

Experimentally investigating the effectiveness and effort of
modeling conventions for the UML
Citation for published version (APA):
Lange, C. F. J., DuBois, B., Chaudron, M. R. V., & Demeyer, S. (2006). Experimentally investigating the
effectiveness and effort of modeling conventions for the UML. (Computer science reports; Vol. 0614).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/9266944e-4ddb-41c2-8622-0266046ab723

Experimentally Investigating the Effectiveness
and Effort of Modeling Conventions for the UML

Christian F.J. Lange1, Bart DuBois2, Michel R.V. Chaudron1, and Serge
Demeyer2

1 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,

C.F.J.Lange@tue.nl, M.R.V.Chaudron@tue.nl
2 Lab On REengineering (LORE), University of Antwerp, Belgium,

Bart.Dubois@ua.ac.be, Serge.Demeyer@ua.ac.be

Abstract. Modelers tend to exploit the various degrees of freedom pro-
vided by the UML. The lack of uniformity and the large amount of defects
contained in UML models result in miscommunication between different
readers. To prevent for these problems we propose modeling conventions,
analogue to coding conventions for programming. This work reports on
a controlled experiment to explore the effect of modeling conventions on
defect density and modeling effort. 106 masters’ students participated
over a six-weeks-period. Our results indicate that decreased defect den-
sity is attainable at the cost of increased effort when using modeling
conventions, and moreover, that this trade-off is stressed if tool-support
is provided. Additionally we report observations on the subjects’ adher-
ence to and attitude towards modeling conventions. Our observations
indicate that efficient integration of convention support in the model-
ing process, e.g. through training and seamless tool integration, forms a
promising direction towards preventing defects.

1 Introduction

The Unified Modeling Language (UML [35]) is the de facto software modeling
language. Software development will become even more model-centric with the
advent of Model Driven Architecture (MDA [34]). The UML is used in different
phases during software development such as requirements analysis, architecture,
detailed design and maintenance. In these phases it serves various purposes such
as communication between project stakeholders, documentation of design de-
cisions, prediction of quality properties and test case generation. The UML is
designed as a visual multi-purpose language to serve all these needs. It allows
to choose from 13 diagram types, it offers powerful extension mechanisms and it
lacks a formal semantics. Due to these characteristics the user has the freedom
to choose the language features that fit his purpose of modeling. However, the
UML does not provide guidelines on how to use the language features for a spe-
cific purpose. For example, there is no guidance that describes when it is useful
to use multiplicities of when a class should be described by a state diagram. As
a result, the UML user is confronted with a large degree of freedom.

The UML possesses the risk for quality problems due to its multi-diagram
nature, its lack of a formal semantics and the large degree of freedom in using
it. The large degree of freedom and the lack of guidelines results in the fact that
the UML is used in several different ways with respect to rigor, level of detail,
style of modeling and amount of defects. Industrial case studies [25] and surveys
give empirical evidence that individuals use the UML in many different ways
(even within the same project team) and that the number of defects is large
in practice. Moreover, experiments have shown that defects in UML models are
often not detected and cause misinterpretations by the reader [24].

The effort for quality assurance is typically distinguished between prevention
effort and appraisal effort [39]. Prevention effort aims at preventing for deviations
from quality norms and appraisal effort is associated with evaluating an artifact
to identify and correct deviations from quality norms. There are techniques in
software development to detect and correct the aforementioned deviations from
quality norms. Reviews, inspections and automated detection techniques are
used in practice to detect weak spots. They are associated with appraisal effort.
In programming preventive techniques to assure a uniform style and compre-
hensibility of the source code are established as coding conventions or coding
standards [36]. As an analogy for UML modeling we propose modeling conven-
tions to prevent modellers to deviate from quality norms. We define modeling
conventions as Conventions to ensure a uniform manner of modeling
and to prevent for defects.

The main purpose of this paper is to explore experimentally the effectiveness
of modeling conventions for UML models with respect to prevention of defects.

An additional purpose of this study is to explore subjects’ attitude towards
modeling conventions and how modeling conventions are used. The observations
can be used to improve the future use of modeling conventions.

This paper is structured as follows: Section 2 describes modeling conventions
and related work. Section 3 describes the design of the experiment. Section 4
presents and discusses the results. Section 5 discusses the threats to the validity
of the experiment and Section 6 discusses the conclusions and gives directions
for future work.

2 Modeling Conventions

2.1 Related Work

One of the first guidelines for programming is Dijkstra’s ‘Go to considered harm-
ful’ [11]. The concept of coding conventions is nowadays well-established. There
is a large variety of coding conventions (also known as guidelines, rules, stan-
dards, style) for almost all programming languages. The amount of research
addressing coding conventions is rather limited though. Omam and Cook [36]
present a taxonomy for coding conventions which is based on an extensive re-
view of existing coding conventions. They identify four main categories of coding
conventions: general programming practice, typographic style, control structure

2

style and information style. They found that there are several conflicting coding
conventions and that there is only little work on theoretical or empirical valida-
tion of coding conventions such as [30]. Bieman [5] investigates the adherence to
‘style guidelines’, i.e. conventions, of source code and other software artefacts on
real-world software systems. Initial results reveal a large amount of violations.

Our review of literature related to modeling conventions for the UML re-
vealed the following categories: design conventions, syntax conventions, diagram
conventions and application-domain specific conventions.

Design conventions address the design of the software system in general,
i.e. they are not specific for UML. Riel [38] and Coad and Yourdon [8][9] provide
conventions for the design of object-oriented system aiming at the maintainabil-
ity of the system. The conventions that include for example high cohesion and
low coupling are empirically validated by Briand et al. [6]. The results of their
experiment show that the conventions have a beneficial effect on the maintain-
ability of object-oriented systems.

Syntax conventions deal with the correct use of the language. Similar
to Strunk and White’s book The Elements of Style for the English language
Ambler [3] presents a collection of 308 conventions for the style of UML. His
conventions aim at understandability and consistency and address syntactical
issues, naming issues, layout issues and the simplicity of design. Ambler claims
that the conventions are based on ‘real-world experience and proven software
engineering experience’, but to the best of our knowledge there is no empirical
validation of the conventions in literature.

Object-oriented reading techniques (OORT) are used in inspections [15] to
detect defects in software artefacts. OORT’s for UML are related to model-
ing conventions in the sense that the rules they prescribe for UML models can
be used in a forward-oriented way during the development of UML models to
prevent for defects. The rules in OORT’s are used to detect consistency and com-
pleteness defects. Conradi et al. [10] conducted an industrial experiment where
OORT’s were applied for defect detection (i.e. an appraisal effort). The results
show defect detection rates between 68% and 98% in UML models.

Diagram conventions deal with issues related to the visual representa-
tion of UML models in diagrams. Diagram conventions were addressed in the
Fourth Workshop on Graphical Documentation [33]. Koning et al. [20] provide
a collection of diagram conventions that are not specific for UML models but
apply to IT-architecture diagrams in general. Their conventions aim at improv-
ing the readability of diagrams and they provide a lightweight validation where
industrial architects acknowledged the usefulness of 97% of their presented con-
ventions. MacKinnon et al. [31] present a collaborative process to improve the
readability of UML diagrams for technical documentation. A validation of the
process is left as future work. Purchase et al. [37] present layout guidelines for
UML class diagrams and collaboration diagrams based on experiments. Eichel-
berger [13] proposes 14 layout conventions for class diagrams aiming at algo-
rithms for automatic layout of class diagrams. Sun et al. [40] present diagram

3

conventions based on perceptual theory and analyze the adherence to their con-
ventions of layout-algorithms of two UML case tools.

