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Replications with Grabner Bases

A.M. Cohen
A. Di Bucchianico
E. Riccomagno

ABSTRACT: We present an extension of the Grabner basis method for
experimental design introduced in Pistone and Wynn (1996) to designs
with replicates. This extension is presented in an abstract regression anal­
ysis framework, based on direct computations with functions and inner
products. Explicit examples are presented to illustrate our approach.
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1 Introduction

Recently tools from algebraic geometry have been introduced in experimen­
tal design. See Pistone and Wynn (1996), Pistone, Riccomagno and Wynn
(2000) and Riccomagno (1997). They are particularly useful in the analysis
of complex experiments where there is a large number of factors and runs
and the structure of the design is not regular, for example there are miss­
ing observations from a standard full factorial experiment. Confounding
relations among factors and interactions are encoded in the Grabner bases
associated with a design allowing us to interpret confounding relations of
the kind 1= AB (where A and B are factors and I is the constant term)
for a large class of designs and models.
A major requirement for the application of this technique is that the design
has no replicates. However, there are several practical situations where
replicates are useful. In the present work we extend the algebraic methods
to designs with replicates.
The main idea is to introduce a new variable that counts how many times
a point appears in the design. For example, the one-dimensional design
with five points D* = {O, 0, 1, 1, 2} becomes the two-dimensional object
D = {(O, 1), (0,2), (1, 1), (1,2), (2, 1)}. This is encoded in the following set
of polynomials in two indeterminates

x 3
- 3x2 + 2x, x 2 t - xt - x 2 + X, t2

- 3t + 2,

where x represents the design factor and t counts the number of replicates.
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The polynomials above can be used to construct a polynomial system of
equations whose zeros are the points in D. The zeros of the first polynomial,
involving only the x indeterminates, are the distinct points in '0*.
Least squares models are fitted to the data with replications as polynomial
interpolators using the Grabner basis method. In order to accommodate
this process, we present a vector space setting for regression analysis in
terms of functions on the design points. We suggest to perform estima­
tion after orthonormalisation of the model terms (see also Giglio et al.,
2000). The traditional sums of squares appear naturally as the lengths of
the terms in the orthonormalised model. The coefficients from the non­
orthonormalised model are obtained simply by comparing coefficients. A
pleasant feature from the computational point of view is that to compute
regression coefficients, we do not need to perform matrix inversion as in
the standard matrix way of computing regression coefficients. We present
several explicit examples to illustrate our method.

2 Basic setup

We start by fixing notation. A design without replicates is a finite subset of
Rd. The main idea behind the algebraic geometry approach to experimental
design is to view a design as a variety, Le. the set of common zeroes of a
finite set of polynomials. Statistical analysis of data starts with finding a
polynomial that interpolates the data at the design points. If points of a
design are replicated, then strictly speaking we are dealing with multi-sets
rather than ordinary sets. This causes problems for the algebraic geometric
approach. Namely there is no polynomial (function) that takes different
values at the same point. We overcome this difficulty by introducing an
extra variable that counts how many times a point appears in the design

Definition 2.1 A design D with replicates is a finite set of points in R d x
£, where £ is a finite ordered set (the label set). The associated unreplicated
design '0* is defined by '0* = {a* E R d I 3£ E £ such that(a*,£) ED}.
Each element a of '0 is of the form a = (a*, £). Thus we may alternatively
define '0* as '0* := {a* I a ED}.

Designs without replicates are special designs such that for each a* E '0*
there is exactly one £ E £ such that (a*, £) E D. Two designs are isomorphic
if their associated unreplicated designs coincide and there is a bijection
between the two designs. In general, the unreplicated design '0* is obtained
by projecting '0 onto the first d factors. The operation of projection does
not take into account the number of replicates. It has a nice algebraic
counterpart (see Theorem 4.3 below).

Notation 2.2 Let '0 c R d X £ be a design. The set of real-valued functions
onD is denoted by £('0).
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The inner product on L(V) given in Definition 2.3 below is directly related
to least squares estimation.

Definition 2.3 If V is a design, then for all f, g E L(V) we define an
inner product by (J, g)v := LaEV f(a)g(a). A norm is defined on L(V)

by IIfllv = J(J, f)v'

Note that weighted least squares is easily incorporated in this setup by
slightly changing the definition of the inner product (., ,)v'
Let V be a design. Suppose our statistical model is

Y(x) = f(x,B) +c(x), (1.1)

where B E RP and e:(x) is a real-valued random variable for all x E V' with
Ee:(x) = 0 and Ve:(x) = a 2 • Suppose we have observations Yi, ... ,YN from
this model, where li is yea;) for ai E V' and replications are allowed, Le.
ai may be equal to aj for i :I j. Then the least squares estimator for
the parameter vector B is given by

N

(j = min L I Yi - f(a';, B) 1
2

.
(JE9

i=l

(1.2)

Let 9 E L(V) be the unique function in L(V) such that g(ai) = li for all
i = 1, ... ,N. Since

N

(j = min~ IYi - f(a';, B) 12 = min Ilg - f(·, B) II~, (1.3)
(JE9 L....J (JE9

i=l

we see that least squares estimation corresponds to a minimum distance
problem in L(V) with the inner product in Definition (2.3). Note that a
function f(x) for x = (Xl, ... , Xd) E V' can be naturally extended for
x = (Xl, ... ,Xd,Xd+l) E V by (Xl, ... ,Xd,Xd+d f----t f(Xl,'" ,Xd).

