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Preface

Almost five years ago I decided to come to The Netherlands for my Ph.D. Everything
started with the following e-mail:

Dear Mr. Mihajlovic,
We have carefully reviewed your cv and further information that you have provided for
your application as a PhD student in my group. We consider you as a possible strong
candidate for a PhD position, and we would be interested in pursuing this further...
...
Sincerely yours,
H.Nijmeijer

Then, with a control and electrical engineering background, I started a research
project in the field of dynamics of nonlinear mechanical systems at the Department of
Mechanical Engineering at the Eindhoven University of Technology. At that time, I
could not have dreamt that except successfully finishing my research in 2005, I would
also succeed to learn a new language - Dutch (which according to some people rep-
resents a forerunner of German language), and I would start working in a research
department of Philips Electronics - one of the biggest electronics company in the
world. Moreover, I could not predict that I would continue playing handball, even be
an assistant trainer in a Dutch handball team and meet so many cultures. What is
most wonderful is that I have become husband of a wonderful wife and a father of a
charming girl. At that time all this would be too much even for a wonderful dream.

Although the results presented in this thesis represent an overview on what I have
been doing scientifically in the last four-and-a-half years, in this preface I would like
to use this opportunity to show my gratitude to the people that helped me to finish
this thesis and that were with me through this enjoyable, exciting and challenging
journey.

I am particulary grateful to my promoters Henk Nijmeijer and Dick van Campen as
well as to Bram de Kraker for being courageous enough to offer me the opportunity to
do research in the field of nonlinear mechanical systems although my background was
in the field of electric engineering and in control of linear dynamical systems. I hope
that you never had doubts about such decision. Goran and Nataša Golo (kum Golson
and kuma Nataša) and Dragan Kostić (Maher) deserve special acknowledgements.
Five years ago, they encouraged and supported me very much when I was applying
for this Ph.D. project.

Special thanks goes to my first promotor Henk Nijmeijer and my co-promotor
Nathan van de Wouw, since they have steered, supported and helped me together,
both in their own way, to successfully finish my research. The quality and readability
of this thesis is thanks to their support. Henk, thank you for your constructive
criticism, high demands and encouraging words. Thank you also for being determined
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enough to help me to learn and to improve my Dutch. A few months ago I was told
that I pronounced you name as Genk instead of Henk. Sorry for that. Nathan, thanks
for being not only a co-promotor but also a friend. This helped me a lot to go more
smoothly through many of challenges which were present during my Ph.D. work. It
has been a real extraordinary and enjoyable experience to work with both of you.

At the beginning of my Ph.D. research I had a lot of help from Remco Leine in
understanding discontinuous systems, discontinuous bifurcations, drill-string systems
and I am very thankful for that. Remco, I really enjoyed very much discussing with
you both about scientific and non-scientific matters. I would also like to thank Nick
Rosielle. Without his help it would be very difficult to construct the experimental
set-up. Furthermore, I also thank Harry van Leeuwen and Kees Meesters, who gave
me hints in the field of tribology, that helped me to introduce torsional vibrations
in the set-up. The set-up would never been finished in time without the assistance
of Daniëlle Steman, Toon van Gils, Rob van de Berg and Sjef Garenfeld who helped
me with the mechanics of the set-up, and Rens Kodde, Harrie van de Loo and Peter
Hamels who helped me with the electrical part of the set-up. The collaboration with
the master students Angelique Kessels, Marion Meijboom, Marielle van Veggel and
Maarten Hendriks was really valuable for my Ph.D. research. Many thanks goes also
to all former and current members of the Dynamics and Control Technology Group
for the wonderful atmosphere and enjoyable time. They have always been ready to
help.

Special greetings and thanks are devoted to my colleagues and nice friends Wilbert,
Apostolos, Ronald, Rob, Ana, Alejandro, Niels, Alexey, Sasha, Ines and Devi. I will
always remember the nice and pleasant discussion with you. I also like to thank
Maarten Steinbuch, Pieter Nuij, Ron Hensen and Paul Lambrechts, who together
with Henk and Nathan helped me a lot with their comments, constructive criticism
in making decisions about my future employer. Lia, thanks for helping me with
administrative matters during my time at the university in Eindhoven.

Being a member of the Oktopus handball team was really a wonderful experience.
Thanks to Oktopus I met Bas, Kristel, Jan, Eric, Bianca, Hendri, Maartje, Michael,
Dave, Johan, Femke, Erik, Wendy and Corrine; wonderful people and great friends.
At this time I really miss handball trainings and competitions. Special thanks to Bas
and Jan who succeeded to infect me with trainer activities.

Greetings to my Serbian friends here in The Netherlands: Tasa, bata Marko,
Vesna, Milena, Mirjana, Vojkan, Maja, Dule, Aleksandra, Milan, Marija, Darko, Mir-
jana, Igor, Jelena, Ana, Aleksandar and Jelena. In particular, I would like to greet
my Serbian friends who, despite the fact that they live around Europe and far from
here, are still very close to me: "Zlatibor-team" Kum, Šone, Korunko and also kuma
Sonja, kum Neša, Pepi, Kaća, Bulle, kum Željko, Zoka and many others.

I am very grateful to my whole family and in particular to my mother Živka, father
Dragoslav and brother Predrag since I have been very lucky to grow up surrounded
by them, their love and support.

Finally, I thank my wife Dragana knowing that I will never be able to express how
much I am happy to be surrounded by her love and support. What is most wonderful
is that, thanks to her, I became the father of wonderful daughter Teodora which is
really a gift of God. Both of them represent for me an inexhaustible source of energy
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Chapter 1

Introduction

Self-sustained vibrations appear in a wide variety of systems and structures. In some
systems, such vibrations are desired as, for example, the sound of a violin string is a
result of a self-sustained oscillation of the strings. Furthermore, oscillations in elec-
trical oscillators and ringing tones in electrical bells exist due to such a phenomenon.
However, self-sustained oscillations often limit the performance and can also endan-
ger the safety of operation of dynamical systems. In this respect, one can think of
vibrations which appear in a CD-player due to mass-unbalance of the CD, the curving
noise of tram wheels induced by nonlinear slipping forces, vibrations in suspension
bridges excited by wind and/or traffic, vibrations in oil-drilling systems during a
drilling process and many others.

Vibrations in dynamical systems can be caused by nonlinearities which induce
forces locally in the system under consideration. However, their presence, in general,
has important consequences for the overall dynamic behaviour. Some examples of
nonlinearities in mechanical systems are: friction forces and backlash phenomena in
certain connections of mechanical systems, mass-unbalance and fluid-film bearings in
rotating machinery, nonlinear spring and damper supports in vehicle systems, etc.

Very often, more than one type of vibration appears in dynamical systems. For
example, in brake mechanisms (e.g. in cars and bicycles) vibrations can be due to the
Stribeck characteristic in the friction force, due to fluctuating normal forces or due
to nonconservative restoring forces [Popp et al., 2002]. In a metal cutting processes,
self-excited vibrations are mainly due to the nonlinearity in the friction force and
intermittent contact between the cutting tool and the workpiece [Faasen et al., 2003;
Wiercigroch and Budak, 2001; Wiercigroch and Krivtsov, 2001]. Therefore, in order to
gain understanding and to predict different types of vibration it is not only important
to understand the causes for such vibrations but also to understand the interaction
between those vibrations.

In this thesis, we focus on the following issues:

• We analyze separately friction-induced vibrations in flexible mechanical systems
and lateral vibrations in rotor systems caused by a mass-unbalance.

• A particular contribution of the thesis is on the interaction between those two
types of vibrations.

• When analyzing the friction-induced vibrations a discontinuous static model for
the friction is used. We choose such a model and not a more complicated dynam-
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ical friction model since it accounts for several essential friction characteristics
but avoids the inclusion of unnecessary complexity. A discontinuous friction
model leads to a discontinuous model of the system dynamics which exhibits
both friction-induced vibrations and the interaction between friction-induced
vibrations and vibrations due to mass-unbalance. The discontinuity will have
significant consequences for the analysis of the steady-state behaviour of the
system. The occurrence, prediction and analysis of limit-cycling behaviour (vi-
brations) in systems with discontinuities is currently receiving a wide attention
[Brogliato, 1999; Dankowitz and Nordmark, 2000; Di Bernardo et al., 1999; Gal-
vanetto et al., 1997; Kunze and Küpper, 1997; Leine, 2000; Leine and Nijmeijer,
2004; Leine and Van Campen, 2003; Leine et al., 1998, 2003; Popp and Stelter,
1990]. However, most of authors are studying such systems from a theoretical
point of view.

• Therefore, the focus of this thesis is on the experimental study of these systems.
For such purposes we constructed an experimental drill-string set-up. This set-
up was inspired by a real drilling system which is used for the exploration of
oil and gas and which undergoes several types of vibrations during drilling. In
the considered experimental set-up, it is possible to obtain torsional vibrations,
lateral vibrations and combination of those two types of vibrations. Moreover,
the sticking phenomenon is observed in the friction forces of the set-up and,
therefore, a discontinuous nonlinearity (in the friction) plays a crucial role in
the dynamical behaviour of the system. Using this set-up, the obtained analyt-
ical results (on the nonlinear dynamics and (nonsmooth) bifurcations) can be
validated experimentally.

Clearly, the results presented here, range from the adopted model, estimation
procedure, the analysis techniques used and experimental results obtained, can be ex-
tended to rotor systems and more general mechanical systems with friction and flex-
ibility. In Section 1.1, we give the literature overview on friction-induced vibrations
in flexible mechanical systems. In that section, first we present a literature overview
which considers various friction models, then an overview of friction-induced vibra-
tions in various flexible mechanical systems is given and finally an overview which
addresses torsional vibrations in drill-string system is given. In Section 1.2, first we
give a literature overview on vibrations in general rotor systems and second, vibra-
tions in drill-string systems are discussed in more details. Then, in Section 1.3, the
contribution of this thesis is stated and finally, in Section 1.4, the outline of the thesis
is provided.

1.1 Friction-Induced Vibrations in Flexible Mecha-

nical Systems

1.1.1 Friction in Mechanical Systems

Friction is a common phenomenon and it arises between sliding surfaces due to various
complex mechanisms. For some systems, friction is a desired characteristic as it
enables, for example, the fixation of parts by screws, driving of vehicles by wheels
and braking mechanisms. Usually, friction is an unwanted phenomenon since it is
responsible for the dissipation of kinetic energy into heat and noise and also for the
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wear of parts during relative motion. Moreover, the presence of friction can induce
self-sustained vibrations, chatter and squeal which are unwanted in many engineering
applications, since the phenomena generally limit the system performance.

The characteristics of friction in mechanical systems have been studied in the
fields of tribology and dynamics. In tribology, researchers deal with microscopic and
macroscopic details of friction and they explain the observed frictional phenomena
in relation to surface materials, geometry and lubrication conditions. Engineers and
applied mathematicians, on the other hand, are interested in the overall dynamic
behaviour and stability characteristics of systems with friction. In general, friction
can be defined as a force that resists the relative motion between two contacting
surfaces.

An overview which considers friction mechanisms and friction models can be found
in [Al-Bender et al., 2004; Armstrong-Hélouvry et al., 1994a; Ibrahim, 1994a,b; Olsson,
1996]. Olsson [1996] divides all friction models into three categories: static, dynamic,
and special purpose models. Static friction models describe the friction force as a
function of the relative velocity between two contacting surfaces. Those models give,
to a varying extent, a qualitative understanding of friction. Dynamic models more
accurately describe friction for low relative velocities by differential equations and
these models are obtained through modification of static friction models. A well-
known dynamic friction model is the LuGre friction model [Canudas de Wit et al.,
1995; Hensen, 2002; Olsson, 1996]. A third category of friction models includes models
that provides understanding of the physical mechanisms behind friction. On the other
hand, Al-Bender et al. [2004] divide all friction models into the following two groups,
depending on the approaches used to model friction: models based on the physics
behind the friction phenomena and empirically motivated heuristic friction models,
which are based on heuristic considerations of experimental data. In general, the
reason for using a specific type of friction model depends on the purpose of such
model. In this thesis, we are not interested in a detailed dynamic modelling of the
friction for very small velocities nor to accurately describe the physical phenomenon
which causes friction. We are interested in the steady-state behaviour of a dynamic
system (equilibria, limit-cycles, bifurcations) caused by the friction. Therefore, we
use a discontinuous static friction model which allows to properly describe stiction
and can describe most of the important friction phenomena.

The use of such a discontinuous model for friction results in a differential equations
of Filippov type. Filippov systems form a class of non-smooth systems described by
differential equations with discontinuous right-hand side [Filippov, 1988; Leine, 2000;
Leine and Nijmeijer, 2004]. Filippov extends discontinuous differential equations to
differential inclusions [Filippov, 1988; Leine, 2000; Leine and Nijmeijer, 2004; Sastry,
1999]. Dynamic systems with friction are commonly modelled by differential inclu-
sions, see [Deimling and Szilagyi, 1994; Fečkan, 1998; Kunze and Küpper, 1997; Leine,
2000; Leine and Van Campen, 2003; Leine et al., 2003, 2002; Mihajlović et al., 2005a,b,
2004a,b; Van de Wouw and Leine, 2004; Van de Wouw et al., 2005a,b].

1.1.2 Friction-Induced Vibrations in Various Flexible Mecha-

nical Systems

Undesired friction-induced vibrations can cause excessive wear of machine compo-
nents, surface damage and noise. Moreover, in controlled motion systems, such vibra-
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tions can limit the positioning performance. Therefore, many researchers study how
friction influences the overall dynamic behaviour of systems. Some of them deal with
microscopic and macroscopic details of friction when describing stick-slip vibrations
[Al-Bender et al., 2004; Batista and Carlson, 1998]. Other researchers are more inter-
ested in the overall friction-induced dynamic behaviour, than in the detailed friction
modelling itself. In this field of research, one can distinguish between friction-induced
vibrations in controlled and non-controlled systems. An overview of friction-induced
oscillations in controlled mechanical systems is given in [Armstrong-Hélouvry et al.,
1994a]. Mechanisms which cause oscillations in such systems are studied both analyt-
ically and experimentally in [Hensen, 2002; Hensen et al., 2002; Juloski et al., 2005;
Mallon, 2003; Mallon et al., 2005; Olsson, 1996; Olsson and Åström, 1996, 2001; Pu-
tra, 2004; Putra et al., 2004; Putra and Nijmeijer, 2003, 2004; Van de Wouw et al.,
2004]. On the other hand, an overview of self-excited vibrations in non-controlled
systems with friction is given by Ibrahim [1994b]. According to [Ibrahim, 1994b],
several mechanisms can lead to such oscillations.

In multi-degree-of-freedom systems, the phase difference between the coupled
modes can supply energy to induce vibrations in systems with friction. The im-
portance of the coupling between the system’s degrees of freedom is recognized by
Eerles and Lee [1976] and such vibrations are also analyzed in [Popp et al., 2002;
Popp and Stelter, 1989]. The experimental observations of Aronov et al. [1983] sup-
port the importance of such coupling for friction-induced vibrations. However, it
is widely accepted that when the systems exhibit a combination of flexibility and
negative damping in the friction force-velocity curve, stick-slip motion can appear
[Brockley et al., 1967; Brockley and Ko, 1970; Ibrahim, 1994b; Krauter, 1981; Kunze
and Küpper, 1997; Leine, 2000; Leine et al., 1998; Olsson, 1996; Popp and Stelter,
1990]. With the term "negative damping" we refer to the effect of the friction decrease
with velocity increase which results in a negative damping for a small perturbations
around a steady sliding point in a certain velocity region of the friction. The following
terms are also used for the same effect: "negative viscosity", "Stribeck effect" and
"velocity weakening".

1.1.3 Friction-Induced Torsional Vibrations in Drill-String Sys-

tems

Deep wells for the exploration and production of oil and gas are drilled with a rotary
drilling system. A rotary drilling system creates a borehole by means of a rock-
cutting tool, called a bit. The torque driving the bit is generated at the surface by
a motor with a mechanical transmission box. Via the transmission, the motor drives
the rotary table: a large disc that acts as a kinetic energy storage unit. The medium
to transport the energy from the surface to the bit is a drill-string, mainly consisting
of drill pipes. The drill-string can be up to 8 km long. The lowest part of the drill-
string is the Bottom-Hole-Assembly (BHA in figure 1.1 [Leine, 2000]) consisting of
drill collars and the bit. The Bottom-Hole-Assembly can be several hundreds meters
long.

The drill-string undergoes various types of vibrations during drilling [Jansen, 1991,
1993; Leine, 2000; Leine et al., 2002; Van den Steen, 1997]: torsional (rotational) vibra-
tions, caused by nonlinear interaction between the bit and the rock or the drill-string
and the borehole wall; bending (lateral) vibrations, often caused by pipe eccentricity,
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Bit

Figure 1.1: Photo and schematic view of a real drilling system.

leading to centripetal forces during rotation; axial (longitudinal) vibrations, due to
bouncing of the drilling bit on the rock during rotation, and hydraulic vibrations in
the circulation system, stemming from pump pulsations.

Extensive research on the subject of friction-induced torsional vibrations in drill-
string systems has already been conducted. Many of those papers consider vibrations
in drill-string systems [Brett, 1991, 1992; Germay, 2002; Jansen, 1993; Jansen and
Van den Steen, 1995; Kreuzer and Kust, 1996a,b, 1997; Kust, 1998; Kyllingstad and
Halsey, 1988; Leine, 2000; Leine et al., 2002; Mihajlović et al., 2005a,b, 2004a,b;
Van de Wouw et al., 2005a; Van den Steen, 1997]. In most papers, it is concluded that
torsional vibrations are caused by negative damping in the friction force present at the
contact between the bit and the borehole (see for example [Brett, 1991, 1992; Kreuzer
and Kust, 1996a; Mihajlović et al., 2004a]). A number of experimental results provide
additional evidence for such conclusion [Brett, 1991, 1992; Leine, 2000; Leine et al.,
2002; Mihajlović et al., 2005a,b, 2004a,b; Van de Wouw et al., 2005a; Van den Steen,
1997]. Based on that conclusion, in [Jansen, 1993; Jansen and Van den Steen, 1995]
a control strategy is suggested to avoid torsional vibrations in drill-string systems.

It should be noted that Germay [2002] and Richard et al. [2004] have concluded
that torsional vibrations in drilling systems can appear due to coupling between tor-
sional and axial dynamics of the system. Moreover, according to them, such interac-
tion effectively leads to a Stribeck effect.

In this thesis, we also investigate a negative damping in a friction-velocity curve
as a cause for torsional vibrations in drill-string systems. Moreover, since the sticking
phenomenon is observed in the experimental set-up, the dynamical model of the
set-up incorporates a set-valued force law for the friction, and, consequently, is of
Filippov-type [Filippov, 1988; Leine, 2000; Leine and Nijmeijer, 2004].
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1.2 Vibrations in Rotor Systems

1.2.1 Vibrations in Various Rotor Systems

Rotating machinery such as turbines, pumps and fans are very important components
in many machines and systems. Some examples are aircraft engines, power stations,
large flywheels in a hybrid transmission of motorcars, etc. Therefore, the behaviour of
these rotor-dynamic components can influence the performance of the whole system.
Namely, for certain ranges of rotational speed, such systems can exhibit various types
of vibration which can be so violent that they can cause significant damage.

There are many possible causes for such behaviour. Some examples are friction or
fluid forces in the bearings in which a shaft is borne, mass-unbalance in the rotor which
can lead to whirling motions, flexibilities present in the system, etc. Consequently,
the understanding of the dynamic behaviour of such systems is very important and
can be very complex (see for example [Lee, 1993; Tondl, 1965; Van de Vorst, 1996;
Van de Vorst et al., 1994; Van de Vrande, 2001]).

Krauter [1981] analyzed torsional vibrations in water lubricated bearings. As in
many papers on drilling systems, he concluded that those vibrations are due to a
negative damping in the bearings.

Lateral vibrations in rotor systems have been analyzed extensively by Fritz [1970a,b];
Lee [1993]; Muszynska [1986]; Tondl [1965]; Van de Vrande [2001]. Lee [1993], Tondl
[1965] and Van de Vrande [2001] considered different types of rotor systems; but in
all those systems, lateral vibrations are induced by the mass-unbalance in a rotor.
On the other hand, Fritz [1970a,b] and Muszynska [1986] derived expressions for fluid
forces which can also induce lateral vibrations in systems with a long vibrating rotor
which rotates in a stator.

Interaction between torsional and lateral vibrations in different rotor systems is
studied in [Gunter et al., 1983; Lee, 1993; Tondl, 1965; Van de Vorst, 1996; Van de
Vorst et al., 1994]. In various mechanical systems it is noticed that increase of mass-
unbalance can have both stabilizing and destabilizing effects in the considered system.
For example, Tondl [1965] and Lee [1993] consider a simple disc with a mass-unbalance
connected to a shaft which is elastic in both torsional and lateral direction (see figure
1.2). They noticed that in such systems, under certain conditions, instabilities can
appear if the unbalance increases. On the other hand, in [Gunter et al., 1983; Van de
Vorst, 1996; Van de Vorst et al., 1994] the opposite effect has been noticed. Namely,
the behaviour of flexible rotor-bearing systems is analyzed and it is concluded that
the mass-unbalance can stabilize some rotor systems.

1.2.2 Vibrations in Drill-String Systems

Many researchers study the dynamic behaviour of rotary drill-string systems. As we
already mentioned, in such systems different types of vibrations appear during drilling
[Jansen, 1991, 1993; Leine, 2000; Leine et al., 2002; Van den Steen, 1997].

A literature overview about torsional vibrations in drilling systems is given in the
previous section. Lateral vibrations are studied in [Jansen, 1991, 1993; Leine, 2000;
Leine et al., 2002; Van der Heijden, 1993, 1994]. In [Leine, 2000; Leine et al., 2002], it
is assumed that fluid forces induce lateral vibrations. Namely, Leine et al. [2002] have
used the expressions for fluid forces derived in [Fritz, 1970a,b; Muszynska, 1986] and
analyzed lateral vibrations in drill-string systems caused by those forces. However,
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Ω

Friction
torque

Figure 1.2: A simplified flexible rotor system.

it is widely accepted that lateral vibrations are mainly caused by pipe eccentricity
and such vibrations have been analyzed by Jansen [1991, 1993] and Van der Heijden
[1993, 1994].

The coupling between various types of vibrations in drilling systems is also studied.
For example, the coupling mechanisms between axial and torsional vibrations have
been studied in [Bailey and Finnie, 1960; Finnie and Bailey, 1960; Germay, 2002;
Richard et al., 2004]. Then, in [Jansen, 1991, 1993; Van der Heijden, 1993, 1994] not
only lateral vibrations due to mass-unbalance in drilling collars have been studied,
but also the influence of the drilling fluid, stabilizer clearance and stabilizer friction
is taken into account. What is more, Tucker and Wang [1999] discussed the stability
of drill-string configurations in vertical boreholes taking into account torsional, axial
and lateral perturbations. The interaction between torsional and lateral vibrations
in drilling systems is addressed in [Leine, 2000; Leine et al., 2002]. It is assumed
that torsional vibrations are induced by the negative slope in the friction curve at the
bit and that lateral vibrations are caused by fluid forces. Under these assumptions,
a model of a simplified drill-string system (as shown in figure 1.2) is derived, and
a bifurcation analysis is performed. As a result of this analysis, it is noticed that
for higher angular velocity Ω (see figure 1.2), torsional vibrations can disappear and
backward whirl appears, which can also happen in real drilling systems.

However, although it is widely accepted that the main cause for torsional vibra-
tions in drill-string systems is negative damping in the friction-velocity curve on the
bit and the main cause for lateral vibrations is the mass-unbalance in the drill collars,
the interaction between those two types of vibrations is not studied yet. Moreover,
not a lot of experimental work has been done on interaction of various types of vibra-
tions these systems. In order to study both types of vibrations and their interaction,
an experimental set-up was built which will be described later.

1.3 Goals and Main Contribution of the Thesis

Although a lot of theoretical research has been performed on vibrations in flexible ro-
tor systems, a rather limited number of papers is available which include experimental
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results on the interaction between different types of vibrations. Therefore, the aim of
this thesis is not only to include results of theoretical research, but the focus is on the
experimental validation of the obtained results. For that purpose, we have designed
an experimental set-up. The set-up consists of a DC-motor which is connected to a
disc (the upper disc) via a gear box. The upper disc is connected via a low stiffness
string to another disc (the lower disc) and at the lower disc an additional brake is
used. The lower disc can rotate around its geometric center and can also move in
both lateral directions. Consequently, such drill-string system can undergo torsional
vibrations induced by the friction force, lateral vibrations due to an additional mass-
unbalance which can be established at the lower disc and a combination of those two
types of vibrations.

The set-up is modelled, the parameters of the model are estimated and the system
dynamics are analyzed. The focus of the analysis is on the steady-state behaviour
of the system when a constant input voltage is applied at the motor. Both in the
model and the experiments the steady-state performance undergoes various quali-
tative changes when the input voltage is changed. These qualitative changes are
typically captured in a bifurcation diagram that features the changes of equilibrium
points into limit cycling (vibrations) and vice versa.

The main contributions of the thesis can be described as follows:

• Torsional vibrations, lateral vibrations and the interaction between those vibra-
tions in flexible rotor systems with friction are modelled and analyzed. Those
vibrations are analyzed using appropriate analytical and numerical tools. As a
result of such analysis appropriate bifurcation diagrams are constructed. All this
analysis is aiming at improved understanding for the cause of friction-induced
limit cycling and effects of interaction which influence this type of limit cycling,
and for limit cycling induced by the interaction.

• The fact that theoretically obtained results are validated experimentally, gives
an opportunity to recognize which element or nonlinearity in the dynamics is
responsible for certain behaviour. This allows to generalize the results, at least
qualitatively, to more general types of systems.

• The dynamic model of the set-up is described by differential equations with
discontinuous right-hand side (due to the presence of friction) and the bifurca-
tions of such systems are not entirely understood. Moreover, an experimental
study of discontinuous bifurcations is still rare. In the set-up, we encounter an
equilibrium set, equilibria and stick-slip limit cycling; phenomena typical for
systems with such a discontinuity. Moreover, we also observe a "discontinuous
Hopf bifurcation" and a "discontinuous fold bifurcation" both in simulations
and experiments. These observations provide the opportunity to analyze and to
gain a better understanding of discontinuous bifurcations and other phenomena
typical for Filippov systems.

1.4 Outline of the Thesis

Chapter 2 gives some basic definitions and theorems on nonlinear and non-smooth
dynamics and describes several analytical and numerical tools which are used through
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the thesis. In Section 2.1, we define phenomena which appear in discontinuous non-
linear systems. Analytical and numerical tools which are used for stability analysis
and the prediction and estimation of steady-state behaviour of nonlinear systems are
described in Section 2.2. Since we analyze discontinuous systems, we also describe the
adaptations which need to be made to those analytical tools in order to use them for
the analysis of discontinuous systems. Finally, in Section 2.3, we discuss the notion
of bifurcation and introduce several basic bifurcations of periodic solutions, which are
important in the remainder of the thesis.

Chapter 3 is devoted to the experimental set-up which is used in this thesis. In
Section 3.1, we describe the set-up where friction-induced torsional vibrations, lateral
vibrations due to a mass-unbalance and a combination of those types of vibration
can occur. In Section 3.2, the model of the set-up is presented. The identification
technique, which is used for the parameter estimation of the model and the estimated
parameters for the experimental set-up are given in Section 3.3.

Chapter 4 addresses only torsional vibrations in flexible rotor systems. Therefore,
we induce only torsional, and no lateral, vibrations by applying certain normal force at
the brake at the lower disc of the set-up and, in Section 4.1, we estimate the friction
torque at the lower disc. In Section 4.2, we determine equilibrium points (sets),
periodic solutions and discuss related stability properties. As a result of such analysis
we construct a bifurcation diagram based on the proposed model and the estimated
parameters. We also discuss how different characteristics of the friction force at the
lower disc influence the steady-state behaviour of the system. In Section 4.3, the
bifurcation diagram is compared to experimentally obtained results. Furthermore, we
present and discuss results obtained for different contact situations in the brake of
the experimental set-up. This chapter we finish with a summary which is presented
in Section 4.4.

In Chapter 5 we analyze the interaction between torsional and lateral vibrations in
flexible rotor systems. Consequently, we induce both torsional and lateral vibrations
in the set-up. In Section 5.1, we validate the obtained model. Next, in Section 5.2
we determine the equilibrium points (sets) and periodic solutions of the estimated
model and elaborate on the related stability properties. Moreover, we discuss how
various parameters of the set-up influence the vibrations in the system. In Section
5.3, based on the estimated model, a bifurcation diagram is presented and compared
to experimentally obtained results. Furthermore, we discuss the experimental results
obtained for various mass-unbalance levels present at the lower disc. Finally, a short
summary of this chapter is given in Section 5.4.

Finally, in Chapter 6 we present conclusions which can be derived from this thesis
and recommendations for future research, inspired by the results presented in the
thesis.





Chapter 2

Preliminaries

In this thesis, we analyze the steady-state behaviour of flexible rotor systems with
friction, modelled by a set-valued force law. Such systems belong to the class of
discontinuous nonlinear dynamical systems. That is why, in Section 2.1, we define
phenomena which appear in discontinuous nonlinear systems. Most of those defini-
tions can be found in [Khalil, 2000; Parker and Chua, 1989; Sastry, 1999]. In Section
2.2, analytical and numerical tools are described which are used for the stability ana-
lysis, prediction and estimation of the steady-state behaviour of nonlinear systems.
Most of those tools are described in more detail in [Nayfeh and Balachandran, 1995;
Parker and Chua, 1989]. We also describe the adaptations which need to be made to
those analytical tools in order to use them for the analysis of discontinuous systems.
We also describe the Switch Model [Leine and Nijmeijer, 2004], a method which is
used for numerical simulation of certain discontinuous systems. Finally, in Section 2.3
the notion of bifurcation is introduced and bifurcation diagrams are described as be-
ing a graphical tool to visualize the changes in the qualitative behaviour of differential
equations as a parameter is varied.

2.1 Steady-State Behaviour of Nonlinear Mechanical

Systems

In this thesis, we analyze the steady-state behaviour of autonomous systems. An nth-
order autonomous, nonlinear dynamical system is defined by the following differential
equation:

ẋ = f(x), (2.1)

with the initial condition
x(t0) = x0, (2.2)

where x ∈ R
n represents the state, t ∈ R represents time and f : R

n → R
n is called

a vector field. The solution of (2.1) and (2.2) is called the flow and can be written
as x(t,x0) in order to show the explicit dependency on the initial condition. The set
{x(t,x0) | −∞ < t < ∞} is called the trajectory passing through x0 at t0. Very often,
when no confusion arises, the solution of (2.1) and (2.2) is simply denoted as x(t).

Since we model friction with a discontinuous friction law, the vector field f in
(2.1) is discontinuous. In order to analyze such systems, these are often described by
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x

Figure 2.1: A vector field of a discontinuous system.

differential inclusions. Assume that the system (2.1) exhibits a discontinuous right-
hand side:

ẋ = f(x) =

{

f−(x) for x ∈ Λ−,
f+(x) for x ∈ Λ+,

(2.3)

with the initial condition (2.2). Then, assume that the vector field f is piecewise
continuous and smooth on Λ− and Λ+ and is discontinuous on a hyper-surface Σ (see
figure 2.1), with

Σ = {x ∈ R
n | g(x) = 0},

Λ− = {x ∈ R
n | g(x) < 0},

Λ+ = {x ∈ R
n | g(x) > 0},

(2.4)

where the smooth mapping g : R
n → R defines the switching surface Σ. It is not

required that f−(x) and f+(x) agree on Σ, i.e. f−(x) 6= f+(x), ∀x ∈ Σ). The system,
described by (2.3), is not defined if x is on Σ. We can overcome this problem with
the following set-valued extension F(x) (of f(x)):

ẋ ∈ F(x) =







f−(x) for x ∈ Λ−,
[f−(x), f+(x)] for x ∈ Σ,

f+(x) for x ∈ Λ+,
(2.5)

where [f−(x), f+(x)] is a convex set for x ∈ Σ:

[f−(x), f+(x)] = {(1 − q)f−(x) + qf+(x), ∀ q ∈ [0, 1]}.

The extension (2.5) of a discontinuous system (2.3) is called a differential inclusion
[Filippov, 1988; Leine, 2000; Leine and Nijmeijer, 2004]. In the remainder of this
thesis, we adopt Filippov’s solutions concept to define solution of (2.3).

In the sequel, by steady-state behaviour we indicate the asymptotic behaviour of
a system as t → ∞. In this thesis, we are specifically interested in the steady-state
behaviour of the systems under investigation. Therefore, we define different types of
steady-state solutions encountered in nonlinear systems.

Definition 2.1 (Equilibrium point). An equilibrium point xeq of (2.1) is a con-
stant solution of the system. At an equilibrium point xeq the vector field f vanishes:

f(xeq) = 0. (2.6)

If the vector field f is discontinuous, then an equilibrium point represents a solution
of

0 ∈ F(xeq), (2.7)
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where F represent a differential inclusion (2.5). A solution of the algebraic inclusion
(2.7) can be also an equilibrium set.

Definition 2.2 (Periodic solution). A solution xp(t,xp0) is a periodic solution of
an autonomous system (2.1) or (2.5) if

xp(t,xp0) = xp(t + T,xp0) (2.8)

for all t ∈ R.

The minimal period T > 0 such that xp(t,xp0) = xp(t + T,xp0) for every 0 ≤ t < T
is called the period time of the periodic solution. A periodic solution is isolated if
there is a neighborhood that contains no other periodic solution. In the autonomous
case, an isolated periodic solution is called a limit cycle. Consequently, every limit
cycle is a periodic solution. The converse, however, is not true. For instance, a linear
time-invariant system may have periodic solutions, when it has a pair of eigenvalues
on the imaginary axis (±jω), but it has no limit cycles. In fact, one important
difference between linear and nonlinear systems is that nonlinear systems can exhibit
limit cycles, whereas linear systems cannot.

Assume that a steady-state solution of a nonlinear system is a function of two
periodic functions: one with period T1 and another with period T2. If it is possible to
find a time T such that T = nT1 = mT2, where n and m are positive integers, then the
motion is periodic with period T . If, however, T1/T2 is an irrational number then no
period time can be found and such motion is called quasi-periodic. Generally speaking,
a quasi-periodic solution is a solution formed by the sum of periodic functions with
incommensurate periods.

When analyzing the steady-state behaviour of a dynamical system, the stability
properties of these steady-state solutions are often investigated because these are
crucial for the global dynamics of the system. Various stability definitions exist with
which the stability of these steady-state solutions can be assessed. In this thesis,
stability in the sense of Lyapunov is considered.

Definition 2.3 (Stability in the sense of Lyapunov). A steady-state solution
xs(t,xs0) of a system (2.1), satisfying the initial condition xs0 = xs(t0,xs0), is defined
to be stable in the sense of Lyapunov if for any ǫ > 0, there exists a number δ = δ(ǫ),
such that

‖x0 − xs0‖ < δ(ǫ) ⇒ ‖x(t,x0) − xs(t,xs0)‖ < ǫ, for all t ≥ t0.

If, additionally the solution is attractive, i.e.

‖x0 − xs0‖ < δ(ǫ) ⇒ lim
t→∞

‖x(t,x0) − xs(t,xs0)‖ = 0,

then the solution xs(t,xs0) is defined to be asymptotically stable in the sense of Lya-
punov. The solution xs(t,xs0) is unstable if it is not stable.

In figure 2.2, an illustration of the concept of the stability in the sense of Lyapunov
is presented.

In nonlinear systems the coexistence of several (quasi-)periodic solutions and/or
equilibrium points can appear. Assume, for example, that the nonlinear system (2.1)
has two stable steady-state solutions: a stable equilibrium point and a stable periodic



16 Chapter 2. Preliminaries

δ(ǫ)
x0

x1

x2

(a)

(b)

t0

t

ǫxs(t,xs0)

x(t,x0)

Figure 2.2: Graphical representation of (a) a stable trajectory, (b) an asymptotically
stable trajectory xs(t,xs0).

solution. Then, the solution x(t,x0) of the system converges to one of those solutions,
depending on the initial condition x0. In that case we refer to the local asymptotic
stability of the equilibrium point and the periodic solution. The collection of all initial
conditions x0 such that all solutions x(t,x0) of (2.1) move towards the equilibrium
point (periodic solution) as time proceeds, is referred to as the domain of attraction
or the basin of attraction of the equilibrium point (periodic solution). If the solutions
of (2.1) tend to the steady-state solution as time proceeds, for all initial conditions
x0 ∈ R

n, then we refer to the global asymptotic stability of the solution.