Application-domain specific conventions. A collection of application-
domain specific conventions is given by Loján-Mora et al. [29]. They describe
conventions to use UML package diagrams to create multidimensional models
for data warehouses. Additionally to their conventions they use an UML profile.
UML profiles are sets of stereotypes, tagged values and constraints that are used
to assign custom semantics to UML model elements. The purpose of profiles is
to support modeling in a particular application domain. Hence, profiles are in
fact application-domain specific conventions. Kuzniarz et al. [21] conducted an
experiment on the effect of using stereotypes to improve the understandability
of UML models. Their results show that stereotypes improve the correctness of
understanding UML class diagrams by 25%.

2.2 Model Quality

Modeling conventions are proposed to improve the quality of UML models dur-
ing development. Hence, in this experiment we investigate the effectiveness of
modeling conventions on model quality. In this experiment we investigate

– Syntactic quality, which is the degree to which the model adheres to the
modeling language.

Syntactic quality is one of the three notions of model quality according to Lind-
land’s [28] framework for conceptual models. The two other notions according
to Lindland are:

– Semantic quality: The degree to which the model correctly represents the
problem domain.

– Pragmatic quality. The degree to which the model is correctly understood
by its audience.

Evaluation of semantic and pragmatic quality involves participation of several
people, and, hence, is an experiment itself. This would be out of the scope of
this experiment, but we will investigate the effect of modeling conventions on
semantic and pragmatic quality in a follow-up experiment.

2.3 Modeling Conventions in this Experiment

Based on the literature review and the experience from our case studies, we
selected a set of modeling conventions. We assume that subjects with limited
experience and time for training like the students in this study cannot handle a
very large set of modeling conventions. To keep the set of modeling conventions
manageable and comprehensible we decided that it should fit on one A4 page.
This led to a set of 23 modeling conventions after applying the following selection
criteria:

4

– Relevance. The modeling convention should be relevant to improve the qual-
ity of the UML model by preventing for frequent defects [26] [23]

– Comprehensibility. The modeling convention should be easy to comprehend
(e.g. it relates to well known model elements).

– Measurability. The effect of the modeling convention should be measurable.
– Didactic value. Applying the modeling convention should improve the sub-

jects’ UML modeling skills.

The collection of modeling conventions used in this experiment is presented in
Appendix A. In this experiment we focus on assessing syntactic quality, but we
deliberately don’t limit the collection of modeling conventions to syntactic con-
ventions only. As described by Omam and Cook [36] there happens interaction
between several conventions. Therefore it is necessary to use a representative
set of modeling conventions, i.e. a set representing several categories, to obtain
realistic results. Moreover we assess the semantic and pragmatic quality of the
delivered models in a follow-up experiment such that we eventually assess quality
in general.

3 Experiment Design

In this section we describe the experimental design according to Wohlin et
al. [41].

3.1 Purpose and Hypotheses

In the previous section we have described the concept of modeling conventions.
The purpose of the experiment reported in this paper is to investigate the ef-
fectiveness of modeling conventions in improving the quality of UML models.
The goal of this experiment is summarized in Table 1 according to the GQM
template by Basili et al. [4].

Modeling conventions require model developers to adhere to specific rules.
Therefore we expect the quality of models to be better, i.e. there are fewer defects
in a model that is created using modeling conventions. When additionally using
a tool to check for adherence to the modeling conventions, we expect the model
quality to be even better than without tool usage. In other words, we formulate
in the null hypothesis that there is no difference between the treatments:

– H10: There is no difference between the syntactic quality of UML models
that are created without modeling conventions, with modeling conventions
and with tool-supported modeling conventions.

– H1alt: There is a difference between the syntactic quality of UML models
that are created without modeling conventions, with modeling conventions
and with tool-supported modeling conventions.

Adherence to modeling conventions requires special diligence. We expect that
this leads to higher effort for modeling. When additionally using the tool, the
expected effort is even higher. Therefore we formulate the second hypothesis of
this experiment as follows:

5

– H20: There is no difference between the effort for modeling UML models
that are created without modeling conventions, with modeling conventions
and with tool-supported modeling conventions.

– H2alt: There is a difference between the effort for modeling UML models
that are created without modeling conventions, with modeling conventions
and with tool-supported modeling conventions.

Analyze modeling conventions for UML
for the purpose of investigating their effectiveness
with respect to model quality and effort
from the perspective of the researcher
in the context of masters students at the TU Eindhoven

Table 1. Goal according to GQM template

3.2 Design

We are interested in the effect of modeling conventions. Therefore the treatment
in this experiment is the use of modeling conventions during model development.
Additionally we are interested in the use of modeling conventions in combination
with a tool to control adherence to the conventions. Hence, we define three
treatment levels:

NoMC: no modeling conventions. The subjects use no modeling conven-
tions. This is the control group.

MC: modeling conventions. The subjects use the modeling conventions
that are described in Section 3.3.

MC+T: tool-supported modeling conventions. The subjects use the
modeling conventions and the analysis tool as described in Section 3.3.

The experimental task was carried out as an assignment in a university
course. The didactic constraints of the course were that the assignment was
carried out in teams of three students which reflects practical software develop-
ment better than individual work. Most teams consisted of three students. Due
to individual circumstances a few exceptions of this team size had to be made
(see Section 4). Experience showed that students of the same skill-level tend
to gather in self-selected teams, which would lead to large differences between
teams in skill and motivation. To avoid this effect we have randomly assigned
student to teams.

We have also assigned the teams to treatment levels by randomization. Ac-
cording to [16] this allows us to assume independence between the treatment
groups. This assumption is strengthened by the background questions (see Sec-
tion 4.6). Each team performed the task for one treatment level. Hence we have
an unrelated between-subjects design with twelve teams for each treatment level
as depicted in Table 2.

6

Treatment NoMC MC MC+T

Number of Teams 12 12 12
Table 2. Design of the Experiment

3.3 Objects and Task

The experimental objects are a textual description of a system, a set of modeling
conventions and a UML analysis tool.

The task of the subjects was to develop a UML model of the architecture
of an information system for an insurance company. The required functionality
of the system is described in a document of four pages. The system involves
multiple user roles, administration and processing of several data types. The
complexity of the required system was chosen such that on the one hand the
subjects were challenged but on the other hand there was enough spare time for
possible overhead effort due to the experimental treatment. The subjects used
the Poseidon [2] UML tool to create the UML models.

The task of the teams who received treatment MC and MC+T was to apply
modeling conventions during development of the UML model. We described the
selection of modeling conventions for this experiment in Section 2.3. The mod-
eling conventions document used in this experiment contains for each modeling
convention a unique identifier, a brief descriptive name, a textual description of
the convention, and the name of the metric or rule in the analysis tool, that it
relates to.

The subjects of treatment MC+T had tool-support to assure their adher-
ence to the modeling conventions. In this study we used the SDMetrics [42]
UML analysis tool. SDMetrics calculates metrics and performs rule-checking on
UML models. We have customized the set of metrics and rules to allow checking
adherence to the modeling conventions used in this experiment. Our customized
metrics-definition file is available at [22].

3.4 Subjects

In total 106 students participated in the experiment. The experiment was con-
ducted within the course “Software Architecting” in the fall term of 2005 at
the Eindhoven University of Technology (TU/e). This course is taught in the
first year of the Masters program in computer science, hence all subjects hold a
bachelor degree or equivalent. Most students have some experience in using the
UML and object oriented programming through university courses and industrial
internships. The students’ background is described in Section 4.6.

The students were motivated to perform well in the task, because it was
part of an assignment which was mandatory to pass the course. The student’s
motivation is confirmed by the self-assessment.

The students were not familiar with the goal and the underlying research
question of the experiment to avoid biased behavior.

7

3.5 Operation

Prior to the experiment we conducted a pilot run to evaluate and improve the
comprehensibility of the experiment materials. The subjects of the pilot experi-
ment did not participate in the actual experiment.

