

New Korkin-Zoloratev inequalities : implementation and
numerical data
Citation for published version (APA):
Zwam, van, S. H. M. (2006). New Korkin-Zoloratev inequalities : implementation and numerical data. (SPOR-
Report : reports in statistics, probability and operations research; Vol. 200605). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/08b3b2d2-7db9-452a-8262-8f7d64b1438a

New Korkin–Zolotarev Inequalities:
Implementation and Numerical Data

Stefan H. M. van Zwam∗

May 8, 2006

Abstract

This technical report discusses the mathematical details and the implementation of the methods discussed in
the accompanying paper [PZ06]. In particular a method to find a finite list of inequalities that certify
Korkin–Zolotarev reducedness of a quadratic form is presented. Moreover a semidefinite programming
relaxation of the space of KZ-reduced quadratic forms is described in detail, together with a branching

strategy to optimize over this space. Finally the implementation of these methods is discussed, together with
some hints on how to compile and use the programs.

The two digital appendices, which can be obtained from the SPOR reports website†, contain an
implementation of the methods discussed and numerical data that prove the theorems in [PZ06].

Keywords: Lattice, quadratic form, semidefinite programming, optimization, Korkin–Zolotarev reduction,
Hermite’s constant.

∗E-mail: svzwam@tue.nl
†http://www.win.tue.nl/bs/spor/

1

svzwam@tue.nl
http://www.win.tue.nl/bs/spor/

Contents

1 Overview 3

2 Finding a sufficient set of inequalities 4

3 The Semidefinite Programming Relaxation and Branching Strategies 7
3.1 A Semidefinite Relaxation . 7
3.2 Branch and Bound . 9

3.2.1 A different branching strategy . 9
3.3 A note on the sets Xi . 10
3.4 Strategies for finding quadratic forms . 10
3.5 Description of the SDP in MaxDet syntax . 10

4 Making the lower bounds rigorous 13
4.1 From floating-point numbers to rational numbers . 13
4.2 Ensuring strict feasibility . 13
4.3 Numerical stability . 14
4.4 Testing KZ-reducedness of a quadratic form . 14
4.5 Verifying a lower bound . 14

5 Programs 15
5.1 Installation . 15

5.1.1 How to compile the code for genlists and verifydual 15
5.1.2 How to interface between the MATLAB and C++ parts of the code 16

5.2 Understanding the code . 17

6 Data 19
6.1 A lower bound on A3 . 19
6.2 Correspondence between claims and files . 20
6.3 Minimality of the sets of inequalities . 20

Bibliography 28

2

Chapter 1

Overview

This technical report serves as an accompaniment to the paper New Korkin–Zolotarev Inequalities [PZ06]∗. It
details some of the techniques described in that paper, provides some of the numerical data, and shows how to
verify the proofs of the theorems.

We start our discussion with the mathematical underpinnings. In Chapter 2 we describe a detailed, con-
structive proof of the finiteness of the set of constraints needed to verify KZ-reducedness of a quadratic form.
After that we show in Chapter 3 how these sets can be employed to create a semidefinite programming relax-
ation. This SDP is described with considerable detail and closely reflects our implementation. Moreover, the
branching techniques used to obtain better lower bounds are described. Chapter 4 goes on to show how to turn
the floating-point data provided by the implementation of these methods into mathematically rigorous proofs.
This is exactly what was used to prove the lower bounds in the paper. The last two sections then show how to
verify these proofs. The verification is very straightforward and does not require anything beyond basic rational
arithmetic.

Chapters 5 and 6 serve to link the mathematical results to the implementation. The first contains instructions
for getting the code to run and describes what can be found in the various source files; the second describes
where the various proofs can be found and finishes with a listing of Xn for n ≤ 5, together with quadratic forms
showing necessity of most of them.

The previous sections hinted already at the existence of source code for computer programs and numerical
data that prove the lower bounds. Such information can not be presented conveniently on paper. Hence the
addition of two digital appendices. The first of these contains the source code, the second the numerical data.
Both can be obtained from the SPOR reports website,

http://www.win.tue.nl/bs/spor/

Finally, the author has built a website to which updates to the code and new results will be posted. He
invites people who find new inequalities to post them to this site.

http://www.win.tue.nl/kz/

∗Throughout this report we will refer to [PZ06] as “the paper”.

3

http://www.win.tue.nl/bs/spor/
http://www.win.tue.nl/kz/

Chapter 2

Finding a sufficient set of inequalities

In the excellent survey [RB79] a constructive proof was given showing that a finite number of inequalities suffices
to check if a form is KZ-reduced. The proof was very short, but used some rather rough estimates. In this
chapter a refined proof is given, resulting in an algorithm that produces much smaller numbers of inequalities - in
fact, for forms of up to 4 variables the number of inequalities found by this method is optimal. Novikova [Nov83]
gives lists of inequalities for forms of up to 8 variables. In her paper she claims that up to 5 variables, the sets
provided are optimal. Unfortunately, her paper does not contain the proofs. The finiteness proof presented here
stems from [Zwa05].

Let f(x) = xtBx be a quadratic form∗ in n variables with symmetric matrix B. Its Lagrange expansion is

f(x) =
n∑

i=1

Ai(xi −
n∑

j=i+1

αijxj)2

and the form is said to be Korkin–Zolotarev reduced if |αij | ≤ 1/2, αi,i+1 ≥ 0, and for all i, Ai is the minimum
of fin(xi, . . . , xn) over all (xi, . . . , xn) ∈ Zn−i+1 \ {0}, where

fij(xi, . . . , xj) =
j∑

k=i

Ak(xk −
j∑

l=k+1

αklxl)2.

Observe that

fij(xi, . . . , xj) = fin(xi, . . . , xj , 0, . . . , 0). (2.1)

The following important theorem was proven by Korkin and Zolotarev in [KZ73]. It gives a lower bound on
the size of the Ai in a KZ-reduced expansion.

Theorem 2.1 (First KZ-inequality). In the Lagrange expansion of a KZ-reduced quadratic form the outer
coefficients satisfy

Ai+1 ≥
3
4
Ai

for all i ∈ {1, . . . , n− 1}.

Proof. Let f be a KZ-reduced quadratic form. We can use (2.1) and the fact that Ai is the minimum of
fin(xi, . . . , xn) to see that

Ai ≤ fi,i+1(xi, xi+1).

Substituting (xi, xi+1) = (0, 1) we get

Ai ≤ Ai(0− αi,i+1)2 + Ai+1 ≤
1
4
Ai + Ai+1

which gives the desired result.
∗In the paper a quadratic form is indicated with q; what we call fkn(x) is called qk(x) there and fkm is denoted by qm

k . The
notation in the paper is somewhat more convenient; the notation in this report is closer to historical literature. Other places where
this report’s notation deviates from the paper will be indicated by footnotes.

4

Korkin and Zolotarev also proved the following result.

Theorem 2.2 (Second KZ-inequality). In the Lagrange expansion of a KZ-reduced quadratic form the outer
coefficients satisfy

Ai+2 ≥
2
3
Ai

for all i ∈ {1, . . . , n− 2}.

Using this theorem, we can find a finite characterization of KZ-reduced forms:

Theorem 2.3. For each n > 0 there are finite sets of vectors X1, . . . , Xn such that if a quadratic form f
satisfies

f is size-reduced, (2.2)
fij(x) ≥ Ai for all 1 ≤ i < j ≤ n, for all x ∈ Xj−i+1, (2.3)

then f is KZ-reduced†.

Note that if we drop the restriction that the Xi are finite, and choose Xi = Zi, then (2.2) and (2.3) are
equivalent to the definition of KZ-reducedness.

Proof. By induction on n. Clearly X1 = ∅ suffices, as f(x) = A1x
2
1 is always KZ-reduced.

If n = 2 then X2 = {(0, 1)} suffices: from f(0, 1) ≥ A1 the first KZ-inequality follows. If |x2| > 1 then
f(x) ≥ A2x

2
2 ≥ 3/4A122 > A1. If x2 = 1 then size-reducedness implies |x1 − α12x2| ≥ α12 for all x1; the same

holds if x2 = −1. Hence only x1 = 0 needs to be considered. Finally f(0, 1) = f(0,−1), so we need only one of
the two.