2.2 Tools for Prediction and Estimation of Steady-

State Behaviour

2.2.1 Equilibrium Points and Tools for Related Stability Ana-

lysis

An equilibrium point xeq of an autonomous system (2.1) can be found by solving the
set of algebraic equations (2.6) if the system is continuous or by solving the algebraic
inclusions (2.7) for a discontinuous system (2.5). To prove that an equilibrium point
is stable in the Lyapunov sense, there exist a number of methods. Further in the
text, we describe Lyapunov’s indirect method which can be used to determine the
local stability properties of an equilibrium point. Furthermore, Lyapunov’s stability
theorem is given, which can be used to prove both local and global stability of an
equilibrium point. Since, in this thesis we analyze discontinuous systems, we also
explain under which conditions those theorems can be used for the stability analysis
of the equilibrium points and equilibrium sets.

According to the Hartman-Grobman theorem [Sastry, 1999], the local behaviour of
a nonlinear system (2.1) near its equilibrium point xeq is determined by its lineariza-
tion around xeq. As a consequence the local stability can be studied using Lyapunov’s
indirect method.

Theorem 2.1 (Lyapunov’s indirect method). [Khalil, 2000; Sastry, 1999] Let x =
xeq be an equilibrium point of (2.1) where f : D → R

n is continuously differentiable
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and D is a neighborhood of the equilibrium point. Let

˙̃x = Ax̃, A =
∂f

∂x
(xeq), x̃ = x − xeq (2.9)

represent the linearization of the nonlinear system (2.1) around the equilibrium point.
Then,

1. the equilibrium point xeq is stable if all eigenvalues of A have a negative real
part,

2. the equilibrium point xeq is unstable if at least one eigenvalue has a positive real
part,

3. no conclusions can be drawn if A has an eigenvalue with a zero real part.

In (2.9), matrix A represents the Jacobian matrix evaluated at the equilibrium point
xeq. The stability of the equilibrium point can be tested by calculating the roots of
the characteristic polynomial of (2.9). The characteristic polynomial can be found as

P (s) = det(sI − A),

with
P (s) = ansn + an−1s

n−1 + ... + a1s + a0.

It should be noted that it is not necessary to actually find the zeros of the charac-
teristic polynomial to determine stability, but only to determine whether there exists
a zero with a positive real part. For such purposes, the Routh-Hurwitz method is use-
ful. With that method the number of zeros with positive real part can be determined
using only the coefficients of the characteristic polynomial, without actually solving
the characteristic equation P (s) = 0 itself [Driels, 1995].

If the equilibrium point xeq is not hyperbolic, i.e. if A in (2.9) has at least one
eigenvalue with a zero real part, whereas the rest of the eigenvalues have negative
real parts, then the linearization fails to determine the stability properties of the
equilibrium point. In that case, the center manifold theory may be applied [Khalil,
2000; Sastry, 1999]. Using that theory, the stability property of the equilibrium can
be determined by analyzing a lower-order nonlinear system, whose order is exactly
equal to the number of eigenvalues of A with zero real parts. In that case, the nth-
order nonlinear system (2.1) has to be analyzed to determine the stability of the
equilibrium. However, since this theory is not used in this thesis, we do not present
it here.

Since in this thesis we deal with discontinuous systems and therefore with differen-
tial inclusions, we should note that, due to non-differentiability of set-valued extension
F(x) on the discontinuity Σ, Lyapunov’s indirect method can only be applied to as-
sess the local stability of xeq if xeq ∈ Λ− ∪ Λ+ in system (2.5). However, if xeq is on
the discontinuity, i.e. xeq ∈ Σ, then Lyapunov’s direct method (also called the second
method of Lyapunov) may be used for the stability analysis of such equilibrium points
[Shevitz and Paden, 1994]. That method allows to analyze the stability properties of
a solution of a system without explicitly solving the differential equation (2.1). The
method is a generalization of the idea that if there is some measure of energy in a
system which can be used, then we can study the rate of change of the energy of
the system to ascertain stability. Moreover, Lyapunov showed that other functions
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could be used instead of energy to determine the stability properties of an equilibrium
point.

Theorem 2.2 (Lyapunov’s stability theorem). [Khalil, 2000; Sastry, 1999] Let
x = xeq be an equilibrium point of (2.1). Let V (x) : D → R be a continuously
differentiable function defined such that

V (xeq) = 0 and V (x) > 0, ∀x ∈ D − {xeq}, (2.10)

V̇ (x) ≤ 0, ∀x ∈ D. (2.11)

Then, x = xeq is stable. Moreover, if

V̇ (x) < 0, ∀x ∈ D − {xeq}, (2.12)

then equilibrium point x = xeq is asymptotically stable.

A continuously differentiable function V (x) which satisfies (2.10) and (2.11) is called
a Lyapunov function. A function V (x) satisfying only condition (2.10) is said to be
positive definite on D. If V (x) satisfies the weaker condition V (x) ≥ 0 for x 6= 0,
then it is called positive semidefinite. A function V (x) is considered to be negative
definite or negative semidefinite if −V (x) is positive definite or positive semidefinite,
respectively. A function V (x) is indefinite if it does not have a definite sign.

The equilibrium point xeq is globally (asymptotically) stable in the sense of Lya-
punov if the conditions of Theorem 2.2 hold in D = R

n and V (x) is radially unbounded
i.e.

‖x‖ → ∞ ⇒ V (x) → ∞.

Theorem 2.2 only gives sufficient conditions for the stability of the equilibrium
point. This means that if a certain Lyapunov function does not satisfy the conditions
of Theorem 2.2, then this fact does not imply that the equilibrium point is unstable.
However, the theorem does not give a method for determining the Lyapunov function
V (x). On the other hand, it is a remarkable fact that the converse of Theorem 2.2 also
exists: if an equilibrium point is (asymptotically) stable, then there exists a function
V (x) satisfying the conditions of the theorem. However, the application of this and
other converse theorems is limited by the lack of a technique for generating Lyapunov
functions.

An extension of the basic Lyapunov theory is given in LaSalle’s invariance princi-
ple. LaSalle’s theorem enables one to conclude asymptotic stability of an equilibrium
point even when V (x) does not satisfy (2.12). Moreover, the theorem can be used to
prove the attractivity of an equilibrium set of a discontinuous system [Van de Wouw
and Leine, 2004]. To introduce the theorem, we first introduce the definition of an
invariant set.

Definition 2.4 (Invariant set). The set M ⊂ R
n is said to be an invariant set for

system (2.1) if for all x0 ∈ M and t0 ≥ 0, we have that for the solution x(t,x0) of
(2.1), with x0 = x(t0), the following holds:

x(t,x0) ∈ M, ∀ t ∈ R.

We can now state LaSalle’s invariance principle and an additional corollary.
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Theorem 2.3 (LaSalle’s invariance principle). [Khalil, 2000; Sastry, 1999] Let
V : D → R be a continuously differentiable positive definite function on a domain D
such that on the compact set Dc = {x ∈ D |V (x) ≤ c} we have V̇ (x) ≤ 0. Define
S = {x ∈ Dc | V̇ (x) = 0}. Then, every solution of (2.1), starting in Dc approaches
the largest invariant set inside S as t → ∞.

Corollary 2.1. Let xeq be an equilibrium point of (2.1). Let V : D → R be a
continuously differentiable positive definite function on a domain D containing the
equilibrium point, such that V̇ (x) ≤ 0 in D. Define S = {x ∈ Dc | V̇ (x) = 0} and
suppose that no solution, other than the solution x(t) = xeq, can stay in S. In other
words, suppose that xeq is the largest invariant set in S. Then, xeq is asymptotically
stable. If all conditions hold for D = R

n then the origin is globally asymptotically
stable.

2.2.2 Periodic Solutions and Tools for Related Stability Ana-

lysis

In order to determine a periodic solution xp(t,xp0) of the system (2.1), we need to
find a period T and a value for xp0 such that (2.1) and (2.8) are satisfied for every t.

Various techniques exist for the prediction of such solutions. In the middle of the
previous century, some approximating methods have appeared, e.g. the method of
harmonic balance, the describing function method, and perturbation methods. More
details about these methods can be found in [Khalil, 2000], [Nayfeh and Mook, 1979]
and [Nayfeh, 1973], respectively. These methods have been useful in those times due
to the fact that at that time the possibilities for extensive numerical computations
were virtually absent.

Nowadays, numerical methods are used for the determination of a periodic solu-
tions. In order to find a periodic solution, the most common first step is the manual
search for such solution using a numerical simulation. When the approximate loca-
tion of an interesting periodic solution is found, then more sophisticated numerical
methods can be applied to calculate it more precisely. Some of those methods are
the shooting method, the finite difference method and the multiple shooting method
[Ascher et al., 1995; Leine and Van de Wouw, 2001; Nayfeh and Balachandran, 1995;
Parker and Chua, 1989; Van Campen, 2000].

Further in the text, we first describe Floquet theory which explains how to deter-
mine the stability of a periodic solution and, next, the shooting method is described,
since we use that method when computing periodic solutions throughout this thesis.
Moreover, we also describe the method we use to numerically compute solutions of
discontinuous systems.

Floquet Theory

Suppose that an autonomous nonlinear dynamical system (2.1) has a periodic solution
xp(t,xp0), where xp0 = xp(t0,xp0). Then, any other point on the periodic solution
xp(t) is determined with xp(t) = xp(t,xp0).

To derive stability conditions for the periodic solution, we linearize system (2.1)
around xp(t). A perturbed solution x(t) = xp(t) + △x(t) must also satisfy (2.1),
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which leads to the following approximate differential equation for the perturbation:

△ẋ(t) = A(t)△x(t), A(t) =
∂f

∂x

∣

∣

∣

∣

x=xp(t)

, (2.13)

where higher-order terms are neglected. Note that A(t) is time-dependent (implicitly
through xp(t)) in a periodic fashion. The local stability of the periodic solution of
(2.1) can now be assessed by assessing the stability of the equilibrium point △x = 0

of (2.13). Moreover, the solution of (2.13) satisfies

△x(t) = Φ(t, t0,xp0)△x(t0), Φ(t0, t0,xp0) = I, (2.14)

where Φ(t, t0,xp0) represents the fundamental solution matrix of system (2.13). In
(2.14), △x(t) and △x(t0) represent perturbations around the periodic solution at time
instants t and t0, respectively. According to (2.14), the fundamental solution matrix
Φ(t, t0,xp0) relates how an infinitesimally small perturbation at time t0 evolves to an
infinitesimally small perturbation at time t (see figure 2.3).

Since we consider an autonomous system, the fundamental solution matrix only
depends on the time span t − t0, i.e.

Φ(t, t0,x0) = Φ(t + ta, t0 + ta,x0), (2.15)

where x0 is not necessarily on a periodic solution. Furthermore, because the solution
xp(t,xp0) is periodic with period time T , the following can be obtained:

△x(t0 + kT ) = Φk(t0 + T, t0,xp0)△x(t0) = Φk
T△x(t0). (2.16)

Herein, ΦT = Φ(t0 + T, t0,xp0) is the so-called monodromy matrix. From (2.16), it
can be concluded that monodromy matrix maps an initial perturbation △x(t0) to
the perturbation △x(t0 + T ), one period later, see figure 2.3. The eigenvalues of the
monodromy matrix are called the Floquet multipliers. From (2.15) and (2.16) the
following can be derived:

Φ(t + kT, t0,xp0) = Φ(t + (k − 1)T, t0,xp0)ΦT = ... = Φ(t, t0,xp0)Φ
k
T . (2.17)

The consequence of this equation is that Φ(t, t0,xp0) is known at any time if it is
known for t0 ≤ t ≤ t0 + T .

According to (2.17), it can be concluded that the long-term behaviour of the fun-
damental solution matrix is determined by the monodromy matrix, more specifically
by its eigenvalues – the Floquet multipliers. The growth or decay of a perturbation
follows from (2.14). If a Floquet multiplier has a magnitude larger (smaller) than one,
then a perturbation grows (decays) in the direction of the corresponding eigenvector
after one period.

The fundamental solution matrix can be obtained by solving the following initial
value problem:

Φ̇(t, t0,xp0) = A(t)Φ(t, t0,xp0), Φ(t0, t0,xp0) = I, (2.18)

(see [Parker and Chua, 1989]). However, since we deal with discontinuous systems,
then the monodromy matrix ΦT cannot be determined using (2.18). Instead, the
monodromy matrix is determined by applying a sensitivity analysis to the periodic
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x(t)
△x(t) = Φ(t, t0,xp0)△x(t0)

xp(t)
x(t0)

△x(t0)

xp0

x(t0 + T )

△x(t0 + T ) = ΦT△x(t0)

xp(t,xp0)

f(xp0)

Figure 2.3: Periodic solution xp(t,xp0) with related fundamental solution matrix
Φ(t, t0,xp0) and monodromy matrix ΦT = Φ(t0 + T, t0,xp0).

solution using the relation (2.14) in the following way [Leine et al., 1998]. First, we
perturb one component of the initial state vector x0 (for example component j), which
is in the neighborhood of the periodic solution xp(t,xp0), with a small perturbation
and leave other components unchanged, i.e.

x0j = x0 + △x0j ,

with
x0 = [ x1

0 . . . xj
0 . . . xn

0 ]T

1 j − 1 j j + 1 n

△x0j = [ 0 . . . 0 ξ 0 . . . 0 ]T,

where ξ ≪ xj
0. Second, we integrate the system (2.5) over the period time T with x0j

as initial vector state and obtain xTj = x(t0 + T,x0j). The perturbation of the final
state vector, caused by the perturbation of the initial state vector, is:

△xTj = xTj − xT ,

with xT = x(t0 + T,x0). The columns Φj
T of the monodromy matrix ΦT can be

obtained by

Φj
T =

△xi
T j

ξ
.

Finally, we will also discuss a property which only holds for autonomous systems.
Consider system (2.1) and introduce an infinitesimally small perturbation on the
initial condition (which lies on the periodic solution) in the direction: △x(t0) =
αf(xp0), α ≪ 1. Then, the resulting perturbation after one period will be identical
to the initial perturbation △x(t0 + T ) = △x(t0) = αf(xp0), due to the periodicity of
the periodic solution, and then the fact that △x(t0 + T ) = Φ(t0 + T, t0,xp0)△x(t0)
leads to f(xp0) = ΦT f(xp0). This means that one Floquet multiplier λ always equals
1 with a corresponding eigenvector f(xp0).
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The Shooting Method

The shooting method is a widely used numerical method for the computation of
periodic solutions of nonlinear systems [Ascher et al., 1995; Leine and Van de Wouw,
2001; Nayfeh and Balachandran, 1995; Parker and Chua, 1989; Van Campen, 2000].
In order to find a periodic solution of an autonomous system (2.1), we need to find
the period time T and an initial condition xp0 such that (2.8) is satisfied. In other
words, we need to find zeros of the vector function H with

H(xp0, T ) = xp(t0 + T ) − xp0, (2.19)

where xp0 = xp(t0,xp0) and xp(t0 + T ) = xp(t0 + T,xp0) are points on the periodic
solution at time instants t0 and t0 + T , respectively.

Assuming that a periodic solution exists, a zero of H(xp0, T ) can be found using
the Newton-Raphson procedure [Leine and Van de Wouw, 2001; Parker and Chua,
1989]. If we apply it to H(xp0, T ) the following equation is obtained

∂H

∂xp0
△xp0 +

∂H

∂T
△T = −H(xp0, T ),

which, after evaluation of the partial derivatives, gives

(ΦT (xp0) − I)△xp0 + f(xp(t0 + T,xp0))△T = xp0 − xp(t0 + T,xp0). (2.20)

Equation (2.20) represents a system of n equations with n+1 unknowns (n components
of xp0 and the period T ), which means that it cannot be solved uniquely. The reason
for this fact is that the phase of a periodic solution, belonging to an autonomous
system, is not fixed. Any point on the periodic solution is a zero of (2.19). In order
to remove this arbitrariness, some suggestions are done by Nayfeh and Balachandran
[1995]. One suggestion is the use of an additional equation of the form

fT(xp0)△xp0 = 0. (2.21)

This means that the update △xp0 is restricted to be orthogonal to the vector field
f at xp0. Therefore, condition (2.21) is called an orthogonality condition. Then, the
combination of (2.21) and (2.20) gives the following n + 1 linear equations
[

ΦT (x
(i)
p0 ) − I f(xp(t0 + T (i),x

(i)
p0 ))

fT(x
(i)
p0 ) 0

][

△x
(i)
p0

△T (i)

]

=

[

x
(i)
p0 − xp(t0 + T (i),x

(i)
p0 )

0

]

(2.22)
for the n+1 unknowns △x

(i)
p0 and △T (i). The shooting method solves in each iteration

step the set of equations (2.22) and then updates the state and period time by
[

x
(i+1)
p0

T (i+1)

]

=

[

x
(i)
p0

T (i)

]

+

[

△x
(i)
p0

△T (i)

]

,

with initial guesses x
(0)
p0 and T (0). This scheme is reiterated until some predefined

convergence criterion with respect to x
(i)
p0 and T (i) is satisfied. As we already men-

tioned, the monodromy matrix ΦT (x
(i)
p0 ) is obtained using a sensitivity analysis of
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relation (2.14) [Leine et al., 1998], since we deal with discontinuous systems. When
we find values for x0 and T using the shooting method, it should be checked whether
T is the minimum period of the solution, since it may also be a multiple of the actual
period.

The most important drawback of all numerical methods for computing periodic
solutions (and therefore also of the shooting method) is that these methods only
converge if the initial guess xp0 is close enough to the periodic solution. This means
that those methods do not find periodic solutions, but refine an already good guess
of the periodic solution. Nevertheless, with this method it is also possible to find an
unstable periodic solution.

2.2.3 Switch Model

While pursuing numerically solutions of differential inclusions a range of computa-
tional problems can be encountered around a discontinuity. Therefore, a number of
numerical techniques exists for the numerical solution of differential inclusions. The
smoothing method, for example, approximates the discontinuous vector field by a
smooth vector field (see for example [Van de Vrande et al., 1999]). The main disad-
vantage of this method is that it yields stiff differential equations which are numeri-
cally expensive to solve especially near the discontinuity. The so-called Switch Model
solves the problems which appear in the smoothing method. However, the main dis-
advantage of the Switch Model technique is that the complexity of the simulation
model rapidly increases with increasing number of discontinuity surfaces [Leine, 2000;
Leine and Nijmeijer, 2004; Leine et al., 1998]. In such systems more sophisticated
simulation methods can be used such as event-driven integration methods [Pfeiffer
and Glocker, 1996] and the time-stepping method [Leine and Nijmeijer, 2004]. Since
in this thesis we consider a system which does not have many discontinuous surfaces,
the Switch Model is used for the numerical simulation of the considered system.

The Switch Model was presented for the first time by Leine et al. [1998] and a de-
tailed description of the numerical method can be found in [Leine and Nijmeijer, 2004].
The Switch Model represents an improved version of the Karnopp model [Karnopp,
1985; Olsson, 1996]. In order to numerically integrate the differential inclusion (2.5),
the Switch Model introduces a boundary layer with thickness 2η around the hyper-
surface Σ (defined in (2.4)) to allow for an efficient numerical approximation. Then,
within that boundary layer, a vector field is introduced such that the state of the sys-
tem is pushed towards Σ, if an attractive sliding mode appears, avoiding numerical
instabilities (chattering around the discontinuity surface). Consequently, using this
method the space R

n is divided into the following subspaces:

Σ
′

= {x ∈ R
n | |g(x)| ≤ η},

Λ
′

− = {x ∈ R
n | g(x) < −η},

Λ
′

+ = {x ∈ R
n | g(x) > η}.

(2.23)

Then, the subspace Σ
′

is divided into subspaces A, R, T− and T+ depending on
direction of the vector fields f+(x) and f−(x) with respect to Σ (see figure 2.4). The
subspace A is a subset of the subspace Σ

′

which contains an attractive sliding mode,
R is a subset of Σ

′

which contains a repulsive sliding mode and T− and T+ are the
subspaces where the solution has a transversal intersection from Λ

′

+ to Λ
′

− and Λ
′

−
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(a) Sliding mode.
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+
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2η

(b) Switch model.

Figure 2.4: Numerical approximation of a sliding mode using the Switch Model.

to Λ
′

+, respectively. For the differential inclusion (2.5), the subspaces A, R, T− and
T+ are defined by:

A = {x ∈ R
n | |g(x)| ≤ η, nT(x)f+(x) < 0, nT(x)f−(x) > 0},

R = {x ∈ R
n | |g(x)| ≤ η, nT(x)f+(x) > 0, nT(x)f−(x) < 0},

T− = {x ∈ R
n | |g(x)| ≤ η, nT(x)f+(x) < 0, nT(x)f−(x) < 0},

T+ = {x ∈ R
n | |g(x)| ≤ η, nT(x)f+(x) > 0, nT(x)f−(x) > 0},

(2.24)

where n(x) is the normal perpendicular to the switching hyper-surface Σ:

n(x) = ∇g(x). (2.25)

Consequently, the differential inclusion (2.5) can be defined in the following way:

ẋ =































f−(x) for x ∈ Λ′
−,

f+(x) for x ∈ Λ′
+,

αf+(x) + (1 − α)f−(x) for x ∈ A,
f−(x) or f+(x) for x ∈ R,

f−(x) for x ∈ T−,
f+(x) for x ∈ T+,

(2.26)

where

α =
nT(x)f−(x) + τg(x)

nT(x)(f−(x) − f−(x))
.

The parameter τ determines how fast the solution is pushed towards the switching
boundary g(x) = 0 when the current state is in A (the higher value for τ , the faster
the solution is pushed towards g(x) = 0). In (2.23), η should be chosen sufficiently
small such that Tol < η ≪ 1, where Tol represents the tolerance of the numerical
integration method used for the simulation of the system. Sufficiently small means
that η is small enough to have no qualitative influence on the numerical solution of
the system of equations.
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2.3 Bifurcation Diagrams

A nonlinear dynamical system can evolve towards different steady-states such as an
equilibrium point/set, a periodic solution or a quasi-periodic solution, depending on
the initial condition of the system. Moreover, those steady-state solutions can be
asymptotically stable, thereby attracting neighboring solutions, or unstable. Very
often it is desirable to know how the steady-state behaviour of a system changes when
a certain parameter of the system is changed, since some parameters of a system are
not known precisely, or they can be subject to variation.

Consider a parameterized variant of (2.1)

ẋ = f(x, µ), (2.27)

where µ represents a parameter of the system which is a constant. If µ changes, the
steady-state solution xs(t,xs0) may also change. Although, usually a small change
in µ produces only small quantitative changes in the steady-state solutions, a slight
change can also cause a drastic qualitative change in the steady-state behaviour.
For example, while varying the parameter µ, the number and/or the stability of
equilibrium points or (quasi-)periodic solutions can be changed. Such a qualitative
change is called a bifurcation and the value of µ at which a bifurcation occurs is called
a bifurcation point. In [Khalil, 2000; Leine, 2000; Leine and Nijmeijer, 2004; Sastry,
1999; Van Campen, 2000] some classification of bifurcation points can be found.

In order to illustrate graphically such qualitative and quantitative changes in
xs(t,xs0) when µ changes, we need a scalar measure [xs] of xs(t,xs0). Continuous
curves representing the measure [xs] as a function of µ are called branches. More-
over, the endpoints of a branch are always bifurcation points. A branch can consist
of equilibrium points or periodic solutions; such branch will be called an equilibrium
branch or a periodic branch, respectively. Some examples of bifurcation diagrams are
shown in figures 2.5 and 2.7(a), where ei, i = 1, 2 represent equilibrium branches and
pi, i = 1, 2 represent periodic branches. Since in this thesis we consider both Hopf
and fold bifurcation points, we will describe them in the sequel.

At a Hopf bifurcation point the equilibrium point changes its stability and a peri-
odic solution is born. There are three types of Hopf bifurcation points: supercritical,
subcritical and degenerate bifurcations [Strogatz, 2000]. Suppose that a nonlinear
system (2.27) settles down to equilibrium through an exponentially damped oscilla-
tion, i.e. small disturbances decay after a while. Then suppose that the decay rate
depends on the parameter µ. If the decay becomes slower and slower, and finally at
a critical value µ = µc, small disturbances start to grow, the equilibrium state will
lose stability. If the resulting motion is a small-amplitude stable oscillation around
the former steady-state, then we say that the system undergoes a supercritical Hopf
bifurcation for µ = µc (see figure 2.5(a)). Suppose that for certain value of µ a
nonlinear system (2.27) has an unstable equilibrium point. Then suppose that for
µ = µc the equilibrium point becomes stable and an unstable limit cycle appears.
Then we say that the system undergoes a subcritical Hopf bifurcation (see figure
2.5(b)). The subcritical bifurcation is much more dramatic than the supercritical,
since after the bifurcation, the trajectory must jump to a distant attractor (e.g. an
equilibrium point, a periodic solution, infinity, etc.). A degenerate Hopf bifurcation
typically arises when a nonconservative system suddenly becomes conservative at the
bifurcation point. Some examples of such systems can be found in [Strogatz, 2000]. In
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(a) Supercritical Hopf bifurcation point.
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Figure 2.5: Hopf bifurcation points.
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Figure 2.6: Two eigenvalues of a Hopf bifurcation point.
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Figure 2.7: Fold bifurcation point and a related Floquet multiplier.
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[x]

µ

Figure 2.8: Graphical interpretation of sequential continuation method.

general, in a Hopf bifurcation point, the linearization of the nonlinear system (2.27)
around the equilibrium has two complex conjugate eigenvalues which simultaneously
cross the imaginary axis, for µ = µc, from the left to the right half-plane or vice versa
(see figure 2.6) [Sastry, 1999; Strogatz, 2000].

At a fold bifurcation point (or saddle-node bifurcation point of cycles) a stable and
an unstable limit cycle fuse together and annihilate each other for µ = µc. Moreover,
at the bifurcation point (for µ = µc) one Floquet multiplier λf leaves the unit circle
in the complex plane through the point +1 as shown in figure 2.7(b).

Since we model friction with a discontinuous friction law, equilibrium branches
which consist of equilibrium sets can also appear in bifurcation diagrams. Further-
more, due to the discontinuity, some discontinuous bifurcation points can also appear.
The analysis of various discontinuous bifurcation points in specific systems can be
found in [Leine, 2000; Leine and Nijmeijer, 2004]. However, a classification of a bi-
furcation points for discontinuous systems does not exist to this date as it does for
continuous systems. In this thesis, we encounter "discontinuous" variants of the Hopf
and fold bifurcations both in simulations and experiments.

To find an equilibrium branch of a differential inclusion (2.5) we need to solve the
following system of nonlinear algebraic inclusions

F(xeq, µ) ∋ 0,

for every possible value of µ and to determine the stability properties of each equilib-
rium point (or set) xeq = xeq(µ). That system of inclusions can be solve analytically
or numerically (using, for example, the Newton-Raphson algorithm).

Finding a periodic branch is not so straightforward as finding an equilibrium
branch. However, first using the shooting method or some other numerical method, a
periodic solution can be found for a certain parameter value µ = µ∗. Then, a periodic
solution at µ = µ∗+△µ may be found using the solution at µ = µ∗ as an initial guess.
The periodic solver is likely to converge for small △µ. This type of continuation is
called sequential continuation [Nayfeh and Balachandran, 1995].

The sequential continuation method proceeds in a step-wise fashion, due to the fact
that each previous periodic solution is an initial guess for finding the next periodic
solution. With this method, it is possible to follow branches of both stable and
unstable periodic solutions. Nevertheless, a problem may occur at bifurcation points.
If a periodic branch undergoes a fold bifurcation, at which the branch turns around
(as shown in figure 2.8), the previous periodic solution is not a good guess for the
next periodic solution. In such a case, it may happen that for a very small △µ the
periodic solver does not converge. However, even if the periodic solver converges, a
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part of the branch is not followed. This means that the method do not follow the
entire branch.

There are some improvements of the sequential continuation method that can
overcome the problem of following the branch around such bifurcation points [Nayfeh
and Balachandran, 1995]. The arclength continuation method is one of these improved
methods. Such a method can indeed go around a turning point, which is not the case
with the sequential continuation method. The arclength continuation method does
not only have to solve for the new update △x0 and △T but also for △µ. More
details on this method, which is used through the thesis, can be found in [Nayfeh and
Balachandran, 1995].



Chapter 3

The Experimental Drill-String

Set-Up

In this chapter, we first describe the experimental drill-string set-up in Section 3.1. In
the set-up torsional friction-induced vibrations, lateral vibrations and a combination
of those types of vibration can be observed. This property makes this experimental
set-up particularly suitable to address the main research goals of this thesis as for-
mulated in Section 1.3. Second, in Section 3.2, the model of the set-up is presented.
In this modelling part, special attention is given to the friction model and the model
of the DC motor. Based on those two models, the full model of the set-up is given.
Finally, in Section 3.3, we describe the technique, which is used for the parameter
estimation of the model, and give the estimated parameters for the experimental
set-up.

3.1 Description of the Set-Up

The experimental drill-string set-up is shown in figure 3.1. The set-up consists of a
power amplifier, a DC-motor, two rotational (upper and lower) discs, a low-stiffness
string and an additional brake applied to the lower disc. The input voltage from the
computer (u in figure 3.1(b)), which is limited to the range [−5V, 5V], is fed into the
DC-motor via the power amplifier (see figure 3.2). The motor is connected, via the
gear box, to the upper steel disc as shown in figure 3.3. The upper disc and the lower
disc (figure 3.4) are connected through a low stiffness steel string. The lower disc can
rotate around its geometric center and is also free to move in lateral directions.

In order to induce torsional vibrations at the lower disc, a brake and a small
oil-box with felt stripes are fixed to the upper bearing housing of the lower part of
the set-up, as shown in figure 3.5. With the brake, a range of normal forces can
be applied and the contact between the brake and the brake disc produces a friction
force exerted on the brake disc. The brake contact material is bronze. The steel brake
disc is connected to the lower brass disc via a very stiff shaft. The oil-box with the
felt stripes is constructed in order to add oil to the brake disc in a reproducible way.
Namely, when some liquid is present in the box, the liquid can be added to both sides
of the brake disc due to the capillary effect of the felt. This oil lubrication will prove
to be crucial for the existence of torsional vibrations in the set-up.
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Figure 3.1: Experimental drill-string set-up.
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Figure 3.2: The power amplifier, the computer and electronics for the encoders and
the sensors.

Motor encoder

DC motor
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Upper disc

Low stiffness string

Figure 3.3: The upper part of the experimental drill-string set-up.

Lateral vibrations are induced by fixing an additional mass at the lower brass disc
(figure 3.4). Consequently, a mass-unbalance is introduced to the disc which leads to
motions in the lateral plane (whirl type motion). However, to limit the complexity of
the system, tilting of the lower disc is avoided by means of two constraints; one in x-
and one in y-direction as shown in figure 3.4. A front and a back view of the constraint
in x-direction is shown in figure 3.6. That constraint consists of three flexible rods, a
rigid body and two leaf springs. Two upper flexible rods are, at one end, connected to
the upper bearing housing and, at the other end, to the rigid body of the constraint.
These (upper) two rods suppress rotation of the upper bearing housing around the
vertical axis; note in this respect that the brake is implemented at the bearing housing.
The third (lower) flexible rod connects the lower bearing housing to the rigid body
of the constraint. The combination of these rods suppresses tilting of the lower disc
around the y-axis. The rigid body of the constraint is connected to the fixed world
via two leaf-springs, which allow movement in x-direction. The construction of the
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Figure 3.4: The lower part of the experimental drill-string set-up.
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Figure 3.5: The brake and the oil box with the felt stripes.

constraint in y-direction is similar (see figure 3.7), except that just two flexible rods
are implemented here: one fixed to the upper bearing housing and another to the
lower bearing housing of the lower part. These rods suppress tilting of the lower disc
around the x-axis.

Both constraints can be fixed using appropriate mechanisms, as shown in figures
3.6 and 3.7, and, when effected, the lower disc cannot move in lateral direction but
can only rotate around its geometric center. In such a way, a drill-string set-up is
created, which can undergo only torsional vibrations (by fixing the constraints and
applying the brake), only lateral vibrations (by opposite means) and a combination
of those two types of vibration.

The angular positions of the upper and lower disc (θu and θl, respectively in figure
3.1(b)) are measured using incremental encoders (see figures 3.3 and 3.4). The motor
encoder has 1000 counts per revolution. The signal from the encoder is connected to a
so-called quadrature decoder, an electronic circuit placed in the computer, which has
the possibility to increase the number of measured encoder counts four times. Then,
the signal from the quadrature decoder goes into a digital counter, which counts the
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Figure 3.6: (a) A front and (b) a back view of the x-constraint.
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Figure 3.7: (a) A front and (b) a back view of the y-constraint.

number of pulses. Moreover, since the motor encoder is connected to the motor shaft
before the gear box and the reduction ratio of the gear box is n = 3969/289, the
computer measures the angular position at the upper disc with 4 · 1000 ·n = 54934.26
counts per revolution. The encoder at the lower disc has 10000 counts per revolution
and the computer measures the angular position at the lower disc (via a quadrature
decoder) with 40000 counts per revolution. The angular velocities of both discs are
obtained by numerical differentiation of the angular positions and filtering the re-
sulting signals using a low-pass filter with a cut-off frequency of 200 rad/s (31.8Hz).
The displacements of the geometric center of the lower disc in x- and y-directions are
measured with two LVDT (Linear Variable Differential Transformer) displacement
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A mechanical system

Ff

Fe

vr

Figure 3.8: An example of a mechanical system with friction.

sensors 500 HR-DC [Schaevitz, 2004]. The displacement sensors measure, in fact, the
displacements of the rigid bodies of the constraints in x- and y-direction which equal
the displacement of the lower disc in those two directions (see figures 3.6 and 3.7).
Since measurements obtained from the LVDTs contain a lot of measurement noise,
the signals are filtered off-line with a digital low-pass filter with a cut-off frequency of
5 Hz and the obtained signal is compensated for the resulting phase leg. In order to
measure the applied friction force, a force sensor LQB 630 [Cooperinstruments, 2002]
is fixed at one side of the brake as shown in figure 3.5.

3.2 Model of the Set-Up

3.2.1 Friction Modelling

We are mainly interested in the steady-state behaviour of flexible rotor systems with
friction and we are not interested in the detailed dynamic modelling of the friction
for very small angular velocities. That is why we choose a static friction model when
modelling friction forces at the experimental set-up. Moreover, both at the upper and
at the lower part of the set-up the sticking phenomenon is observed. Consequently,
the friction forces are modelled with

Ff (vr) ∈
{

Fc(vr)sgn(vr) for vr 6= 0,

[−Fs, Fs] for vr = 0,
(3.1)

i.e. with a set-valued friction force law, indicated by the fact that (3.1) is an algebraic
inclusion. In (3.1), vr represents the relative velocity between two contacting surfaces
where the friction force Ff appears.

When the relative velocity vr is zero, the bodies stick to each other. In the stick
phase, the friction force adjusts to enforce equilibrium with the external forces acting
on the bodies (Fe in figure 3.8). Consequently, the friction force Ff lies in the interval
−Fs ≤ Ff ≤ Fs when the bodies stick to each other. In general, the maximum static
friction force Fs can be higher than Fc(0) (the so-called Coulomb friction). If the
friction force in the stick phase exceeds a threshold Fs (the so-called the break-away
friction force) the bodies begin to slip, i.e. attain a non-zero relative velocity with
respect to each other. In the slip phase (vr 6= 0), the friction force is a function of
velocity, i.e. Ff (vr) = Fc(vr) in (3.1). In general, Fc(vr) is a nonlinear function such
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(c) Coulomb and viscous friction.
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(d) Coulomb and viscous friction
model where Fc < Fs.

Figure 3.9: Examples of friction models.

that
Fc(vr) ≥ 0, ∀vr ∈ R \ {0}, (3.2)

which means that the friction force is dissipative. In order to describe the stick phase
properly, the friction force (3.1) is represented in the following way:

Ff (vr) ∈
{

Fc(vr)sgn(vr) for vr 6= 0,

min(|Fe|, Fs)sgn(Fe) for vr = 0.
(3.3)

The most commonly used friction model is the Coulomb friction model. In that
model

Fc(vr) = Fs = const,

in (3.3), as shown in figure 3.9(a). To describe also the friction force caused by the
viscosity of lubricants, viscous friction is usually described with

Ff = bvvr,

(see figure 3.9(b)). However, such description of viscous friction is not always correct
and often a more general relation is Ff = bv|vr|δv sgn(vr) where δv depends on the
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(a) Friction model with the Stribeck ef-
fect.
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Figure 3.10: Friction models with negative damping.

geometry of the application [Olsson, 1996]. Coulomb friction with viscous friction is
shown in figure 3.9(c). For such a friction model,

Fc(vr) = Fs + bv|vr|,

in (3.3). The friction model shown in figure 3.9(d) can be described with (3.3), where

Fc(vr) = Fc + bv|vr|

and the Coulomb friction force Fc is smaller than the static friction force Fs. How-
ever, Leine [2000] discussed such a friction model and concluded that solutions of the
resulting differential inclusion with such a friction model can be non-unique. In order
to avoid such difficulties, we do not use friction models where the static friction is
higher than the Coulomb friction.

