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On Markov games

by

J. van der Wal and J. Wessels

Abstract: In the paper it is demonstrated, how a dynamic programming approach

may be useful for the analysis of Markov games. Markov games with finitely

many stages are dealt with extensively. The existence of optimal Markov

strategies is proven for finite stage Markov games using a shortcut of a

proof by Derman for the analogous result for Markov decision processes. For

Markov games with a countably infinite number of stages some results are

summarized. Here again the results and the methods of prove have much in com­

mon with results and proofs for Markov decision processes. Actually the

theory of Markov games is a generalisation. The paper contains short intro­

ductions into the theories of matrix games and tree games.

1. Introduction: The theory of games is a part of mathematics. Its a1m is the

analysis of mathematical models for decision situations with at least two

decision makers having more or less opposite goals. Examples of such situa­

tions are card games and board games. Other applications may be found in

economic theory, military science, negotiation problems.

Many real-life situations with more than one decision maker involved (we

will call them players henceforth), are typically dynamic in the following

sense: the players have the possibility in subsequent moves to react on

what happened so far (e.g. chess, bridge, bargaining, tankduels, economic

competition).

An important tool in the theory of games is the replacement of a dynamic

game by an equivalent one-stage game. For theoretical purposes such a re­

placement is very convenient: proofs of the existence of good strategies

and values for one-stage games are mathematically extremely elegant (the

notions mentioned will be defined in section 2; for a more elaborate treat­

ment we refer to the epochmaking book on game theory by Von Neumann and

Morgenstern [9J, or the introduction to game theory by Owen [llJ).

However, such a replacement is not very helpful if one is interested in the

actual computation of values and good strategies and in the structure of
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good strategies. For these reasons this paper emphasizes mainly on the

use of the dynamic structure for the analysis of games.

In dynamic programming and in the strongly related theory of Markov decision

processes (as initiated by Bellman in [IJ and by Howard in [5J, we encounter

situations with one decisionmaker, in which the dynamic structure plays a

basic role. In these situations it appeared to be possible to use the dyna­

mic structure essentially for the analysis. So the question arises, which

part of the tools developed in Markov programming may be extended for the

use in situations with more than one player.

In the literature the connection between dynamic games and dynamic program­

ming is not investigated systematically, although similar ideas appear in

both fields. For example, Shapley's paper on Markov games has been published

as early as 1953. However, it is not mentioned in papers on Markov program­

ming, which have been published several years later, in which similar ideas

are investigated in an essentially simpler situation. Even Von Neumann and

Morgenstern already use a dynamic programming type of argument in a sketch

of a proof [9,§15.8]. Namely for the assertion that in two-person games

(with perfect information of what happened before and with the gain of one

player equal to the loss of the other) only pure moves (see section 2) need

to be considered. For a somewhat more formal proof using the same type of

argument we refer to the book of Blackwell and Girshick [2, §1.7J.

In this paper we will consider multi-stage games with two players, each

having a finite number of possible moves at any stage of the game. Our ga­

mes may be influenced by random events (like the tossing of coins and random

distributing of cards). Furthermore it will be assumed that the gain of the

first player has to be paid by the second one (in technical terms: we consid­

er multi-stage two-person zero-sum games). All these assumptions may be

weakened in some sense. However, in order to avoid distracting technical

details, we will stick to the assumptions.

In section 2 some well-known facts about one-stage games (or matrixgames)

will be summarized. In section 3 games with a finite number of stages will

be introduced using the concept of a treegame. The usefulness of a dynamic

programming approach will be demonstrated for the perfect information case.

In section 4 we introduce Markov games with a finite number of stages. This

concept is slightly more general than the concept of a treegame with perfect
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information. The analysis is completely based on dynamic programming ideas.

The existence of good Harkov strategies (for definition see section 4) is

proven using a shortcut of a proof by Derman [4J for the analogous result

for Markov decision processes. Section 5 is devoted to comments and exten-

s~ons.

In section 6, Markov games with a countab1y infinite number of stages are

considered. For the analysis of such games the analogy with Markov decision

processes is extremely rewarding. Some results will be sketched, which have

been obtained using some ideas about succesive approximation procedures for

Markov decision processes.

For an annotated bibliography on Markov games, we refer to [16J.

Z. Matrixgames: In this section we consider a very simple type of game, It

is supposed, that both players (we call them PI and P
Z

) may select an

action (or move) from a finite set of available actions: K in the set for

PI and L for PZ' They are supposed to choose simultaneously without knowing

what the competitor does.

