

First-order queries on finite structures over the reals

Citation for published version (APA):
Paredaens, J., Van den Bussche, J., & Van Gucht, D. (1998). First-order queries on finite structures over the
reals. SIAM Journal on Computing, 27(6), 1747-1763. https://doi.org/10.1137/S009753979629766

DOI:
10.1137/S009753979629766

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.1137/S009753979629766
https://doi.org/10.1137/S009753979629766
https://research.tue.nl/en/publications/7d560913-be3b-4cf3-abf8-1a9d247a0b2f

FIRST-ORDER QUERIES ON FINITE STRUCTURES OVER THE
REALS∗

JAN PAREDAENS† , JAN VAN DEN BUSSCHE‡ , AND DIRK VAN GUCHT§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1747–1763, December 1998 011

Abstract. We investigate properties of finite relational structures over the reals expressed by
first-order sentences whose predicates are the relations of the structure plus arbitrary polynomial
inequalities, and whose quantifiers can range over the whole set of reals. In constraint programming
terminology, this corresponds to Boolean real polynomial constraint queries on finite structures.
The fact that quantifiers range over all reals seems crucial; however, we observe that each sentence
in the first-order theory of the reals can be evaluated by letting each quantifier range over only a
finite set of real numbers without changing its truth value. Inspired by this observation, we then
show that when all polynomials used are linear, each query can be expressed uniformly on all finite
structures by a sentence of which the quantifiers range only over the finite domain of the structure.
In other words, linear constraint programming on finite structures can be reduced to ordinary query
evaluation as usual in finite model theory and databases. Moreover, if only “generic” queries are
taken into consideration, we show that this can be reduced even further by proving that such queries
can be expressed by sentences using as polynomial inequalities only those of the simple form x < y.

Key words. first-order logic, linear arithmetic, relational databases, constraint programming

AMS subject classifications. Primary, 68P15; Secondary, 03C07, 03C10, 03C13

PII. S009753979629766

1. Introduction. In this paper we are motivated by two fields of computer sci-
ence which heavily rely on logic: relational databases and constraint programming.
We will look at the latter from the perspective of the former.

In classical relational database theory [1], a database is modeled as a relational
structure. The domain of this structure is some fixed universe U of possible data
elements (such as all strings, or all natural numbers), and is typically infinite. The
relations of the structure, in contrast, are always finite, as they model finite tables
holding data. As a consequence, the active domain of the database, consisting of all
data elements actually occurring in one or more of the relations, is finite as well.

A (Boolean) query is a mapping from databases (over some fixed relational sig-
nature) to true or false. A basic way of expressing a query is by a first-order sentence
over the relational signature. For example, on a database containing information
on children and hobbies, the query “does each parent have at least all hobbies of
his children?” is expressed by the sentence (∀p)(∀c)(∀h)(Child(p, c) ∧ Hobby(c, h) →
Hobby(p, h)).

Since the domain of each database is U, the quantifiers in a sentence expressing a
query will naturally range over the whole infinite U. However, Aylamazyan et al. [5]
showed that in order to obtain the result of the query it suffices to let the quantifiers
range over the active domain augmented with a finite set of q additional data elements,
where q is the number of quantified variables in the formula expressing the query. The

∗ Received by the editors February 5, 1996; accepted for publication (in revised form) October 9,
1996; published electronically June 3, 1998.

http://www.siam.org/journals/sicomp/27-6/29796.html
† Department of Mathematics and Computer Science, University of Antwerp (UIA), Universiteit-

splein 1, B-2610 Antwerp, Belgium (pareda@uia.ac.be).
‡ Department WNI, University of Limburg (LUC), B-3590 Diepenbeek, Belgium (vdbuss@

luc.ac.be).
§ Computer Science Department, Indiana University, Bloomington, IN 47405-4101 (vgucht@cs.

indiana.edu).

1747

1748 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

intuition behind this result is that all data elements outside the active domain of a
given database are alike with respect to that database.

Alternatively, we can choose to let the quantifiers range over the active domain
only, thus obtaining a semantics which is quite different from the natural interpreta-
tion. For example, consider databases over the single unary relation symbol P . Then
the sentence (∀x)P (x) will always be false under the natural interpretation, while un-
der the active-domain interpretation it will always be true. In fact, it is not obvious
that each query expressible under the natural interpretation is also expressible under
the active-domain interpretation. Hull and Su [15] established that the implication
indeed holds. (The converse implication holds as well, since the active-domain in-
terpretation can easily be simulated under the natural interpretation using bounded
quantification.)

In recent years, much attention has been paid to “constraint programming lan-
guages” (e.g., [9]). In particular, in 1990, Kanellakis, Kuper, and Revesz demonstrated
that the idea of constraint programming also applies to database query languages by
introducing the framework of “constraint query languages” [16]. An important in-
stance of this framework is that of real polynomial constraints. Here, the universe
U of data elements is the field R of real numbers. Databases, then, are relational
structures over R, but the database relations need no longer be finite; it suffices that
they are definable as finite Boolean combinations of polynomial inequalities. In other
words, each k-ary relation of the structure must be a semi-algebraic subset of Rk [10].

A basic way of querying real polynomial constraint databases is again by first-
order sentences, which can now contain polynomial inequalities in addition to the
predicate symbols of the relational signature. For example, if the database holds a set
S of points in R2, the query “do all points in S lie on a common circle?” is expressed
by (∃x0)(∃y0)(∃r)(∀x)(∀y)(S(x, y) → (x−x0)

2+(y−y0)
2 = r2). Note that quantifiers

are naturally interpreted as ranging over the whole of R. In order to evaluate such
a sentence on a database, we replace each predicate symbol in the formula by the
polynomial definition of the corresponding database relation, and obtain a sentence
in the pure first-order theory of the reals. As is well known, this theory is decidable
[22]; the truth value of the obtained sentence yields the result of the query. So, real
polynomial constraint queries are effectively computable.

Finite relations are semi-algebraic, so that finite relational databases over the
reals form an important special case of real polynomial constraint databases. For
example, if we want to model a database holding a finite number of rectangles, we
can either choose to store the full extents of the rectangles, resulting in the infinite
set of all points on the rectangles (represented in terms of linear inequalities in the
obvious way), or we can choose to store only the corner points of each rectangle,
resulting in a finite relation.