In this thesis, in order to predict torsional vibrations in the experimental drill-
string system, a negative damping in the friction force should be present. Two friction
models that include such effect are, firstly, a friction model with the Stribeck effect
(see figure 3.10(a)) and, secondly, a humped friction model (see figure 3.10(b)). Some
examples of nonlinear functions Fc(vr) (in (3.3)) which exhibit the Stribeck effect can
be found in [Armstrong-Hélouvry et al., 1994a; Canudas de Wit et al., 1991; Hensen,
2002; Olsson, 1996; Olsson et al., 1998]. The most common function is

Fc(vr) = Fc + (Fs − Fc)e
−|vr/vs|

δs

+ bv|vr|, (3.4)

where Fc, Fs and bv have already been described, vs is called the Stribeck velocity
and δs is the Stribeck shape parameter. Moreover, some examples of functions Fc(vr)
for a humped friction model are given in [Brockley et al., 1967; Brockley and Ko,
1970]. Very often, the nonlinear function Fc(vr) is described using a neural network
model [Hensen, 2002; Hensen et al., 2000; Mihajlović et al., 2004a,b; Narendra and
Parthasarathy, 1990], since it can describe both friction models. Herewith, the friction
force is modelled with (3.3), where

Fc(vr) = Ts +
n

∑

i=1

Ti

(

1 − 2

1 + e2wivr

)

+ bv|vr|, (3.5)
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Figure 3.11: Different regimes in the friction force.

where n represents the number of nodes of the neural network model, Ts, Ti and wi,
with i = 1, ..., n, are additional parameters of the friction model

3.2.2 Negative Damping in the Friction Force

When lubrication is present between two contacting surfaces, the mechanisms be-
hind friction can roughly be divided into four regimes in terms of the relative veloc-
ity between the contacting surfaces. According to Armstrong-Hélouvry [1991] and
Armstrong-Hélouvry et al. [1994a] the regimes are sticking, boundary lubrication,
partial fluid lubrication and full fluid lubrication (see figure 3.11). These regimes
depend on the relative velocity between the contacting surfaces.

In the sticking regime, the friction force is due to elastic and plastic deformation of
the asperity contacts [Armstrong-Hélouvry, 1991; Armstrong-Hélouvry et al., 1994a;
Olsson, 1996]. It is often assumed that in this regime there is no motion between
the contact surfaces. However, there is a displacement, the so-called presliding dis-
placement. When the applied force is higher than the so-called break-away force, true
(gross) sliding begins and the system enters the boundary lubrication regime.

In the boundary lubrication regime, the relative velocity between the contacting
surfaces is very low and hardly any lubricant is present in the contact. Therefore, the
friction force is due to the shearing resistance of the asperity contacts.

If the sliding velocity increases further, more lubricant is brought into contact
which increases the separation of the surfaces and the system enters a partial fluid
lubrication regime. This represents a transitional regime before full fluid lubrication
appears. The friction force is partly due to asperity contacts and partly due to the
lubricant and its viscosity and it is influenced by the interaction between lubricant
viscosity, motion speed and contact geometry. As the sliding velocity increases, the
solid-to-solid contact decreases, reducing friction and increasing the acceleration of
the moving part.

Finally, when the sliding velocity increases even further, the two surfaces are
completely separated by the lubricant and full fluid lubrication occurs. Then, the
friction force is due to the hydrodynamic behaviour of the lubricant and the viscosity
of the lubricant becomes a dominant factor.
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Table 3.1: Description of the parameters and variables used in the model of the upper
part of the set-up.

Symbol Description Unit
u Input voltage to the power amplifier V
ır Rotor current A
θu Angular position of the upper disc rad
ωu = θ̇u Angular velocity of the upper disc rad/s
a Amplification factor of the power amplifier -
Ri Output resistance of the amplifier Ω
Lr Inductance of the rotor circuit V s/A
Rr Resistance of the rotor circuit Ω
n Reduction ratio of the gear box (n = 3969/289) -
kem Electromotive force constant V s/rad
kme Torque constant Nm/A

Friction torque in the DC motor and in the bearings
Tfm of the motor shaft

Nm

Equivalent friction torque present at the upper part
Tfu of the set-up

Nm

km Motor constant Nm/V
Moment of inertia of the upper disc with respect to its

Ju center of mass
kgm2

3.2.3 Model of the DC Motor

The DC motor, the gear box and the upper steel disc together represent the upper
part of the set-up. The model of the upper part of the set-up can be described by the
following differential equations:

a u = Lr ı̇r + (Ri + Rr)ır + nkemθ̇u,

Juθ̈u + Tfm(θ̇u) = nkmeır,
(3.6)

where all variables and parameters are defined in table 3.1. In (3.6), and further in
the text, a dot above a variable indicates a time derivative (e. g. ı̇r = dır/dt).

In the sequel, the inductance of the rotor circuit is neglected (Lr = 0), since the
electrical part of the system has a much faster dynamics than the mechanical part.
With this assumption the model of the motor is of lower order and can be formulated
as:

Juθ̈u +
n2kemkme

Ri + Rr
θ̇u + Tfm(θ̇u) =

an kme

Ri + Rr
u. (3.7)

Next, by introduction of an equivalent friction torque at the upper part defined by
Tfu(θ̇u) by

Tfu(θ̇u) =
n2kemkme

Ri + Rr
θ̇u + Tfm(θ̇u) (3.8)

and by defining the motor constant km as

km =
an kme

Ri + Rr
, (3.9)
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Figure 3.12: The drill-string system.

the following model of the upper part of the set-up can be obtained:

Juθ̈u + Tfu(θ̇u) = kmu. (3.10)

From (3.8), it can be concluded that the equivalent friction torque Tfu(θ̇u) consists
of the friction torque Tfm(θ̇u) due to the friction in the bearings and the additional
term (n2kemkme)θ̇u/(Ri + Rr), which has the nature of a viscous friction and is due
to the electro-magnetic characteristics of the DC-motor. As mentioned before, the
friction torque Tfu is modelled using a set-valued force law (as in (3.1)).

3.2.4 The Full Model of the Set-Up

When deriving a model of the entire set-up the following assumptions are adopted:

• The radial displacement r of the geometric center of the lower disc (point A in
figure 3.12(b)) is much smaller than the length of the string. Consequently, it
is assumed that the lower disc does not move in vertical direction.

• The lower disc is always in horizontal position when moving in the lateral direc-
tion - there is no tilt in the lower brass disc. This is guaranteed by the design
of the constraints in x- and y-direction implemented at the lower part of the
set-up.

• The constraints are weakly coupled and therefore such coupling effects are ne-
glected.
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• The sticking behaviour is present in lateral direction due to friction in the
LVDTs. However, since the corresponding break-away friction level is very small
it is neglected.

• The mass, damping and stiffness characteristics of the set-up in lateral direction
(i.e. m, b and k in table 3.2) are isotropic.

• The torsional damping coefficient, related the material damping in the steel
string, is very small compared to the damping at the upper and lower part (due
to friction) of the set-up. Therefore, it is neglected.

• The coordinate frame, used to describe the translational motion of the system,
is fixed to and rotates with the upper disc, i.e. a co-rotating coordinate frame
is used, see figure 3.12(b).

In order to derive a model of the system shown in figure 3.12, the Euler-Lagrange
equations are used:

d

dt

(

∂T
∂q̇

(q, q̇)

)

− ∂T
∂q

(q, q̇) +
∂V
∂q

(q) = (Qnc)T (3.11)

where T (q, q̇) is the kinetic energy, V(q) is the potential energy and Qnc represents
the generalized non-conservative forces and q are the generalized coordinates. If we
choose the following generalized coordinates:

q =
[

θu x y α
]T

, (3.12)

then for the system in figure 3.12 we obtain that kinetic and potential energies are:

T (q, q̇) =
1

2
mr(ẋ − e α̇ sin(α) − y θ̇u − e θ̇u sin(α))2

+
1

2
mr(ẏ + e α̇ cos(α) + x θ̇u + e θ̇u cos(α))2

+
1

2
mt(ẋ − y θ̇u)2 +

1

2
mt(ẏ + x θ̇u)2 +

1

2
Ju θ̇2

u +
1

2
JC(θ̇u + α̇)2,

V(q) =
1

2
k

(

x2 + y2
)

+
1

2
kθα

2,

(3.13)

and the nonconservative forces are described with:

Qnc =









km u − Tfu(θ̇u) − Tfl(θ̇u + α̇) − b x(ẏ + x θ̇u) + b y(ẋ − y θ̇u)

−b(ẋ − y θ̇u)

−b(ẏ + x θ̇u)

−Tfl(θ̇u + α̇)









. (3.14)

All symbols and variables are described in tables 3.1 and 3.2. A detailed derivation
of (3.13) and (3.14) is presented in Appendix A. If we substitute (3.13) and (3.14) in
(3.11), the following equations of motion are obtained:

M(q)q̈ + h(q, q̇) + WT (q)ΛT = Km u, (3.15)
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with

M(q) =















M11(q) M12(q) M13(q) M14(q)

M12(q) mr + mt 0 −mre sin(α)

M13(q) 0 mr + mt mre cos(α)

M14(q) −mre sin(α) mre cos(α) mr e2 + JC















,

M11(q) = (mr + mt)(x
2 + y2) + mre(2 y sin(α) + 2x cos(α) + e)

+Ju + JC ,
M12(q) = −(mr + mt)y − mre sin(α),

M13(q) = (mr + mt)x + mre cos(α),

M14(q) = mre (y sin(α) + x cos(α) + e) + JC ,

h(q, q̇) =







































2(mr + mt)θ̇u(x ẋ + y ẏ) + mr(2 e ẋ θ̇u cos(α)

+2 e ẏ θ̇u sin(α) + 2 y e α̇ θ̇u cos(α) + e y α̇2 cos(α)

−2x e α̇ θ̇u sin(α) − e x α̇2 sin(α)) + b(x ẏ − y ẋ + x2θ̇u

+y2θ̇u)

−(mr + mt)θ̇u(2 ẏ + x θ̇u) + mr(−2 e α̇ θ̇u cos(α)

−e α̇2 cos(α) − e θ̇2
u cos(α)) + b(ẋ − y θ̇u) + k x

(mr + mt)θ̇u(2 ẋ − y θ̇u) + mr(−2 e α̇ θ̇u sin(α)

−e α̇2 sin(α) − e θ̇2
u sin(α)) + b(ẏ + x θ̇u) + k y

mr(2 e ẋ θ̇u cos(α) + 2 e ẏ θ̇u sin(α) − e y θ̇2
u cos(α)

+e x θ̇2
u sin(α)) + kθ α







































,

WT (q) =









1 1
0 0
0 0
0 1









, ΛT =

[

Tfu(θ̇u)

Tfl(θ̇u + α̇)

]

, Km =









km

0
0
0









.

(3.16)

The dynamics of the eighth-order system (3.15) and (3.16) is independent of the
angular position of the discs (θu and θl), but only depends on the difference α between
these two angular positions. That is why, we replace θ̇u with ωu in (3.16). Then, if
we perform some equivalent transformations to (3.15), the following seventh-order
system of differential equations can be obtained.

Juω̇u − kθα + Tfu(ωu) = kmu,

(mr + mt)ẍ − mre α̈ sin(α) − (mr + mt)ω̇uy − mre ω̇u sin(α) + b ẋ
−2(mr + mt)ωuẏ − 2mre ωu α̇ cos(α) − mre α̇2 cos(α) + k x
−(mr + mt)ω

2
ux − b ωuy − mre ω2

u cos(α) = 0,

(mr + mt)ÿ + mre α̈ cos(α) + (mr + mt)ω̇ux + mre ω̇u cos(α) + b ẏ
+2(mr + mt)ωuẋ − 2mre ωuα̇ sin(α) − mre α̇2 sin(α) + k y
−(mr + mt)ω

2
uy + b ωux − mre ω2

u sin(α) = 0,

−mrẍ e sin(α) + mrÿ e cos(α) + (mre
2 + JC)(α̈ + ω̇u)+

mrω̇ue(x cos(α) + y sin(α)) + 2mre ẋ ωu cos(α) + 2mre ẏ ωu sin(α)
+Tfl(ωu + α̇) + mrx eω2

u sin(α) − mry e ω2
u cos(α) + kθα = 0.

(3.17)

As mentioned before, the friction torques Tfu(ωu) and Tfl(ωl) are modelled using
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Table 3.2: Description of the parameters and the variables used in the model of the
lower part of the set-up.

Symbol Description Unit
Moment of inertia of the lower disc with respect

JC to its center of mass (point C in figure 3.12(b)).
kg m2

Moment of inertia of the lower disc with respect
JA to its geometric center (point A in figure 3.12(b)).

kg m2

k Bending stiffness coefficient in lateral direction. N/m
b Damping coefficient in lateral direction. kg/s
kθ Torsional stiffness coefficient. Nm/rad

Displacement of the geometric center of the lower
x, y

disc in the Cartesian co-rotating coordinate frame.
m

Angle which represents the twist of the string.
α

(α = θl − θu),
rad

θl Angular position of the lower disc. rad
ωl = θ̇l Angular velocity of the lower disc. rad/s

Distance between the center of the mass E of
e

the lower disc and its geometric center A.
m

Mass of all parts of the lower part of the set-up
mr which can rotate around the center of the disc.

kg

Mass of all parts of the lower part of the set-up
which do not rotate around the center of the disc

mt (one constraint, the brake, the oil box, the upper kg
bearing housing, the lower bearing housing and
the encoder at the lower discs.
Equivalent friction torque present at the lower
disc which is caused by the friction between the

Tfl = Tflb + Tfla brake disc and the brake and the friction in
Nm

the bearings.
Friction torque caused by the friction between the

Tflb brake disc and the brake.
Nm

Tfla Friction torque in the bearings. Nm

set-valued force laws:

Tfu(ωu) ∈
{

Tcu(ωu)sgn(ωu) for ωu 6= 0,
[−Tcu(0−), Tcu(0+)] for ωu = 0,

Tfl(ωl) ∈
{

Tcl(ωl)sgn(ωl) for ωl 6= 0,
[−Tcl(0

−), Tcl(0
+)] for ωl = 0.

(3.18)

Consequently, the model of the system, constituted by (3.17) and (3.18), is a set of
differential inclusions. It should also be stressed that the friction torque at the lower
disc Tfl(ωl) consists of the friction between the brake disc and the brake Tflb(ωl),
and the friction in the bearings Tfla(ωl). Both friction torques are modelled using
set-valued force laws:



3.3 Parameter Estimation 43

Tfla(ωl) ∈
{

Tcla(ωl)sgn(ωl) for ωl 6= 0,
[−Tcla(0−), Tcla(0+)] for ωl = 0,

Tflb(ωl) ∈
{

Tclb(ωl)sgn(ωl) for ωl 6= 0,
[−Tclb(0

−), Tclb(0
+)] for ωl = 0.

(3.19)

3.3 Parameter Estimation

In order to analyze the dynamics of the experimental set-up, we need to estimate
the parameters of the nonlinear model (3.17) (km, Ju, kθ, JC , e, mr, mt, k, b), to
choose nonlinear functions Tcu(ωu), Tcl(ωl) in (3.18) and to estimate their parameters.
Several techniques are available for parameter estimation of nonlinear systems. In
[Gelb et al., 1978] the following two techniques are described: minimum variance and
nonlinear least-squares estimation. The most popular minimum variance estimator
is the so-called Extended Kalman filter. Such estimator is often used for an on-line
estimation of states and parameters of a nonlinear system. However, in this thesis we
are only interested in estimating the parameters of the model (3.17) and (3.18). That
is why we have chosen to use the nonlinear least-squares technique.

3.3.1 Nonlinear Least-Squares Technique

Assume that a state-space model of the experimental system is given by:

ẋ = f(x,u(k),p),
y(k) = g(x,u(k)),
k = 1, ..., N,

(3.20)

where x ∈ R
Nx , u ∈ R

Nu , y ∈ R
Ny , p ∈ R

Np represent the states, inputs, outputs
and parameters of the system, respectively. In (3.20), the superscripts in u(k) and
y(k) indicate that the input and the output are discretized signals, since u and y are
measured at discrete time instants tk. Using nonlinear least-squares estimation, we
aim to find optimal values for the parameters p such that the performance index,
defined by

J(p) =
N

∑

k=1

(ŷ(k) − y(k)(p))TW(k)(ŷ(k) − y(k)(p)), (3.21)

is minimal. In (3.21), W(k) is a sequence of weighting matrices, ŷ(k) represents the
measured data and y(k) the simulation data obtained when the input u(k) is applied
both to the system and to the model (3.20), respectively.

In order to minimize J(p), it is not possible to find optimal values for the pa-
rameters p using elementary matrix algebra as it is possible for linear least-squares
estimation. Consequently, an iterative process must be used [Coleman et al., 2002;
Mayers, 1989]. However, for any type or iterative process we need good starting val-
ues for the parameters. Poor starting values may result in convergence to a local
minimum of J(p). Therefore, when estimating the parameters of a nonlinear system,
more information about the system is needed in order to have good initial estimates
for the parameters, which need to be estimated.

To estimate parameters of a system, the measured data ŷ(k) need to represent
sufficient information about the dynamics of the system. In other words, we need



44 Chapter 3. The Experimental Drill-String Set-Up

to choose an appropriate input signal u(k) which will excite all the system dynamics
we are interested in. The property of an input signal which gives a measure about
the "variation" that is present in the signal is called persistence of excitation [Ljung,
1999].

Finally, to give an objective judgement on the accuracy of the estimated parame-
ters, the following R2

y-criterium is introduced [Mayers, 1989]:

R2
y = 1 −

∑Ny

k=1(ŷ
(k) − y(k))2

∑Ny

k=1(ŷ
(k) − ȳ)2

, ȳ =
1

Ny

Ny
∑

k=1

ŷ(k). (3.22)

In (3.22), y ∈ R is an output signal of the system (3.20), i.e. if y = [y1, y2, ... , yNy
]T,

then y ∈ {y1, y2, ... , yNy
}. Furthermore, from (3.22) it can be seen that the maximum

value for R2
y is 1. Namely, if R2

y is close to 1, then this indicates the high quality of
the obtained parameter estimates.

3.3.2 Parameter Estimation of the Set-Up

In order to obtain a predictive model of the drill-string set-up, the parameters km,
Ju, JC , kθ, mr, mt, e, k, b in (3.17) and the nonlinear functions Tcu(ωu), Tcl(ωl) in
(3.18) need to be estimated. Since good starting values are needed for the parameters
of the set-up, we perform the estimation procedure in the following way:

1. We disconnect the upper disc from the lower disc and estimate the parameters of
the upper part of the set-up (km, Ju) and the related friction torque (Tcu(ωu)).

2. We connect upper and lower disc, fix the lower disc in order to avoid motion
in lateral direction, and do not apply any normal force at the brake at the
lower part of the set-up. Then, we estimate the stiffness parameter of the string
(kθ), the moment of inertia of the lower disc (JA) and the friction torque in the
bearings at the lower disc (Tcla(ωl)) - the estimation of the friction at the lower
disc when the normal force on the brake is applied, is performed in Chapter 4.

3. We release the lower disc - so it can move in the lateral direction - and estimate
the remaining parameters of the model (e, mr, mt, k and b). Based on those
estimates, we determine JC using

JC = JA − e2mr. (3.23)

In order to estimate the parameters of the set-up using the nonlinear least-squares
method, we use a quasi-random input signal u as shown in figure 3.13(a) and to
validate the model we use the signal as shown in figure 3.13(b) which both contain
enough information to excite the important dynamics of the system.

Parameter Estimation of the Upper Part of the Set-Up (km, Ju and Tcu(ωu))

The model of the upper part of the set-up is described with (3.10). Further in the
thesis, we assume that the exact value of the moment of inertia of the upper disc is
known and is determined using the following relation:

Ju = ρu
π

32
d4

ul4u, (3.24)
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(a) Quasi-random input voltage.
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(b) Input voltage used for model valida-
tion.

Figure 3.13: Input signals used for parameter estimation and validation of the model
of the set-up.

where the description of all parameters and related (measured) values is given in table
3.3. According to the values given in table 3.3 and according to (3.24), the moment
of inertia of the upper disc is:

Ju = 0.4765 kgm2. (3.25)

In order to determine the non-linear function Tcu(ωu), the starting values for km

and for the parameters of Tcu(ωu), different constant input voltages u are applied and
the rotor current ιr, the angular velocity of the upper disc ωu and the voltage from
the power amplifier to the motor (a u − Rrιr in (3.6)) are measured in steady-state
[Van Veggel, 2002]. According to those measurements the behaviour of the upper part
of the set-up is analyzed and the following is noticed:

• A negative damping is not present in the friction torque at the upper disc. An
explanation for this can be recognized in (3.8). Namely, this equation expresses
that the friction in the bearings of the upper disc Tfm(ωu) may very well be
small with respect to the viscous friction term due to the electro-magnetic forces
in the DC-motor. Experiments show that that is indeed the case. Therefore,
the friction torque at the upper disc Tfu(ωu) is modelled as Coulomb friction
with viscous friction as shown in figure 3.9(c).

• The friction torque at the upper disc is asymmetric. This means that Tcu(ωu) 6=
Tcu(−ωu) in (3.18).

Table 3.3: Description and (measured) parameter values of the upper disc of the
set-up.

Symbol Description Value and unit
ρu Density of the material of the upper disc (steel) 7900 kg/m3

du Diameter of the upper disc 0.4m
lu Thickness of the upper disc 0.024m
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Figure 3.14: Estimated friction torque at the upper part of the set-up.

Summarizing, the friction torque at the upper part of the set-up is modelled as in
(3.18) with

Tcu(ωu) = Tsu + △Tsusgn(ωu) + bu|ωu| + △buωu. (3.26)

In (3.26), Tcu(0+) = Tsu+△Tsu and −Tcu(0−) = −Tsu+△Tsu represent the maximum
and minimum value of the friction torque for zero angular velocities and bu + △bu

and bu −△bu are the viscous friction coefficients for positive and negative velocities,
respectively.

Moreover, using those steady-state measurements, the starting values for km and
for the parameters of Tcu(ωu) in (3.26) are determined [Van Veggel, 2002]. Next,
using those values, the quasi-random input signal, shown in figure 3.13(a), is applied
and the following performance index is minimized:

J =

N
∑

k=1

(θ̂(k)
u − θ(k)

u )2, (3.27)

where θ̂u and θu represent measured and simulated data for the angular position of
the upper disc. The identification procedure yields the following parameter values:

km = 4.3228
Nm

V
, Tsu = 0.37975Nm, △Tsu = −0.00575Nm,

bu = 2.4245
kg m2

rad s
, △bu = −0.0084

kg m2

rad s
.

(3.28)

The estimated friction torque is shown in figure 3.14. The measured and simulated
angular position signals obtained for the applied quasi-random signal are shown in
figure 3.15 and the value of the related R2

y criterion (3.22) is: R2
θu

= 1.0000. A model
validation is performed for the input signal shown in figure 3.13(b); the appropriate
measured and simulated responses are shown in figure 3.16, where R2

θu
= 0.9993. The

comparison between the responses of the experimental set-up and estimated model
indicates the high quality of the obtained parameter estimates.

Here we like to mention that the parameter km and the parameters of the friction
Tfu(ωu) can slightly change over time. These changes can be caused by changing
conditions in the laboratory (temperature, humidity) in which the set-up is placed.
From equations (3.8) and (3.9) it can be concluded that changes in km are mainly due
to a change of the parameters of the motor (kem, kme and Rr) or of the parameters
of the power amplifier (a, Ri).
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(a) Angular position at the upper disc for the
quasi-random input voltage.
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Figure 3.15: Estimation signals for the upper part of the set-up (R2
θu

= 1.0000).
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(a) Angular position at the upper disc for the
validation signal shown in figure 3.13(b).
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Figure 3.16: Validation signals for the upper part of the set-up (R2
θu

= 0.9993).

Parameter Estimation of the Lower Part of the Set-Up in Torsional Direc-
tion (kθ, JA and Tcla(ωl))

To estimate the parameters kθ, JA and the friction torque Tfla(ωl) in the bearings at
the lower part, the upper and lower disc are connected by means of the low-stiffness
string, the lower disc is fixed in such a way that it cannot move in lateral direction
(using the x- and y-constraint mechanisms shown in figures 3.6 and 3.7) and no normal
force is applied at the brake (shown in figure 3.5). The model of that system can be
derived from (3.17), assuming that x = ẋ = ẍ = y = ẏ = ÿ = 0:

Juω̇u − kθα + Tfu(ωu) = kmu,
JA(α̈ + ω̇u) + Tfla(ωu + α̇) + kθ α = 0.

(3.29)

In order to determine initial values for kθ and JA for the nonlinear least-squares
algorithm, the following relations are used [Fenner, 1989]:

kθ = Gs
Is

ls
, with Is = π

32d4
s and Gs = Es

2(1+νs)

JA = ρl
π
32d4

l l
4
l + l2m△m,

(3.30)
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Table 3.4: Description and (measured) parameter values of the string and the lower
disc.

Symbol Description Value and unit
Es Elasticity modulus for the steel string 2.0 · 1011 N/m2

νs Poisson ratio for steel 1/3
ds The diameter of the string 0.002m

Polar second-moment of the string cross-section
Is about its axis

m4

ls The length of the string 1.47m
ρl The density of the material of the lower disc (brass) 8500 kg/m3

dl The diameter of the lower disc 0.25m
lu The thickness of the lower disc 0.01m
△m The added mass to the lower disc 0.45 kg

The distance between the geometric center of the
lm lower disc and the added mass

0.1m

where the description of all parameters and related (measured) values are given in
table 3.4.

In order to determine the friction torque Tfla(ωl) in the bearings, the non-linear
function Tcla(ωl) should be determined. Therefore, the behaviour of the friction torque
is analyzed and it is concluded that it can be modelled as in (3.18), with

Tcla(ωl) = Tsla + bla|ωl|, (3.31)

where Tsla is the Coulomb friction in the bearings and bla is the related viscous friction
coefficient.

To obtain the starting values for the parameters of Tcla(ωl), the upper disc is
fixed. Then, break-away experiments are performed to determine Tsla. Namely, a
force transducer is attached to the lower disc, a force is applied to the disc at a certain
radius from its center and the force at which the lower disc starts to move is measured.
Using those measurements, Tsla in (3.31) is determined. Next, after removing the force
transducer, a certain initial angle is given to the lower disc; consequently the string is
deformed elastically. Subsequently the lower disc is released and the transient response
of θl is measured. Based on that response, a starting value for bla is determined
[Van Veggel, 2002].

Using those starting values, a quasi-random input signal is applied (see figure
3.13(a)) and the following performance index is minimized:

J =

N
∑

k=1

(θ̂
(k)
l − θ

(k)
l )2, (3.32)

(θ̂l and θl are measured and simulated data for angular position of the lower disc,
respectively). The identification procedure yields the following parameter values for
the torsional stiffness coefficient and for the moment of inertia of the lower disc:

JA = 0.0414 kg m2, kθ = 0.0775
Nm
rad

, (3.33)
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Figure 3.17: Estimation friction torque in the bearings at the lower part of the set-up.

and for the parameters of the friction torque in the bearings:

Tsla = 0.0171Nm, bla = 0.0092
kg m2

rad s
. (3.34)

The estimated friction torque is shown in figure 3.17. The measured and simulated
angular position obtained for the applied quasi-random signal are shown in figure 3.18
and the related performance criterium (3.22) is R2

θl
= 0.9997. A model validation is

performed for the input signal shown in figure 3.13(b) and the related measured and
simulated responses are shown in figure 3.19 with R2

θl
= 0.9994. The comparison

between the responses of the experimental set-up and estimated model indicates the
high quality of the obtained parameter estimates.

Parameter Estimation of the Lower Part of the Set-Up in Lateral Direction
(e, mr, mt, k and b)

To estimate the parameters e, mr, mt, k and b, the lower disc is released using the x-
and y-constraint mechanisms shown in figure 3.6 and 3.7. Consequently, it can move
in lateral direction. The model of that system is given by the equations (3.17).

The starting values for e, mr and mt are determined by measuring the masses of all
related components of the lower part of the set-up. To determine the starting values
for k and b, the lower disc is fixed in one direction and a certain initial displacement
is prescribed to the lower disc. Then the lower disc is released and the transient
response (of the displacement) of the lower disc is measured. Based on this response,
starting values for k and b are determined [Hendriks, 2004].

In order to estimate the parameters e, mr, mt, k and b accurately, the quasi-
random input signal is applied and the following performance index is minimized:

J =

N
∑

k=1

(r̂(k) − r(k))2, (3.35)

where r̂ and r are measured and simulated values of the radial displacement of the
geometric center of the lower disc, respectively. Here, we stress the following:
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(a) Angular position at the lower disc for the
quasi-random input voltage.
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Figure 3.18: Estimation signals for the lower part of the set-up (R2
θl

= 0.9997).
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(a) Angular position at the lower disc for the
validation signal shown in figure 3.13(b).
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Figure 3.19: Validation signals for the lower part of the set-up (R2
θl

= 0.9994).

• In the set-up, we measure the displacement of the lower disc in the fixed coor-
dinate frame, i.e. we measure coordinates x0 and y0 in figure 3.20. Therefore,
using those measurements we obtain r̂ =

√

(x̂0)2 + (ŷ0)2.

• The model of the set-up is given in the co-rotating coordinate frame (see equa-
tion (3.17), table 3.2, and figure 3.12(b)). The simulated radial displacement
can be computed with r =

√

x2 + y2 =
√

(x0)2 + (y0)2, with
[

x0

y0

]

=

[

cos(α) − sin(α)
sin(α) cos(α)

] [

x
y

]

. (3.36)

• When estimating the parameters of the lower part of the set-up, we minimize
the quadratic error with respect to r and not with respect to the displacements
in x- and y-direction, since, in the sequel, we are interested in the behaviour
of the lower disc in radial direction. Moreover, it is noticed that unmodelled
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Figure 3.20: The co-rotating and the fixed coordinate frame.

dynamics influences much more the phase shift of the center of the lower disc
during lateral movements (thus x̂0 and ŷ0) than the radial displacement r.

The identification procedure yields the following parameter values:

e = 0.00489m, mr = 9.9137 kg, mt = 3.3202 kg,

k = 2974.25
N
m

, b = 25
kg
s

,
(3.37)

with
JC = 0.0412 kgm2 (3.38)

which is computed using expression (3.23). The measured (x̂0, ŷ0 and r̂) and simulated
lateral displacements (x0, y0 and r), obtained when the quasi-random signal is applied,
are shown in figures 3.21(a), 3.21(c), 3.21(e) and the related R2 criteria are R2

x =
0.5300, R2

y = 0.6498 and R2
r = 0.9653. A model validation is performed for the input

signal shown in figure 3.13(b). The obtained signals are shown in figures 3.22(a),
3.22(c), 3.22(e), with R2

x = 0.6231, R2
y = 0.6960 and R2

r = 0.8747. According to these
values, it can be concluded that the matching between simulations and experiments
in radial direction is very good while the matching between corresponding signals in
x0 and y0 directions are of a somewhat lower quality. However, from figures 3.21(a),
3.21(c), 3.22(a) and 3.22(c) it can be concluded that our model predicts very well
even the behaviour of the set-up in x- and y-directions.

This slightly worse correspondence between simulation and experimental results
can be due to several reasons. First, this is due to unmodelled effects which are
not included in the model and which are mentioned in Section 3.2.4. Second, the
mechanisms for fixing the disc in x- and y-direction (see figures 3.6 and 3.7), where
also the position sensors are fixed, are not stiff enough. Namely, they can produce
small vibrations, especially when the lower disc makes large movements in lateral
direction. However, even with those imperfections in the construction of the set-up,
the model (3.17), (3.18), (3.19), (3.26), (3.31) with the parameter estimates (3.25),
(3.28), (3.33), (3.34), (3.37) and (3.38) predict very well the dynamics of the set-up.
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(a) Displacement of the lower disc in x-
direction.
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(c) Displacement of the lower disc in y-
direction.
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(d) Error between measured and simulated
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(e) Displacement of the lower disc in radial
direction.
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Figure 3.21: Estimation signals in x0-, y0- and r-direction: R2
x = 0.5300, R2

y = 0.6498
and R2

r = 0.9653.



3.3 Parameter Estimation 53

0 10 20 30 40 50
−0.015

−0.01

−0.005

0

0.005

0.01

0.015
experiment
simulation

time [s]

x̂
0
,
x

0
[m

]

(a) Displacement of the lower disc in x-direction.

0 10 20 30 40 50
−6

−4

−2

0

2

4

6

time [s]

×10−3

x̂
0
−

x
0

[m
]

(b) Error between measured and simulated
displacements in x-direction.

0 10 20 30 40 50
−0.015

−0.01

−0.005

0

0.005

0.01

0.015
experiment
simulation

time [s]

ŷ
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(c) Displacement of the lower disc in y-direction.
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(e) Displacement of the lower disc in radial di-
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Figure 3.22: Validation signals in x0-, y0- and r-direction: R2
x = 0.6231, R2

y = 0.6960
and R2

r = 0.8747.





Chapter 4

Torsional Vibrations in

Drill-String Systems

In order to obtain only torsional and no lateral vibrations in the experimental set-up,
the lower disc is fixed using the x- and y-constraints (shown in figures 3.6 and 3.7).
Subsequently, we applied a normal force to the brake and the contact between the
brake and the brake disc produces a friction force on the lower disc (see figure 3.5).
For several levels of normal forces and no lubrication between the brake and the disc,
no torsional vibrations in steady-state are noticed when a constant input voltage is
applied. However, when ondina oil 68 [Shell, 1997] is added as a lubrication fluid
between the brake disc and the contact material of the brake, torsional steady-state
vibrations appear for constant input voltages. Since we are interested in the inves-
tigation of torsional vibrations of drill-string systems, we proceed with the analysis
of the system when ondina oil 68 is added in a reproducible fashion (using the felt
stripes as shown in figure 3.5).

In Section 4.1, we estimate the friction torque at the lower disc Tfl(ωl), when
ondina oil 68 is used and a 20.5N normal force is applied to the brake. Then, in Section
4.2, based on the estimated parameters of the set-up and the estimated friction torque,
we determine the equilibrium points (sets), periodic solutions and discuss related
stability properties. As a result of such analysis we construct a bifurcation diagram
based on the proposed model and the estimated parameters. Moreover, we discuss how
different characteristics of the friction force at the lower disc, influence the steady-state
behaviour of the system. In Section 4.3, based on the proposed model and estimated
parameters, a bifurcation diagram is presented and compared to the experimentally
obtained results. Furthermore, we present and discuss results obtained for different
contact situations in the brake of the experimental set-up (various normal force levels,
various temperatures, and various types of contact material and lubrication). Finally,
we finish with a summary in Section 4.4.

4.1 Parameter Estimation of the Friction Model

The model of the set-up when only torsional vibrations appear in the system is similar
to the model (3.29), (3.18), (3.26) and (3.4), and it can be represented by the following
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system of equations [Mihajlović et al., 2005a,b; Van de Wouw et al., 2005a]:

Juω̇u − kθα + Tfu(ωu) = kmu,
JA(α̈ + ω̇u) + Tfl(ωu + α̇) + kθ α = 0,

Tfu(ωu) ∈
{

Tcu(ωu)sgn(ωu) for ωu 6= 0,
[−Tsu + △Tsu, Tsu + △Tsu] for ωu = 0,

Tcu(ωu) = Tsu + △Tsusgn(ωu) + bu|ωu| + △buωu,

Tfl(ωl) ∈
{

Tcl(ωl)sgn(ωl) for ωl 6= 0,
[−Tsl, Tsl] for ωl = 0,

Tcl(ωl) = Tcl + (Tsl − Tcl)e
−|ωl/ωsl|

δsl + bl|ωl|,
ωl = ωu + α̇.