The reward or gain for PI is equal to r(k,~) (possibly negative), if he

chooses k E K and Pz selects ~ E L, The gain of PI is the loss of PZ'

Hence this type of game is completely characterized by the reward function

r(k,£), which may be denoted in matrixform.

For a detailed analysis of two-person zero-sum matrixgamcs we may refer to

any introductory book on game theory (e.g. [Z,9,IIJ).

Example: K = L = {1,Z,3} , r(k,t) = jk - £1,

Hence this game is characterized by the following gainmatrix:

o

o

2

We start the analysis of matrixgames by defining:

A(k) := m~n r(k,£) ,
Q,EL

Q(i) := max r(k,£)
kEK

Here A(k) is the minimal reward for P
1

, if he plays k, whereas Q(t) is

the maximal loss for P2' if he plays £,
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Hence, by a sensible choice of k, PI may increase his guaranteed reward to

A : = max A(k) ,.
kEK

whereas P2 may decrease his most pessimistic loss to

w := min Q(R,).
R,EL

The interpretations of A and immediately imply : AS; W.

In the example A(k) = 0 for k= 1,2,3; Q(R,) = 2,1,2 for t.= 1,2,3 respectively.

Hence A = 0, W = 1.

A modification of the rewardmatrix such that r(k,R,) gets the value k - £

gives an example with A = w(= 0).

If A = w, it is clear .that, when both players attempt to maximize their most

pessimistic reward, actions which maximize A(k) and minimize Q(R,), respect­

ively, are the best choices. In this case A is called the vaZue of the game

and the actions maximizing A(k) and minimizing Q(R,), respectively, are

called good pure strategies (the meaning of the adjective pure will become

clear in the sequel).

If, on the other hand, A < w, then it is not immediately clear which are the

most sensible actions. We might again call actions which guarantee PI the

reward A and P2 the reward -w, respectively, good strategies, however, what

happens with the still undivided amount w - A?

This question is usually tackled by extending the game ~n such a sense, that

so called mixed (or randomized) strategies are introduced: the players do

not select an action from K or L respectively, but they select a probabil­

ity distribution on K or L respectively. The interpretation of these stra­

tegies is, that the player selects a probability distribution and that a

random experiment, according to the probability distribution selected, points

out an action. The degenerated probability distributions coincide with the

strategies in the non-extended game, which are called pure strategies

henceforth.

If we introduce the expected reward as gainfunction, we obtain the following

extended game:

The action sets for PI and P2 are the sets P and Q of all probabi lity distri­

butions on K and L respectively. A typical element PEP is a set of non­

negative numbers Pk for k E K, adding to one (analogous ly for q E Q).

The gainfunction R(p,q) is defined by
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A basic theorem of game theory states, that for this new game -which posseses

infinite action sets- the A-value and w-value are equal:

A*:= max min R(p,q) = min max ~(p,q) =:
p q q p

*w •

N
(One may easily verify that P and Q are compact subsets of R , for some N,

so that since R(p,q) is continuous we may write maxmin and minmax)

* *A is called the (mixed) value of the original game. If A = w, then A = A •

The maximizing and minimizing strategies are called good (mixed) strategies.

For proofs see the references [2,9,11J e.g.

Clearly a pair of good (mixed) strategies (p* ,q*) forms a saddlepoint of the

function R(p,q):

* * * *R(p,q ) $ R(p ,q ) $ R(p ,q) for all PEP, q E Q.

* *On the other hand one easily verifies, that if (p ,q ) is a saddlepoint of

R(p,q), then p* and q* are good (mixed) strategies and R(p* ,q*) is the

value of the game.

~xample: If K = L = { 1,2,3 }, we get:

P = {(PI,P2,P3) I Pk ~O, PI + P2 + P3 = I} = Q.

In the matrixgame with r(k,£) = Ik-£/ we find, as might be expected, that the

strategies p* = O,O,D and q* = (a,I-2a,a), ° $ a $;~, are good for PI and

P2, respectively. (Notice that when r(3,3) is enlarged the saddlepoint be­

comes unique with a = 0)

Finding saddlepoints in a heuristic way is not always as easy as in the

example. However, linear programming presents a systematic procedure, as

indicated below.

For fixed pEP we have obviously:

min L
q k

Hence the value A* of the game should satisfy for certain p and all £:
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This implies, that the value of the game and a good strategy for PI may

be obtained by solving the following linear programming problem in the

variables v and Pk (k € K):

max v

subject to Pk ~ °

L r(k,R,)Pk ~ v
k

(k € K),

(R, E L).

In an optimal solution the v-value is equal to A* and the p-part denotes

a good strategy for PI'

Note that the variable v is not restricted to nonnegative numbers.