3 Identifiability of linear models

In the sequel we restrict ourselves to linear models, i.e. models such that
f(x, B) is a linear function of the components of the parameter vector B

Y(X) = L BaPa(x) + e:(x),
aEM

(1.4)

where Pa (0: E M) is an element of L(V'). Clearly the Pa's can be viewed as
elements of L(V). Recall that L(V) is a vector space over the real numbers
and L(V) is isomorphic to RN, where N is the number of points in V.
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Definition 3.1 A linear model (1.4) is identifiable by a design V if the
functions POt (ex E M) are linearly independent elements of £('0).

The classical notion of identifiability is equivalent to our definition. Indeed,
let Y = XB + € be a linear model where X is a matrix with P columns. If
the design matrix X has rank less than P, then B is not identifiable since
different values of B yield the same value of XB. This actually means that
the model coincides for different parameter values when restricted to the
design points. In other words, the functions on V that take as values the
components of the columns of X are linearly dependent.
For linear models, least squares estimation is the orthogonal projection of
g onto span {POt I ex EM}. Note that if {POt I ex E M} is an orthogonal
subset of £('0), then elementary linear algebra arguments yield that

(jOt = (9, pOthJ .
(POt, POt)v

The functional description of least squares estimation has some advantages
over the usual vector space description. It is more natural in our opinion
since the model description is also at a functional level. A numerical ad­
vantage is that we do not need matrix inversion to compute the coefficient
estimates. Indeed, orthogonalisation by the Gram-Schmidt procedure be­
comes a simple recursive procedure. Note that contrary to the classical use
of Gram-Schmidt in the case of R N, we use Gram-Schmidt in a symbolic
way in the space of polynomials. In this polynomial setting rewriting the
estimated orthogonalised model in terms of the original model corresponds
simply to collect coefficients.
The functional description given here differs from the abstract setting to
linear models initiated by Kruskal (1961). See Drygas (1970) for a self­
contained treatment. Specifically we extensively use computations with
polynomials in the next sections. A paper which is closer in spirit to our
paper is Neumaier and Seidel (1992), where a design is seen as a normalized
measure and optimal designs are derived using arguments in £('0).

4 A polynomial algebraic representation of £(D)

The set of real-valued functions over a finite set of distinct points can be
described using particular classes of polynomials. More precisely let V be
a design in R d X £, let R[Xl' ... ' XdH] be the polynomial ring in d + 1
indeterminates with real coefficients and let Ideal('O) C R[Xl, ... ,Xd+l] be
the set of all polynomials whose zeros include the design points. Then the
quotient space R[Xl' ... , xd+d/Ideal('O) is a description or representation
of £(D). Moreover vector space bases of R[Xl, ... ,xdH]/Ideal(V) made of
monomials can be determined with Grabner basis methods. We require the
definition of a term ordering.
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Definition 4.1 A term ordering T on the monomials ofR[xl, ... ,Xd] is a
total well-ordering such that xC< ~T x/3 implies xC<x"Y ~T x/3 x"Y for all, :f::. O.

Theorem 4.2 Given a design D C R d x .c, a term ordering T and a
Grabner basis G C R[Xl,' .. ,xd+d for D with respect to T J then a vector
space basis of R[Xl' ... , Xd+l]/ Ideal(D) is given by

{XC< I xC< is not divisible

by any of the leading terms of the elements of G}

{xC< I ex E LV,T} .

Moreover, if the set {Pc< I ex E M} in Model (1.4) is a subset of EstV,TJ
then Model (1.4) is identifiable. The set Estv,T has exactly N elements
where N is the cardinality of D.

Proof. For the first part see for example Cox et al. (1996) and for the
second and third parts see Pistone, Riccomagno and Wynn (2000). •
Note that Theorem 4.2 applies to any design with no replicates, namely to
a set of distinct points. Designs defined according to Definition 2.1 are par­
ticular examples of sets of distinct points where the "label indeterminate" ,
Xd+l distinguishes replicated points. For designs with replicates the trick
here is to consider in Model (1.4) only terms of Est not involving Xd+l'
For statistical inference we need a design, a model, and observations. In
a classical screening setup a model is chosen first. However, we may also
choose the model after seeing the design (for example the planned design
was not completed and there are missing points, see Holliday et al., 1999). In
this case, Theorem 4.2 provides a powerful tool in the choice of a regression
vector for a linear model of the type in (1.4).
In general different term orderings give different Est sets and also typi­
cally Est includes monomials involving the label indeterminate Xd+l which
clearly should not be included in Model (1.4). This suggests to partition
Est, equivalently L, in three disjoint parts