(4.1)

As already described in Section 3.2.1, Tcl and Tsl represent the Coulomb friction and
static friction levels, respectively, ωsl is the Stribeck velocity, δsl the Stribeck shape
parameter and bl the viscous friction coefficient. For the estimation of the param-
eters of the friction model, we use the already estimated parameters (3.25), (3.28)
and (3.33). Next, a quasi-random signal, shown in figure 3.13(a), is applied to the
experimental set-up. Then, using a nonlinear least-squares technique we ensure a
close match between the experimentally obtained angular position θ̂l and the corre-
sponding model prediction θl (i.e. we minimize the performance index (3.32)). This
leads to the following parameter estimates for the friction model at the lower disc:

Tsl = 0.2781N m, Tcl = 0.0473N m, ωsl = 1.4302
rad
s

,

δsl = 2.0575, bl = 0.0105
N m s
rad

.
(4.2)

The estimated friction torque is shown in figure 4.1. In such a friction model, positive
damping is present for very small angular velocities, see figure 4.1(b), for higher angu-
lar velocities, negative damping occurs and for even higher angular velocities positive
damping is again present in the friction (a humped friction model). The measured and
simulated angular positions obtained for the applied quasi-random signal are shown
in figure 4.2, and the related criterium (3.22) is R2

θl
= 0.9991. A model validation is

performed for the input signal shown in figure 3.13(b) and the appropriate measured
and simulated responses are shown in figure 4.3 with R2

θl
= 0.9702. The comparison

between the responses of the experimental set-up and estimated model indicates the
good quality of the obtained parameter estimates.

To summarize, the parameters of the model (4.1) are given in table 4.1 and further
in this chapter we use them as the referent values. Since the steady-state behaviour
of the set-up is of interest, in the sequel we analyze the behaviour of the system
described by (4.1) with the parameters in table 4.1.

4.2 Analysis of the Nonlinear Dynamic Behaviour

Since both equilibria (constant velocity at the upper and lower disc) and limit cycles
(torsional vibrations at the lower disc) are observed in the experimental set-up, in
this section we analyze these equilibrium points (sets) and limit cycles of the model
as well as the related stability properties.
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Figure 4.1: Estimated friction torque at the lower disc when ondina oil 68 and a
20.5N normal force are applied.

Table 4.1: Estimated parameters of the set-up.

Parameter unit Estimated value

Ju [kgm2] 0.4765
km [Nm/V] 4.3228
Tsu [Nm] 0.37975
△Tsu [Nm] -0.00575
bu [kgm2/rad s] 2.4245
△bu [kgm2/rad s] -0.0084
kθ [N m/rad] 0.0775
JA [kg m2] 0.0414
Tsl [Nm] 0.2781
Tcl [Nm] 0.0473
ωsl [rad/s] 1.4302
δsl [-] 2.0575
bl [kgm2/rad s] 0.0105

4.2.1 Equilibria and Related Stability Analysis

Equilibrium Points and Equilibrium Sets

In the equilibrium points, the time derivatives of all variables in (4.1) are zero,
i.e. ω̇u = α̈ = α̇ = 0, for u = uc, with uc a constant. If we insert (ωu, α) = (ωeq, αeq)
into (4.1), then ωeq and αeq should satisfy

−kθαeq + Tfu(ωeq) = kmuc,
Tfl(ωeq) + kθ αeq = 0,

(4.3)

which is equivalent to the following system of equations:

Tfl(ωeq) + Tfu(ωeq) = kmuc,
Tfl(ωeq) + kθ αeq = 0.

(4.4)

Moreover, it also holds that ωl = ωeq in steady-state, since ωl = ωu + α̇. Then, since
friction torques Tfu(ωu) and Tfl(ωl) are both modelled using a set-valued friction
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Figure 4.2: Estimation signals at the lower disc obtained for the quasi-random input
voltage shown in figure 3.13(a): R2

θl
= 0.9991.
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Figure 4.3: Validation signals at the lower disc obtained for the input voltage shown
in figure 3.13(b): R2

θl
= 0.9702.

model, the following two cases should be considered:

• equilibrium points for ωeq 6= 0, i.e. both the lower and the upper disc rotate
with the same constant angular velocity ωeq and

• equilibrium points for ωeq = 0, i.e. both the lower and the upper disc stand still.

For ωeq > 0, Tfu(ωeq) = Tcu(ωeq) and Tfl(ωeq) = Tcl(ωeq) (see (4.1)). Therefore,
such equilibrium points satisfy the following set of nonlinear algebraic equations

kmuc − (Tsu + △Tsu) − (bu + △bu)ωeq − Tcl(ωeq) = 0,

αeq = −Tcl(ωeq)

kθ
.

(4.5)
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From (4.1), the first algebraic equation of (4.5) and since ωeq > 0, it can be concluded
that the system exhibits only an equilibrium point for

uc > uEp, (4.6)

with
uEp =

Tsu + △Tsu + Tsl

km
. (4.7)

In general, the first equation in (4.4) can have more than one solution. However, for
the estimated parameters given in table 4.1, it holds that

−bu −△bu − dTcl

dωl

∣

∣

∣

∣

ωl=ωeq

≤ 0, ∀ωeq > 0, (4.8)

which means that the system has only one equilibrium point for a given uc > uEp

(ωeq > 0).
In a similar way, for ωeq < 0, it follows that (4.1) has one equilibrium point which

is a solution of

kmuc + (Tsu −△Tsu) − (bu −△bu)ωeq + Tcl(ωeq) = 0,

αeq =
Tcl(ωeq)

kθ
,

(4.9)

for
uc < uEn, (4.10)

with
uEn = −Tsu −△Tsu + Tsl

km
. (4.11)

The equilibrium points (sets) for ωeq = 0 exist only when the input voltage satisfies
the condition

uEn ≤ uc ≤ uEp. (4.12)

Then, from (4.3) the following can be derived:

αeq ∈
[−kmuc − (Tsu −△Tsu)

kθ
,
−kmuc + (Tsu + △Tsu)

kθ

]

and

αeq ∈
[−Tsl

kθ
,

Tsl

kθ

]

.

(4.13)

Consequently, it can be concluded that when (4.12) is satisfied, equilibrium points
are such that (ωeq, αeq) ∈ E , where E is defined by

E =

{

(ωeq, αeq) ∈ R
2 | ωeq = 0, αeq ∈

[

−Tsl

kθ
,

Tsl

kθ

]

∩ [α1, α2]

}

,

with

α1 =
−kmuc − (Tsu −△Tsu)

kθ
, α2 =

−kmuc + (Tsu + △Tsu)

kθ
,

i.e. E can also be described by

E =
{

(ωeq, αeq) ∈ R
2 | ωeq = 0, αeq ∈ [αmin, αmax]

}

, (4.14)
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with

αmin = max

(−kmuc − (Tsu −△Tsu)

kθ
, −Tsl

kθ

)

,

αmax = min

(−kmuc + (Tsu + △Tsu)

kθ
,

Tsl

kθ

)

.

(4.15)

Analysis of Local Stability Properties

In order to obtain local stability conditions for the equilibrium points, we use Lya-
punov’s indirect method which is presented in Section 2.2.1 (Theorem 2.1). The
method can be applied only when

uc ∈ (−∞, uEn) ∪ (uEp, ∞), (4.16)

i.e. for ωeq 6= 0. In order to obtain the stability conditions when (4.6) is satisfied
(ωeq > 0), the nonlinear system (4.1) is linearized around the equilibrium point.
Then, according to the Routh-Hurwitz criterion the equilibrium point of the system
is locally asymptotically stable if and only if all the parameters Ri, i = 1, 2, 3, 4,
defined by

R1 = JuJA,
R2 = dlJu + (bu + △bu)JA,
R3 = d2

l Ju(bu + △bu) + dlJ
2
ukθ + dl(bu + △bu)2JA + (bu + △bu)J2

Akθ,
R4 = kθ((bu + △bu) + dl),

(4.17)

have the same sign [Mihajlović et al., 2005a]. In (4.17), dl represents the friction
damping present at the lower disc when ωl = ωeq, i.e.

dl =
dTcl

dωl

∣

∣

∣

∣

ωl=ωeq

. (4.18)

From (4.17) it follows that the equilibrium point of the system is locally asymptotically
stable when

dl > dmin, (4.19)

with

dmin = max (d1, d2, d3)

d1 = − (bu + △bu)JA

Ju
,

d2 =
−J2

ukθ−(bu+△bu)2JA+
√

(J2
ukθ+(bu+△bu)2JA)2−4 JuJ2

A
kθ(bu+△bu)2

2 Ju(bu+△bu) ,

d3 = −bu −△bu.

(4.20)

Then, for the system parameters given in table 4.1, it is obtained that

dmin =
−J2

ukθ−(bu+△bu)2JA+
√

(J2
ukθ+(bu+△bu)2JA)2−4 JuJ2

A
kθ(bu+△bu)2

2 Ju(bu+△bu) , (4.21)

i.e. dmin = −0.00124 kg m

rad s
. The same analysis can be performed when (4.10) is satisfied

(ωeq < 0).
In order to analyze (non-local) stability properties of the equilibrium points and

sets, we use Lyapunov’s stability theorem (Theorem 2.2 in Section 2.2.1).
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Analysis of Global Stability Properties

In order to apply the Lyapunov’s stability theorem, the following Lyapunov candidate
function is considered [Mihajlović et al., 2005a]:

Vt(xt, xteq) =
1

2
kθ(α − αeq)

2 +
1

2
Ju(ωu − ωeq)

2 +
1

2
JA(ωu + α̇ − ωeq)

2, (4.22)

where xt and xteq represents the states and equilibrium point of the system (4.1), i.e.

xt =
[

ωu α α̇
]T

, xteq =
[

ωeq αeq 0
]T

. (4.23)

Then, according to (4.1), the time derivative of Vt obeys:

V̇t(xt, xteq) = −(ωu − ωeq)(Tfu(ωu) − Tfu(ωeq))
−(ωu + α̇ − ωeq)(Tfl(ωu + α̇) − Tfl(ωeq)).

(4.24)

For the sake of simplicity, we replace ωu + α̇ by ωl in expressions (4.22) and (4.24)
when analyzing the (non-local) stability properties of the equilibrium points and sets.

According to Lyapunov’s stability theorem, in order to have an (asymptotically)
stable equilibrium, V̇t(xt, xteq) should be negative (semi)definite. Since the friction
torque at the upper disc is a monotonically increasing function (see figure 3.14), it
follows that the following incremental sector condition is satisfied:

−(ωu − ωeq)(Tfu(ωu) − Tfu(ωeq)) ≤ 0, (4.25)

for every xt ∈ R
3 and ωeq ∈ R. On the other hand, the friction torque at the lower disc

Tfl(ωl) is not a monotonically increasing function, as is the case shown in figure 4.1.
Consequently, the following condition does not hold for every xt ∈ R

3 and ωeq ∈ R:

−(ωl − ωeq)(Tfl(ωl) − Tfl(ωeq)) ≤ 0. (4.26)

Nevertheless, one should realize that the friction torque at the lower disc can change
(due to changing temperature, lubrication conditions, contact materials and geome-
try). Therefore, in the sequel we will discuss stability properties of equilibrium points
and sets for the following possible friction situations at the lower disc:

1. the friction model Tfl(ωl) is a monotonically increasing function (see figure
4.4(a)),

2. the friction model exhibits a region of negative damping and a region of positive
damping for very small and for very high velocities (so-called humped friction
model as shown in figures 4.5(a) and 4.5(c)),

3. the friction model exhibits the Stribeck effect and positive damping exists only
for high velocities (as shown in figure 4.6(a)).

For all types of friction situations, mentioned above, the following can be con-
cluded. When condition (4.16) is satisfied (ωeq 6= 0), then isolated equilibrium points
represent the solution of the system of algebraic equations (4.5) for ωeq > 0, or the
solution of (4.9) for ωeq < 0. Moreover, for ωeq = 0 the equilibrium points xteq are
such that they jointly constitute an equilibrium set Et described with:

Et =
{

xt ∈ R
3 | ωu = α̇ = 0, α ∈ [αmin, αmax]

}

, (4.27)

(αmin and αmax are defined by (4.15)).
Let us now discuss, for each of the friction models mentioned above, the stability

properties of the isolated equilibrium points and the equilibrium sets of the system
(for detailed stability proofs the reader is referred to Appendix B):
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Figure 4.4: A friction model Tfl(ωl) without negative damping and graphical repre-
sentation of stability properties of related equilibrium points and sets.

1. If the friction torque is as shown in figure 4.4(a), we prove in Appendix B that
the equilibrium set Et, described with (4.27), and the isolated equilibrium points
of the system are globally asymptotically stable. These stability properties are
schematically depicted in figure 4.4(b) by the arrows and a gray area spanning
the entire range in vertical direction indicates global asymptotic stability.

2. The equilibrium set Et is also globally asymptotically stable when the friction
torque Tfl(ωl) is as shown in figure 4.5(a), since Tsl < |Tfl(ωl)|, ∀ωl 6= 0.
However, this is not the case for all isolated equilibrium points when ωeq 6= 0.
In Appendix B, we prove that for ωeq > 0 the equilibrium points are locally
asymptotically stable when

uc ∈ (ug1, us1) ∪ (us2, ug2), (4.28)

and they are globally asymptotically stable when

uc ∈ (uEp, ug1) ∪ (ug2, ∞), (4.29)

where uEp is defined by (4.7),

us1 =
Tcu(ωs1) + Tcl(ωs1)

km
, us2 =

Tcu(ωs2) + Tcl(ωs2)

km
,

dTcl

dωl

∣

∣

∣

ωl∈{ωs1, ωs2}
= dmin,

(4.30)

(dmin is defined by (4.20)). Moreover, in (4.28) and (4.29),

ug1 =
Tcu(ωg1) + Tcl(ωg1)

km
, ug2 =

Tcu(ωg2) + Tcl(ωg2)

km
, (4.31)

where ωg1 and ωg2 are chosen such that Tcl(ωg1) = Tcl(ωe1) and Tcl(ωg2) =
Tcl(ωe2), respectively, with

dTcl

dωl

∣

∣

∣

∣

ωl∈{ωe1, ωe2}

= 0, ωe1 < ωe2, (4.32)
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Figure 4.5: Various types of a humped friction model Tfl(ωl) and graphical represen-
tation of stability properties of related equilibrium points and sets.

(see figure 4.5 and figure B.1 in Appendix B). Moreover, for locally stable equi-
libria we have a "semi-global" region of attraction. The graphical interpretation
of this result is presented in figure 4.5(b). Moreover, in Appendix B we also
conclude that if uc satisfies (4.28) and is moved towards to us1 or us2 then the
basin of attraction of the equilibrium point decreases. Similar conditions can
be derived for ωeq < 0.

If the friction torque is as shown in figure 4.5(c), then the equilibrium set Et is
locally asymptotically stable (see for the proof Appendix B) and the isolated
equilibrium points are globally asymptotically stable when uc ≥ ug2, where ug2

is defined by (4.31). For locally stable equilibrium sets and points we have a
"semi-global" region of attraction. The graphical interpretation of this result is
presented in figure 4.5(d). Similar conditions can be derived for ωeq < 0.

3. If the friction torque Tfl(ωl) is as shown in figure 4.6(a), the isolated equilibrium
points are globally asymptotically stable when uc ≥ ug2 (ug2 is defined by (4.31))
for ωeq > 0 and similar results hold when ωeq < 0.

When ωeq = 0, then, since dl0 < 0, with

dl0 =
dTcl

dωl

∣

∣

∣

∣

ωl=0+

, (4.33)
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Figure 4.6: A friction model Tfl(ωl) with a Stribeck effect and graphical representation
of stability properties of related equilibrium points and sets

we can only prove that every equilibrium point xteq ∈ Et is stable except the
equilibrium points for which αeq = −Tsl/kθ or αeq = Tsl/kθ, which are present
only if αmin = −Tsl/kθ or αmax = Tsl/kθ in (4.15), respectively. Namely,
V̇t(xt, xteq) is not negative semidefinite in the neighborhood of such equilibria.
However, using Lyapunov’s indirect method we have already concluded that
equilibrium points, for ωeq 6= 0 are locally stable when (4.19) holds. Therefore,
for our system, all such equilibrium points which are in the neighborhood of
the sticking region are locally asymptotically stable even when dl0 is negative
(i.e. when dl0 > dmin, with dmin defined with (4.20)). Consequently, it can
also be expected that equilibrium point xteq for which αeq ∈ {−Tsl/kθ, Tsl/kθ}
is also stable in the sense of Lyapunov for dl0 > dmin. However, a similar
conclusion cannot be derived when dl0 ≤ dmin. Therefore, we cannot provide a
definite conclusion about stability properties of the equilibrium set Et.

Equilibrium Branches

Since the estimated friction is described as shown in figure 4.5(c) (compare that
figure with figure 4.1), in the sequel we consider that friction situation. Based on the
performed stability analysis of the isolated equilibria and equilibrium sets, in figure 4.7
a sketch of the equilibrium branches for different constant input voltages uc is plotted.
Although we are particularly interested in the behaviour of the velocity of the lower
disc for different constant input voltages (figure 4.7(b)), in figure 4.7(a) also the phase
lag of the upper disc with respect to the lower disc −αeq (α = θl − θu) is shown for
different uc. We have chosen to show −αeq (in stead of αeq) since −αeq = Tcl(ωeq)/kθ

and, thus, this has a similar form as the friction torque Tfl(ωl) for nonzero velocities.
In figure 4.7, solid lines represent stable and dotted lines unstable equilibrium

branches. If we use the results of the steady-state analysis of system (4.1) for u =
uc ≥ 0, with uc constant, and take into account that the friction torque, present at
the lower disc, is of the type shown in figure 4.8, the following can be concluded:

• For uc ≤ uEp, with uEp given by (4.7), the system is in the stick phase in
steady-state; i.e. the system has a locally asymptotically stable equilibrium set
described by (4.14) and (4.15) (equilibrium branch e1 in figure 4.7). Namely,
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Figure 4.7: A sketch of equilibrium branches of the set-up.
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Figure 4.8: A sketch of the friction torque Tfl(ωl) with the friction damping dl at the
lower part of the set-up.

both the lower and the upper disc do not rotate since the input voltage is not
large enough to overcome the static friction torques at the upper and lower disc
at zero velocity. Moreover, from (4.14) and (4.15) it can be seen that if uc

increases, the size of equilibrium set Et decreases. Then, for uc = uEp (point A
in figure 4.7) Et becomes a locally asymptotically stable equilibrium point A.

• For uc = uEp (point A in figure 4.7) no change of stability properties occurs,
since the locally asymptotically stable equilibrium set (4.14) becomes the locally
asymptotically stable equilibrium point A.

• The system has one equilibrium point for uc > uEp since condition (4.8) is
satisfied. Given the fact that the friction torque at the lower disc is as shown
in figure 4.8, it can be concluded that a stable equilibrium branch e2 appears
(figure 4.7). Namely, for an increasing (but constant) uc > uEp the system
leaves the stick phase, the steady-state velocity at the lower disc increases, the
friction damping dl of the friction torque at the lower disc is positive and starts
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to decrease (see figure 4.8). For a certain angular velocity ωeq = ωs1, the friction
damping dl = dmin and the equilibrium point becomes unstable (see conditions
(4.19) and (4.20)). From (4.30), the corresponding input voltage uc = us1 can be
found for given ωeq = ωs1 (point B in figure 4.7). Therefore, for uEp < uc < us1

system has asymptotically stable equilibrium points (equilibrium branch e2 in
figure 4.7). The global and local stability conditions have already been discussed
in this section.

• If uc increases from uc = us1, the system has an unstable equilibrium point and
the corresponding ωeq increases as well. Next, for a certain value of ωeq the
friction damping dl (which is negative) starts to increase and for ωeq = ωs2 (see
figure 4.8) and for uc = us2 (point C in figure 4.7), dl reaches the value dl = dmin

and the equilibrium point becomes asymptotically stable again. Therefore, for
us1 < uc < us2 the system has an unstable equilibrium point (equilibrium
branch e3 in figure 4.7).

• For uc > us2, the system has both locally and globally asymptotically stable
equilibrium points (equilibrium branch e4 in figure 4.7) depending on the value
of uc (see stability proof earlier in this section).

• For uc = us1 (point B in figure 4.7) and for uc = us2 (point C in figure 4.7)
a change in stability properties occurs. Namely, a pair of complex conjugate
eigenvalues, related to the linearisation of the nonlinear dynamics of (4.1) around
the equilibrium point, crosses the imaginary axis to the right-half complex plane.
Therefore, Hopf bifurcations occur at these points.

4.2.2 Bifurcation Diagram of the Set-Up

Here we analyze the steady-state behaviour of the estimated model. According to the
previous analysis, Hopf bifurcation points occur for uc = us1 and uc = us2. Next,
using a path following technique in combination with a shooting method [Ascher et al.,
1995; Parker and Chua, 1989], limit cycles are computed numerically for the estimated
model of the system. The results are shown in a bifurcation diagram, with uc as a
bifurcation parameter, in figure 4.9. In those figures, the maximal and minimal values
of ωl are plotted when a limit cycle is found. Floquet multipliers, corresponding to
these limit cycles, are computed numerically and used to determine the local stability
properties of these limit cycles. With respect to the obtained results, the following
remarks can be made:

• From the bifurcation point B for uc > us1 an unstable equilibrium branch e3

arises (as discussed in this section). Moreover, from point B an unstable periodic
branch p1 (see figure 4.9(b)) arises. The periodic branch p1 consists of unstable
limit cycles without stick-slip, hence, point B represents a smooth subcritical
Hopf bifurcation point [Khalil, 2000; Sastry, 1999; Strogatz, 2000].

• The unstable periodic branch p1 is connected to a locally stable periodic branch
p2 at point D, which represents a fold bifurcation point. Since the periodic
branch p2 consists of limit cycles which represent torsional vibrations with stick-
slip (see figure 4.9(b)), point D represents a discontinuous fold bifurcation.
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Figure 4.9: Bifurcation diagram of the experimental set-up when only torsional and
no lateral vibrations are present.

• The periodic branch p2 consists only of locally stable limit-cycles with stick-slip,
due to the non-smooth nonlinearities in the friction torque at the lower disc. For
some higher constant input voltage uc (point E in figure 4.9) the locally stable
periodic branch p2 disappears again through a discontinuous fold bifurcation
(see figure 4.9(a)). At this fold bifurcation point the stable periodic branch p2

merges with an unstable periodic branch p3.

• The unstable periodic branch p3 is connected to the equilibrium branches e3

and e4 in the Hopf bifurcation point C. Moreover, in figure 4.9(a) point C
represents a smooth subcritical Hopf bifurcation point.

The existence of the fold bifurcation point E is expected to appear, from the
analysis of the global stability properties of equilibrium points (see figure 4.5(d)).
Namely, using Lyapunov’s indirect and direct method (Theorems 2.1 and 2.2 in Sec-
tion 2.2.1) we conclude that the equilibrium points are locally asymptotically stable
for us2 < uc < ug2 and are globally asymptotically stable for uc > ug2. Furthermore,
we estimated numerically that for input voltages which are in the region between
the Hopf bifurcation point C (for uc = us2) and the fold bifurcation point E, both
equilibrium points (constant velocity at the lower disc) and limit cycles (torsional
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vibrations) exist. Consequently, uc = ug2 represents an estimate of the voltage where
fold bifurcation point E occurs. However, since the value for ug2 is obtained using
Lyapunov’s direct method, and the method gives only sufficient conditions, the fold
bifurcation points can appear for us2 < uc < ug2.

4.2.3 The Influence of Friction Characteristics on the Steady-

State Behaviour

Here we analyze how various friction characteristics influence the steady-state be-
haviour of the drill-string system. Hereto, we discuss the influence of various friction
characteristics of Tfl(ωl) on the bifurcation diagram shown in figure 4.9, for the model
of the system described by (4.1), with parameters estimates given in table 4.1.

Changes in the Static Friction Torque

In order to analyze the influence of the static friction level on the steady-state be-
haviour of the drill-string system (4.1) we consider the following friction torque at the
lower disc:

Tfl(ωl) ∈
{

(△Tsl + Tcl(ωl))sgn(ωl) for ωl 6= 0,
[−(Tsl + △Tsl), Tsl + △Tsl] for ωl = 0.

(4.34)

where Tcl(ωl) represents the estimated (nominal) friction with parameters (4.2) and
△Tsl represent a change in the static friction level which is such that the friction at
the lower part of the set-up remains dissipative, i.e.

(△Tsl + Tcl(ωl)) ≥ 0, ∀ωl ∈ R \ {0}. (4.35)

Therefore, such friction torques are presented in figure 4.10(a), where △Tsl > 0 for
the friction torque plotted with a dark-grey line and △Tsl < 0 for the friction torque
plotted with a black line. The nominal friction model is depicted by the light-grey
line. Related bifurcation diagrams are shown in figures 4.10(b), 4.10(c) 4.10(d) with
matching colors. According to the analysis performed in Section 4.2.1 and from figure
4.10 the following can be concluded:

• If the static friction torque is lower (black line in figure 4.13(a)), then the value
of input voltage uEp at which the lower disc starts to rotate is lower. This can
be explained knowing that uEp is defined by (4.7).

• A lower static friction torque also influences the position of both Hopf bifurca-
tion points (points B′, B′′ and C ′, C ′′ in figures 4.10(b), 4.10(c) and 4.10(d)).
Note that the angular velocities ωs1 and ωs2 in (4.30), at which Hopf bifurcation
points appear, do not change. However, for a lower static friction, the Hopf bi-
furcation points appear for lower voltages us1 and us2, according to (4.30) and
(4.34). Similarly, for a higher static static friction level, the Hopf bifurcation
points shift to a higher voltages.

• From figure 4.10, we see that a lower static friction torque causes a higher
angular velocity in steady-state ωeq (see figures 4.10(b), 4.10(c) and 4.10(c)).
Namely, when static friction is lower, then the friction is also lower (see figure
4.10(a)), hence, the dissipation of the energy due to such friction is lower.
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Figure 4.10: Friction torques at the lower disc for various static friction levels and
related bifurcation diagrams.

• We can also see that if the static friction torque is very low, then the lower disc
can rotate both in positive and in negative direction for certain input voltages,
as is the case for limit cycles depicted with the periodic branch p′′2b.

• Finally, according to the (local and global) stability proofs which we have dis-
cussed in Section 4.2.1, we can conclude that for all friction situations shown
in figure 4.10(a) the angular velocity at which Hopf bifurcation points appear
ωs1 and ωs2 (see (4.30)), and the angular velocity at which limit cycles cannot
appear ωg2 (see (4.31)) are identical. However, the corresponding input voltages
us1, us2 and ug2 change slightly, due to the different static friction level, such
that those voltages are lower for the friction with lower static friction (black
line) and higher for higher static friction (dark-grey line). This is only the case
according to the performed analysis for the Hopf bifurcations and not for the
fold bifurcation points.
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Changes in the Low-Velocity Characteristics

To analyze the influence of the low-velocity characteristics of Tfl(ωl) on the steady-
state behaviour of the set-up (4.1), we consider various friction situations which differ
only for very low angular velocities (the static friction level Tsl is the same), as shown
in figure 4.11. Namely, the friction damping dl0, defined by (4.33), is varied. For such
friction torques, the related bifurcation diagrams are constructed. It appears that the
obtained bifurcation diagrams differ only for very low velocities.

Since all friction situations have the same static friction Tsl, the equilibrium
branches e′1, e′′1 and e′′′1 in figures 4.11(b), 4.11(d) and 4.11(f), respectively, are all
identical to the branch e1 shown in figure 4.9(a). When we compare the obtained
bifurcation diagrams the following can be concluded:

• If the friction damping at very low velocities dl0 is high enough (’friction 1’ in
figure 4.11(a)), then from bifurcation point B′ a locally unstable equilibrium
branch e′3 and a locally stable periodic branch p′1 arise through a supercritical
Hopf bifurcation. The periodic branch p′1 consists of limit-cycles which represent
torsional vibrations without stick-slip. Therefore, point B′ represents a smooth
supercritical Hopf bifurcation point. At point D′ torsional vibrations with stick-
slip appear (branch p′2 in figure 4.11(b)), due to the non-smooth nonlinearities
in the friction torque at the lower disc. Since both p′1 and p′2 represent locally
stable periodic branches, point D′ is not considered to be a bifurcation point
by many scientists (see for example [Leine, 2000; Leine and Nijmeijer, 2004]).
However, some others classify this point as being a C-bifurcation point [Feigin,
1978, 1994] marking the transition from a limit cycle which does not touch the
discontinuity to a limit cycle which touches the discontinuity.

• If the friction damping dl0 decreases (’friction 2’ in figure 4.11(c)), then the
stable periodic branch p′1 (’friction 1’) splits into stable and unstable periodic
branches, represented by p′′1a and p′′1b in figure 4.11(d), respectively. Conse-
quently, an additional fold bifurcation point F ′′ appears. Moreover, the C-
bifurcation point D′ becomes a discontinuous fold bifurcation point D′′ since
at this point the unstable branch p′′1b, consisting of torsional vibrations with-
out stick-slip, and the stable branch p′′2 , consisting of torsional vibrations with
stick-slip, are connected.

• For even lower dl0, the fold bifurcation point F ′′ and stable limit cycle p′′1a disap-
pear (see light-grey line in figures 4.11(d) and 4.11(f)). Consequently, a smooth
supercritical Hopf bifurcation point B′′ transforms to a smooth subcritical Hopf
bifurcation point B in figure 4.9(b).

• If we decrease dl0 even further, then for dl0 = dmin (dmin represents the mini-
mum value of friction damping at the lower disc for which locally stable equi-
librium points appear (see expression (4.20))) torsional vibrations appear im-
mediately when the system leaves the sticking region, i.e. for uc > uEp (uEp is
described by (4.7)). Consequently, the stable equilibrium branch e2, the unsta-
ble periodic branch p1 and the bifurcation point B in figure 4.9(b) disappear
and in point A′′′ a stable equilibrium branch e′′′1 , an unstable equilibrium branch
e′′′3 and a stable periodic branch p′′′2 are connected as shown in figure 4.11(f). A
stable equilibrium branch e′′′1 consists of locally stable equilibrium sets (which
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Figure 4.11: Friction torques at the lower disc for various low-velocity friction char-
acteristics and related bifurcation diagrams.
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Figure 4.12: Estimated friction torque and friction torque with high negative damping
at low velocities with related bifurcation diagrams.

exist due to sticking phenomenon) and the periodic branch p′′′2 consists of limit
cycles which represent torsional vibrations with stick-slip. Therefore, point A′′′

represents a discontinuous bifurcation point. Moreover, such bifurcation point
looks like a kind of discontinuous supercritical Hopf bifurcation point described
in [Leine, 2000; Leine and Nijmeijer, 2004]. However, since e′′′1 consists of equi-
librium sets and of equilibrium point A′′′, and not only of equilibrium points,
this is not the case here.

If dl0 is even lower, as shown in figure 4.12(a), then the period time of the periodic
solutions increases dramatically when uc is close to the bifurcation point A′ as shown
in figure 4.12(c). However, for such low dl0, the friction characteristic does not change
only for very low velocities but the change is significant for even higher velocities.
That is why we see that the position of the Hopf C ′ and the fold bifurcation point E′

slightly differs from the position of the same bifurcation points in the nominal case.
No other qualitative change appears with respect to the bifurcation diagram shown
in figure 4.11(f) when dl0 = dmin (’friction 3’-case).
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Figure 4.13: Friction torques with various negative damping levels and related bifur-
cation diagrams.

Changes in the Negative Damping

In order to analyze the influence of various negative damping levels in Tfl(ωl) on
the steady-state behaviour of the drill-string system (4.1), we consider two friction
situations, as shown in figure 4.13(a), with respect to the estimated friction torque
Tfl(ωl). In both friction situations the static friction level Tsl is the same as in the
estimated friction torque. The angular velocities ωs1 and ωs2 at which dl = dmin are
such that Hopf bifurcation points appear at approximately the same input voltages
us1 and us2 (see expression (4.30) and figure 4.13(b)) as in the experimental set-up.
However, in one friction situation the negative damping is higher (dark-grey line in
figure 4.13(a)) and in the second friction situation the negative damping is lower
(black line in figure 4.13(a)) than in the estimated friction torque (light-grey line in
figure 4.13(a)). Related bifurcation diagrams together with the bifurcation diagram
obtained for the estimated model of the set-up are shown in figure 4.13(b).

When we compare the obtained bifurcation diagrams the following can be con-
cluded:

• If the negative damping is lower (black line in figure 4.13(a)), then torsional
vibrations disappear for lower constant input voltages (compare the discontin-
uous fold bifurcation points E′ and E′′ in figure 4.13(b)). In other words, if the
negative damping in the friction torque at the lower disc is lower, then torsional
vibrations can appear for a smaller range of input voltages uc. This can be
explained using the analysis of the global stability properties of the equilibrium
points performed in Section 4.2.1. In that section, we have proven that for
uc > ug2 (ug2 is defined with (4.31) and figure 4.5(a)), equilibrium points of the
system are globally asymptotically stable and, hence, no torsional vibrations
can appear. We also conclude that ug2 does not represent the exact position of
a fold bifurcation point, but only a conservative estimate of the constant voltage
at which torsional vibrations disappear. If we determine ug2 for each friction
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Figure 4.14: Friction torques with various viscous friction levels and related bifurca-
tion diagrams.

situation shown in figure 4.13(a) we obtain that u′
g2 = 13.9890V for the friction

shown with the dark-grey line and u′′
g2 = 9.2941V for the friction shown with

the black line. Indeed, figure 4.13 shows that if the range of angular velocities
defined by ωl ∈ [ωc2, ωg2] decreases (increases) due to a lower (higher) nega-
tive damping level, then the region (in terms of input voltages) of co-existence
decreases (increases).

• From figure 4.13 we see that lower negative damping causes a smaller amplitude
of the torsional vibrations in the drill-string system. When the negative damping
is lower, than the friction is higher (see figure 4.13(a)), hence, the dissipation of
the energy due to such friction is higher and therefore, the amplitude of torsional
vibrations is smaller.

Changes in the Viscous Friction

In order to discuss the influence of various viscous friction levels in Tfl(ωl) on the
steady-state behaviour of the drill-string system (4.1), we consider two friction sit-
uations in comparison with the estimated friction torque of the set-up as shown in
figure 4.14(a). In all friction situations, the static friction level Tsl is the same and
the friction torques differ only for high angular velocities ωl. In one friction situation,
the viscous friction level is higher (dark-grey line in figure 4.14(a)) and, in the second
friction situation, the viscous friction level is lower (black line in the same figure)
than in the estimated friction torque (light-grey line). Related bifurcation diagrams
together with the bifurcation diagram obtained for the estimated friction model of
the set-up are shown in figure 4.14(b).

When we compare the obtained bifurcation diagrams, the following can be con-
cluded:

• If the viscous friction level is lower, then the fold bifurcation point E′′ appears for
higher constant input voltages: i.e. in such a case torsional vibrations can appear
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for bigger range of input voltages uc (compare discontinuous fold bifurcation
points E′ and E′′ in figure 4.14(b)). This can be explained in a similar fashion as
we explained the influence of various negative damping levels on the bifurcation
diagram using the analysis of global stability properties of equilibrium points
performed in Section 4.2.1. Namely, when the viscous friction level is lower, then
ug2 is higher (see expression (4.31) and figure 4.5) and, therefore, voltages at
which no torsional vibrations can appear (uc > ug2) are higher (u′

g2 = 8, 8290V
for the friction plotted by the dark-grey line and u′′

g2 = 18.3156V for the friction
plotted by the black line).

Based on the results presented in figures 4.13 and 4.14 it can be concluded
that a subtle interplay of negative damping characteristics at low velocities and
viscous friction at higher velocities determines the occurrence and the range of
input voltages for which limit cycles occur.

• In figure 4.14(b), we observe that a lower viscous friction level causes higher
amplitudes of the torsional vibrations in the system. Namely, when the viscous
friction level is lower, then the friction is also lower (see figure 4.14(a)); hence,
the dissipated energy is lower and the amplitude of torsional vibrations is higher.

• Stable equilibrium branches e′2 and e′′2 and unstable periodic solutions p′1 and p′′1
are also present in the bifurcation diagrams in figure 4.14(b) and these branches
are almost identical to e2 and p1 in figure 4.9(b).

Friction Situation when only Smooth Fold and Hopf Bifurcations Appear

Here, we discuss the steady-state behaviour of the system (4.1) when a friction torque
as shown in figure 4.15(a) (with black line) is present at the lower part of the set-
up. As a result of a steady-state analysis the bifurcation diagram in figure 4.15(b) is
constructed. With respect to the obtained results the following remarks can be made:

• From bifurcation point B′, a locally unstable equilibrium branch e′3 arises (as
discussed in Section 4.2.1) as well as a stable periodic branch p1. Therefore,
point B′ represents a supercritical Hopf bifurcation point.

• Close to the bifurcation points, the periodic branch p′1 consists of locally stable
limit-cycles which represent torsional vibrations without stick-slip. Therefore,
bifurcation point B′ represents a smooth supercritical Hopf bifurcation point.