By computing min max R(p,q) analogously ,one finds the dual linear program-
q p

ming problem, which produces a good strategy for P2 . In this way the theory

of matrixgames is strongly related to (and in a sense even equivalent to)

the duality theory of linear programming (see e.g. Dantzig [3J).

Example: In the example of this section we get the linear programming problem:

max v, subject to PI ~ 0, P2 ~ 0, P3 ~ °
PI + P2 + P3 =

P2 + 2P3 - v ~ °
PI + P - v ~ °3

2PI + P2 - v ~ o.

Summarizing, the main assertion of this section, which will be used exten­

sively in sections 4 - 6, is the following:

For any matrixgame a value and good (mixed) strategies exist and may be

computed (e.g. by linear programming).

3. Treegames: In many gaming situations (like card and board games) the

players may subsequently choose a move. In this section, we will present

a mathematical model for such games.
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Firstly, we give a verbal description of the type of gam1ng situation this

section treats:

1. for the start of the game, the rules specify whether one of the players

makes the first move, or the first move is a chance move (like the throwing

of a die, or the random distributing of cards), In the first case the rules

specify which player makes the first move and which actions are available

to him (e.g. in chess all allowed first moves for white, together with

glv1ng up and offering a draw). In the second case the rules specify the

probability distribution of the outcome (e.g. the outcome of an honest

throw with an honest die).

2. subsequent moves are specified by the rules of the game in a similar

fashion. Viz., for the k-th move the same kind of specification is given

as for the first one, however, in such a way that all features may depend

on the realizations of the first k- 1 moves (as in most gaming situations).

3. the rules should specify what information a player receives about what

happened before (e.g. in board games all relevant information is always

available, however, in many card games the players know exactly what has

been done before by the players, but they don't know the complete outcome

of the chance move the game started with viz. distributing cards).

4. the rules should specify when the game ends and which rewards are attached

to any possible course of the game.

For the case of a finite two-person zero-sum game we will give a model using

the concept of a tree, For a more detailed description for more general types

of games the reader is referred to a paper by Kuhn [6J.

A tree is a finite directed (connected) graph (or network), such that exact­

ly one vertex does not have incoming branches and all the other vertices

have exactly one incoming branch.

A treegame may be represented by a tree 1n which the set of vertices with

outgoing branches is partitioned into three subsets VD~ V1 and V2, The sets

V1 and V2 being again divided into sub-subsets consisting of vertices with

an equal number of outgoing branches. And these sub-subsets are partitioned

again into sub-sub-subsets called information sets. To each vertex in Vo
a probability distribution on the outgoing branches has been attached. To

each vertex without outgoing branches a number has been attached.
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With this formal model games of the verbally described type may be handled,

as appears from the interpretation, which will be given using the example

of figure I.

4 Lj -s -'$ -5 6 6 8 6 -7

fig. I points in V0 are denoted by 0, in V
1

bylIO, in V
2

byB, endpoints

by .; information sets have been encircled. All branches are directed

upwards.

The game is supposed to start in the bottomvertex, which is the only vertex

without incoming branch. This vertex is an element of Vo' which means that

the first move is a chance move. Suppose the outgoing branches are allotted

with equal probabilities. If, say, 2 is allotted, then the gamesituation

proceeds to the endpoint of the second branch, which is a vertex in V
l

• Hence

the second move is for PI' Since this vertex and its left side neighbour

belong to the same informationset, PI does not know whether the chance move

resulted in 1 or in 2. If PI chooses I (the outgoing branches denote his

allowed actions), the third move is for PZ' since the outgoing branch 1

ends in a vertex of V
2

• The information for P
2

is such that he does know

that PI chose I, but he does not know more about the chance move than Pl.

His own possibilities are I and 2. If he chooses 2, he receives 5. On the

other hand, if he had been in the other point of the information set

- which he does not know - he would have to pay 4 with the same choice.

In this way, the playing of a game amounts to the successive determination

of steps in a path leading from the bottom to one of the top vertices of

a tree.
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A treegame may be modelled as a matrix game by introducing the concept of

a decision rule. For example in the game of figure 1, player PI has 4 deci­

sion rules, namely:

choose i when the chance move is at most 2, choose j otherwise ( where i

and j may be 1 or 2).

6In a similar way the 2 = 64 decision rules for P2 may be given and for

each pair of decision rule~ for P I and P2 respectively the expected reward

for PI may be computed. This generates a 4 x 64 - matrixgame.

How about finding sensible strategies in a treegame? Consider, for instance,

the example of figure 1. Suppose that the game proceeded until the third

move along the path on the extreme left. Then Pz knows exactly what the

situation is and which consequences his possible choices have: I will cost

him 4 and 2 will bring him 5. So his choice won't be difficult. It is

equally easy for him in the other vertices of V
2

which are alone in an

information set.