For n = 3 we have X3 = {(0, 0, 1), (0, 1, 1), (1, 1, 1)}: as in the previous case we have |x3| ≤ 1, so we may
assume x3 = 1 for all vectors in X3. Using KZ-reducedness of f23 and f12 (so the first KZ-inequality holds) we
get

f(x1, x2, 1) ≥ A2(x2 − α23x3)2 + A3 ≥ A1(
3
4
(x2 − α23)2 +

9
16

),

so we need |x2 − α23| <
√

7/12. This can only be true for some 0 ≤ α23 ≤ 1/2 if x2 ∈ {0, 1}. If x2 = 0 we have

f(x1, 0, 1) ≥ A1(x1 − α13)2 + 3/4A1

Like above we have |x1 − α13| ≥ α13 for all x1, so we only need to add (0, 0, 1) to the list. Now if x2 = 1 then

f(x1, 1, 1) ≥ A1(x1 − α12 − α13)2 + 3/4A1.

For x1 < 0 we have |x1−α12−α13| ≥ 1/2. The same goes for x1 ≥ 2. So we need to verify (0, 1, 1) and (1, 1, 1).
For n > 3 we must show that if f2,n and f1,n−1 are KZ-reduced, then f(x) ≥ A1 for all but finitely many

x ∈ Zn. By (2.1) we can assume xn 6= 0 for all x ∈ Xn. If xn >
(
(3/2)b(n−1)/2c(4/3)(n−1) mod 2

)1/2

then

f(x1, . . . , xn) ≥ Anx2
n ≥ (2/3)b(n−1)/2c(3/4)(n−1) mod 2A1x

2
n > A1,

where we have used the first and second KZ-inequalities. It follows that we only need to consider 1 ≤ |xn| ≤(
(3/2)b(n−1)/2c(4/3)(n−1) mod 2

)1/2

.
Now assume that the values for xi+1, . . . , xn are fixed, say (xi+1, . . . , xn) = (yi+1, . . . , yn). We can then

bound the values of xi that can possibly be completed into a vector (y1, . . . , yn) with f(y1, . . . , yn) < A1 for
some f .

f(x1, . . . , xi, yi+1, . . . , yn) ≥ Ai(xi −
n∑

j=i+1

αijyj)2 +
n∑

k=i+1

Ak(yk −
n∑

j=k+1

αkjyj)2 (2.4)

≥ Ai(xi −
n∑

j=i+1

αijyj)2 + C (2.5)

≥ (2/3)b(i−1)/2c(3/4)(i−1) mod 2A1(xi −
n∑

j=i+1

αijyj)2 + C (2.6)

†The set Xi in this theorem corresponds to the set {x ∈ Xi | xn 6= 0}, where the last Xi is the set as defined in the paper.

5

where C is the minimum over all KZ-reduced forms
∑n

k=i+1 Ak(yk −
∑n

j=k+1 αkjyj)2 with

Ak ≥ (2/3)b(k−1)/2c(3/4)(k−1) mod 2A1.

Furthermore, introduce constants C1, C2, such that

C1 ≤
n∑

j=i+1

αijyj ≤ C2 for all size-reduced sets of coefficients αkj .

Then it is clear that for

xi >
(
(3/2)b(i−1)/2c(4/3)(i−1) mod 2(1− C/A1)

)1/2

+ C2

and

xi < −
(
(3/2)b(i−1)/2c(4/3)(i−1) mod 2(1− C/A1)

)1/2

+ C1,

f(x1, . . . , xi, yi+1, . . . , yn) ≥ A1 for any size-reduced form f whose tail fi+1,n is KZ-reduced. Hence only values
for xi within these bounds need to be considered.

We will now compute an explicit bound on C. Since fi+1,n is already KZ-reduced, we know

fi+1,n(yi+1, . . . , yn) ≥ Ai+1

for all fi+1,n and for all y. Hence C ≥ Ai+1. Moreover, we can find lower bounds on the individual terms
Ak(yk −

∑n
j=k+1 αkjyj)2 since the yj are fixed, the αkj are bounded, and the first and second KZ-inequalities

bound Ak. The bound on C is simply the best of the bounds that follow in this way. Size-reducedness and the
fact that the yj are constant gives bounds on C1 and C2.

Note that, since f(−x) = f(x), we only need to include the vectors with xn > 0 in Xn. The following
theorem, which can be extended to forms in more variables in a straightforward way, can be used to reduce the
size of the list further.

Theorem 2.4. Let v = (a, x, y, z) with sign(a) = − sign(x) and |a| ≥ 1
2 (|y|+ |z|). There is no quadratic form

in 4 variables such that f(v) < A1, given size-reducedness and the fact that f24 is KZ-reduced.

Proof. Without loss of generality, assume a > 0 and x < 0 (take −v instead of v if this is not satisfied). Then

f(v) = A1(a− α12x− α13y − α14z)2 + . . . + A4z
2 (2.7)

≥ A1(a− α12x− α13y − α14z)2 + A2 (2.8)

≥ A1α
2
12 + A2 (2.9)

≥ A1, (2.10)

where (2.8) follows from f24(x, y, z) ≥ A2; (2.9) follows from α12 ≥ 0, α13, α14 ∈ (−1/2, 1/2] and |a| − 1/2|y| −
1/2|z| ≥ 0. Finally, (2.10) follows from f01(0, 1) ≥ A1.

The proofs in this section are all constructive. Hence one can generate a set Xn for any n. Note that
in principle the lower bound on C can be sharpened by solving a semidefinite programming problem. The
author has chosen not to follow that approach because it would have made the method less transparent. The
arguments above determine inclusion in Xn on a case-by-case basis, using only quite general properties implied
by KZ-reducedness of the smaller forms. No interaction between different vectors in Xn is considered. The
surplus vectors can be proven redundant afterwards using the SDP formulation in a systematic way that fits
perfectly in the general framework. See Section 6.3 for Xn, n ≤ 5.

6

Chapter 3

The Semidefinite Programming
Relaxation and Branching Strategies

3.1 A Semidefinite Relaxation

We start the derivation of the semidefinite programming relaxation by remarking that a quadratic form f can
be represented by a symmetric, positive semidefinite matrix B, such that f(x) = xtBx for all x ∈ Rn. The
matrix B is assumed to have full row rank, which implies that it is actually positive definite.

Definition 3.1. A decomposition of a symmetric n× n matrix B is a set of matrices B1, . . . , Bn satisfying

Bi is a symmetric (n− i + 1)× (n− i + 1) matrix∗ (3.1)

such that

B = B̄1 + · · ·+ B̄n (3.2)

where B̄i is an n × n matrix obtained by padding Bi on the top and left with zeroes. To be precise: if Bi =
(Bi

jk)i≤j,k≤n, then B̄i = (Bi
jk)1≤j,k≤n with Bi

jk = 0 for 0 ≤ min{j, k} < i.

Lemma 3.2. A positive definite matrix B has a unique decomposition

B = B̄1 + B̄2 + · · ·+ B̄n (3.3)

where Bi is positive semidefinite and of rank one. Moreover, the matrix Bi can be found from the Lagrange
expansion of the quadratic form associated with B by

Bi = Ai(1,−αi,i+1, . . . ,−αin)(1,−αi,i+1, . . . ,−αin)t.

We will refer to a decomposition as in the lemma as a Lagrange decomposition.
For ease of notation, in the remainder of this section n, the dimension of B, will be fixed. We encode the

set of all possible coefficients of the ith term of the Lagrange expansion of a form f as

Ai :=
{√

Ai(1,−αi,i+1, . . . ,−αin) ∈ Rn−i+1 | Ai ≥ 0, αi,i+1 ≥ 0, |αij | ≤ 1/2 (j = i + 1, . . . , n)
}
.

This set is clearly a convex cone. The minus signs in front of the αij are slightly inconvenient, but they are
consistent with historical notation. Let αi ∈ Ai. Any size-reducedness condition αij ≤ γij can be written as

(γij , 0, . . . , 0, 1, 0, . . . , 0)tαi ≥ 0,

where the “1” is in the position corresponding to −αij . Likewise a condition αij ≥ βij can be written as

(−βij , 0, . . . , 0,−1, 0, . . . , 0)tαi ≥ 0.

∗The matrix called Bi in the paper is the same as B̄i in this report.

7

Note that
(1, 0, . . . , 0)tαi ≥ 0.

is implied. The set of all vectors of this format (i.e. forming a lower or an upper bound on an αij) will be
denoted† by Di. Note that the elements of Di depend on the lower and upper bounds βij , γij . Unless specified
otherwise, we will assume the default values

βij = 0 if j = i + 1
βij = −1/2 if i + 1 < j ≤ n

γij = 1/2.