The experiment was conducted as a mandatory assignment of the course
“Software Architecting”. Despite prior UML knowledge of the students we pre-
sented and explained UML during the course before the experiment. The as-
signment started with an instruction session where the task was explained to all
students and the elementary functions of the Poseidon and SDMetrics tools were
demonstrated. Additionally the subjects were provided with the assignment ma-
terial [22] including a detailed task description, the description of the insurance
company system, and instructions of the tools. The instructions included in-
formation about the required diagram types (class, sequence, and use case) and
about the expected granularity of modeling (to obtain comparable models). Only
the teams of treatment MC and MC+T had access to the modeling conventions
and the teams of treatment MC+T had exclusive access to the SDMetrics tool.
The teams of treatment MC and MC+T were explicitly instructed to apply the
treatment regularly and to contact the instructors in case of questions about the
treatment. The task description did not include instruction on roles within the
teams, but explicitly encouraged cooperation.

The experiment was executed over a period of six weeks. During this period
most groups contacted the instructors at least once. This enabled the instructors
to observe whether the treatment was applied correctly within the team.

3.6 Data Collection

For the analysis of the experiment collected data on the quality of the UML
models, effort data, background data of the subjects, and data about how the
subjects experienced the task.

In this study we measured model quality in terms of adherence to rules and
metrics. 16 of the 23 modeling conventions are directly related to rules and
metrics that we included in the SDMetrics tool (see Table 5). Therefore we used
SDMetrics to obtain the relevant data.

We used logbooks to measure the effort needed for the task. The subjects
were provided with an Excel Logbook template to record the time spent during
the assignment in a uniform manner. The time was recorded for the three activ-
ities related to the development of the UML model: modeling itself, reviewing
the model and meetings related to the model. We collected the logbooks after
the assignment was completed, such that we had the effort data for individual
subjects and for the entire teams.

We used a post-test questionnaire to collect data about the subjects’ educa-
tional background, experience, how the task was executed and how the task was
experienced. The questionnaire was distributed through the university’s internal
survey system PollWeb [14] and contained 17 questions.

8

3.7 Analysis Techniques

For quality and effort we have to analyze number of defects and time in minutes,
respectively. These metrics are measured on a ratio scale. We use descriptive
statistics to summarize the data. For hypothesis testing we compare the means
using a one-way ANOVA test [32]. We have analyzed the data with respect
to the assumptions of the ANOVA test and have found no severe violations.
The analysis is conducted using the SPSS [1] tool, version 12.0. As this is an
exploratory study we apply the significance level of p=0.10 to reject the null
hypothesis, i.e. we reject the null hypothesis if p<0.01.

The data for developers’ attitude and background is obtained from the post-
test questionnaire, which was designed as a multiple-choice questionnaire. The
answers are on a five-point Likert-scale [27] and, hence, measured on an ordi-
nal scale. We summarize the data by presenting the frequencies as percentages
for each answer option and providing additional descriptive statistics where ap-
propriate. We compare the equality of answer distributions between different
treatment groups using the χ2-test [32]. For this test we used Microsoft Excel.
We apply the threshold of p<0.10 for statistical significance. When we compare
three distributions (NoMC, MC and MC+T) a χ2 value less than 13.36 implies
that p<0.10. In cases where we compare only two distributions the threshold is
χ2 = 7.78.

4 Results

This section presents the results of the experiment. During the duration of the
experiment eight subjects dropped out, which is a mortality rate of 7.5%. As
a result three teams consisted only of a single subject. As these teams were
distributed evenly over all three treatments we assume that in case results are
affected by the reduced team size, all treatments are affected equally. Hence, we
do not remove the results of the single-person teams from our analysis. In the
treatment group MC+T one team completed the task with only two members
(we include its data) and one team did not finish the task (we exclude its data).
All other teams consisted of three members.

4.1 Outlier Analysis

To check whether the data is reasonable and to identify invalid data sets we
analyze the outliers. Figure 1 shows the boxplots for the size of the obtained
models (number of classes), the total amount of time needed by the teams to
complete the task and the defect density (number of defects per class) in the
obtained models.

We identify two outliers and one extreme outlier for size, one outlier for time
and no outliers for defect density. According to Wohlin [41] the reasons for an
outlier should be analyzed in order to decide whether to include or to exclude the
data point in the analysis. Outliers that are due to a rare event such as an error

9

Fig. 1. Boxplots for Number of Classes and Total Time

in the execution of the experiment or lack of subjects’ seriosity in the experiment
should be excluded. The numbers in the boxplots indicate the internal identifiers
of the data set. We have analyzed all collected data (logbooks, UML model, post-
test questionnaire) of teams that are identified as outliers to decide what to do
with them:

– Outliers 11, 12 and 35: The UML models contain a large number of classes
(285 classes for Outlier 11, 96 classes for Outlier 12, 64 classes for Outlier 35).
The reason is that the level of detail of the model is very high. For Outlier
11 it is known that subjects in the team were very enthusiastic about UML
modeling. The other data of the teams shows no anomalies. As these outliers
are not due to a rare situation and can happen in other situations again we
decide to not exclude them from the analysis.

– Outlier 36: This team needed only 650 minutes to complete the task. This low
number is explained by the drop out of two team members. The other data
of the remaining subject shows no anomalies. As drop outs can also happen
in other situations and even occur in professional software development we
decide to not exclude this data from the analysis.

4.2 H1: Presence of Defects

Total Number of Defects We assess the quality of the UML model in terms
of number of defects as described in Section 3.2. Figure 2 shows the boxplot for
the total number of defects (on the left) and the number of defects normalized
by the size of the model (on the right). Table 3 shows the descriptive statistics.
The percentages in Table 3 are relative to the treatment level ‘no treatment’.
The descriptive statistics for the normalized number of defects show that mod-
eling conventions (MC) improve the mean and the median by 9,5% and 8,9%,
respectively. Modeling conventions with tool support (MC+T) improve mean
and the median by 18,0% and 17,8%, respectively. As described in Section 3.7
we performed an ANOVA analysis for hypothesis testing. The results shown in

10

Table 4 reveal that the quality improvements in terms of defect reduction are
not statistically significant.

Fig. 2. Boxplots for absolute Number of Defects and Defect Density

Treatment Mean Perc. Median Perc. StDev Max Min

Defects (total) NoMC 102,42 100,0% 55,5 100,0% 157,280 572 42
MC 53,67 52,4% 49,0 88,3% 34,102 135 9

MC+T 46,91 45,8% 29,0 52,3% 40,990 154 8

Defects (normalized) NoMC 1,5181 100,0% 1,4720 100,0% 0,3964 2,312 1,032
MC 1,3740 90,5% 1,3564 92,1% 0,4121 2,045 0,607

MC+T 1,2443 82,0% 1,2195 82,8% 0,6671 2,406 0,320
Table 3. Descriptive Statistics for Model Quality

Detailed Results We have collected several metrics of the delivered UML
models to investigate the effect of individual modeling conventions. Table 5 sum-
marizes the detailed results of selected metrics. For most modeling conventions
we used more than one metric to measure the effect, but for sake of brevity
we omit some metrics with similar results in the table. Note that not all of the
metrics discussed here contribute to the Total Number of Defects discussed be-
fore, because some metrics do not measure defects, but other model properties.
The Table shows for each metric its name and in column MC the identifier of
the modeling conventions it relates to (see Table 11 for the description of the
modeling conventions). The results are categorized as indicated in column Cat.
according to the following scheme:

– A – mean(NoMC) > mean(MC) and mean(NoMC) > mean(MC + T),

11

Sum of Squares df Mean Square F Sig.