In the present paper, we investigate whether the results by Aylamazyan et al.
[5] and by Hull and Su [15], mentioned in the beginning of this Introduction, carry
over from classical first-order queries on relational databases to polynomial constraint
queries on finite databases over the reals. Indeed, as in the classical case, one can
give an alternative active-domain semantics to constraint sentences and again ask
whether this is without loss of expressive power. Note, however, that active-domain
quantification defies the very nature of constraint programming as a means to reason
about intentionally defined, potentially infinite, ranges of values. Hence, it is not
obvious that the results just mentioned might carry over at all.

Nonetheless, we have found a natural analog of the Aylamazyan et al. theorem,

FIRST-ORDER QUERIES OVER THE REALS 1749

and we have been able to establish the verbatim analog of the Hull–Su theorem in
the case when only linear polynomials are used. This is often the case in practice.
Our result might be paraphrased by saying that on finite structures, first-order linear
constraint programming can be reduced to ordinary query evaluation as usual in finite
model theory and databases.

Our development is based upon the following observation. Consider a prenex
normal form sentence (Q1x1) . . . (Qnxn)M(x1, . . . , xn) in the first-order theory of the
reals. For any finite set D0 of real numbers, there exists a sequence D0 ⊆ D1 ⊆
· · · ⊆ Dn of finite sets of reals such that the sentence can be evaluated by letting
each quantifier Qi range over Di only (rather than over the whole of R) without
changing the sentence’s truth value. By taking D0 to be the active domain of a given
finite database over the reals, we get the analog in the real case of the Aylamazyan
et al. theorem.

The reader familiar with Collins’s method for quantifier elimination in real-closed
fields through cylindrical algebraic decomposition (cad) [3, 4, 12] will not be surprised
by the above observation. Indeed, it follows more or less directly from an obvious
adaptation of the cad construction. However, we give an alternative, self-contained
proof from first principles which abstracts away the purely algorithmical aspects of the
cad construction and focuses on the logic behind it. Importantly, this proof provides
us with a basis to show how, in the case of linear polynomials, the construction of
the sequence D1 ⊆ · · · ⊆ Dn departing from the active domain D0 can be simulated
using a linear constraint formula. As a result, we obtain the analog in the real case
of the Hull–Su theorem.

In a final section of this paper, we look at queries that are “generic,” i.e., that
do not distinguish between isomorphic databases. Genericity is a natural criterion in
the context of classical relational databases [2, 11]. Perhaps this is a little less so for
databases over the reals; in other work [19] we have proposed alternative, “spatial”
genericity criterions based on geometrical intuitions. Nevertheless, it remains inter-
esting to investigate which classically generic queries can be expressed using linear
constraint sentences.

Sentences that do not contain any polynomial inequalities always express generic
queries, but from the moment a sentence even contains only simple inequalities of the
form x < y it can already be nongeneric. Furthermore, examples are known (e.g.,
[1, Exercise 17.27]) of generic queries expressible with such simple inequalities but
not without. In other words, simple inequalities, though inherently nongeneric when
viewed in isolation, help to express more generic queries. The natural question now
is whether general linear polynomial inequalities help even more. We will answer this
question negatively.1

This paper is organized as follows. We start with a rather general section 2 in
which we introduce the notion of domain sequence on which much of our development
will hinge. In section 3 we then introduce the subject of queries on real databases. In
section 4 we focus on the linear case. In section 5 we discuss generic queries.

Since we presented the original ideas contained in the present paper at a confer-
ence [20], several researchers have been able to generalize our results. We provide a
brief summary of these generalizations in section 6.

1 We thus provide a partial rectification of Kuper’s original intuitions [17] (which are incorrect as
stated).

1750 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

2. Domain sequences. We will use the basic terminology from mathematical
logic [13]. Let A be a structure over a finite relational vocabulary L. The domain
of A is denoted by A. Let Φ(x1, . . . , xk) be a first-order formula over L written in
prenex normal form

(∗) (Qk+1xk+1) . . . (Qnxn)M(x1, . . . , xn),

with each Qi either ∃ or ∀ and M quantifier-free. If k = 0 then Φ is a sentence; if
k = n then Φ is quantifier-free. If ā = a1, . . . , ak ∈ A is a tuple of elements in A then
the truth of Φ in A with ai substituted for xi is denoted by A |= Φ[ā].

If Dk+1, . . . , Dn are subsets of A, then we write

(A;Dk+1, . . . , Dn) |= Φ[ā]

if Φ[ā] evaluates to true in A when we let each quantifier Qi range over Di only rather
than over the whole of A.

Example 2.1. Let A consist of the integers together with the predicate y =
x2, and let Φ be the sentence (∀x)(∃y)y = x2. Then (A; {−1, 2}, {1, 4}) |= Φ, but
(A; {−1, 2}, {1, 3}) 6|= Φ.

In this section, we prove the following theorem.
Theorem 2.2. Let Φ be a sentence (Q1x1) . . . (Qnxn)M(x1, . . . , xn), and let D0

be a finite subset of A. Then there exists an increasing sequence D0 ⊆ D1 ⊆ · · · ⊆ Dn

of finite subsets of A such that

A |= Φ ⇐⇒ (A;D1, . . . , Dn) |= Φ.

Example 2.3. As a trivial illustration, let A consist of the integers together with
the predicate x = y2, and let Φ be the sentence (∀x1)(∃x2)x2 = (x1)

2. Let D0 be the
empty set. We have A |= Φ, and indeed, for D1 = {−1, 2} and D2 = {−1, 2, 1, 4}, we
have (A;D1, D2) |= Φ.

To prove Theorem 2.2 we introduce various auxiliary notions on which we will
also rely in later sections.

We will use the following natural equivalence relation on An.
Definition 2.4. Two points ā and b̄ in An are called equivalent, denoted ā ≡ b̄,

if for each atomic formula F (x1, . . . , xn) we have A |= F [ā] iff A |= F [b̄]. In model-
theoretic terminology, ā and b̄ are equivalent if they are of the same basic type in
A.

Example 2.5. Let A consist of the reals together with the predicates C(x, y) θ
0, L1(x, y) θ 0, and L2(x, y) θ 0, where θ is <, =, or >, and C, L1, and L2 are
polynomials describing the circle and two lines depicted in Figure 1. The same figure
shows that there are 19 equivalence classes in A2: {a}, {b, c}, {d, e}, A, B ∪D, C, E,
F ∪H, G, I, J ∪ L, K, α, β, γ, δ ∪ λ, ε, η, and κ.

We now extend this equivalence relation inductively to lower dimensions such
that the equivalence classes at each dimension are “cylindrical” over the equivalence
classes at the next lower dimension.