It is much more difficult for PZ' if he knows only that he is in the second or

third vertex from the left (on the third row). Then he should wonder, what

will PI have thought on the ,second level, whereas PI should have asked

himself how will Pz react. This kind of interference, caused by the lack of

information, makes the solution more difficult.

By the way, some actions for Pz may be neglected because of the foregoing

argument, while the game may be split up in two games (representing the

right and the left half of the tree) • Using these tricks the solution of

the game only requires the solution of two 2 x 2 - matrixgames instead of

one 4 x 64 - matrixgame. This is left as an exercise to the reader.

Let's modify the example in such a way, that both players are completely

informed of the outcome of the chance move at the beginning of the game:

then all information sets become one element sets. Such games are called:

games with perfect information.

Now all sensible decisions for P
2

can easily be found: Z,I,2,1,1,2,1,2

(from left to right). Knowing this we may attach the corresponding re-
",

wards to the vertices in the third row and skip all vertices and branches

above them. Now the same argument gives for PI: I, I or 2, I, 1 or 2

<from left to right) as most sensible decisions. In this way we will

surely find the best possible decisions by essentially using the dynamic
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programming idea. The only difference being that in some steps

(P 1) and in others one minimizes (P2) ~ With perfect information

rv.~ry unfavourable for PI' t~e expected (optimal) reward being

.(how about the original game ?).

one maximizes

the game is

!<-3-5-5-7) =-5

So in perfect information treegames a dynamic programming appro.",-ch ~Y':Qe

very efficient. Notice that we don I t need the mixing concept in perfect )

information treegames.

Although the strategies we found, by dynamic programming are obv~ously the

best possible ones, we did not prove that they are good in the ~ense of c

section 2. We will not prove this now, since this will be done itl1:"the

next section for a somewhat larger class of dynamic games, viz. allowing

some sort of imperfect informa~~on.

}. t1

4. Finite-stage Markov games: In this section we will consider a special t~e

of the dynamic games we introduced in the preceding section. However, the

type we will consider is more general than the perfect information tree­

games.

any game of this type has a value, that both players
"of the ~o called Markov structure (essentially a lack

value and good strategies may be determined by a

It will be proved, that
iiv

h~ve good strategies
m:l~

of memory), and that
Net
dynamic programming approach;"
ffim

Tb~ game we will consider is playes as follows.

~treach of a finite number of time instants, both players simultaneously

choose an action out of some set of available actions. As a resq1t of £pe

>tw.o actions chosen, the state of the game changes and P1 receiv~,12: .~9llle;.~n

~pQssibly negative) amount fromP2 •

player) have been given, denoted, by Kx for PI and by Lx for P2' ',f>.'

This type of game might be formalized as a treegame with subsequent moves

i~stead of simultaneous ones, using an appropriate choice of information

sets. However, we prefer a set up analogous to the usual set-up'-forMarkov

decision processes (see e.g. ,[4,5, 19J): )i

&qn,sider a dynamic system with finite state space S := {1, ••• ,N}~-',· whi~h(

~isll be jointly controlled by: the players P'l and P2 (the reader may 'think

of a state of the system aso£ a position of the game).

For each state x E: S two finite'; nonempty sets of actions (one set for each
(or

! ..

e g

ZC _ wirh
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At each of the times t = T, T - 1, ••• , I both players have to select an

action out of the set available to them. Suppose at a time t the system

is in state x, PI chooses action k, and Pz chooses action 1, then the

system moves to the state y with probability p(y]x,k,l) and PI receives

an amount r(x,k,l) from P
Z

• Moreover, we assume that, if the system

moves to the state y as a result of the final players and chance moves,

PI receives a terminal payoff q(y) from PZ•

This game will be called a T-stage Markov game with terminal payoff q.

Notice that we numbered the decision times in reversed order. It is more

convenient for a dynamic programming approach to call the starting time

T and the time for the final decisions I.

Another observation is the following: if K consists of only one element
x

for all XES, then the Markov game reduces to a Markov decision process

with essentially one player.

Example:

r(2,1,1) = -10

p(lII,I,I) 3 p(lII,Z,}) I
= 4' = 8'

p(III,I,Z) I
p(I II ,Z,Z) 7

= 4' = 8'

p(2)x,k,R-) = - p(Ilx,k,R-).

r(I,I,I) = 10, r(I,Z,I) = 5,

r(I,I,Z) = 5, r(I,Z,2) 8

q(I) = 6 q(Z) = - IZ •

S = {I,Z} , KI = L
I

= {I,Z} , K
Z

= LZ~= {I}, T = Z.