We then have

Ai = {αi ∈ Rn−i+1 | dtαi ≥ 0 for all d ∈ Di}. (3.4)

Next we define a similar notion for the ith matrix in the Lagrange decomposition of a positive semidefinite
matrix B.

Bi := {ααt | α ∈ Ai}.

From Lemma 3.2 we see immediately that a decomposition B = B̄1 + · · ·+ B̄n is a Lagrange decomposition if
and only if Bi ∈ Bi for all i. It is clear that if Bi ∈ Bi, then

• Bi ∈ Sn−i+1
+ (the positive semidefinite cone), and

• d1d
t
2? Bi ≥ 0 for all d1,d2 ∈ Di.‡

The constraints in the second item are all constraints that can be obtained by using one lower or upper bound,
or by combining exactly two of the lower- and upper bounds. Of course one can also combine three of the lower
and upper bounds, as follows.

Suppose we have constrained variables −1 ≤ x1, x2, x3 ≤ 1. Then the following inequality is valid:

1
2
(1 + x1)(1 + x2)(1 + x3) +

1
2
(1− x1)(1− x2)(1− x3) = 1 + x1x2 + x1x3 + x2x3 ≥ 0.

The inequality remains valid if we replace any of the xi by −xi. This yields a total of 4 new inequalities, and
straightforward enumeration learns that those are all inequalities that can be obtained from combining products
of 3 inequalities such that the term x1x2x3 cancels. If we select three of the αij (no two equal), we can translate
and scale each of the intervals βij ≤ αij ≤ γij into the interval [−1, 1] and plug them into the inequality above.
We can now construct a matrix Ei

jklm (i+1 ≤ j < k < l ≤ n; m = 1, . . . , 4 for the four inequalities of this form)
with as coefficients −1 in the top left corner (position (i, i)), the coefficient in the inequality of αij at position
(i, j) and the coefficient of αijαik at position (j, k). This means we also have that

• Ei
jklm ? Bi ≥ 0 for all Ei

jklm.

Similarly, there are quadratic inequalities among the nonnegative combinations of m > 3 linear inequalities.
For fixed m the extremal inequalities among those can be found using Fourier-Motzkin elimination to eliminate
the higher-order terms. As shown in [PR01], there is an M such that all quadratic inequalities implied by our
linear inequalities have been generated for an m < M . However, the increase in strength of the formulation on
account of the third-order inequalities described above was already comparatively small, so this method was
not pursued further.

Putting the above together, we have that

Bi ⊆ {Bi ∈ Sn−i+1
+ | d1d

t
2? Bi ≥ 0, Ei

jklm ? Bi ≥ 0 for all d1,d2 ∈ Di, for all i + 1 ≤ j < k < l ≤ n} =: Ki.

The set Ki is clearly a convex cone, and therefore it can be used as building block for a convex optimization
problem. In fact, we can now write down a semidefinite programming problem where we minimize a linear

†In the paper the set Di is not described explicitly, and, similar to the difference in meaning of the matrices Bi, the set Di in
the paper is defined on vectors in Rn. It must also contain more vectors than the Di in this report, since it must ensure that each
vector in the set {a ∈ Rn | ad ≥ 0 for all d ∈ Di} starts with a number of zeroes.

‡In this report we write A ? B =
P

i,j AijBij = Tr(AtB).

8

function in the entries of the Bi subject to the constraints that each of the Bi is positive semidefinite and a
number of linear inequalities in the entries of the Bi:

minimize
n∑

i=1

Ci ? Bi (SDP)

subject to Bn
nn = 1 (3.5)

d1d
t
2? Bi ≥ 0 for all d1,d2 ∈ Di, 1 ≤ i ≤ n (3.6)

Ei
jklm ? Bi ≥ 0 for all i + 1 ≤ j < k < l ≤ n, m = 1, . . . , 4, and 1 ≤ i ≤ n (3.7)

Bi
ii ≤ xt(

i+j−1∑
k=i

B̄k)x for all x ∈ X̄j , 1 ≤ i ≤ n− 2, and 2 ≤ j ≤ n− i + 1 (3.8)

Bi � 0 (1 ≤ i ≤ n). (3.9)

The set X̄j is defined as {(0, x) ∈ Zn | x ∈ Xj}. Equality (3.5) is needed to remove the scale-invariance from
the problem. Without it,for every solution (Bi)n

i=1 to the remaining system, we would have a solution (ζBi)n
i=1

for ζ > 0. The author does not find this to be the most convenient way of intersecting the cone. In fact, at first
the equality B1

11 = 1 was used. However, that equality did not bound all outer coefficients from above, which
leads to numerical problems for some objective functions. The current method does not have that problem.

There are several software packages that can approximate the optimal solution to this problem quite effi-
ciently. Section 3.5 describes how to do this in one specific package. But first we describe how to use a branching
process to improve the bounds provided by this formulation.

3.2 Branch and Bound

The linear inequalities of the previous section were carefully crafted to depend on general upper and lower
bounds βij ≤ αij ≤ γij . Hence the branch and bound process described in the paper can be executed efficiently.

Since we are looking for rank-one matrices, it seems wise to branch on intervals whose corresponding matrix
Bi deviates significantly from a rank-one matrix. The way we measure this is the following: for each i, we
construct the rank-one matrix B̃i for which

B̃i
jk = Bi

ijB
i
ik/Bi

ii j, k ∈ {i, . . . , n}, (3.10)

that is, B̃i is the unique symmetric rank-one matrix such that the first row of B̃i equals the first row of Bi.
If Bi is close to rank one, B̃i will not differ too much from it. To determine our branching point, we now

select the j ∈ {i + 1, . . . , n} for which
n∑

k=i

|B̃i
jk −Bi

jk|

is maximal. Intuitively, we select the j that contributes most to the height of the rank of Bi. Maximizing this
quantity over all i then gives a good choice for a branching point.

Usually we try to find a lower bound on the minimum. Then it only makes sense to branch in the leaf of the
current branching tree that minimizes the objective function: our lower bound is as good as the lowest value
among the leaves.

Other branching strategies have been considered (see also [Zwa05]), but this was by far the most efficient
one among those. However, observation of the branching process learns that there are sometimes long stretches
in which the optimum does not improve significantly. This indicates that there might still be room for improved
strategies. One possibility is outlined in the next section.

3.2.1 A different branching strategy

The observation in the previous paragraph suggests a different approach to the branching process: by spending
more time in each node, the total number of nodes that are visited can remain relatively small. A first idea
would be to compute the improvement in the lower bound for each possible choice of an interval, and then
select the one that improves the objective function the most. More concretely, it selects that branching point
where the minimum objective function of the two resulting leaves is largest. Experiments show that especially

9

in the first few steps much progress is made, but soon the algorithm finds itself in a point where none of the
possibilities show any significant improvement. Then several secondary strategies can be employed, such as
selecting the branching point where the maximum objective function of the two resulting intervals increases
most, or reverting to the strategy of the previous section. Yet another option would be to consider the possible
branchings a few levels deep. However, computation time will increase significantly in that case.

3.3 A note on the sets Xi

Since we try to find lower bounds on certain minima, we do not need to use exactly the set Xi as constructed in
the proof of Theorem 2.3. Any subset or superset will also yield a valid lower bound. However, if the subset is
too small the lower bound will not be tight. If the set is too big the SDP will have more inequalities and hence
it will take the computer longer to find a solution (in particular, each inequality gives rise to a dual variable).
For forms in more variables it might be a wise idea to use a cutting plane approach: start with a small number
of inequalities and add ones that are violated if deemed necessary.

3.4 Strategies for finding quadratic forms

For some of the problems we consider we are interested in finding an optimal quadratic form. This is a nontrivial
task, as the Bi in the primal solution returned by the interior point algorithm will usually not have rank 1. We
describe two ways of creating a quadratic form from this solution. The first way is simply replacing each Bi by
the B̃i from (3.10). The second way follows by observing that, regardless of the rank of the Bi,

∑n
i=1 Bi will

be a quadratic form, from which we can compute the Lagrange expansion.
Both methods will not give a KZ-reduced form for most of the time, but sometimes, especially as the

branching process gets closer to the optimum, they do find a form that is almost KZ-reduced. After some
manual tweaking such a form may yield a reasonably good upper bound on the optimum. All quadratic forms
listed in the paper and this report were obtained in this way.

Finding a way to obtain such forms completely automatically is still a significant challenge.

