRAL-
111 compilation system,’’ in Proc. ISCAS, Helsinki, Finland, June 1988,

A. OIBh, S . H. Gerez. and S. M. Heemstra de Groot, “Scheduling and
allocation for the high-level synthesis of DSP algorithms by exploitation
of transfer mobility,” in Pmc. CompEuro, Delft, The Netherlands, 1992,
pp. 145-150.
N. Park and A. C. Parker, “Sehwa: A software package for synthesis of
pipelines from behavioral specification,” IEEE Trans. Computer-Aided
Design, vol. 7, no. 3, pp. 356370, 1988.
P. G. Paulin and J. P. Knight, “Force-directed scheduling in automatic
data path synthesis,” in Proc. 24th DAC, Miami Beach, FL, July 1987,
pp. 195-202.

New York: Freeman, 1979.

pp. 258-261.

pp. 581-584.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

960 IEEE TRANSACTIONS ON COMPUTER-AIDED DEI iIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995

P. G. Paulin, “High-level synthesis of digital circuits using global sched-
uling and binding algorithms,” Ph.D. dissertation, Carleton University,
Ottawa, Canada, 1988.
P. G. Paulin and J. P. Knight, “Force-directed scheduling for the
behavioral synthesis of ASICs,” lEEE Trans. Computer-Aided Design,
vol. 8, no. 5. pp. 661479, 1989. __. “Algorithms for high-level synthesis,” IEEE Design and Test of
Computers, vol. 6. pp, 18-31, Dec. 1989.
L. Stok, “Architectural synthesis and optimization of digital systems,”
Ph.D. dissertation. Eindhoven Univ. of Technol., Eindhoven, The
Netherlands. 1991.
W. F. J. Verhaegh, “Scheduling problems in video signal process-
ing,” Master’s thesis, Eindhoven Univ. of Technol., Eindhoven, The
Netherlands, Apr. 1990.
W. F. J . Verhaegh, E. H. L. Aarts, J . H. M. Korst, and P. E. R. Lippens,
“Improved force-directed scheduling,” in Proc. EDAC, Amsterdam, The
Netherlands. Feb. 199 1. pp. 430435.
W. F. J. Verhaegh, P. E. R. Lippens, E. H. L. Aarts, J. H. M. Korst,
J. L. van Meerbergen, and A. van der Werf, “Modelling periodicity by
PHIDEO streams,” talk presented at the Sixth High Level Synthesis
Workshop, Dana Point Resort, Nov. 1992.
W. F. J . Verhaegh, P. E. R. Lippens. E. H. L. Aarts, J . H. M. Korst,
A. van der Werf, and J . L. van Meerbergen, “Efficiency improvements
for force-directed scheduling,” in Proc. ICCAD. Santa Clara, CA. Nov.
1992. pp. 286291.
-, “Improved force-directed scheduling in high-throughput digi-
tal signal processing,” Philips Research Laboratories, Eindhoven, The
Netherlands, Nat. Lab. Rep. NL-UR-O15/94, Sept. 1994.
A. van der Werf, B. T. McSweeney, J. L. van Meerbergen. P. E.
R. Lippens, and W. F. J . Verhaegh. “Hierarchical retiming including
pipelining,” in Proc. VLSI, Edinburgh, Aug. 199 I , pp. 11.2.1-1 1.2.10.
P. H. N. de With, “Motion-adaptive intraframe transform coding of video
signals.” Philips J . Res.. vol. 44, no. 2/3, pp. 345-364, 1989.

Wim F. J. Verhaegh received the mathematical
engineering degree with honors in 1990 from the
Eindhoven University of Technology, The Nether-
lands

Since then, he has been with the Philips Research
Laboratories in Eindhoven as a member of the group
Digital VLSI Presently, he 19 working on high-level
synthesis of DSP sy\tems tor video applications,
with the emphasi\ on schcduling problems and

-’-

L

1 techniques

Emile H. L. Aarts received the M Sc degree
in phy\ic\ from the University of Nijmegen,
The Netherlands, and the Ph.D degree from the
University of Groningen, The Netherlands

He is with the Philips Research Laboratones in
Eindhoven, The Netherlands a\ a Senior Scientist -- r,

__1

He also hold\ an appointment as a Professor of
Computer Science with the Eindhoven University
of Technology, and a management consultancy
position with the Research Institute for Information
Svstems. Maastricht. The Netherlands His research

field is combinatorial optimization in planning and design

Jan H. M. Korst received the M Sc degree in
mathematics from Delft University of Technology,
The Netherlands. and the Ph D degree from the
Mathematics and Computing Science Department
of the Eindhoven University of Technology, The
Netherlands

Since 1985 he has been with the Philips Re-
search Laboratones in Eindhoten, where he has
been working mainly on combinatonal optimization
and resource management problem\ in the held\ of
VLSI design and multimedia systems HIS research

interests include combinatonal optimizdtion, complexity theory, and the design
and analysis ot algorithms

Jef L. van Meerbergen (M’87-SM’92) received
the electncal engineering degree and the Ph D
degree from the Katholieke Universiteit Leuven,
Belgium, in 1975 and 1980, respectively

In 1979 he joined the Philips Research Labo-
ratones in Eindhoven, The Netherlands He was
engaged in the design of MOS digital circuits,
domain-specific processors. and general purpose
digital signal processon In 1985. he started
working on application-driven high-level synthesis
Initially, this work wa\ targeted towdrds audio and

telecom DSP applications The current research activities are concentrated on
high-level \ynthesi\ for high-throughput video application9

\ @

Paul E. R. Lippens received the electncal engineer-
ing degree with honors in 1986 from the Eindhoven
University of Technology, The Netherlands

Since then, he has been with the Philips Research
Laboratones in Eindhoven as a member of the
group Digital VLSI Preuently, he is working on
architectural level synthesi9 of DSP systems for
video applications /

ot integrated circuits C
Eindhoven University of

Albert van der Werf (M’91) received the M.Sc.
degree with honors in electrical engineering for
research in the area of telecommunications in 1987
from the University of Twente, The Netherlands.

From 1987 to 1989 he followed a postgraduate
courFe on the design of VLSI circuits at the Gradu-
ate School Twente, The Netherlands. Since 1989 he
has been with Philips Electronics Ltd. at its research
laboratories in Eindhoven, The Netherlands. His
present areas of interest include the development of
computer-aided design methodologies for the design

hrrently, he is pursuing the Ph.D. degree at the
Technology, The Netherlands.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:17:57 UTC from IEEE Xplore. Restrictions apply.