I
p(ljZ,I,I) = '2

In the example PI will try to keep the system in state 1, whereas Pz
prefers state Z. How they can acheive their goal in the best way will

appear later on in this section.

Before starting with the analysis of Markov games, we will give a few

definitions and notations.

A strategy TI for P1 in the T-stage Markov game is any function that

specifies, for each time t = T, T-I, ••• ,1 for each state XES, and'

for each history h
t

, the probability TI(k/x,t,h
t
) that action k E K

x
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will be chosen. By the history h we mean the history of the game upto
t

reverse time t, viz. h t = «xT,kT'~T), ••• ,(Xt~l,kt+l'~t+I»' the sequence

of observed states and chosen actions at earlier times (formally we sup­

pose hT to be the empty sequence).

We will call n a Markov strategy for P1, if the n(klx,t,h t ) do not depend

on h •
t

A poZicy for P1 is any function f on S, such that f(x) is a probability

distribution on Kx • Hence a Markov strategy n for PI consists of T policies

for PI. If n is a Markov strategy for PI' we will denote it by (fT,fT_ I , ••• ,f 1),

where f t is the policy for PI to be used at reverse time t.

Similarly strategies p and policies g for P
z

are defined.

As in the preceding sections, we suppose the expected reward for P I (or loss

for PZ) to be the criterion for choosing strategies. Therefore, we define

V(n,p)(x) as the total expected payoff for Plover the duration of the game,

when the game starts at t = T in state x, while PI applies strategy n, and

Pz applies strategy p. V(n,p) then denotes a columnvector of size N with

x-th coordinate V(n,p)(x).

By our definitions of strategy and policy we allow already for a kind of

mixing.

Notice that V(n,p)(x) for fixed x characterizes a kind of matrixgame with

moves for PI called n and for Pz called p. The only difference with the

games of section Z being that the numbers of allowed n's and p'S are not

finite.

Example: In the example of this section a policy for PI is completely

characterized by: choose decision I with probab~lity p if the systen. is',

in state 1. Hence a Markov strategy for PI is characterized by two numbers

Pz and PI with 0 ~ Pt ~ I, t = I,Z.

If both players use the Markov policy "0,0", the corresponding V-values
Zl 5become: 16 32 and - 10 8 for x = 1,2 respectively.

Similarly as in the matrixgames of section Z our interest ~s in finding

a saddlepoint of V(n,p), that means strategies n* and p* satisfying

* * * *V(n,p ) ~ V(n ,p ) ~ V(n ,p),
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I..here ,-'ector inequalities are supposed to be componentwise. If we can

find such TI * and p *, we know (compare section 2) that PI can guarantee

* *his exper.: ... "", reward at the level V(n ,p ), whereas Pz can prevent a

larger expected loss than V(n*,p*). If a saddlepoint exists, we call

* * * * .V(n ,p ) the 'l.'alue of the game and 71',p good 8trateg1.-es for' Pl and P 2
respectively.

Our first aim will be to show the existence of good Markov strategies,

since we know that 1n finite-stage Markov decision processes optimal

Harkov strategies exist (see e.g. Derman [4J).

In order to simplify the notations we

Ie t f and g be arbitrary policies for

and LJ ~N are defined byon

Nintroduce two operators on R

PI and Pz' then the operators L(f,g)

(L(f,g)V)(x) := I fk(x) L gi.(x)[r(x,k,R.) + L p(ylx,k,R.)v(y)],
k R. Y

N k R.for XES, V ( R , where f (x) and g (x) denote the probabilities for

choosing actions k and R. with policies f and g respectively.

~v :~ max m1n L(f,g)v,
f g

where maxmin 1.S taken componentwise.

Hence L(f,g)v is just the vector of expected payoffs for PI in the I-stage

Narkov game with terminal payoff v, when PI uses policy (which is the

same as a strategy in a I-stage game) f and P2 uses g.

(L(£,g)v) (x) may also be viewed as the expected reward in a roatrixgame

with action spaces K and L , where f(x) and g(x) denote mixed strategies.x x
Hence (Uv)(x) is the value of the matrixgame with entries

r(x,k,R.) + I p(ylx,k,~)v(y).

Y

Now we may define the sequence V
t

' t N0, I , ••• , T, v t E R by

V o(x) : == q (x) for x E: S,

v := lTv
t 1,:-1 for t 1, ••. ,T.
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Let (f*t,g*t) be a saddlepoint of L(f,g)vt _
1

' hence

"*) * *) (*) 1L(f,g t vt -
1

~ L(f t,g t v t _
1

::: v t ~ L f t,g for al f,g.