Definition 2.6. Let i < n and assume ≡ is already defined on Ai+1. Then for
ā, b̄ ∈ Ai we say ā ≡ b̄ if for each ai+1 ∈ A there is a bi+1 ∈ A such that (ā, ai+1) ≡
(b̄, bi+1) and conversely, for each bi+1 there is an ai+1 such that (b̄, bi+1) ≡ (ā, ai+1).

Example 2.7. In Figure 2 there are 12 equivalence classes in A: {p}, {q}, {r},
{s}, {t}, {u}, P , Q ∪ V , R, S, T , and U .

FIRST-ORDER QUERIES OVER THE REALS 1751

Fig. 1. Equivalence classes in the plane induced by a circle and two lines.

Fig. 2. From equivalence classes in A2 (Example 2.5) to equivalence classes in A.

We note the following lemma for further use.
Lemma 2.8. For each i, ≡ is of finite index on Ai.
Proof. The proof is by downward induction on i. The base case i = n is trivial

since the number of atomic formulas F (x1, . . . , xn) is finite (we assumed a finite
relational vocabulary). So assume i < n. For ā ∈ Ai, let κ(ā) be the set of equivalence
classes in Ai+1 intersecting the “vertical line through ā” {(ā, ai+1) | ai+1 ∈ A}.
Clearly, for ā, b̄ ∈ Ai, ā 6≡ b̄ implies κ(ā) 6= κ(b̄). Since, by induction, ≡ is of finite
index on Ai+1, κ can have only a finite number of possible values and hence ≡ is of
finite index on Ai as well.

The relevance of the equivalence relations just defined is demonstrated by the
following lemma. We use the following notation: let Φ(x̄) be as in (∗) above. For
k ≤ i ≤ n, Φ|i stands for the formula

(Qi+1xi+1) . . . (Qnxn)M(x1, . . . , xn).

So, Φ|k equals Φ and Φ|n equals M .

1752 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

Fig. 3. Equivalent points and formula satisfaction.

Lemma 2.9. Let k ≤ i ≤ n, and let ā ≡ b̄ be equivalent points in Ai. Then

A |= Φ|i[ā] ⇐⇒ A |= Φ|i[b̄].

Proof. The proof is a straightforward downward induction on i. The base case,
i = n and Φ|n being quantifier-free, is obvious. Now let k ≤ i < n. We have
Φ|i = (Qi+1xi+1)Φ|i+1. We first consider the case Qi+1 = ∃. Note that we only have
to prove the implication from left to right; the other direction follows by symmetry.
If A |= Φ|i[ā] then there exists ai+1 ∈ A such that A |= Φ|i+1[ā, ai+1]. Since ā ≡ b̄,
there exists bi+1 ∈ A such that (ā, ai+1) ≡ (b̄, bi+1). By the induction hypothesis, it
follows that A |= Φ|i+1[b̄, bi+1] and hence A |= Φ|i[b̄].

The case Qi+1 = ∀ is similar. If A |= Φ|i[ā] then for each ai+1 ∈ A we have
A |= Φ|i+1[ā, ai+1]. Since ā ≡ b̄, for each bi+1 ∈ A there exists an ai+1 ∈ A such
that [b̄, bi+1] ≡ [ā, ai+1]. By the induction hypothesis, it follows that for each bi+1,
A |= Φ|i+1[b̄, bi+1] and hence A |= Φ|i[b̄].

Example 2.10. Continuing Examples 2.5 and 2.7, let C(x, y) = x2+y2−20x+75,
L1(x, y) = x+y−5, and L2(x, y) = y−14. Let Φ be the sentence (∀x1)(∃x2)(x1+x2−
5 = 0∧(x2−14 > 0∨(x1)

2+(x2)
2−20x1+75 < 0)). This is illustrated in Figure 3. We

have Φ|0 = Φ, Φ|1 = (∃x2)(x1+x2−5 = 0∧(x2−14 > 0∨(x1)
2+(x2)

2−20x1+75 < 0)),
and Φ|2 = x1 + x2 − 5 = 0 ∧ (x2 − 14 > 0 ∨ (x1)

2 + (x2)
2 − 20x1 + 75 < 0). As

can be deduced from Example 2.7 the equivalence classes in A are (−∞,−9), [−9],
(−9,−5)∪ (5,∞), [−5], (−5,−3), [−3], (−3, 0), [0], (0, 3), [3], (3, 5), and [5]. We have
A |= Φ|1[a] for each a ∈ (−∞,−9) ∪ (−5,−3) ∪ [−3] ∪ (−3, 0].

The notion of domain sequence is defined next.
Definition 2.11. A sequence Dk ⊆ Dk+1 ⊆ · · · ⊆ Dn of finite subsets of A is

called a domain sequence if for each k ≤ i < n:

∀ā ∈ (Di)
i, ∀ai+1 ∈ A, ∃a′i+1 ∈ Di+1 : (ā, ai+1) ≡ (ā, a′i+1).

FIRST-ORDER QUERIES OVER THE REALS 1753

Fig. 4. Domain sequence construction.

Example 2.12. Continuing Example 2.10, from Figure 4 we see that (D0, D1, D2),
with

D0 = {0},
D1 = {−10,−9,−7,−5,−4,−3,−2, 0, 1, 3, 4, 5}, and

D2 = D1 ∪ {7, 14, 14.5, 15},
is a domain sequence.

Since ≡ is of finite index (Lemma 2.8), we know the following.

Lemma 2.13. For any given finite Dk ⊆ A, there exists a domain sequence
starting from Dk.

The following technical lemma now directly implies Theorem 2.2.

Lemma 2.14. Let

• Dk ⊆ Dk+1 ⊆ · · · ⊆ Dn be a domain sequence;
• a1, . . . , ak ∈ Dk;
• k ≤ i ≤ n; and
• aj ∈ Dj for k < j ≤ i.

Then

A |= Φ|i[a1, . . . , ai] ⇐⇒ (A;Di+1, . . . , Dn) |= Φ|i[a1, . . . , ai].

Proof. The proof is by downward induction on i. Denote (a1, . . . , ai) by ā. The
case i = n is trivial. So assume i < n. We have Φ|i = (Qi+1xi+1)Φ|i+1. Consider first
the case Qi+1 = ∃. For the implication from left to right, assume A |= Φ|i[ā]. Then
there exists ai+1 ∈ A such that A |= Φ|i+1[ā, ai+1]. According to Definition 2.11,
there exists a′i+1 ∈ Di+1 such that (ā, ai+1) ≡ (ā, a′i+1). By Lemma 2.9, we also have
A |= Φ|i+1[ā, a

′
i+1]. By induction, (A;Di+2, . . . , Dn) |= Φ|i+1[ā, a

′
i+1]. We can thus

conclude that (A;Di+1, . . . , Dn) |= Φ|i[ā].