where L; includes all the elements of LV,T that do not involve Xd+l, L Xd+1

includes all the monomials in Estv,T which involve only Xd+l and L X ,Xd+l

includes the remaining terms. The set M in Model (1.4) can be chosen to
be a subset of L;. The combination of the choice of the term ordering and
of the structure of the design determines these three parts.
A reasonable choice for the term ordering is one that eliminates the Xd+l
variable. For elimination term ordering we refer to Cox et al. (1996) and
here simply observe that an effect of eliminating Xd+l is that the number
of monomials in L Xd+1 is as small as possible.
We conclude this section by showing with polynomial algebra techniques
that identifiability is not affected by replications. The elimination of Xd+l
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from Ideal(D) corresponds to projecting D C Rd X I:- onto Rd. For some
term orderings the Grabner basis of Ideal(D*) and Estv* can be easily
deduced from the Grabner basis of Ideal(D) and Estv.

Theorem 4.3 1) Ideal(D) n R[X1,'" ,Xd] = Ideal(D*). 2) Let G be the
Grabner basis oIIdeal(D) with respect to a term ordering eliminating Xd+1'
The Grabner basis oIIdeal(D*) is G n R[X1,' .. , Xd].

Proof. 1) Assume 1 E Ideal(D) n R[X1, ... , Xd]. Then for all a = (a*, I!) E
D, we have that a = I(a) = I(a*, I!) = I(a*) as 1 E R[X1,"" Xd]. This
implies 1 E Ideal(D*). The converse is obvious. 2) See Cox et al. (1996) .

•
Clearly Theorem 4.3 applies when instead of Xd+l we need to eliminate
some other variable. The projection is now on the remaining variables and
replications may appear. For example the projection of the 22 design at
levels ±1 over the first factor gives ±1 replicated twice.

5 Examples

The analysis of observations suggested in the paper proceeds as follows.
Given a design D, compute EstV,T where r is a term ordering that elimi­
nates the extra variable t. Orthonormalise the terms of EstV,T that do not
involve t. Collect coefficients to determine the parameters of the wanted
model from the estimated coefficients in the orthonormalised model.

Example 5.1 (22 full factorial design with centre points)
Consider the 22 design at levels ±l. The standard model associated with
it is

Y = 00 + 01Xl + O2X2 + 012 Xl x2·

Clearly 1, xi and x~ are confounded on D. Suppose that we want to test
linearity by adding quadratic terms to the model. The simplest way to
extend this design such that quadratic terms become identifiable, is to add
centre points. We add four observations at (0, 0) and the design becomes

D = ((-1,-1,1),(-1,1,1),(1,-1,1),(1,1,1),

(0,0,1), (0,0,2),(0,0,3),(0,0,4)}

{aili=1, ... ,8}.

We use a term ordering (J that eliminates the variable t and is a degree
reverse lexicographic ordering on Xl and X2 (Cox et al., 1996). We obtain

Estv = {1,X1,X2,X1X2,x~,t,e,t3}.

An orthonormal basis for the linear span of the terms not involving t is

{
I Xl X2 Xl X2 X~ - ~ }
y'8'2'2'-2-' V2 .
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Let 9 be the polynomial that interpolates the observations Y1 , . .. , Ys at
the design points, g(ai) = Yi, i = 1, ... ,8. The traditional sums of squares
correspond to the squares of the inner products. In particular, using Equa­
tion (1.5) the average over the centre points minus the average over the full
factorial is computed as

(
2 1)21 2 X 2 - 2"

SSpure quadratic = 8" (Y1 + ... + Y4 - (Y5 + ... + Ys» = g, v'2 v'

By simple comparison of terms, we read off the coefficients of the wanted
model from the coefficients of the orthonormalised model.

Example 5.2 (Star composite design with centre points)
If the analysis of the 22 full factorial design with centre points indicates
that there is curvature, then it is practice to study the quadratic terms.
We choose to break the aliasing by augmenting the design with four axial
points at (0, ±2) and (±2, 0). The new design V is given below

V {(-1, -1, 1), (-1,1,1), (1, -1, 1), (1, 1, 1), (-2,0,1), (2,0,1),

(0,2,1), (0, -2, 1), (0,0,1), (0,0,2), (0,0,3), (0,0, 4)}.

We use again the term ordering (J used in Example 5.1. The monomials in
Estv not involving the counting variable are

An orthonormal basis for the linear span of these terms by applying the
Gram-Schmidt procedure to Estv in the order above, yields

Example 5.3 (23- 1 fractional factorial design with centre points)
Consider the standard 23 - 1 design with generator I = ABC and four ad­
ditional centre points. The design is

V {(1, -1, -1, 1), (-1,1, -1, 1), (-1, -1, 1, 1), (1, 1, 1, 1) ,

(0,0,0,1),(0,0,0,2),(0,0,0,3),(0,0,0,4)}.

Again using the term ordering (J' we obtain Estv = {1, Xl, X2, X3, X~, t, t 2
, t3

}.

An orthonormal basis for the linear span of the terms not involving t is
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