Interpretation: vI is the value of the I-stage Markov game with terminal

payoff va ::: q; v
2

is the value of a I-stage Markov game with a terminal

payoff determined by apair of good strategies for the I-stage Markov game

with terminal payoff VI' Etc.

We expect

payoff q.

*and1T : ==

that v
T

will be the value of the T-stage Markov game with terminal

* *. * * *Furthermore we expect nand p def~ned by n := (fT , ••• ,f l )

* *(gT ,···,gl ) to be good strategies for the T-stage Markov game.

Theorem: The T-stage Markov game with terminal payoff q has value vT'

furthermore che strategies n* and p* are good strategies for that game.

Proof: As a first part of the saddlepoint property, we will show

. * * *VtIT,p ) ~ V(n ,p ) = vT for any n.

Denote by vt(ht,x,n) (for t ::: I, ... ,T) the conditional expected reward

for PI from reverse time t towards, if the system is in state x at time t,

*history h
t

has been observed and the strategies TI and p are played.

Define: vO(hO,x,n) :== qex).

We will prove the assertion by induction. For t ::: °we have by definition

for all h
O

and x:

Now assume for t ::: O, •.. ,n and for all n, h
t

, x:

So we have for all h l' x and n: v leh I,X,TI):::n+ n+ n+

*vn+ 1 (hn+1 ,x,n ),
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where h 10 (x,k,~) denotes the concatenation of h 1 with (x,k,l)
0+. n+

r.esulting in a history h • The first inequality follows immediately
n

trom tJ)8 E:d.uction assumption for t = n, and the latter one follows

ft'Offi tlw definition of v
n

+
1

and g:. The final equality follows from

and tr,e induction assumption.

Hence for all XES:

The other part of the saddlepoint property may be shown analogously.

The proof of the preceding theorem is a shortcut of the proof given

by Derman [4J for the existence of optimal Markov strategies in finite­

st~ge Markov decision processes.

v:e have permitted the players to use non-Markov strategies, however, we

shovi"ed that a player may just as well restrict himself to the use of

Uarkov stra;:egies. Zachrisson [20J, who also considered this type of

garne, si lently assumed that both players would only use Markov strategies.

Under this condition he proved that the game has a value. Furthermore

he proved, that this value and good strategies may be determined by the

dynamic progr~nming approach we also used here.

Sumrw,ti: izing. we see that we have shown in this section, that the following

algox:i thw. provides the value of the game and good Markov strategies for

both players:

(i) set v,. (x) := q(x).,; f or x = I, ••• ,N •

(ii) determine for t = I, ... ,T policies f~ , g~

satisfying for all f and g

and se t

*L(f , g) v 1
t t-

(iii) V
T

Hl the value of the game

are go,Jd strategies for PI'

>< * *and 'IT := (f
T

, ... ,f
1
),

P n respectively.
£.

*p * *): = (gT' ••• ,g 1



- 16 -

EX~~Ele: using the algorithm for the example of this section gives the fol­

lowing results:

The computation of vI (I) requires the solution of the matrixgame

5
2

47
4"

By the method of section 2 or by elementary geometry (since the matrix is

2 x 2) one finds: f* 1(I) 33
g7

1
( I)

57 493 4,04, v I (2) = - 13.=122 and v 1(I ) = -- =
I 61

, 122
The computation of v

2
(1) requires the solution of the matrixgame

i 9,78

l- 5,87

3.74] •

9,91

* 1This gives: f
2

(1) = 0,54 I
g~ (1) = 0,47 , and v 2 (I) = 2 J 56 , v 2(2) = - 14,48.

5. Comments and extensions: The first point to conunent on, is the amount of

work involved 1n using the algorithm of the previous section. For each

stage we have to solve a matrixgame for each state. Hence all together

NT matrixgan~s. These matrixgames may be solved by linear programming as

shown in section 2. The size of the linear programming problems depends

heavily on the size of K and L • If one of the sets K ,L contains onlyx x x x
one element, the linear programming problem may be replaced by a maximum

or minimum operation. Moreover one may choose degenerated distributions

for f:Cx) and g:(x), thus for state x mixing won't be necessary. If both

K and L contain only one element, then there is no prob lem at all (as
x x

for state 2 in the example of section 4).

If for all x at least one of the sets K , L contains only one element (in
x x

which case game has perfect information) we need not consider mixed

actions, at all. Furthermore no nontrivial matrixgames have to be solved:

only minimization and maximization will be required. As a result the amount

of work that has to be done to solve the T-stage Markov game will be the

same as for a T-stage Markov decision process of the same size, the only
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difference being that some stated require minimization instead of maximization.