1754 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

For the implication from right to left, assume (A;Di+1, . . . , Dn) |= Φ|i[ā]. Then
there exists ai+1 ∈ Di+1 such that (Di+2, . . . , Dn) |= Φ|i+1[ā, ai+1]. By induction,
we have A |= Φi+1[ā, ai+1]. Since ai+1 is trivially in A, we can thus conclude that
A |= Φ|i[ā].

Next consider the case Qi+1 = ∀. For the implication from left to right, assume
A |= Φ|i[ā]. Then for each ai+1 ∈ A we have A |= Φ|i+1[ā, ai+1]. In particular,
this holds for each ai+1 ∈ Di+1, and by induction, we have (A;Di+2, . . . , Dn) |=
Φ|i+1[ā, ai+1]. We can thus conclude that (A;Di+1, . . . , Dn) |= Φ|i[ā].

For the implication from right to left, assume (A;Di+1, . . . , Dn) |= Φ|i[ā]. Then
for each α ∈ Di+1 we have (A;Di+2, . . . , Dn) |= Φ|i+1[ā, α], and thus, by induction,
also A |= Φ|i+1[ā, α]. Now take an arbitrary ai+1 ∈ A. According to Definition 2.11,
there exists a′i+1 ∈ Di+1 such that (ā, ai+1) ≡ (ā, a′i+1). By Lemma 2.9, since A |=
Φ|i+1[ā, a

′
i+1], we also have A |= Φ|i+1[ā, ai+1]. We can thus conclude that A |= Φi[ā].

Corollary 2.15. Let Φ be a sentence (Q1x1) . . . (Qnxn)M(x1, . . . , xn), and let
D0 ⊆ D1 ⊆ · · · ⊆ Dn be a domain sequence. Then

A |= Φ ⇐⇒ (A;D1, . . . , Dn) |= Φ.

Proof. Set i = k = 0 in Lemma 2.14.

3. Queries on real databases. Fix a relational vocabulary σ consisting of a
finite number of relation symbols S with associated arity. A real database B is a
structure of type σ having the set R of real numbers as domain, assigning to each
relation symbol S of arity a in σ a finite relation SB of rank a on R.2 The active
domain of B, denoted by adom(B), is the (finite) set of all real numbers appearing in
one or more relations in B.

A query is a mapping from databases of type σ to true or false. A basic way
of expressing queries is by query formulas, which are standard first-order formulas
built using Boolean connectives and quantification from atomic formulas of one of the
following two forms:

• p > 0, with p a multivariate polynomial with real coefficients;
• S(p1, . . . , pa), with S a relation symbol in σ of arity a, and each pi a polyno-

mial as in the previous item.
If Φ(x̄) is a query formula and B is a database, then the truth of Φ in B, denoted by
B |= Φ[ā], is defined in the standard way. In particular, if Φ is a sentence, it expresses
the query yielding true on an input database B iff B |= Φ.

Example 3.1. Assume σ = {S} with α(S) = 2. The query “do all points in S lie
on a common circle?” can be expressed as

(∃x0)(∃y0)(∃r)(∀x)(∀y)(S(x, y) → (x− x0)
2 + (y − y0)

2 = r2).

(Conditions of the form p = 0 are expressible in terms of conditions of the form p > 0
as ¬(p > 0) ∧ ¬(−p > 0).)

The query “is there a point in S whose coordinates are greater than or equal
to 1?” can be expressed as (∃x)(∃y)S(x2 + 1, y2 + 1). Note that the quantifiers are
naturally interpreted as ranging over the whole of R.

Formulas that do not mention any of the relation names in σ are called real
formulas. Let Ψ be a real formula and let all variables occurring in Ψ be among

2 Formally, SB ⊆ R× · · · ×R (a times).

FIRST-ORDER QUERIES OVER THE REALS 1755

x1, . . . , xn. Let Π be the set of all polynomials p for which the inequality p > 0
occurs in Ψ. For such a set Π of polynomials over the variables x1, . . . , xn we have
the following definition.

Definition 3.2. The structure RΠ is the structure having as domain the set R of
real numbers, and having as relations the n-ary relations {(r1, . . . , rn) | p(r1, . . . , rn) >
0} for each p ∈ Π. If Π comes from a formula Ψ, as above, we will also refer to RΠ

as RΨ. Note that Ψ can be naturally evaluated in the structure RΨ.
If Φ is a query sentence and B is a database, then we can produce a real sentence

ΦB in a very natural way as follows. Let S(p1, . . . , pa) be an atomic subformula of Φ,
with S a relation symbol in σ. We know that SB is a finite relation consisting of, say,
the m tuples {(e11, . . . , e1a), . . . , (em1, . . . , ema)}. Then replace S(p1, . . . , pa) in Φ by∨m
i=1 p1 = ei1 ∧ . . . ∧ pa = eia. It is obvious that

B |= Φ ⇐⇒ RΦB |= ΦB.

Now assume the query sentence Φ is in prenex normal form:

(†) (Q1x1) . . . (Qnxn)M(x1, . . . , xn).

If B is a database and D1, . . . , Dn are subsets of R, then we say that Φ is satisfied on
(B;D1, . . . , Dn), written (B;D1, . . . , Dn) |= Φ, if Φ evaluates to true on B when we
let each quantifier Qi range over Di only, rather than over the whole of R.

Corollary 2.15 immediately implies the following.
Theorem 3.3. Let Φ be a query sentence as in (†) above and let B be a real

database. For each domain sequence D0 ⊆ D1 ⊆ · · · ⊆ Dn in the context of the
structure RΦB ,

B |= Φ ⇐⇒ (B;D1, . . . , Dn) |= Φ.

When we choose D0 = adom(B), this theorem can be viewed as the analog in the
real case of the Aylamazyan et al. theorem [5] mentioned in the Introduction.

4. The linear case. In this section, we focus on linear queries, expressed by
query sentences in which all occurring polynomials are linear. We prove that each
linear query is expressible by a linear query sentence wherein the quantifiers range
over the active domain of the input database only. Thereto, we introduce a particular
way to construct a domain sequence starting with the active domain of a database,
based on Gaussian elimination. We then show that this construction can be simulated
in a uniform (i.e., database-independent) way by a linear query formula.