3.5 Description of the SDP in MaxDet syntax

The MaxDet software [VBW] solves the following problem.

minimize cty + log det G(y)−1 (MD)
subject to G0 + y1G1 + · · ·+ ymGm � 0 (3.11)

F0 + y1F1 + · · ·+ ymFm � 0. (3.12)

The dual to this problem is

maximize log detW −G0 ? W − F0 ? Z + l (MP)
subject to Gk ? W + Fk ? Z = ck k = 1, . . . ,m (3.13)

W = W t � 0, Z = Zt � 0. (3.14)

Since the software package Rigorous Maxdet [SV, SV06], which we used to make our proofs rigorous, was based
on MaxDet, we will cast the SDP in this format.

Clearly every constraint in Problem (SDP), say constraint k, can be expressed as
∑

i F i
k ? Bi ≥ ck for some

matrices F i
k and some ck. If we introduce slack variables we can transform those constraints into equalities:

n∑
i=1

F i
k ? Bi − sk = ck

where we require sk ≥ 0. Any feasible solution (B1, . . . , Bn, s1, . . . , sm) can be written as the following block

10

diagonal matrix:

Z :=



B1

B2

. . .

Bn

s1

. . .
sm



.

In this matrix, all entries outside the blocks are 0. This matrix is clearly positive semidefinite if and only if all
of its blocks are positive semidefinite. For a 1× 1 block this reduces to the requirement that it is nonnegative.

In the same way the matrices making up a constraint can be grouped:

Fk :=



F 1
k

F 2
k

. . .

Fn
k

0
. . .

−1
. . .

0


where the −1 is in the position of the k’th slack variable in Z. Finally we write the target function as the

11

following matrix:

F0 :=



C1

C2

. . .

Cn

0
. . .

0



.

Since we are not interested in determinant optimization, we can define W := [1], G0 := [1] and Gk = [0]. With
that final step we have cast our problem into the formulation used by MaxDet. Note that if we are looking
for a feasible solution to our original problem, we must find a solution to the dual of the MaxDet formulation.
Likewise, if we are looking for a lower bound on our minimum, we have to minimize the primal problem of the
MaxDet formulation. The optimal solution to the MaxDet-formulation of the problem is minus the optimal
solution to our original problem. We will refer to the minimization problem of the MaxDet-formulation as the
dual problem and to the maximization problem (i.e. our original problem) as the primal problem throughout
this report.

12

Chapter 4

Making the lower bounds rigorous

The methods described in the previous chapter give tools to generate numerical evidence that certain lower
bounds hold. It is not entirely trivial to turn this numerical evidence into mathematically rigorous proofs. In
this chapter we talk about the steps that need to be taken to achieve this.

Once the proofs have been generated, their verification is straightforward. The last two sections of this
chapter summarize this process.

4.1 From floating-point numbers to rational numbers

The software used to find the primal and dual solutions uses fast routines for computing with floating-point
numbers. These numbers have limited precision (roughly 13 or 14 digits, usually) and hence all computations
are approximate. Any result returned by such software should therefore be interpreted as “within this precision,
it seems that this answer is a reasonable approximation”. As a first step towards rigorous proofs, one should
get rid of these floating-point numbers. For the constraint matrices Fk and the right-hand side vectors ck this is
rather straightforward: all the information needed to generate these matrices is expressed in rational numbers.
In fact, we will usually scale them to ensure that all entries are integral (but see Section 4.3).

Next we consider the dual solution returned by the software. There is no way of knowing how to scale this
vector beforehand. It is not even clear that the optimal vector is rational! However, one can use continuous
fraction expansions to get rational numbers that are very close to the desired number. This is the method that
we employ.

4.2 Ensuring strict feasibility

Suppose that for a certain interval set the SDP is described by F0, . . . , Fm and c0, . . . , cm, all with integer
entries, and that we have a rational approximation y of a feasible dual vector. That is, y is close to a vector ỹ
satisfying

F0 + ỹ1F1 + · · ·+ ỹmFm � 0.

How can we verify if y itself satisfies this relation, and, crucially, can we ensure beforehand that y will satisfy
it? If we had used MaxDet for our computations, both questions could have been answered easily. MaxDet
will return a solution to your problem that is strictly feasible. Then the approximation by rational numbers –
if close enough – will also be strictly feasible. The first question then reduces to checking positive definiteness
of a matrix, and this can be accomplished by checking positiveness of the determinant of the top left 1 × 1
submatrix, then the top left 2× 2 submatrix, up to the determinant of the whole matrix.

MaxDet is not the best SDP solver available nowadays. First of all, it requires a strictly feasible dual solution
to even start working, and it is not clear how to obtain that from the description above. This problem can be
circumvented by the introduction of a new variable, but that will create a new constraint with index m + 1 in
the primal solution. This constraint should be such that it is satisfied by all KZ-reduced quadratic forms, which
leads to a huge number cm+1. This, in turn, seriously hampers the numerical stability of MaxDet. Moreover,
MaxDet gives up sooner than other packages with a simple error message. By comparison, SeDuMi [Stu99]
always returns a solution and some information on the quality, even if this solution is quite far from feasibility,
leaving it up to the recipient to deal with it. Finally, MaxDet seems to be quite a bit slower. These reasons

13

moved the author to import the SDP into SeDuMi, solve the problem there, and translate the solution back to
the MaxDet format for further processing. The cost of this is that SeDuMi will return a dual solution that is
not strictly feasible, and in fact this solution is usually slightly infeasible.

How can we still obtain strict feasibility? This can be accomplished by modifying the problem a bit before
offering it to the solver. We replace F0 by F0−εI for some small ε and solve the resulting SDP. If the computed
dual solution has eigenvalues that are slightly negative but more than −ε, they will still be strictly positive for
the original problem. This means we can use these dual solutions in our approach as described above.

4.3 Numerical stability

Even then, we need to be careful. As intervals get split more often, the numerical stability of the corresponding
SDP decreases, and eventually the solution returned will no longer have eigenvalues within the bound imposed
by the previous section. There is no way to recover from such instabilities in the rounding phase, so one must
monitor the returned dual solutions throughout the branching process, and deny branching on choices that yield
instable results.

Somewhat higher stability can be achieved by scaling each of the Fk so that all numbers are roughly of the
same size. It is easy to scale the obtained dual vectors to correspond to the original, unscaled problem. But
this will only postpone the problems of the previous paragraph.

There are several strategies for dealing with stability problems. One can change the parameters of the solver
to make it try harder (but take longer), one can put restrictions on the minimum width an interval should have,
and so on. When looking at the implementation the reader will notice many places in which the method can
be finetuned.

4.4 Testing KZ-reducedness of a quadratic form

In order to test whether a quadratic form is KZ-reduced, one needs to compute its Lagrange expansion, check
whether the inner coefficients are size-reduced, and whether min{fin(x) | x ∈ Zn−i+1,x 6= 0} = Ai for all
i ∈ {1, . . . , n− 1}. One way to do this is to check whether fin(x) ≥ Ai for all x ∈ Xn−i+1, where this last set
is the one computed by the methods in Chapter 2.

If the form was intended to show necessity for a particular vector x, it is not KZ-reduced. In this case, one
needs to verify KZ-reducedness, whether f2n is KZ-reduced, whether f1n(x) < A1, and whether f1n(y) ≥ A1

for all y ∈ Xn \ {x}.

4.5 Verifying a lower bound

This verification is not much more involved than the previous one. A lower bound consists of a series of interval
sets whose union is the space of size-reduced inner coefficients of Lagrange expansions, coupled with a feasible
dual vector. A verifier therefore needs to accomplish the following two tasks:

1. Check if the union of all interval sets is indeed the whole space of size-reduced inner coefficients,

2. Verify the feasibility of the dual vector for each interval set.

The second task is accomplished by computing, for each dual vector, the SDP formulation corresponding to the
interval set, establishing the positive semidefiniteness of F0 +

∑m
i=1 yiFi, and finally evaluating cy to obtain the

lower bound. As described in Section 4.2 we will in fact provide dual vectors that are strictly feasible, so that
we only have to establish positive definiteness of F0 +

∑m
i=1 yiFi, which is relatively straightforward.

To verify the proofs of the theorems in the paper accompanying this report, one should ascertain that the
computed SDP formulation is correct. That is: given an interval set, do all KZ-reduced quadratic forms, with
inner coefficients in this interval set, satisfy the constraints of the corresponding SDP formulation?