Defects (total) Between Groups 21570.1 2 10785.09 1.144 .331
Within Groups 301708.5 32 9428.39
Total 323278.7 34

Defects (normalized) Between Groups .432 2 .216 .858 .433
Within Groups 8.048 32 .251
Total 8.479 34

Table 4. Results of the ANOVA test for Quality

– B – mean(NoMC) > mean(MC) and mean(NoMC) < mean(MC + T),
– C – mean(NoMC) > mean(MC) and mean(NoMC) < mean(MC + T),
– D – result is inconclusive (will be discussed below).

The Mean-columns show the mean of the metric for each treatment group. The
∆-columns give the relative difference between NoMC and MC and MC+T,
respectively. Note that the reliability of the differences between the reported
results varies. We report the results of the ANOVA-test for equality of means
in the columns F (test statistic) and Sig. (p-value) to allow the reader to judge
the significance of the difference between the results.

Uniformity of Classes. The modeling conventions 4, 6 and 7 aim at unifor-
mity in the modeling of classes, i.e. modellers should apply the same standards
to decide which attributes and (accessor-)methods to model. The results suggest
that the majority of the subjects has interpreted modeling conventions 4 and 7
such that they would have the choice to decide whether to define accessors and
attributes everywhere or not at all. As a result many subjects decided to not
model accessors, which shows that the modeling convention led to more unifor-
mity in modeling accessors. In practice it should be decided whether this kind of
uniformity is desirable, otherwise the modeling convention should be rephrased
carefully. Treatment MC led to the same effect for attributes (convention 7), but
MC+T resulted in an increased use of attributes. The number of empty classes
is lower for both treatments than for NoMC. The results significance for Meth-
ods per Class is very high, therefore we do not interpret the effect of modeling
convention 6 which aims at uniformity of method usage.

Sequence Diagram Coverage is the degree to which the interaction of a
model’s classes is described by sequence diagrams. A high sequence diagram cov-
erage indicates that a large number of classes is instantiated as objects and the
methods occur as messages in sequence diagrams. This is addressed by modeling
conventions 9, 10 and 12. The results show that these conventions contribute
to a better sequence diagram coverage. The number of classes that are not in-
stantiated and the number of methods that are not called are lower for MC and
MC+T than for NoMC. The ratio of sequence diagrams to use cases indicates
to what degree the functionality defined in the use cases is indeed described by
sequence diagrams, hence, implemented in the system. This ratio is higher for
both MC and MC+T than for NoMC.

12

Design. The modeling conventions 16 and 19 address interconnectivity of
and specialization of classes, respectively. The metrics CBO (coupling between
objects) and DIT (depth of inheritance tree) [7] measure the effect of the two
modeling conventions. Surprisingly, The average CBO for treatment MC+T is
higher than for the other treatments. Possible causes could be misinterpretation
of the convention or more completeness in modeling associations between classes.
However the latter was not addressed by any convention. After analyzing the
results we could not interact with the subjects anymore to clarify whether there
was a misunderstanding of this convention. The results for DIT are inconclusive,
because the largest DIT measured in this experiment was three, hence, no subject
violated the modeling convention “DIT at most 7”.

Various Defects. The seven bottom rows of the table present metrics related
to various defects. The results show that modeling conventions 11, 13 and 22
are effective to prevent for the associated defects. The metrics related to the
conventions 2, 14, 15 and 17 are inconclusive, because the number of occurrences
of the defects is so low, that no significant differences can be observed.

Mean ∆
Name MC Cat. F Sig. NoMC MC MC+T MC MC+T

Empty Classes 6,7 A 0,948 0,398 33,11 16,56 12,63 -50,0% -61,9%
Data Classes 6,7 B 1,390 0,264 7,00 2,78 7,13 -60,3% 1,8%
Methods per Class 6 D 0,067 0,935 2,15 2,02 1,91 -5,7% -11,1%
Attributes per Class 7 B 3,613 0,038 1,32 0,99 1,80 -25,0% 36,7%
Setters per Class 4 A 2,971 0,066 1,24 0,00 0,96 -100,0% -21,9%
Getters per Class 4 A 0,912 0,412 0,31 0,23 0,22 -22,4% -26,9%

Objects 12 B 2,760 0,078 61,89 42,11 72,25 -32,0% 16,7%
Classes not Instantiated 9 A 1,127 0,336 2,81 2,17 1,58 -22,5% -43,5%
Uncalled Methods 12 A 0,282 0,756 7,95 5,54 5,71 -30,3% -28,2%
Seq. Diagr. per Use Case 10 A 2,695 0,088 0,69 0,90 1,24 30,8% 80,5%

DIT (max) 16 D 1,525 0,233 0,78 1,00 1,50 28,6% 92,9%
CBO (average) 19 C 1,123 0,338 1,21 1,22 1,71 0,5% 41,1%

Objects without Type 11 A 2,007 0,151 0,67 0,00 0,00 -100,0% -100,0%
Objects without Name 13 A 2,103 0,139 0,22 0,00 0,00 -100,0% -100,0%
Duplicate Class Names 2 D 0,126 0,882 0,10 0,04 0,11 -55,6% 12,5%
Messages without Name 22 A 3,589 0,039 0,50 0,08 0,00 -83,3% -100,0%

Abstract Leaf Classes 15 D 0,000 0,000 0,00 0,00 0,00 0,0% 0,0%
Abstract Concrete 17 D 0,000 0,000 0,00 0,00 0,00 0,0% 0,0%
No Message Type 14 D 0,000 0,000 0,00 0,00 0,00 0,0% 0,0%

Table 5. Detailed Results for Model Quality.

4.3 H2: Effort

We measure the effort to develop the UML model in development time. As
described in Section 3.6 we collect the effort data using logbooks. Table 6 shows

13

the descriptive statistics for modeling, reviewing and team meetings. The unit of
measurement is person minutes. The columns showing percentages are relative
to the treatment level NoMC. The descriptive statistics show that both the
mean and the median increase for modeling conventions (MC) are higher for
tool-supported modeling conventions (MC+T). Additionally we performed an
ANOVA-test for hypothesis testing. The results of the ANOVA-test are shown
in Table 7. The results for the total effort are statistically significant. However,
when we analyze at the level of activities, we see that only the results of modeling
are statistically significant.

Treatment Mean Perc. Median Perc. StDev Max Min

Effort (Modeling) NoMC 1069,17 100,0% 910 100,0% 670,22 2125 120
MC 1157,92 108,3% 982,5 108,0% 718,225 2280 105

MC+T 1885 176,3% 2010 220,9% 834,554 3130 540

Effort (Reviewing) NoMC 367,5 100,0% 300 100,0% 329,224 1155 0
MC 385,83 105,0% 272,5 90,8% 299,4 900 75

MC+T 524,55 142,7% 600 200,0% 379,727 1250 0

Effort (Meeting) NoMC 555,42 100,0% 375 100,0% 499,297 1710 0
MC 720 129,6% 640 170,7% 632,488 1770 0

MC+T 862,73 155,3% 690 184,0% 839,069 3060 0

Effort (Total) NoMC 1992,08 100,0% 2062,5 100,0% 1187,498 4150 480
MC 2245,42 112,7% 2545 123,4% 852,471 3265 690

MC+T 3272,27 164,3% 3330 161,5% 1151,838 4590 650
Table 6. Descriptive Statistics for Modeling Effort (in Minutes)

Sum of Squares df Mean Square F Sig.