Let Π be a set of linear polynomials on the variables x1, . . . , xn. Recall Defini-
tion 3.2 of the structure RΠ. Within the context of this structure we can consider
equivalence of points in Ri, for i ≤ n, as defined in Definitions 2.4 and 2.6.

Each polynomial p ∈ Π is of the form cp0 +
∑n

j=1 c
p
jxj . We define a sequence

Πn, . . . ,Π1 of linear polynomials inductively as follows.
Definition 4.1. Πn = Π, and for i < n,

Πi = {p ∈ Πi+1 | cpi+1 = 0} ∪ {p · cqi+1 − q · cpi+1 | p, q ∈ Πi+1, c
p
i+1 6= 0 6= cqi+1}.

In other words, each Πi is a set of linear polynomials over x1, . . . , xi obtained from
Πi+1 by Gaussian elimination.

1756 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

In the next proposition, equivalence of points in Ri with respect to RΠ will be
characterized in terms of the polynomials in Πi. Thereto we need an easy-to-prove
lemma.

Lemma 4.2. Let α1, α2, β1, and β2 be elements from some densely ordered
domain. The following are equivalent.

1. For (i, j) ∈ {(1, 2), (2, 1)},
αi > αj ⇔ βi > βj .

2. For each α there exists β such that for i = 1, 2,

αi > α ⇔ βi > β,

and conversely, for each β there exists α such that the same holds.
Proposition 4.3. Let 1 ≤ i ≤ n and let ā, b̄ ∈ Ri. Then ā and b̄ are equivalent

with respect to RΠ if and only if for each polynomial p in Πi,

p(ā) > 0 ⇔ p(b̄) > 0.

Proof. The proof is by downward induction on i. The case i = n is just the
definition of equivalence of n-tuples. So assume i < n. Let ā ≡ b̄. Then for each
ai+1 there is a bi+1 such that (ā, ai+1) ≡ (b̄, bi+1) (and conversely). Equivalently,
by induction, for each ai+1 there is a bi+1 such that for each polynomial p in Πi+1,
p(ā, ai+1) > 0 ⇔ p(b̄, bi+1) > 0. If cpi+1 = 0 then p ∈ Πi and we get p(ā) > 0 ⇔ p(b̄) >
0; this deals with the first kind of elements of Πi.

For the other kind of elements of Πi, consider p, q ∈ Πi+1 with cpi+1 6= 0 6= cqi+1.
From the above, for each ai+1 there is a bi+1 such that

cp0 +
i∑

j=1

cpjaj


 /cpi+1 > −ai+1 ⇔


cp0 +

i∑
j=1

cpj bj


 /cpi+1 > −bi+1

and 
cq0 +

i∑
j=1

cqjaj


 /cqi+1 > −ai+1 ⇔


cq0 +

i∑
j=1

cqjbj


 /cqi+1 > −bi+1.

Conversely, for each bi+1 there is an ai+1 such that the same holds. By Lemma 4.2
we thus deduce

cp0 +
i∑

j=1

cpjaj


 /cpi+1 >


cq0 +

i∑
j=1

cqjaj


 /cqi+1

⇔

cp0 +

i∑
j=1

cpj bj


 /cpi+1 >


cq0 +

i∑
j=1

cqjbj


 /cqi+1

and hence 
cp0 +

i∑
j=1

cpjaj


 · cqi+1 >


cq0 +

i∑
j=1

cqjaj


 · cpi+1

⇔

cp0 +

i∑
j=1

cpj bj


 · cqi+1 >


cq0 +

i∑
j=1

cqjbj


 · cpi+1

FIRST-ORDER QUERIES OVER THE REALS 1757

or

(p · cqi+1 − q · cpi+1)(ā) > 0 ⇔ (p · cqi+1 − q · cpi+1)(b̄) > 0,

which, by the definition of Πi, is what had to be proven. This argument for the
“only-if” implication can simply be reversed to prove the “if” implication.

Now let Φ be a linear query sentence (Q1x1) . . . (Qnxn)M in prenex normal form,
and let B be a database. Recall the definition of the real formula ΦB described in the
previous section; note that since Φ is linear, ΦB is linear as well.

Definition 4.4. Fix Π to be the set of all polynomials occurring in ΦB plus
all those of the form pi − e, where pi occurs in some atomic formula S(p1, . . . , pa)
of Φ and e ∈ adom(B). We can then consider the sequence Π = Πn, . . . ,Π1 as in
Definition 4.1. For what follows it is important to note that, since Π contains at
least all polynomials occurring in ΦB, equivalence of points with respect to RΠ implies
equivalence with respect to the structure RΦB mentioned in Theorem 3.3.

Example 4.5. Let Φ = (∀x1)(∃x2)(S(x1 + x2 + 1) ∧ (x1 + 2x2 + 2 = 0)). Then
Π = Π2 = {1− e+x1 +x2 | e ∈ adom(B)}∪ {2 +x1 + 2x2} and Π1 = {−2e+x1 | e ∈
adom(B)}.

We observe the following.
Lemma 4.6. Let 1 ≤ i ≤ n. Then Πi is a finite union of sets of the form


c0 +

2(n−i)∑
j=1

djej +
i∑

j=1

cjxj | e1, . . . , e2(n−i) ∈ adom(B)


 .

Neither the number of these sets nor the coefficients ci and di for each set depend on
the particular database B.

Proof. The proof is by downward induction on i. The base case i = n is clear
since Πn = Π is clearly of the good form. So assume i < n. By definition, Πi is a
union of two sets:

{p ∈ Πi+1 | cpi+1 = 0}
and

{p · cqi+1 − q · cpi+1 | p, q ∈ Πi+1, c
p
i+1 6= 0 6= cqi+1}.

By the induction hypothesis, the first set is clearly of the good form. Also, by the
induction hypothesis, the second set is a finite union of sets of the form

c′i+1


c0 +

2(n−i−1)∑
j=1

djej +

i+1∑
j=1

cjxj


− ci+1


c′0 +

2(n−i−1)∑
j=1

d′je
′
j +

i+1∑
j=1

c′jxj


 |

1, . . . , e2(n−i−1) , e′1, . . . , e
′
2(n−i−1) ∈ adom(B)


 .

After simplification, this is readily seen to be of the good form also.
We are now in a position to define a particular domain sequence with respect to

the structure RΦB , based on the sequence Π1, . . . ,Πn. The sequence is inductively
constructed: D0 is empty and Di (i > 0) is constructed as follows. First consider the
set Ei of all the ith coordinates of the i-dimensional points that are in a hyperplane

1758 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

of Πi and whose first i− 1 coordinates are in Di−1. Add Di−1 to Ei, resulting in D′
i.