14

Chapter 5

Programs

The computer code and certificates are published as a digital appendix to this report and are available from the
SPOR reports website of the department of Mathematics and Computer Science of the Technische Universiteit
Eindhoven,

http://www.win.tue.nl/bs/spor/

In addition, the author will strive to keep a version of the code available from the following website:

http://www.win.tue.nl/kz/

On this website updated versions of the code will appear, as well as new results.
This chapter tries to guide users through the process of getting this code to work, and tries to give some

hints that help reading the files.

5.1 Installation

The difficulty of getting the code to work depends on which parts of the code you are going to use. If you are
only interested in the verification of our claims, this should be rather straightforward: you only need to compile
some C++ programs, as detailed in the next subsection. The code that verifies a quadratic form was written
in Mathematica, and should work with most versions of that software. If you want to prove your own lower
bounds, you will need to use MATLAB, and you will have to compile some C++ files using MATLAB’s “mex”
compiler. The details of this can be found in the remainder of this section.

5.1.1 How to compile the code for genlists and verifydual

After decompressing the contents of the archive into a directory, here’s what you do (assuming the presence of
a Unix-like “make” utility∗):

• Obtain and compile NTL by Victor Shoup [Sho].

• Change paths and settings in the file Makefile to reflect program locations. Specifically, look for the lines
starting with CXXFLAGS and LIBS.

• Type make from the command prompt

Typically, in the second step you specify include directories so that your compiler can find NTL. If you
compiled NTL without GMP, you need to remove the option -lgmp. Make sure that you don’t change any tabs
in the file.

To test your programs, type

./genlists 3 > dim3.txt 2> dim3-redundants.txt

∗Windows users may want to consider installing Cygwin, see http://www.cygwin.com/

15

http://www.win.tue.nl/bs/spor/
http://www.win.tue.nl/kz/
http://www.cygwin.com/

(assuming a Bash-like shell, where you can route the standard error and standard output separately - otherwise
the results are unpredictable, and it is safest to change the source code by removing line 51 of genlists.cpp),
and

./verifydual < certs/kz3proof.txt

Note that verifydual will not work if you put it in your path - it uses its calling string (‘./verifydual’ in the
examples above) to deduce the location of the directory xrows (‘./xrows’ in the examples above).

5.1.2 How to interface between the MATLAB and C++ parts of the code

First, make sure the programs in the previous section work (specifically, make sure NTL is available). Then the
basic process is this:

• Obtain and install SeDuMi [Stu99]

• Start MATLAB

• Configure mex (mex -setup)

• Change paths and settings in compileAkz.m to reflect program locations

• change into the directory containing the files

• run compileAkz.m

To test the system, run the following commands in MATLAB:

akz(3,[-1,0,0],’kz3test’,3,[],[],-1);
buildCerts(3,[-1,0,0],’kz3test’);

and then, from the command prompt,

./verifydual < kz3testproof.txt

Unfortunately the process is not as smooth as suggested here. The next paragraphs will describe some
hurdles that the author has run into, sorted by operating system. Note that in principle the code uses no
platform-specific constructs. All issues below are caused by external factors.

Linux The following applies to systems with GCC 3.4 or newer and MATLAB 7.0.4 (aka R14SP2). If GCC
is older (3.3) or MATLAB newer, you probably don’t have to deal with what follows. Only resort to this if you
get errors when running the compiled code. This affects SeDuMi as well as the code in this project.

The version of MATLAB mentioned above has, for some reason, several outdated libraries (most notably
libgcc s.so.1) hidden in its directory structure. These will conflict with GCC 3.4. Several solutions exist.
The easiest one is to type the following command just before starting MATLAB (assuming the Bash shell -
other shells may have different ways of setting environment variables):

export LD_PRELOAD=/lib/libgcc_s.so.1

This will make sure the linker links against the right version of the library. Note that you have to do this
every time you want to run the code. You may want to consider adding it to your environment permanently,
but the author is not sure if this could cause unwanted side-effects. Another way is to install an older version of
gcc (version 3.3, for example) alongside your new one and modify .matlab/R14/mexopts.sh to point to gcc33
and g++33 as compilers. This directory .matlab can be found in the directory from which you run MATLAB.
The author did not test this second method.

MATLAB will now run the created files just fine, but it will crash when you exit.

16

Microsoft Windows XP If you are unfortunate enough to be doing all this in Windows, there are more
hurdles along the road. In fact, the author only succeeded in getting the code to run at all after a lot of effort,
and even then only for one compiler. This section shows his attempts, so that you can save yourself some time.
Moreover, the compiled .dll files for use with MATLAB 7.0.4 have been included for convenience, so you don’t
have to compile the code yourself. Note that no compiled version of the programs in the previous section was
included, since running a “black box” is not very illuminating in terms of verifying a proof. For experimentation
and generation of certificates, however, using a black box does not have to be an objection at all.

MATLAB comes with a built-in compiler (lcc) for C programs. This is of no use for C++ code. Hence you
need an alternative. MSVC++ was not available to the author. The possibility of using Cygwin in conjunction
with Gnumex seems promising but leads to MATLAB crashes (though the Gnumex website claims that it works
if you install GCC 3.2 instead of the current version, something the author didn’t try). Gnumex also provides
support for MingW. However, trying to link NTL to the mex code leads to a long sequence of ”undefined
references”, concluding with an error. Open Watcom (the author tried 1.3 and 1.4) requires MATLAB to be
installed in a path without spaces. More importantly, it failed to compile NTL. Borland C++ Builder 6 initially
does not seem to compile the code for NTL (due to an “ambiguous template statement”). This can be resolved
by replacing every occurrence of “negate” by “NTL::negate”. You also have to specify a “page size” of 128
in the TLib pane of the Project Options dialog. But after that the programs would compile on the author’s
system.

Finally note that MATLAB 7.1 (R14SP3) has changed the extension of Mex files from .dll to .mexw32 (or
something similar). Also the internals seem to have changed, but the author reverted to 7.0.4 before he could
look into that in more detail.

Other systems The author does not have access to MATLAB on other systems, so you are on your own
there.

5.2 Understanding the code

Table 5.1 contains a short description of the contents of each source file.

17

Filename Purpose

rig maxdet.h,
rig maxdet.cpp

The code for Rigorous Maxdet was originally written by Achill Schürmann and
Frank Vallentin [SV]. This version of the code is nothing but a rearrangement
of a small subset of their code that handles the rounding of the floating-point
dual solutions.

QQ.h,
structs.h,
structs.cpp

General definitions: a class for dealing with rational numbers (a slight modifi-
cation of the file by the same name included with Rigorous Maxdet), definitions
of the data structures and a few useful functions.

genlists.cpp Implementation of the method described in Chapter 2. Originally written by
Rudi Pendavingh, modified to use QQ.h.

xrows.h,
xrows.cpp,
constraintmatrix.h,
constraintmatrix.cpp

The generation of the SDP, as described in Chapter 3.

xrows/* Sufficient sets Xn, for n ≤ 6. Read by xrows.cpp.

constraintMatrix.m,
mlconstraintMatrix.cpp,
resize.m

Generation of the SDP in SeDuMi input format. The file with prefix ml provides
the interface between the C++ code and MATLAB. The function resize is
needed to scale the dual vector so that it corresponds to a valid dual vector in
the C++ code.

akz.m This function performs the branching process.

specialBaseConstr.m,
splitInterval.m,
checkQF.m, Split.m,
branchPosOf.m,
posOf.m, toVec.m,
toExpan2.m,
toExpan.m, toQF.m,
verifyExpan.m,
vecToExpan.m

some auxiliary functions used by akz.m and (for some) buildCerts.m.

buildCerts.m,
mlbuildCerts.cpp

Convert certificates that were obtained numerically by akz into rational, and
hence verifiable, certificates.

verifydual.h,
verifydual.cpp

Verify certificates produced by buildCerts.m.

doComputations.m,
toVer4Mat.m,
preSplit.m,
findRedundants.m,
setpars.m

Some miscellaneous small MATLAB functions to perform specific tasks.

VerifyQF.ma Mathematica code to verify KZ-reducedness of a given quadratic form.

Makefile,
compileAkz.m

Commands to build the applications from the source code.

mlbuildCerts.dll,
mlconstraintMatrix.m

Binaries to run the Matlab part of the code under Windows.

readme.txt The contents of the previous section.

gpl.txt The software license file. The programs are distributed under the GNU General
Public License, which roughly means you can do whatever you want with the
software, but you must distribute all source code of any published program
based on this code, and you cannot impose other restrictions on redistribution.