Now Vie wil.i.. make some remarks on the possibilities of weakening the conditions

in se.:tion 4:

a. we. supposed that S, K , L , p(y lx,k, .Q.), r(x,k, V were the same for all
x x

time instants. We did not use this supposition in the proof of our theorem

in any essential way. The weakening of this condition is not very essential,

since any T-stage Markov game without these stationarity property may easily

be transformed (by introducing some new states) in an equivalent T-stage

Markov game satisfying the requirements of section 4.

b. we supposed for all x, k, and .Q.

L P (y Ix,k, 9,) = I.
Y

However if we allow for some or all x, k, and 9,

I P(Ylx,k,9,) < 1,
Y

only trivial changes of the proof are needed to obtain the result of section 4.

One might interprete

1 - I p(Ylx,k,Q,)
Y

as the probability of a premature ending of the game.

c. one easily interpretes our finite number of time instants as deterministic

equidistant points of time. However, this is not the only possibility.

Actually they may be stochastic, e. g. the transitiontime may be distributed

according to a distribution function F(.I x,y,k,.ii-) where k and 9.- are the

selected actions in the starting point x of the transition, and y is the

result of the transition (semi- Markov behaviour).

Of course one might introduce more intricate decision rules by taking into

account the transition times. However, one easily argues that this cannot

alter' the value of the game.

d. instead of considering the criterion of total expected rewards. one might

prefer to use total expected discounted rewards. For the game with equidistant

time instants this just requires replacement of p(y! x,k,.q by 13p(yl x,k,9.-)

in most places. For ~ all nonnegative real values are allowed. For the semi-
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Markov type of transition times we may use any S E [O,IJ; if we want to use

a > I, we should require for all y,x,k,l

00

r tJ S dF(tlx,y,k,t) < ~.

o

e. the rewards r(x,k,1) need not be deterministic (given x,k.l), but may

as well be expectations. For instance, if the amount PI receives from Pz
18 equal to r(y!x,k,l) when the transition from x to y is made under the

actions k and £. then r(x,k,i) may be defined by

r(x,k,1) := I p(ylx,k,l)r(y,x,k.l).
y

Most of the extension possibilities have been worked out in more detail in [14J

The final section of this paper will be devoted to another (actually the

most interesting) extension, namely the case T = 00.

6. Infinite-horizon Markov games: So far we considered finite-stage games only:

the treegames of section 3 and the Markov games of section 4 all had finite

time horizons.

The results of section 4 may be of help for some infinite horizon Markov

games as well.

One of the difficulties of infinite-horizon Markov games is the fact that

dynamic programming procedures need endpoints to start the backwards

induction. Another difficulty is that for infinite horizon Markov games

the total expected rewards need not converge.

We will handle these difficulties by considering some types of infinite­

horizon Markov games, each with special extra requirements.

Throughout this section the basic assumptions are the assumptions of section

4 with T = ~, (the terminal payoff q is obsolete now). So we start with the

concept of an oo-stage Markov game. We will consider 4 types of oo-stage

Markov games.by making successively 4 extra assumptions. The time is con­

sidered as normal order time again: t = 1,2, ..•. Strategies, policies,

mld Markov strategies for both players may be defined as in section 4.

a. ro-stage ciscounted Markov games: the special assumption here is, that

V(~,p) is replaced by VS(TI,p) with 0 ~ S < I, where VS(n,p) denotes the
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columnvector of the total expected discounted rewards (using discount­

factor S) +or PI for the different starting states x. Hence,if PI receives

A . . 1 1 t-la reward at t~me t, ~t ~s on y eva uated at S A.

We will demonstrate that this game has a value.

Consider the T-stage Markov game with terminal payoff O. As we have seen

in section 4, this game has a value and both players have good Markov

strategies. This remains true when we discount rewards (section 5).

Now, let PI play in the ~-stage discounted game a good strategy for the

T-stage game amplified by arbitrary decisions after time point T. Then his

expected discounted rewards will be at least equal to

where vT is the value (vector) for the T-stage (discounted) game, e is a

columnvector consisting of ones, and

M:= max Ir(x,k,~)I.
k,~,x

In a similar way, P2 may restrict his expected discounted losses to

Notice, that the difference between the two boundaries vanishes if T tends

to infini ty •

Again we consider the operators L(f,g) and U of section 4, however with

the slight modification of all transition probabilities p(yl x,k,t) being

replaced by Sp(Ylx,k,t).