Finally, to be sure to obtain a point in every equivalence class, we add the mean value
of every pair of elements of D′

i, as well as every element increased by one and every
element decreased by one, resulting in Di. Formally, we make the following definition.

Definition 4.7. The linear sequence on B with respect to Φ is the sequence
∅ = D0 ⊆ D1 ⊆ · · · ⊆ Dn inductively defined as follows: for 1 ≤ i ≤ n, Di equals

D′
i ∪
{
y | (∃y1, y2) ∈ D′

i : y =
y1 + y2

2
∨ y = y1 − 1 ∨ y = y1 + 1

}
,

where D′
i is Di−1 ∪ Ei with

Ei =


−c0/ci −

2(n−i)∑
j=1

(dj/ci)ej −
i−1∑
j=1

(cj/ci)yj | c0 +
2(n−i)∑
j=1

djej +
i∑

j=1

cjxj ∈ Πi,

ci 6= 0, y1, . . . , yi−1 ∈ Di−1, e1, . . . , e2(n−i) ∈ adom(B)


 .

Example 4.8. In Example 4.5 we have

D′
1 = {2e1 | e1 ∈ adom(B)},

D1 = {2e1 + η | η ∈ {−1, 0, 1}},
and

E2 = {−1 + e3 − (2e1 + η),

−1 + e3 − (e1 + e2),

−1− (2e1 + η)/2,

−1− (e1 + e2)/2 |
e1, e2, e3 ∈ adom(B), η ∈ {−1, 0, 1}}.

Proposition 4.9. The linear sequence on B with respect to Φ is a domain
sequence with respect to RΦB .

Proof. According to Definition 2.11, we must show for each 1 ≤ i ≤ n that

∀ā ∈ (Di−1)
i−1, ∀ai ∈ R, ∃a′i ∈ Di : (ā, ai) ≡ (ā, a′i).

So, let ā ∈ (Di−1)
i−1 and assume ai 6∈ Di. Consider the definition of Di in terms of

D′
i = Di−1 ∪ Ei from Definition 4.7 above. We distinguish the following possibilities

for ai.
1. ai < min(Ei); then put a′i := min(Ei)− 1.
2. ai > max(Ei); then put a′i := max(Ei) + 1.
3. min(Ei) < ai < max(Ei); then put a′i := (e1 +e2)/2, where e1 is the maximal

element in Ei such that e1 < ai, and e2 is the minimal element such that
ai < e2.

FIRST-ORDER QUERIES OVER THE REALS 1759

It is obvious that a′i ∈ Di; moreover, we invite readers to convince themselves that
from the way Ei is defined, it follows that all polynomials in Πi have the same sign
on (ā, ai) and (ā, a′i). Hence, by Proposition 4.3, the proposition follows.

After one final lemma we will be able to state and prove the main result of this
section.

Lemma 4.10. For each 0 ≤ i ≤ n there exists a finite set P of linear polynomials
such that for each database B, the ith member Di of the linear sequence on B with
respect to Φ equals {p(y1, . . . , yz) | y1, . . . , yz ∈ adom(B)∧ p ∈ P}, with z independent
of B.

Proof. The proof is by induction on i. The case i = 0 is trivial since D0 = ∅
(put P := ∅). So assume i > 0. The definition of Di in terms of D′

i in Definition 4.7
is clearly of the form Di = {p(y1, y2) | y1, y2 ∈ D′

i ∧ p ∈ P ′} where P ′ consists of
the four polynomials (y1 + y2)/2, y1 − 1, y1 + 1, and y1. We have D′

i = Di−1 ∪ Ei,
where Ei is clearly of the form {p(y1, . . . , yi−1, e1, . . . , e2(n−i)) | y1, . . . , yi−1 ∈ Di−1 ∧
e1, . . . , e2(n−i) ∈ adom(B) ∧ p ∈ P ′′} for some P ′′, and by induction, Di−1 is of the
form {p(y1, . . . , yz) | y1, . . . , yz ∈ adom(B) ∧ p ∈ P ′′′} for some P ′′′. By combining
these expressions using a tedious but straightforward substitution process, we obtain
the desired form for Di.

Theorem 4.11. For each linear query sentence Φ there is a linear query sentence
Ψ, which can be effectively constructed from Φ, such that for each database B, B |= Φ
if and only if B |=adom Ψ, where |=adom denotes that the quantifiers in Ψ range over
the active domain of the database only.

Proof. Let ∅ ⊆ D1 ⊆ · · · ⊆ Dn be the linear sequence on B with respect to Φ. By
Theorem 3.3 and Proposition 4.9, we know that B |= Φ iff (B;D1, . . . , Dn) |= Φ. We
can write the latter explicitly as B |= (Q1x1 ∈ D1) . . . (Qnxn ∈ Dn)M(x1, . . . , xn).
From Lemma 4.10 we know that D1 can be written as {p(y1, . . . , yz) | y1, . . . , yz ∈
adom(B) ∧ p ∈ P}. If Q1 is ∃, we can rewrite the above formula as

B |= (∃y1) . . . (∃yz)
∨
p∈P

(Q2x2 ∈ D2) . . . (Qnxn ∈ Dn)M(p(y1, . . . , yz), x2, . . . , xn),

where each (∃yi) ranges only over adom(B). If Q1 is ∀ we have

B |= (∀y1) . . . (∀yz)
∧
p∈P

(Q2x2 ∈ D2) . . . (Qnxn ∈ Dn)M(p(y1, . . . , yz), x2, . . . , xn).

By replacing Q2, . . . , Qn in a similar manner, we obtain the desired sentence Ψ.
If adom(B) is empty then the above strategy will not work. However, the sentence

Ψ obtained above can be modified so as to test for this special case, and if this test
succeeds, a fixed truth value can be returned. This fixed truth value is the result
of evaluating (B∅ |= Φ), where B∅ denotes the database with empty active domain.3

5. Generic queries. Two databases B and B′ over the same relational signature
σ are called isomorphic if there is a bijection ρ : adom(B) → adom(B′) such that
ρ(SB) = SB

′
for each relation symbol S in σ. A query which yields the same result

on isomorphic databases is called generic.

3 An exception occurs when the signature σ contains relation symbols of arity zero. In this case,
there is no unique B∅, but rather a fixed finite number of them. The sentence can test which one it
is dealing with and return the appropriate truth value.