• At point D′, torsional vibrations with stick-slip appear (branch p′2 in figure
4.15(b)), due to the non-smooth nonlinearities in the friction torque at the
lower disc. Moreover, the periodic branch p′2 is also locally stable. As previously
discussed D′ is considered to be a C-bifurcation point [Feigin, 1978, 1994].

• For some higher constant input voltage uc (point F ′ in figure 4.15(b)) torsional
vibrations without stick-slip appear once more (locally stable periodic branch
p′3) through a C-bifurcation point.

• Then, for even higher uc, the locally stable periodic branch p′3 looses its stability
and an unstable periodic branch appears (periodic branch p′4 in figure 4.15(b)).
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Figure 4.15: Estimated friction torque, friction torque with a positive damping for
low velocities followed by a small region of negative damping and related bifurcation
diagrams.

• The point where the stable periodic branch p′3 is connected to the unstable
branch p′4 represents a smooth fold bifurcation point (point F ′ in figure 4.15(b)).
The unstable periodic branch p′4 is connected to the equilibrium branches e′3
and e′4 in the Hopf bifurcation point C ′. In figure 4.15(b) point C ′ represents a
(smooth) subcritical Hopf bifurcation point.

If positive damping is present in Tfl(ωl) for very low velocities, this does not mean
that torsional vibrations without stick-slip can appear in the set-up. For example,
positive damping is present in the estimated friction model (see figure 4.1) but no
torsional vibrations without stick-slip appear (see related bifurcation diagram in figure
4.9(b)). However, according to the results shown in figures 4.11(a) and 4.11(b) we see
that such torsional vibrations appear when the damping at the lower velocities is high
enough with respect the following negative damping. Therefore, the combination of
a low negative damping in the friction torque shown in figure 4.15(a) together with
high positive damping at a very low velocities is responsible for the appearance of
torsional vibrations without stick-slip.

4.3 Experimental Results

4.3.1 Validation of Steady-State Behaviour of the Set-Up

In order to check the validity of the obtained model of the drill-string set-up when
ondina oil 68 is used as a lubrication fluid, a 20.5N normal force is applied at the
brake and the x- and y-constraints are fixed, experimental results are compared with
the numerical results. As already mentioned earlier, the evidence about the predictive
quality of the estimated model in steady-state is of great interest. Therefore, when
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Figure 4.16: Experimental and simulated angular velocity at the lower disc for various
constant input voltages and various initial conditions.

a constant voltage is applied at the input of the set-up, each experiment lasted long
enough to guarantee that all transient effects have disappeared and the last 50 and
sometimes 100 seconds (mainly for low input voltages) of the angular velocity signal
ωl are recorded1. Some of the obtained results are shown in figure 4.16. In this
figure, the experimental angular velocity (solid black line) and the angular velocity
obtained using the estimated model (dashed grey line) in steady-state are shown for
different constant input voltages. Namely, the signals presented in figures 4.16(a),
4.16(b) and 4.16(c) represent stick-slip limit-cycling (torsional vibrations) and figure
4.16(d) represents an equilibrium point. Clearly, the combination of figures 4.16(c)
and 4.16(d) confirms that in the experiments a region exists for which both stable
equilibria and stable limit cycles exist. From the comparison between numerical and
experimental results, it can be concluded that with the proposed model the steady-
state behaviour of the set-up is accurately predicted.

Next, the same type of bifurcation diagram, as shown in figure 4.9, is constructed
experimentally. In order to construct such experimental bifurcation diagram, different
constant input voltages are applied to the set-up. When no torsional vibrations are
observed (as in figure 4.16(d)), the mean value of the recorded angular velocity is
computed and obtained data are plotted using the symbol ”x”. Next, when torsional
vibrations are observed at the lower disc (as in figures 4.16(a), 4.16(b) and 4.16(c)), the

1When presenting those signals in time domain, we always start from 0 on the time scale.
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Figure 4.17: Comparison of the numerical and experimental bifurcation diagram.

mean value of local maxima and minima of the vibrations are computed. Then, these
experimentally obtained data are plotted using the symbol ”o”. Such experimental
results, together with the bifurcation diagram obtained by numerical analysis of the
estimated model, are shown in figure 4.17(a). Moreover, when torsional vibrations
are observed in the set-up, the period time T of the vibrations is determined as well.
In figure 4.17(b) such experimental results are compared to the period time of the
numerically obtained limit cycles. The results, shown in figure 4.17, illustrate the
predictive quality of the obtained model.

Both in the numerical and the experimental bifurcation diagram we notice quali-
tatively different behaviour of the system when the constant input voltage is changed:

• For very low input voltages, the system is in a sticking phase. In figure 4.18(a),
an experimental angular velocity is shown for uc = 0.1V: the system is in the
sticking phase.

• If the input voltage is increased, the system enters the region where only tor-
sional vibrations (i.e. stable limit cycles) appear. The result shown in figure
4.18(b) gives evidence about the existence of such region in the experimental
set-up. Namely, when we apply constant input voltage uc = 1.6 V we observe
a stick-slip limit cycle (0 < t < t1). Moreover, when we perturb the lower
disc (at t = t1) in order to bring the system in the vicinity of the equilibrium
point, the system converges toward the stick-slip vibrations. In figure 4.18(b),
we perturbed the system at the time instants t1 and t2. After each perturbation,
torsional stick-slip vibrations reappear in steady-state.

• If the input voltage is even higher, then the input voltage is in the region where
both torsional vibrations (limit cycles) and a constant angular velocity at the
lower disc (equilibrium points) can appear in the set-up. In figure 4.18(c),
we show the angular velocity obtained as a result of the following experiment.
When we apply a constant input voltage uc = 3.6V, the lower disc converges
to stick-slip vibrations. At the time instant t1, we disturb the system such that
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(a) uc = 0.1 V: Sticking region.
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Figure 4.18: Experimental time series in various regions of the bifurcation diagram.

the lower disc, after a while, starts to rotate with a constant angular velocity.
Then, at the time instant t2 we stopped the lower disc for a very short period (in
other words the system is manually brought close to the stick-slip limit cycle)
and the system continues with stick-slip vibrations. This experimental result
shows that a stable limit cycle (torsional vibrations) and a stable equilibrium
point (constant velocity) coexist in the experimental set-up for uc = 3.6V. This
can also be seen in figure 4.17(a).

• If the input voltage is high enough (uc > 3.8V), the system enters a region
where no torsional vibrations can appear in the system in steady-state. From
figure 4.18(d), we can conclude that when we apply an input voltage uc = 4V
to the system, torsional vibrations disappear even though at the time instant t1
we tried to induce those vibrations manually. Therefore, this result represents
an indication for the fact that for uc = 4V no torsional vibrations can appear
in the set-up.

Unmodelled Dynamics

Although various validation procedures show that the model constituted by (4.1), with
parameter estimates in table 4.1, represents a very good model of the set-up, when
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Figure 4.19: Experimental and simulated angular velocities at the lower disc for
uc = 0.24V and uc = 0.3V.
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Figure 4.20: Power spectral density of various velocity signals in steady-state.

the lower disc only rotates (and cannot move in lateral direction), some unmodelled
dynamics is present in the set-up:

• In figure 4.19, we see that when a very low constant voltage is applied to the mo-
tor, torsional vibrations which appear at the lower disc do not have a constant
amplitude as it should be the case according to the estimated model. This is
due to the presence of position-dependent friction at the lower disc, which is not
modelled. In other words, the friction force induced by the brake on the lower
disc is not the same at each angular position of the disc. The same conclusion
can be derived from the power spectral density of experimental time-series as
shown in figure 4.20. These measured time-series are obtained, while applying
constant input voltages uc = 3V and uc = 5V and waiting long enough to
obtain constant velocities at the lower disc. Then the last 50 seconds of the
measurements are recorded and the power spectral density of the obtained sig-
nals are determined. If we analyze the power spectral density Sωlωl

(f) shown
in figure 4.20(a), it can be noticed that some dominant spectral components
are present at the frequencies f = 0.22Hz and f = 0.83Hz. The first spectral
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Figure 4.21: Measured and estimated friction torque on the brake and estimated
friction torque at the lower part of the set-up.

component is close to the mechanical resonance frequency of the system. In
order to understand the second important spectral component, we should an-
alyze the angular velocity shown in figure 4.20(a). Namely, for uc = 3V the
experimentally obtained velocity is ωl = 5.1964 rad/s = 0.8270Hz which is very
close to the second important spectral component. Similarly, for uc = 5V we
notice important spectral components for f = 0.22Hz and f = 1.4Hz as shown
in figure 4.20(b). The first spectral component is the same as for uc = 3V
and is due to the mechanical resonance of the set-up which is independent
of the angular velocity. Moreover, at uc = 5V the obtained angular velocity
ωl = 8.8272 rad/s = 1.4049Hz is close to the second dominant spectral compo-
nent (see figure 4.20(b)). Consequently, this represents clear evidence for the
presence of the position-dependent friction at the lower disc.

• Since the brake at the lower part of the set-up is connected to the force sensor
(see figure 3.5), we can also measure the friction force which the brake produces
at the lower disc. Then knowing the distance from the geometric center of the
lower disc to the place where the friction force is applied to the disc (which
equals 4.2 cm), we can compute the friction torque applied by the brake to the
lower disc. The measured and estimated friction torques on the brake (Tflb

in table 3.2) and the estimated friction torque at the lower part of the set-up
(Tfla + Tflb in table 3.2) are shown in figure 4.21. From that figure, it can be
seen that negative damping is indeed present in the set-up. However, it can also
been seen that some other unmodelled effects are also present in the friction
force. Moreover, we observe that the estimated friction model describes the
measured friction better for higher than for lower velocities. This can be due to
the fact that the friction sensor needs more accurate calibration, but it can also
be due to the fact that static friction models do not describe very accurately all
friction phenomena for small relative velocities.

Finally, from figure 4.21 it can be observed that, in the working region of the
set-up, the viscous friction is mainly due to the friction in the bearing and negative
damping is mainly due to the brake.
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Figure 4.22: Indication of the existence of the discontinuous fold bifurcation points
for (a) very small and (b) very high constant input velocities.

Fold Bifurcation Points

From the steady-state analysis of the estimated model of the set-up, it appears that
the model exhibits two discontinuous fold bifurcations points: one for uc = 0.1846V
(point D in figure 4.9(b)) and another for uc = 3.835V (point E in figures 4.9(a),
4.9(c) and 4.17).

From the measurements of the angular velocity ωl, shown in figure 4.22(a), we
can conclude that the discontinuous fold bifurcation point is present for an input
voltage uc ∈ (0.23V, 0.24V). The difference between our estimates and experimen-
tally obtained results is due to unmodelled dynamics and mainly due to the position
dependent friction which is observed at the lower disc and which is not modelled.
Moreover, according to the steady-state analysis and from figure 4.9(b), we also ex-
pect that for very small input voltages, a constant velocity can appear at the lower
disc (equilibrium branch e2 in figure 4.9(b)). However, this equilibrium branch cannot
be observed experimentally due to the existence of the position dependent friction.

In order to show that the second fold bifurcation point (point E in figures 4.9(a),
4.9(c) and 4.17) is present in the experimental set-up we perform the following exper-
iment. We apply a constant input voltage and wait long enough to obtain torsional
vibrations. Then we increase the input voltage in order to see when the torsional vi-
brations disappear. In other words, we follow the periodic branch p2 in figure 4.17(a)
in a step-wise fashion in order to estimate the position of the fold bifurcation point
E experimentally. Such experiment shows that torsional vibrations disappear when
we increase the input voltage uc from 3.9V to 4V (see figure 4.22(b)). The very
small difference between experimental analytical obtained results can be due to the
presence of unmodelled dynamics.

Hopf Bifurcation Points

According to the bifurcation diagram shown in figure 4.9 we have two smooth sub-
critical Hopf bifurcation points: one for uc = 0.1849V (point B in figure 4.9(b)) and
another one for uc = 1.6865V (point C in figures 4.9(a) and 4.17(a)).

We have already mentioned that, mainly due to position-dependent friction, we
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Figure 4.23: Indication of existence of the subcritical Hopf bifurcation point C.

cannot observe the equilibrium branch e2 in figure 4.9(b) in experiments and, there-
fore, we cannot observe the Hopf bifurcation point B for lower input voltages sepa-
rately from the discontinuous fold bifurcation at point D.

In order to shown that the second Hopf bifurcation point is present (point C in
figure 4.17(a)) in the experimental set-up, we perform the following experiment. We
apply a constant input voltage and perturb the system in order to bring it to the
equilibrium point (constant velocity at the lower disc). Then we slowly decrease the
input voltage in order to see when the torsional vibrations appear. In other words,
we follow the equilibrium branch e4 in figure 4.17(a) in order to estimate the location
of the smooth subcritical Hopf bifurcation point C. Such an experiment shows that
torsional vibrations appear when we decrease the input voltage uc from 1.8V to
1.7V (see figure 4.23). The very small difference between the experimentally and the
numerically obtained location of the Hopf bifurcation point is due to the fact that the
region of attraction of the equilibrium point is very small near the Hopf bifurcation
point. Namely, when we decrease the input voltages in even smaller steps we noticed
that even for uc = 1.6V system can rotate with constant velocity in steady-state.

4.3.2 Various Friction Situations

In Section 4.2.3, we have analyzed how various changes in the friction characteristics
can influence torsional vibrations in drill-string systems. Here, we investigate how
various friction conditions influence these friction characteristics and, in turn, the
torsional vibrations in the experimental set-up.

Changes in the Applied Normal Force

In order to analyze how changes in normal force, which is applied to the brake, influ-
ence the steady-state behaviour of the set-up, we applied a 18N and a 12.2N normal
force to the brake (ondina oil 68 is present between the brake blocks and brake disc).
Next, the parameters of the model of the obtained friction torques are estimated, as
described in Section 4.1, the obtained models are validated and numerical and ex-
perimental bifurcation diagrams are constructed for both normal force levels. The
estimated friction model at the lower part of the set-up (Tfl(ωl) = Tfla(ωl)+Tflb(ωl)
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Figure 4.24: Measured and estimated friction torques at the lower disc and on the
brake for various normal force levels.

in table 3.2), caused by the friction in the bearings (Tfla(ωl)) and by the friction
between the brake disc and the brake (Tflb(ωl)), are shown in figures 4.24(a). The
measured and estimated friction torques in the brake are shown in figures 4.24(b) and
4.24(c) and the related bifurcation diagrams are shown in figure 4.25.

When a lower normal force is applied to the brake, the static friction level is
lower, the sticking region decreases and the lower disc starts to rotate for lower input
voltages. In the set-up, the lower disc starts to rotate (with torsional vibrations) for
uc = 0.24V when normal forces of 20.5N and 18N are applied, and for uc = 0.21V
when 12.2N normal force was applied. The fact that no decrease in the sticking
region is observed when we apply a normal force 18N can be due to the fact that we
collected experimental results for uc = 0.23V and uc = 0.24V and such resolution
is not small enough to distinguish the difference between in the sticking regions for
those two normal forces. However, from the results obtained for a 12.2N normal force
it is clear that the sticking region decreases when the normal force is lower.

For lower normal force levels, the separation process between the contacting sur-
faces (brake disc and the brake blocks) and the full fluid lubrication regime occur for
lower velocities (the friction regimes are depicted in figure 3.11). Moreover, in Sec-
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Figure 4.25: Simulated and experimental bifurcation diagrams for various normal
force levels applied to the brake.

tion 4.2.1 we have concluded that the position of the second Hopf bifurcation points
is determined by the point on the Tfl(ωl)-curve where the negative damping reaches
the value dmin (ωl = ωs2 figure 4.8). This, in fact, corresponds to the point where full
fluid lubrication appears (see figure 3.11). Consequently, for lower normal force levels,
the Hopf bifurcation points C ′ and C ′′ in figure 4.25 appear for lower input voltages
and the region, where a constant velocity at the lower disc can appear, decreases.

From figures 4.24(a), 4.24(b) and 4.24(c) it can be seen that we estimate a higher
viscous friction coefficient for the lower normal force levels. Namely, when a lower
normal force is applied, full fluid lubrication appears at the lower angular velocities.
Then, for higher normal forces and high enough uc the system is closer to the tran-
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Figure 4.26: Measured and estimated friction torques at the lower disc and on the
brake for temperatures T ∈ (17◦C, 22◦C) and Tref ∈ (25◦C, 30◦C).

sition between partial and full fluid lubrication than when the normal force is lower.
Consequently, this effect is, in the range of input voltages which can be applied to
the system, modelled with lower viscous friction for higher normal forces. However,
if the normal force is low enough, the effects which cause the negative damping in
friction disappear (effects are described in Section 3.2.2) and the torsional vibrations
in the drill-string system also disappear. In the considered experimental drill-string
set-up torsional vibrations disappear when the normal force is smaller than 7.8N. An
important observation is that the normal force influences the friction characteristics
in a rather complex away, which can be explained using the friction regimes in figure
3.11. By no means the normal force forms a mere scaling factor for the friction force.

Temperature Changes

The results, which are analyzed in Section 4.3.1, are obtained when the temperature
in the laboratory, where the set-up is placed, is between 25◦C and 30◦C. The same
results are collected when the temperature in the laboratory is between 17◦C and
22◦C, for the same normal force applied at the brake (20.5N). The parameters of
the obtained friction torque are estimated (as described in Section 4.1), the obtained
model is validated and both numerical and experimental bifurcation diagrams are
constructed. The estimated friction torque at the lower part of the set-up (Tfla +Tflb

in table 3.2) is shown in figure 4.26(a). The measured and estimated friction torque
at the brake (Tflb) is shown in figure 4.26(b). The related bifurcation diagrams are
shown in figure 4.27.

When the temperature is lower, the viscosity of the oil becomes higher. With a
more viscous lubricant, the separation between the contacting surfaces (brake disc
and the brake blocks in the experimental set-up) and the full fluid lubrication process
occur for lower velocities. In Section 4.2.1, we have concluded that the position of the
second Hopf bifurcation point is determined by the point where the negative damping
reaches the value dmin (see figure 4.8), which, in fact, corresponds to the point when
the full fluid lubrication appears (see figure 3.11). Consequently, the Hopf bifurcation
point C ′, in figure 4.27, appears for lower input voltages than it does in the set-up
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Figure 4.27: Simulated and experimental bifurcation diagram for various tempera-
tures.

when the temperature in the laboratory is higher.
Moreover, in Section 4.2.3 we have concluded that a higher viscous friction level

causes a decrease of the amplitude of the torsional vibrations and that the range of
voltages in which torsional vibrations can appear is smaller (compare figure 4.14 with
figures 4.26(a) and 4.27(a).

Changes in the Contact Material

In Section 3.1, we mention that in order to obtain torsional vibrations, a brake and
a small oil-box are fixed to the lower part of the set-up, as shown in figure 3.5. The
brake material is bronze, the brake disc is made of steel and ondina oil 68 [Shell,
1997] is added to the brake disc in order to obtain torsional vibrations. The set-up,
described in Section 3.1, is obtained by redesigning the lower part of an existing drill-
string set-up. In the previous set-up, torsional vibrations are obtained when a brake,
with a rubber brake material, is applied to the lower brass disc and when water is
added between the lower disc and the contact material of the brake. Then, using a
Neural Network friction model (3.5) with two nodes (n = 2 in (3.5)), the parameters
of the friction model are estimated. The estimated friction model is shown in figure
4.28. Then, both experimental and numerical bifurcation diagrams are constructed
[Mihajlović et al., 2004a,b] (see figure 4.29). Since the input voltage is limited to
5V, the experimental data are only available in that range. In [Mihajlović et al.,
2004a,b] the estimated parameters of the previous set-up are slightly different then
the parameters of the set-up considered in this thesis due to the following reasons.
Firstly, the amplification of the power amplifier can easily be changed and during the
redesigning of the old set-up we changed the amplification of the amplifier. Secondly,
temperature, humidity can also influence the parameters of the upper part of the
set-up. Finally, during the redesigning of the set-up, we changed the lower part of
the set-up, hence, the inertia and the friction torque in the bearings at the lower disc
has also been changed. However, such difference has no qualitative influence to the
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Figure 4.28: Estimated friction torque at the lower disc for different contact materials.
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Figure 4.29: Simulated and experimental bifurcation diagrams for different contact
materials.

steady-state results presented here, since the torsional vibrations are due to a negative
damping in the friction characteristics.

A comparison of numerical and experimental bifurcation diagrams indicates the
predictive quality of the model (see figure 4.29(a)). For very low velocities, the set-up
resides in the sticking phase in steady-state (equilibrium branch e1). Then for higher
input voltages uc the system has one equilibrium point (equilibrium branch e2). When
uc increases further, torsional vibrations without stick-slip appear (periodic branch
p1) and finally for even higher uc torsional vibrations with stick-slip appear.

In order to model torsional vibrations with and without stick-slip a humped friction
model (see figure 3.10(b)), was used. Namely, in the estimated friction model a
positive damping is present for very small angular velocities and for higher angular
velocities negative damping occurs as shown in figure 4.28. Moreover, for even higher
angular velocities positive damping is expected to occur. However, due to the limited
input voltage to the DC motor, the maximal angular velocity, which can be achieved,
was limited. Therefore, this region was not observed in the friction.
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An explanation for the appearance of positive damping for very low angular veloci-
ties can be provided when we analyze the various friction regimes described in Section
3.2.2. Namely, for very low angular velocities hardly any lubricant is present in the
contact (boundary lubrication regime in figure 3.11). Then the friction is mainly due
to the shearing resistance of the asperity contact, i.e. it is mainly determined by the
contact between brake material (rubber) and lower disc (brass). Since brass is much
stiffer than the rubber, the small positive damping in the friction characteristics is
mainly caused by the damping characteristics of the rubber.

Finally, the estimated friction torque shown in figure 4.1 has a positive damping
at the lower velocities, but no torsional vibrations without stick-slip. According to
the results shown in figures 4.11(a) and 4.11(b) we see that such torsional vibrations
appear when the damping at the lower velocities is high enough with respect the
following negative damping. Consequently, the combination of a low negative damping
in the friction torque shown in figure 4.28 together with a high positive damping at
a very low velocities is responsible for the appearance of torsional vibrations without
stick-slip.

4.4 Summary

The aim of this chapter is to give an improved understanding for the causes of torsional
vibrations in rotor systems with flexibility. For that purpose, we have analyzed an
experimental drill-string set-up in which torsional vibrations occur. However, the
results obtained here can apply to many other engineering systems with friction and
flexibility. Namely, the set-up represents a configuration of two masses, coupled by a
flexibility, of which one is subject to friction and the other is driven by an actuator. In
this context, one can think of applications such as printers, pick and place machines,
industrial and domestic robots, braking mechanisms and many others. According to
the presented results the following can be concluded:

• Based on theoretical, numerical and experimental results torsional vibrations,
in the type of systems considered in this chapter, are mainly due to the fric-
tion present at the lower disc, i.e. the friction characteristic, modelled with a
negative damping in a friction-velocity curve, is responsible for those vibrations.
When the disc rotates with a (steady-state) velocity, at which negative damping
is present in the friction, instability is induced in the system. Consequently, the
lower disc cannot rotate with a constant velocity any more and torsional vibra-
tions occur. However, for even higher input voltages, corresponding to a region
where a positive damping is present in the friction, both a constant velocity
(stable equilibrium point) and torsional vibrations (limit cycles) coexist in the
system. The size of this region is determined by a level of negative damping
at low velocities in comparison to a level of viscous friction at higher velocities.
Moreover, the velocity at which the friction attains its minimum is also impor-
tant. Namely, if this velocity increases, the second fold bifurcation (point E in
figure 4.9(a)) and the second Hopf bifurcation point (point C in figure 4.9(a))
shifts to high input voltages.

The friction characteristics that induce torsional vibrations is not present when
only a normal force is applied to the brake at the lower disc and no lubrication
fluid is added. Namely, torsional vibrations are induced when a certain lubrica-
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tion is added between the brake disc and the brake material. When a lubrication
is present in the contact, the friction force is partly due to the contact of two
surfaces and partly due to the lubricant and its viscosity. As the sliding velocity
increases, the solid-to-solid contact decreases, reducing friction and increasing
the acceleration of the moving part. Consequently, negative damping occurs in
the friction-velocity curve, which is responsible for the occurrence of torsional
vibrations in the set-up.

• When torsional vibrations are present in the system, then vibrations with and/or
without stick-slip can appear. In this chapter we conclude that these types of
vibrations are determined by the level of positive damping in the friction at
very small velocities in relation to the level of negative damping appearing for
slightly higher velocities. Namely, if the positive damping at very low velocities
is small with respect to the negative damping level, then only torsional vibra-
tions with stick-slip can occur. However, if the positive damping level at very
low velocities is high enough with respect to the negative damping level, then
torsional vibrations with and without stick-slip can occur.

In the set-up, torsional vibrations with stick-slip are obtained as a result of a
contact between a bronze brake and a steel brake disc with ondina oil 68 as
a lubricant. Furthermore, torsional vibrations with and without stick-slip are
obtained when the friction torque is produced as a result of a contact between
a rubber brake and a brass disc, with a water as a lubricant. For very low
angular velocities, the friction is mainly due to the contact between the con-
tacting materials. Consequently, the friction is determined by characteristics of
the materials and the appearance of a positive damping for lower velocities in
the friction model is connected to the types of contact material which produce
friction; not so much to the type of lubricant.

• The results on theoretical, numerical and experimental level confirm that the
sticking phenomenon, which is modelled with a set-valued force law for the fric-
tion, plays a crucial role in describing the steady-state phenomena observed in
the set-up. With this friction model, the dynamics of the set-up is described by
differential equations with discontinuous right-hand side. Consequently these
equations successfully model equilibrium sets, equilibria and stick-slip limit cy-
cling; phenomena which are also observed in the set-up. Moreover, we observe
a discontinuous fold bifurcation both in simulations and experiments. The per-
formed analysis confirms that the discontinuous bifurcations play a crucial role
in the creation and destruction of the observed limit cycling (i.e. torsional vi-
brations).

• Finally, in this chapter we consider only an experimental set-up with a very
low stiffness which is not the case in many mechanical systems. According to
the presented stability analysis, it can be concluded that if the two inertias
(the lower disc and upper disc) are coupled by a higher stiffness and friction
force with negative damping is present, then the higher stiffness level does not
influence significantly the size of the instability region and, thus, the appearance
of torsional vibrations. However, a higher stiffness level is expected to influence
quantitatively torsional vibrations, e.g. the amplitude of the vibrations, the size
of the region in which constant velocity and torsional vibrations co-exist and
the type of torsional vibrations (with/without stick-slip).



Chapter 5

Interaction Between Torsional

and Lateral Vibrations in

Drill-String Systems

In order to obtain both torsional and lateral vibrations in the experimental set-up,
first, the x- and y-constraints shown in figures 3.6 and 3.7 are released, second, a
normal force of 20.5N is applied to the brake and, third, ondina oil 68 is added between
the brake disc and the contact material of the brake (as in Chapter 4). We have already
derived a model of the set-up and estimated and validated all parameters of the model
in Chapter 3. In Chapter 4, we also estimated and validated the parameters of the
friction torque at the lower part of the set-up (see (4.2)) when a 20.5N normal force
and ondina oil is applied.

Therefore, in Section 5.1, first we present the full model of the set-up and subse-
quently validate the obtained model using the signals shown in figure 3.13. In Section
5.2, we determine equilibrium points (sets) and periodic solutions of the estimated
model and asses the related stability properties. Moreover, we discuss how different
levels of mass-unbalance at the lower disc and several other parameters of the lower
part of the set-up influence the steady-state behaviour of the system. Then, in Section
5.3 a bifurcation diagram based on the estimated model is presented and compared to
experimentally obtained results. Furthermore, we discuss the experimental results ob-
tained for several mass-unbalance levels present at the lower disc. Finally, in Section
5.4 we give a brief summary of this chapter.

5.1 Model Validation

The model of the set-up, when both torsional and lateral vibrations are present, is
given by (3.17), (3.18), (3.26) and with Tcl(ωl) as in (4.1), i.e. it can be represented
by the following system of equations:
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Table 5.1: Estimated parameters of the set-up.

Parameter unit Estimated value

Ju [kgm2] 0.4765
km [Nm/V] 4.3228
Tsu [Nm] 0.37975
△Tsu [Nm] -0.00575
bu [kgm2/rad s] 2.4245
△bu [kgm2/rad s] -0.0084
kθ [Nm/rad] 0.0775
JC [kg m2] 0.0412
e [m] 0.00489
mr [kg] 9.9137
mt [kg] 3.3202
k [N/m] 2974.25
b [N s/m] 25
Tsl [Nm] 0.2781
Tcl [Nm] 0.0473
ωsl [rad/s] 1.4302
δsl [-] 2.0575
bl [kgm2/rad s] 0.0105

Juω̇u − kθα + Tfu(ωu) = kmu,

(mr + mt)ẍ − mre α̈ sin(α) − (mr + mt)ω̇uy − mre ω̇u sin(α) + b ẋ
−2(mr + mt)ωuẏ − 2mre ωu α̇ cos(α) − mre α̇2 cos(α) + k x
−(mr + mt)ω

2
ux − b ωuy − mre ω2

u cos(α) = 0,

(mr + mt)ÿ + mre α̈ cos(α) + (mr + mt)ω̇ux + mre ω̇u cos(α) + b ẏ
+2(mr + mt)ωuẋ − 2mre ωuα̇ sin(α) − mre α̇2 sin(α) + k y
−(mr + mt)ω

2
uy + b ωux − mre ω2

u sin(α) = 0,

−mrẍ e sin(α) + mrÿ e cos(α) + (mre
2 + JC)(α̈ + ω̇u)+

mrω̇ue(x cos(α) + y sin(α)) + 2mre ẋ ωu cos(α) + 2mre ẏ ωu sin(α)
+Tfl(ωu + α̇) + mrx eω2

u sin(α) − mry e ω2
u cos(α) + kθα = 0,

Tfu(ωu) ∈
{

Tcu(ωu)sgn(ωu) for ωu 6= 0,
[−Tsu + △Tsu, Tsu + △Tsu] for ωu = 0,

Tcu(ωu) = Tsu + △Tsusgn(ωu) + bu|ωu| + △buωu,

Tfl(ωl) ∈
{

Tcl(ωl)sgn(ωl) for ωl 6= 0,
[−Tsl, Tsl] for ωl = 0,

Tcl(ωl) = Tcl + (Tsl − Tcl)e
−|ωl/ωsl|

δsl + bl|ωl|,
ωl = ωu + α̇.

(5.1)

The parameters of the model are given in the table 5.1 and further in this thesis we
use these parameter values as reference values.

The model of the set-up is validated using the quasi-random and the validation
signal shown in figure 3.13. The measured and simulated angular position θl and
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Figure 5.1: Validation signals in terms of θl and r obtained for the quasi-random
input voltage shown in figure 3.13(a): R2

θl
= 0.9962, R2

r = 0.8859.

radial displacement r, when the quasi-random input signal is applied, are shown
in figure 5.1 and the related R2 performance criteria (3.22) are R2

θl
= 0.9962 and

R2
r = 0.8859. The model is also validated using the validation signal, as shown

in figure 3.13(b). The corresponding measured and simulated responses are shown
in figure 5.2 with R2

θl
= 0.9667 and R2

r = 0.6939. The comparison between the
responses of the experimental set-up and estimated model indicates a good quality of
the obtained parameter estimates. The reasons for the slightly weaker results for R2

r

are addressed in Section 5.3.1.
In the sequel, we analyze the steady-state behaviour of the set-up, when a constant

input voltage u = uc = const is applied, since such behaviour is of special interest.

5.2 Analysis of Nonlinear Dynamics Behaviour

When both the upper and lower disc rotate with constant velocity, a forward whirling
motion is performed by the lower disc (lateral vibrations), i.e. the center of the lower
disc moves in the same direction as the rotation of the disc, and this represents a
periodic solution in the fixed coordinate frame (with coordinates x0 and y0 in figure
3.20). The period time of such periodic solution corresponds to the angular velocity
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Figure 5.2: Validation signals in terms of θl and r obtained for the input voltage
shown in figure 3.13(b): R2

θl
= 0.9667, R2

r = 0.6939.

of the discs. Moreover, when torsional vibrations appear in the system, then the ra-
tio between period time of torsional vibrations and of whirling motion is, in general,
an irrational number. Therefore, such motion represents a quasi-periodic motion in
the fixed coordinate frame. However, in the co-rotating coordinate frame (with co-
ordinates x and y), in terms of which the model is formulated, the whirling motion
represents an equilibrium point. Moreover, in terms of the co-rotating coordinate
frame the quasi-periodic solution, in the case of fixed coordinates, appears as a pe-
riodic solution. Therefore, both the equilibrium points (sets) and the limit cycles of
the model (in the co-ordinates x and y) as well as the related stability properties are
analyzed.

5.2.1 Equilibria and Related Stability Analysis

Equilibrium Points and Equilibrium Sets

In the equilibria, the time derivatives of all variables in (5.1) are zero, i.e. ω̇u = α̈ =
α̇ = ẍ = ẋ = ÿ = ẏ = 0, for u = uc, with uc a constant. If we substitute this in (5.1),
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then equilibria defined by (ωu, α, x, y) = (ωeq, αeq, xeq, yeq), satisfy

−kθαeq + Tfu(ωeq) = kmuc,

k xeq − (mr + mt)ω
2
eqxeq − b ωeqyeq − mre ω2

eq cos(αeq) = 0,

k yeq − (mr + mt)ω
2
eqyeq + b ωeqxeq − mre ω2

eq sin(αeq) = 0,

Tfl(ωeq) + mre xeqω
2
eq sin(αeq) − mre yeq ω2

eq cos(αeq) + kθαeq = 0.

Furthermore, since ωl = ωu + α̇, then ωl = ωeq in equilibrium. This system of
equations is equivalent to the following system of equations:

kmuc − Tfu(ωeq) − Tfl(ωeq)

−
b e2m2

rω
5
eq

(mr + mt)2ω4
eq + b2ω2

eq − 2 k(mr + mt)ω2
eq + k2

= 0,

αeq = −Tfl(ωeq)

kθ
−

b e2m2
rω

5
eq

kθ((mr + mt)2ω4
eq + b2ω2

eq − 2 k(mr + mt)ω2
eq + k2)

,

xeq =
emrω

2
eq(k − (mr + mt)ω

2
eq) cos(αeq) + b emr ω3

eq sin(αeq)

(mr + mt)2ω4
eq + b2ω2

eq − 2 k(mr + mt)ω2
eq + k2

,

yeq =
emrω

2
eq(k − (mr + mt)ω

2
eq) sin(αeq) − b emrω

3
eq cos(αeq)

(mr + mt)2ω4
eq + b2ω2

eq − 2 k(mr + mt)ω2
eq + k2

.

(5.2)

Consequently, in order to find equilibria of the system, first ωeq should be computed
by solving the first nonlinear equation in (5.2), then αeq can be computed using
the second equation, and finally, xeq and yeq can be determined using the last two
equations of (5.2). Since friction torques Tfu(ωu) and Tfl(ωl) are modelled using
set-valued friction models, the following situations should be considered:

• equilibria for ωeq 6= 0, i.e. both the upper and the lower disc rotate with the
same constant angular velocity ωeq and

• equilibria for ωeq = 0, i.e. both the upper and the lower disc stand still.

For ωeq > 0, Tfu(ωeq) = Tcu(ωeq) and Tfl(ωeq) = Tcl(ωeq) (see expression (5.1)).
Consequently, such an equilibrium point satisfies the algebraic equations

kmuc − (Tsu + △Tsu) − (bu + △bu)ωeq − Tcl(ωeq)

−
b e2m2

rω
5
eq

(mr + mt)2ω4
eq + b2ω2

eq − 2 k(mr + mt)ω2
eq + k2

= 0,

αeq = −Tcl(ωeq)

kθ
−

b e2m2
rω

5
eq

kθ((mr + mt)2ω4
eq + b2ω2

eq − 2 k(mr + mt)ω2
eq + k2)

,

(5.3)

and the last two equations of (5.2). From (5.1), the first algebraic equation of (5.3) and
due to the fact that ωeq > 0, it can be concluded that system has such an equilibrium
point when uc > uEp where uEp is defined by (4.7). In general, the first equation in
(5.3) can have more than one solution, but if

−
b e2m2

rω
4
eq((mr + mt)

2ω4
eq + 3 b2ω2

eq − 6 k(mr + mt)ω
2
eq + 5 k2)

((mr + mt)2ω4
eq + b2ω2

eq − 2 k(mr + mt)ω2
eq + k2)2

−bu −△bu − dTcl

dωl

∣

∣

∣

ωl=ωeq

≤ 0, ∀ωeq > 0,

(5.4)
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then it has a unique solution. Since this is satisfied for the estimated model, the
system has only one equilibrium point for uc > uEp.