Table 5.1: Files included in the first digital appendix

18

Chapter 6

Data

Clearly the long lists of arbitrary-length integers returned by the methods can not be reproduced completely
in this report without increasing the number of pages to a very long integer. For that reason we only present
forms violating exactly one inequality in dimensions 3, 4, and 5, and a certificate showing that A3 ≥ 2/3 − ε.
For certificates of the other claims, please refer to the table in Section 6.2.

As in the previous chapter, the full set of data justifying all claims made by the author on this subject
can (at present) be found on the author’s website. Of course, the code in the previous chapter can be used to
generate the data.

6.1 A lower bound on A3

Listing 6.1, included for illustrative purposes, shows that

−A1 ≥ −843000657631516509143/562000363888803840000A3,

which proves A3 ≥ (2/3 − 10−7)A1. It is formatted in just the way that verifydual (see Section 4.5) would
accept it. The first line contains the dimension n, the length l of the function to be optimized (either 1 or n),
the coefficients of the function to be optimized (an index into Xn if l = 1, so that xtBx is minimized for some
x ∈ Xn; if l = n the encoding of a linear combination of the outer coefficients), and the number of interval sets
that follow. The branching process will store after each step one of the resulting two nodes at the position of
the old node, say position p, and append the other node at the end of the list. To this new node a number is
assigned indicating the position of the old node. From these numbers the branching tree can be reconstructed
efficiently, which makes it much easier to verify if the whole space of size-reduced inner coefficients is covered.
For each interval first this number is given. Then n − 1 lines follow with the lower and upper bounds on the
inner coefficients. The first of these contains α12, . . . , α1n, the second α23, . . . , α2n, and so on. Finally a feasible
vector for the dual of the SDP formulation corresponding to this set of intervals is given. The objective function
value for this vector gives a lower bound on the optimum.

For each claim in [PZ06] the author has generated a similar file. However, the choice of intervals that yielded
Listing 6.1 was done manually, which results in a remarkably small number of cases.

Listing 6.1: kz3proof.txt
3 3 −1 0 0 5
−1
([0 , 1] / 2 [−1 ,1]/2)
([0 , 1] / 3)
[1124000727777607680000 1686001145291114504194 −1121876369050

−28839286301604983202 −1121868061349 −1121551682833 −1122296051898
−45088341867299091499 −182893934821874982533 −28883778760249735391
−28883726140064361798 −1122528289156 −1121572431760 −1122265881955
−1121001531756 −52583182269215526943 −1121364561815 −1124209355371
−29295687455260988084 −1122026955208 −62407377676133975052
−158037923433915576612 −1122728309347 −1123037917653 −1078002233873913458246
−1265335702840557589353 −420665436820307254835 −1130259012615 −1129184165878]

19

0
([0 , 1] / 3 [−1 ,1]/2)
([2 , 3] / 6)
[1124000727777607680000 1686001315263033018286 −1131766127953

−8007243724317368232 −1123544584111 −1117767310959 −1128994902997
−4924118409369827747 −23670073964055503871 −2483764878494666199
−2483757670936094630 −1120068312000 −1116842763299 −1121668727849
−1116172591135 −2307919237777 −1118227601018 −1136388229368
−33984366741992692875 −1133593518833 −77175403775879940974
−106516020767478518008 −1134043806619 −1142295019962 −1264500971530211447949
−1686001307793330255592 −1447916522325 −1438570407581 −1134451237817]

1
([2 , 3] / 6 [−3 ,−2]/6)
([2 , 3] / 6)
[1124000727777607680000 1686001128294977930318 −1109687524947

−1427913396099726486 −1111634375216 −1112208598604 −1371013309404062077
−2556173866114035144 −17969139635901795390 −2256521723472136186
−27288740000230012753 −1111417305920 −1131780896283 −2126120083788688293
−1112653510373 −17749612873370311697 −2413526249720062684 −1115331821915
−1112286309204 −2163228208225424288 −1110295093736 −27153350668531702069
−3558899657895480088 −1112231043589 −259841370365692514292
−693141380465462009078 −254960113112609899238 −737899630255294619852
−1116346085952]

2
([2 , 3] / 6 [2 , 3] / 6)
([2 , 3] / 6)
[1124000727777607680000 1686001128584050707717 −1120249266262 −1116721178824

−1124932432579 −1116760091170 −1124446366054 −1117038131124
−14683744879110447572 −1117222765932 −10834471073822452697 −1129109210493
−7331916259544113868 −1125526117220 −1117081378806 −13983239045422079713
−1127967455991 −1121713026785 −1129963302184 −1117127548853 −1135806586551
−23416684576507255203 −1117051512776 −1122256801284 −306219405614213418528
−727719695027412506155 −255780961137930345869 −1128835239822
−702500467921278518793]

2
([2 , 3] / 6 [−2 ,2]/6)
([2 , 3] / 6)
[1124000727777607680000 1686001200141997688519 −1119778197259 −1131449315366

−1122115624322 −1116913047475 −1118877769699 −1132912106255 −2514815752686
−1118543334881 −1148050334017 −1121867541457 −1118463612287 −1118521757540
−1115707022151 −17562514586909834003 −1116376155741 −1121451425785
−37032324082703375566 −1120389365770 −77764917613660471060
−103468154102475206443 −1122988007389 −1122735720487 −1200767770500
−421500308687042842055 −1264500885757306996273 −1189469894945 −1134257661722]

6.2 Correspondence between claims and files

Table 6.1 describes which files in the second digital appendix contain the proofs of the various claims made in
the paper and in this report.

6.3 Minimality of the sets of inequalities

To show that a set Xn is minimal, one has to show first that it is a subset of a sufficient set (for example, a
subset of a set generated by the method in Chapter 2). For all vectors x that are in the difference between the

20

Data file Claim

kz3proof.txt A3 ≥ (2/3− 10−7)A1

redcheck*proof.txt Redundancy in X5 of the vectors in Table 6.9.

kz4proof.txt −25A1 − 36A2 + 48A3 + 40A4 ≥ −7 · 10−6A4

kz5 1proof.txt −5A1 + 2A4 + 8A5 ≥ −3 · 10−4A5

kz5 2proof.txt −4A1 − 3A3 + 4A4 + 8A5 ≥ −5 · 10−5A5

Table 6.1: Where to find the proofs

minimal and sufficient set, one has to show redundancy. This can be done by showing that

min
{
f(x) | f2n is KZ-reduced, f is size-reduced, f(y) ≥ A1 for all y ∈ Xn \ {x}

}
≥ A1.

Strict inequality can be established using the SDP described in Chapter 3. Finally, for the remaining vectors
one must show that not a single one can be missed. That means one has to find a form

f ∈
{
f | f2n is KZ-reduced, f is size-reduced, f(y) ≥ A1 for all y ∈ Xn \ {x}, f(x) < A1

}
.

Unfortunately, the word “strict” above is a problem. Some of the vectors that are conjectured to be redundant
will have their minimum equal to 1. Since we are using numerical approximations, we can only show a lower
bound that is slightly below 1. For these vectors necessity will remain undecided by our current methods. In
dimension 5 there are 8 such vectors among those generated by genlists. The results for dimensions 3, 4, and
5 are shown in Tables 6.2–6.10.

Note that the quadratic forms in Tables 6.2–6.8 were obtained by rounding and manually tweaking solutions
provided by the algorithm. Rounding primal solutions is a much more delicate process than rounding dual
solutions, and the software accompanying this report does not provide an automatic way of doing this.

Vector (0, 0, 1) (0, 1, 1) (1, 1, 1)

Certificate

 720 −360 0
−360 720 −129

0 −129 540

  720 −360 360
−360 720 −450
360 −450 720

  720 −360 −360
−360 720 −90
−360 −90 720



Table 6.2: The vectors in X∗
3 and their certificates.