1760 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

For example, assume that σ consists of a single binary relation symbol S. Data-
bases of type σ can be viewed as finite directed graphs whose nodes are real numbers.
Of course, any query expressed in the language L of pure first-order sentences over σ
(i.e., not containing any polynomial inequalities) is generic. Other examples of generic
queries are “is the graph connected?” or “is the number of edges even?”.

In the language L< consisting of those query sentences where all inequalities are
of the simple form x < y (with x and y variables),4 nongeneric queries can easily
be expressed, such as (∀x)(∀y)S(x, y) → x < y. As pointed out in the Introduction,
however, there are generic queries expressible in L< but not in L. We have been able
to prove that there is no similar gain in expressiveness when moving from L< to full
linear query sentences.

Theorem 5.1. For each linear query sentence Φ expressing a generic query there
is a query sentence Ψ in L<, which can be effectively constructed from Φ, such that
for each database B, B |=adom Φ if and only if B |=adom Ψ.

As in Theorem 4.11, |=adom denotes that quantifiers range over the active domain
only; we know by Theorem 4.11 that this active-domain interpretation is without loss
of generality.

We next present an elementary proof of Theorem 5.1 based on three lemmas and
one auxiliary definition.

The following fact is easy to prove.
Lemma 5.2. Let q(x) =

∑d
i=0 aix

i be a polynomial with real coefficients, in one
variable, of degree d (ad 6= 0). Let

r > d · max0≤i≤d |ai|
min 0≤j≤d

aj 6=0
|aj | .

Then q(r) has the same sign as ad.
We make the following definition.
Definition 5.3. Let p(x1, . . . , xn) =

∑n
i=1 bixi + b0 be a linear polynomial with

real coefficients in n variables. We associate with p a function Ξp : Rn → R as
follows. Consider ȳ = (y1, . . . , yn) ∈ Rn. Associate a “weight” W ȳ

p (yi) with each yi
by

W ȳ
p (yi) :=

∑
1≤j≤n
yj=yi

bj .

If all weights are zero, define Ξp(y1, . . . , yn) := b0. Otherwise, define

Ξp(y1, . . . , yn) := W ȳ
p (yM),

where yM is maximal with nonzero weight ; i.e., ym = max{yi | 1 ≤ i ≤ n, W ȳ
p (yi) 6=

0}.
Example 5.4. We illustrate the above definition with three examples.
1. Let p(x1, x2, x3) = x1 − 5x2 + 3x3 − 8. Then

• Ξp(7, 3, 9) = 3;
• Ξp(7, 9, 3) = −5.

4 As an aside, we would like the reader to note that Theorem 4.11 specializes to query sentences
in L<. This follows from general results in [8], but can also be proven in a direct way using an
argument similar to our proof of Theorem 4.11.

FIRST-ORDER QUERIES OVER THE REALS 1761

2. Let p(x1, x2) = 2x1 − 2x2 + 5. Then Ξp(5, 5) = 5.
3. Let p(x1, . . . , x7) = 3x1 − 3x2 + 6x3 − 6x4 + 5x5 + x6 − 6x7. Then

• Ξp(4, 4, 2, 2, 2, 2, 2) = 0;
• Ξp(5, 5, 4, 4, 3, 2, 1) = 5;
• Ξp(5, 5, 4, 4, 1, 2, 3) = −6.

The relevance of Ξp stems from the following observation.

Lemma 5.5. Let p(x1, . . . , xn) =
∑n

i=1 bixi + b0 and let s > 0 be a natural
number. Then there exists a number αp such that for all β > αp and for any sequence
of integers z̄ = z1, . . . , zn ∈ {0, . . . , s},

p(βz1 , . . . , βzn) > 0 ⇐⇒ Ξp(z1, . . . , zn) > 0.

Proof. Note that

p(βz1 , . . . , βzn) =
n∑
i=1

biβ
zi + b0 =

∑
j

W z̄
p (zj)β

zj + b0,

where j in the latter sum ranges over a set of indices consisting of one j for each
distinct value zj . Hence, the value p(βz1 , . . . , βzn) can be viewed as the value of a
univariate polynomial q in β. The highest-degree coefficient of q is Ξp(z1, . . . , zn).
The degree of q is maxj zj . Hence, if we take

αp = s · maxB |B|
min|B|6=0 |B| ,

where B ranges over all partial sums of bi’s, then any β > αp satisfies the condition
of Lemma 5.2 and thus, for such β, p(βz1 , . . . , βzn) = q(β) has the same sign as
Ξp(z1, . . . , zn).

As a last lemma towards the proof of Theorem 5.1 we note the following.

Lemma 5.6. For a fixed polynomial p as above, the predicate Ξp(y1, . . . , yn) > 0
can be expressed by a formula ξp(y1, . . . , yn) in L<.

Proof. The crucial observation is that the value of Ξp(y1, . . . , yn) depends not on
the actual values of the yi’s but only on their relative positions (in model-theoretic
terms, the order type of y1, . . . , yn). The number of possible order types (n being
fixed) is finite, so the formula ξp simply consists of the disjunction of those order
types for which the value Ξp(y1, . . . , yn) is positive.

Example 5.7. Let p(x1, x2) = 2x1 − 2x2 + 5. Then Ξp(y1, y2) > 0 is expressed by
y1 = y2 ∨ y1 > y2.

Proof of Theorem 5.1. Replace in Φ every inequality p(x1, . . . , xn) > 0 by the
formula ξp(x1, . . . , xn) > 0 of Lemma 5.6. In this way we obtain a query sentence Ψ
in L<. We still have to show that B |=adom Φ iff B |=adom Ψ. Let s be the cardinality
of adom(B). Each polynomial p occurring in Φ has an associated lower bound αp of
Lemma 5.5. Let β be larger than any of these αp’s and let ρ be an order-preserving
(i.e., monotone) bijection from adom(B) to {β, β2, . . . , βs}. Then

B |=adom Φ ⇔ ρ(B) |=adom Φ

⇔ ρ(B) |=adom Ψ

⇔ B |=adom Ψ.

1762 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

The first equivalence holds since Φ is generic, the second holds by Lemma 5.5, and
the third holds since ρ is monotone and Ψ is a formula in L<; the truth of formulas
in L< is preserved under order-preserving isomorphisms.

Inspection of the above proof shows that Theorem 5.1 can be sharpened a little bit.
Indeed, of the given that Φ expresses a generic query, we actually use only that this
query yields the same result on databases that are isomorphic via an order-preserving,
rather than an arbitrary, bijection.