Similarly, for ωeq < 0, it follows that (5.2) has one equilibrium point, for the
estimated model, and it is a solution of

kmuc + (Tsu −△Tsu) − (bu −△bu)ωeq + Tcl(ωeq)

−
b e2m2

rω
5
eq

(mr + mt)2ω4
eq + b2ω2

eq − 2 k(mr + mt)ω2
eq + k2

= 0,

αeq =
Tcl(ωeq)

kθ
−

b e2m2
rω

5
eq

kθ((mr + mt)2ω4
eq + b2ω2

eq − 2 k(mr + mt)ω2
eq + k2)

,

and the last two equations of (5.2). Moreover, the system has such equilibrium points
for uc < uEn, where uEn is defined by (4.11).

For ωeq = 0, equilibrium points are such that (ωeq, αeq, xeq, yeq) ∈ Ei and they
exist when the input voltage is uEn ≤ uc ≤ uEp, where Ei represents the equilibrium
set defined by

Ei =
{

(ωeq, αeq, xeq, yeq) ∈ R
4 |ωeq = xeq = yeq = 0, αeq ∈ [αmin, αmax]

}

, (5.5)

where αmin and αmax are defined by (4.15).

Analysis of Local Stability Properties

In order to obtain local stability conditions for the equilibrium points (for ωeq 6= 0)
we can use Lyapunov’s indirect method which is given in Section 2.2.1 (Theorem 2.1).
The method can be only be applied when ωeq 6= 0 (i.e. condition (4.16) should be sat-
isfied). Therefore, the model of the system (5.1) is linearized around the equilibrium
point and the following linear model is obtained

˙̄x = Ax̄,

with

x̄ =
[

ωu − ωeq x − xeq y − yeq α − αeq ẋ ẏ α̇
]T

.

Matrix A is defined by

A =

[

O I′

−M̄−1K̄ −M̄−1C̄

]

(5.6)

with

O =





0 0 0
0 0 0
0 0 0



 , I′ =





0 1 0 0
0 0 1 0
0 0 0 1



 .
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The matrixes M̄, C̄ and K̄ are obtained from the linearization of the model (5.1) for
ωeq > 0:

M̄ =









Ju 0 0 0
m̄21 mr + mt 0 −mre sin(αeq)
m̄31 0 mr + mt mre cos(αeq)
m̄41 −mre sin(αeq) mre cos(αeq) JC + mre

2









,

m̄21 = −(mr + mt)yeq − mre sin(αeq),
m̄31 = (mr + mt)xeq + mre cos(αeq),
m̄41 = mre xeq cos(αeq) + mre yeq sin(αeq) + JC + mre

2

C̄ =









bu + △bu 0 0 0
c̄21 b −2(mr + mt)ωeq c̄24

c̄31 2(mr + mt)ωeq b c̄34

c̄41 −c̄24 −c̄34 dl









,

c̄21 = −2mre ωeq cos(αeq) − 2(mr + mt)xeqωeq − b yeq,
c̄24 = −2mre ωeq cos(αeq),
c̄31 = −2mre ωeq sin(αeq) − 2(mr + mt)yeqωeq + b xeq,
c̄34 = −2mre ωeq sin(αeq),

c̄41 =
2m2

re
2ω4

eqb

(mr + mt)2ω4
eq + b2ω2

eq − 2 k(mr + mt)ω2
eq + k2

+ dl,

K̄ =









0 0 −kθ

−(mr + mt)ω
2
eq + k −b ωeq mre ω2

eq sin(αeq)
b ωeq −(mr + mt)ω

2
eq + k −mre ω2

eq cos(αeq)
mre ω2

eq sin(αeq) −mre ω2
eq cos(αeq) k44









,

k44 = kθ +
m2

re
2ω4

eq(k − (mr + mt)ω2
eq)

(mr + mt)2ω4
eq + b2ω2

eq − 2 k(mr + mt)ω2
eq + k2

,

where dl represents the friction damping present at the lower disc when ωl = ωeq (see
expression (4.18)). Consequently, the nonlinear system (5.1) is asymptotically stable
if matrix A in (5.6) is Hurwitz.

In order to analyze the stability properties of the equilibrium set (5.5) we use
Lyapunov’s stability theorem (Theorem 2.2 in Section 2.2.1). Based on proposed the
kinetic and potential energy of the system defined in (3.13), the following candidate
Lyapunov function is considered:

Vi(xi1,xi2,xi1eq,xi2eq) = T (xi1,xi2 − xi2eq) + V(xi1 − xi1eq), (5.7)

where:
xi1 =

[

x y α
]T

,

xi2 =
[

ωu ẋ ẏ α̇
]T

.
(5.8)

From (3.13) we see that T (q, q̇) and V(q), where q represents generalized coordinates
defined by (3.12), are not dependent on θu. Consequently, they can be rewritten as
T (xi1,xi2) and V(xi1), where xi1 and xi2 are defined by (5.8). In Appendix C, we
derive that the time derivative of Vi obeys:

V̇i(xi1,xi2,xi1eq,xi2eq) = −(Tfu(ωu) − Tfu(0))ωu − (Tfl(ωl) − Tfl(0))ωl

−bx′T
i P (x, y)x′

i,
(5.9)
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with

x′
i =

[

ωu ẋ ẏ
]T

, P (x, y) =





x2 + y2 −y x
−y 1 0
x 0 1



 .

The friction torque Tfu(ωu) is a monotonically increasing function (see figure 3.14).
Then, since 0, 1 and x2 + y2 + 1 are the eigenvalues of matrix P (x, y), matrix P (x, y)
is positive semidefinite. Consequently, the following incremental sector condition is
satisfied

−(Tfu(ωu) − Tfu(0))ωu − bx′T
i P (x, y)x′

i ≤ 0, (5.10)

for every ωu, ẋ and ẏ. From (5.9), we see that the sign of V̇i(xi1,xi2,xi1eq,xi2eq),
thus the stability condition of the equilibrium set Ei, depends only on the sign of
−(Tfl(ωl) − Tfl(0))ωl. Therefore, the stability condition of the equilibrium set Ei

(5.5) can be discussed in a similar manner as discussed in Section 4.2.1 for the system
when only torsional vibrations can occur, despite the fact that the system considered
in this chapter is of a higher order. According to such discussion the following can be
concluded:

• If the friction torque Tfl(ωl) is as shown in figure 4.4(a) (a monotonically in-
creasing function), then the equilibrium set Ei is globally asymptotically stable.

• If the friction torque Tfl(ωl) is as shown in figures 4.5(a) and 4.5(c) (a humped
friction model), then the equilibrium set Ei is locally asymptotically stable.

• If the friction torque Tfl(ωl) is as shown in figure 4.6(a), then almost all equilib-
rium points from the equilibrium set Ei can be shown to be locally stable except
the boundary points of the set where αeq = −Tsl/kθ or αeq = Tsl/kθ. However,
we cannot show the stability property of the set as a whole. This degradation
of the (proven) stability properties is directly related to the fact that negative
damping occurs for infinitesimally small values of ωl in Tfl(ωl).

Equilibrium Branches

Since in the set-up both torsional and lateral vibrations appear, we are interested in
the angular velocity ωl and radial displacement r of the lower disc in steady-state for
different constant input voltages uc. As already discussed, when uc > uEp (ωeq > 0),
ωl in steady-state can be obtained by solving the first algebraic equation in (5.3). The
corresponding radial displacement of the center of the lower disc (in equilibrium) can
be derived from the third and fourth equation in (5.2) as:

req =
√

x2
eq + y2

eq =
mre ω2

eq
√

(mr + mt)2ω4
eq + b2ω2

eq − 2 k(mr + mt)ω2
eq + k2

, (5.11)

since (mr + mt)
2ω4

eq + b2ω2
eq − 2 k(mr + mt)ω

2
eq + k2 > 0 for every ωeq ∈ R for the

estimated parameters of the set-up. If we analyze expression (5.11) the following is
obtained:

req = 0, for ωeq = 0,

req → mre

mr + mt
, for ωeq → ∞.
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Moreover, the so-called critical speed ωc [Lee, 1993], i.e. the angular velocity at which
the amplitude of lateral vibrations due to an unbalance at the lower disc reaches a
local maximum, is given by:

ωc =

√

2 k2

2 k(mr + mt) − b2
. (5.12)

For that angular velocity, radial displacement of the lower disc in steady-state is

rc =
2 k mre

b
√

4 k(mr + mt) − b2
(5.13)

and the corresponding input voltage is

ucc =
(bu + △bu)ωc + Tsu + △Tsu + Tcl(ωc)

km

+
b e2m2

rω
5
c

km((mr + mt)2ω4
c + b2ω2

c − 2 k(mr + mt)ω2
c + k2)

.

(5.14)

The equilibrium branches, with respect to ωeq, can be constructed by solving the
first algebraic non-linear equation from (5.2), for various uc. In general, that equation
can only be solved numerically. Then based on the solution, we can construct the
equilibrium branch with respect to req.

In the sequel we consider the equilibrium branches of the estimated model. Based
on the performed stability analysis of the equilibrium points and sets, in figures 5.3
and 5.4 equilibrium branches for different constant input voltages uc > 0 are plotted.
Since we are interested in the behaviour of the velocity ωl and radial displacement
r of the lower disc for different constant input voltages, we constructed equilibrium
branches for both ωl (figure 5.3) and r (figure 5.4).

Given the fact that for very low input voltages the radial displacement of the
lower disc is very small (see figure 5.4(b)), it can be expected that the influence of
the dynamics in lateral direction to the dynamics in torsional direction, is very small.
Consequently, it is expected that the equilibrium branches for low input voltages are
almost identical to the equilibrium branches when only torsional vibrations appears
(i.e. when lower disc is fixed in lateral direction). This is indeed the case. Namely,
according to the results shown in figures 5.3 and 5.4 the following can be concluded:

• For uc ≤ uEp, with uEp given by (4.7) (point A in figures 5.3(b) and 5.4(b)), the
system is in stick phase in steady-state, i.e. the system has a locally asymptot-
ically stable equilibrium set described by (5.5) and (4.15) (equilibrium branch
e1 in figures 5.3(b) and 5.4(b)).

• For uc = uEp (point A in the bifurcation diagrams) the locally asymptotically
stable equilibrium set (5.5) condenses to a locally asymptotically stable isolated
equilibrium point and no change of stability properties occurs.

• The system has a unique equilibrium point for uc > uEp since condition (5.4)
is satisfied. Moreover, according to the stability analysis, a stable equilibrium
branch e2 appears (figures 5.3(b) and 5.4(b)), for which ωeq and req increase.
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Figure 5.3: Equilibrium branches of the set-up - angular velocity ωl.
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Figure 5.4: Equilibrium branches for low input voltages - radial displacement r.

• If uc increases from point B in figures 5.3(b) and 5.4(b), the system exhibits an
unstable equilibrium point (equilibrium branch e3) and the corresponding ωeq

and req increase again.

• At point C, the equilibrium point changes its stability and a stable equilibrium
branch e4 appears (figures 5.3(a) and 5.4(a)). For an equilibrium point at the
equilibrium branch e4, more specifically for uc = 3V, a trajectory of the center
of the lower disc in steady-state is shown in figures 5.5(a) (fixed coordinate
frame) and 5.5(b) (co-rotating coordinate frame). The time signals for ωl, r
and x0, y0 are shown in figures 5.5(c) and 5.5(d). From figure 5.5(d) it can be
noticed that lateral vibrations are present in the system in x0 and y0 direction
(fixed coordinate frame). Moreover, the period time of those vibrations is equal
to the period time of the rotation of both discs.

• In points B and C a change in stability properties occurs. Namely, a pair of com-
plex conjugate eigenvalues, related to the linearisation of the nonlinear dynamics
of (5.1) around the equilibrium point, cross the imaginary axis. Therefore, Hopf
bifurcations occur at these points.
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Figure 5.5: An equilibrium point on the equilibrium branch e4: uc = 3V.

• At point F , the equilibrium point looses stability and an unstable equilibrium
branch e5 occurs (figures 5.3(a) and 5.4(a)).

• If uc increases further, at point G a stable equilibrium branch e6 appears.

• In points F and G a change in stability properties occurs, i.e. a pair of complex
conjugate eigenvalues related to the linearisation of the nonlinear dynamics of
(5.1) around the equilibrium point, cross the imaginary axis. Therefore, Hopf
bifurcations occur at these points.

The analysis shows that the unstable equilibrium branch e3, in figure 5.3, is almost
identical to the equilibrium branch e3 which appears when only torsional and no lateral
vibrations are present in the set-up (see figure 4.9). Therefore, we can conclude that
such unstable branch occurs due to the negative damping in the friction torque. For
higher input voltages the velocity at the lower disc is such that viscous friction is
dominant in the friction characteristic. However, even for those input voltages an
unstable branch occurs (equilibrium branch e5). This represents an indication that
such instability is due to the interaction between torsional and lateral dynamics in
the system. In the sequel, we analyze the dynamics in that region in more details.
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5.2.2 Bifurcation Diagram of the System

According to the previous analysis, Hopf bifurcation points occur at points B, C, F
and G. Next, using a path following technique in combination with a shooting method
[Ascher et al., 1995; Parker and Chua, 1989], limit cycles are computed numerically
for the estimated model of the system. The results are shown in bifurcation diagrams
in figure 5.6. Moreover, since equilibrium branches and bifurcation points that occur
at low input voltages cannot be seen in figure 5.6, we present them in figure 5.7. In
those figures, the maximal and minimal values of ωl (figures 5.6(a) and 5.7(a)) and
r (figure 5.6(b) and 5.7(b)) are plotted when a limit cycle is found. The Floquet
multipliers, corresponding to these limit cycles, are numerically computed and are
used to determine the local stability properties of these limit cycles.

If we compare the obtained bifurcation diagram in figure 5.6(a), for uc ∈ [0V, 5V],
with the bifurcation diagram shown in figure 4.9(a) of the set-up when only torsional
and no lateral vibrations are present, we recognize the same type of periodic branches
and bifurcation points:

• From bifurcation point B an unstable equilibrium branch e3 and an unstable
periodic branch p1 arises (see figure 5.7). Point B represents a smooth subcrit-
ical Hopf bifurcation point [Khalil, 2000; Sastry, 1999; Strogatz, 2000] because
the unstable periodic branch p1 consists of limit cycles without stick-slip.

• The unstable periodic branch p1 is connected to a locally stable periodic branch
p2 at the point D, which represents a discontinuous fold bifurcation point, since
the periodic branch p2 consists of stable limit cycles which represent torsional
vibrations with stick-slip (see figure 5.7(a)). Moreover, a Floquet multiplier
crosses though the point +1 in the complex plane.

• The periodic branch p2 consists of locally stable limit-cycles with stick-slip due
to the non-smooth nonlinearities in the friction torque at the lower disc. A
trajectory of the center of the lower disc, when the system is on the periodic
branch p2 (uc = 3V), is shown in figures 5.8(a) in the fixed coordinate frame,
and 5.8(b) in the co-rotating coordinate frame. Time series of the angular
velocity ωl, lateral displacements r, x and y in the fixed coordinate frame are
shown in figures 5.8(c) and 5.8(d). For uc = 3V, the equilibrium point (the
branch e4 - see figure 5.5) and the periodic branch (the branch p2 - see figure
5.8) coexist. If we compare results shown in figures 5.5 and 5.8, we see that
torsional and lateral vibrations are significantly higher when the system is at
the periodic branch p2. Furthermore, since the ratio between period time of
torsional vibrations and the period time which corresponds to angular velocity
is an irrational number, a quasi-periodic solution occurs in the fixed coordinate
frame (see figure 5.8(a) and compare it with 5.5(a) where pure whirling occurs).
Moreover, while the lateral vibrations are periodic when the system is on the
branch e4 (see figure 5.5(d)), lateral vibrations on the periodic branch p2 are
quasi-periodic as shown in figures 5.8(a) and 5.8(d).

• For some higher constant input voltage uc (point E in figure 5.6) the locally sta-
ble periodic branch p2 looses stability and an unstable periodic branch appears
(periodic branch p3 in figure 5.6) through another discontinuous fold bifurcation
(point E in figure 5.6).
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Figure 5.6: Bifurcation diagram of the experimental set-up when both torsional and
lateral vibrations are present.
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Figure 5.8: A periodic solution on the periodic branch p2: uc = 3V.
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• The unstable periodic branch p3 is connected to the equilibrium branches e3

and e4 in the smooth subcritical Hopf bifurcation point C.

For even higher input voltages, the velocity at the lower disc ωl in steady-state
continues to increase. For such high angular velocities, viscous friction is dominant in
the friction at the lower disc (see the estimated friction torque Tfl(ωl) in figure 4.1).
However, according to the steady-state analysis the following periodic solutions are
observed in the bifurcation diagrams in figure 5.6:

• From bifurcation point F an unstable equilibrium branch e5 arises as well as a
stable periodic branch p4 (see figure 5.9(a)). Point F represents a supercritical
Hopf bifurcation point. A trajectory of the center of the lower disc in steady-
state, when the system is on the periodic branch p4, is shown in figures 5.10(a),
in the fixed coordinate frame, and 5.10(b), in the co-rotating coordinate frame.
Time series of the radial displacement r and angular velocity ωl in steady-state
are shown in figure 5.10(c).
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Figure 5.10: A periodic solution on the periodic branch p4: uc = 8.76V.
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Figure 5.11: A period-2 solution on the periodic branch p5: uc = 8.776V.
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Figure 5.12: A solution reached via period doubling cascade p4−p5−p6: uc = 8.82V.

• The stable periodic branch p4 is connected to an unstable periodic p′4 via a period
doubling bifurcation point [Khalil, 2000; Van Campen, 2000]. Consequently,
from that point, a stable period-doubled branch p5 arises, as shown in figure
5.9(a). A related trajectory with the time-domain signals of a periodic solution
from the branch p5 are shown in figure 5.11.

• The periodic branch p5 is connected to an unstable periodic branch p′5, via
another period doubling bifurcation point (figure 5.9(b)).

• Then, from that point, a stable period-doubled periodic branch p6 arises, which
is again connected to an unstable branch p′6 via another period doubling bifur-
cation point (figure 5.9(b)).

• The periodic branches p4 − p5 − p6 form a so-called periodic doubling cascade
which, according to Strogatz [2000], leads to a chaos. From that region, which
is reached via the period doubling cascade, we present a trajectory of the center
of the lower disc in steady-state in figures 5.12(a) (fixed coordinate frame) and
in 5.12(b) (co-rotating coordinate frame). The related time signals for r and ω
are shown in figure 5.12(c).

• If we increase uc even further, unstable periodic branches p′7 and p′8 appear. The
unstable branch p′7 is connected to a stable branch p7 via an period doubling
bifurcation point, as shown in figure 5.9(b).

• The unstable branch p′8 and the stable period-doubled branch p7 are connected
to a stable periodic branch p8, via another period doubling bifurcation (p8 and
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p′8 have the same period time in the bifurcation point). Consequently, p8 − p7

represents a period doubling cascade which leads to chaos, see [Strogatz, 2000].

• The stable branch p8 is connected to an unstable periodic branch p9 via a fold
bifurcation point, see figure 5.9(c).

• An unstable branch p10 is connected to a stable p11 branch, via a secondary
Hopf bifurcation (figure 5.9(c)). Branches p10 and p11 consists of limit cycles
which have the same period time in the bifurcation point.

• The stable branch p11 is connected to an unstable p12 branch, through a period
doubling bifurcation. Then, p12 is connected to a stable periodic branch p13,
via another period doubling bifurcation point. The branches p11 and p12 have
the same period time in the bifurcation point. The same holds for the branches
p12 and p13.

• At the point H the stable periodic branch p13 is connected to an unstable branch
p14 through a fold bifurcation point (figure 5.6).

• The unstable periodic branch p14 is connected to the equilibrium branches e5

and e6 in the subcritical Hopf bifurcation point G.

Finally, since all periodic branches from p4 to p14 consists of periodic solutions
which do not touch the line ωl = 0, all related bifurcation points in that region are
smooth bifurcations.

The bifurcation diagrams certainly do not show all periodic branches that exist.
For example, not all period-doubled branches are calculated and also other branches
may be missing in the bifurcation diagram. However, the presented bifurcation ana-
lysis shows that for input voltages uc > 5V, which is in fact outside the working
region of the experimental set-up, a rich variety of interesting qualitative changes in
the dynamic behaviour can appear when the input voltage is changed.

5.2.3 Friction-Induced Vibrations

We have already concluded that the vibrations, which are observed in the model for
uc ∈ [0V, 5V], are induced by friction. Such vibrations are analyzed in Chapter 4
when the lower disc is fixed in lateral direction. The main cause for lateral vibrations is
a mass-unbalance. Therefore, we analyze the influence of the level of mass-unbalance
to the steady-state behaviour of the system for uc ∈ [0V, 5V]. Moreover, we investi-
gate this type of parameter change since it will be shown that it affects significantly
the friction-induced limit-cycling.

Hereto, we add additional mass △m at a distance of d△ = 0.1m from the center
of the lower disc in the direction of the already existing unbalance. Consequently, the
parameters e, mr and JC of the estimated model (see table 5.1) are changed and the
new related parameters e△, mr△ and JC△ are:

e△ =
mre + d△△m

mr + △m
,

mr△ = mr + △m,
JC△ = JC + d2

△△m.

(5.15)
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Figure 5.13: Bifurcation diagrams for various levels of mass-unbalance - angular ve-
locity ωl: uc ∈ [0V, 5V].

In figure 5.13 and 5.14, bifurcation diagrams are shown for the estimated system
(light-grey line), for △m = 5 kg (dark-grey line), for △m = 50 kg (black line). Of
course, adding an additional mass △m = 50 kg to the lower disc, with the estimated
mass being mr = 9.9137 kg, is practically impossible. However, we analyze that case in
order to observe the effect of additional mass-unbalance to the steady-state behaviour
of the set-up. According to the obtained results the following can be concluded:

• Due to an additional mass-unbalance, the region (in terms of the input voltage)
where friction-induced torsional vibrations appear, decreases (see figure 5.13).
Namely, if mass-unbalance increases, the first fold and Hopf bifurcation points
occur at the higher input voltages (compare the fold bifurcations D′ and D′′

and the Hopf bifurcation points B′ and B′′ in figure 5.13(b)). Furthermore,
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Figure 5.15: The regions for which the equilibrium points of the system are locally
stable and unstable.

the second fold and Hopf bifurcation points occur at the lower input voltages
(compare the fold bifurcation points E′ and E′′, and the Hopf bifurcations
C ′ and C ′′ in figure 5.13(a)). Therefore, the region in which the torsional
vibrations can occur is smaller when the mass unbalance is increased. In figure
5.15 we presented the position of the first and the second Hopf bifurcations for
various levels of the added mass-unbalance, i.e. we show the region, in which
unstable equilibria occur for various △m and for uc ∈ [0V, 5V]. This figure
clearly display the influence of the level of mass unbalance on friction induced
instabilities in torsional direction.

• From figure 5.14 it can be concluded that when the mass-unbalance increases,



5.2 Analysis of Nonlinear Dynamics Behaviour 111

the amplitude of lateral vibrations increases both for the input voltages where
torsional vibrations occur (compare periodic branch p′2 with periodic branches
p′′2a, p′′2b, p′′2c and p′′2d in figure 5.14) and where no torsional vibrations appear
(compare equilibrium branches e′4 and e′′4 in the same figure).

• In figure 5.13, we see that the periodic branch p′2, for △m = 5 kg, splits to four
branches p′′2a, p′′2b, p′′2c and p′′2d, for △m = 50 kg. The periodic branches p′′2a

and p′′2c consists of torsional vibrations with stick-slip, the branch p′′2d represents
torsional vibrations without stick-slip. The branch p′′2b represents such torsional
vibrations where the lower disc starts to rotate in the opposite direction during
one period time (i.e. min(ωl) < 0 in a limit-cycle on p′′2b).

• In figure 5.13(a) we notice that for △m = 50 kg ∂ωl/∂uc decreases in steady-
state for increasing uc, see the equilibrium branch e′′4 . In the sequel we analyze
that phenomenon when addressing the vibrations which occur at higher input
voltages and are purely due to coupling between the torsional and lateral mode
in the system.

The effect of decreasing of friction-induced torsional vibrations when the mass-
unbalance is increased can be explained in the following way. When no mass-unbalance
is present at the lower disc, the range in which friction-induced torsional vibrations
can occur is determined by a subtle balance between negative damping at lower ve-
locities and viscous friction at higher velocities. Namely, the energy which is released
due to the negative damping in the friction characteristics at the lower disc is mainly
transformed to the kinetic energy at the lower disc (i.e. ωl) and to the potential
energy in the low-stiffness string (i.e. α) and torsional vibrations occur. When a
mass-unbalance is present at the lower disc, then the energy released due to the neg-
ative damping is also transformed to the potential energy stored in the leaf springs
and rods (i.e. r) and kinetic energy related to the translational motion of the lower
disc. Consequently, less energy is transformed to the kinetic energy of the lower disc
in torsional direction and torsional vibrations decrease. Moreover, when the level of
mass-unbalance is higher, then lateral vibrations increase for angular velocities which
are lower than the critical angular velocity and less energy can transformed to the
kinetic energy of the disc in torsional direction, hence, torsional vibrations decrease
further or they even disappear.

5.2.4 Vibrations due to Coupling Between Torsional and La-

teral Dynamics

For input voltages uc > 5V, we observe vibrations which are not friction-induced.
Namely, when we remove the negative damping in the friction Tfl(ωl) and assume
that only viscous friction is present at the lower disc, i.e. Tfl(ωl) = blωl, with bl as in
table 5.1, torsional friction-induced vibrations disappear for uc ∈ [0V, 5V]. However,
the vibrations for uc > 5V are practically unchanged. Therefore, in order to gain
a better understanding of such vibrations, we discuss the influence of the following
parameters to the steady-state behaviour of the system: an additional mass unbalance
△m, the damping coefficient in lateral direction b, the stiffness k in lateral direction
and the string stiffness kθ.

According to the steady-state analysis performed for the estimated system, we
observe a number of bifurcations of periodic solutions in that region, such as period
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doubling, fold and secondary Hopf bifurcations (see figure 5.9). Moreover, we observe
a period doubling cascade which, according to [Strogatz, 2000], can lead to a chaos
(see figure 5.12). The occurrence of a periodic solution means that torsional vibrations
appear in the system and that the whirling motion (lateral vibrations) is not periodic
in the fixed coordinate frame (see, for example, figure 5.8(d)).

However, here we are not interested in a detailed bifurcation analysis of the sys-
tem for various parameter changes, but in how various parameters influence the
(dis)appearance of vibrations which are due to coupling of torsional and lateral motion
in the system. Therefore, we only discuss the influence of the changes of various pa-
rameters to (the stability of) the equilibrium points of the system. For such purposes
we discuss the behaviour of ωeq, req and −αeq for various constant input voltages
uc. The reason for considering −αeq = θu − θl is similar to the reason mentioned in
Chapter 4 (see figure 4.7(a)). Namely, we concluded that a higher dissipative torque
at the lower disc (Tfl(ωl) in Chapter 4) causes an increase in −αeq, i.e. an increase
in the phase lag of the lower disc with respect to the upper disc in equilibrium.

Changes in Mass-Unbalance

In Section 5.2.3 we have already discussed how changes in mass-unbalance influence
the friction-induced torsional vibrations and concluded that due to a higher mass-
unbalance such torsional vibrations decrease and can even disappear. In figure 5.16,
we show the results of a stability analysis of the equilibrium points of the considered
system, with only viscous friction at the lower disc and an additional mass △m added
to the lower disc. In that figure, we show equilibrium branches for the nominal
system (light-grey line), for △m = 5 kg (dark-grey line) and for △m = 7 kg (black
line). According to the obtained results the following can be concluded:

• When the mass-unbalance is high enough, more than one equilibrium appears in
the system. Then, condition (5.4) is not satisfied anymore and the first equation
in (5.3) has more than one solution ωeq, for the given parameter set.

In order to understand the cause for the appearance of multiple equilibrium
points, we should consider the model of the system (5.1). Assume that we drive
the upper disc with a constant velocity ωu = Ω. Then, the dynamics of such
system can be described with the model (5.1) without the first equation, which
describes the dynamics of the upper part of the set-up, and with ωu = Ω =
const. According to (5.3), the system has a unique equilibrium point (x, y, α) =
(xeq, yeq, αeq) where αeq, xeq and yeq can be computed using the second, third
and fourth equation in (5.3), respectively, with ωeq = Ω. Consequently, the
degree of freedom which exists in the dynamics of the upper part of the set-up
is responsible for the appearance of multiple equilibrium points.

• For △m = 5 kg and △m = 7 kg we observe a change in stability properties at
points A′, B′ and A′′, B′′, respectively; Hopf bifurcations occur at these points
inducing limit cycling.

• For △m = 5 kg, bifurcation point A′ occurs at a lower input voltage (uc =
13.1865V) than bifurcation point B′ (uc = 14.741V, see figure 5.16). Conse-
quently, there exists a region with only unstable equilibrium points. Moreover,
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Figure 5.16: Equilibrium branches for various levels of the mass-unbalance △m.

according to a numerical analysis, it is observed that point A′ represents a su-
percritical Hopf bifurcation and point B′ a subcritical Hopf bifurcation, which
induce periodic solutions (torsional vibrations) in the system.

• For △m = 7 kg, bifurcation point A′′ occurs at a higher input voltage (uc =
16.2907V) than bifurcation point B′′ (uc = 14.5113V, see figure 5.16). There-
fore, there no region exists where only unstable equilibria occur. Furthermore,
based on a numerical analysis, we can conclude that both points represent sub-
critical Hopf bifurcations and no stable periodic solutions are observed in the
system.

• Assume that we apply a constant input voltage uc to the system, which is lower
than the critical input voltage ucc related to the critical angular velocity inducing
a resonance in lateral direction, see equation (5.14). For low input voltages, the
radial displacement of the lower disc is very small and the energy which is
added to the system (via uc) is mainly transformed to rotational kinetic energy
of the lower disc, i.e. ωl increases. If we increase uc, then radial displacement
r starts to increase as uc approaches the critical voltage ucc. Moreover, if the
mass-unbalance increases, then the level of lateral vibrations in the system also
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increases and the energy which is added to the system mainly transforms to the
potential energy stored in the leaf springs and rods, see figure 5.16(b), and to the
potential energy stored in the low-stiffness spring (i.e. −α), see figure 5.16(c).
Consequently, less energy can be transformed to kinetic energy of the lower disc
in torsional direction and angular velocity ωl starts to increase much slower than
it increases for lower input voltages (see equilibrium branches e′1 and e′′1 in figure
5.16(a)). If uc reaches ucc (ucc = 13.1712V for △m = 5 kg and ucc = 16.2750V
for △m = 7 kg) and continues to increase further, the lateral vibrations reach
their (local) maximum level, and the amplitude of these lateral vibrations and
the potential energy stored in lateral direction decreases, despite the fact that
more energy is added to the system. Consequently, significantly more energy
can be transformed to the kinetic energy of the lower disc in torsional direction.
According to figure 5.16, for △m = 5 kg torsional vibrations occur and for
△m = 7 kg the system jumps suddenly from the locally stable equilibrium
branch e′′1 to the locally stable branch e′′3 . Furthermore, for △m = 7 kg the
velocity at the lower disc suddenly increases, the amplitude of lateral vibrations
(i.e. r) and the phase lag between lower and upper disc (i.e. −αeq) suddenly
decreases, in steady-state, and no torsional vibrations occurs at the lower disc.

According to these observations it can be concluded that due to the mass-unbalance
the vibrations due to coupling between the torsional and lateral mode can disappear,
which is also concluded for the friction-induced vibrations. However, due to the
degree of freedom at the upper part of the set-up multiple equilibria occur. Further-
more, for the input voltages which are slightly higher than ucc, defined by (5.12) and
(5.14), either torsional vibrations appear for low mass-unbalance or for higher levels of
mass-unbalance no torsional vibrations occur, but the angular velocity in steady-state
suddenly increases, while the amplitude of lateral vibrations suddenly decreases.

Changes in Damping in Lateral Direction

To analyze the influence of various damping levels in lateral direction on the steady-
state behaviour of the system, we vary the parameter b. Only a minor influence of b
to ωeq is noticed, i.e. ωeq is almost the same as shown with light-gray line in figure
5.16(a) for the considered levels of the damping. Therefore, in figure 5.17 we only
show req and −αeq as a result of an equilibrium analysis. According to that analysis
the following can be concluded:

• When the damping in lateral direction b increases, the region in which insta-
bilities occur, decreases. Furthermore, if the damping is high enough, torsional
vibrations can disappear as it is the case when the damping is 3 times higher
(black line in figure 5.17) than the estimated b.

• Similarly as we have already noticed before, an instability region can occur for
input voltages which are slightly higher than the critical voltage ucc. Namely,
for low input voltages, the radial displacement of the lower disc is very small
and the energy which is added to the system (via uc) is mainly transformed
to the kinetic energy of the lower disc, i.e. ωl increases. If we increase uc, the
radial displacement r starts to increase as uc approaches ucc. Then the lateral
vibrations in the system also increase and the energy which is added to the
system transforms to the potential energy stored in the leaf springs and rods
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Figure 5.17: Equilibrium branches for various levels of damping b in lateral direction.

(r), to the kinetic energy of the lower disc in torsional direction (ωl) and to
the potential energy stored in the low-stiffness spring (α), see figure 5.17. If uc

reaches ucc and continues to increase further, the lateral vibrations reach their
local maximum and the amplitude of lateral vibrations, i.e. the potential energy
stored in lateral direction decreases, despite the fact that more energy is added
to the system. Moreover, instabilities (thus, torsional vibrations) appear at the
input voltages which are higher than ucc. Namely, at those input voltages, the
energy which is supplied to the system (through uc) causes a significant decrease
in the potential energy stored in the leaf sprigs and rods (i.e. r) and the potential
energy in the low-stiffness spring (i.e. −α). According to our observations,
that energy is transformed to torsional vibrations (since such vibrations start
occurring) and to lateral vibrations. However, for higher levels of damping in
lateral direction, the potential energies does not decrease that much, and less
energy is transformed to the vibrations, i.e. for a certain level of b torsional
vibrations even disappear (no unstable equilibrium branch occurs) and lateral
vibrations decrease (req decreases).

Changes in Stiffness in Lateral Direction

When discussing the influence of various stiffness levels in lateral direction we assumed
that a non-dimensionless (material) damping of the construction, which is responsible
for the stiffness in lateral direction, is constant. Since non-dimensionless damping is
defined by

ζ =
b

2
√

k m
,

we assumed that the mass m of the construction and b/
√

k are constant, when chang-
ing the stiffness k in lateral direction. Under those assumptions we analyze the sta-
bility of equilibria of the system when the stiffness is 9 times higher (damping b is
3 times higher) and 9 times lower (b is 3 times lower) than the nominal (estimated)
value. Since we noticed only a minor influence of such changes to ωeq, in figure 5.18
we only show req and −αeq. According to this analysis the following conclusions can
be drawn:
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Figure 5.18: Equilibrium branches for various levels of stiffness in lateral direction
with b/

√
k = const.

• Torsional vibrations can disappear if the stiffness of the construction in lateral
direction is lower, i.e. the region in which torsional vibrations appear, becomes
larger if the construction is stiffer in lateral direction.

• An instability region occurs for uc > ucc, where ucc is the input voltage which
corresponds to the critical velocity ωc. When the construction in lateral direc-
tion is stiffer, then ucc is higher. Consequently, the instability region appears
for higher input voltages. On the other hand, for a lower stiffness, critical speed
occurs at a lower input voltage ucc as shown in figure 5.18. Since the instability
region decreases for a lower stiffness in lateral direction, then lower k may seem
favorable to have in the considered system. However, since for lower k insta-
bilities and ucc (related to the critical angular velocity inducing a resonance in
lateral direction) occur at lower input voltages, it may be undesirable.

• From figure 5.18(a) and from expression (5.13) it can be seen that the local
maximum rc in radial displacement does not change when the stiffness in lateral
direction changes (given the fact that the dimensionless damping level stays the
same).