21

(−1,−1, 0, 1) (0,−1, 0, 1) (0, 0, 0, 1)
720 −360 −360 360
−360 720 0 90
−360 0 720 −347
360 90 −347 795




720 −360 360 −360
−360 720 −360 450
360 −360 720 −351
−360 450 −351 795




720 −360 350 0
−360 720 −266 −31
350 −266 722 −81
0 −31 −81 540


(0, 1, 0, 1) (1, 1, 0, 1) (−1,−1, 1, 1)

720 −360 −360 360
−360 720 0 −450
−360 0 720 −193
360 −450 −193 795




720 −360 360 −360
−360 720 −360 −90
360 −360 720 −294
−360 −90 −294 795




1024 −480 480 160
−480 1025 −225 325
480 −225 1025 −325
160 325 −325 1033


(0,−1, 1, 1) (−1, 0, 1, 1) (0, 0, 1, 1)

1024 −512 −480 −160
−512 1024 240 464
−480 240 1025 −325
−160 464 −325 1025




720 −360 360 360
−360 720 −180 −180
360 −180 720 −90
360 −180 −90 720




720 −360 360 −360
−360 720 −180 180
360 −180 720 −450
−360 180 −450 720


(1, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1)

720 −360 −360 −360
−360 720 88 234
−360 88 728 −94
−360 234 −94 721




720 −360 180 180
−360 720 −360 −360
180 −360 720 −90
180 −360 −90 720




720 −360 −180 −180
−360 720 −180 −180
−180 −180 720 −90
−180 −180 −90 720



Table 6.3: The 12 vectors in X∗
4 and their certificates.

22

(−1,−1,−1, 0, 1) (0,−1,−1, 0, 1)
720 −360 −180 360 180
−360 720 −180 −180 180
−180 −180 720 −360 90
360 −180 −360 720 −88
180 180 90 −88 720




720 −360 180 −360 −180
−360 720 −360 180 360
180 −360 720 −360 90
−360 180 −360 720 −113
−180 360 90 −113 720


(−1, 0,−1, 0, 1) (0, 0,−1, 0, 1)

720 −360 −360 180 360
−360 720 180 180 −180
−360 180 720 −360 90
180 180 −360 720 −50
360 −180 90 −50 720




720 −360 360 180 360
−360 720 −180 180 −180
360 −180 720 −180 450
180 180 −180 720 −50
360 −180 450 −50 720


(1, 0,−1, 0, 1) (0, 1,−1, 0, 1)

720 −360 360 180 −360
−360 720 −180 180 180
360 −180 720 −180 90
180 180 −180 720 −230
−360 180 90 −230 720




10000 −5000 −4659 2310 1719
−5000 10000 2329 −4660 −4609
−4659 2329 10000 −4990 3114
2310 −4660 −4990 10001 −730
1719 −4609 3114 −730 10001


(1, 1,−1, 0, 1) (−1,−1, 0, 0, 1)

100000 −47057 47057 −26531 −16372
−47057 100000 −22144 50003 −31224
47057 −22144 100000 −51413 31224
−26531 50003 −51413 102984 −49665
−16372 −31224 31224 −49665 101000




720 −360 360 −354 360
−360 720 −360 51 90
360 −360 720 −333 237
−354 51 −333 720 −306
360 90 237 −306 795


(0,−1, 0, 0, 1) (0, 0, 0, 0, 1)

10000 −5000 −5000 537 −5000
−5000 10000 0 3322 6250
−5000 0 10000 −4782 1321
537 3322 −4782 10037 −919

−5000 6250 1321 −919 11042




10000 −5000 −2590 −2266 0
−5000 10000 −2410 4876 69
−2590 −2410 10000 −2462 −768
−2266 4876 −2462 10000 −1604

0 69 −768 −1604 7500


(0, 1, 0, 0, 1) (1, 1, 0, 0, 1)

720 −360 360 −270 360
−360 720 −358 363 −450
360 −358 720 −364 269
−270 363 −364 728 −330
360 −450 269 −330 797




1024 −512 512 480 −512
−512 1024 −448 48 −128
512 −448 1040 122 −160
480 48 122 8575/8 −384
−512 −128 −160 −384 1184



Table 6.4: The 52 certified vectors in X∗
5 and their certificates.

23

(−1,−1, 1, 0, 1) (0,−1, 1, 0, 1)
100000 −47057 47057 −19925 16372
−47057 100000 −22144 −29032 31224
47057 −22144 100000 −48304 −31224
−19925 −29032 −48304 100780 −18220
16372 31224 −31224 −18220 101000




1000000 −500000 −460197 227732 −155816
−500000 1000000 230098 −479008 452908
−460197 230098 1000000 −498908 −322401
227732 −479008 −498908 1017860 −187553
−155816 452908 −322401 −187553 1010000


(−1, 0, 1, 0, 1) (0, 0, 1, 0, 1)

720 −360 360 180 360
−360 720 −180 180 −180
360 −180 720 −180 −90
180 180 −180 720 220
360 −180 −90 220 720




720 −360 −360 180 360
−360 720 180 180 −180
−360 180 720 −360 −450
180 180 −360 720 220
360 −180 −450 220 720


(1, 0, 1, 0, 1) (0, 1, 1, 0, 1)

720 −360 −360 180 −360
−360 720 180 180 180
−360 180 720 −360 −90
180 180 −360 720 40
−360 180 −90 40 720




720 −360 180 180 180
−360 720 −360 180 −360
180 −360 720 −360 −90
180 180 −360 720 43
180 −360 −90 43 720


(1, 1, 1, 0, 1) (−2,−1,−1, 1, 1)

720 −360 −180 360 −180
−360 720 −180 −180 −180
−180 −180 720 −360 −90
360 −180 −360 720 −17
−180 −180 −90 −17 720




720 −360 −360 360 360
−360 720 0 −180 90
−360 0 720 −180 −30
360 −180 −180 720 −90
360 90 −30 −90 975


(−1,−1,−1, 1, 1) (0,−1,−1, 1, 1)

720 −360 −360 −360 360
−360 720 0 315 −45
−360 0 720 135 15
−360 315 135 720 −399
360 −45 15 −399 840




1024 −512 256 −512 256
−512 1024 −512 256 64
256 −512 1024 −128 352
−512 256 −128 1024 −512
256 64 352 −512 1072


(1,−1,−1, 1, 1) (−1, 0,−1, 1, 1)

10000 −5000 5000 −5000 −5000
−5000 10000 −5000 5000 5000
5000 −5000 10000 −3334 0
−5000 5000 −3334 10000 0
−5000 5000 0 0 11667




10000 −5000 −5000 5000 0
−5000 10000 0 0 −3750
−5000 0 10000 −3334 4583
5000 0 −3334 10000 −4583

0 −3750 4583 −4583 10208



Table 6.5: The 52 certified vectors in X∗
5 and their certificates (continued).

24

(0, 0,−1, 1, 1) (1, 0,−1, 1, 1)
1000 −500 −500 −500 0
−500 1000 0 500 −375
−500 0 1000 150 458
−500 500 150 1000 −458

0 −375 458 −458 1021




1000 −500 500 −500 0
−500 1000 −500 500 −375
500 −500 1000 −334 458
−500 500 −334 1000 −458

0 −375 458 −458 1021


(−1, 1,−1, 1, 1) (0, 1,−1, 1, 1)

1024 −512 −512 512 512
−512 1024 160 −568 −640
−512 160 1036 −217 176
512 −568 −217 4603/4 28
512 −640 176 28 1408




720 −360 −360 −180 180
−360 720 180 −180 −360
−360 180 720 90 180
−180 −180 90 720 −180
180 −360 180 −180 855


(1, 1,−1, 1, 1) (2, 1,−1, 1, 1)

720 −360 360 180 −180
−360 720 −180 −360 −180
360 −180 720 90 180
180 −360 90 720 −180
−180 −180 180 −180 855




1024 −512 512 −512 −512
−512 1024 −256 −1024/15 −128
512 −256 1024 −256 128
−512 −1024/15 −256 783616/675 512/15
−512 −128 128 512/15 1408


(−1,−1, 0, 1, 1) (0,−1, 0, 1, 1)

720 −360 360 90 270
−360 720 −187 225 134
360 −187 720 −94 266
90 225 −94 720 −135
270 134 266 −135 809




1000 −500 461 −426 −74
−500 1000 −432 539 412
461 −432 1013 −454 83
−426 539 −454 1096 −222
−74 412 83 −222 1000


(−1, 0, 0, 1, 1) (0, 0, 0, 1, 1)

24 −12 12 12 12
−12 24 −6 −6 −6
12 −6 24 4 10
12 −6 4 24 −3
12 −6 10 −3 25




1024 −512 512 512 −512
−512 1024 −256 −256 256
512 −256 1024 160 −64
512 −256 160 1036 −664
−512 256 −64 −664 1072


(1, 0, 0, 1, 1) (0, 1, 0, 1, 1)

1024 −512 512 −512 −512
−512 1024 −256 256 256
512 −256 1024 −352 −64
−512 256 −352 1036 −152
−512 256 −64 −152 1072




1024 −512 512 128 384
−512 1024 −256 −448 −576
512 −256 1024 −128 384
128 −448 −128 1024 −192
384 −576 384 −192 1152



Table 6.6: The 52 certified vectors in X∗
5 and their certificates (continued).