We can conclude that all generic queries that are not expressible in L< are not
expressible as a linear query either (by Theorem 4.11, under both the active-domain
interpretation and the natural interpretation). In particular, this holds for the queries,
already mentioned at the beginning of this section, of testing for connectivity or even
cardinality of a finite graph over the reals.

Corollary 5.8. Graph connectivity and even cardinality are not expressible by
linear query sentences.

Proof. By the above it suffices to show that these queries are not expressible in
L< with quantification on the active domain. But this is well known [1].

Grumbach, Su, and Tollu [14] have also obtained inexpressibility results for linear
queries, using complexity arguments. In particular, they showed that in the context
of the rationals Q rather than the reals R, linear queries are in the complexity class
AC0, while even cardinality and connectivity are not. We would like to point out (as
is readily verified) that our technical development applies equally well to the rationals.

6. Concluding remarks. Since we presented the original ideas contained in the
present paper at a conference [20], several researchers have been able to generalize
our results:

• In this paper we have considered databases and queries over the structure R
of the reals. One can do the same for any arbitrary fixed infinite “universe-
structure.” Using the Ehrenfeucht–Mostowski theorem on first-order indis-
cernibles, Otto and Van den Bussche [18] have shown that Theorem 5.1 gen-
eralizes from R to any arbitrary fixed infinite structure.

• Benedikt et al. [7] have generalized Theorem 5.1 in two senses: again, to more
universes than just the reals, and more importantly, to quantification on the
whole universe rather than on the active domain only. One consequence of
the results in [7] is a generalization of our Corollary 5.8: graph connectivity
and even cardinality are not expressible by any (not necessarily linear) real
query sentence, under both the natural interpretation and the active-domain
interpretation.

• Belegradek, Stolboushkin, and Taitslin [21, 6] have generalized Theorem 5.1
in another sense: instead of finite databases they considered possibly infinite
databases definable by real formulas involving only simple inequalities.

• Benedikt and Libkin [8] have shown that Theorem 4.11 holds in any densely
ordered structure that satisfies the property of o-minimality and admits elim-
ination of quantifiers. In particular, their result implies that Theorem 4.11
generalizes to the nonlinear case (since the structure of the reals with addition
and multiplication admits elimination of quantifiers).

In constrast to the proofs of these generalizations, the proofs of our results as given
in the present paper are elementary and constructive (the results in [21] are also
constructive).

Acknowledgment. We are grateful to Bart Kuijpers for his careful reading of
earlier drafts of the material presented in this paper, to Alex Stolboushkin for helpful

FIRST-ORDER QUERIES OVER THE REALS 1763

comments on a first presentation of our results, and to an anonymous referee for
pointing out a mistake in the submitted draft of this paper.

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Addison-Wesley, Reading,
MA, 1994.

[2] A. Aho and J. Ullman, Universality of data retrieval languages, in Proc. ACM Symposium
on Principles of Programming Languages, ACM Press, New York, 1979, pp. 110–120.

[3] D. Arnon, Geometric reasoning with logic and algebra, Artificial Intelligence, 37 (1988), pp. 37–
60.

[4] D. Arnon, G. Collins, and S. McCallum, Cylindrical algebraic decomposition, I: The basic
algorithm, SIAM J. Comput., 13 (1984), pp. 865–877.

[5] A. Aylamazyan, M. Gilula, A. Stolboushkin, and G. Schwartz, Reducation of the rela-
tional model with infinite domains to the case of finite domains, Dokl. Akad. Nauk SSSR,
286 (1986), pp. 308–311. (In Russian.)

[6] O. Belegradek, A. Stolboushkin, and M. Taitslin, On Order-Generic Queries, Tech. Re-
port 96-01, DIMACS, Rutgers University, New Brunswick, NJ, 1996.

[7] M. Benedikt, G. Dong, L. Libkin, and L. Wong, Relational expressive power of constraint
query languages, in Proc. 15th ACM Symposium on Principles of Database Systems, ACM
Press, New York, 1996, pp. 5–16.

[8] M. Benedikt and L. Libkin, On the structure of queries in constraint query languages, in Proc.
11th IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, Los
Alamitos, CA, 1996, pp. 25–34.

[9] F. Benhamon and A. Colmerauer, eds., Constraint Logic Programming: Selected Research,
MIT Press, Cambridge, MA, 1993.

[10] J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Springer-Verlag, Berlin,
1987.

[11] A. Chandra and D. Harel, Computable queries for relational data bases, J. Comput. System
Sci., 21 (1980), pp. 156–178.

[12] G. Collins, Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposi-
tion, Lecture Notes in Computer Science 33, Springer-Verlag, New York, 1975, pp. 134–183.

[13] H. Enderton, A Mathematical Introduction to Logic, Academic Press, New York, 1972.
[14] S. Grumbach, J. Su, and C. Tollu, Linear constraint query languages: Expressive power

and complexity, in Logic and Computational Complexity, D. Leivant, ed., Lecture Notes
in Computer Science 960, Springer-Verlag, New York, 1995, pp. 426–446.

[15] R. Hull and J. Su, Domain independence and the relational calculus, Acta Inform., 31 (1994),
pp. 513–524.

[16] P. Kanellakis, G. Kuper, and P. Revesz, Constraint query languages, J. Comput. System
Sci., 51 (1995), pp. 26–52.

[17] G. Kuper, On the expressive power of the relational calculus with arithmetic constraints, in
ICDT’90, Lecture Notes in Computer Science 470, S. Abiteboul and P. Kanellakis, eds.,
Springer-Verlag, New York, 1990, pp. 202–214.

[18] M. Otto and J. Van den Bussche, First-order queries on databases embedded in an infinite
structure, Inform. Process. Lett., 60 (1996), pp. 37–41.

[19] J. Paredaens, J. Van den Bussche, and D. Van Gucht, Towards a theory of spatial database
queries, in Proc. 13th ACM Symposium on Principles of Database Systems, ACM Press,
New York, 1994, pp. 279–288.

[20] J. Paredaens, J. Van den Bussche, and D. Van Gucht, First-order queries on finite struc-
tures over the reals (extended abstract), in Proc. 10th IEEE Symposium on Logic in Com-
puter Science, IEEE Computer Society Press, Los Alamitos, CA, 1995, pp. 79–87.

[21] A. Stolboushkin and M. Taitslin, Linear vs. order constraints over rational databases, in
Proc. 15th ACM Symposium on Principles of Database Systems, ACM Press, New York,
1996, pp. 17–27.

[22] L. Van Den Dries, Alfred Tarski’s elimination theory for real closed fields, J. Symbol. Logic,
53 (1988), pp. 7–19.