• When analyzing −αeq, similar conclusions can be derived as derived when an-
alyzing −αeq for various changes in b. Namely, instabilities appear almost im-
mediately when the input voltage becomes higher than ucc. At those input
voltages, despite the fact that extra energy is supplied to the system (due to an
increase of uc), the potential energy stored in the leaf springs and rods (i.e. r
decreases) and in the potential energy stored in the low-stiffness spring (i.e. −α)
both significantly decrease. The extra supplied energy is stored in torsional and
lateral vibrations. For lower k, the potential energy in lateral direction decreases
even more significantly, but almost no decrease occurs in the potential energy
of the low-stiffness spring (i.e. −αeq slightly decreases for voltages uc which are
slightly higher than ucc). Consequently, the extra energy supplied to the system
transforms mainly to the kinetic energy of the lower disc, since ωeq increases.
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Changes in String Stiffness

A low torsional stiffness is not always present in rotor systems. Therefore, we analyze
the influence of a higher string stiffness to the stability properties of the system.
According to (5.2), the string stiffness kθ influences elastic deformation of the string
in steady-state (αeq) and has no influence on ωeq and req. Namely, ωeq is the same
as shown with light-gray line in figure 5.16(a), req is the same as shown with the
light-gray line in figures 5.16(b), 5.17(a) and 5.18(a) and only the position of the fold
bifurcation points (A and B) change for various levels of kθ. Consequently, in figure
5.19 we only shown −αeq as a result of an analysis of the equilibria of the system.
According to that analysis the following remarks can be made:

• When the string stiffness increases, the elastic deformation of the string −αeq

decreases (compare −αeq for various levels of kθ in figure 5.19). Furthermore,
the instability region which occurs for the input voltages higher than ucc also
decreases. What is more, if the string is stiff enough, the vibrations can disap-
pear as is the case when the stiffness is 25 times higher than the estimated kθ

(black line in figure 5.19).

• Similarly as we concluded in the previous situations, the instability region dis-
appears when the decrease in −αeq is small enough for input voltages which are
slightly higher than ucc. Namely, for low input voltages, the radial displace-
ment of the lower disc is very small and the extra energy which is supplied to
the system (via uc) is mainly transformed to the kinetic energy of the lower
disc, i.e. ωl increases. Next, for higher uc, the radial displacement r starts to
increase as uc approaches ucc, hence the extra energy supplied to the system
mainly transforms to potential energy stored in the leaf springs and rods (i.e. r),
to kinetic energy of the lower disc in torsional direction (i.e. ωl) and to poten-
tial energy stored in the low-stiffness spring (i.e. −α), see figure 5.19. Then, if
uc reaches ucc and continues to increase further, lateral vibrations reach their
(local) maximum and the amplitude of the lateral vibrations and the potential
energy stored in lateral direction decreases, despite the fact that more energy
is supplied to the system. Moreover, according to figure 5.19 potential energy
which is stored in the low-stiffness string also decreases. Consequently, more en-
ergy is transformed to the kinetic energy of the lower disc in torsional direction.
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However, if the decrease in the potential energy in torsional direction is high, in-
stabilities occur in the system, and the released potential energy is transformed
to energy sustaining torsional and lateral vibrations. On the other hand, when
the string stiffness is high enough, the potential energy (in torsional direction)
does not decrease that much and, consequently, no energy can be transformed
to torsional vibrations and no torsional vibrations occur.

5.3 Experimental Results

5.3.1 Validation of Steady-State Behaviour of the Set-Up

The model of the drill-string set-up when ondina oil 68 is used as a lubrication fluid,
20.5N normal force is applied at the brake and the x- and y-constraints are released
is given by (5.1) and the parameter estimates are given in table 5.1. That set-up
undergoes both torsional and lateral vibrations. As mentioned earlier, the predic-
tive quality of the estimated model in steady-state is of great interest. Therefore, a
constant voltage is applied at the input of the DC motor of the set-up and each ex-
periment lasted long enough to guarantee that all transient effects have disappeared;
the last 50 seconds of the angular velocity ωl and radial displacement signal r are
recorded. However, due to the limited voltage range (u ∈ [−5V, 5V]) we can only
observe the friction-induced vibrations in the set-up. Some of the obtained results are
shown in figure 5.20. In that figure, the experimental signals (solid black line) and
the signals obtained using the estimated model (dashed grey line) in steady-state are
shown for different constant input voltages. The time-series shown in figures 5.20(a),
5.20(b) and 5.20(c) represent stick-slip limit-cycling (torsional and lateral vibrations)
and figure 5.20(d) represents an equilibrium point (constant velocity at the lower
disc and whirling motion of the disc - r is constant). From the comparison between
the numerical and experimental results, it can be concluded that with the suggested
model the steady-state behaviour of the set-up is modelled accurately.

The same type of bifurcation diagrams, as shown in figure 5.6, are constructed
experimentally. However, due to limitations in the DC motor, the experimental bi-
furcation diagram is constructed by applying different constant input voltages in the
limited voltage range uc ∈ [0V, 5V]. When no torsional vibrations are observed
(as in figure 5.20(d)), the mean value of the recorded angular velocity and radial
displacement are computed and the obtained data are plotted using the symbol ”x”.
Next, when torsional vibrations are observed at the lower disc (as in figures 5.20(a),
5.20(b) and 5.20(c)), the mean values of local maxima and minima of the vibrations
are computed. Then, these experimentally obtained data are plotted using the sym-
bol ”o”. Experimental results, together with the bifurcation diagram obtained by
numerical analysis of the estimated model, are shown in figures 5.21(a) and 5.21(b).
Furthermore, when torsional vibrations are observed in the set-up, the period time
T of the vibrations is determined as well. The experimental results are compared to
the period time of the numerically obtained limit cycles in figure 5.21(c). The results,
shown in figure 5.21, illustrate the predictive quality of the obtained model.

Both in the numerical and the experimental bifurcation diagram we recognize
the regions which are also present when only torsional vibrations are possible in the
set-up:

• a sticking region, for very low input voltages,
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(b) uc = 2.0 V.
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(c) uc = 3.5 V.
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(d) uc = 3.5 V.

Figure 5.20: Experimental and simulated angular velocity ωl and radial displacement
r for various constant input voltages and various initial conditions.

• a region in which only torsional vibrations (i.e. stable limit cycles) appear,

• a region in which torsional vibrations (stable limit cycles) and a constant angular
velocity at the lower disc (stable equilibrium points) coexist, and

• a region in which no torsional vibrations can appear in the system in steady-
state.

For the input voltages uc ∈ [3V, 3.5V] we notice somewhat less quality of the es-
timated model (see specifically figure 5.21(b)). The reasons for this fact are discussed
in the part of this section where we discuss the observed unmodelled dynamics in the
set-up.

Disappearance of Torsional Vibrations

In figure 5.21 with a light-grey line we show the bifurcation diagram of the set-up when
only torsional and no lateral vibrations are possible, i.e. when x- and y-constraints are
fixed. If we compare that bifurcation diagram with the bifurcation diagram obtained
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Figure 5.21: Comparison of the numerical and experimental bifurcation diagram.
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Figure 5.22: Indication of disappearance of torsional vibrations when the lower disc
moves in lateral direction: uc = 3.7V.

when lateral vibrations are present in the set-up (dark-grey line), we see that the
second fold bifurcation point moves towards lower velocities when mass-unbalance and
lateral vibrations are present in the system (as predicted in Section 5.2.3). Namely,
when the constraints are fixed then the second fold bifurcation point is observed for
uc ∈ (3.9V, 4.0V) and when the constraints are released the second fold bifurcation
point is observed for uc ∈ (3.5V, 3.6V).

In order to show that torsional vibrations can really disappear, for some voltages,
due to the existence of lateral vibrations, the following experiment is performed. We
fix the constraints, apply a constant input voltage uc = 3.7V and wait long enough
to obtain torsional vibrations (see figure 5.22). Then, at time instant t1 we release
the constraints and the lower disc starts to vibrate in lateral direction. After a while,
the torsional vibrations disappear even though at time instant t2 we tried to induce
those vibrations manually, by holding up the lower disc for a very short time. Finally,
when we fix again the constraints and stop the lower disc manually (time instant t3 in
figure 5.22), the system continues with stick-slip vibrations. This experiment provides
additional evidence for the fact that torsional vibrations can indeed disappear due to
the presence of lateral vibrations.

Unmodelled Dynamics

Various validation procedures show that the model given by (5.1), with parameter es-
timates given in table 5.1, represents a high quality model of the set-up. Nevertheless,
some unmodelled dynamics is present in the set-up:

• In the previous chapter we observe that position dependant friction and some
other friction effects are is present at the lower disc, which are not captured
with the static friction model Tfl(ωl) in (5.1).

• From figures 5.2(c), 5.2(d), 5.20(c) and 5.21(b) we see that the quality of the
estimated model is somewhat less, as far as the lateral dynamics is concerned,
when large lateral displacements occur at the lower disc. Moreover, in figures
5.2(c), 5.2(d), 5.20(c) we see that in such case (unmodelled) high-frequency
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Figure 5.23: Experimental and simulated displacement of the lower disc in steady-
state when the lower disc rotates with constant velocity (equilibrium point).

vibrations are induced. These high-frequency vibrations are due to the mech-
anisms for fixing the lower disc in x- and y-direction (see figures 3.6 and 3.7),
which are appeared to be not stiff enough.

• If we apply an input voltage of uc = 3.0V, perturb the system such that the
lower disc, after a while, starts to rotate with a constant angular velocity and
then observe the trajectory of the center of the lower disc, we do not see a
circular trajectory, as expected from the model, but a rectangular one (see
figure 5.23(a)). This is due to the sticking behaviour present in lateral direction
due to LVDT displacement sensors 500 HR-DC [Schaevitz, 2004] (see figures
3.6 and 3.7); friction between the core and the housing of the LVDT causes
this sticking. If we perform the same experiment for uc = 5.0V and compare
the obtained result (figure 5.23(b)) with the result obtained for uc = 3.0V we
conclude that the sticking behaviour only occurs at low input voltages.

• From figure 5.23(b) we also see that the characteristics of the set-up in lateral
direction is not entirely isotropic, since the trajectory in figure 5.23(b) is not a
circle but an irregular ellipsoid.

However, despite all observed unmodelled effects, we obtain a vary good match
between the estimated model and the experiments.

5.3.2 Various Levels of Mass-Unbalance

Since the input voltage which can be applied to the DC motor is limited (u ∈
[−5,V, 5,V]), we can only observe the influence of various mass-unbalance to the
friction-induced torsional vibrations.

In order to do so, additional masses △m = 0.6032 kg or △m = 1.2152 kg are
added to the existing mass-unbalance (see figure 3.4) at a distance of approximately
d△ = 10 cm. Next, for each added mass, no normal force is applied at the brake, the
lower disc is fixed using the x- and y-constraints (shown in figures 3.6 and 3.7), the
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Figure 5.24: Simulated and experimental bifurcation diagrams for various mass-
unbalance applied at the lower disc.
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quasi-random signal (shown in figure 3.13(a)) is applied and we estimate the distance
d△ in (5.15), assuming that all other parameters of the set-up are known. In such a
way we obtain that

d△ = 10.85 cm for △m = 0.6032 kg, and
d△ = 8.98 cm for △m = 1.2152 kg.

(5.16)

Then, for both mass-unbalances ondina oil 68 is used, 20.5N normal force is applied
and the model (5.1) and (5.15) with parameter estimates shown in table 5.1 and in
(5.16) is validated using signals shown in figure 3.13. For those signals, the comparison
between the responses of the experimental set-up and estimated model indicates the
good quality of the obtained parameters for both mass-unbalances.

Since the predictive quality of the estimated model in steady-state is of great
interest, for each added mass-unbalance, we construct numerical and experimental
bifurcation diagrams in the same way as it is done in Section 5.3.1 (i.e. when various
constant voltages are applied at the input of the DC motor). The obtained diagrams
are shown in figure 5.24.

From those bifurcation diagrams, one can conclude that due to an additional
mass-unbalance the region, in which friction-induced torsional vibrations occur (see
figure 5.24(a)), reduces. Namely, for △m = 0.6032 kg the second fold bifurcation
point occurs between uc = 3.2V and uc = 3.3V, and for △m = 1.2152 kg the fold
bifurcation occurs between uc = 3.1V and uc = 3.2V. The same conclusion is derived
in Section 5.2.3, where we discussed the influence of various levels of mass-unbalance
to the friction-induced torsional vibrations.

5.4 Summary

The aim of this chapter is to provide improved understanding on the interaction
between torsional and lateral vibrations in rotor systems with flexibility. For that
purpose, we have analyzed an experimental drill-string set-up in which torsional vi-
brations are induced due to friction at the lower disc and lateral vibrations are induced
by the presence of a mass-unbalance at the lower disc. However, the results obtained
here are relevant for many other engineering systems with friction, unbalance and
flexibility. In this context, one can think of drilling systems which are used for ex-
ploration of oil and gas, electrical shavers, various turbines, pumps, fans and many
more. According to the presented results the following conclusions can be drawn:

• In this class of systems, two types of torsional vibrations can appear:

- friction-induced torsional vibrations, and

- torsional vibrations due to a coupling between torsional and lateral dy-
namics in the system.

Friction-induced vibrations are induced due to a subtle balance between negative
damping at low velocities and viscous friction at higher velocities. When the
disc rotates with an angular velocity where negative damping is present in the
friction, an instability occurs in the system. Consequently, the lower disc cannot
rotate with a constant angular velocity, torsional vibrations occur. Moreover,
the amplitude of lateral vibrations increases with respect to the amplitude of
the lateral vibrations when no torsional vibrations are present in the system.
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Torsional vibrations due to a coupling between torsional and lateral motions
occur for input voltages which are higher then a critical voltage related to the
critical angular velocity inducing a resonance in lateral direction. In that work-
ing region, torsional vibrations can occur even if no negative damping is present
in the friction at the lower disc.

• When no torsional vibrations are present in the system, both the upper and
lower disc rotate with a constant velocity in steady-state, for a given constant
input voltage. Then, due to a mass-unbalance, lateral vibrations are present
at the lower disc, i.e. a forward whirling motion occurs at the disc (lateral
vibrations). The period time of such motion in the fixed coordinate frame,
corresponds to the angular velocity of the disc. Moreover, when the lower disc
rotates with the critical angular velocity the amplitude of lateral vibrations
reaches its local maximum.

Assume that for a certain input voltage torsional vibrations occur in the system,
either due to negative damping in the friction torque at the lower disc or due
to a coupling between torsional and lateral dynamics. Then the amplitude
of the lateral vibrations increases with respect to the amplitude of the same
vibrations which occur when no torsional vibrations are present. Furthermore,
the obtained lateral vibrations are not periodic any more in the fixed coordinate
frame, since the ratio between period time of torsional vibrations and the period
time which corresponds to angular velocity is, in general, an irrational number.

• The influence of various levels of mass-unbalance to the steady-state behaviour
of the system is studied on a theoretical, numerical and experimental level.
Results on all levels confirm that if the level of mass-unbalance increases, the
region, in which friction-induced torsional vibrations occur, decreases. More-
over, numerical results show that if the mass-unbalance is high enough, the
torsional vibrations can disappear entirely.

• We cannot study torsional vibrations due to the coupling of torsional and lateral
motion, using the experimental drill-string set-up, due to limitations in the
DC motor. However, we have analyzed numerically the influence of various
levels of mass-unbalance, the stiffness of the low-stiffness string and the damping
and stiffness of the construction in lateral direction to the torsional and lateral
vibrations which occur due to the coupling between torsional and lateral modes.
As a result of this analysis, we conclude that those torsional vibrations appear
almost immediately when the input voltage becomes higher than a so-called
critical voltage related to a critical angular velocity inducing a resonance in
lateral direction. At those input voltages, despite the fact that extra energy is
supplied to the system (due to an increase of uc), the potential energy stored
in the leaf springs and rods (i.e. r) and in the potential energy stored in the
low-stiffness spring (i.e. −α) both significantly decrease. The extra supplied
energy is stored in torsional and lateral vibrations. Moreover, when almost no
decrease occurs in the potential energy of the low-stiffness spring (i.e. −αeq

slightly decreases for voltages uc which are slightly higher than ucc) torsional
vibrations disappear and the extra energy supplied to the system transforms
mainly to the kinetic energy of the lower disc, since ωeq increases.

Finally, we conclude that if the level of mass-unbalance, stiffness of the string
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or damping in lateral direction is higher, or if the level of stiffness of the con-
struction in lateral direction is lower, the instability region decreases and con-
sequently the region in which torsional vibrations occur, decreases. However,
even if the levels of all those parameters are such that no torsional vibrations
are present in the system, the parameters influence the steady-state behaviour
of the system in several ways:

- For high levels of mass-unbalance, multiple equilibria occur due to the
degree of freedom at the upper part of the set-up (the DC motor, the
friction torque and the upper disc). Consequently, for input voltages which
are slightly higher than the critical voltage corresponding to the critical
angular velocity, the angular velocity at the lower disc suddenly increases in
steady-state, while the amplitude of lateral vibrations suddenly decreases.

- If the values of damping in lateral direction are high enough, torsional
vibrations disappear and amplitude of lateral vibrations decrease.

- For lower stiffness of the construction in lateral direction, the critical angu-
lar velocity occurs for lower input voltages and, even though no torsional
vibrations appear, lateral vibrations with high amplitude are present at
lower input voltages. On the other hand, if we increase the stiffness, we
increase the region where instabilities are present in the system. Never-
theless, such instabilities occur for higher input voltages. Since, in real
engineering systems only a limited input voltage can be applied, those
instabilities may occur at the input voltages which can never be reached.

- Various levels of string stiffness does not influence the angular velocity
and the radial displacement in equilibrium, but only influences the phase
lag between the lower and the upper disc. Therefore for high levels of
the string stiffness (for which no torsional vibrations occur), only periodic
lateral vibrations occur in the system.



Chapter 6

Conclusions and

Recommendations

Various types of vibrations which appear in a mechanical system often limit the
performance and can even endanger the safety of operation of that system. Moreover,
more than one type of vibration can appear. In this thesis, we address friction-induced
torsional vibrations in flexible mechanical systems, lateral vibrations in rotor systems
caused by mass-unbalance and the interaction between those two types of vibrations.

For this purpose, we have designed an experimental drill-string set-up which ex-
hibits both types of vibrations. The set-up consists of a DC-motor, two rotational
(upper and lower) discs, a low-stiffness string and an additional brake at the lower
disc. The lower disc can rotate around its geometric center and is also free to move in
lateral direction. It should be noted that the configuration of the experimental set-up
can be recognized in many other mechanical systems, in which friction or unbalance
can deteriorate the system performance by induction of vibrations. For example,
when the lower disc is fixed in lateral direction, the system represents the configura-
tion of two masses, coupled by a flexibility, of which one is subject to friction and the
other is driven by an actuator. In this context, one can think of applications such
as printers, pick and place machines, industrial and domestic robots, braking mech-
anisms and many others. Moreover, when a mass-unbalance is present at the lower
disc and the disc can move in lateral direction, this configuration can be recognized
in drilling systems which are used for exploration of oil and gas, in electrical shavers,
in various turbines, pumps, fans and in many more.

In this chapter we present general conclusions of this thesis and recommendations
for further extensions and further research.

6.1 Concluding Remarks

The designed set-up is modelled and the parameters of the model are estimated.
The comparison between responses of the experimental set-up and estimated model
indicates a high quality of the obtained parameter estimates. The steady-state be-
haviour of the system has been analyzed; first, when only torsional and no lateral
vibrations occur and, second, when both torsional and lateral vibrations appear in
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the system. As a result of the analysis on a theoretical, numerical and experimental
level conclusions, as summarized in the next section, can be drawn.

6.1.1 Friction-Induced Torsional Vibrations in Flexible Rotor

Systems

• The main cause for friction-induced torsional vibrations is the negative damp-
ing in the friction-velocity curve for the friction present at the lower disc. The
range in which such vibrations can occur is determined by a subtle balance
between negative damping at lower velocities and viscous friction at higher ve-
locities. Moreover, the velocity at which the friction attains its minimum is
also important. Namely, when the disc rotates with a (steady-state) velocity
at which negative damping is present in the friction, instability is induced in
the system. Consequently, the lower disc cannot rotate with a constant veloc-
ity any more and torsional vibrations occur (i.e. the constant velocity state is
undesirable). However, for higher input voltages, which corresponds to the re-
gion where positive damping is present in the friction, both a constant velocity
(stable equilibrium point) and torsional vibrations (stable limit cycles) coexist
in the system. The size of this region is determined by the negative damping at
low velocities in comparison to the level of viscous friction at higher velocities.

The friction characteristics which can induce torsional vibrations cannot be ob-
tained when only a normal force is applied to the brake at the lower disc. How-
ever, when a certain lubrication is added between the brake disc and the contact
material of the brake, torsional steady-state vibrations appear for constant input
voltages. Namely, when lubrication is present in the contact, the friction force
is partly due to the contact of the two contact surfaces and partly due to the
lubricant and its viscosity. As the sliding velocity increases, the solid-to-solid
contact decreases, reducing friction and increasing the acceleration of the mov-
ing part. Consequently, negative damping occurs in the friction-velocity curve,
which is responsible for the occurrence of torsional vibrations in the set-up.

• In this thesis, we conclude that the level of positive damping in the friction at
very small velocities in comparison to the level of negative damping appearing
for slightly higher velocities determines which type of torsional vibrations occur
in the system: i.e. torsional vibrations with or without stick-slip. Namely, if
positive damping at very low velocities does not exist, or if it is small with
respect to the negative damping level, then only torsional vibrations with stick-
slip can be obtained. Moreover, if the positive damping at very low velocities is
high enough with respect to the negative damping level, then torsional vibrations
with and without stick-slip can occur.

In real life systems, both torsional vibrations with and without stick-slip can
appear. In the set-up, we obtain only torsional vibrations with stick-slip as a
result of the contact between bronze brake and a steel brake disc, with ondina
oil 68 as a lubricant. On the other hand, when the friction torque is produced
as a result of the contact between rubber brake and the brass disc, with water
as a lubricant, then both types of torsional vibrations are obtained. For very
low angular velocities, the friction is mainly due to the contact between the
contacting materials (brake material and lower brake disc). Consequently, the
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friction is determined by characteristics of the materials and the appearance of
a positive damping for lower velocities in the friction model is related to the
types of contact material which produce friction.

• The results on all levels confirm that the sticking phenomenon, which is modelled
with a set-valued force law for the friction, plays a crucial role in describing
the steady-state phenomena observed in the set-up. Namely, with this friction
model, the dynamics of the set-up is described by differential equations with
discontinuous right-hand side. With these equations we successfully modelled
equilibrium sets, equilibria and stick-slip limit cycling, phenomena which are
also observed in the set-up. We also observe a discontinuous fold bifurcation
both in simulations and experiments. The performed analysis confirms that the
discontinuous bifurcations play a crucial role in the creation and destruction of
the observed limit cycling (i.e. torsional vibrations).

6.1.2 Interaction Between Torsional and Lateral Vibrations in

Flexible Rotor Systems

• If a mass-unbalance is present at the lower disc and the disc can both rotate and
move freely in lateral direction, then two types of torsional vibration can appear
in the system: friction-induced vibrations and vibrations due to a coupling
between torsional and lateral flexibility modes.

The causes for friction-induced vibrations are already summarized in the pre-
vious section. Torsional vibrations due to the coupling between torsional and
lateral dynamics occur for input voltages which are higher than a so-called crit-
ical voltage related to a critical angular velocity inducing a resonance in lateral
direction. The critical angular velocity is determined only by the parameters
of the system in lateral direction and, at that velocity, the radial displacement
of the center of the lower disc reaches a maximum. In that working region,
instabilities in the system can occur even if no negative damping is present in
the friction at the lower disc. Consequently, torsional vibrations occur at the
lower disc.

• Both the numerical and experimental results show that, when there is mass-
unbalance at the lower disc, the amplitude of friction-induced torsional vibra-
tions and the region in which these vibrations occur, both decrease. Moreover,
we show that if the level of mass-unbalance is high enough then torsional vi-
brations can even entirely disappear. This fact indicates that a strong coupling
between torsional and lateral vibrations exists.

• Due to limitations in the DC motor, we cannot study torsional vibrations due
to the coupling experimentally. However, numerical analysis shows that such
torsional vibrations can occur at the input voltage which are slightly higher than
a so-called critical voltage ucc related to a critical angular velocity inducing a
resonance in lateral direction. At those input voltages, despite the fact that
extra energy is supplied to the system (due to an increase of uc), the potential
energy stored in the leaf springs and rods (i.e. r) and in the potential energy
stored in the low-stiffness spring (i.e. −α) both significantly decrease. The extra
supplied energy is then stored in torsional and lateral vibrations. Furthermore,
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when almost no decrease occurs in the potential energy of the low-stiffness spring
(i.e. when −αeq slightly decreases for voltages uc which are slightly higher than
ucc) torsional vibrations disappear and the extra energy supplied to the system
transforms mainly to the kinetic energy of the lower disc.

Numerical analyses also shows that a higher level of mass-unbalance, a higher
stiffness of the string or a higher damping in lateral direction or a lower level of
stiffness of the construction in lateral direction decrease the instability region
(i.e. decrease the region in which torsional vibrations occur). Moreover, if the
levels of all those parameters are such that no torsional vibrations are present
in the system, the parameter changes influence in various ways the steady-state
behaviour of the system. Nevertheless, as a result of the preformed analysis,
we conclude that only if the damping in lateral direction increases, both tor-
sional and lateral vibrations decrease which is not the case if we change other
parameters.

6.2 Recommendations

A good understanding of various types of vibrations and the interaction between
them is very important in a wide range of mechanical systems, where such vibrations
are unwanted. For example, drilling systems, which are used for exploration of oil
and gas, undergo various types of vibrations: torsional (rotational) vibrations, lateral
(bending) vibrations, axial (longitudinal) vibrations and hydraulic vibrations. The
collection of measurement data, in such systems, can be very expensive and the testing
of various control strategies on the real drill-string systems can be even hazardous.
Therefore, the knowledge obtained here provides an improved understanding of the
causes for torsional and lateral vibrations. Moreover based on this knowledge, various
control strategies can be designed and tested on the designed set-up to eliminate
torsional and lateral vibrations. Furthermore, the results presented here can support
the design of various turbines, pumps, fans in preventing the occurrence of or in
decreasing the amplitude of friction-induced torsional vibrations and lateral vibrations
due to a mass-unbalance.

Therefore, in this section, we provide recommendations for removing vibrations in
flexible rotor systems. Furthermore, we list a few open problems which directly arise
from this thesis. Further research on these open problems should lead towards an
improved understanding of various vibrations in dynamical systems and can support
the developments of methods aiming at the avoidance of such vibrations.

• In order to eliminate friction-induced torsional vibrations, the effect of negative
damping should be removed from the inertia which is driven by the flexibility
(the lower disc in the set-up). In many similar systems, this can be done with
appropriate lubrication which should be applied in order to change the form of
the friction which is responsible for the vibrations.

• Friction-induced torsional vibrations can be decreased or eliminated by adding
an additional mass-unbalance at the disc which is driven by the flexibility if the
disc can freely move in lateral direction. However, such a solution increases the
amplitude of lateral vibrations and even multiple equilibria can occur for high
velocities. Therefore, adding an additional mass-unbalance is advisable only for
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systems where the critical angular velocities cannot be reached due to design
limitations.

• Torsional vibrations which occur due to the coupling between torsional and late-
ral motions can be decreased by increasing the damping in the lateral direction.
Moreover, with a higher damping level, the amplitude of lateral vibrations also
decreases. If we increase the torsional stiffness of the string, torsional vibra-
tions can also disappear. However, the torsional stiffness does not influence the
amplitude of lateral vibrations. Finally, if we increase the stiffness in lateral
direction, then torsional vibrations and lateral vibrations with high amplitude
occur at very high angular velocities (i.e. for very high input voltages). There-
fore, since the input voltage is limited in servo motors, such an instability region
can occur at velocities outside the working range of the system.

• A lot of research has already been performed on a compensation of friction-
induced oscillations in mechanical systems when no flexibility is present in the
system, see [Armstrong-Hélouvry et al., 1994a; Hensen, 2002; Hensen et al.,
2002; Mallon, 2003; Mallon et al., 2005; Putra, 2004; Putra et al., 2004; Pu-
tra and Nijmeijer, 2003, 2004; Van de Wouw et al., 2004]. On the other hand,
not a lot of work has been done on compensation of friction-induced vibra-
tions in systems with friction and with flexibility, see [Jansen, 1993; Jansen and
Van den Steen, 1995; Olsson, 1996; Olsson and Åström, 1996, 2001]. Based on
the constructed nonlinear models, the development of control strategies, which
can decrease or even remove vibrations, can be studied and developed. Since
the experimental set-up exist in which various vibrations can be induced, it
represents an opportunity to experimentally validate such control techniques.

For example, the drilling industry is particulary interested in control strategies
which can decrease or eliminate torsional and lateral vibrations and where the
control signal is a function of variables which are measured at the motor (torque,
angular velocity of the upper disc, motor current). Also, in printing machines,
there is a mechanism where a motor drives a printing head via a rubber belt
and it is very important to accurately prescribe a velocity of the printing head
despite the existence of friction.

• Backward whirl is a phenomenon which sometimes occurs in rotor systems when
the shaft (e.g. Bottom-Hole-Assembly in drilling systems) is in contact with the
stator (e.g. borehole in drilling systems). Namely, the backward whirl repre-
sents a motion in which the center of the shaft moves in the opposite direction
with respect to the rotation of the shaft. A lot of theoretical research which
considers that phenomenon has already been done. However, a limited number
of experimental results are available. With minor improvements of the designed
it is possible to decrease the distance between the lower disc of the set-up and
the vessel, where the lower disc is placed. Then it would be possible to obtain
backward whirl in the set-up and consequently, this phenomenon can be studied
both on a theoretical and experimental level.

• We have discussed the global stability properties of equilibrium points and sets
of the system in which only torsional vibrations occur (using Lyapunov’s direct
method). As a result of this analysis, we succeed to relate the local and global
stability properties of the equilibria to specific friction characteristics present at



132 Chapter 6. Conclusions and Recommendations

upper and lower disc. Moreover, in terms of the input voltage we have estimated
the region in which both isolated equilibria (constant velocity at the lower disc)
and limit cycles (torsional vibrations) occur and we even obtain an estimate of
the region of attraction of the equilibria.

For the system in which both torsional and lateral vibrations occur, we only
discuss global stability properties of the equilibrium sets, which appear when
the system is in the sticking region. Consequently, the global stability of the
isolated equilibria remains an open issue. Such global stability analysis would
provide analytical conditions under which those vibrations disappear.



Appendix A

Derivation of Equations of

Motion of the Set-Up

In order to derive model of the set-up using the Euler-Lagrange equations, we need to
determine the kinetic energy T (q, q̇), the potential energy V(q) and generalized non-
conservative forces of the system Qnc, where q are generalized coordinates defined
by

q =
[

θu x y α
]T

. (A.1)

As already explained in Section 3.2.4, the model is described in a co-rotating coordi-
nate frame {O, ~e} (see figure 3.12(b)), characterized by the location of its origin O

and the orientation of a frame ~e =:
[

~e1 ~e2 ~e3

]T
of three mutually orthogonal unit

vectors ~e1, ~e2, ~e3, where ~e3 = ~e1 × ~e2. In this thesis we also use the fixed coordinate
frame {O, ~e 0} (see figure 3.20) with ~e 0 =:

[

~e 0
1 ~e 0

2 ~e 0
3

]T
, where ~e 0

3 = ~e 0
1 × ~e 0

2 .
The relationship between ~e and ~e 0 is given by:

~e =





cos(θu) sin(θu) 0
− sin(θu) cos(θu) 0

0 0 1



~e 0 and ~e 0 =





cos(θu) − sin(θu) 0
sin(θu) cos(θu) 0

0 0 1



~e. (A.2)

Kinetic Energy T (q, q̇)

The kinetic energy of the system can be described with:

T (q, q̇) = Tu(q, q̇) + Tmr
(q, q̇) + Tmt

(q, q̇). (A.3)

In (A.3), Tu represents the kinetic energy of the upper disc and it can be computed
by:

Tu =
1

2
Juθ̇2

u. (A.4)

Then, Tmr
is the kinetic energy of the mass mr - the mass which rotates around the

center of the lower disc (see figure 3.12(b)). It can be computed with

Tmr
=

1

2
mr(~̇rC · ~̇rC) +

1

2
JC(θ̇u + α̇)2, (A.5)
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where all parameters are explained in table 3.2. In (A.5), ~rC represents the position
of the center of the mass of the mass mr and it can be expressed with

~rC =
[

x + e cos(α) y + e sin(α) 0
]

~e.

Knowing that

~̇e =





0 θ̇u 0

−θ̇u 0 0
0 0 0



~e. (A.6)

it can be obtained that

~̇rC =
[

r1 r2 0
]

~e, with
r1 = ẋ − e α̇ sin(α) − y θ̇u − e θ̇u sin(α),

r2 = ẏ + e α̇ cos(α) + x θ̇u + e θ̇u cos(α).

(A.7)

If we use (A.7) in (A.5) we obtain that

Tmr
=

1

2
mr(ẋ − e α̇ sin(α) − y θ̇u − e θ̇u sin(α))2

+
1

2
mr(ẏ + e α̇ cos(α) + x θ̇u + e θ̇u cos(α))2 +

1

2
JC(θ̇u + α̇)2.

(A.8)

Finally, Tmt
is the kinetic energy of the mass mt - the mass which cannot rotate

around the center of the lower disc (see figure 3.12(b)), but only translates with the
lower disc (think of the upper bearing housing, the brake, part of the encoder at the
lower disc, etc). It can be computed with

Tmt
=

1

2
mt(~̇rA · ~̇rA), (A.9)

where ~rA represents the position of the geometric center of the lower disc, which can
be expressed with

~rA =
[

x y 0
]

~e. (A.10)

From (A.6) and (A.10) it follows that

~̇rA =
[

ẋ − y θ̇u ẏ + x θ̇u 0
]

~e. (A.11)

If we use (A.11) in (A.9) we obtain

Tmt
=

1

2
mt(ẋ − y θ̇u)2 +

1

2
mt(ẏ + x θ̇u)2. (A.12)

Consequently, from (A.3), (A.4), (A.8) and (A.12) we obtain the following expression
for the kinetic energy of the system:

T (q, q̇) =
1

2
mr(ẋ − e α̇ sin(α) − y θ̇u − e θ̇u sin(α))2

+
1

2
mr(ẏ + e α̇ cos(α) + x θ̇u + e θ̇u cos(α))2

+
1

2
mt(ẋ − y θ̇u)2 +

1

2
mt(ẏ + x θ̇u)2 +

1

2
Ju θ̇2

u +
1

2
JC(θ̇u + α̇)2.
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Potential Energy V(q)

The potential energy of the system can be described with:

V(q) = Vr(q) + Vl(q). (A.13)

In (A.13), Vr represents the elastic energy stored in the drill-string and it can be
computed with

Vr =
1

2
kθα

2. (A.14)

Moreover, Vl represents the elastic energy in lateral direction (deformation of the leaf
spring and rods of the constraints), which can be expressed with

Vl =
1

2
k(~rA · ~e 0

1 )2 +
1

2
k(~rA · ~e 0

2 )2. (A.15)

If we use (A.2) and (A.10) in (A.15), the following expression for Vl is obtained:

Vl =
1

2
k x2 +

1

2
k y2. (A.16)

Consequently, from (A.13), (A.14) and (A.16) the following expression is obtained
for the potential energy of the system:

V(q) =
1

2
kθα

2 +
1

2
k x2 +

1

2
k y2.

Non-Conservative Forces Qnc(q, q̇)

In the set-up, a dissipative torque due to the friction at the upper part of the set-up

~Tu = −(kmu − Tfu(θ̇u))~e 0
3 , (A.17)

a dissipative torque due to the friction at the lower part of the set-up

~Tl = Tfl(θ̇l))~e
0
3 , (A.18)

and a dissipative force due to the damping forces present in lateral direction

~Fb = −b(~̇rA · ~e 0
1 )~e 0

1 − b(~̇rA · ~e 0
2 )~e 0

2 . (A.19)

exist.
The non-conservative forces Qnc(q, q̇) can be determined with:

Qnc(q, q̇) = Qnc
u (q, q̇) + Qnc

l (q, q̇) + Qnc
b (q, q̇), (A.20)

where Qnc
u , Qnc

l and Qnc
b are associated with the non-conservative forces and torques

in (A.17), (A.18) and (A.19), respectively.
In (A.20), Qnc

u is due to the non-conservative forces present at the upper part of
the set-up and it can be determined with:

Qnc
u =

(

∂θu

∂q

)T

(−~e 0
3 ) · ~Tu.
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Since
∂θu

∂q
=

[

1 0 0 0
]

,

then
Qnc

u =
[

kmu − Tfu(θ̇u) 0 0 0
]T

. (A.21)

Similarly, Qnc
l in (A.20) is due to the non-conservative forces present at the lower

part of the set-up in torsional direction and can be determined with:

Qnc
l =

(

∂θl

∂q

)T

(−~e 0
3 ) · ~Tl.