25

(1, 1, 0, 1, 1) (−2,−1, 1, 1, 1)
1000,−500, 298,−320,−180
−500, 1000,−500,−169,−285

298,−500, 1000,−160, 324
−320,−169,−160, 1000,−171
−180,−285, 324,−171, 1000




720 −360 360 360 360
−360 720 −217 90 90
360 −217 720 −69 −62
360 90 −69 909 174
360 90 −62 174 911


(−1,−1, 1, 1, 1) (0,−1, 1, 1, 1)

3628800 −1814400 1814400 1360800 −1311192
−1814400 3628800 −907200 680400 1867520
1814400 −907200 3628800 −680400 −655596
1360800 680400 −680400 4486538 −1193454
−1311192 1867520 −655596 −1193454 3735040




720 −360 −360 −180 180
−360 720 180 360 180
−360 180 720 −180 −90
−180 360 −180 834 −169
180 180 −90 −169 720


(−1, 0, 1, 1, 1) (1,−1, 1, 1, 1)

3628800 −1814400 1814400 453532 1360799
−1814400 3628800 −1247400 1134033 −1773990
1814400 −1247400 3628800 −1282871 817098
453532 1134033 −1282871 3986944 −1666767
1360799 −1773990 817098 −1666767 3628800




720 −360 −360 −360 −360
−360 720 143 450 450
−360 143 720 −69 −62
−360 450 −69 909 174
−360 450 −62 174 912


(0, 0, 1, 1, 1) (1, 0, 1, 1, 1)

1024 −512 −256 512 −256
−512 1024 −256 128 128
−256 −256 1024 −704 −320
512 128 −704 1408 −320
−256 128 −320 −320 1024




1024 −512 −512 −256 −256
−512 1024 64 320 128
−512 64 1072 −304 −256
−256 320 −304 1072 −128
−256 128 −256 −128 1024



Table 6.7: The 52 certified vectors in X∗
5 and their certificates (continued).

26

(−1, 1, 1, 1, 1) (0, 1, 1, 1, 1)
10000 −5000 5000 5000 5000
−5000 10000 −5545 −3417 −4687
5000 −5545 11091 421 988
5000 −3417 421 10000 282
5000 −4687 988 282 11492




1024 −512 256 256 0
−512 1024 −512 −128 −384
256 −512 1024 −320 −192
256 −128 −320 1024 −192
0 −384 −192 −192 1152


(1, 1, 1, 1, 1) (2, 1, 1, 1, 1)

720 −360 −360 360 −360
−360 720 45 −180 −90
−360 45 735 −310 −13
360 −180 −310 720 −368
−360 −90 −13 −368 953




24 −12 −12 −12 −12
−12 24 1 6 −3
−12 1 25 2 0
−12 6 2 24 0
−12 −3 0 0 32


(−1, 2, 1, 1, 1) (0, 2, 1, 1, 1)

10000 −2500 5000 5000 5000
−2500 10000 −5937 −5937 −5937
5000 −5937 11875 2494 2494
5000 −5937 2494 11886 2500
5000 −5937 2494 2500 11886




720 −220 −315 360 360
−220 720 −230 −436 −436
−315 −230 810 −177 −177
360 −436 −177 878 175
360 −436 −177 175 878


(1, 2, 1, 1, 1) (2, 2, 1, 1, 1)

100000 −34598 −32701 1897 1897
−34598 100000 −32701 −44671 −44671
−32701 −32701 100000 −7226 −7226
1897 −44671 −7226 100000 1313
1897 −44671 −7226 1313 100000




1000000 −462748 −268626 −312920 −500000
−462748 1000000 −268625 −248128 −161557
−268626 −268625 1000000 28142 37252
−312920 −248128 28142 1065817 112047
−500000 −161557 37252 112047 1248670



Table 6.8: The 52 certified vectors in X∗
5 and their certificates (continued).

(-2, -2, -1, 1, 1) (-1, -2, -1, 1, 1)
(-1, -1, 0, -1, 1) (-1, 0, -1, -1, 1)
(-1, 1, -1, -1, 1) (2, 1, -1, -1, 1)
(0, -1, 0, -1, 1) (0, 0, -1, -1, 1)
(0, 1, -1, -1, 1) (0, 1, 0, -1, 1)
(1, -2, -1, 1, 1) (1, 0, -1, -1, 1)
(1, 1, -1, -1, 1) (1, 1, 0, -1, 1)

Table 6.9: The 14 vectors provably not in X∗
5 .

(-2, -1, -1, -1, 1)
(-1, -1, -1, -1, 1)
(-1, 0, 0, -1, 1)
(0, -1, -1, -1, 1)
(0, 0, 0, -1, 1)

(1, -1, -1, -1, 1)
(1, 0, 0, -1, 1)
(0, -2, -1, 1, 1)

Table 6.10: The 8 vectors probably not in X∗
5 for which semidefinite programming can not decide.

27

Bibliography

[KZ73] A. Korkine and G. Zolotareff, Sur les formes quadratiques. Mathematische Annalen, vol. 6, pp.
366–389 (1873).

[Nov83] N. V. Novikova, Korkin–Zolotarev reduction domains of positive quadratic forms in n ≤ 8 variables
and a reduction algorithm for these domains. Soviet Mathematics. Doklady, vol. 27, no. 3, pp. 557–560
(1983). Translated from Doklady Akademii Nauk SSSR, Mathematics.

[PR01] V. Powers and B. Reznick, A new bound for Pólya’s Theorem with applications to polynomials
positive on polyhedra. Journal of Pure and Applied Algebra, vol. 164, pp. 221–229 (2001).

[PZ06] R. A. Pendavingh and S. H. M. van Zwam, New Korkin–Zolotarev Inequalities(2006). In prepara-
tion.

[RB79] S. S. Ryshkov and E. P. Baranovskii, Classical methods in the theory of lattice packings. Russian
Math. Surveys, vol. 34, no. 4, pp. 1–68 (1979). Translated from Uspekhi Mat. Nauk .

[Sho] V. Shoup, NTL: A Library for doing Number Theory. Software package. Available from http://www.
shoup.net/ntl/.

[Stu99] J. F. Sturm, Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric cones. Opti-
mization Methods and Software, vol. 11–12, pp. 625–653 (1999). Software and manual available from
http://sedumi.mcmaster.ca/.

[SV] A. Schürmann and F. Vallentin, Rigorous MAXDET: software for finding rational solu-
tions to semidefinite programming problems. Available from http://fma2.math.uni-magdeburg.de/
∼latgeo/.

[SV06] A. Schürmann and F. Vallentin, Computational approaches to lattice packing and covering prob-
lems. Discrete and Computational Geometry, vol. 35, no. 1, pp. 73–116 (2006).

[VBW] L. Vandenberghe, S. Boyd, and S.-P. Wu, MAXDET: software for determinant maximization
problems. Software package. Available from http://www.stanford.edu/∼boyd/MAXDET.html.

[Zwa05] S. H. M. van Zwam, Properties of Lattices, a Semidefinite Programming Approach. Master’s thesis,
Eindhoven University of Technology (2005).

28

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
http://sedumi.mcmaster.ca/
http://fma2.math.uni-magdeburg.de/~latgeo/
http://fma2.math.uni-magdeburg.de/~latgeo/
http://www.stanford.edu/~boyd/MAXDET.html

	Overview
	Finding a sufficient set of inequalities
	The Semidefinite Programming Relaxation and Branching Strategies
	A Semidefinite Relaxation
	Branch and Bound
	A different branching strategy

	A note on the sets Xi
	Strategies for finding quadratic forms
	Description of the SDP in MaxDet syntax

	Making the lower bounds rigorous
	From floating-point numbers to rational numbers
	Ensuring strict feasibility
	Numerical stability
	Testing KZ-reducedness of a quadratic form
	Verifying a lower bound

	Programs
	Installation
	How to compile the code for genlists and verifydual
	How to interface between the MATLAB and C++ parts of the code

	Understanding the code

	Data
	A lower bound on A3
	Correspondence between claims and files
	Minimality of the sets of inequalities

	Bibliography