For this modi~ied operator U one easily verifies

maxi (Uv) (x) - (Uw) (x) I :;;; S max I vex) - w(x) Ix x
E

"l)n)(v,w .I.'.

So U is a contractive operator on RN (with maximum norm) with contraction

radius S (for details see [15])

As a consequence we have

1. The set of equations Uv = v with vERN has only one solution (let us

call this solution v );
N S

2. For any v E ~ we have

(componentwise convergence)
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TThus, s~nce vT = U 0, we have

Hence
T

and v - -f-- M.e tend to vo' whi~ is consequent-
T 1-8 fJ'

ly the value (vector of the «-stage discounted Markov game.

If T is chosen in such a way that

for a prescibed E: > 0, then good strategies for the T-stage game with ar­

bitrary continuations are oo-good strategies for both players (a strategy

~E: for PI is called €-good strategycfor player PI if for all:

VS(rr E:' p) ~ vS - E:e) •

Hence f~ - optimal Markov strategies for both players may be determined by a

dynamic programming type of procedure, which at the same time gives a

E:-approximation of v~.

Like in the theory of Markov decision processes a more efficient use of the

dynamic programming procedure E: - good stationary Markov strategies nearly

always in much less steps then needed to reach a T with

This will not be worked out here. We refer to [15] for details in the case

of Markov games and we refer to Macqueen [8J and van Nunen [IOJ for the

same ideas in Markov decision processes.

Alternative types of dynamic programming procedures (based on other U-operators)

may be used as well as in Markov decision processes. This has been worked out

in [15J using the concept of stoppingtime-based L(f,g)-operators as intro-

duced in [17].

b. Shapley's oa-stage Markov games: Shapley [12Jdid not use discounting

of rewards in order to obtain a properly defined criterion function, but

supposed (with some purpose) for all x,k,~

I p(y!x,k,R-) < 1.
y
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As a result of the assumption, the operator U again becomes a contracting

operator. Hence the same arguments as in the discounted case (S < I) lead

to the same results. The refinements in order to obtain a more efficient

procedure require somewhat more details. Actually this case is equivalent

to the discounted case with semi-Markov behaviour of transitions. Compare [14J

c. 00 - stage Markov games with probabilistic termination: For this type

of games we suppose that for certain TO and E > 0 any pair of strategies

1ncurs a probability of at least £ that the game ends before or on TO'

This condition is weaker than the condition in the proceding type.

For Markov games with probabilistic termination the operator U is not

necessarily contracting. However UTO is contracting with a contraction

radius of at most 1 - E. In this case the proofs for the properties of

dynamic programming type of procedures may be easily adapted from the

discounted case.(Compare [7J and [14J) Another way of treating this

situation is by introducing another norm in R
N

than the maximumnorm:

there always exists a norm such that U is strictly contracting with respect

to that norm. Then the proofs for the discounted case may be rewritten in

the new norm. See for details [18J.

d. 00 - stage Markov games with decisional termination: In this game it is

supposed that all immediate rewards r(x,k,i) are strictly positive and

that the minimizing player may restrict his losses to some finite amount.

See [7,14J. In [14J the minimizing player has in each state the possibility

of terminating the game immediately against some terminal (state and/or

action dependent) loss. And it is shown that though U
T might not be

contracting for any T at all the dynamic programming approach still gives

interesting results.

s = KI = LI = KZ = {I,Z} , LZ = {1,Z,3}. Furthermore

r(l,2,1) = 3, r(l,I,Z) = r(l,2,2) = r(Z,l,l) = r(Z,I,Z) = r(Z,I,3) = I,

8, r(2,2,2) = ), r(2,2,3) = 2,

= p(ZIZ,Z,Z) = p(1 IZ,Z,3) = 1 and p(xly,k,i) = 0 if either k or i

Example:

r(l,I,l)

1"(2,2,1) =

p(111,Z,2)

equals I. Thus whenever PI or Pz takes action 1 the game terminates

immediately.
I Z 3 3

It is easily seen that VI = (I)' v? = (Z), v3 = (3)' v4 = (4) and for
5 (3) S (3). h .n ~ vn = 5' 0 5 1S t e value of the game. For Pz the strategy wh1ch
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prescribes action I in state I and action 3 in state 2 is good and for PI

any strategy which prescribes action 2 in state 2 is good.

Another way of attacking 00 - stage Markov games may be the replacement of

total expected (possibly discounted) rewards by average payoff over a

long time. One may show, that,when for each pair of pure ( = nonrandomized)

policies the corresponding transition probabilities yield a Markov chain

with only one communicating class of states, the game possesses a value

and both players have good stationary strategies (see e.g. theorem 2 in

Sobel [13J).
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