Effort (Modeling) Between Groups 453675.4 2 2268187.708 4.129 .025
Within Groups 17580265 32 549383.268
Total 22116640 34

Effort (Reviewing) Between Groups 166964.89 2 83482.446 .738 .486
Within Groups 3620239.4 32 113132.481
Total 3787204.3 34

Effort (Meeting) Between Groups 544447.47 2 272223.736 .614 .547
Within Groups 14183091 32 443221.597
Total 14727839 34

Effort (Total) Between Groups 10421703 2 5210851.564 4.535 .018
Within Groups 36772764 32 1149148.875
Total 47194467 34
Table 7. Results of the ANOVA test for Effort

14

4.4 Attitude

Objective measurement results for quality and effort are given above. However,
to fully investigate the usefulness of modeling conventions it is also necessary
to assess the subject’s attitude towards modeling conventions. We investigated
the subjects’s attitude towards the task and the treatment using the post-test
questionnaire. The questions are multiple-choice questions with answers on a
five-point Likert scale [27] ranging from 1 (very low agreement) to 5 (very high
agreement). The results are summarized in Table 8.

The results show that the subjects perceived the difficulty of the task as
medium. The mean for the difficulty of performing the task with tool-supported
modeling conventions is about 10% higher, but this result is only significant at
a p-value of 0.076.

There is a statistically significant difference in the degree to which the sub-
jects enjoyed the task. The mean for the subjects without special treatment
(NoMC) is almost one point higher than for the other two treatment groups.
The lower enjoyment might be caused by the extra effort (see Section 4.3) for
tool-based modeling conventions.

The results show that the subjects of all treatment groups slightly indicate
that they have confidence in the quality of their models. There is no significant
difference between the treatment groups. Additionally the subjects in the treat-
ment groups MC and MC+T were asked whether they believe that the applied
technique improves the quality of the UML model. For modeling conventions
with and without tool-support there is slight agreement.

To be able to draw valid conclusions from the experiment it is necessary that
the task and the treatments (MC and MC+T) are well understood. Additionally
the subjects must be motivated to perform well in the experiment. The answers
to the relevant questions show that the task and the treatment were well un-
derstood and that the subjects were well motivated. The χ2-test did not show
significant differences between the treatments for task understanding, motiva-
tion, understanding of modeling conventions. If differences would be present this
could bias the experiment results.

4.5 How was the task conducted?

We analyzed how the work was organized within the teams and how well the
treatment was applied. The results are described in this section.

Organization within the team (Question 9) Figure 3 shows how the sub-
jects organized the work within their teams. The figure shows the results per
treatment level and the average results over all participants. The majority of the
teams created and reviewed their models together. In about 15% of the teams
one person created the model and other persons reviewed the models (either
with fixed roles or with changing roles). In only a small fraction of the teams
the entire work was done by one single person.

15

Treatment N Chi-2 Mean 1 2 3 4 5

Difficulty NoMC 34 11,860 2,94 0,00% 23,53% 61,76% 11,76% 2,94%
MC 36 3,00 2,78% 19,44% 52,78% 25,00% 0,00%

MC+T 33 2,61 6,06% 42,42% 36,36% 15,15% 0,00%

Enjoy NoMC 34 *18,886 3,47 0,00% 14,71% 32,35% 44,12% 8,82%
MC 36 2,58 16,67% 27,78% 36,11% 19,44% 0,00%

MC+T 33 2,58 21,21% 21,21% 36,36% 21,21% 0,00%

Confidence NoMC 34 5,526 3,18 2,94% 17,65% 41,18% 35,29% 2,94%
in Quality MC 36 3,31 0,00% 11,11% 47,22% 41,67% 0,00%

MC+T 33 3,24 3,03% 21,21% 27,27% 45,45% 3,03%

MC improves MC 35 1,671 3,37 2,86% 17,14% 28,57% 42,86% 8,57%
model MC+T 32 3,59 3,13% 9,38% 21,88% 56,25% 9,38%

Tool improves MC+T 33 3,21 6,06% 9,09% 45,45% 36,36% 3,03%
model

Understanding NoMC 34 4,089 3,18 8,82% 14,71% 35,29% 32,35% 8,82%
Task MC 36 3,08 2,78% 27,78% 33,33% 30,56% 5,56%

MC+T 33 2,91 9,09% 27,27% 30,30% 30,30% 3,03%

MC under- MC 36 0,482 3,56 0,00% 11,11% 30,56% 50,00% 8,33%
standing MC+T 33 3,45 0,00% 15,15% 33,33% 42,42% 9,09%

Tool under- MC+T 33 2,79 9,09% 30,30% 33,33% 27,27% 0,00%
standing

Motivation NoMC 34 3,862 3,56 5,88% 8,82% 23,53% 47,06% 14,71%
MC 36 3,44 5,56% 5,56% 36,11% 44,44% 8,33%

MC+T 33 3,67 3,03% 3,03% 30,30% 51,52% 12,12%
Table 8. Subjects’ Attitudes towards the Task

Fig. 3. Organization within the teams.

16

How were the treatments applied? Besides the organization of the task
within the teams we are interested in the way the teams applied the treatment.
In particular we are interested in the teams who are exposed to treatment MC
and MC+T. We use the answers of the post-test questionnaire for this investiga-
tion. First, we are interested to which extent the subjects adhere to the modeling
conventions and to the output of the analysis tool. The answers to the adherence-
questions are summarized in Table 9. The table shows the percentages for the
points ‘1’ (very low adherence) to ‘5’ (very high adherence) for modeling conven-
tions (treatment groups MC and MC+T) and analysis tool (only group MC+T).
On average both treatment groups adhere better than neutral to the modeling
conventions (the mean is greater than 3). The mean of the teams that have to
apply only the modeling conventions is greater than the mean of the teams that
apply tool-supported modeling conventions. However, the χ2-test shows that the
difference is not statistically significant.

The reported average adherence to the analysis tool is below the neutral
point (3). We conducted a χ2-test to find out whether the adherence differs sig-
nificantly from the adherence to the modeling conventions (of the same treatment
group). The difference is not statistically significant at the commonly accepted
5% significance level. However, the test statistic χ2 is 9.326 and only slightly
below the threshold of 9.49.

Adherence to Group N χ2 Mean 1 2 3 4 5

Modeling Conventions MC 36 5,027 3,638 0,00% 5,56% 33,33% 52,78% 8,33%
MC+T 33 3,303 3,03% 6,06% 54,55% 30,30% 6,06%

Analysis Tool MC+T 33 9,326 2,727 12,12% 27,27% 42,42% 12,12% 6,06%
Table 9. Adherence to the treatment.

Secondly we asked the subjects how they applied the treatment. Figure 4
shows how the modeling conventions were applied. For both treatment groups
that applied modeling conventions, more than 80% of the subjects indicate that
they read the modeling conventions several times during the project. The his-
togram in Figure 5 shows how many times the analysis tool was used to check
adherence to the modeling conventions during the project. The maximum was
ten times during the project and the minimum was one time. On average the
tool was used 3.32 times and the median is 3. We have no data about when the
modeling conventions and the tool were applied during the project. But the two
authors who were instructors of the course report that they received questions
about both the modeling conventions and the analysis tool starting from the
second week of the experiment.

17

Fig. 4. How were the modeling conventions applied?

Fig. 5. Histogram for the Frequency of using the SDMetrics Tool within group MC+T?

18

4.6 Background

Table 10 shows the subjects’ answers to the background questions of the post-
test questionnaire. The percentages in the five rightmost columns show the pro-
portion of the subjects who have the corresponding experience level for the skill
stated in the first column. The skill levels range from ‘1’ (no experience) through
‘5’ (several years of professional experience). The skills are ordered according to
relevance for the experiment with the most relevant skill in the first row. The
results show that the majority of the subjects has at least some experience with
the relevant techniques.

The results are given for each treatment group to analyze whether there
are differences in experience level which could be a confounding factor. The
test statistic χ2 is less than the threshold of 15.51 for all skills, i.e. there is no
statistically significant difference.