Since θl = θu + α, then
∂θl

∂q
=

[

1 0 0 1
]

.

Consequently,

Qnc
l =

[

−Tfl(θ̇u + α̇) 0 0 −Tfl(θ̇u + α̇)
]T

. (A.22)

Finally, Qnc
b in (A.20) is due to the non-conservative forces present at the lower

part of the set-up in lateral direction and can be determined with:

Qnc
b =

(

∂~rA

∂q

)T

· ~Fb. (A.23)

Vector ~rA is given by (A.10) and according (A.2) it can be represented with

~rA =
[

x cos(θu) − y sin(θu) x sin(θu) + y cos(θu) 0
]

~e 0,

in the fixed coordinate frame. Then,

(

∂~rA

∂q

)T

=









−x sin(θu) − y cos(θu) x cos(θu) − y sin(θu) 0
cos(θu) sin(θu) 0
− sin(θu) cos(θu) 0

0 0 0









~e 0. (A.24)

Consequently, if we substitute (A.19) and (A.24) in (A.23) the following expression
for Qnc

b is obtained

Qnc =









−b x(ẏ + x θ̇u) + b y(ẋ − y θ̇u)

−b(ẋ − y θ̇u)

−b(ẏ + x θ̇u)
0









. (A.25)

Finally, according to (A.20), (A.21), (A.22) and (A.25) the following expression
for the non-conservative forces Qnc is obtained:

Qnc(q, q̇) =









km u − Tfu(θ̇u) − Tfl(θ̇u + α̇) − b x(ẏ + x θ̇u) + b y(ẋ − y θ̇u)

−b(ẋ − y θ̇u)

−b(ẏ + x θ̇u)

−Tfl(θ̇u + α̇)









.



Appendix B

Local and Global Asymptotic

Stability Conditions

Stability Conditions when Tfl(ωl) is a Monotonically

Increasing Function

When Tfl(ωl) is as shown in figure 4.4(a), the incremental sector condition (4.26) holds
for every xteq,xt ∈ R

3. From (4.24) and (4.25) it can be concluded that V̇t(xt, xteq) ≤
0 for every xteq and every xt ∈ R

3. Therefore, every equilibrium point of the system
is stable in the sense of Lyapunov.

It can also be shown that only attractive sliding modes or transversal intersections
can occur at the switching surfaces Σ1 and Σ2 with

Σ1 = {xt ∈ R
3 | ωu = 0}, Σ2 = {xt ∈ R

3 | ωu + α̇ = 0}.

and that repulsive sliding modes are not present. Uniqueness of solutions is therefore
guaranteed [Leine, 2000; Leine and Nijmeijer, 2004] which could also be inferred from
the fact that the set-valued friction laws Tfu(ωu) and Tfl(ωl) take values in minimal
closed convex sets for zero relative velocity and are always dissipative.

Isolated Equilibria

When ωeq > 0, it can be concluded that V̇t(xt, xteq) = 0 for xt ∈ Lp, with

Lp =
{

xt ∈ R
3 | ωu = ωeq, α̇ = 0

}

.

If xt ∈ Lp then ωu = ωeq = const, α̇ = 0. Consequently, for an invariant subset of Lp

it should hold that ω̇u = α̈ = 0 for t → ∞. If we substitute this into the differential
equations (4.1) of the system, then the obtained equations can only be satisfied in
the equilibrium point. This leads to the conclusion that the equilibrium point xteq,
defined with (4.23), represents the largest invariant set on Lp when ωeq > 0. The
application of LaSalle’s invariance principle [Sastry, 1999; Van de Wouw and Leine,
2004] now proves that the equilibrium point xteq is attractive and the whole state space
R

3 represents the region of attraction. Therefore, since we have proven that every
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equilibrium point is stable and globally attractive for ωeq > 0, we can conclude that all
those equilibrium points are globally asymptotically stable, when the friction torque
shown in figure 4.4(a) is present in the system. We illustrate this fact graphically in
figure 4.4(b). Similarly, it can be also proven that all equilibrium points are globally
asymptotically stable for ωeq < 0.

Equilibrium Set

We have proven that every equilibrium point xteq ∈ Et is stable in the sense of
Lyapunov. Now, we consider the stability of the equilibrium set Et as a whole. In
order to prove that the equilibrium set Et is stable in the sense of Lyapunov, the sets
S, Aδ and Aǫ are introduced:

S =
⋃

∀xteq∈Et

Sxteq
, Sxteq

=
{

xt ∈ R
3 | Vt(xt, xteq) < r

}

, r > 0,

Aa =
{

xt ∈ R
3 | ‖ xt − proxEt

(xt) ‖≤ a
}

, a ∈ {δ, ǫ},

proxEt
(xt) = argmin

∀x∗

t ∈Et

‖ xt − x∗
t ‖,

(B.1)

where proxEt
(xt) defines the proximal point in the set Et of the point xt. According

to the previous analysis, it can be seen that for all ǫ > 0, we can choose r > 0 such
that S ⊂ Aǫ. Then, for the chosen S (and r), δ can be chosen such that Aδ ⊂ S.
Consequently, for every t0 ≥ 0 it follows that

x(t0) ∈ Aδ ⇒ x(t) ∈ Aǫ ∀t ≥ t0, (B.2)

since Aδ ⊂ S and S ⊂ Aǫ. Consequently, the equilibrium set Et (as a whole) is stable
in the sense of Lyapunov.

Let us now show that the equilibrium set Et is globally attractive. For that purpose,
let V1(xt) := V (xt,0). Then the previous analysis yields V̇1(xt) ≤ 0 for all xt ∈ R

3.
Next, for the estimated friction torques Tfu(ωu) and the suggested Tfl(ωl), from (4.24)
it can be concluded that V̇1(xt) = 0 only for xt ∈ L0, with

L0 = {xt ∈ R
3 | ωu = 0, α̇ = 0}. (B.3)

Consequently, for an invariant subset of L0 it should hold that ω̇u = α̈ = 0. If
we insert this into the differential equations (4.1) of the system, then the obtained
equations are only satisfied if xteq ∈ Et. This leads us to the conclusion that the
equilibrium set Et represents the largest invariant set on L0.

The application of LaSalle’s invariance principle [Sastry, 1999; Van de Wouw and
Leine, 2004] now proves that equilibrium set Et is globally attractive and the whole
state space R

3 represents the region of attraction. Finally, since we proved that the
equilibrium set Et is stable and globally attractive, we can conclude that Et is globally
asymptotically stable.
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Stability Conditions when Tfl(ωl) is Modelled with a

Humped Friction Model

Isolated Equilibria

When Tfl(ωl) is represented by a humped friction model as shown in figure 4.5(a),
the incremental sector condition (4.26) can be satisfied in the neighborhood of an
equilibrium point for ωeq > 0, only when

uc ∈ (uEp, ue1) ∪ (ue2, ∞), (B.4)

where uEp is defined by (4.7) and

ue1 =
Tcu(ωe1) + Tcl(ωe1)

km
, ue2 =

Tcu(ωe2) + Tcl(ωe2)

km
, (B.5)

where ωe1 and ωe2 are defined with (4.32) (see figure B.1). In other words, V̇ (xt, xteq)
can be shown to be negative semidefinite when xteq is such that

dTcl

dωl

∣

∣

∣

∣

ωl=ωeq

> 0.

When the input voltage uc satisfies condition (4.29), then the related equilibrium point
xteq is such that condition (4.26) is satisfied, hence V̇ (xt, xteq) ≤ 0 for every xt ∈ R

3.
Then, we can prove that such equilibrium point is globally asymptotically stable, in a
similar fashion as proven when Tfl(ωl) represents a monotonically increasing function
[Mihajlović et al., 2005a].

On the other hand, using the Lyapunov candidate function (4.22) we can only
prove that equilibrium points are locally asymptotically stable, when

uc ∈ (ug1, ue1) ∪ (ue2, ug2), (B.6)

(ug1 and ug2 are defined with (4.31); see also figure B.1 where the angular velocities
ωg1 and ωg2, corresponding to ug1 and ug2), respectively. This proof can be derived
in a similar way as it is derived for the case when Tfl(ωl) is monotonically increasing
function (figure 4.4(a)). Namely, when Tfl(ωl) is modelled as shown in figure B.1,
then for an equilibrium point xteq obtained for

û2 =
Tcu(ω̂2) + Tcl(ω̂2)

km
,

(ωeq = ω̂2), V̇t(xt, xteq) ≤ 0 for every x ∈ B2, with

B2 = {xt ∈ R
3 | |ωl| < |ω̂2 − ω̂′

2|}.

Then an estimate of the region of attraction of xteq is given by:

Iρ2
= {xt ∈ R

3 | V̇t(xt, xteq) < ρ2}, with ρ2 = max
Iρ⊂B2

ρ,

with
Iρ = {xt ∈ R

3 | V̇t(xt, xteq) < ρ}. (B.7)
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Consequently, if û2 is closer to ue2, defined by (B.5), then the set B2 is smaller
and therefore the estimate of the basin of attraction Iρ2

of the equilibrium point for
uc = û2 is also smaller. Similarly, when uc = û1 with

û1 =
Tcu(ω̂1) + Tcl(ω̂1)

km
.

(see figure B.1), then V̇t(xt, xteq) ≤ 0 for every x ∈ B1, with

B1 = {xt ∈ R
3 | |ωl| < |ω̂1 − ω̂′

1|}.

The basin of attraction of the related equilibrium point is

Iρ1
= {xt ∈ R

3 | V̇t(xt, xteq) < ρ1}, with ρ1 = max
Iρ⊂B1

ρ,

where Iρ is defined by (B.7). Therefore, if û1 is closer to ue1, then the set B1 is
smaller and the basin of attraction Iρ1

of the equilibrium point for uc = û1 is also
smaller.

In Section 2.2.1 we stress that Lyapunov’s stability theorem gives only sufficient
conditions for stability. Namely, the fact that V̇t(xt, xteq) is negative semi-definite in
a neighborhood of xteq when uc satisfies condition (B.6), i.e. when friction damping at
the lower disc dl is positive does not imply instability when uc does not satisfy (B.6).
Indeed, using Lyapunov’s indirect method, we determined that the system is locally
asymptotically stable when dl > dmin, where dmin represents a negative number
defined by (4.20). Consequently, the region of input voltages where the set-up has an
asymptotically stable equilibrium is defined with

uc ∈ (uEp, us1) ∪ (us2, ∞), (B.8)

which is bigger than the region defined by (B.4). Similar conditions can be derived
when ωeq < 0. The fact that global stability conditions are not satisfied for all input
voltages defined by (B.8), means that for those voltages the possibility of multiple
steady-state solutions (i.e. limit cycling) can not be excluded.

Equilibrium Set

When the friction torque Tfl(ωl) shown in figure B.2 (see also figure 4.5(c)) is present
in the system, then equilibrium points are globally asymptotically stable for uc > ug2

where ug2 is defined with (4.31). However, in this case the equilibrium set Et (defined
by (4.27)) can only be proven to be locally asymptotically stable using the Lyapunov
candidate function (4.22) [Mihajlović et al., 2005a, 2004a].

Namely, in order to analyze the stability properties of the equilibrium set we
consider the Lyapunov candidate function (4.22). Its time derivative is given by
(4.24). Furthermore, since the friction torque at the upper disc Tfu(ωu) represents a
monotonically increasing function, then condition (4.25) holds for every xt ∈ R

3 and
every xteq ∈ Et. Next, knowing that Tcl(ωa) = Tsl (see figure B.2) it can be seen that
for such a friction function |Tcl(ωl)| > Tsl for |ωl| < ωa. Therefore, for every xteq ∈ Et

and xt ∈ B0, with
B0 = {xt ∈ R

3 | |ωl| < ωa},
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Tfl

Tsl

Tcl(ωl)

ωl

ωg1 ωg2

ωs1 ωs2ω̂1 ω̂′
1 ω̂2ω̂′

2

ωe1 ωe2

Figure B.1: A humped friction model as shown in figure 4.5(a).

Tfl

Tsl

Tcl(ωl)

ωl

ωg2

ωs1 ωs2

ωe1 ωe2ωa

Figure B.2: A humped friction model as shown in figure 4.5(c).

condition (4.26) holds. Consequently, V̇t(xt, xteq) ≤ 0 and each equilibrium point in
Et is stable in the sense of Lyapunov. The region of attraction Iρ0

of the equilibrium
set is defined by:

Iρ0
= {xt ∈ R

3 | V̇t(xt, xteq) < ρ0}, with ρ0 = max
Iρ⊂Bo

ρ,

(Iρ is defined by (B.7)).
In order to prove that the equilibrium set Et (as a whole) is stable in the sense of

Lyapunov, sets Aδ, Aǫ and S are introduced as defined by (B.1). Then, for all ǫ > 0,
we can choose r such that r < c, with c = JAω2

a/2, and S ⊂ Aǫ. Furthermore, for the
chosen S (and r), δ can be chosen such that Aδ ⊂ S. Consequently, for every t0 ≥ 0,
condition (B.2) is satisfied. Namely, for every r < c it holds that Aδ ⊂ S ⊂ Iρ0

.
Consequently, the equilibrium set Et is stable in the sense of Lyapunov.

Let us now show that the equilibrium set Et is locally attractive. Similarly to the
case when Tfl(ωl) is as shown in 4.4(a), we introduce first V1(xt) = V (xt,0). Second,
we can prove that V̇1(xt) ≤ 0 for all xt ∈ C with

Ct =
{

xt ∈ R
3 | V1(xt) ≤ c

}

.
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Third, we conclude that the equilibrium set Et represents the largest invariant set on
L0∩Ct, with L0 defined by (B.3). Consequently, the application of LaSalle’s invariance
principle [Sastry, 1999; Van de Wouw and Leine, 2004] now proves that equilibrium
set Et is locally attractive. Moreover, the set Ct represents an estimate for the region
of attraction. Finally, since we proved that the equilibrium set Et is stable and locally
attractive, we can conclude that Et is locally asymptotically stable.
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Derivation of

V̇i(xi1,xi2,xi1eq,xi1eq)

The energy of the considered drill-string system V (q, q̇) is defined as

V (q, q̇) = T (q, q̇) + V(q).

The kinetic energy T (q, q̇) and the potential energy V(q) can be represented by

T (q, q̇) =
1

2
q̇T M(q)q̇, V(q) =

1

2
qT Kq, (C.1)

where q represents the generalized coordinates of the system, defined by (3.12), M(q)
is given in (3.16) and

K =









0 0 0 0
0 k 0 0
0 0 k 0
0 0 0 kθ









. (C.2)

However, when the lower disc rotates with a constant velocity in steady-state (equi-
librium point), the energy of the system is not zero in the equilibrium point. Conse-
quently we cannot use the energy as a Lyapunov candidate function. However, if we
define V̄ (q, q̇,qeq, q̇eq) in the following way:

V̄ (q, q̇,qeq, q̇eq) = T (q, q̇ − q̇eq) + V(q − qeq)

=
1

2
(q̇ − q̇eq)

T M(q)(q̇ − q̇eq) +
1

2
(q − qeq)

T K(q − qeq),

with
q̇eq =

[

ωeq 0 0 0
]T

,

then V̄ (qeq, q̇eq,qeq, q̇eq) = 0. In the sticking phase q̇eq = 0, and the following
expression holds

V̄ (q, q̇,qeq, q̇eq) =
1

2
q̇T M(q)q̇ +

1

2
(q − qeq)

T K(q − qeq). (C.3)
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Consequently, the time derivative of V̄ equals

˙̄V (q, q̇,qeq, q̇eq) = q̈TM(q)q̇ +
1

2
q̇T Ṁ(q)q̇ + (q − qeq)

T Kq̇. (C.4)

If we insert (C.1) into the Euler-Lagrange equations (3.11) the following is obtained

q̈TM(q) +
1

2
q̇T Ṁ(q) + qT K = (Qnc(q, q̇))T. (C.5)

Consequently, in the equilibrium point qeq the following holds

qT
eqK = (Qnc(qeq,0))T. (C.6)

Furthermore, if we subtract expression (C.6) from (C.5), post-multiply the obtained
result with q̇ and substitute the obtained expression in (C.4) the following is obtained:

˙̄V (q, q̇,qeq, q̇eq) = (Qnc(q, q̇) − Qnc(qeq,0))Tq̇. (C.7)

From (3.14), the non-conservative forces Qnc(q, q̇) and Qnc(qeq,0) can be ex-
pressed in the following way:

Qnc(q, q̇) =









km uc − Tfu(θ̇u) − Tfl(θ̇u + α̇)
0
0

−Tfl(θ̇u + α̇)









−b q̇T









x2 + y2 −y x 0
−y 1 0 0
x 0 1 0
0 0 0 0









,

Qnc(qeq,0) =









km uc − Tfu(0) − Tfl(0)
0
0

−Tfl(0)









.

If we substitute this into (C.7), and take into account that ωu = θ̇u and ωl = θ̇u + α̇,
the following expression can be obtained

˙̄V (q, q̇,qeq, q̇eq) = −(Tfu(ωu) − Tfu(0))ωu − (Tfl(ωl) − Tfl(0))ωl

−b
[

ωu ẋ ẏ
]





x2 + y2 −y x
−y 1 0
x 0 1









ωu

ẋ
ẏ



 .
(C.8)

From (5.7), (5.8), on one hand, and (C.2), (C.3), (3.12), (3.16), at the other
hand, we see that the Lyapunov candidate function Vi(xi1,xi2,xi1eq,xi2eq) defined
by (5.7) is such that Vi(xi1,xi2,xi1eq,xi2eq) = V̄ (q, q̇,qeq, q̇eq). Consequently, the
derivative of the Lyapunov candidate function satisfies V̇i(xi1,xi2,xi1eq,xi2eq) =
˙̄V (q, q̇,qeq, q̇eq), i.e. is defined by expression (C.8).
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Summary

Self-sustained vibrations which can appear in mechanical systems often limit the
performance of such systems or can even cause failure or damage to such systems.
Moreover, different types of vibration can appear in dynamical systems. In order to
gain an improved understanding and to predict different types of vibrations which
appear in mechanical systems, it is important to understand the causes for such
vibrations and the interaction between those vibrations.

In this thesis, we address on the one hand friction-induced vibrations in flex-
ible mechanical systems, and on the other hand lateral vibrations caused by mass-
unbalance in rotor systems, and the interaction between those two types of vibrations.
Although a lot of theoretical research has been done on vibrations in flexible rotor
systems, a limited number of papers is available which include experimental results
on the friction-induced vibrations and on the interaction between different types of
vibrations.

For this purpose, we have designed and constructed an experimental drill-string
set-up which exhibits both types of vibration. The set-up consists of a DC-motor,
two rotating (upper and lower) discs, a low-stiffness string, which connects the two
discs, and an additional brake at the lower disc. The lower disc can rotate around its
geometric center and is also free to move in lateral direction. The configuration of the
experimental set-up is representative for many other mechanical systems, in which
friction or unbalance can deteriorate the system performance by the appearance of
vibrations. For example, when the lower disc is fixed in lateral direction (i.e. when the
lower disc only rotates), the system forms a configuration of two masses, coupled by
a flexibility, of which one is subject to friction and the other is driven by an actuator.
In this context, one can think of set-ups such as printers, pick and place machines,
industrial and domestic robots, braking mechanisms and many others. Moreover,
when mass-unbalance is present at the lower disc and the disc can move in lateral
direction, this configuration can be recognized in drilling systems which are used for
exploration of oil and gas, in electrical shavers, in various turbines, pumps, fans and
so on.

The drill-string set-up is modelled and the parameters of the model are estimated.
The comparison between responses of the experimental set-up and estimated model
indicates a high accuracy of the obtained parameter estimates. The steady-state
behaviour of the drill-string system has been analyzed when various constant input
voltages are applied to the DC motor; first, when only torsional and no lateral vi-
brations occur and, second, when both torsional and lateral vibrations appear in the
system.

When analyzing the friction-induced vibrations a discontinuous static friction



154 Summary

model is used. We have chosen such a model and not a more complicated dynamical
friction model since it accounts for the friction characteristics which are crucial for
the global dynamics of the system but avoids unnecessary complexity. A discontin-
uous friction model leads to a discontinuous model of the system dynamics which
exhibits both friction-induced vibrations and the interaction between friction-induced
vibrations and vibrations due to mass-unbalance. As a result of the analysis on a
theoretical, numerical and experimental level the following conclusions are drawn.

When analyzing the set-up with only friction-induced torsional vibrations and no
lateral vibrations, the main conclusion is that a subtle interplay of negative damping
characteristics at low velocities and viscous friction at higher velocities determines the
occurrence and nature of friction-induced limit cycling. It also determines the range
of parameters for which these limit cycles sustain. Furthermore, the level of posi-
tive damping at very low velocities relative to the negative damping level at slightly
higher velocities determines whether torsional vibrations with or without stick-slip
can occur. Then, both model-based and experimental bifurcation analysis confirm
that discontinuous bifurcations play a crucial role in the creation and disappearance
of these limit cycles. Also, the way in which such friction characteristics are influ-
enced by physical conditions such as temperature and normal forces on the frictional
contact is experimentally studied. An important observation is that the normal force
in the frictional contact influences the friction force in a rather complex way and can
induce a higher negative damping level (for larger normal forces), which in turn can
give rise to limit cycles of a larger amplitude for a larger range of constant input
voltages to the DC motor.

The analysis of the set-up, when both torsional and lateral vibrations are present,
leads to the main conclusion that two types of torsional vibrations can appear. Firstly,
friction-induced torsional vibrations and, secondly, torsional vibrations due to cou-
pling between torsional and lateral dynamics may appear. Furthermore, if mass-
unbalance is present at the lower disc, the amplitude of friction-induced vibrations
and the region in which these vibrations occur, both decrease compared to the situ-
ation without mass-unbalance. Moreover, it is shown that if the mass-unbalance is
large enough then torsional vibrations can disappear entirely. Next, on a simulation
level it is shown that torsional vibrations due to coupling between torsional and lateral
modes appear for input voltages to the DC motor which are higher than the so-called
critical voltage, which is related to the critical angular velocity inducing resonance in
lateral direction. Due to limitations in the available DC motor, those vibrations are
studied only at a simulation level.

Finally, the knowledge obtained in this thesis provides a better understanding of
the causes for torsional and lateral vibrations. Moreover, based on this knowledge,
various control strategies may be designed and tested on the designed set-up in or-
der to eliminate torsional and lateral vibrations. Furthermore, the results presented
here can support the design of various braking mechanisms, pumps and fans in pre-
venting the occurrence of or in decreasing the amplitude of friction-induced torsional
vibrations and lateral vibrations due to mass-unbalance.



Samenvatting

Zelf-exciterende trillingen in dynamische mechanische systemen beperken veelal de
prestatie van dergelijke systemen en kunnen zelfs schade of uitval veroorzaken. Boven-
dien kunnen er verschillende soorten trillingen voorkomen in dynamische systemen.
Het is van groot belang de oorzaken van en de interactie tussen deze trillingen te
begrijpen om het ontstaan van dergelijke trillingen in mechanische systemen te voor-
spellen.

In dit proefschrift behandelen we ten eerste trillingen in flexibele mechanische
systemen geïnduceerd door wrijving, ten tweede laterale trillingen in dynamische rotor
systemen als gevolg van massa-onbalans en ten derde de interactie tussen deze soorten
trillingen. Alhoewel veel theoretisch onderzoek is verricht op het gebied van trillingen
in dynamische rotor systemen, bestaat er slechts een beperkt aantal publicaties die
experimentele resultaten behandelen over trillingen geïnduceerd door wrijving en de
interactie tussen de verschillende soorten trillingen.

Hiertoe is een experimentele boorstang-opstelling ontworpen en gebouwd waarin
beide soorten trillingen voorkomen. De opstelling bestaat uit een gelijkstroommotor,
twee roterende inertia’s (boven en beneden), een kabel met lage torsie-stijfheid, welke
de twee inertia’s verbindt, en een rem op de onderste inertia. De onderste inertia
kan roteren rond zijn geometrisch centrum en is bovendien vrij om in laterale richt-
ing te bewegen. Deze configuratie komt voor in vele andere mechanische systemen
waarin wrijving of massa-onbalans de systeemprestatie kan verslechteren door het
optreden van trillingen. Bijvoorbeeld, wanneer de onderste inertia gefixeerd wordt
in laterale richting (met andere woorden wanneer de onderste inertia alleen roteert),
dan representeert het systeem een configuratie van twee inertia’s, gekoppeld door
een flexibiliteit, waarvan één inertia wrijving ondervindt en de andere aangedreven
wordt. Voorbeelden zijn te vinden in printers, positioneringsmachines, industriële en
huishoudelijke robots, rem-mechanismen etcetera. Wanneer de onderste inertia vrij
kan bewegen in laterale richting en wanneer massa-onbalans aanwezig is, kan deze
configuratie voorkomen in boorsystemen welke gebruikt worden voor de winning van
olie en gas, in elektrische scheerapparaten en in verscheidene turbines, pompen en
ventilatoren.

De ontworpen opstelling is gemodelleerd en de parameters van dit model zijn
geschat. De vergelijking tussen de responsies van de experimentele opstelling en het
geïdentificeerde model duiden op een grote nauwkeurigheid van de geschatte param-
eters. Het limiet-gedrag van dit systeem is geanalyseerd voor verschillende constante
ingangsvoltages aan de gelijkstroommotor; ten eerste wanneer enkel torsie-trillingen
optreden en, ten tweede, wanneer zowel torsie- en laterale trillingen voorkomen in het
systeem.
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Bij de analyse van trillingen veroorzaakt door wrijving is een discontinu statisch
wrijvingsmodel gebruikt. De keuze voor een dergelijk model, in tegenstelling tot een
complexer dynamisch model, is gebaseerd op het feit dat een statisch model de wrij-
vingskarakteristieken goed beschrijft welke essentieel zijn voor de globale dynamica
van het systeem, terwijl onnodige complexiteit vermeden kan worden. Een discontinu
wrijvingsmodel leidt evenwel tot een discontinu model van de systeemdynamica.

Gebaseerd op de theoretische, numerieke en experimentele analyses kunnen de
volgende conclusies getrokken worden. Ten aanzien van het systeem waarin slechts
torsie-trillingen optreden kan geconcludeerd worden dat een balans tussen negatieve
demping bij lage snelheden en visceuze wrijving bij hogere snelheden bepalend is voor
het ontstaan en de aard van de door wrijving geïnduceerde trillingen. Deze balans
bepaalt ook voor welke parameter-waarden trillingen ontstaan. Bovendien bepaalt
de balans tussen positieve demping bij zeer lage snelheden en negatieve demping
bij enigszins hogere snelheden of trillingen met of zonder stick-slip optreden. Zowel
de model-gebaseerde als de experimentele bifurcatie analyse bevestigen dat discon-
tinue bifurcaties een cruciale rol spelen in het ontstaan en verdwijnen van deze limiet
cycli. Bovendien is de invloed van fysieke condities, zoals de temperatuur en de
normaalkrachten in het wrijvingscontact, op de wrijvingskarakteristieken bestudeerd.
Een belangrijke observatie is dat de normaalkracht in het wrijvingscontact de wrijv-
ingskracht op een complexe manier beïnvloedt. Namelijk, grotere normaalkrachten
kunnen leiden tot een hogere negatieve demping in de wrijvingskarakteristiek, het-
geen weer kan leiden tot limiet cycli, met een grotere amplitude, die voorkomen in
een groter bereik van constante ingangsvoltages aan de gelijkstroommotor.

De analyse van het systeem, waarin zowel torsie-trillingen als laterale trillingen
voorkomen, leidt tot de conclusie dat twee soorten torsie-trillingen kunnen ontstaan:
ten eerste torsie-trillingen veroorzaakt door wrijving en ten tweede torsie-trillingen
als gevolg van de koppeling tussen de dynamica in torsie-richting en laterale richt-
ing. Als bovendien massa-onbalans aanwezig is in de onderste inertia, nemen zowel
de amplitude en het domein (in termen van ingangsvoltages) van de door wrijving
veroorzaakte trillingen af in vergelijking met de situatie zonder onbalans. Wanneer
de massa-onbalans groot genoeg is kunnen dergelijke torsie-trillingen zelfs volledig
verdwijnen. Op simulatie niveau is het aangetoond dat torsie-trillingen, als gevolg
van de koppeling tussen de dynamica in torsie-richting en laterale richting, optreden
voor ingangsvoltages groter dan een kritisch voltage. Die kritische ingangsvoltage is
gerelateerd aan de kritische hoeksnelheid waarvoor resonantie in laterale richting op-
treedt. Als gevolg van beperkingen ten aanzien van de beschikbare gelijkstroommotor
in de experimentele opstelling is dit soort trillingen alleen onderzocht op simulatie
niveau.

Tenslotte leidt de kennis verkregen in dit onderzoek tot een verbeterd begrip ten
aanzien van de oorzaken van zowel torsie-trillingen als laterale trillingen in flexibele
rotor-dynamische systemen met wrijving. Bovendien kan deze kennis in toekomstig
onderzoek gebruikt worden om regelstrategieën, met als doel het onderdrukken van
deze trillingen, te ontwerpen en te implementeren op de experimentele opstelling.
Verder kunnen de gepresenteerde resultaten het ontwerp van verscheidene rem-mec-
hanismen, pompen en turbines ondersteunen met als doel het vermijden van deze
trillingen.
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U dinamiqkim sistemima mogu da se pojave razliqite vrste vibracija, koje
qesto degradiraju performanse takvih sistema a, tako�e, mogu da izazovu
Ƭihov otkaz ili oxte�eƬe. Zato, da bi boƩe razumeli i predvideli pojavu
razliqitih vrsta vibracija, veoma je vaжno razumeti razloge zbog kojih
se one javƩaju, kako i naqine na koje one utiqu jedne na druge.

U ovoj disertaciji analizirane su: vibracije koje se javƩaju usled
treƬa u mehaniqkim sistemima sa fleksibilnox�u, lateralne vibracije u
rotacionim sistemima koje se javƩaju zbog neizbalansiranosti u rotoru,
i me�usobni uticaj ove dve vrste vibracija. Iako postoji puno teori-
jskih instraжivaƬa, koje analiziraju vibracije u rotacionim sistemima
sa fleksibilnox�u, mali broj radova je dostupan koji poseduju eksperi-
mentalne rezultate i koji obuhvataju analizu me�usobnog uticaja razli-
qitih vrsta vibracija.

Iz tih razloga, projektovan je i konstruisan eksperimentalni ure�aj
koji reprodukuje torzione i lateralne vibracije prisutne u sistemima
za buxeƬe nafte. Ovaj ure�aj sastoji se iz motora jednosmerne struje,
dva rotaciona diska (gorƬeg i doƬeg) povezna elastiqnom жicom i do-
datne koqnice koja je ugra�ena na doƬem disku. DoƬi disk moжe da rotira
oko svog geometrijskog centra ali moжe, tako�e, da se kre�e i u boqnom
(lataralnom) pravcu. Veliki broj sistema, u kojima treƬe i neizbalan-
siranost moжe da pogorxa performanse izazivaƬem vibracija, ima sliqnu
konfiguraciju kao i ovaj ure�aj. Na primer, kada je doƬi disk fiksiran
u boqnom pravcu (tj. kada doƬi disk moжe da rotira samo oko svoje ose),
tada sistem predstavƩa sistem sa dve mase povezane elastiqnom oprugom,
pri qemu je jedna masa podvrgnuta treƬu, dok se drugom masom upravƩa
aktuatorom. Primeri ovakvih sistema nalaze se u printerima, maxinama
za ugradƬu qipova na xtampanim ploqama, industrijskim robotima, ko-
qionim sistemima itd. Osim toga, kada je neizbalansiranost prisutna na
doƬem disku i on moжe da se pomera u lateralnom pravcu, tada ovakav ure-
�aj podse�a na sisteme koji se koriste za buxeƬe i va�eƬe gasa i nafte,
elektriqne brijaqe, razliqite turbine, pumpe, ventilatore itd.

Projektovan eksperimentalni ure�aj je modelovan i parametri modela
su estimirani. Na osnovu pore�eƬa odziva ure�aja i dobijenog modela,
zakƩuquje se da dobijeni model veoma dobro opisuje dinamiqko ponaxaƬe
ure�aja. Zatim je analizirano ponaxaƬe ure�aja u stacionarnom staƬu
kada su na ulaz motora dovo�eni konstantni ulazni naponi: prvo, kada
su samo torzione vibracije prisutne (ne postoje lateralne vibracije) i,
drugo, kada se i torzione i lateralne vibracije pojavƩuju u sistemu.
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Prilikom analize torzionih vibracija izazvanih treƬem, korix�en
je diskontinualni statiqki model treƬa. Takav model, a ne neki kom-
plikovaniji dinamqki model treƬa, izabran je iz razloga xto statiqki
model opisuje nekoliko, veoma bitnih, karakteristika treƬa, a i na taj
naqin izbegnuta je nepotrebna sloжenost modela. Diskontinualni model
treƬa vodi ka formiraƬu diskontinualnog modela dinamike sistema, koji
opisuje i vibracije prouzrokovane treƬem, kao i interakciju izme�u ovih
vibracija i vibracija koje su posledica neizbalansiranosti doƬeg diska.

Na osnovu teorijske analize, kao i na osnovu eksperimentalnih i nu-
meriqkih rezultata, doxlo se do slede�ih zakƩuqaka. Pri analizi ekspe-
rimentalnog ure�aja u kojem su prisutne samo torzione vibracije, glavni
zakƩuqak je da odnos izme�u negativnog nagiba krive treƬa na malim brzi-
nama i koeficijenta viskoznog treƬa na vixim brzinama odre�uje pojavu i
prirodu nastalih vibracija. Osim toga, taj odnos odre�uje i skup param-
etara pri kojima vibracije mogu da se pojave. Xtavixe, zakƩuqeno je da
odnos izme�u pozitivnog nagiba krive treƬa na veoma malim brzinama i
negativnog nagiba na nexto ve�im brzinama odre�uje da li �e torzione vi-
bracije biti sa zaustavƩaƬem doƬeg diska ili ne. Bifurkaciona analiza
ure�aja i Ƭegovog modela potvr�uju da diskontinualne bifurkacije igraju
veoma znaqajnu ulogu u stvaraƬu i nestajaƬu ovih vibracija. Eksperi-
mentalno je, tako�e, analizirano kako razliqiti fiziqki uslovi, kao, na
primer, temperatura i normalna sila, utiqu na silu treƬa. Kao rezultat
te analize, utvr�eno je da normalna sila utiqe na silu treƬa na jedan
veoma komplikovan naqin. Naime, ve�a normalna sila izaziva ve�i nega-
tivni nagib sile treƬa, xto za posledicu ima ve�u amplitudu vibracija i
ve�i opseg ulaznih konstantnih napona pri kojima se javƩaju te vibracije.

Pri analizi eksperimentalnog ure�aja, kod koga su torzione i late-
ralne vibracije prisutne, zakƩuqeno je da mogu da se pojave dva tipa
torzionih vibracija: usled treƬa, i usled interakcije izme�u torzione
i lateralne dinamike sistema. Osim toga, usled neizbalansiranosti do-
Ƭeg diska, pokazano je da se amplituda torzionih vibracija smaƬuje, kao i
opseg ulaznih konstantnih napona za koje se te vibracije javƩaju. Pokazano
je, xtavixe, da ako je neizbalansiranost dovoƩno velika, torzione vi-
bracije mogu potpuno da nestanu. Na osnovu simulacionih rezultata,
utvr�eno je da se torzione vibracije usled interakcije izme�u torzione
i lateralne dinamike javƩaju za ulazne napone motora koje su ve�e od
tzv. kritiqnog ulaznog napona. Kada se taj napon dovede na ulaz motora,
onda doƬi disk poqiƬe da se kre�e tzv. kritiqnom ugaonom brzinom, koja
indukuje rezonancu u lateralnom pravcu. Zbog ograniqeƬa u motoru, ove
vibracije analizirane su samo na nivou simulacije.

Materija izloжena u ovoj disertaciji omogu�ava boƩe razumevaƬe uzro-
ka zbog kojih se javƩaju torzione i lateralne vibracije. Osim toga, na os-
novu rezultata dobijenih u disertaciji, razne upravƩaqke strategije mogu
se projekti i testirati na eksperimentalnom ure�aju u ciƩu eleminacije
tih vibracija. Tako�e, ovde prezentovani rezultati mogu da pomognu u
projektovaƬu razliqitih koqionih mehanizama, pumpi, ventilatora, tako
da se onemogu�i pojava vibracija usled treƬa, lateralnih vibracija usled
neizbalansiranosti rotora, ili da se umaƬi amplituda tih vibracija.
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