Skill Treatment N χ2 Mean 1 2 3 4 5

UML NoMC 34 6,090 2,441 8,82% 52,94% 26,47% 8,82% 2,94%
MC 36 2,500 11,11% 44,44% 33,33% 5,56% 5,56%

MC+T 33 2,727 15,15% 36,36% 24,24% 9,09% 15,15%

Software NoMC 34 4,538 2,912 5,88% 32,35% 35,29% 17,65% 8,82%
Design MC 36 3,250 2,78% 25,00% 33,33% 22,22% 16,67%

MC+T 33 2,848 12,12% 27,27% 36,36% 12,12% 12,12%

Design NoMC 34 13,044 2,235 17,65% 50,00% 23,53% 8,82% 0,00%
Reviews MC 36 2,528 22,22% 36,11% 19,44% 11,11% 11,11%

MC+T 33 2,333 30,30% 21,21% 39,39% 3,03% 6,06%

Imple- NoMC 34 7,928 3,000 8,82% 29,41% 29,41% 17,65% 14,71%
menting MC 36 3,361 13,89% 8,33% 33,33% 16,67% 27,78%

MC+T 33 3,182 15,15% 15,15% 33,33% 9,09% 27,27%

Code NoMC 34 13,265 2,294 23,53% 44,12% 17,65% 8,82% 5,88%
Reviews MC 36 3,083 16,67% 22,22% 19,44% 19,44% 22,22%

MC+T 33 2,727 12,12% 33,33% 36,36% 6,06% 12,12%
Table 10. Educational Background of the Subjects

5 Threats to Validity

Conducting experiments involves threats to the validity of the results. Different
threats to validity are conflicting. Hence, prioritizing amongst them is an opti-
mization problem. According to Wohlin et al. [41] the priorities of the threats
to validity depend on the purpose of the experiment. The purpose of this study
is to explore the effectiveness of modeling conventions for UML. The threats to
the validity are discussed in decreasing order.

19

Internal Validity Threats to internal validity can affect the independent vari-
ables of an experiment. A possible threat to internal validity is that the treatment
groups behave differently because of a confounding factor such as difference in
skills, experience or motivation. We used randomization to assign subjects to
treatment groups to avoid differences between treatment groups. In Section 4.6
we analyzed subjects’ skill and experience level and in Section 4.4 we analyzed
their motivation and understanding. The results show no significant differences
between the treatment groups.

To be closer to industrial projects in terms of model size, project duration and
project organization, the reported experiment is not conducted as a few-hours
in-lab experiment but over a period of six weeks. This involves less control over
the subjects and their execution of the tasks. A risk is that subjects are eager
to learn about new technology, i.e. apply a treatment from a different group.
We took the following precautions to minimize this risk: (i) we did not tell the
subjects the goal of the experiment, but they were instructed that applying a
different treatment affects the result (ii) we informed the subjects that their
grade is not influenced by the treatment group that they were in (iii) we made
the modeling conventions and the analysis tool available only to the appropriate
teams (iv) we informed the subjects that all technology would be made available
to all subjects after completion of the task. Despite these precautions there is
no guarantee that subjects did not received the modeling conventions and the
analysis tool from their peers in other groups. However, this would only decrease
the effect between the treatment groups. Hence, in case this happened, the effect
would be larger in reality.

Mortality, i.e. subjects dropping out of the experiment is discussed in Sec-
tion 4 and is not regarded as a threat to the validity.

External Validity Threats to external validity reduce the generalizability of
the results to industrial practice. As described in Section 3 the experiment is
designed to render a realistic situation. The task is to model a software architec-
ture of non-trivial size in a project team using up-to-date tools which are used
in industrial practice. Hence, the experimental environment is designed to max-
imize generalizability (at the cost of statistical significance, which is discussed
later in this section). We use students as subjects, which might be a threat to
external validity. However, Kitchenham et al. [19] state that students can be
used as subjects. All students in this experiment hold a BSc degree and have
relevant experience (refer to Section 4.6).

Due to curricular constraints the amount of training and, hence, experience
with modeling conventions and the analysis tool is limited, which is a possible
threat to external validity. Limited amount of experience renders the situation
in the introduction phase of the technology in an industrial environment. We
assume that more experience results in a reduction of extra effort and possibly a
larger effect on model quality. Hence, the limited amount of experience reduces
the observed effectiveness and efficiency of modeling conventions compared with
a more matured situation.

20

Construct Validity Construct validity is the degree to which the variables
measure the concepts they are to measure. The concept of quality is difficult to
measure and it consists of several dimensions [17][18]. It is not feasible to cover all
dimensions in a single experiment. We limit the scope of this experiment to defect
containment. Using well-established tooling to measure the defect containment
we are confident to measure this dimension of model quality correctly.

Conclusion Validity Conclusion validity is concerned with the relation be-
tween the treatment and the outcome. The statistical analysis of the results is
reliable, as we used robust statistical methods. As this is an exploratory study
to gain insights on the effectiveness of modeling conventions rather that aiming
at theory testing we accept that the significance for some results is weak. The
significance could have been better if we would have increased the number of
data points by defining the task for individual subjects instead of teams of sub-
jects. When we were designing the study we decided that a generalizable task is
more important than high statistical power for our explorative study. Therefore
we decided that the models should be developed by teams, which is closer to real
world software engineering than individual development. Additionally it fitted
better with the didactic purpose of the course.

We minimized possible understanding problems by testing the experiment
material in a pilot experiment and improving it according to the observed issues.
The course instructors were available to the students for clarification questions.
The results of the post-test questionnaire show that the task was well understood.
Hence, we conclude that there were no understanding problems threatening the
validity of the reported experiment.

The metrics of the UML models (defects, size...) were collected using an
analysis tool and are therefore repeatable and reliable. A possible threat to the
conclusion validity is the reliability of the measured time and the data from
the post-test questionnaire. For time collection a logbook template was used to
assure uniformity. The reported time data might be imprecise. The data was
checked by the authors and seems valid. A discussion of outliers is given in
Section 4.1. The data from the post-test questionnaire is of course subjective.
However we minimized the risk for different interpretation of the questions by
conducting a pilot experiment as described above.

6 Conclusions

The UML consists of different diagram types, has no formal semantics and does
not provide guidelines on how to use the language features. Inherent to these
characteristics is the risk for quality problems such as defects and non-uniform
use of the language. In this study we propose modeling conventions as a forward-
oriented means to reduce these quality problems. Our literature review shows
that existing work focusses on particular categories of conventions for UML
modeling and that there is lack of empirical validation of conventions for UML
modeling.

21

Our main contribution is an experiment that provides empirical data about
the application of modeling conventions in a realistic environment. Our results
show that the defect density in UML models is reduced through the use of
modeling conventions. However, the improvement is not statistically significant.
Additionally, we provide data about the additional effort needed to apply mod-
eling conventions with and without tool-support. The presented data quantifies
the trade-off between improved model quality by using modeling conventions and
the cost of extra effort. Additional observations describe the developers’ attitude
towards modeling conventions and how the modeling conventions were applied
within the development teams. We observed that the adherence to modeling
conventions, especially for tool-supported modeling conventions, bears potential
for improvement. Furthermore the subjects using modeling conventions enjoyed
their task less than the subjects who did not use modeling conventions, indicat-
ing that the commitment in using modeling conventions can be improved.

Due to the time constraints of the experiment, we provided the subjects with
a set of modeling conventions. However, the subjects had no experience whether
the modeling conventions were useful for their task, and the subjects received
no reward for delivering a better quality model (the typical reward would be
less effort during use of the UML models in a later phase). In practice it would
be desirable if the developers who must eventually use the conventions partici-
pate in establishing the set of modeling conventions. This would increase their
knowledge about and trust in the conventions and we expect they would have
more commitment in using modeling conventions. We expect that the commit-
ment will also be improved in a practical situation because the models will be
used after they have been developed. The subjects in this experiment were not
experienced using modeling conventions or the analysis tool. Therefore the ex-
periment resembles the introduction of modeling conventions to a project. We
expect that for more experienced developers the quality improvement is larger
and the amount of extra effort will be reduced.

The tool-support for adherence to the modeling conventions was given by
a stand-alone tool. We expect that integrating adherence checks into UML de-
velopment tools will decrease the extra effort and result in higher adherence,
because of a shorter feedback loop. Egyed’s instant consistency checking [12] is
a promising technique for short feedback loops.

The observations made in this experiment potentially lead to the following
guidelines for applying UML modeling conventions:

– Attention must be paid to control the adherence to the modeling conventions.
– Commitment of the developers increases the adherence to the modeling con-

ventions.
– Modeling conventions should be tailored for a specific purpose of modeling.
– Tool support to enforce adherence to the modeling conventions increases

the quality improvement. A short feedback loop is required to minimize the
amount of necessary rework.

In future work the effect of adherence and experience on the effectiveness
and efficiency of modeling conventions should be investigated in more detail.

22

External replications of the reported experiment should be conducted to further
confirm our findings. We focussed at syntactical quality of UML models in this
experiment. We are conducting a follow-up experiment where we investigate
semantic and pragmatic quality.

Acknowledgements. We thank the students from the 2005/2006 course
‘Software Architecting’ at the Technische Universiteit Eindhoven for their par-
ticipation. The valuable comments of our colleagues Reinder Bril and Richard
Verhoeven improved the quality of this paper.

References

1. SPSS, version 12.0. http://www.spss.com.
2. Gentleware AG. Poseidon for UML, community edition, version 3.1.

http://www.gentleware.com.
3. Scott W. Ambler. The Elements of UML 2.0 Style. Cambridge University Press,

2005.
4. Victor R. Basili, G. Caldiera, and H. Dieter Rombach. The goal question metric

paradigm. In Encyclopedia of Software Engineering, volume 2, pages 528–532. John
Wiley and Sons, Inc., 1994.

5. James M. Bieman, Roger Alexander, P. Willard Munger III, and Erin Meunier.
Software design quality: Style and substance. In Proceedings of the Workshop on
Software Quality (WoSQ). ACM, 2001.

6. Lionel C. Briand, Christian Bunse, and John William Daly. A controlled exper-
iment for evaluating quality guidelines on the maintainability of object-oriented
designs. IEEE Transactions on Software Engineering, (6):513–530, June.

7. S. R. Chidamber and C. F. Kemerer. A metrics suite for object-oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

8. Peter Coad and Edward Yourdon. Object Oriented Analysis. Prentice-Hall, second
edition, 1991.

9. Peter Coad and Edward Yourdon. Object Oriented Design. Prentice-Hall, first
edition, 1991.

10. Reidar Conradi, Parastoo Mohagheghi, Tayyaba Arif, Lars Christian Hedge,
Geir Arne Bunde, and Anders Pedersen. Object-oriented reading techniques for
inspection of UML models – an industrial experiment. In Proceedings of the Eu-
ropean Conference on Object-Oriented Programming ECOOP’03, volume 2749 of
LNCS, pages 483–501. Springer, July 2003.

11. Edsger Wybe Dijkstra. GO TO statement considered harmful. Communications
of the ACM, 11(3):147–148, March 1968.

12. Alexander Egyed. Instant consistency checking for the UML. In Proceedings of
the 28th International Conference on Software Engineering (ICSE‘06). ACM, May
2006.

13. Holger Eichelberger. Aesthetics of class diagrams. In Proceedings of the First IEEE
International Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT 2002), pages 23–31. IEEE CS Press, 2002.

14. Technische Universiteit Eindhoven. Pollweb system.
http://ai5.wtb.tue.nl/enquetes/pollweb info.php.

15. M. E. Fagan. Advances in software inspections. IEEE Tr. on Software Engineering,
12(7):744–751, 1986.

23

16. Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics, A Rigorous
and Practical Approach. Thomson Computer Press, second edition, 1996.

17. David Garvin. What does ‘product quality’ really mean? Sloan Management
Review, 26(1):25–45, 1984.

18. Barbara Kitchenham and Shari Lawrence Pfleeger. Software quality: The elusive
target. IEEE Software, 13(1):12–21, Januari 1996.

19. Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W.
Jones, Dafic C. Hoaglin, Khaled El Emam, and Janett Rosenberg. Preliminary
guidelines for empirical research in software engineering. IEEE Transactions of
Software Engineering, 28(8):721–734, August 2002.

20. Henk Koning, Claire Cormann, and Hans van Vliet. Practical guidelines for the
readability of IT-architecture diagrams. In Proceedings of SIGDOC’02, pages 90–
99, Toronto, Canada, 2002. ACM.

21. Ludwik Kuzniarz, Miroslaw Staron, and Claes Wohlin. An empirical study on
using stereotypes to improve understanding of UML models. In Proceedings of the
12th IEEE International Workshop on Program Comprehension (IWPC‘04), pages
14–23. IEEE CS Press, 2004.

22. Christian F. J. Lange. Material of the modeling conventions experiment.
http://www.win.tue.nl/˜clange.

23. Christian F. J. Lange and Michel R. V. Chaudron. An empirical assessment of com-
pleteness in UML designs. In Proceedings of the 8th International Conference on
Empirical Assessment in Software Engineering (EASE‘04), pages 111–121, 2004.

24. Christian F. J. Lange and Michel R. V. Chaudron. Effects of defects in UML
models - an experimental investigation. In Proceedings of the 28th International
Conference on Software Engineering (ICSE‘06). ACM, May 2006.

25. Christian F. J. Lange, Michel R. V. Chaudron, and Johan Muskens. In practice:
UML software architecture and design description. IEEE Software, 23(2):40–46,
March 2006.

26. Felix Leung and Narasimha Bolloju. Analyzing the quality of domain models devel-
oped by novice systems analysts. In Proceedings of the 38th Hawaii International
Conference on Systems Sciences. IEEE, 2005.

27. Rensis A. Likert. A technique for the measurement of attitudes. Archives of
Psychology, (No. 140), 1932.

28. Odd Ivar Lindland, Guttorm Sindre, and Arne Sølvberg. Understanding quality
in conceptual modeling. IEEE Software, 11(2):42–49, March 1994.

29. Sergio Loján-Mora, Juan Trujillo, and Il-Yeol Song. Multidemensional modeling
with UML package diagrams. In Proceedings of the International Conference on
Conceptual Modeling, LNCS, pages 199–213. Springer Verlag, 2002.

30. Tom Love. An experimental investigation of the effect of program structure on
program understanding. ACM Sigplan Notices, 12(3):105–113, March 1977.

31. Neil MacKinnon and Steve Murphy. Designing UML diagrams for technical doc-
umentation. In Proceedings of SIGDOC’03, pages 105–112, San Francisco, CA,
2003. ACM.

32. Meerling. Methoden en technieken van psychologisch onderzoek, volume 2. Boom,
Meppel, The Netherlands, 4th edition, 1989.

33. Steve Murphy, Scott Tilley, and Shihong Huang. Fourth workshop on graphical
documentation: UML style guidelines. In Proceedings of SIGDOC’04, pages 118–
119, Memphis, 2004. ACM.

34. Object Management Group. MDA Guide, Version 1.0.1, omg/03-06-01 edition,
June 2003.

24

35. Object Management Group. Unified Modeling Language, Adopted Final Specifica-
tion, Version 2.0, ptc/03-09-15 edition, December 2003.

36. Paul W. Omam and Curtis R. Cook. A taxonomy for programming style. In
Proceedings of the 18th ACM Computer Science Conference, pages 244–250, 1990.

37. Helen C. Purchase, Jo-Anne Allder, and David Carrington. Graph layout aesthetics
in UML diagrams: User preferences. Journal of Graph Algoritms and Applications,
6(3):255–279, 2002.

38. Arthur J. Riel. Object-Oriented Design Heuristics. Addison Wesley, 1996.
39. Sandra A. Slaughter, Donald E. Harter, and Mayuram S. Krishnan. Evaluating

the cost of software quality. Communications of the ACM, 41(8):67–73, August
1998.

40. Dabo Sun and Kenny Wong. On evaluating the layout of UML class diagrams for
program comprehension. In Proceedings of the 13th International Workshop on
Program Comprehension (IWPC‘05). IEEE CS Press, 2005.

41. Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlesson, Björn Regnell,
and Anders Wesslen. Experimentation in Software Engineering - An Introduction.
Kluwer Academic Publishers, 2000.

42. Jürgen Wüst. The software design metrics tool for the UML, version 1.3.
http://www.sdmetrics.com.

A Modeling Conventions

The set of modeling conventions used in this experiment is shown in Table 11.

ID Name Description Category
1 Abstraction

Level
Classes in the same package must be of the
same abstraction level

Abstraction

2 Unique Names Classes, packages and use cases must have
unique names

Abstraction

3 Size of Use
Cases

All use cases should cover a similar amount
of functionality

Abstraction

4 Homogenity of
Accessor Usage

When you specify get-
ters/setters/constructors for a class,
specify them for all classes

Balance

5 Homogenity of
Visibility Usage

When you specify visibility somewhere,
specify it everywhere

Balance

6 Homogenity of
Method Specifi-
cation

Specify methods for the classes that have
methods! Don’t make a difference in whether
you specify or don’t specify methods as long
as there is not a strong difference between
the classes.

Balance

7 Homogenity of
Attribute Spec-
ification

Specify attributes for the classes that have
attributes! Don’t make a difference in
whether you specify or don’t specify at-
tributes as long as there is not a strong dif-
ference between the classes.

Balance

25

8 Dynamic
Classes

For classes with a complex internal be-
haviour, specify the internal behaviour using
a state diagram

Completeness

9 Model Class In-
teraction

All classes that interact with other classes
should be described in a sequence diagram

Completeness

10 Use Case In-
stantiation

Each Use Case must be described by at least
one Sequence Diagram

Completeness

11 Specify Object
Types

The type of ClassifierRoles (Objects) must
be specified. (Which class in represented by
the object?)

Completeness

12 Call Methods A method that is relevant for interaction be-
tween classes should be called in a Sequence
Diagram to describe how it is used for inter-
action.

Completeness

13 Role Names ClassifierRoles (Objects) should have a role
name

Completeness

14 Specify Mes-
sage Types

Each message must correspond to a method
(operation)

Consistency

15 No Abstract
Leafs

Abstract classes should not be leafs (i.e.
child classes should inherit from abstract
classes)

Design

16 DIT at most 7 Inheritance trees should have no more than
7 levels

Design

17 Abstract-
Concrete

Abstract classes should not have concrete
superclasses

Design

18 High Cohesion Classes should have high cohesion. Don’t
overload classes with unrelated functional-
ity.

Design

19 Low Coupling Your classes should have low coupling. (The
number of relations between each class and
other classes should be small)

Design

20 No Diagram
Overload

Don’t overload diagrams. Each dia-
gram should focus on a specific con-
cept/problem/functionality/

Layout

21 No X-ing Lines Diagrams should not contain crossed lines
(relations)

Layout

22 Use Names Classes, use cases, operations, attributes,
packages, etc must have a name

Naming

23 Meaningful
Names

Naming should use commonly accepted ter-
minology, be non-ambigious and precisely
express the function / role / characteristic
of an element.

Naming

Table 11: List of Modeling Conventions used in this Experiment.

26

B Post-test Questionnaire

We present the questions of the post-test questionnaire in this section. The ques-
tionnaire conducted as an online-questionnaire using the PollWeb [14] system of
the Technische Universiteit Eindhoven. The student where identified by the sys-
tem while logging on. This enables us to relate the data from the questionnaire
to the other data obtained during the experiment.

B.1 Introduction

During the execution of the course assignment you took part in a research experi-
ment on the usefulness of modeling standards and metrics tooling. By completing
this questionnaire you provide us with useful information for the analysis of the
results. The information you give here does not influence your mark and will be
treated confidentially! Please answer each question carefully. Thank you!

B.2 Background Questions

1. What is your practical work experience in software engineering (in years)?

2. What is your knowledge in the following fields?

Please answer according to this scale: 1 = no knowledge; 2 = gained knowledge
through academic classes or literature study; 3 = applied it in academic context;
4 = applied it in one industrial project; 5 = applied it in more than one industrial
project

1 2 3 4 5
Unified Modeling Language (UML)©©©©©
Designing Software Systems ©©©©©
Implementing Software Systems ©©©©©
Reviewing Source Code ©©©©©
Reviewing Software Designs ©©©©©
Software Inspections ©©©©©

B.3 About the Assignment

3. Indicate how difficult the UML modeling task was to you.

1 – very difficult 2 – difficult 3 – intermediate 4 – easy 5 – very easy
© © © © ©

27

4. Indicate how well you understood what was required of you in the UML
modeling task.

1 – very poor 2 – poor 3 – intermediate 4 – good 5 – very good
© © © © ©

5. What is the confidence of the quality of the UML model you delivered?

1 – very poor 2 – poor 3 – intermediate 4 – good 5 – very good
© © © © ©

6. How much did you enjoy developing the UML model using traditional mod-
eling / modeling standards / modeling standards + analysis tool? (chose what
is applicable for you)

1 – very poor 2 – poor 3 – intermediate 4 – good 5 – very good
© © © © ©

7. Indicate how motivated you were to perform well in the UML modeling task.

1 – very poor 2 – poor 3 – intermediate 4 – good 5 – very good
© © © © ©

8. How was the work organized within your group ?

© one person developed the model on his own

© one person created the model, other persons reviewed the model (fixed roles)

© one person created the model, other persons reviewed the model (roles changed
over project)

© several persons created the model and reviewed the model together

© different approach:

B.4 Questions about Modeling Conventions

Only the subjects who used modeling conventions were asked to answer the
questions of this section.

9. How well did you adhere to the modeling conventions?

28

1 – not at all 2 – poor 3 – intermediate 4 – good 5 – very good
© © © © ©

10. How well did you understand the meaning of the modeling conventions?

1 – very poor 2 – poor 3 – intermediate 4 – good 5 – very good
© © © © ©

11. Indicate your approach, how you applied the modeling conventions.

© read the guidelines once in the beginning of the project and tried to follow
them

© read the guidelines several times during the project and tried to follow them

© read the guidelines several times during the project and reviewed whether
the model adheres to the guidelines once

© read the guidelines several times during the project and reviewed whether
the model adheres to the guidelines several times

© different approach:

12. Do you thin development using modeling standards lead to a better UML
model?

1 – not at all 2 – rather not 3 – neutral 4 – probably yes 5 – yes, a lot
© © © © ©

B.5 Questions about using the Conformance Tool

Only the subjects who used the conformance tool were asked to answer the
questions of this section.

13. How well did you adhere to the critics and analysis results of the SDMetrics
tool?

1 – not at all 2 – poor 3 – intermediate 4 – good 5 – very good
© © © © ©

14. How well did you understand the meaning of the tool output?

1 – not at all 2 – poor 3 – intermediate 4 – good 5 – very good
© © © © ©

29

15. How many times did you analyze the model during the project using the
tool?

16. Do you think tool-based model-analysis leads to a better UML-model?

1 – not at all 2 – rather not 3 – neutral 4 – probably yes 5 – yes, a lot
© © © © ©

30

